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Classic Estimating Equations (CEE) were first introduced by Godambe in [16] and

have been widely used under both parametric and nonparametric settings. However,

under some prominent semiparametric models, CEE cannot be used to identify

certain low-dimensional parameters. We prove that under regularity conditions, for

the Cox (1972) survival-time model, a CEE for the structural parameter does not

exist; and under more restrictive conditions, a CEE for the structural parameter in

the Accelerated Failure Time (AFT) model does not exist when lifetime is subject

to random right censoring with unknown distribution. Motivated by this lack of

coverage of CEE’s for finite-dimensional parameters in semiparametric problems, we

establish a method named Extended Estimating Equation (EEE). The EEE’s relax

the requirement in the CEE of which the estimating function must be a function

of the independently identically distributed (i.i.d.) summands and instead allow the

estimating function to incorporate ratio of the sums of functions depending on two

of the i.i.d. arguments.



To our knowledge, the broadest class of semiparametric models that can be inves-

tigated using EEE is the ϕ-transformation model class that we construct, where ϕ is

a given function of covariate, structural parameter and random error with unknown

hazard rate. With different choice of ϕ, the model can represent the general trans-

formation model, nonlinear location-shift model, models incorporating cumulative

integrated functions of times at risk and others. Inspired by Tsiatis’s work in [38], by

defining martingale structure on the residual scale, we are able to prove the asymp-

totic linearity of the associated EEE, which leads to the asymptotic normality of

the structural estimator.

Another perspective from which to view EEE is to use it as a constraint in the

Empirical Likelihood (EL) method. We first show that under the CEE setting,

regardless of the continuity of the criterion function, there exists a neighbourhood

of the true structural parameter on which there always exists a probability vector

that maximizes the EL. The same conclusion can be generalized to the EEE setting

with continuous criterion function as well as the discontinuous criterion function

with the martingale structure of the ϕ-transformation model or the Cox model.

A point estimator for the structural parameter can be defined via maximizing the

Profile Empirical Likelihood (pEL) associated with the EEE. We show that the pEL

estimator is asymptotically normal, with asymptotic variance covariance matrix

identical to that of the Z-estimator obtained by directly solving for the root of EEE.



Finally, we develop algorithms to compute and compare the Z-estimator and pEL

estimator associated with the EEE, and decide the minimal sample size for the

two estimators to achieve asymptotic normality under three different parametric

settings. Simulation shows a more symmetric covariate usually leads to a smaller

threshold sample size, and the Z-estimator and pEL estimator are close in value and

variance -covariance matrices. We also conclude that the pEL function tends to be

much smoother, in settings where the EEE criterion function is non-smooth, than

EEE itself, by comparing the plots of the projection of each function.
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Chapter 1: Introduction

The method of Classic Estimating Equations (CEE), first raised by Godambe

in [16], is a powerful tool for constructing estimators for the structural parameter in

a semiparametric model and has been extensively discussed in statistical literature.

Given a mean zero estimating function depending on data and structural parameter

alone, the CEE method defines an estimator as the root of the empirical integral of

the criterion function. Such an estimator is known as a Z-Estimator.

To give a formal definition of CEE, let us consider independently identically dis-

tributed (i.i.d.) observations

X1. . . . , Xn
i.i.d.∼ Pθ, θ = (β, ν) ∈ Rp ×H, (1.1)

where {Xi}ni=1 are d-dimensional random vectors with support X , β ∈ Rp is a

finite-dimensional structural parameter, ν is a nuisance parameter in an infinite-

dimensional space H such as a function space. Let β0 and ν0 respectively denote

the true structural and nuisance parameter value.
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1.1 Classic Estimating Equations

In our usage, CEE is a summation of mean zero functions of single independent

data elements and structural parameter only, called estimating equations.

Definition 1.1.1 (Classic Estimating Equation) Let X1. . . . , Xn be i.i.d. ob-

servations as in (1.1), and m(x, β) : X × Rd → Rd with

Eθ {m(X1, β)} = 0, for all θ = (β, ν), ν ∈ H (1.2)

where β is a generally a proper subvector of the whole unknown parameter θ. If there

exists a set Uβ0, a neighbourhood of β0 such that β̂n is a unique solution to

Sn(β) =
n∑
i=1

m(Xi, β) = 0, for β ∈ Uβ0 (1.3)

then (1.3) is called an estimating equation for β.

