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Chapter 1: Introduction

1.1 Background and motivation

The adeles of function fields and the finite adeles of number fields provide

a fundamental example of a local-to-global construction. For these two types of

one-dimensional schemes, the adeles provide a common framework. The adeles of a

surface were given by Parshin [21] and generalized to arbitrary noetherian schemes

by Beilinson [1]. The excellent paper by Huber [14] provides a complete account of

the construction, as follows: For an arbitrary quasi-coherent sheaf F on an arbitrary

noetherian scheme X, Huber constructs an adele functor AX(F) into the category

of cosimplicial groups. Rather than taking a restricted direct product over points

(as in the classical construction), the product is over all tuples ∆ of scheme points

ordered by specialization. Such a tuple is called a Parshin flag, and the collection

of Parshin flags forms a simplicial set (Definition 2.2.1). We recover the classical

adeles as AX = A1
X(OX) when dimX = 1. The main theorem for adeles states:

Theorem 2.2.13 ([14, Theorem 4.2.3 and §5.2]). Considering the cosimplicial group

AX(F) as a chain complex via the Moore functor, we have an isomorphism

Hn(AX(F)) ' Hn(X,F)
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for any noetherian scheme X, quasi-coherent sheaf F , and n.

Fesenko [6] gave a relatively elementary proof of Serre duality and the Riemann–

Roch theorem for surfaces using a topological duality on the higher adeles. On the

other hand, Mattuck–Tate [18] and Grothendieck [12] provided proofs of the Rie-

mann hypothesis for curves as corollaries to the Riemann–Roch theorem for surfaces,

with the latter utilizing the forgotten1 Hodge index theorem. Both methods come

down to studying the graph of the Frobenius morphism on the surface S = C × C.

Therefore, the combined results of Fesenko and Mattuck–Tate–Grothendieck can be

said to provide an adelic proof of the Riemann hypothesis for a curve C over a finite

field.

At the end of [6], Fesenko poses a number of questions for further research:

“Study functorial properties of the adelic complex with respect to

morphisms of surfaces and their applications. Extend the argument in

this paper to the case of a quasi-coherent sheaf F on [a surface] S and the

associated adelic complex AS(F)... Find an adelic proof of the Noether

formula and the Hodge index theorem.” [6, p. 451]

The motivation for this thesis is to understand the adelic proof of the Riemann

hypothesis alluded to above, while following the program laid out by Fesenko. Al-

though our results are in the same spirit, we do not provide the proofs implied by the

1In trying to comprehend the scope of [Mattuck–Tate’s] method, I stumbled upon the following

statement, a fact known since 1937... (as shown to me by J. P. Serre), but apparently not very

well-known or used. [12, Translated]
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context of [6] (for example, our proof of the Hodge index theorem is Grothendieck’s,

and not the purely topological one intended in the question). Future work will be

devoted to extending the results of this thesis to the more topological setting that

the above question is posed in.

The main results of this thesis can be summarized as follows:

1. We study the category of differential graded modules over the adelic algebra

and characterize certain quasi-coherent sheaves. Using this, we are able to

provide a novel construction of Chern classes (Chapter 3).

2. We prove that the tensor product of modules corresponding to line bun-

dles compute their proper intersection number via their length. For self-

intersection, we construct a sort of projective resolution which does the same

thing (Chapter 5).

3. We define the simplicial Milnor K-algebra, and prove that the Bloch–Quillen

formula for surfaces is actually a ring isomorphism (Chapter 6).

1.2 The adelic algebra

Let X/k be a variety over an algebraically closed field. Our main object of

interest, in slight contrast to earlier works, will be what we call the adelic algebra.

This is the cosimplicial algebra AX defined, in the notation of Huber [14], as

ApX = a(S(red)
p (X),OX).
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Here, S
(red)
p (X) denotes the simplicial set of all non-degenerate Parshin flags. If

dimX = n, the top dimensional ring AnX is generally called the ring of ratio-

nal adeles of X. We define the degenerate adelic algebra Adeg,X by Apdeg,X =

a(Sn(X),OX), where Sp(X) denotes the set of all Parshin flags.

The so-called “monoidal” Dold–Kan correspondence [23] is the pair of functors

{cosimplicial k-algebras} C // {differential graded k-algebras}.
K
oo

The Alexander–Whitney map, i.e. the cup product, is what facilitates between

the products on both sides, and we simultaneously think of AX as a differential

graded algebra.

From now on fix a surface X/k and let A = AX . We begin by studying the

differential graded category ModdgA of right differential graded modules over A. We

show,

Proposition 3.2.5. Let A be the adelic algebra of a variety and A(−) the associated

adelic functor on quasi-coherent sheaves (Definition 2.2.8 and subsequent remark).

1. Let L(D) be the line bundle corresponding to a Cartier divisor D. Since D is

locally principal, A(D) = A(L(D)) is a principal differential graded A-module,

in an appropriate sense of the word.

2. We have isomorphisms of differential graded A-modules A(D) ⊗A A(E) '

A(D + E), and A(D) ' A(E) if and only if D ∼rat E.

3. Further, if we move to the category of differential graded (A,A)-bimodules

we can define the internal hom object HomA(M,N) and the dual M∨ =
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HomA(M,A) (the objects A(F) are (A,A)-bimodules). Then A(D)∨ ' A(−D).

1.3 Intersection theory

Return to the case of a fixed surface X/k. Since objects in the differential

graded category ModdgA are already chain complexes, we have a way of doing a

simplified form of derived algebraic geometry. Let C,D be effective Cartier divisors

intersecting properly, and IC , ID their associated ideals in A (here, ideal means a

two-sided differential graded A-submodule). Then (§5.1)

C.D = lengthAA/IC ⊗
dg
A A/ID.

Fix a curve C, possibly singular. For divisors D that do not intersect C properly,

− ⊗dgA A/IC does not “represent” the derived tensor − ⊗LOX OC . We can however

construct an object Pt ∈ ModdgA as follows. We set Pt = A[T ]/T 2 with dT =

t − T (t−1dt) for a choice of generator t of IC = tA. Then Pt satisfies property (P)

in the sense of [25, Tag 09KK] and is an extension

0 −→ A −→ Pt −→ A[1] −→ 0

of differential graded A-modules, where M [1] denotes the shifted module. The

module Pt acts like a resolution of the A-module AC . The choice of t also corresponds

to a choice of divisor E ∼ C intersecting C properly. We have (§5.2)

Theorem 5.2.4. There is an isomorphism of differential graded A-modules

Pt ⊗dgA A/IC ' AC ⊕ AC(E |C)[1]
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By the Riemann–Roch theorem for the curve C, the Euler characteristic of

the right side is C2. Since the isomorphism is a morphism of differential graded

modules (in particular a chain map), the Euler characteristic of the module on

the left computes the self-intersection number of C. We conclude that a similar

statement is true for Pt ⊗dgA A/ID for arbitrary divisors D.

1.4 K-groups of adeles

Let X/k be a curve or surface (possibly singular) with associated adelic algebra

A. Our goal is to approach the K-theory of X via A, but only insofar as is needed

to understand the Riemann–Roch theorem for surfaces.

Gorchinskii [11, 10] constructs adeles of K-theoretic sheaves by mimicking the

Huber–Beilinson construction. Braunling [2] does this similarly for cycle modules.

These constructions have the benefit that they are flasque resolutions of the original

K-theoretic sheaf, by construction.

However, one must go to greater lengths to demonstrate a cup product. In

fact, Braunling [2, Example 27] gives an example due to Gorchinskii of why the

adeles of K-groups do not have a product on the level of cochains, without further

refinement.

We instead use a simplified approach following Budylin [3]. For any covari-

ant functor K : Ring −→ Ring, the cosimplicial algebra K(A) has a natural cup

product structure, given by the Alexander–Whitney map. While we gain a product

structure, we cannot write K(A) as a flasque resolution of sheaves. However, for
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the purpose of understanding intersection theory on surfaces, particularly aimed at

framing Riemann–Roch, we find this simplified construction preferable.

In fact, we do still have a Bloch–Quillen formula for a smooth surface X/k

and associated adelic algebra A, proved by Budylin:

Theorem 1.4.1 ([3, Theorem 1]). For X/k a smooth surface

H2(KM
2 (A)) ' CH2(X).

Unlike Gorshinskii or Braunling’s adeles of K-groups, this isomorphism must

be built in a more ad hoc manner.

We refine this theorem by providing an interpretation ofKM(A) andH•(KM(A))

as differential graded rings.

Proposition 3.3.7. Let A be any differential graded algebra which comes from a

cosimplicial algebra. Let M be a differential graded (A,A)-bimodule. Suppose M is

free and rank 1 as a graded left and right A-module. There is a natural construction

of a Chern class c(M) ∈ H1(KM
1 (A)).

On the other hand, given a Cartier divisor D we may assign an adelic Cartier

divisor tD ∈ A×01 ⊕ A×02 ⊕ A×12. Then these two notions agree:

c(A(D)) = {class of tD in H1(KM
1 (A))}.

The cosimplicial group KM(A) defined by (KM(A))n = KM(An) is a differen-

tial graded Z-algebra under the Alexander–Whitney map. If tC and tD are two adelic

Cartier divisors, then their cup product tC`tD is a well-defined element of KM(A2).

We show that under the canonical isomorphism given by the Bloch–Quillen formula

above,
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1. tD maps to the class of D, and,

2. tC ` tD maps to the class of C.D.

Therefore,

Theorem 6.2.11. Let X/k be a smooth surface. The map

H•(KM(A))
φ // CH•(X)

is an isomorphism of rings.

1.5 Hodge index and Riemann hypothesis for curves

Finally, we apply the results of the thesis to the Hodge index theorem and Rie-

mann hypothesis for curves. Our presentation follows [12], although we cannot add

too much more other than frame the existing proofs in the language of differential

graded A-modules.

Let C/Fq be a smooth projective curve of genus g. Of the two strategies Weil

utilized in proving the Riemann hypothesis for C, the more geometric is to consider

the diagonal embedding of C in its product X = C×C [27]. This is the graph ∆ of

the identity map, which has transverse intersection with the graph Γ of the (purely

inseparable) Frobenius morphism. Therefore, this intersection number is exactly

∆.Γ = #C(Fq). The Riemann hypothesis in this case is easily seen to be equivalent

to the inequality

|1 + q −#C(Fq)| ≤ 2g
√
q. (1.1)
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We will derive (1.1) from a version of the Hodge index theorem. As we do

not, at this time, have an adelic definition to replace ampleness, we satisfy ourselves

with an ad hoc class of divisors. Call a divisor D simplicially effective if it is

effective, and its self-intersection divisor is effective. A very ample divisor is clearly

simplicially effective. We show, for the adelic intersection pairing,

Theorem 3.2 (baby Hodge index). Let D,E be divisors, with E simplicially effec-

tive. If (D,E)adelic = 0, then (D,D)adelic ≤ 0.

Applying this version of the Hodge index theorem to the case X = C×C with

appropriately chosen divisors gives (1.1), as outlined in §3.

1.6 Notation

Rings and algebras are associative and have an identity. If A is an algebra,

an (A,A)-bimodule is just called an A-bimodule. k is an algebraically closed field,

although most results hold with appropriate modifications for an arbitrary perfect

field.

If X is a variety, then k(X) is the function field of X, and K = KX is the

corresponding constant sheaf. We denote the category of quasi-coherent sheaves on

X by Qco(X). We use D ∼rat E to denote rational equivalence of divisors.

If X is a noetherian scheme, we let AX denote the normalized, rational differ-

ential graded algebra (Definition 2.2.8). We let ÂX denote the complete differential

graded algebra (Definition 2.2.18). When the context is clear we suppress the X and

write A and Â. [§2.2] ∆ denotes an arbitrary Parshin flag on a noetherian scheme,
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possibly degenerate. S•(X) is the simplicial set of all Parshin flags. SI(X) is the

simplicial set of all flags of type I. A•(K,F) is the functor defined in Proposition

2.2.7 for a simplicial set K ⊂ S•(X). We denote A(F) for either the rational or

complete (we will specify in the context, but often it doesn’t matter) reduced adele

functor from quasicoherent sheaves on X to A-modules. Using the notation of Huber

[14], as a chain complex

A(F)• = a(red)(X,F)•,

while for the complete adeles,

Â(F)• = A(red)(X,F)•.
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Chapter 2: Background

2.1 Introduction

In this chapter, we lay out our main objects of study. First are the Beilinson–

Huber adele functors AX(F), described in §2.2. The main result from their con-

struction is Theorem 2.2.14, which states that for any noetherian scheme X and

quasi-coherent sheaf F ,

Hn(AX(F)) = Hn(X,F).

In §2.3 we lay out basic facts about differential graded algebras and their modules.

When applied to cosimplicial algebras, the Dold–Kan functor preserves their struc-

ture through the Alexander–Whitney map (i.e. cup product) and produces differen-

tial graded algebras and modules, as outlined in §2.4. We will study Beilinson–Huber

adeles as differential graded algebras, together with their corresponding differential

graded modules, in the next chapter.

2.1.1 Intuition for the flag simplicial structure of sheaves

To try and motivate the use of the simplicial set of Parshin flags, let us consider

the most general case of arbitrary sheaves of abelian groups. Let X be a noetherian
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locally ringed space. A presheaf is a functor Top(X) −→ Ab, where Top(X) is the

category of open sets on X. On the other hand, much of the information of a sheaf

is contained in its stalks, and we want to focus on how far the data at the stalks

are from describing the sheaf. We can think of a sheaf as defined by sections of

stalks at points, but there is extra gluing data. For example, the stalk functors

Ab(X) −→ Ab given by F 7→ Fx assemble into a functor F 7→
∏

xFx. However, we

cannot construct an adjoint in the obvious way, as there is no way to reassemble

the stalks (this is the gluing data). Still, some of the local information is captured

in the following statement: A morphism of sheaves φ : F −→ G is an isomorphism if

and only if
∏

x φx is.

Now consider the category Ab0(X) as follows. Objects are groups of the

form A =
∏

x∈X Ax, for abelian groups Ax. Morphisms A −→ B are products of

homomorphisms Ax −→ Bx. Another way to think of such an object is as a functor

|X| −→ Ab, where |X| denotes the discrete category of points of X (objects are x ∈ X

and Hom(x, y) = ∅ if x 6= y). Again, we have a functor F : Ab(X) −→ Ab0(X),

but this time we can construct a right adjoint. Given A =
∏

xAx ∈ Ab0(X) we can

define a presheaf GA as follows:1

GA(U) =
∏
x∈U

Ax

with restriction maps the projections: if V ⊂ U , then
∏

x∈U Ax �
∏

x∈V Ax.

Assertion 2.1.1. This is in fact a sheaf, and it is flasque.

Proof. First notice if s ∈ GA(U), then (s |V )x = sx for all x ∈ V .

1This construction is the standard Godement resolution
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(separated) If V =
⋃
i Vi, let s ∈ GA(V ). Then s |Vi ∈

∏
x∈Vi Ax. If s |Vi = 0,

then (s |Vi)x = 0 for all x ∈ Vi. But then sx = (s |Vi)x = 0, so since the Vi cover V ,

sx = 0 for all x ∈
⋃
i Vi = V . Thus s = 0, so the presheaf is separated.

(sheaf axiom) Let V =
⋃
i Vi, {si} ∈ GA(Vi), with si |Vi∩Vj = sj |Vi∩Vj . For

each x ∈ V , choose Vi 3 x, and set sx = (si)x. If Vj 3 x, then (sj)x = (sj |Vi∩Vj)x =

(si |Vi∩Vj)x = (si)x, so this is well defined. So s =
∏

x sx ∈ A is the required element,

and the presheaf is a sheaf.

Assertion 2.1.2. We have constructed a right adjoint to F : HomAb0(X)(FA,B) =

HomAb(X)(A,GB).

Proof. (φ 7→ Fφ injects) Let A
φ−→ GB be a morphism of sheaves. For every x ∈ X,

we get a map of stalks Ax
φx−−→ (GB)x. By construction, (GB)x = Bx. Thus we get

maps Ax
φx−−→ Bx, which define maps Fφ : FA −→ B. If Fφ = 0, then φx = 0 for all

x, so φ = 0 since a map on sheaves is trivial if it is trivial on all stalks.

(φ 7→ Fφ surjects) Let ψ :
∏

xAx −→
∏

xBx, which is a collection of ψx :

Ax −→ Bx for all x. We must define a sheaf homomorphism from A to GB. Take

any U 6= ∅. For s ∈ A(U), sx = (s, U) ∈ Ax for each x ∈ U . Thus we may define

φ(s) =
∏

x ψx(sx) ∈
∏

x∈U Bx = GB(U), by the universal property of the product.

This is clearly a sheaf homomorphism.

Remark 2.1.3. It should be clear that F doesn’t have a left adjoint in general.

