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Abstract

We provide a necessary and sufficient condition for the almost sure conver-
gence and the strong consistency of the sample autocovariance of a discrete
spectrum weakly stationary process. This also clarifies the estimation of the
autocovariance function of a mixed spectrum weakly stationary processes.

Abbreviated Title: “Autocovariance”

Key words and phrases: Mixed spectrum, SLLN, stationary, sample co-
variance, almost sure, amplitude, phase, zero-crossing rate.




1 Introduction

The estimation problem of the autocovariance function of a weakly station-
ary process is of fundamental importance in time series analysis, and has
been treated in the past by many authors. Most of the literature deals with
the continuous spectrum case where the results depend on a vanishing auto-
correlation, and the existence of higher order moments. The more complex
mixed spectrum case, however, has received less attention and is less clear.
The source of confusion is the fact that in the presence of a discrete spec-
tral component the usual sample estimator is not necessarily consistent. For
example, for a Gaussian process, the sample autocovariance-the estimator
most often used in practice—is inconsistent in mean square sense unless the
discrete spectrum is absent (Hannan (1970), p. 210, Koopmans (1974, p.
60)). Moreover, in general consistency results concerning the sample autoco-
variance are not entirely satisfactory. The purpose of this note is to clarify
the general estimation problem in the mixed spectrum case vis-a-vis the al-
most sure convergence of the sample autocovariance under the assumption
of second order stationarity only. In a nutshell, this is achieved by observing
that the product of the process by its shift results in a process which is the
Fourier transform of an L' random measure.

The general mixed spectrum case encountered in practice is that of “signal
plus noise” where the signal is a stationary process consisting of a sum of
random sinusoids, and the noise is a stationary process, with certain ergodic
properties, independent of the signal. With this in mind, it is more crucial
to consider the discrete spectral component.

To motivate our discussion, consider the strictly stationary real-valued
process

Xy = Zenuoéja g—j = 5]’7 W—j = —j
J

where the {; are orthogonal. It is shown in Hannan (1970, p. 201) that a
necessary condition for ergodicity is that the |¢;]| are almost sure constants.
Clearly, under ergodicity the sample autocovariance is strongly consistent.
Without addressing ergodicity directly, we shall show that, under a certain
assumption on the frequencies, constant amplitudes are necessary and suffi-
cient for the strong consistency at all lags of the sample autocovariance for
any complex-valued weakly stationary discrete spectrum process. The ar-
guments, which makes use of a new work on the SLLN by Houdré (1992),
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involves second order properties only. These arguments are given here only
in the discrete parameter case, but the continuous and the multidimensional
parameter cases follows similarly (the corresponding strong laws are proved
in the above reference.

2 A SLLN

We shall appeal to the following general result which states that the strong
law of large numbers (SLLN) holds for processes which are Fourier transforms
of random measures provided the latter converges almost surely to zero at
punctured dyadic intervals around the origin.

Theorem 2.1 Suppose {X;}, t =0,£1,---, admits the Fourier representa-
tion

X = /w e ¢ (dw)
where & @ B(—m, 7] — L*(P), 1 < a <2, is o-additive. Then

o1&
]\ll_{fgo N ;)&t =¢({0})

in L*(P). Furthermore,

o1&
Iél_r};oﬁ ;At =£({0}) a.s.
if and only if
lim £((=27",27")\ {0}) =0 a.s.

n—ro0

This is a generalization of a result by Gaposhkin (1977) who requires weak
stationarity. It seems that the precursor to all this is a result of Rajchman
(1932) which states that the strong law of large numbers holds for a sequence
of uncorrelated random variables whose second moments have a common
bound (see Chung (1974, p. 103)). The more general dependent case is
discussed in Chapter 10 of Doob (1953).

We note that the dc component £({0}) may be random or nonrandom,
and that we do not require the mean of {X;} to be zero.
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The proof of Theorem 2.1 depends on a careful analysis in a neighbor-
hood of the origin of the kernels hy(6) = 7172?;1 exp(:tf). Since hy(8) is
periodic with period 27, Theorem 2.1 has to be modified when the limits
of integration extend beyond (—=, 7] and cover multiples of £27. In this
case, in addition to the origin, we must examine neighborhoods of multiples
of £2x. In particular, when the limits extend from —27 to 27, the modified
claim is
Theorem 2.2 Suppose {X;}, t =0,41,---, admits the Fourier representa-
tion

2T
X, = / ¢ (duw)
-2
where £ : B(—27,2x] — L*(P), 1 < a <2, is o-additive. Then

N
Jm 52X = £(10) + é(42n))

in L*(P). Furthermore,

1 N
Jim 55X = ({0 +6((2r)) as

if and only if
Tim {£((—27,27) \ {0}) + €(—2r, —27 +2°7) + £(27 — 27, 27)} = 0
almost surely.

