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SUMMARY

Unlike chemical reactor dynamics, microbial behavior depends not only on the present
state of the environment surrounding a microorganism but, more importantly, on its past
history, as well. Herein lies a major obstacle in the modeling of a biological process with a
simple set of equations. By incorporating a culture’s past history in the form of a time-delay
kernel, a novel approach to bioprocess identification and modeling is formulated. A time
delay kernel is included in the state equations, and a generalized method the mathematical
simplification via the transformation of an integro-differential equation to a set of first
order ODE’s is developed. The resulting model possesses the combined advantages of
the simplicity of an unstructured, lumped-parameter model and the power of a complex
structured model. The experimental determination of the kernel will be discussed, with an

emphasis on the on-line parameter estimation, control, and optimization of a biochemical

reactor.



I. INTRODUCTION

It has been pointed out!+? that two important problems in the optimal design
and operation of a biological reactor are the lack of reliable biological sensors and
the lack of simple mathematical models with satisfactory predictive capability. The
sensor inadequacy is especially accute in the areas of continuous measurement of cell
mass and substrate/product concentrations, which are among the most fundamental
state variables in nearly all fermentation systems. The relatively poor state of
instrumentation means that the current measurements are discrete in time and
frequently contain a high level of noise which must be filtered out before they are

to be used to control a bioreactor.3:4:5:6

As far as the existing models are concerned, they are either inadequate dur-
ing transient operation (lumped parameter models), very complicated and time
consuming for control and optimization purposes (single-cell models), or contain
a large number of directly indetérminable parameters (structured models) for any
practical application. Despite significant modeling efforts, simple, descriptive , and

easy to construct models are not yet available.

One of the main purposes of advance measurement and modeling capabilities
should be the satisfactory control of biological processes. This control action should
be viewed more as a mechanism to safeguard the process against various types of
disturbances rather than as a mean of improving performance. To be sure, there
are situations in which the performance of a process can be dramatically improved
with the proper control but these cases are less likely to be found in bioprocesses

aiming at the volume production of fuels and chemicals.

This paper attemps to address mainly the second problem regarding the mod-
eling of a biochemical reactor. A new approach to bioprocess identification and

modeling will be outlined. The proposed approach considers the effect on rates
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and yields of not only the present state of the system but also the previous history
through the concept of a kernel integral. The set of the resulting integro-differential
equations is then shown to be equivalent to a set of first order ordinary differen-
tial equations representing a generalized structured model. These simple ordinary
differential equations then can be relatively easily manipulated with the well devel-
oped mathematical techniques to yield insightful information on the dynamics of
the system, including the analysis of the stability of steady states, etc. Furthermore,
size reduction techniques are outlined which can lead to a low dimensional, directly
observable model while preserving at the same time the biological significance of
various parameters.

II. NEW MODELING APPROACH

Mathematical models are needed for control purposes and bioreactor design.
They are the condensed version of our knowledge about a system, and their sophis-
tication can vary widely. A useful model should be properly balanced with respect
to its mathematical complexity and its ability to capture the essential features for
the intended purpose. It should also be simple enough to permit direct determi-
nation of its key parameters by performing feasible experimeptal procedures. The
validity of a complex model is especially questionable when it contains a large num-
ber of parameters whose values cannot be experimentally evaluated. The success
of models in engineering has always depended on the valid use of approximations
and assumptions in reducing the complexity of the real world to simple and man-
ageable mathematical abstraction, and biochemical engineering is no exception in

this respect.

In the following section, a modeling approach is introduced which combines the
simplicity of an unstructured model with the power of a complex structured model.