The construction GFA for a sheaf A is nothing more than the first step in

the Godement resolution [13, III.2.2]. However, whereas the Godement resolution

procedes to the right by taking cokernels, we will diverge from the classical construc-
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tion. We consider GFA to be the first step in a different cosimplicial resolution that

takes into account the simplicial nature of Parshin flags on a scheme. It is important

to point out that GFA is a member of a triple in the language of [26, 8.6.1], part

of the more general construction of the canonical resolution [8.6.6, loc. cit.]. One

obtains a triple (respectively, cotriple) from any adjoint pair and can define their

canonical resolution from the associated cosimplicial (respectively, simplicial) sets.

N.b. that we will not be using this resolution, as it is too general. The resulting

simplicial set would be associated with the discrete space |X| (in the form of the

discrete category |X|, above). As mentioned in the introduction of [11, p1190], by

choosing the correct simplicial set one generally gains a key product structure (the

adelic differential graded algebra §3.1) that does not exist for something as general

as the Godement resolution.

2.1.2 Enriching the Godemont resolution from Ab0(X) to Ab≤1(X)

Note that F is clearly not a full functor, although it is faithful. This is not

surprising, as one cannot simply define a morphism of sheaves by defining it first on

the stalks.

We can enrich our category in a way that it captures more data of the sheaf.

Suppose X has a generic point, i.e., a unique η ∈ X which is contained in every

open set. Now consider the category Ab≤1(X), whose objects are abelian groups

Ax for every x ∈ X, together with maps Ax
∂x−→ Aη, such that ∂η is the identity

(intuitively, the natural maps on stalks). Write ∂0 = ∂η and ∂1 =
∏

x 6=η ∂x, and

14



we may assemble these data into a cosimplicial group, which as a cochain complex

looks like:

Aη ⊕
∏
x

Ax
∂1−∂0−−−−→

∏
x

Aη.

We denote A0 = Aη ⊕
∏

xAx and A1 =
∏

xAη. A morphism A
φ−→ B is one which

respects the simplicial structure: it is defined by maps φx : Ax −→ Bx. We also

require that the maps be chain maps, so that the following commutes for all x:

Ax
∂A //

φx
��

Aη

φη
��

Bx ∂B
// Bη.

(2.1)

Remark 2.1.4. For an arbitrary noetherian space X, Ab≤1(X) may be defined sim-

ilarly, taking the finitely many generic points into account.

Remark 2.1.5. Via the forgetful functor Ab≤1(X) −→ Ab0(X), A 7→ A0, we have

generalized the previous construction. Again, we have a functor Ab(X) −→ Ab≤1(X)

given by taking products over points, although this time we are keeping the data of

the generic point. For a sheaf A, we again let FA0 =
∏

xAx = Aη ⊕
∏

x6=η Ax, and

let FA1 =
∏

x 6=η Aη, where the boundary maps are the maps on stalks. We have

two directed systems of open sets: those containing a fixed x and those containing

η (i.e., all open sets). Here, the key property is that since x ∈ {η} = X, the set

{U | U 3 x} is cofinal2 in {U | U 3 η}. Thus there is a map ∂x : Ax −→ Aη,

(f, U) 7→ (f |V , V ) for any V 3 η (we can just use V = U).

Assertion 2.1.6. Let A,B be sheaves, and suppose we have a morphism FA
φ−→

FB. That is, we have a collection of maps of stalks φx : Ax −→ Bx satisfying (2.1).

2More than cofinal: a sub directed system
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Suppose also that the maps on stalks Bx −→ Bη are injections. Then there is a unique

sheaf morphism ψ : A −→ B such that Fψ = φ.

Remark 2.1.7. Thus if Bx −→ Bη is an injection for every sheaf B and x ∈ X, then

F is a full functor.

Proof. Let U be an open set. We must create maps A(U) −→ B(U). Take s ∈ A(U),

and let x ∈ U . Then φx(s, U) ∈ Bx, say φx(s, U) = (tx, Ux) for some Ux 3 x and

tx ∈ B(Ux). The collection {Ux} is an open cover of U .

The collection of sections {tx} agree on intersections. Suppose x, y ∈ U . We

have (tx, Ux) |Ux∩Uy = (tx |Ux∩Uy , Ux ∩ Uy) and similarly for (ty, Uy). These sections

agree by commutativity of (2.1), as they are both (φη(s), Ux∩Uy) in Bη, and we use

fact that the map Bx −→ Bη is an injection.

By the sheaf axiom applied to B, we can assemble the {tx} into a unique

section t of B on U . The association s 7→ t, A(U) −→ B(U) is clearly independent

of our initial choice tx. Since it is defined on stalks, it satisfies the properties of a

presheaf morphism, so is a sheaf morphism.

2.2 Parshin flags and the higher adeles

The adeles of quasi-coherent sheaves are generalizations of the objects of the

category Ab≤1(X). In fact, objects in Ab≤1(X) form the grade 0 and 1 pieces of

the big adeles (see Definition 2.2.3).

Let X be a noetherian scheme.
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Definition 2.2.1. A Parshin flag is a chain of scheme points (η0, . . . , ηl) such that

ηi+1 ∈ {ηi} for all i. We will call l its length. The flags of length 0 are simply the

scheme points of X. A Parshin flag is non-degenerate (resp. degenerate) if its

scheme points are distinct (resp. not distict). If X is equidimensional, a Parshin

flag is complete if it is non-degenerate of length dim(X). Finally, we call a Parshin

flag smooth if each point Pi is a smooth point of {Pi−1}.

If X/k is a variety, then Parshin flags are tuples of irreducible closed subvari-

eties linearly ordered by inclusion. For low dimensional varieties, we label Parshin

flags according to their codimension. An n-flag is a scheme point of codimension

n. If X has dimension n, then the set of n-flags is the set of closed points of X, and

there is a unique 0-flag since X is irreducible.

Let ∆ be a Parshin flag and let I ⊂ {0, . . . n} be an ordered tuple of (not

necessarily distinct) numbers 0 ≤ i0 ≤ · · · ≤ ip ≤ n. We will say ∆ is a flag of type

I, or an I-flag, if each {ηj} has codimension ij.

We’ll denote by Sn(X) the set of all Parshin flags on X of length n. Denote

by S
(red)
n (X) the set of all non-degenerate Parshin flags on X. Finally, write SI(X)

for the set of all Parshin flags on X of type I.

For example, if X is a curve then S01(X) is the set of all complete flags, i.e.,

the set {(η, x)}x∈|X| of pairs (η, x) with η the generic point and x an arbitrary closed

point.
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2.2.1 Huber’s construction of the higher (rational) adeles

In this section, let X be a noetherian scheme. The following is a review of

Huber [14, §1–4], together with the comment in §5 loc. cit. that the construction

works for complete as well as rational adeles.

We begin with the simplified version of Huber’s original construction, the

rational adeles of a noetherian scheme. The difference between the rational adeles,

defined in this section, and the complete adeles, defined in the next section, is the

same as the difference between so-called valuation vectors and the classical adeles.

Definition 2.2.2. Let F be a quasi-coherent sheaf on X, and ∆ = (P0, . . . , Pn) a

Parshin flag on X. We define the local factor or simplicial stalk at ∆ to be the

stalk at the most generic point,

F∆ = FP0 .

If X = SpecR is affine, and M is an R-module we define the local factor at ∆ to

be

M∆ = S−1
p0
M.

Definition 2.2.3. The big adeles are the cosimplicial algebra CX associated with

Cn
X =

∏
∆∈S(red)

n (X)

OX,∆.

The coboundaries are the diagonal maps, for ∆ ∈ S(red)
n−1 (X),

dni (s∆) =
∏

∆′∈S(red)
n (X)

δn
i

∆′=∆

s∆
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where we use the inclusions of stalks OX,P −→ OX,Q if ∆ = (P, . . .) and ∆′ = (Q, . . .).

The degenerate big adeles Cdeg,X are defined similarly, except the product

is over all flags Sn(X). The degeneracy maps are the obvious products of identity

maps.

Remark 2.2.4. We can consider the big adeles as a functor Qco(X) −→ CoSimp(Ab),

to the category of cosimplicial groups by replacing OX,∆ with F∆. In this case we

will write the big adeles as CX(F) for a quasi-coherent sheaf F , or C(F) when the

context is clear. Similarly, we define ĈX(F), Cdeg,X(F), and Ĉdeg,X(F).

Definition 2.2.5. Let Kn ⊂ Sn(X) be any set of Parshin flags of length n. For any

scheme point P , let

P̂Kn = {∆ ∈ Sn−1(X) | (P,∆) ∈ Kn}.

That is, P̂Kn is the set of all flags in Kn with the most generic point P removed. If

∆′ = (P, . . .) ∈ Kn, then δn0 ∆′ ∈ P̂Kn; therefore δn0Kn =
⋃
P P̂Kn.

Definition 2.2.6. Let F be a quasi-coherent sheaf, P a scheme point. Let j :

SpecOX,P −→ X be the inclusion. For any OX,P module M , we let [M ]P denote the

push-forward sheaf j∗(M̃).

Proposition 2.2.7 (Huber, Proposition 5.2.1 [14]). Let Kn ⊂ Sn(X) be any set of

Parshin flags of length n. There is a unique subfunctor AX of CX which is additive,

exact, commutes with direct limits, and satisfies the inductive construction

1. If n = 0, then AX(K0,F) = CX(K0,F)
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2. If n > 0 and F is coherent, then

AX(Kn,F) =
∏
P∈X

A(P̂Kn, [FP ]P ).

Definition 2.2.8. Let X be a noetherian scheme, S•(X) the simplicial set of all

Parshin flags, and Sred
• (X) the set of all non-degenerate Parshin flags. The adelic

algebra AX associated with X is the cosimplicial algebra

AnX = A(Sred
n (X),OX).

The degenerate adelic algebra is the cosimplical algebraAdeg,X defined byAndeg,X =

A(Sn(X),OX).

We sometimes call this the associated cosimplicial algebra. In the termi-

nology of [14], AX is called the cosimplicial group reduced rational adeles.

Example 2.2.9. Let X = SpecR for a DVR R with field of fractions K. Then

A0
X = K ⊕ R, A1

X = K, and AnX = 0 for n > 1. The adeles in this case agree with

the big adeles. There is no restricted direct product as there are only finitely many

points.

Example 2.2.10. Let X = SpecR for a Dedekind domain R with field of fractions

K. Then A0
X = K⊕

∏
pRp, the product over all nonzero prime ideals of X. Looking

at the induction step n = 1 in Proposition 2.2.7, we have P = (0), the generic point,

and F = OX = R̃. In this case, [FP ]P = K̃, the constant sheaf on X. This is

not coherent, so we write it as a direct limit of coherent sheaves and apply the first

property of the construction (Proposition 2.2.7, 1). The result is that A1
X =

∏′
pK,
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the restricted direct product of the fields K with respect to the subrings Rp. This

is exactly the classical definition of the ring of valuation vectors of R.

Remark 2.2.11. We can also consider the the adeles as a functor Qco(X) −→ CoSimp(Ab).

In this case, we write AX(F) for a quasi-coherent sheaf F , or A(F) when the context

is clear. We similarly define the degenerate adele functor Adeg,X(F).

Lemma 2.2.12 (Huber, [14]). Let A be the adele functor above. Let X be a reduced

noetherian scheme.

1. If X = SpecR is affine, and s ∈ R, s 6= 0, then for an R-module M ,

A(K, s̃−1M) = s−1A(K, M̃).

2. Let C be the big adele functor. Then the inclusions An(F) −→ Cn(F) form a

morphism of cosimplicial groups.

Proof. 1. [14, Lemma 3.1.4]

2. This is the statement of [14, Proposition 2.2.4, Proposition 2.3.3].

From a cosimplicial group, it is a standard construction to produce a cochain

complex (See §2.4 for how this applies to the adelic algebra AX). Applying this to

the cosimplicial groups A(F), we obtain the fundamental property of the adeles.

Theorem 2.2.13 (Beilinson–Huber). Let F be a quasi-coherent sheaf, and A(F)

its rational adeles as defined above. Then for all n,

Hn(A(F)) = Hn(X,F).
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Proof. Huber proves this for the complete adeles in [14, Theorem 4.2.3]. For the

rational adeles, see §5.2 loc. cit.

In fact, Huber shows that the association U 7→ An(U,F |U) is a complex of

sheaves, and proves

Proposition 2.2.14 (Huber, Proposition 4.2.2 [14]). Let X be a noetherian scheme

and let AX(F)• be the complex of sheaves associated with U 7→ AX(U,F |U)• (ratio-

nal or complete). Then each AX(F)• is flasque, and F −→ AX(F)• is a resolution

of the sheaf F .

2.2.2 Huber’s construction of the higher complete adeles

In this section, X is a noetherian scheme. The construction of this section

mirrors that of the previous section, except that it replaces localization functors

with completion functors. The following is a review of Huber [14, §1–4].

Proposition 2.2.15 (Huber, Proposition 2.1.1 [14]). Let Kn ⊂ Sn(X) be any set

of Parshin flags of length n. There is a unique functor ÂX which is additive, exact,

commutes with direct limits, and satisfies the inductive construction

1. If n = 0 and F is coherent, then ÂX(K0,F) =
∏

P∈X lim←−l FP/m
l
PFP .

2. If n > 0 and F is coherent, then

ÂX(Kn,F) =
∏
P∈X

lim←−
l

Â
(
P̂Kn, [FP/ml

PFP ]P

)
.

22



Definition 2.2.16. Let F be a quasi-coherent sheaf on X and ∆ = (P0, . . . , Pn) a

Parshin flag on X. We define the complete local factor, complete simplicial

stalk, or Beilinson completion at ∆ to be,

F̂∆ = ÂX({∆},F).

Let X = SpecR be affine, and M an R-module. Following Huber [14], for each prime

ideal p, let S−1
p denote the localization functor at p. Let Cp denote the completion

functor at p. We define the complete local factor at ∆ to be

M̂∆ = Cp0S
−1
p0
· · ·CppS

−1
pp R⊗RM.

The two definitions agree for affine schemes, in the sense that if F = M̃ , then

F̂∆ = M̂∆ ([14, Proposition 3.2.1]).

Definition 2.2.17. The big complete adeles are the cosimplicial algebra ĈX

associated with

Ĉn
X =

∏
∆∈S(red)

n (X)

ÔX,∆.

The coboundaries are the diagonal maps, for ∆ ∈ S(red)
n−1 (X),

dni (s∆) =
∏

∆′∈S(red)
n (X)

δn
i

∆′=∆

s∆

where we use the map of completed stalks ÔX,P −→ ÔX,Q if ∆ = (P, . . .) and ∆′ =

(Q, . . .).

The degenerate complete big adeles Ĉdeg,X are defined similarly, except

the product is over all flags Sn(X). The degeneracy maps are the obvious products

of identity maps.
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Similarly to the rational adeles, we define the following:

Definition 2.2.18. The complete adelic algebra ÂX associated with X is the

cosimplicial algebra

ÂnX = Â(Sred
n (X),OX).

The degenerate complete adelic algebra is the cosimplical algebra Âdeg,X de-

fined by Ândeg,X = Â(Sn(X),OX). We have inclusions of cosimplicial algebras

ÂX −→ ĈX and Âdeg,X −→ Ĉdeg,X ([14, Theorem 2.4.1]).

Remark 2.2.19. We can also consider the the complete adeles as a functor Qco(X) −→

CoSimp(Ab). In this case, we write the complete adeles as ÂX(F) for a quasi-

coherent sheaf F , or Â(F) when the context is clear. We similarly define Âdeg,X(F).

The complete adeles enjoy the same main theorem as the rational adeles.

Theorem 2.2.20 (Huber, Theorem 4.2.3 [14]). Let F be a quasi-coherent sheaf,

and Â(F) the associated complete adeles as defined above. Then for all n,

Hn(Â(F)) = Hn(X,F).

Remark 2.2.21. It also follows that the inclusions AX −→ ÂX and AX(F) −→ ÂX(F)

are quasi-isomorphisms.

Example 2.2.22. Returning to Example 2.2.9, let X = SpecR for a DVR R with

field of fractions K and maximal ideal m. Then A0
X = K ⊕ R̂, where R̂ denotes the

m-adic completion of R. If K̂ denotes the field of fractions of R̂, A1
X = K̂. For all

n > 1, AnX = 0.
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Example 2.2.23. Returning to Example 2.2.10, let X = SpecR for a Dedekind

domain R with field of fractions K. Then A0
X = K ⊕

∏
p R̂p, where R̂p denotes the

p-adic completion of R, and the product is over all nonzero prime ideals p of R. If

K̂p denotes the field of fractions of R̂p, then a similar argument to Example 2.2.10

shows that A1
X =

∏′
p K̂p, the restricted direct product with respect to the subrings

R̂p. This is exactly the classical adele ring of R.

Definition 2.2.24. We recursively define a field K to be an n-local field (n > 0)

if it is the field of fractions of a complete DVR with an (n− 1)-local residue field; a

0-local field is just an arbitrary field. Local fields are 1-local fields.