This consideration becomes relevant in the proof of strong consistency of the
sample covariance. The proof of Theorem 2.2 follows as in Houdré (1992)
where the case of a spectrum supported on (—7, x| is tackled. It is also a
special case of a general a.s. principle developed in Houdré (1993).

There are various applications in spectral analysis where the almost sure
result concerning the sample autocovariance is of use. For example, in the
mixed spectrum case, when precise autocovariance estimates are available,
it is possible to detect the discrete frequencies from the sample covariance
evaluated at sufficiently high lags (Priestley (1981), p. 626). More recently, it
has been shown in Li and Kedem (1993) that a certain parametrization of the
sample autocorrelation forms a contraction mapping whose set of fixed points
contains approximations to the cosines of the true frequencies. The method,
which leads to very precise frequency estimates, requires however, among
other things, the almost sure convergence of the sample autocovariance.
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3 The Discrete Spectrum Case

3.1 Finitely Many Frequencies
Let {X;},t=0,%1,+2,---, be a weakly stationary discrete spectrum process

with mean E[X;] = m, autocovariance R(k) = E[(X;x — m)(X, —m)],
k=0,£1,£2,---, and spectral distribution F'(dw) supported at p+1 distinct
atoms in {wp,wy,---,w,} € (—n, 7], such that wy = 0. Then,

Xi—m = ! e E(dw)

-7
where,

EZ{j(SwJ(dw), F(dw) = ZE|§]|5 (dw)

and the
H{wih) =¢

are orthogonal with mean zero. Clearly ¢ : B(—x, x| — L*(P) is o-additive.

3.1.1 Estimation of the Mean

As an illustration of the use of Theorem 2.1, consider the estimation problem
of the mean F[X;] = m. Write

Xo= [ e(€(dw) + méofd))

Since the w; are distinct, for sufficiently large n,

E((=27%,27")\ {0} + mo((—27",27")\ {0}) =0 a.s.
Therefore,

(1) hm——Z)&t- E{OH) +m  a.s.

and we obtain the well know result that

]&L“;”ﬁz“—m



if and only if £({0}) = 0 almost surely. Observe that the dc component
£({0}) + m in the second order stationary case is a sum of a random part
£({0}) plus a nonrandom constant m. Clearly, “6({0}) + m” here plays the
role of “6({0})” in Theorem 2.1.

3.1.2 Estimation of the Autocovariance

We shall treat the general case which takes into account the presence of
a possible dc component. That is, we do not necessarily require m = 0
and/or £({0}) = 0 a.s. . In practice however, the dc component is often
removed by subtracting the sample average in accordance with the SLLN
(1) (see Koopmans (1974), p.58). As an estimator for R(k) we choose the
(simplified) sample autocovariance (1/N) SN (X — m)(X; — m).

If we define

¢9(dw) = {Z [€({w;}) [Pt } So(dw) + 3 E({w; DEF@ )™ 60, - ()

J#

Then o
(Xepn — m)(Xs —m) = / e ()
-2

and we can see that for each fixed k, the lag process (Xiypr — m)(X; — mj
admits a Fourier representation with respect to ¢ : B(—2x,27] — LY(P),
and a dc component

(0] = 3 ettt

Notice the emergence of a dc component in the lag process (X;p—m)(X; — m)
regardless of whether it is absent or present in the original process {X,}.

Since the w; are distinct, there is no ¢®)(.) mass in sufficiently small
punctured neighborhoods of 0 and of £2x. In addition, £®({27}) = 0.
Therefore, by Theorem 2.2

N
Z (Xepr —m)(X; —m) 2 W({0}),  Vk



We need conditions to ensure that £()({0}) is a nonrandom constant for all
k, in which case

eN({0}) = EleW({0})] as., Vk
Clearly, E[EW({0})] = R()
So, assume (W ({0}) = E[¢®W({0})], k = 0,%1,---. Then for all k,

Y617 = ElgP)e* =0

7=0

and this implies that
617 = Elg1?,  j=0,1,---,p

& =Bl j=0,1,-,p
where the ¢; are random such that the ¢; are orthogonal with mean 0.
On the other hand, when ¢ = /E|{;|2'% ) then || = E|¢;]* and
£W{0}) = E[¢W™({0})] = R(k) is a.s. nonrandom for all k. We thus have.