The essence of the approach is the inclusion of a time delay kernel in the equation
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describing the dynamics of a bioreactor. As an introductory example, consider the
familiar case of a continuous bioreactor operation modeled by a lumped-parameter

two-state-variable model, namely:

%;E = —Dz + p(s)z (1)
o = Dlss ) - (o)X )

where we assume that the specific growth rate, pu, of biomass, z, is a function of
the limiting substrate, s. The above model, and for that matter almost all other
models presently in use, states that the behavior of the biomass-substrate system
depends only on the present state, and there is no provision for the past history
of the microorganism. It has been recognized for a long time, however, that the
observed response of a cell population at a certain time instant is the composite
result of various biological processes that were initiated at different time instants
in the past as a response to the instanta.neous environmental conditions prevailing
at each particular time. These various processes result in a present overall specific
growth rate that can be described with the introduction of a time delay kernel,

k(t,h), in the specific growth rate:

% = -Dz+ [ /_' _ y[s(h)]k(t,h)dh] z (3)

& =Dlos =9~ o [[_ulstwlke,ar] ()

The idea of a variable’s dependence on its past history has been in existence
for quite some time.”'®:° In ecological studies, the interaction of prey-predator has
been described by Volterra models, which include a kernel associated with one of
the states of the system. As shown later, our handling of the kernel is more general
in the sense that the shape of the kernel is not restricted. For a linearized time-

invariant system, k no longer depends on t and the integration variables h separately



but on the difference t — h.

% pet [ sthlete - myan] = ()
3; = D(s;—s) — ?1_ U_; uls(h)k(t — h)dh} T (6)

Non-dimensionalization can be carried out to simplify the above equations with-
out any loss of generality. If time is scaled with reference to D~! and concentrations

are scaled with reference to sy, then we have:

%-t'f - [-1 + /_; uls(R)]k(t — h)dh] z (7)
%j_ —1—s— YL U_; wls(h)k(t — h)dh] z (8)

The kernel k(t) is usually referred to as the impulse response function and
can be interpreted as a weighing factor as shown schematically in Figure 1. Since
it can be generally assumed that future states have no effect on the present, k(t)
can be implicitly set to zero for t < 0. Note that, strictly speaking, k(t) is not a
time delay probability distribution function and k(t) < 0, i.e. negative weighing,
is possible. The u in the integrand of Equations (7) and (8) is the specific growth
rate would have realized if the system operated at a steady s\tate characterized by
the corresponding value of s for a prolonged period of time; it is the true specific
growth rate in the absence of time delay effects. The presently observed apparent
value of the specific growth rate is given by the integral of Equations (7) or (8) and
can be conceptualized as a string of impulses each of which is felt by the system over
a period of time according to the impulse transfer function. The main questions,
of course, are how can one determine the appropriate kernel form and what is the

biological significance of the latter. These two points will be discussed later.

Various possibilities exist for the functional form of k(t). See Figure 2. One

can set k(t) to be a delta function, 6(t), meaning that both the future and the past
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have absolutely no weight on the specific growth rate and that the present instant
carries all the weight. The integral f u(s(h)]k(t — h)dh reduces to p(s(t)] in this
case, and Equations (7) and (8) reduce to the conventional unstructured model of

Equations (1) and (2).

Another possibility is to assume that there is a fixed time lag in the response
of the system, i.e. k(t) = 6(t — 7}, meaning that the specific growth rate depends
on the substrate concentration at a discrete time instant 7 units before the present.

The state equations in this case are reduced to:

dz

= = [-1+uls(t =)= )
%‘:. =1—5~— —;—‘y[s(t ~ 1]z (10)

Analysis of this case can be performed by using the theories of differential-difference
equations.!® The relatively simple system of Equations (9) and (10) can be suc-
cessfully analyzed, but, because the mathematical theories of differential-difference
equations are not as well developed as ordinary differential equations, some problems
may arise in the integration and general analysis of this type of differential-difference

equations especially in slightly more complicated systems.