For more information on the theory of n-local fields, together with applications

to higher adeles, see [7]. The following is clear from the definitions.

Proposition 2.2.25. Let X/k be a variety of dimension n. Let ∆ = (P0, . . . , Pn)

be a complete smooth Parshin flag on X (Definition 2.2.1). Then the local factor

AX,∆ is an n-local field.

If P2 is not a smooth point of V = {P1}, the local factor will split into a finite

product over the formal branches of V passing through P2. For more in the case of

a surface, see Parshin [22, §1].

2.3 Differential graded algebras and their modules

We have seen that the simplicial set of Parshin flags on a scheme (more gener-

ally any noetherian space) gives rise to a cosimplicial group of adeles. In fact, this
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is just one example among many. Gorchinskii [11] provides a similar construction

for K-theoretic sheaves. Later, we will give a construction (§4.2.2) of S-adeles for

surfaces. Thus, it is important to get a better sense of the category over which we

are working.

Recall that there is a fundamental correspondence between cosimplicial groups

and cochain complexes called the Dold–Kan correspondence [26]. The extra fact we

will mention is that if one additionally has a monoid in the category of cosimplicial

groups, i.e., a cosimplicial algebra, then the normalization functor of Dold–Kan will

respect the structure and produce a differential graded (co)algebra. This is done via

the Alexander–Whitney morphism. We refer the reader to [23] for more information.

We include a section reviewing the monoidal Dold–Kan correspondence in §2.4.

In this section, we will review basic facts about differential graded algebras

and their modules. Although most of it is well-known, our construction of Chern

classes (§2.5) seems to be novel. Later, we will make simplifying assumptions using

the fact that our differential graded algebra AX actually comes from a cosimplicial

algebra. I.e., AX is in the image of the Dold–Kan correspondence. Further, we

might frequently use the fact that our boundary operators are always created from

maps of stalks (the prototypical example being the map Fx −→ Fy for scheme points

x ∈ {y} and a sheaf F). The boundary maps of the differential graded algebra are

created from alternating sums of these inclusions.

To motivate this section, we give some basic results concerning the adeles of

a variety that we will prove later (Proposition 3.2.5):
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Proposition 2.3.1. Let X/k be a smooth variety, A = AX its differential graded

algebra of adeles. Let K = A(K) be the adeles associated with its constant sheaf K.

We have an inclusion A −→ K of differential graded k-algebras.

To each divisor D is associated a two-sided fraction ideal A(D) ⊂ K (Defini-

tion 3.2.2). This ideal A(D) is principal, generated by an element of degree 0. We

have:

1. A(−D) ' A(D)∨ = Homdg
A (A(D), A) as differential graded A-bimodules.

2. A(D + E) ' A(D)⊗dgA A(E) as differential graded A-bimodules.

3. A(D) ' A(E) as differential graded A-modules if and only if D ∼ E.

This is of course an exact mirror of the fundamental correspondence between

invertible sheaves and divisors. The key difference is that since A is an “affiniza-

tion of OX”, these statements are true as algebras and modules, without reference

to underlying sheaves (although, all modules can be sheafifed if needed into OX-

modules).

2.3.1 Definitions

Recall a differential graded algebra is a Z-graded algebra A = ⊕nAn with

linear derivations d : An −→ An+1 making A into a cochain complex, and such that

the derivations satisfy the Leibniz rule

d(ab) = da b+ (−1)|a|a db
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for any homogenous element a ∈ An. Here |a| = n denotes the degree of a. A right

(resp. left) differential graded module for A• is a chain complex M• such that

the ⊕nMn is a right (resp. left) graded ⊕nAn-module, and such that multiplication

satsifies the Leibniz rule for d(ma) (resp. d(am)).

All differential graded A-modules are assumed to be right modules (unless oth-

erwise specified), which is required to ensure Hom is itself an A-module (Definition

2.3.7).

Definition 2.3.2. Let A be a differential graded algebra. An ideal I of A is a

differential graded right A-submodule of A which is simultaneously a differential

graded left A-submodule. In other words, it is a two-sided ideal (in the usual sense)

which is closed under d. We similarly define right (resp. left) ideals as differential

graded right (resp. left) A-submodules.

2.3.2 The differential category of differential graded A-modules

Throughout this section let M , N be differential graded A-modules. We have

three structures that morphisms can preserve: A-linearity, grading, and the differ-

ential. As it turns out, there are situations where we will have morphisms which

preserve some but not all of these structures. This is further complicated by the

fact that most A-modules we consider are actually A-bimodules.

Definition 2.3.3. We will write ModA for the category of right A-modules. The

morphisms in this category are denoted HomA.

We will write ModgrA for the category of graded right A-modules. Morphisms
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in this category, Homgr
A are graded A-linear maps, i.e., A-linear maps φ : M −→ N

satisfying φ(M i) ⊂ N i.

Definition 2.3.4. The group of degree n homomorphisms is

GrHomn
A(M,N) = {f ∈ HomA(M,N) | f(M i) ⊂ N i+n}.

For example, GrHom0
A(M,N) is the group Homgr

A (M,N) of graded A-linear

homomorphisms. If a ∈ An and M is a differential graded A-bimodule, then left

multiplication by a is an example of such a morphism. That is, if we put µa(m) =

am, then µa ∈ GrHomn
A(M,M).

The collection of degree n homomorphisms assembles into a cochain complex

with boundary maps: if φ ∈ GrHomn
A(M,N) then

dφ = dNφ+ (−1)|φ|φdM

where |φ| = n. This is the internal hom in the category of cochain complexes.

As it stands, GrHom•A has no extra structure except as a cochain complex, just as

HomA(M,N) has no extra structure beyond an abelian group. If A is a differential

graded algebra over a commutative differential graded algebra k (as is the case when

A is the adele ring of a scheme X over a commutative ring k; k itself is a differential

graded algebra with trivial grading), or if A is itself (graded) commutative, then

GrHom•A(M,N) does gain some k- or A-linear structure and becomes a differential

graded module. Otherwise, GrHom•A is just a differential graded module over Z,

where Z is thought of as a differential graded ring concentrated in degree 0.
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Definition 2.3.5. Let M , N be differential graded A-modules. A differential

graded morphism is an A-linear morphism which is also a chain map. That is,

φ : M −→ N satisfies φdM = dNφ and φ(M i) ⊂ N i. Denote the set of such morphisms

Homdg
A (M,N).

In other words, φ is a differential graded homomorphism if it is a 0-cocycle in

GrHom•A(M,N):

Z0(GrHom•A(M,N)) = Homdg
A (M,N).

Definition 2.3.6. We write Mod(A,d) for the category of differential graded A-

modules, whose morphisms are differential graded homomorphisms.

In fact, it will turn out that this is not the category we want to work in. First,

the condition of being a chain map is too strong. Second, the category Mod(A,d)

does not have internal Hom objects.

Definition 2.3.7. Let M,N be differential graded right A-modules. We write

Homdg
A (M,N) = GrHom•A(M,N) endowed with the structure of a differential graded

k-module as above.

Remark 2.3.8. In this definition it is required that we take right A-modules. A simple

calculation shows GrHom•A(M,N) is a complex only when using right modules and

right module homomorphisms, as d acts on the left, in a sense.

Definition 2.3.9. Let k be a commutative ring. A category C is a differential

graded category over k if the Hom sets have the structure of a differential graded

k-module. That is, for any objects M , N , and P , HomC(M,N) is a differential
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graded k-module, and the compositions HomC(M,N)×HomC(N,P ) −→ HomC(M,P )

are differential graded homomorphisms over k.

Finally, we have:

Definition 2.3.10. Let k be a commutative ring and let A be a differential graded

k-module. We write ModdgA for the category of differential graded A-modules, whose

homomorphisms are the differential graded k-modules Homdg
A above. Then ModdgA

is a differential graded category over k.

Definition 2.3.11. We define Mod(A,A) to be the category of (A,A)-bimodules,

which we abbreviate and just call A-bimodules. We denote its Hom sets by Hom(A,A).

Similarly, Modgr(A,A) and Moddg(A,A) are the categories of graded and differential

graded A-bimodules. We denote the respective hom sets Homgr
(A,A) and Homdg

(A,A).

Remark 2.3.12. In practice we will be considering modules M which are differen-

tial graded A-bimodules. If M,N are both differential graded A-bimodules, then

defining (aφ)(m) = φ(ma) and (φa)(m) = φ(m)a makes GrHom•A(M,N) into a dif-

ferential graded A-bimodule. In this case it is actually an internal hom, and we

will denote it by Homdg
(A,A)(M,N), or HomA(M,N) if the context is clear.

Example 2.3.13. We continue the example of X = SpecR for a DVR R (Example

2.2.9 and Example 2.2.22). Let A be the adelic algebra of X. This is a cosimplicial

algebra, and we may simultaneously think of it as a differential graded algebra (See

§2.4). Let M be a differential graded A-module. This means that for every n, Mn is

an A0-module, where A0 = K ⊕R. Thus for every n, we have a K-module Mn
0 and
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an R-module Mn
1 . Conversely, these data always assemble into a differential graded

A-module with Mn = Mn
0 ⊕Mn

1 .

2.3.3 Graded free and graded projective modules

In this section, we follow [25, Tag 09JZ].

Definition 2.3.14. Let M be a differential graded A-module. Define M to be free

if it is free as an A-module. Thus,

M '
⊕
i

A[ki]

as graded A-modules for some integers ki. Define M to be graded-free if it is free

as a graded A-module. Equivalently, ki = 0 for all i in the above expression. Define

M to be dg-free if it is graded-free and the above isomorphism holds as differential

graded A-modules.

Remark 2.3.15 (Warning). Again, free means as A-modules, thus a free differential

graded A-module of rank one is not isomorphic to A in Mod(A,d).

Example 2.3.16. Let X/k be a surface and A = AX its associated differential

graded algebra (See §3.1). We need to be careful about the concept of freeness for a

module M . Let ID ⊂ A be the ideal associated with some effective Cartier divisor D

(Definition 3.2.2). Then A is a free, graded-free, and dg-free object in the categories

ModA, ModgrA , and ModdgA . More generally, the situation is illustrated in Table 2.1.

In particular, ID becomes dg-free exactly when D ∼rat 0 (Proposition 3.2.5(3)),

and ID[k] becomes graded-free exactly when k = 0. Thus, the three types of freeness

convey different geometric information.
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Table 2.1: Types of freeness

ModA ModgrA ModdgA

A free graded-free dg-free

ID free graded-free not dg-free

ID[k] free not graded-free not dg-free

Definition 2.3.17. In any of the above freeness conditions, M has a well defined

rank, defined as the rank of M as an A-module.

The notion of projective objects in ModdgA is a subtle one, as the category is

already, in a way, derived.

Definition 2.3.18. Let P be a differential gradedA-module. Define P to be graded

projective if it is projective as a graded A-module.

See the discussion in [25, Tag 09JZ]. Another type of projectivity in differential

graded categories, called property (P), is discussed in [25, Tag 09KK]. We will return

to property (P) when discussing intersection theory (Definition 5.3.1).

2.3.4 Duality

The definition of the dual in ModdgA mirrors duality E∨ of locally free OX-

modules. Note that A is highly non-commutativity in general, therefore the dual is

only an endofunctor within the category of A-bimodules.
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Definition 2.3.19. Let M be a right differential graded A-module. Define

M∨ = Homdg
A (M,A).

Since A is also a left A-module, M∨ is a left differential graded A-module. If M is

an A-bimodule, then M∨ is as well.

Remark 2.3.20. By Definition 2.3.7, Homdg
A is the set of right A-module homomor-

phisms. Therefore if M is a left module, we will not consider M∨ unless M is also a

right module. This is an obstruction to defining the double dual (M∨)∨, since M∨

is not a right A-module. If we only cared about the graded A-module structure,

one could go through the trouble of defining N∨ for graded left A-modules as left

graded A-module homomorphisms. Or, one could go through the opposite ring Aopp

and corresponding opposite category. The A-modules coming from quasi-coherent

sheaves will be bimodules, so we avoid this.

We saw that multiplication by An is a degree n homomorphism. In particular,

if a ∈ An and µa is left multiplication by a, then µa ∈ EndgrA (M) if and only if

a ∈ A0. Even then it is not a differential graded homomorphism unless a ∈ H0(A)

as well.

Instead, multiplication defines a map

µ : A −→ Homdg
A (A,A) = A∨.

Proposition 2.3.21. The map µ is an isomorphism of differential graded A-bimodules.

Proof. It is a homomorphism of differential graded A-bimodules since (d∨µa)(b) =

da b+(−1)|a|a db−(−1)|µa|a db, and |a| = |µa|. Each GrHomn
A(A,A) is isomorphic to
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An as A0-modules, so it is clearly surjective. Injectivity is from AnnA(A) = (0).

Mirroring the fact for commutative rings and OX-modules,

Proposition 2.3.22. Let M,N be (right) differential graded A-modules. Suppose

M , N are free (as in §2.3.3) and finitely generated. Then

Homdg
A (M,N) 'M∨ ⊗dgA N

as graded k-bimodules. If further M , N are differential graded A-bimodules, then

the isomorphism is as differential graded A-bimodules.

Remark 2.3.23. Although we will write M ⊗grA N and M ⊗dgA N to denote the tensor

product in the categories ModgrA and ModdgA , in fact these are simply the tensor

products as A-modules together with additional structure of a differential:

dM⊗N = dM ⊗ idN + idM ⊗ dN .

2.4 The monoidal Dold–Kan correspondence

The construction of the differential graded algebra AX is a special case of

the Dold–Kan correspondence over the category of algebras. This is called the

monoidal Dold–Kan correspondence. We include it here for completeness, but

stress that we do not require the full corrspondence. In particular, we will not use

the reverse functor K in the correspondence; we require only the Moore, C, and

normalized Moore, N , functors.

See [23] for more information. Our presentation is based on [5, Ch. 7].
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The following holds for more general abelian categories, but we work with

Alg
k
, the category of k-algebras.

Definition 2.4.1. Given cosimplicial groups M,N , their tensor product is the

cosimplicial group M ⊗k N with (M ⊗k N)n = Mn ⊗k Nn.

Let A be a cosimplicial k-algebra, which is a functor ∆ −→ Alg
k

from the

simplex category. Equivalently, it is a monoid in the category of cosimplicial k-

modules, i.e., a functor ∆ −→ Modk with a natural transformation of functors A⊗k

A −→ A.

We represent the maps in a cosimplicial algebra as

A0 δ / A1
σ
o δ / A2 · · ·

σ
o

remembering that each arrow actually represents a collection of maps. We label

them as δni : An−1 −→ An and σni : An+1 −→ An with 0 ≤ i ≤ n. A morphism

f : A −→ B of cosimplicial algebras is a transformation of functors and therefore a

map making the following commute:

A0 δ /

f

��

A1
σ
o δ /

f

��

A2
σ
o

f

��

· · ·

B0 δ / B1
σ
o δ / B2

σ
o · · ·

which means that f(An) ⊂ Bn, and,

f(δni (a)) = δni (f(a)), and, f(σni (a)) = σni (f(a)).

Definition 2.4.2. A cosimplicial group is a functor from ∆ −→ Ab. A cosimpli-

cial A-module is cosimplicial group M with an of action A satisfying the obvious

identities, but with cosimplicial morphisms.
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Definition 2.4.3. The Moore functor C takes a cosimplicial group M and pro-

duces a cochain complex in the natural way. Namely, (C(M))n = Mn, and

d(m) =
n+1∑
i=0

(−1)iδn+1
i (m)

for m ∈Mn.

The normalized Moore functor N is the reduced cochain complex associ-

ated with C. That is, for a cosimplicial group M , N (M)0 = M0 and

N (M)n =
n−1⋂
i=0

kerσn−1
i

with differentials inherited from C(M).

Proposition 2.4.4. Both N and C are additive, exact covariant functors. The

natural inclusion N −→ C induces a quasi-isomorphism N (M) −→ C(M) for all M .

Proof. [23, §2.1]

Definition 2.4.5. Let M,N be cosimplicial groups. The Alexander–Whitney

map is the map Mp ⊗k N q −→ (M ⊗k N)p+q given by

AW (a⊗ b) = δnn ◦ · · · ◦ δ
p+1
p+1(a)⊗ δn0 ◦ · · · ◦ δ

q+1
0 (b)

where n = p+ q.

There is an inverse to N called K that sets up a (so-called weak monoidal)

equivalence of categories between cosimplicial algebras and differential graded alge-

bras:
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Theorem 2.4.6 (Monoidal Dold–Kan correspondence). Let A be a cosimplicial

algebra. Then we have a cosimplicial morphism µ : A ⊗k A −→ A. Composing with

the Alexander–Whitney map gives

C(A)⊗k C(A)
AW−−→ C(A⊗k A)

C(µ)−−−→ C(A).

Under this multiplication, C(A) is a differential graded algebra. For any cosimplicial

A-module M , C(M) is a differential graded A-module.