or,

Theorem 3.1 Let

p .
(2) Xy =m+3 et 1=0,41,42,
=0

where E[¢;] = 0, and for j # 1 E[¢;6] = 0, be a complex valued weakly sta-
tionary process with mean m, autocovariance R(-), and a spectrum supported
at p+ 1 distinct atoms {wo = 0,wy, -, w,} € (=7, 7]. Then as N — oo,

1 N < Lla.s A
(3) w7 2 (Xerr = m)(X; = m) PLer e®q0}),  k=0,41,42, -
t=1

Furthermore,
1 X e Cam——
() 5 o (Xews —m)(Xe ) "5 R(k), k= 0,51, %2,
t=1

if and only if

(5) é-j = Y, E|§j|2ei¢j7 .7: 0717"'7p

where the ¢; are random phases.



As a corollary of Theorem 3.1 we can see that if {X,;} in ( 2) is a real-
valued Gaussian process, its sample autocovariance is not consistent. This
is so because of the requirement of constant amplitudes |¢;|. This is in line
with the well known fact, mentioned earlier, that the presence of a discrete
spectrum renders the sample autocovariance of a Gaussian process inconsis-
tent in L?(P) sense.

Example 1. Consider the model of random phases

P
Xt :ZAjCOS(th+¢j), t:(),:i:l,:t2
=1
where E[X;] = m = 0,0 < w1 <wy < - < wp, < 7, A; are positive
constants, and the ¢; are independent random variables uniformly distributed
in (—m,x]. Define

Oj = —0j, wj=—wj, Aj=Aj Ap=0

Then we have the representation

P 1 ) )
)Srt = Z aAjewJeWJt

J==p ~

so that (1/N)SN, X, X: ©% R(k). From this, the sample autocorrelation
is a.s. consistent as well. O

3.2 Infinitely Many Frequencies

This case takes after the case of finitely many frequencies with the added
assumption that for j # [, |w; — w;| cannot be too close to 0 and +27. At
this point it might be worthwhile to mention that the case of infinitely many
frequencies 1s also important in practice: Simple nonlinear operations on a
sum of pure random sinusoids, e.g., clipping, lead to a discrete spectrum
process with infinitely many frequencies (see [7]).



Suppose that for w; € (—n, 7],
(6) Xe=m+ ) e
=0

is weakly stationary with mean m. Then by stationarity the ¢; are orthogonal
and

BIX? = Y6 < oo
7=0
It follows that

(Xipr —m)(Xy —m) = /Zﬂ e ek (dw)

—-2m
where - o
W (dw) =D& s, o (dw)
7=01=0

is o-additive from B(—2r,27) to L'(P) since 3, ;> < co. Thus for each

fixed k, the lag process {(Xy4x — m)(X; —m)}, t = 0,£1,£2,---, admits a

Fourier representation with respect to £®*)(dw), with a dc component
0 .
eV ({0}) = D lg e
i=0

Note that since —7 < w; < 7, we always have —27 < w; —w; < 27 for
distinct w;,wy, so that ¢#)({2r}) = 0. Therefore, by Theorem 2.2 and the
previous discussion on equality between £#({0}) and R(k), we have.

Theorem 3.2 Let {X;}, t = 0,+1,---, be a complex valued weakly station-
ary process with mean m, autocovariance R(-), and a spectrum supported at
infinitely many distinct atoms w; € (—7, 7] as in ( 6). Then as N — oo,

1 N ~ <% LY
(7) 5 2o (Ko = m) (X —m) % €9({0})
=1
and the convergence holds almost surely if and only if as n — oo
E9((=27 27\ {0}) + €0 (=2m,—2r +27")
(8) + ®2r —27 2m)] %5 0
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Furthermore, when (8) holds,
1 ¥ —
(9) ~ 2 (KXo = m)(Xy —m) = R(k)
t=1

for all k (= 0,%1,4£2,--+), if and only if

(10) ‘f'j = v E1€j|26i¢j7 .7 = 071727' te

where the ¢; are random phases.

What Theorem 3.2 says in effect is that if the frequency differences cluster
in the critical intervals (—27",27")\ {0}), (=2, =27 +27"), (27 — 27", 27),
the almost sure convergence might not hold. Evidently, a.s. convergence
holds when infj4 |wj — wi| > 0 and sup; |w; — wi| < 27. Once the almost
sure convergence occurs, the result also provides a necessary and sufficient
condition for the limit to be a constant.