CEE provide consistent and asymptotically normal estimators under regularity

conditions including

Eθ0 {∇βm(X1, β)} is non singular for β ∈ Uβ0 , (1.4)

where Uβ0 ⊂ Rp is a neighbourhood of β0. Such conditions can be found in various

statistical literature, such as Theorem 5.7 and Theorem 5.23 in [41].

A well known example of estimator that is constructed by means of estimating

equation is the Maximum Likelihood Estimator (MLE) when ν is not present. Con-

sider a simple parametric case in which the parameter is θ = β. Then the MLE
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maximizes
n∏
i=1

f(x; θ), or equivalently,
n∑
i=1

ln f(Xi; θ), where f(x; θ) is the density

function of X1 with respect to the Lebesgue measure. If f(x, θ) is differentiable

with respect to θ for each fixed value x, then the MLE is a solution to

n∑
i=1

l(θ;Xi) = 0, where l(θ;x) = ∂ ln f(x; θ)/∂θ (1.5)

Note that under regularity conditions such as those summarized in Section 3.2 of [42],

then l(θ;x) has mean zero. Under further regularity conditions guaranteeing the

other parts of Definition 1.1.1, (1.5) is a classic estimating equation with the choice

of m(x, θ) = l(θ;x).

The CEE is also related to the Empirical Likelihood (EL) method as shown by

Owen in [31]. Using the criterion function associated with CEE as a constraint,

under a non-parametric setting, Owen established the EL ratio confidence intervals

for a single functional in [32]. Both the Z-estimator and Owen’s theory in [32]

require the dimension of the CEE to be equal to that of the structural parameter.

By allowing the former to exceed the latter, Qin and Lawless generalized Owen’s

conclusion in [33]. Qin and Lawless also constructed a point estimator for the

structural parameter by maximizing the EL, and showed that such an estimator

is asymptotically normal with a sandwich-formed asymptotic variance covariance

matrix.

Despite the positive features of CEE, it has limitations in some prominent semi-

parametric models in survival analysis, such as the Cox model (restircted to the

non-time-dependent version in this thesis) and Accelerated Lifetime Model (AFT).
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Cox model, or proportional hazard rate model was proposed by Cox in [11]. It

assumes that the conditional hazard rate function given covariates is proportional

(as a function of time) to the nuisance or “baseline” hazard function, by a factor

depending on a linear combination of the covariates. Cox proposed to estimate

the structural regression-coefficient parameter via maximizing the partial likelihood

in [12], and Anderson and Gill developed the essential martingale-based large-sample

distributional properties in [2]. Efron discussed the effciency of the partial liekli-

hood estimator of the Cox model in [14]. In Section 5.2 of [39], Tsiatis showed the

structural estimator constructed via maximizing the partial likelihood is globally

semiparametric efficient. However, the equation system associated with the partial

likelihood does not fit the definition of CEE due to the appearance of the quotient

of higher order summations.

When the Cox model does not fit a possibly right-censored sample of survival data,

an important alternative model is AFT. AFT can be considered as a special case

of a General Transformation Model (GTM). The latter assumes that the lifetime

transformed via a known monotone function depends linearly on the covariate with

unknown regression coefficient plus an independent random error with unknown

hazard rate function. When the monotone transforming function is chosen to be

natural logarithm, then the GTM becomes AFT. An equivalent construction of

AFT is to assume that the lifetime is conditionally given the covariates proportional

by a factor equal to an exponential function of a linear combination of the covariates

to some unknown baseline lifetime that is independent of the covariates. AFT has
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been extensively investigated by Miller [30], Buckley and James [8], Koul et al. [25],

Louis [28], Wei and Gail [44], James and Smith [22], Ritov and Wellner in [35], Lai

and Ying in [26], Wei et al in [45], and Ritov in [34]. Tsiatis proposed a class of

linear rank statistic estimators by constructing a martingale on the residual scale

in [38]. He also showed that the “estimating equation” through which the structural

parameter is defined is asymptotically linear, and he established the asymptotic

normality of the structural estimator using the asymptotic linearity and martingale

central limit theorem. In [34], Ritov showed that the linear rank statistic estimator

is efficient. However, like the equation related to partial likelihood for Cox model,

the “estimating equation” in [38] for AFT also involves a quotient of higher order

summations and again does not fit the definition of CEE.