Further, the Alexander–Whitney map respects normalized Moore functor. That

is, we also get a multiplication

N (A)⊗k N (A)
AW−−→ N (A⊗k A)

N (µ)−−−→ N (A)

turning N (A) into a differential graded subalgebra of C(A).

Together with K and a shuffle map, this sets up a (weak monoidal) equivalence

of categories between cosimplicial k-algebras and differential graded k-algebras.

Proof. [23, Theorem 1.1(1)]

2.5 Differential graded algebras of cosimplicial type

In the previous section, we saw how a cosimplicial algebra A becomes a differ-

ential graded algebra, with the Alexendary–Whitney map facilitating between the

two product structures. To distinuish the two, in this section, juxtaposition de-

notes the product in the differential graded algebra, and · denotes the commutative

product in the rings An.
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The material in this section does not seem to appear in the literature, although

we have been inspired by [15, 16], which in turn is inspired by connections with

differential geometry.

Definition 2.5.1. A differential graded algebra A is of cosimplicial type if A is

a differential graded subalgebra of C(A′) for some cosimplicial algebra A′. In other

words, A is in the image of the Moore functor.

Remark 2.5.2. The differential graded algebra of adeles is of cosimplicial type.

For the rest of this section, A is a differential graded algebra of cosimplicial

type.

Lemma 2.5.3. Let A be a differential graded algebra of cosimplicial type. For all

a ∈ A0 and b ∈ A1 we have a simple commutator relation

ba− ab = b · da (2.2)

and an associativity rule (ab) · c = a(b · c) for a ∈ A0 and b, c ∈ Ap.

Proof. Simple computation, ba− ab = b · δ1
0(a)− δ1

1(a) · b = b · da. The associativity

is a(b · c) = δpp ◦ · · · ◦ δ1
1(a) · b · c = (ab) · c.

2.5.1 Chern class

Let A be a differential graded algebra of cosimplicial type. We will define

Chern classes of certain differential graded A-modules, which we will use later in

Proposition 3.3.7.
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Definition 2.5.4. Let M be a differential graded A-bimodule. We call M invert-

ible if M is free of rank 1 as both a left and right A-module. By a generator we

mean an element t ∈M0 which generates M as a right A-module.

Remark 2.5.5. The generator need not generate M as a left A-module.

If M is invertible, then M∨ is a invertible, and M ⊗M∨ ' A as differential

graded A-bimodules. Thus the set of isomorphism classes of invertible A-modules

forms a group.

Definition 2.5.6. Let M be an invertible A-module with generator t. Then there

exists a unique θt ∈ A1 such that dt = tθt. Define the associated Chern class to

be

c(M, t) = 1A1 + θt ∈ A1

where 1A1 denotes the unit element in the ring A1.

We may change t by any unit u ∈ (A0)× to obtain a new generator and a new

Chern class. Doing so will give (since |t| = 0)

d(tu) = (dt)u+ t(du) = tu[u−1θtu+ θu]

where we define θu = u−1du for u ∈ (A0)×, mimicking the definition of θt. Thus if

we write au for the action of A× on A by conjugation, a 7→ u−1au, then we get a

cocycle

θtu = (θt)
u + θu. (2.3)

If M is an invertible A-module with generator t, we get a commutator relation

at = t(a+ θt · a). (2.4)
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Definition 2.5.7. Since A is a cosimplicial object, applying the units functor to

each An produces a cosimplicial object in the category of abelian groups. We denote

this object, by abuse of notation, as A×. As a cochain complex with differential

d×(u) =
∏n

i=0(δni )×, A× is

(A0)×
d×−−→ (A1)×

d×−−→ · · ·

Proposition 2.5.8. Let M , N be invertible A-modules.

1. Let s, t be generators of M , N respectively. Then M ⊗A N is invertible with

generator s⊗ t, and

c(M ⊗A N, s⊗ t) = c(M, s) · c(N, t).

2. For any generator t, c(M, t) ∈ (A1)×.

3. If s, t are distinct generators of M as a right A-module, then c(M, s) and

c(M, t) are cohomologous in A×. Therefore we have a well-defined element

c(M) ∈ H1(A×).

Proof. 1. The first assertion is clear; note that nothing is assumed commutative,

so we must use the fact that since M is invertible, for every a ∈ A, there exists

a unique b ∈ A such that at = tb; a similar statement holds for N and s. By
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Lemma 2.5.3,

dM⊗N(s⊗ t) = sθs ⊗ t+ s⊗ tθt

= s⊗ θst+ s⊗ tθt

= s⊗ (tθs + dt · θs) + s⊗ tθt

= s⊗ (tθs + (tθt) · θs) + s⊗ tθt

= (s⊗ t)(θs + θt + θs · θt).

Rewriting θs⊗t = θs + θt + θs · θt as Chern classes gives the result.

2. Follows from (1), since M ⊗A M∨ ' A, c(A, 1) = 1A1 , and we may choose

generators t, t∨ such that t ⊗ t∨ 7→ 1 under this isomorphism. Therefore

c(M, t) · c(M∨, t∨) = 1A1 .

3. Choose two generators of M ; since they differ by a unit u ∈ (A0)×, we may call

them t and tu. Note that A is itself an invertible A-module. Units u ∈ (A0)×

are generators, and for all a ∈ A1, au = a · c(A, u) by Lemma 2.5.3. Applying

this to equation (2.2), we obtain

c(M, tu) = c(M, t) · c(A, u).

Finally,

c(A, u) = 1A1 + u−1du = 1A1 + δ1
1(u−1) · [δ1

0(u)− δ1
1(u)].

Therefore c(A, u) = d×(u); thus the Chern classes differ by a coboundary.
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Corollary 2.5.9. The isomorphism classes of invertible A-modules, call it Pic(A),

is a group under ⊗. The association M 7→ c(M) is a homomorphism Pic(A) −→

H1(A×).

Definition 2.5.10. Let M be a differential graded A-bimodule. Suppose M is a

free graded A-module of rank r, on both the left and the right. Then
∧rM is an

invertible A-module and we may define its Chern class to be c(M) = c(
∧rM).

Conjecture 2.5.11. We may define higher Chern classes as follows. Repeat the

construction of A×, but with the Milnor algebra KM
• , to get a differential graded

ring KM
• (A). Suppose M is a free graded A-module of rank r, on both the left and

the right, say with right generators ~t ∈ (M0)r. There exists a matrix Θ ∈ Mr(A
1)

such that

d~t = ~tΘ.

Similar to the above construction of Chern classes, I+Θ ∈ GLrA
1. Suppose further

that I + Θ is upper triangular. Then the higher Chern classes can be defined as the

symmetric polynomials in the diagonal terms, where the ring operations happen in

KM
• (A). The nth symmetric polynomial of the diagonal terms gives a well-defined

class in Hn(KM
n (A)).

Finally, we state a result which will be needed later:

Proposition 2.5.12. Let M,N be invertible A-modules with generators t, s.

1. There is a canonical isomorphism

Homdg
A (M,N) ' {n ∈ N | θn = θt}.
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Therefore there exists a nontrivial φ ∈ Homdg
A (M,N) if and only if there is

s′ ∈ N with |t| = |s′| and θt = θs′. In this case, φ is defined by φ(t) = s′.

2. If θt = θs then M ' N [k] as differential graded A-modules with isomorphism

t 7→ s. If |t| = |s| as well, then in fact M ' N .

Proof. Both follow directly from the definitions.
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Chapter 3: Adeles of varieties and adelic Cartier divisors

Let X/k be a variety with adelic algebra A = AX . In this chapter, we describe

the structure of differential graded A-modules of the form A(F) for quasi-coherent

sheaves F (§3.1). The case of invertible sheaves is particularly simple, as we es-

sentially get “principal fractional ideals” (§3.2). Finally, we define adelic Cartier

divisors as certain 1-cocycles in the cosimplicial group U(A), where U is the units

functor (§3.3, compare with Definition 2.5.7).

3.1 OX-modules, quasi-coherent sheaves, and their AX-modules

If X is a noetherian scheme, then AX = AX(OX) and Adeg,X = Adeg,X(OX)

are differential graded algebras of cosimplicial type (Definition 2.5.1).

Proposition 3.1.1. For any quasi-coherent sheaf F , AX(F) is a cosimplicial mod-

ule over AX . This is similarly true for Adeg,X(F) and Adeg,X .

Further, via the Moore and/or normalized Moore functors, we can consider

AX as a differential graded k-algebra. In this case, AX(F) is a differential graded

A-module.

Proof. This is purely formal and follows from functoriality. The definition of a

morphism f of OX-modules translates into f being cosimplicial. The cosimplicial
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groups are just stalks, and the differentials are inclusions of stalks. The last part

follows from the monoidal Dold–Kan correspondence (Theorem 2.4.6).

Remark 3.1.2. The previous proposition holds if we choose AX(−) to be any exact,

additive subfunctor of the big adele functor CX(−) (Definition 2.2.3). We have a

cosimplicial algebra AX = AX(OX). Then for every OX-module F , AX(F) is a

cosimplicial module over AX . This holds similarly for the complete adeles ÂX .

Example 3.1.3. Consider the case of the adeles of X = SpecR for a DVR R with

field of fractions K and maximal ideal m (Example 2.2.9). Let F be a quasi-coherent

sheaf on X. Let η be the generic point of X. Then F is given by the data of an

R-module M = Fm and a K-module V = Fη such that V 'M ⊗R K.

The adeles of X are, as a complex, AX = [K ⊕ R −→ K]. Write an element of

AX as a = (a0, a1, a01). The cup product on AX is given by

ab = (a0b0, a1b1, a0b01 + a01b1).

The adeles of F are, as a complex, AX(F) = [V ⊕M −→ V ]. Therefore an element

of AX(F) is a tuple m = (m0,m1,m01) with m0,m01 ∈ V and m1 ∈ M . The right

module structure over AX is given by

ma = (m0a0,m1a1,m0a01 +m01a1).

In certain circumstances one can define A(F) for an arbitrary OX-module F .

Example 3.1.4. Return to the situation in the previous example. Let M 6= 0 be

an R-module. Define an OX-module by F(X) = M and F({η}) = 0 where η is
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the generic point. Then F is not a quasi-coherent sheaf. However, the construction

of the adeles still goes through (although we have not defined it). The stalks are

Fm = M and Fη = 0, so

A(F) : 0⊕M −→ 0.

We may therefore ask, among all differential graded A-modules, what property

characterizes those of the form A(F) for quasi-coherent sheaves F?

The bad property of A(F) in the above example is that A01(F) = 0, when we

would expect it to be nonzero since A1(F) 6= 0. Looking at how A acts on the right,

we see that this is a consequence of A(F) not being an induced module on the right

(in the following sense):

Definition 3.1.5. Define a differential graded A-module M to be induced if there

exists an A0-module N such that M ' N ⊗A0 A as differential graded A-modules.

Among all differential graded A-modules, one property characterizing those of

the form A(F) for quasi-coherent sheaves F is that they are induced.

Proposition 3.1.6. Let A = AX be the adelic algebra for a variety X/k. Let F be

a quasi-coherent sheaf, and A(F) the associated differential graded A-module. Then

A(F) ' A(F)0 ⊗A0 A.

That is, A(F) is an induced module.

We first have a lemma.
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Lemma 3.1.7. Fix an index I = (i0, . . . , ip). Then canonically for any A0-module

M ,

Mi ⊗A0 AI '


Mi ⊗Ai AI i = i0

0 otherwise.

Proof. Let ei denote the vector in A0 whose ith coordinate is the unit element 1Ai

of the ring Ai, and whose jth coordinate is zero for j 6= i. By the definition of the

Alexander–Whitney product (Definition 2.4.5), together with the fact that ei0 ∈ A0

acts as the left identity on AI and Aiej = δijAi,

Ai ⊗A0 AI '


AI i = i0

0 otherwise.

The result then follows from the canonical isomorphism

(Mi ⊗Ai Ai)⊗A0 AI 'Mi ⊗Ai (Ai ⊗A0 AI).

Proof of Proposition 3.1.6. It suffices to prove it when X = SpecR is affine. Let K

be the simplicial set of Parshin flags on X. Let N = A(F)0 =
∏

pMp, the product

over all scheme points of X.

We get NI ' N0 ⊗A0 AI . By the lemma, it suffices to prove

Mp ⊗Ap A(pK,OX) ' A(pK, M̃),

where pK is the simplicial subset of Parshin flags in K beginning with p. But this

follows from quasi-coherence since for all U ⊂ V , we have

F(U)⊗OX(U) OX(V ) ' F(V )
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taking the appropriate limits and products over directed systems of open sets con-

taining Parshin flags will give the result.

Therefore we get an isomorphism as graded A-modules. The fact that it is a

differential graded A-module isomorphism is clear.

Finally, we illustrate how being induced on the right differs from being induced

on the left. The product structure on the adelic algebra A is highly noncommutative,

as the following example illustrates. The left module structure reflects flags “from

the top down”, while the right module structure reflects flags “from the bottom up”.

Example 3.1.8. Return to Example 3.1.3. Let U be the open set {η}, and let

j : U −→ X be the inclusion. Given a K-vector space V , we get an OU -module

F = Ṽ . The sheaf j!F which extends F outside U by zero is a canonical example of

a OX-module which is not quasi-coherent. Its stalks are (j!F)m = 0 and (j!F)η = V ,

and we may again construct a corresponding A-module

A(j!F) : V ⊕ 0 −→ 0.

This is an example of an A-module which is induced (on the right), but not induced

on the left, as

0 = A1(j!F) 6' A1 ⊗A0 A0(j!F) = A01 ⊗A1 V.

Quasi-coherent sheaves will be induced on both the left and the right, as the same

proof above works on the left.
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3.2 Invertible AX-modules

Let X/k be a variety, A = AX its adelic algebra. Let K = A(K) be the adeles

associated with its constant sheaf K. We have an inclusion A −→ K of differential

graded k-algebras.

Analogous to the situation of a Dedekind domain, Cartier divisors on X define

adeles A(D) which are, in a sense, fractional ideals of K. Most importantly, since

Cartier divisors are locally principal, these ideals are actually graded-free (Definition

2.3.14).

Proposition 3.2.1. Let X/k be a variety, and A = AX its differential graded

algebra of adeles. Let F be a locally free sheaf. Then A(F) is a graded-free A-

module (Definition 2.3.14).

Proof. Since F is locally free, each stalk Fx is a free OX,x-module. X is connected,

so the stalks have constant rank. Therefore, we may find a basis β for A(F)0 as an

A0-module.

Since F is quasi-coherent, A(F) is an induced A-module. Thus, every element

of A(F)n can be uniquely written as ma where m ∈ β and a ∈ An. This means

A(F) is free as a graded A-module, with basis β.

In the case of invertible OX-modules we define the following.

Definition 3.2.2. To each Cartier divisor D, we have canonically defined invertible

OX-module L(D) ⊂ K. We define the adeles of D to be A(D) = A(L(D)). By

functoriality this is an ideal A(D) ⊂ K (Definition 2.3.2). By Proposition 3.2.1,
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this ideal A(D) is principal, generated by an element of degree 0. If we call this

element tD, then we have tD ∈ K×.

Remark 3.2.3. Any element generating A(D) as a right A-module also generates

A(D) as a left A-module, and vice versa.

Definition 3.2.4. It follows from the definition and the previous proposition that

A(D) is an invertible A-module (Definition 2.5.4). Let t be a choice of generator.

Then we call t a local parameter for D. If D = −V for closed codimension 1

subvariety V , then we call t a local parameter for V ; it is a generator for the ideal

IV = A(D) ⊂ A.

This is an adelic formalization of the intuitive notion of a local parameter or

local defining function for a divisor.

Proposition 3.2.5. Let D, E be Cartier divisors with adeles A(D) and A(E).

1. A(−D) ' A(D)∨ as differential graded A-bimodules.

2. A(D + E) ' A(D)⊗dgA A(E) as differential graded A-bimodules.

3. A(D) ' A(E) as differential graded A-modules if and only if D ∼ E.

Proof of (1). Recall (Definition 2.3.19) thatA(D)∨ = HomA(A(D), A), whereHomA

denotes the internal hom of right A-linear homomorphisms in the category Moddg(A,A)

(Definition 2.3.4). Since A(−D) is graded-free of rank 1, say by t = t−D = t−1
D ∈ K0,
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we can define

A(−D) −→ A(D)∨ (3.1)

t 7→ (φt : b 7→ tb) (3.2)

which by freeness extends uniquely to a right graded A-module homomorphism,

φa(b) = ab for a ∈ A(−D). Note that since A(D) is generated on the left (so

that A(D)∨ is a right module) by t−1, we actually do get φa(A(D)) ⊂ A, so the

map is well-defined. It is injective since t is a unit in K, so AnnAA(D) = (0).