3.2.1 Connection With the Zero-Crossing Rate

Theorem 3.2 clarifies the asymptotic behavior of the observed zero-crossing
rate.

Let {Z,} be areal-valued stationary Gaussian process with mean 0, and a
purely discrete spectrum containing a finite number of jumps (atoms). Also,
let X; = 1 when Z; > 0 and X; = 0 otherwise. We observe that the spectrum
of {X;} is an infinite sum of convolutions in terms of the spectrum of {Z,},
so that {X;} admits the representation ( 6) with E[X,] =m = 1/2.

The zero-crossing rate (ZCR) 4 (in discrete time) observed in a time series
74, 2, ++, Zn is defined in terms of the indicators d; = (X} — X¢-1)?,

D [
v o= fro d
TEN-1 N—1Zt=2t

Thus, asymptotically the ZCR is the same as

1
2

SIS

N
¥ = Z(Xt — m)(Xe—y —m)
t=2



where E[X,;] = m = 1/2, and we can study the asymptotic ZCR through
the first order sample autocovariance of {X;}. So, does the ZCR converge
almost surely to a constant ? This is addressed in Kedem and Slud (1993).
Let o4(-) denote the spectral measure of the binary process {d;}.

Theorem 3.3 (Kedem and Slud (1993).) Let {Z;; t = 0,+1,42,---} be a
real-valued zero-mean stationary Gaussian process with normalized spectral
measure o,(-). If o, has at least two atoms in [0, 7], then o4({0}) > 0. That
is, the spectrum of {d;} has a jump at 0.

Thus, two or more atoms (jumps) in the spectrum of {Z,} prevent the ZCR
from converging to a constant a.s., though it always converges a.s. to a
random variable because of the assumed Gaussianity and hence strict sta-
tionarity. Hence, by Theorem 3.2 the spectrum of {( X; —.5)(X¢—1 —.5)} does
not contain a clustered difference in the critical intervals (—27",277) \ {0}),
(=27, —27 +27"), (27 — 27", 27). On the other hand, in the representation
of {X,} the & do not have constant amplitudes as in ( 10).

In the case of a single pure atom, the ZCR converges almost surely to a
constant, so that by Theorem 3.2, ( 10) holds.

4 Mixed Spectrum Case

The case of practical interest is a finite sum of complex exponentials plus
continuous spectrum noise. The argument proceeds in exactly the same way
as before. Suppose, for w; € (—7,7},,5=0,1,--,p,

p
YR
Xt—m:Ze“"J §j+€t
—r

is weakly stationary. Further, suppose the noise ¢; is zero mean ergodic inde-
pendent of the zero mean ;. When forming the product (X —m)(Xy — m),
the sample covariance of the cross terms (and their conjugates) converges to
zero with probability one (by zero mean ergodicity). Since the noise € is
ergodic, its sample autocovariance also converges almost surely to its auto-
covariance. Hence, a simple consequence of the results of the previous section
as well as of independence, we have.
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Theorem 4.1 Suppose, for w; € (—n, 7], 7 =0,1,---,p,

p .
X, —m= Z et + &

§=0

is weakly stationary. Let the & = \/E|;|2*%, j = 0,1,--+,p, be zero mean

and independent of the zero mean ergodic process €. Then,

N
ZXt+k_m) Xt m)SR(k) kZO,:tl,

Example 2. Let {X;} be as in Example 1, and consider the model of signal
plus noise

Y;:Xt—}—ﬁt, t:O,:tl,

where {¢;} is a linear process,

Y aug,  {ud ~1D(0,07), D lajl <o

i=—o0 j=—o00

independent of {X;}. Then {¢;} is a continuous spectrum strictly stationary
ergodic process (Hannan (1970), p. 204). By Theorem 4.1 then

11\7

— ZY;“CYt “% R(k), forall k
N t=1

Filtering {Y;} by a time invariant linear filter gives again a discrete spec-
trum signal plus an independent ergodic stationary noise component, so that
again the sample autocovariance converges a.s. to the true autocovariance for
all lags k. In particular, let £, be such a (parametric) filter with an impulse
response hj(a) depending on a parameter o € A, where A is an open set.

Define,

Yila) = LY = Zh VY-,
If there are constants ¢; > 0 such that ). j¢; < oo and |hj(a)] < ¢; for
all 5 and uniformly in «, then the almost sure convergence of the sample

autocovariance is also uniform in « € A (Li and Kedem (1993)).
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