As shown by Cox and Tsiatis in [13] and [38], the structural estimators constructed

under Cox and AFT model assumptions are usually related solving equations that

are summations of non i.i.d. distributed summands, and the non-i.i.d violates the

usual assumption on CEE. In fact, we prove that under regularity conditions, a

CEE does not exist for Cox model. For the AFT, under more restrictive regularity

conditions and with right censored data, the CEE does not exist, either.

1.2 Extended Estimating Equations

In order to extend the regime of CEE to cover right censored semiparametric

models, we define the class of Extended Estimating Equations (EEE) by allowing

the estimating function to depend not only on single observations but on quotients
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of averages with respect to one index of functions of the structural parameter and two

observations from the sample. Recall that for Cox model and Accelerated Lifetime

Model (AFT), the estimators for β are usually constructed by solving

AFT Model:
n∑
i=1

∆i

{
Zi −

∑n
j=1 ZjI {ln(Vj)− βtrZj ≥ ln(Vi)− βtrZi}∑n
j=1 I {ln(Vj)− βtrZj ≥ ln(Vi)− βtrZi}

}
(1.6)

Cox Model:
n∑
i=1

∆i

{
Zi −

∑n
j=1 ZjI {Vj ≥ Vi} eβ

trZj∑n
j=1 I {Vj ≥ Vi} eβtrZj

}
, (1.7)

where notations of in (1.6) - (1.7) are defined on page v. Evidently, (1.6) and (1.7)

do not satisfy the definition of classic estimating equations, because of the quotient

of two i.i.d. summations within the curly brackets. Inspired by the formulation of

the summands in (1.6) and (1.7), let

mn(Xi,XXX, β) = Q(Xi, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}
. (1.8)

For both the AFT and Cox models, Xi = (Ti, Ci, Zi,∆i), and we can choose

Q(Xi, β) = ∆i = I {Ti ≤ Ci} , C(Xi) = Zi

and

for AFT Model: k(Xi, Xj, β) = I
{

ln(Vj)− βtrZj ≥ ln(Vi)− βtrZi
}

for Cox Model: k(Xi, Xj, β) = I {Vj ≥ Vi} eβ
trZj

Then an extended estimating equation is defined in the following way,

Definition 1.2.1 (Extended Estimating Equations) Let X1, . . . , Xn be random

vectors as in (1.1). Let Q(x, β) : Rd×Rp 7→ R, k(x, y, β) : Rd×Rd×Rp 7→ R+ and

C(x) : Rd 7→ Rp be measurable functions. Assume that

Eβ,ν {mn(X1,XXX, β)} = 0, for all θ = (β, ν), ν ∈ H. (1.9)
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where β is generally a proper subvector of the whole unknown parameter θ. If there

exists a unique solution β̂n to

Sn(β) =
n∑
i=1

mn(Xi,XXX, β) = 0, β ∈ Uβ0 (1.10)

then (1.10) is the extended estimating equation.

In Definition 1.2.1, it is required that the estimating function mn(X1,XXX, β0) has

mean zero, which is the same assumption as in the classic estimating equation. For

the specific example of Cox model and AFT, this assumption will be verified through

a martingale property. We will discuss this in detail in Chapter 3. In order to ensure

the existence of β̂n and its consistency and asymptotic normality, more assumptions

need to be made. For example, the quotient term in (1.8) cannot explode to infinity,

as n goes to infinity, and in order to have asymptotic normality, there should exist a

neighbourhood of the β0 such that for all β in this neighbourhood, ∂mn(Xi,XXX, β)/∂β

cannot be singular. We include these series of assumptions in Chapter 4.

In this thesis, we will also be applying CEE’s and EEE’s in an EL estimation

framework. Rather than constructing the EL confidence regions, in this thesis, EL

is primarily an approach to computing estimators although it could readily be further

developed for its more common use in determining confidence regions. We will give

self-contained definitions and proofs of EL constructions in Chapter 4 and 5 using

empirical process theory. In Chapter 6, we discuss the asymptotic normality of the

two estimators associated with the EEE, namely, the one given by directly solving

the EEE, and the one by maximizing the EL, which share the identical sandwich

7



formed variance covariance matrices under regularity conditions.

One thing that we would like to point out is that the definition of EEE is differ-

ent from the term “martingale estimating equation” in literature like [4] by Bibby

et al, [29] by Merkouris, or [20] by Hwang et al, whose primary interest were to

construct an estimating function that estimate structural and nuisance parameters

simultaneously.