Since A(D) = (tD), then φ : A(D) −→ A is defined by the image of tD. Then

let a = φ(tD)t−1
D ∈ A(−D). It follows that φ = φa since φa(tDb) = φa(tD)b =

φ(tD)t−1
D tDb = φ(tD)b = φ(tDb). The map is therefore an isomorphism.

Proof of (2). Let A(D)A(E) denote the smallest submodule of K containing {ab |

a ∈ A(D), b ∈ A(E)}. Then

A(D)A(E) =

{∑
i

aibi | ai ∈ A(D), bi ∈ A(E)

}

and A(D)A(E) = A(D+E). We must prove that A(D)A(E) is in fact a differential

graded A-module, as a submodule of K. Leibnitz is automatic as it is inherited

from K, so we must show it is closed under d. Closure under d follows from the fact

that d (
∑

i aibi) =
∑

i dai · bi + ai · dbi for ai ∈ A(D)i, together with the observations

that 1) the ai generate A(D) as a group, 2) A(D), A(E) are closed under d, and 3)

A(D) is a right A-module and A(E) is a left A-module.

Now define A(D) ⊗A A(E) −→ A(D)A(E) by ai ⊗ bi 7→ aibi. The map is

surjective since tD ⊗ tE 7→ tDtE = tD+E, which generates A(D)A(E) = A(D + E).
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To show it is injective, note if a ∈ A(D), then a = tDa
′; we find for a′ ∈ A

∑
i

ai ⊗ bi =
∑
i

tDa
′
i ⊗ bi =

∑
i

tD ⊗ a′ibi = tD ⊗
∑
i

a′ibi.

so each element in A(D)⊗AA(E) is represented by tD⊗ b for b ∈ A(E). If tD⊗ b 7→

tDb = 0, then b = 0, since tD ∈ K×.

We investigate the proof of (3) in the next section.

3.2.1 Rational equivalence and fractional ideals

In this section, we examine the relationship between rational equivalence of

divisors D,E and their associated “fractional ideals” A(D) and A(E).

Remark 3.2.6. For arbitrary D,E, we always have an isomorphism A(D) ' A(E) as

left/right graded A-modules. Both are freely generated in degree 0 of rank 1. Thus,

isomorphism in ModgrA is not enough to distinguish rational equivalence, although

it is enough to distinguish rank.

In fact, we have multiple conditions which preserve rational equivalence.

Proposition 3.2.7. Let D,E be Cartier divisors on X/k, A(D), A(E) ⊂ K their

associated fractional ideals. Then

D ∼rat E ⇐⇒ A(D) ' A(E) as A-bimodules

⇐⇒ A(D) ' A(E) as right differential graded A-modules

⇐⇒ A(D) ' A(E) as left differential graded A-modules
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The fact that there are multiple conditions follows from the following useful

lemma.

Lemma 3.2.8. Let A be the adelic algebra of a variety. Then

H0(K) = Z(K) = k(X)

where Z(K) denotes the center of K.

Proof. The equality H0(K) = k(X) is true by construction, without appealing to

the Beilinson–Huber theorem (Theorem 2.2.14).

We will prove the second equality for a surface X; generalizing to an arbitrary

variety follows the same proof, but with messier subscripts. Let t ∈ Z(K). First,

we show t ∈ K0. For arbitrary a ∈ K we have

(at− ta)ij = aij · (tj − ti)− tij · (aj − ai), (3.3)

for distinct i, j ∈ {0, 1, 2}. Define a by aj = 1 ∈ Kj and aI = 0 otherwise; by the

above tij = 0. Therefore the coordinate of t in K1 is zero. From this we get

(at− ta)012 = a012 · (t2 − t0)− t012 · (a2 − a0).

Again choose a0 = 1 ∈ k(X) and aI = 0 otherwise; we get t012 = 0. Therefore

t ∈ K0. Finally, again apply (3.3) with aij = 1 to see that ti = tj for all i, j.

Therefore t ∈ H0(K).

Part 3 of Proposition 3.2.5 will follow from:

Lemma 3.2.9. Let φ : A −→ K be a nontrivial right A-module homomorphism.

Suppose
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• φ is also a left A-module homomorphism, or,

• φ is a differential graded homomorphism.

Then the image φ(A) is the fractional ideal of a divisor rationally equivalent to zero.

Proof. 1. φ is defined by the image of 1A, say φ(1A) = t, and φ(A) = tA ⊂ K. If φ

is also a left A-module homomorphism, then for all a ∈ A,

at = aφ(1A) = φ(a · 1A) = φ(1A · a) = ta.

It follows that t ∈ Z(K), i.e., t ∈ k(X). The ideal tA generated by such a t is

A−div t.

2. Since φ is a chain map, it sends H0(A) into H0(K), so sends 1A ∈ H0(A) to

H0(K) = k(X). Again, it follows that φ(1A) = t ∈ k(X), and φ(A) = tA = A− div t.

The proposition now follows, say by appealing to previous results about the

tensor product.

3.3 Adelic Cartier divisors

In this section we define adelic Cartier divisors on a surface X as 1-cocycles

in the unit group U(A) (compare with Definition 2.5.7), and show they correspond

to Cartier divisors on X (Proposition 3.3.5).

Lemma 3.3.1 (Units in A012). Let X/k be a smooth surface, and A = AX or ÂX

its rational or complete differential graded algebra. There is an exact sequence

1 −→ A×12 −→ A×012 −→ DivX −→ 1.
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Proof. The map A×012 −→ DivX is given by taking valuations at each coordinate;

since no coordinate is zero, we may take valuations, and sum of valuations lands in

DivX by the adelic condition on A012. The kernel is clearly A×12.

Lemma 3.3.2 (Units in Â12). Let X/k be a smooth surface, and Â its complete

differential graded algebra. Then

Â12 '
∏
C

Â12,C

the product over all curves (not necessarily smooth) C on X. Further, a choice of

uniformizer t = tC for every C sets up isomorphisms

Â12,C ' AC [[t]].

Thus

Â×12,C = {a ∈ Â12,C | πC(a) ∈ A×C} ' A×C + tAC [[t]].

Proof. See [6].

Proposition 3.3.3. Let X/k be a surface (not necessarily smooth). Let A = A(OX)

be the (rational or complete) differential graded algebra of adeles, and K = A(KX)

its “field of fractions”. Let U denote the unit functor on rings R 7→ R×. We can

apply U to the cosimplicial algebras A and K and obtain an inclusion of cosimplicial

groups U(A) −→ U(K). Then there is a long exact sequence

1 −→ k× −→ k(X)× −→ H0(U(K)/U(A)) −→ H1(U(A)) −→ 1

and an isomorphism H2(U(A)) ' H1(U(K)/U(A)).

56



Proof. We have an exact sequence

1 −→ U(A) −→ U(K) −→ U(K)/U(A) −→ 1

which is

1 // A×0 × A×1 × A×2 //

d
��

A×0 × A×01 × A×02
//

d
��

A×01/A
×
1 × A×02/A

×
2

//

d
��

1

1 // A×01 × A×02 × A×12
//

d
��

A×01 × A×02 × A×012
//

d
��

A×012/A
×
12

//

d

��

1

1 // A×012
// A×012

// 1 // 1.

Trivially, H0(U(A)) = k×, H0(U(K)) = k(X)×, and H i(U(K)) = 0 for i = 1, 2.

This gives the desired long exact sequence.

Remark 3.3.4. We use U(A) to denote the complex associated with the units functor

R 7→ R×. We refrain from denoting this complex A×, since this represents the units

of A as an algebra, which does not coincide with U(A). We refrain from denoting

it K1(A), since K1(A02) is not necessarily A×02 (See [3]).

Proposition 3.3.5. Let X/k be a surface (not necessarily smooth). Denote by U(A)

the complex in Proposition 3.3.3. We have a chain map

A×0 × A×1 × A×2
π0

��

d // A×01 × A×02 × A×12

π1

��
k(X)× div // DivX.

The image under π of Z1(U(A)), the group of 1-cocycles, is the group of locally

principal divisors on X. If π1(a) ∈ im div, then a ∈ im d. That is, π induces an

isomorphism

H1(U(A)) ' Pic(X).

57



Proof. Defining

π0(a0, a1, a2) = a0

π1(a01, a02, a12) =
∑

Y ordY (a01) · Y

clearly gives a chain map.

Certainly, π1 surjects. For any Y , choose any f ∈ k(X)× such that ordY f = 1,

and set a01,Y = f and a01,Z = 1 for Z 6= Y . This does not require Y to be locally

principal. However, if it is, then we may simultaneously choose local defining func-

tions fx ∈ k(X)× for every x ∈ Y . Set a02,x = fx if x ∈ Y , and 1 otherwise. Then

a01/a02 ∈ A×12 by construction, so a = (a01, a02, a02a
−1
01 ) is a 1-cocycle. Conversely, it

is easy to see that a ∈ A×01 ∩ (A×02 ·A×12) is exactly the condition of local principality.

Let a ∈ Z1(U(A)), and suppose π1(a) = div f for some f ∈ k(X)×. Let

b = (b0, b1, b2) ∈ U(A0) with b0 = f−1, b1,Y = f−1, b1,Z = 1 for Z 6= Y , and b2 = 1.

Consider the 1-cocycle a db. Since (a db)01 = 1, we have a db = (1, c, c) for some

c ∈ A×12 ∩A×02. But A×12 ∩A×02 = A×2 (to see this, use the fact that A12 ∩A02 = A2[6]

and consider vanishing along curves), so a db is a coboundary; therefore so is a.

Remark 3.3.6. A similar statement should hold for integral schemes over k.

Proposition 3.3.7. Let M be an invertible A-module (Definition 2.5.4). Then we

may assign an adelic Chern class c(M) ∈ H1(U(A)) (Definition 2.5.6).

On the other hand, given a Cartier divisor D, we may assign an adelic Cartier

divisor tD ∈ A×01 × A×02 × A×12. Then

c(A(D)) = {class of tD in H1(U(A))}.
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Proof. Follows from the definitions.
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Chapter 4: Adeles of curves and surfaces

In this chapter we will examine the adeles of curves (§4.1) and surfaces (§4.2).

We will construct the S-adeles of both, generalizing the construction from global

class field theory to surfaces.

4.1 The structure for curves

Let C/k be a curve, not necessarily smooth. Let A be either the rational or

complete adelic algebra. There are two classes of 0-flags (see the discussion after

Definition 2.2.1): closed points (type 1) and the generic point (type 0). A complete

flag corresponds to a pair (x, η) consisting of a closed point and the generic point.

The simplicial structure of A is illustrated by the diagram below.

A0

A01

k

A1 (4.1)

As a complex, A is A0 ⊕ A1 −→ A01.

Now let A = ÂC be the complete adele ring. The top degree algebra, A1 = AC ,

is exactly the classical adele ring of C (cf. Example 2.2.23). Every closed point x

provides a completed local ring ÔC,x. The field of fractions of ÔC,x is denoted K̂x.
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Via a choice of local uniformizer s ∈ m̂x for x, we have noncanonical isomorphisms

ÔC,x ' k[[s]] and K̂x ' k((s)).

Since complete flags are pairs (x, η), the adeles are the subalgebra of
∏

x K̂x

for which only finitely many points have poles, i.e., the restricted direct product∏′
x K̂x with respect to the subalgebra OAC =

∏
x ÔC,x.

As a ring (with coordinate-wise multiplication) with no extra differential graded

structure, AC itself not particularly interesting; in fact it distinguishes C in no way.

This is because the completions of the local rings OX,x are all isomorphic to k[[s]]; in

other words, all smooth curves are locally analytically isomorphic to affine space A1
k

(more generally every smooth variety is locally analytically isomorphic to An
k). The

adelic condition is independent of C itself and so AC only depends on the cardinality

of k. In the concrete example of Fp, there are countably many geometric points in

both C and P1, and so their adele rings are the same.

Therefore, the structure of A as a cosimplicial group or as a differential graded

algebra is vital. We have a number of ways of representing it as such, the easiest is

as a chain complex,

k(C)⊕OAC −→ AC

where k(C) ⊂ AC via the diagonal embedding of the inclusions k(C) ↪→ K̂x, and

OAC =
∏

x∈C ÔX,x. The differential is (a0, a1) 7→ a1−a0. The multiplication in this

ring is given by

ab = (a0b0, a1b1, a0b01 + a01b1) (4.2)

for a0, b0 ∈ k(C), a1, b1 ∈ OAC , and a01, b01 ∈ AC .
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More generally for any divisor D, the associated differential graded A-module

A(D) (Definition 3.2.2) is, as a complex,

k(C)⊕ AC(D) −→ AC

where AC(D) is the module associated with the divisor D =
∑

x nxx,

AC(D) =
∏
x∈C

s−nxx ÔX,x

for any choice of local uniformizers sx generating mx. The right action of A is given

by

ma = (m0a0,m1a1,m0a01 +m01a1)

for a as above, m0 ∈ k(C), m1 ∈ AC(D), and m01 ∈ AC .

Using the local uniformizers sx above, we may define a generator of the invert-

ible A-module A(D) (Definition 2.5.4). Let t1 =
∏

x s
−nx
x ∈ K×1 . Define

t = (1,
∏

x s
−nx
x , 0)

which is an element ofK0
C . By the above description of AC(D) and the multiplication

(4.2), t generates A(D) as a right A-module. We can compute t−1 = (1,
∏

x s
nx
x , 0),

so (Definition 2.5.6)

θt = t−1dt = (0, 0,
∏

x s
−nx
x − 1) .

Therefore c(A(D), t) = 1AC + θt =
∏

x s
−nx
x , considered as an element of AC .

4.1.1 Riemann–Roch and Serre duality for curves

The topological proof of Riemann–Roch and Serre duality for curves via the

complete adeles goes back at least to Tate’s thesis [24]. For now, we refer to [6, §0]
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for discussion; note there is a proof of Serre duality for Gorenstein curves as well.

Proposition 4.1.1 (Adelic Riemann–Roch for curves, [6, §0]). Let C/k be a curve,

not necessarily smooth, and ÂC the complete adelic algebra. For every divisor on

C, we have

χ(ÂC(D))− χ(ÂC) = degD.

If C is further a Gorenstein curve, then H0(ÂC(D)) ' H0(ÂC(K − D)) for any

canonical divisor K.

In [6, §0], Fesenko considers more generally an arbitrary perfect field k. It is

also clear from the proof that the statement is also true for the rational adeles AC .

4.1.2 Quasi-isomorphisms and S-adeles

By the theorem of Beilinson–Huber (Theorem 2.2.13), H i(A) ' H i(X,OX)

for all i. If the adelic complex were to be analogous to singular cohomology, then we

might be interested in finding an analog to finite CW complexes or finite triangula-

tions. Recall that the Huber adeles A(Kn,F) are defined for any subset Kn ⊂ S(X)n

of the set of all Parshin flags (Proposition 2.2.7).

Question 4.1.2. How close can we get to a finite set and still capture the coho-

mology of X? Can we pick K• independent of F? How small can we make K• if we

only care about F = OX?

In this section, we will examine the case of a curve, where we answer affirma-

tively that we can pick a finite set of Parshin flags that compute the cohomology of
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OX . In fact, we may pick only those Parshin flags supported at a single point. We

will examine the case of a surface in Section 4.2.2.

Definition 4.1.3 (S-adeles of a curve). Let S ⊂ |C| be an arbitrary nonempty set

of closed points on C. Define a cosimplicial group BS of dimension 1 by

BS
01 =

∏′

x∈S

Kx,

and

BS
1 =

∏
x∈S

Ox,

and

BS
0 = {a ∈ k(C) | a is regular outside S},

with boundary maps δ1
0(a0, a1) = a1, δ1

1(a0, a1) = a0, so d0(a0, a1) = a1 − a0. BS is

a differential graded algebra with the usual Alexander–Whitney product.

Remark 4.1.4. BS is not the Huber–Beilinson adeles of a restricted simplicial set.

Restricting the set would not change B0. Instead, it is a cosimplicial subalgebra of

a(K,OX) where K is the set of all Parshin flags supported at S.

Proposition 4.1.5. There is a differential graded algebra AS that fits into a diagram

A AS
ioo π // BS

where the maps are quasi-isomorphisms.

Proof. As a cosimplicial group, AS is

AS01 =
∏′

x∈S

Kx ⊕
∏
x 6∈S

Ox,

AS1 = A1, and, AS0 = CS
0
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with boundary map d(a0, a1) = a1 − a0. The product is the usual one.

The maps i and π are the inclusion and projections, therefore are homomor-

phisms, therefore induce chain maps since all the boundary maps are compositions

of inclusions and subtractions. The proposition then follows from the following

lemmas.

Lemma 4.1.6. The inclusion AS
i−→ A is a quasi-isomorphism if S 6= ∅.

Proof. By the snake lemma, we must prove that the vertical right hand map is an

isomorphism:

0 // AS0 ⊕ AS1
i //

d
��

A0 ⊕ A1
//

d

��

A0/A
S
0

//

d
��

0

0 // AS01
i // A01

// A01/A
S
01

// 0.