~

A more general approach is to express an arbitrary function k(t) in terms of a
series of base functions which permit the transformation of the integro-differential
equations into a set of simple first order equations. This is accomplished by ap-
proximating an analytical function k(t) as a summation of exponential distribution

functions of order m or less:

k(t) = aoko(t) + alkl(t) + agkz(t) S M o dmkm(t) (11)
where the general expression for the nth exponential distribution function is:

(t)_{T ’(:}—) et fort>0 (12)
fort <0
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The first two exponential distribution functions are sometimes used in ecological

studies and they have special names.

n=0 ko=T"'eT ....weak generic delay (13)

n=1 ky =T %eT ....strong generic delay (14)

Some of the properties of the exponential distribution functions are shown in Figure
3, and the first few of these exponential distribution functions are shown in Figure
4. Note that if these functions are normalized with respect to the average delay,
(n + 1)T, then one can see that the peak at the average delay becomes higher
and narrower as n increases. (See Figure 5.) It can be shown that as n — oo,
kn(t) — 6(t — 7), where 7 is the average delay. In this limiting case, the state

equations are again reduced to Equations (9) and (10).

At close inspection, the nth order exponential distribution function is identi-
cal to the residence time distribution function of a system of n-CSTR’s in series
in the modeling of a chemical reactor. Accordingly, if k(t) is expressed as the
sum of m exponential functions, the observed specific growth rate at time ¢, ex-
pressed as y(t) = f:oo p(s(h)}k(t — h)dh, will be the weighed sum of m integrals,
It u[s(h)k;(t — R)dh j=1,2,..,m,ie.,

o(t) = i:j [ sistiese - myan]

- f _ a3 oyt — W)dn (15)

- 3=0

- / " ls(R)JK(t — h)dh

-0

The weighing factors a; and the delay time constant T' are chosen in such a way
as to fit the observed transient of the specific system in a shift-up or shift-down

experiment. A small value of m usually gives a very satisfactory fit.
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Quite significantly, we are not bounded by the limited functional shapes of
each individual exponential distribution function. By expressing the kernel as a
linear combination of these base functions, any sufficiently smooth continuously
differentiable function can be represented if a sufficiently large number of base
functions are used. This is because the approach is essentially the same as expanding
the function e’;’k(t) by a power series. Theoretically, m could be extended to oo,
but two or three terms should be sufficient under most circumstances in practice.

For example, a linear combination of kq(t) and k,(t) results in
k(t) = (a0T™ ! + o, T~ 2t)eT (16)

where ag + a; = 1 so that the kernel is normalized to unity. Some of the shapes of

k(t) generated by a combination of these two base functions are shown in Figure 6.

The reason for choosing exponential distribution functions is that they permit
easy and elegant transformation of a set of integro-differential equations into a set
of simple ordinary differential equations. These exponential distribution functions

possess the property that each and every one of them is the solution to the following

'fTi(n-:‘-l)f_’_;_:iﬁl___O | (17)

1=0

differential equation:

with initial conditions:

Thal0) = 0 §i=0,1,2,---,n—1

Eka(0) = p-(nt1)
For example, ko(t) = T~1e™ satisfies

dkg
T—Et— + ko =0 (18)

with initial condition:

ko(0) = T!



Similarly, ki(t) = T-2teT satisfies

d%k, dky
33 +2T7t—+k1 =0 (19)

T2

with initial conditions:
ki(0) =0

dk1(0) —2

dt
The above properties of the exponential distribution functions can be used to elim-
inate the kernel from the integro-differential equations (7)-(8) and convert them

into a larger, but mathematically identical, set of first order ordinary differential

equations.

If we treat the integral containing the kernel as a new function y, (t),
t
n(®)= [ u(hkale - B)an (20)
-—00

then differentiating y, () with respect to t n + 1 times with the help of Liebnitz’s

rule yields:

n+l {
Sor(* 1)l (21

=0

The set of the resulting differential equations is one order higher than the kernel
originally contained inside the integral. This higher order differential equation can
be easily transformed into a set of first order differential equations through some
well known canonical transformations. Thus, for a simple nth order kernel k,(t),

the integral is transformed to the following set of equations:

dy

a2
dzl_z
a 2

(22)



dzp,) -2
ad "

1=0

Because of the linear properties of the differential and integration operators, a

linear combination of more than one base functions of k. (t) will leave the approach

unchanged. Thus if a first order kernel has the form
k(t) = (T + a;T"2t)eT™ (ao+a; = 1) (23)
Then, y(t) = [ ¢ oo #[5(R)]k(t ~ R)dh can be converted to a second order ordinary

differential equation:

7Yt 7 du(t)

7 o T Y) = p(t) + aeT—= () (24)

which can be further tra,nsformed to a mathematically equivalent set of two first

order ordinary differential equations.

d‘;(tt) —2T 'z~ T 2y + T 2u(t) + aoT* d’;gt) (26)

For example, with the kernel of Equation (23), the system dynamic equations (7)

and (8) are now:

if (y—1)z (27)
N
%ii - (29)
%:- =—2T" 2 — T3y + T %u[s(t)] +aoT™* 3# j: (30)

=271z -~ T2y 4+ T2 u(s)

—1du(s) —19u(s) —1 1 du(s)
T 120\°) 1%8\%) . 1 = %)
+ do Friat Kl e S A A A L
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Since, as it was mentioned, a first order kernel is usually sufficient in describing
bioreactor dynamics, the dependence of the specific growth rate (and other similar
culture parameters) on the past history of the culture can thus be described with
only two additional differential equations. This increase in the dimensionality of
the system is a small price to pay considering the significantly enhanced predictive

capabilities of the model.

The dynamics of a chemostat culture in the presence of time delay kernels has
been analyzed with the use of linearized stability analysis and bifurcation theo-
ries. The full spectrum of dynamic behavior, including damped oscillations (when
a Oth order kernel is included) and sustained oscillations (when a 1st order kernel
is included) can be predicted. The inclusion of kernels in other variables such as
Y, and z can also be analyzed in a similar manner. Furthermore, product forma-
tion, although not considered in this paper, can also be similarly studied. More
detailed and complete results on the effect of time delay on the stability, classical
process control consideration, and optimal control formulations will be the subject

of forthcoming publications.

The experimental determination of the kernel has also been investigated for
various transient situations. Shown in Figures 7a and 7b are the computer simulated
responses of a biochemical reactor described by Equations (5) and (6). From the
noisy transient data of u(t) and y(t) when the dilution rate is shifted up from 0.3
hr—! to 0.7 hr~!, the kernel was reconstructed by minimizing the mean square
deviation of the y(t) predicted by the kernel away from the observed y(t). The
resulting kernel is shown in Figure 7c. Here, u(t) is assumed to be the true specific
growth rate in the absence of the effects of time delay. Given s(t), this true specific
growth rate u(t) is obtained, in actuality, from a u versus s curve constructed from

a series of steady state experiments, in which the time delay effects are eliminated.
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For the purpose of this simulation, the u versus s curve is assumed to follow the
Monod model; however, it need not be so. Since the frequency response function or
the pulse response function can be considered merely as another representation of
the impulse response function (i.e. the kernel), sinusoidal or pulse methods can also
be utilized to determine experimentally the shape of the kernel. The above example
represents the worst case of estimating the impulse response function from a pulse
experiment. Much better agreement between the true kernel and the estimated one
can be achieved if an impulse can be applied to the system; the agreement is also
considerably better if the noise level is decreased. (Of course, the reconstructed

kernel coincides with the true one in the absence of noise.)

The above simulation study suggests that the first step in the experimental
determination of the kernel is to construct a u versus s curve through a series of
steady state runs. During a transient experiment in which the dilution rate or the
feed substrate concentration is shifted up or down, the substrate concentration can
be continuously estimated as a function of ¢, as shown in the previous sections.
Furthermore, by referring to the p versus s curve, u[s(t)] can be generated continu-
ously as well. The estimation scheme presented earlier can al;o be used to provide
a continuous estimate of the instantaneous specific growth rate y(t}, and, finally,

the kernel is generated.

Currently, work is under way in order to determine experimentally the shape
of the kernel for a continuous culture of S. cerevisiae. Shift-up, shift-down, and
sinusoidal perturbation experiments of the dilution rate, the substrate feed concen-
tration, the pH, or the temperature are being performed. The on-line measurements
with the aid of the parameter and state estimation algorithms described in the pre-
vious section will be used to determined the shape of the kernel function, and this

new approach to bioprocess identification and modeling will be tested in terms of
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the model’s capability in predicting the microbial behavior, including the more gen-
eral and revealing behavior, such as the occurrence of sustained oscillation, under

different conditions.