To modify the CEE estimator and confidence regions defined through the EL

method to become applicable to right censored semiparametric models, Hjort, Mck-

eague and van Keilegom proposed a “plug-in” method in [19], i.e., using the empirical

estimator of the nuisance parameter. They also showed the slower than
√
n -rate of

convergence, and settings with large numbers of estimating equations compared to

the sample size. In [46] and [48], Zhou extended the Wilks type confidence region

in [32] for right censored data by replacing the unknown survival function of right

censoring variable with the Kaplan-Meier estimator. However, after replacing the

unknown nuisance parameter with its empirical estimator, the estimating functions

no longer satisfy the definition of CEE.

We develop a broader class of semiparametric models for which EEE definition

holds, i.e., the ϕ-Transformation Models with right censored data. These models

can be considered as generalizations of the GTM in the sense of characterizing the

relation between the dependent variable and covariates by a known function ϕ,

where ϕ depend on the covariates, structural parameter and error with unknown
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hazard rate, and ϕ is monotone with respect to the error term. With different

choices of ϕ, the ϕ-transformation models include a series of semiparametric models,

including the AFT, the linear model in [34] and [38], and a nonlinear regression

model in [39] that allows location and shape to change based according to covariates.

The transformation function ϕ can also have a non-analytical form. For example, it

can be defined as an integral of a given wear-out rate function of structural parameter

and covariate. Such models can be found in [10] and [3]. Following Tsiatis’s work

in [38], by constructing a martingale structure on the residual, we show that for the

ϕ-transformation model, the estimating equation that defines an estimator of the

structural parameter alone satisfies the definition of EEE. We also prove the EEE

associated with the ϕ-transformation model is asymptotically linear, which together

with the martingale Central Limit Theorem (CLT) implies the asymptotic normality

of the structural estimator.

Similar to CEE, we can also use EEE as a constraint in the EL method, then

construct a structural estimator via maximizing the pEL. Under the CEE setting,

an element in Owen’s, or Qin and Lawless’s work in [32] and [33] is specifying a

neighbourhood of the structural parameter, in which there exists a unique proba-

bility vector that maximizes the EL with probability approaching 1. Therefore we

begin, in Chapter 5, by constructing such a neighbourhood for continuous estimating

functions under CEE setting, and then generalize the conclusion to discontinuous

estimating functions. Finally, we show that for EEE, when the estimating function

is continuous with respect to the structural parameter, then the local uniqueness

9



of solutions to EL maximization is also guaranteed with probability approaching

1; when the criterion functions is discontinuous, with the martingale structure as

described in the ϕ-Transformation model or the Cox model, then the same conclu-

sion can be drawn. Note that the martingale assumption is satisfied by all the EEE

examples that we know up to know, including the ϕ-transformation model and the

Cox model.

After proving lemmas that are parallel to Owen, and Qin and Lawless in [32]

and [33] using empirical process theory and some classic examples of Donsker class

and Glivenko-Cantelli Class listed in [41], we are able to establish the asymptotic

normality of the structural point estimator, of which the asymptotic variance co-

variance matrix is identical to the sandwich-formed asymptotic variance covariance

matrix of the corresponding Z-estimator.

Finally, we validate the EEE theory by simulation under the AFT model assump-

tion with R (3.4.1). Since the criterion function corresponding to the EEE of AFT

is discontinuous due to the appearance of the indicator function, the EEE may not

have a root. Therefore instead, we define the Z-estimator as the value minimizes

the Euclidean norm of the EEE. To calculate the maximum empirical likelihood

estimator, we first construct the Lagrange multiplier in the maximization problem

as a function of structural parameter, then calculate the structural parameter by

maximizing the pEL.

10



Despite the lack of continuity of EEE under AFT model assumption, we proved

that a unique solution of the EL maximization always exists with probability ap-

proaching 1. The intuition is that the pEL function, or equivalently, the summation

of the negative logarithm of the pEL appears very smooth for large n. We show

this conjecture by plotting the projection of the pEL in randomly generated unit

directions. From the pictures, we can see that for a “moderate” sample size depend-

ing on the censoring rate and the skewness of covariates, the plots are always very

smooth and almost parabolic around the location of the maximum pEL estimator.