We have AS01 ∩ A0 = AS0 by definition. We must show A01 = AS01 + A0.

Because of the Riemann–Roch inequality, we can “move” poles into S, as we

will demonstrate. Let a ∈ A01, and consider its pole of highest order. We may

assume it is at some Q 6∈ S and has order m. By the Riemann–Roch inequality,

dimnP + mQ > 0 for n � 0, so we can reduce the order of the pole by one by

subtracting an appropriate multiple of an element of L(nP + mQ) ⊂ A0 without

introducing any poles outside of S. Proceeding by induction and the fact that there

are only finitely many poles, we end up in AS01.

Lemma 4.1.7. The projection AS
π−→ BS is a quasi-isomorphism.

Proof. Since AS0 = BS
0 , the kernel of π : AS,0 −→ BS,0 is

∏
x 6∈S Ox so this follows
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formally from the snake lemma, without Riemann–Roch:

0 //
∏

x 6∈S Ox //

��

AS,0
π //

d

��

BS,0 //

d

��

0

0 //
(∏′

x 6∈S
Kx

)
∩ AS,1 // AS,1

π // BS,1 // 0.

The left vertical map is an equality.

Thus the proposition is proved.

Example 4.1.8. Let C = P1, S = {∞}. Then O∞ ' k[[w]], K∞ ' k((w)),

C \ S = Spec k[z] with w = 1
z
, so BS

0 = k
[

1
w

]
. Therefore BS is, as a complex:

k
[

1
w

]
⊕ k[[w]] −→ k((w))

(a, b) 7→ a− b

This is clearly surjective, and the kernel is k. Thus, H1(C,OC) = 0, H0(C,OC) ' k.

Example 4.1.9 (Weierstrass gaps). Let C be a curve of genus g, S = {P}. Then

BS
0 =

⋃
n≥0 L(nP ), and BS as a complex is

⋃
n≥0

L(nP )⊕ k[[sP ]] −→ k((sP )).

Since the cokernel has dimension g, there are exactly g pole orders in k((sP )) that

cannot be created with elements of k(C) without introducing poles at other points.

These are called Weierstrass gaps.

4.2 The structure for surfaces

Let X/k be a surface, not necessarily smooth. In this section, points refer to

closed points, curves refer to irreducible dimension one (sub)varieties, not necessarily
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smooth. We use x to denote an arbitrary point of X. We use y and z to denote

distinct curves of X.

Throughout this section, let A be either the rational or complete adelic algebra.

4.2.1 Simplicial structure, adelic Cartier and Weil divisors

The simplicial structure of A is illustrated by the diagram below.

A012

A01 A02 A12

A0 A1 A2

k

(4.3)

There are three classes of 0-flags (see the discussion after Definition 2.2.1):

closed points (type 2), curves, possibly singular (type 1), and the generic point (type

0). There are three classes of 1-flags: A point on a curve (type 01), a point and the

generic point (type 02), and a curve and the generic point (type 01). Complete flags

correspond to a triple (x, y, η) of a point x ∈ y on a curve, and the generic point

η (type 012); the horizontal direct sums of the top three rows correspond to (from

the top down) A2, A1, and A0. The edges correspond to inclusions, and describe

the boundary maps δji . For example, δ1
1 is the sum of the inclusions A0 −→ A01,

A0 −→ A02, and A1 −→ A12.

Remark 4.2.1. Note this diagram really illustrates the augmented differential graded

algebra, with k in degree −1. There is an argument to be made for using the
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augmented algebra throughout this thesis, but we forgo the extra formality. There

is an obvious generalization of this diagram to higher dimensions.

The participating rings AI fit nicely into a lattice structure, but only when X

is projective:

Proposition 4.2.2 (Fesenko [6]). Let X/k be a projective surface, and A = AX or

ÂX be its rational or complete algebra. Then

Aij ∩ Ajk = Aj

for i, j = 0, 1, 2.

Proof. See [4, Theorem §2]. This is a nontrivial fact and is not true for an affine

surface. For more see [4], which has comments on the difficulty of generalizing to

higher dimensions.

As a chain complex, we write the adelic algebra A as

A0 ⊕ A1 ⊕ A2 −→ A01 ⊕ A02 ⊕ A12 −→ A012.

For any divisor D, we get the A-module AX(D) (Definition 3.2.2) which as a complex

is

A0 ⊕ A1(D)⊕ A2(D) −→ A01 ⊕ A02 ⊕ A12(D) −→ A012.

Both are submodules of the differential graded algebra K = A(K),

A0 ⊕ A01 ⊕ A02 −→ A01 ⊕ A02 ⊕ A012 −→ A012.
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It is easy to see that the cohomology of the modules A(D) can be computed in a

number of ways, for example [6, §2]

H0(A(D)) ' A0 ∩ A12(D) = A0 ∩ A1(D) = A0 ∩ A2(D) = A1(D) ∩ A2(D)

H1(A(D)) ' (A01 ∩ (A12(D) + A02))/(A1(D) + A0)

' (A12(D) ∩ (A01 + A02))/(A1(D) + A2(D))

' (A02 ∩ (A12(D) + A01))/(A2(D) + A0)

H2(A(D)) ' A012/(A12(D) + A01 + A02).

Theorem 4.2.3 ([6, §1]). Let X/k be a smooth surface, and A = ÂX the complete

adelic algebra. As illustrated in (4.3), all participating rings are subrings of A012.

Then A012 is the restricted direct product of subrings Ay for every curve y, with

respect to subrings OAy. We have noncanonical isomorphisms

Ay ' Ay((t))

OAy ' Ay[[t]]

where Ay is adele ring of the curve y.

Remark 4.2.4. These isomorphisms are also homeomorphisms for a suitable topology

on A012 and Ay [6, §1].

Similarly, the rational adele ring is a restricted direct product of subrings Ay

for every curve y with respect to subrings OAy. This follows from the inductive

description of the adeles in Proposition 2.2.7(2). However, neither Ay nor OAy are

so nicely represented as Laurent series or power series.
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4.2.2 S-adeles of a surface

In this section, X/k is a smooth projective surface. Let S be an arbitrary set

of curves on X.

Definition 4.2.5. The algebra of S-adeles AS = ASX is the cosimplicial algebra

corresponding to

AS012 =
∏′

y∈S

Ay ×
∏
y 6∈S

OAy.

That is, to give the cosimplicial structure to AS means defining ASI for all other

indices I, and we set ASI = AI ∩ AS012. As a complex, AS is

AS0 ⊕ A1 ⊕ A2 −→ AS01 ⊕ AS02 ⊕ A12 −→ AS012

which is simultaneously a subcomplex and differential graded subalgebra of A.

More generally for a divisor D =
∑

y nyy, we define the S-adeles associated to

D to be the cosimplicial group corresponding to

AS012(D) =
∏′

y∈S

Ay ×
∏
y 6∈S

Any
y = AS012 + A12(D),

with ASI (D) = AI ∩ AS012(D) = AI(D) ∩ AS012. We get a submodule of AX(D),

AS0 (D)⊕ A1(D)⊕ A2(D) −→ AS01(D)⊕ AS02(D)⊕ A12(D) −→ AS012(D).

ASX(D) is clearly a differential graded ASX-module. The inclusion i,

AS0 (D)⊕ A1(D)⊕ A2(D) dS,0 //

i
��

AS01(D)⊕ AS02(D)⊕ A12(D) dS,1 //

i
��

AS012(D)

i

��
A0 ⊕ A1(D)⊕ A2(D) d0

// A01 ⊕ A02 ⊕ A12(D) d1
// A012
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has cokernel

A0/A
S
0 (D) −→ A01/A

S
01(D)⊕ A02/A

S
02(D) −→ A012/A

S
012(D).

Lemma 4.2.6. We have

1. H0(coker i) = 0,

2. H2(coker i) = 0 if S 6= ∅.

Proof. The first follows simply from AS0 (D) = A0∩AS01(D). For the second, we must

show A012 = A01 + A02 + AS012. Since H2(X,L(E)) ' A012/(A01 + A02 + A12(E)),

we need only find a divisor E supported on S with trivial H2. In fact, we may pick

any E 6= 0 supported in S; then H2(X,L(nE)) ' H0(X,L(K − nE)), and we may

choose n sufficiently large such that deg((K − nE) |y) < 0 for some curve y in X.

Remark 4.2.7. The proof of (2) appeals to Riemann–Roch for curves, Serre duality

for the surface, and Huber’s theorem. If we want to avoid all this we can add the

following requirement to S:

Condition: every point of X is the transverse intersection of curves in S.

This allows us to move poles into S at each point; in fact A012 = A02 + AS012.

Definition 4.2.8. We say that the set S supports an ample divisor if there

exists an ample divisor H such that suppH ⊂ S.

Then we have:
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Proposition 4.2.9. If S supports an ample divisor, then the inclusion i : AS −→ A

is a quasi-isomorphism.

First we have a useful lemma.

Lemma 4.2.10. If S supports an ample divisor H, then

AS012 =
∑
n

A12(nH) + AS01 + AS02.

Proof. This follows from the cohomological criterion for ampleness, as we will show.

Let γ ∈ AS012. Then γ ∈ A12(D) for some D such that suppD ⊂ S. For n � 0,

H2(X,L(nH)) = 0, so using the isomorphism

H2(X,L(nH)) ' A012

A01 + A02 + A12(nH)

we can write γ as a coboundary

a+ b+ c = γ

for (a, b, c) ∈ A01 ⊕ A02 ⊕ A12(nH). Thus a + b ∈ A12(D) + A12(nH). We can

write A12(D) + A12(nH) = A12(nH + D′) for some D′, suppD′ ⊂ S, so a + b ∈

A12(nH +D′), and therefore a+ b is an element of A12(nH +D′) ∩ (A01 + A02).

Again, for n′ > n� 0, H1(X,L(n′H +D′)) = 0. We have the isomorphism

H1(X,L(n′H +D′)) ' A12(n′H +D′) ∩ (A01 + A02)

A1(n′H +D′) + A2(n′H +D′)
.

Therefore we can write a+ b as a coboundary:

a′ + b′ = a+ b

for (a′, b′) ∈ A1(n′H + D′) ⊕ A2(n′H + D′) ⊂ AS01 ⊕ AS02. Thus we have written

γ = a′ + b′ + c as the sum required in the statement of the lemma.
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Remark 4.2.11. More generally for an arbitrary divisor D, we have

AS012(D) =
∑
n

A12(nH) + AS01(D) + AS02(D).

Proof of Proposition 4.2.9. If D is any divisor such that suppD ⊂ S, then by defi-

nition AS0∗(D) = AS0∗ for ∗ = 1, 2, 12. Since the map i above is the identity on A∗(D)

for ∗ = 1, 2, 12, we see that we get the same cokernel for all such D.

Now let H be an ample divisor supported on S. For every n, by Remark 4.2.11

we get a long exact sequence in cohomology containing the sequence

H1(A(nH)) −→ H1(coker i) −→ H2(AS(nH)).

Notice, again, that as n varies, the middle term remains the same.

Now let n −→ ∞. The rightmost term is eventually 0 by the lemma, and the

leftmost term is eventually 0 since H is ample. Thus H1(coker i) = 0.

Remark 4.2.12. This same proof will also show that i : AS(D) −→ A(D) is a quasi-

isomorphism for any divisor D.
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Chapter 5: Intersection theory of the modules AX(D)

In this chapter, we investigate what the modules A(D) for Cartier divisors D

say about intersection theory on a surface. We obtain a global analog (Proposition

5.1.1) of the usual local statement that the intersection number of two effective

divisors intersecting properly at a point x is the length of OX,x/(f, g), where f and

g are local defining functions for the divisors. In the case of the self-intersection of

a curve C, we construct a sort of “projective resolution” P −→ A(−C) (§5.3) and

show that this resolution computes the self-intersection number (§5.2).

Through this chapter, X/k is a smooth surface, and A = AX is the associated

adelic algebra (rational or complete).

5.1 Proper intersection

Let D,E be effective Cartier divisors of a surface X/k intersecting properly.

We have associated ideals ID, IE ⊂ A corresponding to A(−D) and A(−E) (Defini-

tion 3.2.2). Properness for irreducible divisors means distinctness, so this is reflected
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in the fact that,

(ID)12 + (IE)12 = A12, and,

(ID)1 + (IE)1 = A1.

On the other hand,

(ID)2 + (IE)2 =
⊕
x∈|X|

(fx, gx)

where fx, gx are equations defining D,E near x. Thus if we let I = ID + IE, then

A/I = 0⊕ 0⊕
⊕

x∈D∩E

OX,x/(fx, gx) −→ 0⊕ 0⊕ 0 −→ 0.

A acts on A/I through its quotient A2, which in turn acts through its quotient⊕
x∈D∩E OX,x. We see A/I has finite length as a module for any of these rings, and

its length is clearly the intersection number:

D.E = lengthAA/I

since lengthAA/I =
∑

x lengthOX,x OX,x/(fx, gx) =
∑

x∈D∩E lengthOX,x OX,x/(fx, gx).

Nothing is happening here other than formally gathering the local intersection data

into the global object, the differential graded ideal I = ID + IE.

Note also that we have A/(ID + IE) ' A/ID ⊗dgA A/IE as differential graded

A-bimodules, with straightforward proof mimicking the case of commutative rings.

This discussion proves

Proposition 5.1.1. For any Cartier divisors D, E intersecting properly,

D.E = lengthAA/ID ⊗
dg
A A/IE.
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5.2 Self intersection

Let C be a curve contained in X, with associated adelic algebra AC . The

inclusion j : C −→ X induces a projection j# : A −→ AC . Its kernel is the ideal I ⊂ A

associated with C.

Now let C ′ be a second distinct curve on X with associated ideal I ′. Then

A/I⊗AA/I ′ computes the intersection of C and C ′ via its length (§5.1.1). However,

A/I ⊗A A/I ' A/I, which is not a finite length A-module.

Definition 5.2.1. Let t ∈ A be a local parameter for C (Definition 3.2.4), so

I = tA = A(−C) is the ideal associated with C. Define a differential graded A-

module Pt as follows. As a graded A-module, Pt = A[T ]/T 2 where T is a formal

parameter of degree −1. The differential structure on Pt is defined by

dT = t− Tθt

where θt ∈ A1 is as in Definition 2.5.6.

Remark 5.2.2. We can call Pt = A[T ]/T 2 the deformation module/ring of the ideal

tA. This seems to play a role similar to the local theory, see Theorem 5.2.4.

Remark 5.2.3. A choice of local parameter t also defines a divisor E ∼rat C as

follows. By assumption, t ∈ A0, and multiplying t by an element of (A0)×, we may

assume t is of the form

t = (1, t1, t2).

The element t1 ∈ A1 has a coordinate at C which is some rational function f ∈ k(X).
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Then div f = C−E for some divisor E intersecting C properly, since t is a generator

of I. Further, t′ = (1, j#(t2/t1)) is a local equation in AC for E |C .

Theorem 5.2.4. There is an isomorphism of differential graded A-modules

Pt ⊗dgA A/IC ' AC ⊕ AC(E |C)[1].

Proof. We have a surjective quasi-isomorphism

Pt −→ AC

defined by sending both t and T to 0. This is exactly the same as the exact sequence

0 −→ I −→ A −→ AC −→ 0

where Pt ' [I −→ A].

Apply the functor −⊗AA/I to the A-module Pt. Since t 7→ 0, we see that the

differential becomes

dT = −Tj#(t−1dt).

The only nontrivial component of j#(t−1dt) is the 12 component, where

(t−1dt)12 = t−1
1 (t2 − t1) =

t2
t1
− 1.

So (t−1dt)01 = j#(t2/t1) − 1. But t′ = (1, j#(t2/t1)) is a local equation in AC for

E |C , and since θt′ = t′1 − 1, by Proposition 2.5.12(2), we get a splitting (!) of (5.1)

after tensoring.

Remark 5.2.5. The above construction is analogous to taking the following projective

resolution:

0 −→ IC −→ OX −→ OC −→ 0
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and applying −⊗OC to get the complex of sheaves [IC |C −→ OC ]. Computing the

cohomology computes the higher Tor groups, which computes the intersection. The

difference is that the complex of sheaves [IC −→ OX ] is an actual object Pt in the

category of differential graded A-modules.

By the adelic statement of Riemann–Roch for the curve (Proposition 4.1.1),

we have

χ(AC ⊕ AC(D)[1]) = degD.

Therefore

C2 = χ(Pt ⊗dgA A/IC).

Combining the results for proper and self-intersection of divisors, it is easy to

derive the following:

Corollary 5.2.6. Let C and Pt be as above, and let D be any effective divisor with

associated ideal ID. Then

C.D = χ(Pt ⊗dgA A/ID).