The difference between a complex structured model and a simple unstruc-
tured model is analogous to that between statistical and classical thermodynamics.
Whereas a structured model tries to explain the observed phenomena through a
large set of differential equations in terms of the more fundamental variables such
as the concentrations of various intermediates; unstructured models are usually
composed of those variables that can be physically "seen” or felt” more readily
and are, thus, more comprehensible to human minds. The proposed modeling ap-
proach herein attempts to retain the general form of an unstructured model so as
to facilitate simple physical interpretation of the variables by such familiar terms
as the specific growth rate. At the same time, this modeling approach attempts
to incorporate only those metabolic intermediates that are important to the dy-
namics of the system and to reduce the order of a complicated structured model
through the analysis of eigenvalue-eigenvector of a linearlized system. How this can

be accomplished is briefly outlined below.

In general, a dynamic system (including a structured model) can be described

by a set of first order differential equations:

fi-’;—(tt)- —fxu,t) (31)

where x is the state vector and u is the input to the system. For a system linear in

the state variables, the above equation can be written as:

=~ A@x() +5(0) (32

The fundamental-matrix solution to the above differential equation is expressed by
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the following Lagrange formula:

x(t) = /j K(t,h)g(h)dh (33)

If the linearization matrix A(t) is constant, then this solution further reduces to:

x(t) = /_ " K(t— h)g(h)dh (34)

where K is the fundamental matrix of Equation (31). Thus, the appearance of
a kernel in Equations (3)-(6)is spontaneous; it arises mathematically during the
process of solving a set of differential equations. The eigenvalue and eigenvector of
the matrix A(t) can be analyzed to simplify and to reduce the dimension of the
system by retaining only the first few most important modes and eliminating the

remaining nonsignificant modes.

If the unstructured part of the system (i.e. biomass, substrate, product, etc.)
are included in the state variable x(t), then the state variable can be grouped
according to those that appear in the unstructured model (x;(t)) and those that

are contained only in the structured model (x2(t)).

o-[a8] 69

The linearization matrix A(t) and the non-homogeneous forcing function g(t) can

be partitioned similarly:

so=[26) 0] e
el e
With this partition, Equation (32) becomes:
étlzlt(i) = A1 ()%1(t) + Ara(t)x2(t) + g1(t) (38)
i"%(f)_ = A (Ox1(t) + Asa()xa(t) + ga(t) (39)

= A22(t)xa(t) + &(t)



- 14—

Thus, the unstructured model’s equivalent of the structured model described by
Equation (31) is:

dx1 (t)
dt

= fl(xl,xz,u,t) (40)

where X, is the delay kernel defined by:

Xqo = /t Kzz(t,h)g(h)dh (41)

where Kj3(t, k) is the fundamental matrix to A;;(t) of Equation (39). As can be
seen from the preceding equations, the time delay kernel arises quite natually as a
conseqence of reducing a larger set of dynamic equations in a structured model by

a smaller set of dynamic equations in a unstructured model.

III. DISCUSSION

Microbial behavior depends not only on the present state of the environment
but on past histories as well. This is the main reason for the inadequacy of the simple
set of Equations (16) and (17). The dependence of a culture on its past history is
manifested in the presence of a lag phase in the beginning of a batch cultivation.
It is also present during the transients of continuous fermentors resulting from,
among others, a shift-up of nutrient concentration. For exam;\;le, the diauxic batch
fermentation of glucose producing ethanol as the intermediate product exhibits a lag
phase before the glucose begins to be consumed; another lag phase is also present
before the ethanol is taken up, as shown in Figure 8. In fact, it is this second
lag that is most often used to detect the presence of more than one substrates.
Figure 9 shows that although glucose concentration was suddenly increasing at O
hour, the observed apparent specific growth rate did not start to increase until 1.1
hour later. Such lag has often been explained in terms of the need to synthesize the
necessary pools of enzymes and intermediates before the rate of substrate utilization
is adjusted to the changed conditions. The importance and the presence of time lag