On the other hand, plots of the projections of the EEE have many jumps even

around the true structural parameter value. We also develop a quantitative way to

compare the continuity pattern of around the pEL estimator and around the true

structural parameter, and we found the pEL acquires a very similar pattern to the

true parameter value.

From simulation, we can also see that for a moderate sample size, the EEE esti-

mator and pEL estimator are very close measured by the L1 distance between the

two. The differences between their variance covariance matrices is also very small,

evidenced by small magnitude of eigenvalues. Heuristically, this is because the La-

grange multiplier associated with pEL has a very small magnitude, which makes the

constraint function for pEL “almost the same” as the EEE.

Finally, we check the asymptotic normality of the pEL estimator under three

different parametric settings with right censored data, including the non-normally

11



distributed, the normally distributed and the severely skewed distributed covariates.

We found it takes a larger sample size for pEL estimator to reach normality if the

corresponding covariates is not normally distributed, and the sample size needs to

be even larger as the skewness of the covariate grows.
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Chapter 2: Non-Existence of Classic Estimating Equations

Cox model and Accelerated Failure Time (AFT) model are two semiparametric

models that have been extensively used in survival analysis, especially when data

may be subject to various types of censoring. Usual ways of constructing estima-

tors for the structural parameters for Cox and AFT involve solving equations as

mentioned in [13], [38], and [41]. However, as far as we see from the literature, the

equations through which an estimator for the structural parameter is constructed

do not satisfy the definition of Classic Estimating Equations (CEE). Therefore a

natural question is whether a CEE method exist for these semiparametric models.

Despite many advantages of the CEE we discussed on page 1, under some cir-

cumstances CEE for a subvector β of parameters may not exist. In this chapter,

we prove the nonexistence of the classic EE under the Cox model and randomly

right-censored AFT.

More specifically, let us consider a statistical model {Pθ, θ ∈ Θ}, where θ = (β, λ)

consists of a structural parameter β ∈ Rp and a nuisance parameter λ ∈ H with

infinite dimension, where

H ≡
{
λ(t) : λ(t) > 0 a.e. in t,

∫ ∞
0

λ(t)dt =∞
}
. (2.1)
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Let β0 and λ0 denote the true parameter. The question this chapter aims to answer

in some special cases is whether there exists a CEE that depends only on data

and the structural parameter, i.e., we would like to know if there exists a function

m(X, β) : R× Rp → Rp, such that for any λ0 and β0

Eβ0,λ0 {m(X, β0)} = 0, (2.2)

and

∇βEβ0,λ0 {m(X, β)} = Eβ0,λ0 {∇βm(X, β)} is nonsingular for β ∈ Uβ0 , (2.3)

under assumptions that the passage of ∇β inside E {·} is allowed, where Uβ0 is a

bounded domain in Rp that contains a neighbourhood of β0. We show that an

estimating function m(X, β) satisfying (2.2) and (2.3) and the following regularity

conditions does not exist for Cox model in Section 2.1, and for censored AFT in

Section 2.2.

Assumptions

(A.1) Z is supported on a bounded set Z ⊂ Rp.

(A.2) ∇β

∫
m(t, z, β)p(z)dz =

∫
∇βm(t, z, β)p(z)dz, for all β ∈ Uβ0 and t ∈ R+.

(A.3) For all h ∈ H and sufficiently small ε,∫∫
m(t, z, β)eβ

trzh(t)e−e
βtrz(1−ε)H(t)p(z)dzdt <∞. (2.4)

(A.4) P {T < C} > δ > 0.

(A.5) Eβ,λ {‖m(T, Z, β)‖} <∞, for any β ∈ Uβ0 and λ ∈ H.
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Remark 2.0.1 Given assumption (A.5), assumption (A.3) is satisfied for all h ∈

H. This is because for any h ∈ H and ε ∈ (0, 1), since 1− ε > 0,
∫

(1− ε)h(t)dt =

(1− ε)
∫
h(t)dt =∞, therefore hε(t) = (1− ε)h(t) ∈ H. Then

Eβ,hε‖m(T, Z, β)‖ =

∫∫
‖m(t, z, β)‖eβtrzhε(t)e−e

βtrzHε(t)p(z)dzdt

= (1− ε)
∫∫

m(t, z, β)eβ
trzh(t)e−e

βtrz(1−ε)H(t)p(z)dzdt

(2.5)

Under assumption (A.5), the left hand side of (2.5) is bounded, therefore so is the

right hand side, which is what (A.3) states.