5.3 Property (P) and P -resolutions

We provide an interpretation of the module Pt in the previous section. The

material in this section is from the Stacks project’s chapter on differential graded

algebras [25, Tag 09JD], which constructs from Mod(A,d) a homotopy category

K(Mod(A,d)), followed by a derived category D(A, d) in the natural way. The cat-

egory D(A, d) is simply the category of differential graded A-modules with quasi-

isomorphisms inverted.
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Definition 5.3.1. [25, Tag 09KK] A differential graded A-module P has property

(P) if it has a filtration P ⊃ · · · ⊃ F1P ⊃ F0P ⊃ 0 such that P =
⋃
i FiP and each

successive quotient Fi+1P/FiP is isomorphic, as a differential graded A-module, to

A[k] for k ∈ Z.

Remark 5.3.2. Technically speaking, the condition from [25] is that each quotient

Fi+1P/FiP is isomorphic to a direct sum of copies of A[k]. However, we will just be

considering coherent sheaves, which correspond to finitely generated A-modules. In

this case, we can arrange to have each quotient in the filtration be a single copy of

A[k].

Example 5.3.3. Clearly dg-free (Definition 2.3.14) differential graded A-modules

have property (P). Remember that if ID ⊂ A is the ideal corresponding to an

effective Cartier divisor D, then ID is free as a graded A-module, but not dg-free

unless D ∼rat 0 (Proposition 3.2.7). Thus, “locally free” objects do not generally

satisfy property (P).

In the category Mod(A,d), dg-free A-modules are not projective, as the following

example shows:

Example 5.3.4. Let F be the dg-free A-module generated by a formal parameter

X, so that F = XA. We must have dX = 0 by dg-freeness. Further, any differential

graded homomorphism φ : xA −→ M must satisfy dφ(x) = 0; in general we might

have Z0(M) = 0, in which case Homdg
A (F,M) = 0.

Example 5.3.5. Construct the free A-module P generated by formal symbols X, Y .

Define a differential graded structure on P by setting dX = Y and dY = 0, and
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define the degrees as |X| = 0 and |Y | = 1. Then P is isomorphic to A ⊕ A with

differential

d(a, b) = (da, a− db),

the isomorphism being given by Xa+ Y b 7→ (a, b).

Proposition 5.3.6. We have,

1. For any differential graded A-module M , Homdg
A (P,M) = M as abelian groups.

2. P satisfies property (P).

Proof. The first part is clear. For the second, we can write P as an extension in

ModdgA ,

0 −→ N −→ P −→ A −→ 0

with P −→ A defined by Xa + Y b 7→ a. The kernel N is isomorphic to A[−1]; for

example we can choose the isomorphism A[−1] −→ N , 1 7→ Y .

More generally, for any graded-free A-module M of rank 1, choose a generator

t. Then P is also an extension

0 −→M [−1] −→ P −→M −→ 0

with P −→M defined by Xa+ Y b 7→ t · a+ dt · b.

Proposition 5.3.7. The category ModdgA has enough (P) objects. That is, for every

differential graded A-module M , there exists a surjective quasi-isomorphism P −→M

such that P has property (P).
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Proof. See [25, Tag 09KP]

Let Pt be the module defined in Definition 5.2.1. We have an exact sequence

0 −→ A −→ Pt
π−→ A[1] −→ 0 (5.1)

given by π : T 7→ t. Thus Pt satisfies property (P). The map Pt −→ A/IC given in

the previous section is an example of a (P) resolution of the module A/IC .
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Chapter 6: The simplicial Milnor K-algebra

As mentioned in the introduction, Gorchinskii [11, 10] and Braunling [2] have

constructed adelic resolutions of K-theoretic sheaves. Our presentation is based on

Budylin [3], who also defines adelic Chern classes for rank 2 bundles. The adelic

Bloch–Quillen formula is due to Budylin (Theorem 6.2.8). Our contribution is to

interpret the intersection pairing as a cup product and prove that Budylin’s map is

a ring homomorphism (Theorem 6.2.11).

In §6.1 we define the cosimplicial ring KM(A), and endow it with a canonical

map to the Gersten resolution (§6.2). Finally, we relate the cup product in KM(A)

with the numerical intersection pairing (§1).

We should also mention the paper by Osipov [20], which has a similar definition

of complete K-adeles and constructs a Gysin map in the relative situation of a

surface mapping to a curve.

Throughout this chapter, X/k is a surface (not necessarily smooth) with as-

sociated adelic algebra A = AX .
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6.1 The Milnor K-theory of AX

In this section we will define the Milnor ring KM(A), a cosimplicial object in

Ringgr, the category of graded rings. Under the monoidal Dold–Kan correspondence

(Section 2.4), it is a differential graded ring.

Normally, the Milnor K-groups of non-fields are not well-behaved. However,

in the case of a local ring with infinite residue field, Nesterenko and Suslin [19] have

shown the Milnor K-groups exhibit some desirable properties. Since AX is built out

of products of local rings, all of which contain an infinite field, it should not be too

surprising that we can transfer these results over to the cosimplicial algebra AX .

Let R be a commutative ring and define the Milnor ring KM(R) to be the

quotient of the tensor algebra T (R) =
⊗

n(R×)⊗n by the ideal generated by elements

of the form a ⊗ (1 − a) with a, 1 − a ∈ R×. Then KM(R) is a graded ring in the

usual way. Further, KM is a covariant functor Ring −→ Ringgr. We denote elements

as (a, b) for a, b ∈ R× (and (a, b, c), etc.).

Lemma 6.1.1. If R = A012, then KM(R) is graded commutative. In other words,

we have skew-symmetry (a, b) = −(b, a) in KM
2 (R) (in general, (a1, . . . , an) =

(−1)sgnσ(aσ(1), . . . , aσ(n))).

Proof. Let R = A012. We follow [19] to prove (a,−a) = 0 for all a ∈ R×. Here we

do not have local rings. However, each local factor (See §2.2.2) R∆ of A012 contains

an infinite field, and the product of all these fields has no adelic restriction. That

is, S =
∏

x,C k ⊂ A012 and S× =
∏

x,C k
×.
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If a ∈ R× and 1 − a 6∈ R×, then we can find an infinite family b ∈ S× such

that ab, 1 − ab ∈ R×. We just need to avoid the case that ax,C ≡ 1 mod tC , so we

can choose bx,C ∈ k× such that ax,C · bx,C 6≡ 1 mod tC .

More generally, the same proof shows:

Proposition 6.1.2. Let X/k be a noetherian scheme over an infinite field. Let R

be any ring AI appearing in the Huber–Beilinson adeles. Then R has many units

(in the terminology of [19]).

Proof. Every ring R contains a ring of the form S =
∏

∆ k (an unrestricted product),

which has many units, and there is an inclusion S× =
∏

∆ k
× ↪→ R×.

Definition 6.1.3. Let X/k be a surface or a curve, with associated (rational or

complete, reduced or nonreduced) algebra A = AX . This is a cosimplicial object

in the category of algebras. Therefore by functoriality we can form the simplicial

Milnor K-algebra KM(A), a cosimplicial object in the category of abelian groups.

In other words, (KM(A))n = KM(An), with face maps

KM(δni ) : KM(An−1) −→ KM(An)

and degeneracy maps

KM(σni ) : KM(An+1) −→ KM(An).

Proposition 6.1.4. The simplicial Milnor K-algebra KM(A) is a differential graded

Z-algebra. KM(A) is graded commutative, that is, ab = (−1)|a||b|ba for all homoge-

neous elements a, b ∈ KM(A). Let a, b ∈ KM
1 (A1) be elements of degree 1. They
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have coordinates aij, bij for distinct i, j ∈ {0, 1, 2}. Then from the definition of the

cup product (§2.4), we have

ab = (a01, b12) ∈ KM
2 (A2).

Proof. This follows from the monoidal Dold–Kan correspondence (§2.4), while graded

commutativity follows from Lemma 6.1.1.

Remark 6.1.5. In Definition 2.5.7 and §3.3 we defined adelic Cartier divisors as

cocycles in a cosimplicial group of units. The group U(A) sits inside the simplicial

Milnor K-algebra via U = KM
1 . By Proposition 3.3.5, we have for any smooth

surface

H1(KM
1 (A)) ' Pic(X).

6.2 The relationship between KM(AX) and the Gersten complex

We establish the relationship between the Milnor K-ring and the Gersten

resolution. A similar relationship is mentioned in Osipov [20] for complete adeles.

Gorchinskii [11, Theorem 1.1] has a more robust construction of adeles ofK-theoretic

sheaves. We follow Budylin [3], who proves the Bloch–Quillen formula for KM(A)

(Theorem 6.2.8).

Let X be a smooth surface. Recall that for every curve C (not necessarily

smooth) and closed point x ∈ C, we have boundary maps in Milnor K-theory which

we denote

K2(k(X))
∂C // k(C)×

∂x // Z.
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These maps are the tame symbol and ord map. Further, let πx,C : KM
2 (A012) −→

K2(k(X)) be the map induced from the projection a 7→ ax,C .

Lemma 6.2.1. Let Z0(X) =
⊕

x Z denote the group of dimension 0 algebraic cycles

on X. Then there is a unique well-defined map ∂ : KM
2 (A012) −→ Z0(X) such that

the following commutes for every Parshin flag x ∈ C:

KM
2 (A012)

∂
��

πx,C // K2(k(X))

∂x◦∂C
��

Z0(X)
πx // Z.

Remark 6.2.2. This is, essentially, proved in [3] (note that in this proof, Budylin

uses Parshin’s tame symbol). We provide a proof using the more familiar maps

from Milnor K-theory. Further, Budylin uses the common type of numerical adelic

condition ([3, Lemma 12]) we wish to avoid, as it is not tractable above dimension

two.

Proof. We may consider symbols of the form (f, g) for f, g ∈ A×012. If such a map

exists it must be unique via the splitting Z −→ Z0(X) for each choice of x, so we must

only show that it is well-defined, i.e., that the following sum over all flags x ∈ C is

finite: ∑
∂x ◦ ∂C(fx,C , gx,C).

It is a simple observation that A×012 = A×01 ·A×12; the observation here is simply

that an adele has finitely many poles along curves, and we may choose our local

uniformizers as elements of A01. Compare this with Lemma 3.3.1.

By linearity we may therefore consider three cases.
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(f, g ∈ A×12) In this case, f and g are units along every curve C. Therefore

∂C(fx,C , gx,C) = 1, so

∂x ◦ ∂C(fx,C , gx,C) = 0 for all x and C.

(f, g ∈ A×01) The adeles f , g have associated Weil divisors D, E. If C 6∈

|D| ∪ |E|, then ∂C(f, g) = 0 as f , g are units along C. Therefore for any fixed x, we

have a representation as a finite sum

∑
∂x ◦ ∂C(fx,C , gx,C) =

∑
C∈|D|∪|E|

∂x ◦ ∂C(fx,C , gx,C).

For any of the finitely many curves C ∈ |D|∪|E|, ∂C(fx,C , gx,C) is a rational function

on C, since f, g ∈ A01. Therefore there are only finitely many points x ∈ C with

nonzero residue.

(f ∈ A×01, g ∈ A×12) By linearity, we may reduce to the case of a single curve C

for which ordC fC = 1, and ordD fD = 0 for all D 6= C. Then ∂D(fx,D, gx,D) = 1 for

all x and all D 6= C. On the other hand, for x ∈ C, we have ∂C(fx,C , gx,C) = gx,C |C ,

a rational function along C for which only finitely many points x have zeros and

poles.

Lemma 6.2.3. The following diagram commutes.

KM
2 (A01) //

∑
C ∂C

��

KM
2 (A012)

∂
��⊕

C k(C)× //
⊕

x Z.

Proof. We may index the set of all flags {x ∈ C} as curves first.

The lemma shows that tame symbols of type 01 agree with the Gersten com-

plex. To complete the proof, we need to know what happens to tame symbols of
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types 02 and 12. Since ∂ is trivial on KM
2 (A12) (see the proof of Lemma 6.2.1),

that only leaves the case of type 02. Intuitively, this is a statement about the

commutativity of the intersection pairing in terms of tame symbols, as in Kresch

[17].

Lemma 6.2.4. The map ∂ on the image of KM
2 (A02) in KM

2 (A012) is trivial.

Proof. We may as usual consider symbols of the form (f, g) for f , g ∈ KM
2 (A02).

Further, by definition of A02, we may fix x and consider just the coordinates at x.

In this case, f , g ∈ K2(k(X)), and we are showing that the following map is zero

K2(k(X))
∑
∂C //
⊕

C3x k(C)×
∂x // Z.

Consider k(X) as the field of fractions of the UFD OX,x. Factoring f and g, we may

assume both are prime and are reduced to three cases:

((f, g), f , g relatively prime) Let C and D be the curves defined by f and g

respectively. Then ∂x ◦ ∂C(f, g) = ordx g
−1 |C and ∂x ◦ ∂D(f, g) = ordx f |D. So we

are reduced to showing ordx f |D = ordx g |C . However, both compute the length of

A/(f +g)A, so they are equal. This is essentially the easy (proper) case in the proof

of Fulton [9, Theorem 2.4].

((f, f), f arbitrary) Unlike the global case in [9, Theorem 2.4], here we have

a trivial statement. At one fixed point on a curve, the self intersection of the curve

with itself looks trivial. So if f describes the curve C near x, then ∂x ◦ ∂C(f, f) =

ordx(−f/f) = 0.

((f, u), u a unit) Then ∂x ◦ ∂C(f, u) = ordx(u
−1) = 0.
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Remark 6.2.5. The proofs given could probably be made more general for normal

surfaces; since X is smooth we give the shortest proof. Further, we are hopeful that

the proof as stated should extend in some way to codimension two cycles on an

arbitrary variety.

Remark 6.2.6. Budylin [3] cites Parshin reciprocity as the reason that ∂ : KM
2 (A012) −→

Z0(X) factors through the group of 2-coboundaries. However, this seems to be an

error, as Parshin reciprocity along curves requires the surface to be projective, a hy-

pothesis which is not stated in Theorem 1 loc. cit. In fact, Parshin reciprocity along

curves is not really required, as such coboundaries become rational equivalences.

Lemma 6.2.7. Let X/k be a surface. There exists a chain map

KM
2 (A0) //

��

KM
2 (A1) //

��

KM
2 (A2)

∂
��

K2(k(X)) //
⊕

C k(C)× //
⊕

x Z

from KM(A) to the second Gersten complex of X.

Expanding the groups KM
2 (A0), KM

2 (A1), KM
2 (A2), the chain map looks like

KM
2 (A0)⊕KM

2 (A1)⊕KM
2 (A2) //

��

KM
2 (A01)⊕KM

2 (A02)⊕KM
2 (A12) //

��

KM
2 (A012)

∂
��

K2(k(X)) //
⊕

C k(C)× //
⊕

x Z.

The map in degree 0 is

KM
2 (A0)⊕KM

2 (A1)⊕KM
2 (A2) −→ K2(k(X))

(a, b, c) 7→ a

since A0 = k(X) by definition and KM
2 (k(X)) = K2(k(X)).
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The map in degree 1 is

KM
2 (A01)⊕KM

2 (A02)⊕KM
2 (A12) −→

⊕
C

k(C)×

(a, b, c) 7→
∑
C

∂C(a).

This is well-defined by the adelic condition on A01.

The map in degree 2 is the map ∂ defined in Lemma 6.2.3.

By the previous lemmas, we have a chain map. Recall the boundary maps of

the Gersten complex are 1) the sum of all tame symbols K2(k(X)) −→ K1(k(C)),

and 2) the sum of all ord maps K1(k(C)) −→ K0(k(x)).

Theorem 6.2.8 (Budylin, [3]). Let X/k be a smooth surface, A = AX its rational

differential graded algebra, and KM(A) the associated Milnor K-ring. Then via the

chain map in Lemma 6.2.7,

H2(KM
2 (A)) ' CH2(X).

Finally, we show that the cup product describes the intersection pairing.

Proposition 6.2.9. Let s, t be cocycles in (A1)×. They define classes in H1(KM
1 (A1))

and in turn give Weil divisors C, D on X (Proposition 3.3.5). Their cup product

st defines an element of KM
2 (A2). Then

∂(st) = C.D

within CH2(X).

Proof. For the definition of the product on KM(A), refer to Proposition 6.1.4.
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It suffices to prove the proposition for effective prime divisors by linearity.

Proper intersection is a direct calculation as follows.

Recall that we write s = (s01, s02, s12) ∈ A×01 × A×02 × A×12 (and similarly for

t). The cup product st is the element of KM
2 (A012) whose coordinate at x,E is the

symbol ((s01)x,E, (t12)x,E) ∈ K2(k(X)) for all flags x ∈ E.

To say t02 ∈ A×02 means we have, for every point x, a local uniformizer tx ∈

k(X)× describing the divisor D; the coordinate (t02)x,E = tx is constant with respect

to the curve E. We have (t01)C ∈ O×X,C , call this element u. So for all x ∈ C,

(t12)x,C =
(t02)x,C
(t01)x,C

= txu
−1.