have been recognized for many years, and in this paper we have attempted to offer
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a simple mathematical means by which the idea of time delay can be incorporated
into the existing models without drastically increasing the complexity of the models.
Furthermore, by expanding the delay kernel in a series of exponential distribution
functions, the integro-differential equations can be easily reduced to a set of first
order ordinary differential equations for which the mathematical theories are well

developed and various established techniques are available to analyze them:.

Much benefit can be derived from the recognition of time delay. It is a well
known fact that time delay can cause, among other undesirable problems, serious
instability difficulties if it is neglected in a control strategy. Furthermore, an optimal
control scheme may not be truly optimal if time delay is not properly considered.
Figure 10 shows a hypothetical run in a bioreactor. The data collected during
the short transient period after the start up can be used to update the shape of
the kernel and other model parameters. Based on the updated model and model
parameters and objective functions, an optimal path can be calculated by an on-
line computer. Occasionally, deliberate excursions can be introduced to update
the kernel and model parameters if they are suspected of gradual changes during
a long steady state run. A way in which a simple but powerful model such as the
one proposed herein and the state of parameter estimation scheme discussed in the
previous sections can be used is in the combined forward and feedback control of
a bioreactor. Shown schematically in Figure 11 is an interactive estimation-control
optimization scheme in which the on-line measurement on a bioreactor is passed
through an estimation-filter block to rid of the noise and to yield a set of on-
line estimates for the state variables and growth parameters. These estimates are
used as the basis for feedback control as well as for on-line process modeling. The
biochemical process is continuously modeled, new values of the model parameters
are estimated, and the biological model itself, including the shape of the kernel,.

is constantly updated. This can be accomplished by tracking the control history
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and comparing the deviation of the actual state away from the predicted values.
Although such an ideal scheme does not exist presently, the state and parameter
estimation and the new approach to modeling proposed herein is a step toward the

realization of such a scheme.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

The interpretation of a time-invariant kernel integral which relates the input

to the output of a linear system.

Three frequently used functional forms of k(t): (a) delta function without time
delay; (b) delta function with a discrete time delay 7; (c) general distributed
time delay. Note the direction of past and future are the reverse of the conven-

tional time plots.

Some properties of the exponential distribution functions.

Exponential distribution function of order n.

Exponential distribution function of order n normalized with respect to the

average delay.

Linear combination of the Oth order exponential distribution function, ko(t),
and the 1st order exponential distribution function, k,(t); k(t) = acko(t) +
alkl(t), ag+a; =1.

(a) Simulated input (i.e. the specific growth rate in the absence of time delay
effects) as a function of time in a continuously operated bioreactor described by
the state equations (20) and (21) after a shift-up in the dilution rate from 0.3

hr=1 to 0.7 hr~1. (Parameters used: u = o?i?‘; 85 = 5.0; Y, = 0.5; noise level

in measurement = 5(b) Simulated output (i.e. the observed specific growth
rate containing time delay effects) as a function of time. (Upper smooth curve:
the true value of y(t); lower smooth curve: the calculated value of y(t) based
on the estimated kernel function of (c). (¢) The true and the estimated shapes

of the kernel.

Batch fermentation of glucose by S. cerevisiae. Note that there are two distinct

region of high growth activities.



Figure 9.

Figure 10.

Figure 11.
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On-line estimates and off-line measurements in a dilution rate step-up exper-
iment of continuous glucose-limited cultivation of S. cerevisiae with ethanol
formation. Shift is at 0 hr.® (a) Cell biomass concentration. (b) Glucose con-

centration. (c) Ethanol concentration. (d) Specific growth rate.

Use of transient data for the determination of kernel and model parameters
during the start-up of a bioreactor and the subsequent utilization of model in

control and optimization.

Block diagram of the measurement- estimation- modeling- optimization- con-

trol configuration.
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