2.1 Non-Existence of Classic Estimating Equations of Cox Model

As proposed in [11], the Cox model assumes that the conditional hazard rate of

lifetime T given covariate Z is proportional to an unknown baseline hazard rate

function λ(t), i.e.,

λT |Z(t|z) = eβ
trzλ(t), (2.6)

where β ∈ Rp is the regression coefficient to be estimated, and Z is the covariate

with density function pZ(z). The Cox model (2.6) is semiparametric, with parameter

θ = (β, λ) ∈ Θ = Uβ0 ×H, (2.7)

where Uβ0 is an open and bounded subset of Rp that contains the true parameter

value β0, and H is defined in (2.1).

Different from the Kaplan-Meier estimator that primarily constructs an estimator

for the nuisance parameter, with the incorporation of the regression-like argument

eβ
trz, the Cox model (2.6) gives a way of estimating the structural parameter under a
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semiparametric assumption. Cox introduced the notion of partial likelihood in [12],

and β̂n, the maximum partial likelihood estimator for β0, is defined as the solution

to
n∑
i=1

∆i

{
Zi −

∑n
j=1 Zje

βtrZjI {Vj ≥ Vi}∑n
j=1 e

βtrZjI {Vj ≥ Vi}

}
= 0 (2.8)

Andersen and Gill derived the large-sample theoretical properties of β̂n in [2]. It can

be shown that β̂n constructed via solving equation (2.8) is a semiparametric efficient

estimator. Details of semiparametric efficiency can be found in [39]. However,

equation (2.8) does not satisfy the definition of classic EE because the summands

are not independently identically distributed (i.i.d.). In fact, in this section, we will

show that under regularity conditions, a CEE does not exist for the Cox model.

Under the Cox model assumption, the survival function of T given Z is

ST |Z(t) = exp

{
−eβtrz

∫ t

0

λ(s)ds

}
,

and the density function of T is

f(t) =

∫
eβ

trze−e
βtrzΛ(t)λ(t)pZ(z)dz, (2.9)

where Λ(t) =
∫ t

0
λ(s)ds for t ≥ 0. We would like to see whether a function

m(t, z, β) : R+ ×Z × Uβ0 → Rp

of lifetime, covariate and structural parameter alone can exist, which satisfies for all

θ ∈ Θ and all λ ∈ H,

Eβ,λ {m(T, Z, β)} =

∫∫
m(t, z, β)eβ

trz−eβtrzΛ(t)λ(t)pZ(z)dzdt ≡ 0. (2.10)
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By the dominated convergence theorem applied to difference quotients with re-

spect to ε, for each h ∈ H, with g ranging freely over functions bounded by 1, we

have the following theorem

Theorem 2.1.1 For the Cox model given in (2.6), there does not exist a function

m(t, z, β) of data X = (T, Z) supported on R+×Z and structural parameter β ∈ Uβ0

alone, which at the same time satisfies assumptions (A.1)-(A.5) and equations (2.2)

and (2.3).

The proof of this theorem can be found in Section 2.3. In the next section, we

discuss the non-existence of CEE for the AFT model.

2.2 Non-Existence of Classic Estimating Equations of Censored AFT

AFT assumes that conditionally given covariate Z, the lifetime T is proportional

to some baseline lifetime T0, i.e.,

T = e−β
trzT0, (2.11)

where T0 is a lifetime with unknown hazard rate function λ(t), β ∈ RP is the

regression coefficient to be estimated, and Z is the covariate with density function

pZ(z). Assume that Z is supported on a bounded subset Z ∈ Rp, hence (2.11) forms

a semiparametric model with parameter

θ = (β, λ) ∈ Θ = Uβ0 ×H, (2.12)
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where Uβ0 is an open and bounded subset of Rp that contains the true parameter

value β0, and

H ≡
{
λ(t) : λ(t) ≥ 0 for all t,

∫ ∞
0

λ(t)dt =∞
}

(2.13)

is an infinite dimensional space. The survival function of T given Z is given by

ST |Z(t) = exp
{
−Λ(teβ

trz)
}

and the density function of T is given by

f(t) =

∫
eβ

trz−Λ(teβ
trz)λ(teβ

trz)pZ(z)dz (2.14)

There are two different constructions of the regression parameter β depending on

whether β has an intercept term.