Since ordE(s01) = 0 for E 6= C and t12 is a unit along all curves, the only

terms contributing to ∂ come from C:

∂(st) =
∑
x∈C

∂x(∂C((s01)x,C , (t12)x,C).

Each term simplifies to ∂x((t12)x,C |C). Then

∂(st) =
∑
x∈C

∂x(u
−1tx |C).

The element
∑

x∈C ∂x(u |C) is a rational equivalence on X. The remaining sum∑
x∈C ∂x(tx |C) gives the local intersection multiplicities at the points x ∈ |C| ∩ |D|,

therefore its class in CH2(X) agrees with D.C.

Suppose we do not have proper intersection, and suppose C is irreducible

and effective. We want to show that ∂(s2) = C2 in CH2(X). The point is that

an adelic divisor contains a global description of C (see Remark 5.2.3). Define

f = (s01)C ∈ k(X)×. Then div f = C−E for some divisor E intersecting C properly.
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We did not choose f , rather it is part of the data of s; elements cohomologous to s

will have a different function f .

Then similar to the previous case, only terms from C will contribute. Now,

(s12)x,C =
(s02)x,C
(s01)x,C

but (s01)x,C is not a unit as before. We get

∂(ss) =
∑
x∈C

∂x ◦ ∂C((s01)x,C , (s02)x,C(s01)−1
x,C) =

∑
x∈C

∂x ◦ ∂C((s01)x,C , (s02)x,C)

since ∂x ◦ ∂C((s01)x,C , (s01)x,C) = 0. The remaining terms describe the proper inter-

section of E with C, and we reduce to the case from before.

Remark 6.2.10. One way to think about this cup product is to recall that for any

variety, A×01 captures the data of the Weil divisors, as it is a restricted direct product

over them. On the other hand, A×02 in a sense captures the data of the Cartier

divisors, as it a restricted direct product over points of codimension greater than

1. Then A×12 mediates between the two, and the cup product description therefore

resembles the process of intersecting a Cartier divisor with a subvariety, D.[D′] as

in Fulton [9, Chapter 2].

Finally, we can define a new graded ring by R0 = Z, Rn = Hn(KM
n (An)) for

n = 1, 2, and Rn = 0 for n > 2. In other words, we take diagonal elements of the

graded ring KM(A), and take cohomology to get a graded ring R = H•(KM(A)).

Theorem 6.2.11. Let X/k be a smooth surface. The map

H•(KM(A))
φ−→ CH•(X)

is an isomorphism of rings.
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Proof. This is a combination of Theorem 6.2.8, Proposition 6.2.9, and Proposition

3.3.5.

93



Appendix: Riemann–Roch for surfaces and the Hodge index theorem

We review the adelic proof of the Riemman–Roch theorem, and show how

the Hodge index theorem and Riemann hypothesis for curves follow. The results of

this section are classical, and follow Mattuck–Tate [18] and Grothendieck [12]. Our

proof of the Riemann–Roch theorem follows Fesenko [6], with an interpretation of

the intersection pairing as in the previous chapter.

1 Parshin’s adelic intersection pairing and Parshin reciprocity

We review Parshin’s intersection pairing on the adeles via the tame symbol.

The main source for this is Parshin [22].

In this section, X/k is a smooth projective surface, and A = ÂX are the

complete adeles of X.

We follow Parshin, but consider the intersection pairing as a cup product on

the cosimplicial K-ring (via the Alexander–Whitney product). The main difference

is that while Parshin’s pairing takes values in Z, we consider the Chern classes as

elements in H•(KM(A)).

Since we use the cup product, our definition differs slightly from Parshin’s.

Parshin defines the intersection number as (the symbol (·, ·)x,y is defined in Definition
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1.3) ∑
x,y

(t02, s01)x,y

with t02 ∈ A×02, s01 ∈ A×01. Thinking simplicially, we view these instead as Chern

classes represented by elements of (A1)×. In this case, the Alexander–Whitney

product pairs 01 with 12, and 02 is ignored. Our definition is, for t, s ∈ (A1)×,

ts = (t01, s12) ∈ KM
2 (A012).

To obtain the intersection number we therefore have

∑
x,y

(t01, s12)x,y.

Note that (t01, s12) and (t02, s01) are not equal as elements of KM
2 (A). However, by

Parshin reciprocity the above sums agree.

Definition 1.1. Let K be either a global field k(C) of a curve, or a local field Kx.

We denote by ∂x the valuation associated with a point x ∈ C.

Let K be either a global field k(X) or 2-local field Kx,y. We denote by ∂y the

tame symbol associated with a nonsingular curve y ⊂ X.

Both maps are the first two cases of residue maps in Milnor K-theory, that is,

∂x : K1(K) −→ K0(K) and ∂y : KM
2 (K) −→ K1(K) .

The composition is important, in the case of a complete, smooth Parshin flag

on a surface:

Definition 1.2. Let K be either a global field k(X) of a surface or a 2-local field

Kx,y. Both are the local factors corresponding to a complete, smooth Parshin flag

on a surface.
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We denote by (·, ·)x,y the composition

(f, g)x,y = ∂x ◦ ∂y(f, g)

which is a symbol (·, ·)x,y : K2(K) −→ K0(k(x)).

Definition 1.3. The symbol (·, ·)x,y = ∂x ◦ ∂y is defined, more generally, when y is

a singular curve on a surface. See [22].

Theorem 1.4 (Parshin reciprocity). Let X/k be a smooth projective surface, and

A its (rational or complete) adelic differential graded algebra.

1. If a, b ∈ A×01, then
∑

x,y(a, b)x,y = 0.

2. If a, b ∈ A×02, then
∑

x,y(a, b)x,y = 0.

Proof. The first follows, essentially, from Weil reciprocity for projective curves: for

a fixed y,
∑

x,y(a, b)x,y = 0. See [22] for the rest.

Note that we also have: if a, b ∈ A×12, then
∑

x,y(a, b)x,y = 0. In fact, (a, b)x,y =

0 for all x, y, as a and b have no poles along divisors, and therefore no residues. We

conclude,

Corollary 1.5. The residue map KM
2 (A) −→ K0(k) is trivial on coboundaries.

Proof. Recall KM
2 (A) as a complex is

KM
2 (A01)⊕KM

2 (A02)⊕KM
2 (A12)

d−→ KM
2 (A012).
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Definition 1.6 (Parshin’s intersection pairing). Let s, t ∈ (A1)× represent adelic

Cartier divisors. We define their intersection number by

[s, t] = −
∑
x,y

(s01, t12)x,y.

Equivalently, we can consider s, t as 1-cocycles in the differential graded ring KM(A).

Then their product st is a 2-cocycle, and an element of KM
2 (A). Applying the tame

map ∂ : KM
2 (A) −→ K0(k) gives the intersection number: [s, t] = ∂(st). In other

words, the intersection number fits into a diagram

K(A)⊗Z K(A)
cup−−→ K(A)

∂−→ K(k).

Remark 1.7. This definition differs from Parshin’s original definition [22, §2], but

both agree by Parshin reciprocity along curves (Theorem 1.4(1)):

−
∑
x,y

(s01, t12)x,y = −
∑
x,y

(s01, t02)x,y + (s01, t01)x,y

=
∑
x,y

(t02, s01)x,y.

Remark 1.8. Since t12 ∈ A12, it has no poles, and therefore the intersection pairing

simplifies drastically,

(s01, t12)y = (−1)0·ordy s01
s0

01,y

t
ordy s01

12,y

,

so for a smooth Parshin flag x ∈ y,

(s01, t12)x,y = ∂x((s01, t12)y) = ordy s01 · ∂x(t12,y) = ordy s01 · vx(t02,x/t01,y). (1)

Proposition 1.9. Let X/k be a smooth projective surface. Let C,D be Cartier

divisors, and s, t ∈ (A1)× their associated adelic Cartier divisors. Then the adelic
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intersection pairing agrees with the usual one. That is,

C.D = [s, t] = −
∑
x,y

(s01, t12)x,y.

This proposition is partially proved in [22]. The book [8] contains some details,

but was never completed.

Proof. We show that the pairing satisfies the properties of the usual intersection

pairing that defines it uniquely. Note that the sum is actually finite, by the adelic

property of A012.

(Linearity) Follows from linearity of the tame symbol.

(Symmetry) The main challenge is the symmetry of the pairing, which follows

from Parshin reciprocity (Prop. 1.4) and skew-symmetry of the tame symbol. Since

sxs
−1
y ∈ Kx,y has no poles, the first equality in:

0 =
∑
x∈y

(sys
−1
x , txt

−1
y )x,y

=
∑
x∈y

[
(sy, txt

−1
y )x,y − (sx, tx)x,y − (ty, sy)x,y − (ty, sxs

−1
y )x,y

]
= [s, t]− [t, s]

is immediate. The other two follow from (a) skew-symmetry and bilinearity of the

tame symbol, and (b) Parshin reciprocity, respectively.

Note that we have used all three properties of Parshin reciprocity. Only prop-

erty (1) in Theorem 1.4 requires the surface to be projective.

(Trivial on D ∼ 0) Suppose t is a trivial adelic Cartier divisor. In other words,

if we represent t as an element of (K×/A×)0, then it is in the image of the map
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(K×)0 −→ (K×/A×)0, i.e., t is represented by an element (f, f, f) with f ∈ A×0 .

Then the image of t under the boundary map (K×/A×)0 −→ (A1)× is (f, f, 1), thus

t12 = 1 and

(s, t12)x,y = (s, 1)x,y = 0

for all s ∈ A×012. Therefore [s, t] = 0 for all s.

(Normalization) Let C,D be two smooth curves intersecting properly in X.

By construction,

∂x(t02,x) =


1 x ∈ D

0 x 6∈ D.

Also, t01,C ∈ k(C)× and ordC s01,x = 1 if and only if x ∈ C. By (1),

−(s01, t12)x,C =


1 x ∈ C ∩D

0 otherwise

and the symbol is trivial for all y 6= C.

It follows that [s, t] computes the intersection pairing.

2 Riemann–Roch for surfaces

Theorem 2.1 ([6, Theorem §3]). Let X/k be a smooth projective surface; fix a Weil

differential d with associated canonical divisor K. Let A = ÂX be the complete

adeles. Then the pairing from d sets up isomorphisms

Homk,cts(H
i(A(D)), k) ' H2−i(A(K −D)) for 0 ≤ i ≤ 2.

Proof. This proof is due entirely to Fesenko [6, Theorem §3].
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We will do the case of the middle cohomology i = 1 as it is the most interesting,

for the rest see [6]. By following the argument that goes back to Tate’s thesis [24], one

can show that since A012 is the restricted direct product of self-dual additive groups

(Theorem 4.2.3), it follows that A012 itself is self-dual (further, this is a topological

self-duality). The pairing given by the Weil differential sets up the duality. It follows

that, for any closed subspace B ⊂ A012,

Homk,cts(B, k) ' A012/B
⊥.

From the lattice structure of A (Proposition 4.2.2), we have

H1(A(D)) ' (A01 ∩ (A12(D) + A02))/(A1(D) + A0)

therefore,

Homk,cts(H
1(A(D)), k) ' (A1(D)⊥ + A⊥0 )/(A⊥01 + (A12(D)⊥ ∩ A⊥02)).

Since X is projective, Parshin reciprocity is exactly the statements

A⊥01 = A01, and, A⊥02 = A02

while A⊥0 = A01 +A02 follows by an argument in [6, Theorem §2(5)]. By definition,

A12(D)⊥ = A12(K − D), while applying Proposition 4.2.2 together with standard

properties of ⊥ gives

A1(D)⊥ = A01 + A12(K −D).

Putting this all together, we get the group which is canonically isomorphic to

(A12(K −D) ∩ (A01 + A02))/(A1(K −D) + A2(K −D)) ' H1(A(K −D)).
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From this form of Serre duality, it follows that

Theorem 2.2 ([6, Theorem §4]). Let X/k be a smooth projective curve, and A its

complete adeles. We can either define the cohomological intersection pairing

[D,E] = χ(A)− χ(A(D))− χ(A(E)) + χ(A(D + E))

or the adelic intersection pairing

[D,E] =
∑
x∈y

(s01, t12)x,y.

Then both pairings agree with the usual intersection pairing, and in both cases, we

have

χ(A(D))− χ(A) =
1

2
[D,D −K].

Proof. The equality is a tautology using the cohomological definition, so one must

show that the cohomological pairing agrees with the usual intersection pairing. This

follows from Bertini’s theorem and a standard argument, see [6, Theorem §4(1–3)]

For the proof that the adelic intersection pairing agrees with the usual one,

see the previous section.

3 Hodge index and the Riemann Hypothesis for curves

Let C/Fq be a smooth projective curve of genus g. Following Grothendieck

[12], we will derive the Riemann hypothesis for C (Theorem 3.3) from a version of

the Hodge index theorem. As we do not, at this time, have an adelic definition to

replace ampleness, we satisfy ourselves with an ad hoc class of divisors.
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Definition 3.1. Call a divisor D simplicially effective if it is effective, and its

self-intersection divisor is effective. An equivalent condition is that

l(D) > 1

where l(D) is the dimension of the linear space {f ∈ k(X) | div f ≥ −D} associated

with D.

Any two such divisors D,E clearly satisfy, regardless of whether they intersect

properly,

[D,E] > 0

(in particular [D,D] > 0) and take the role of a very ample divisor H. Clearly every

very ample divisor is simplicially effective.

Theorem 3.2 (baby Hodge index). Let D,E be divisors, with E simplicially effec-

tive. If [D,E] = 0, then [D,D] ≤ 0.

Proof. This proof follows Grothendieck [12, Proposition 2.1] and the ensuing dis-

cussion.

Since dimkH
1(A(D)) ≥ 0, we have the Riemann–Roch inequality

l(D) + l(K −D) ≥ 1

2
[D,D −K] + χ(A).

Now assume D is any divisor such that [D,D] > 0. We obtain the asymptotic

statement

l(nD) + l(K − nD) = Ω(n2).

But [−D,−D] > 0 as well, so we obtain

l(−nD) + l(K + nD) = Ω(n2).
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Suppose that both l(nD) and l(−nD) remain bounded. Then l(K −nD) −→∞ and

l(K + nD) −→∞ as n −→∞. But then l(2K) = l(K − nD +K + nD) −→∞, which

is absurd.

It follows that limsupn l(nD) = ∞, possibly replacing D by −D. Now, let E

be a simplicially effective divisor, and let D be any divisor such that [D,E] = 0.

Suppose [D,D] > 0. Then l(nD) > 0 for n � 0 or n � 0. But then nD is

simplicially effective for such n, so

0 < [nD,E] = n[D,E] = 0.

This contradiction proves the theorem.

Finally we derive:

Theorem 3.3 (Riemann hypothesis for a curve). Let C/Fq be a smooth projective

curve. Then

|1 + q −#C(Fq)| ≤ 2g
√
q. (2)

Proof. We work with the base changed curve C = C ⊗Fq SpecFq and still call it

C. Consider the diagonal embedding of C in its product X = C × C. This is the

graph ∆ of the identity map, which has transverse intersection with the graph Γ of

the (purely inseparable) Frobenius morphism. Therefore this intersection number is

exactly ∆.Γ = #C(Fq).

Choose an origin (P, P ) ∈ X and let y = P × C and z = C × P be the

axes. Then E = y + z is simplicially effective (in fact ample). By the theorem,

103



〈·, ·〉 = −[·, ·] is positive definite on E⊥ ⊂ NumX ⊗ R, so by Cauchy–Schwarz,

|〈prE⊥ D, prE⊥ D
′〉| ≤

√
‖ prE⊥ D‖‖ prE⊥ D

′‖

for all divisors D,D′. Approximations ∆ ≈ y + z and Γ ≈ y + qz follow the

intuition that N = ∆.Γ ≈ 1 + q. Plugging in the error terms D = ∆− (y + z) and

D′ = Γ − (y + qz), using the adjunction formula to compute the self-intersections

[∆,∆] and [Γ,Γ], gives (2).
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[15] R. Hübl and A. Yekutieli, Adèles and differential forms, J. Reine Angew. Math.
471 (1996), 1–22.

[16] , Adelic Chern forms and applications, Amer. J. Math. 121 (1999),
no. 4, 797–839.

[17] A. Kresch, Canonical rational equivalence of intersections of divisors, Invent.
Math. 136 (1999), no. 3, 483–496.

[18] A. Mattuck and J. Tate, On the inequality of Castelnuovo-Severi, Abh. Math.
Sem. Univ. Hamburg 22 (1958), 295–299.

[19] Y. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a
local ring, and Milnor’s K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989),
no. 1, 121–146.

[20] D. Osipov, Adelic constructions for direct images of differentials and symbols,
Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., vol. 3,
Geom. Topol. Publ., Coventry, 2000, pp. 215–221.

[21] A. N. Parshin, On the arithmetic of two-dimensional schemes. I. Distributions
and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 4, 736–773, 949.
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