Case 1 β does not have an intercept term. In this case, λ is unrestricted. We do

not know any existing CEE based on β and data alone. There probably is no such

estimating equation even though we have not proved this.

Case 2 β has an intercept term. Without loss of generality, assume that the

expected value of T0 is 1, that is

E {T0} = E

{
eβ

trZT

∣∣∣∣ Z} =

∫
tλ(t)e−Λ(t)dt ≡ 1 (2.15)

Therefore for any p(z)dz integrable functions a(z) : Rp → Rp and b(z) : Rp → Rp

such that E {a(Z)} = E {b(Z)} 6= 0,

m(T, Z, β) = Teβ
trZa(Z)− b(Z) (2.16)
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has mean zero and is an estimating function if there exists Uβ0 such that∇βm(T, Z, β)

is nonsingular for all β ∈ Uβ0 . For example, a(z) can be a linear function of Z, i.e.,

a(z) = Az, where A = E {b(Z)} · E
{
Teβ

trZZ
}−1

is a p× p matrix.

The discussion in previous paragraphs shows we have different conclusions for the

non-existence of CEE when lifetime T is always observable. Next, we introduce

the concept of censoring, which is a commonly seen situation in practice. When

lifetimes are subject to right censoring, instead of observing T and Z, we observe

X = (V,∆, Z), where V = min(T,C), ∆ = I {T ≤ C} (2.17)

and C is the right censoring variable with hazard function ΛC and hazard rate λC .

Koul, Susarla and Van Ryzin proposed a classic estimating equation for β in [25]

under the assumptions

(K1): C is independent of (T, Z);

(K2): The survival function of C is known and is denoted by SC(c)

Actually, assumption (K2) is seldom reasonable as a modeling assumption, unless

function SC is estimated from another source or censoring is purely “administrative”,

i.e., occurs when the study observation period ends and the pattern of times of entry

into the survival study does not depend on covariates or survival-time. When the

distribution function of C is unknown, Koul, Susarla and Van Ryzin proposed to

use the Kaplan-Meier estimator instead.
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However, the estimating function used to construct the estimator for the structural

parameter is does not satisfy the definition of CEE due to the presence of the

Kaplan-Meier estimator, because the summands in it are no longer independent.

Similarly, neither the general “plug-in” method discussed by Hjort, Mckeague and

van Keilegom in [19], or the method proposed by Zhou in Chapter7 of [48] uses

estimating functions that satisfies the definition of CEE defined in Chapter 1. In

fact, in this section, we show that under regularity conditions, if the expectation of

the estimating function is identical to zero when lifetime is arbitrarily right censored,

for al possible model parameters, then a CEE does not exist.

Let C be the right censoring variable that is independent of the (T, Z), and let

m(t, z, β) =


m1(t, z, β) when ∆ = 1;

m0(t, z, β) when ∆ = 0,

(2.18)

We show that when m0(t, z, β) ≡ 0 for all t ∈ R+, z ∈ Z and β ∈ Uβ0 , then a non-

trivial CEE does not exist. Note that under most right-censoring CEE formulations,

the equations through which an estimator for the structural parameter is defined

are usually in the form of
n∑
i=1

mn(Xi,XXX, β), where Xi = (Vi, Zi,∆i) and

mn(Xi,XXX, β) = ∆i ·m∗n(Xi,XXX, β), (2.19)

and the assumption m0(t, z, β) ≡ 0 for all t ∈ R+, z ∈ Z is satisfied by (2.19).
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Estimating function m(T, Z, β) must be mean zero, which implies for all hazard

functions ΛC(c) =
∫ c

0
λC(s) ds ∈ H, λ ∈ H and β ∈ Uβ0 .

0 ≡
∫∫∫ c

0

m1(t, z, β)eβ
trz−Λ(teβ

trz)−ΛC(c)λC(c)λ(teβ
trz)p(z) dt dz dc

+

∫∫∫ t

0

m0(t, z, β)eβ
trz−Λ(teβ

trz)−ΛC(c)λC(c)λ(teβ
trz)p(z) dc dz dt

=

∫∫
m1(t, z, β)λ(teβ

trz)eβ
trz−Λ(teβ

trz)−ΛC(t)p(z) dt dz

+

∫∫
m0(c, z, β)λC(c)e−Λ(ceβ

trz)−ΛC(c)p(z) dc dz,

(2.20)

Now, let us present the main theorem of this section

Theorem 2.2.1 Under assumptions (A.1), (A.2), (A.4), and (A.5), for AFT given

in (2.11) with arbitrarily right censored data (2.17),

(a) A CEE does not exist when assuming

m0(c, z, β) ≡ 0 for all c ∈ R+, z ∈ Z and β ∈ Uβ0 . (2.21)

(b) A CEE does not exist when assuming

m1(c, z, β) ≡ 0 for all c ∈ R+, z ∈ Z and β ∈ Uβ0 . (2.22)

The conclusion described in (a) is the main result we would like to present. It can

be shown by proving

βtr0 E
{
∇βm

1(T, Z, β0)
}

= 0,

which violates the non-singularity assumption of the gradient described in (2.3).
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2.3 Some Proofs

In this section, for simplicity, the ranges of integrations for u and t are equal to

(0,∞) unless otherwise specified. Lemma 2.3.1 gives an important identity that

will be used to derive the non-existence of CEE under Cox model assumption, and

Lemma 2.3.2 shows how the non-existence conclusion can be drawn without impos-

ing smoothness assumptions on mn(·, z, β).

Lemma 2.3.1 Under assumption (A.1) - (A.6), for a.e. t ∈ R+ and all β ∈ Uβ0,∫
m(t, z, β)eβ

trz−eβtrzH(t)p(z)dz =

∫ ∞
t

[∫
m(u, z, β)e2βtrz−eβtrzH(u)h(u)p(z)dz

]
du

(2.23)

Proof To start with, let us consider the following construction of hazard function.

Let h(t) ∈ H be a candidate baseline hazard function, and

H(t) =

∫ t

0

h(s)ds.

Suppose that the baseline hazard rate in (2.6) is of the form

λ(t) = h(t)eεg(t),

where ε is a positive constant, and g(t) ∈ G is a continuous and bounded function,

i.e.,

G ≡
{
g(t) : g(t) is continuous, and |g(t)| ≤Mg <∞ for all t ∈ R+

}
(2.24)

The boundedness assumption on g guarantees that λ(t) integrates to ∞ and conse-

quently is a hazard rate function. This is because if |g(t)| ≤M , for all t ∈ R+, then
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for any ε > 0, g(t)ε ≥ −εM , therefore for any t ∈ R+ and h ∈ H,∫ t

0

h(x)eεg(x)dx ≥ e−εM
∫ t

0

h(x)dx

Since
∫∞

0
h(t)dt =∞, we know that

∫∞
0
h(t)eεg(t)dt =∞.

Let us consider

λ(t) = h(t)eεg(t), where g ∈ G. (2.25)

By (2.10), for all θ ∈ Θ and g ∈ G,

Eθ {m(T, Z, β)} =

∫∫
m(t, z, β)eβ

trz−eβtrz
∫ t
0 h(s)eεg(s)dsh(t)eεg(t)p(z)dtdz ≡ 0, (2.26)

Consider the double integral in (2.26) as a function of ε, then for any fixed h ∈ H,

g ∈ G , β ∈ Θ and ε ≥ 0,

r(ε, g, h) =

∫∫
m(t, z, β)eβ

trz−eβtrz
∫ t
0 h(s)eεg(s)dsh(t)eεg(t)p(z)dtdz = 0. (2.27)

For fixed g ∈ G and h ∈ H, r(ε, g, h) = 0, for any ε ≥ 0. Therefore ∇1r(0, g, h) =

0. By (2.26)-(2.27) applied with ε > 0 and ε = 0,

∇1r(0, g, h) = lim
ε→0

∫∫
m(t, z, β)eβ

trzh(t)p(z)

× 1

ε

{
e−e

βtrz
∫ t
0 h(s)eεg(s)dseεg(t) − e−eβ

trzH(t)
}
dtdz = 0

(2.28)

To apply the Dominated Convergence Theorem and pass the limit into the double

integral of (2.28), we first re-write the difference quotient in the second line as

e−e
βtrzH(t)

{
1

ε

{
e−e

βtrz
∫ t
0 h(s)(eεg(s)−1)ds+εg(t) − eεg(t)

}
+

1

ε

{
eεg(t) − 1

}}
(2.29)

Note that for any fixed g and t ∈ R+, (eεg(t)− 1)/ε = O(g(t)) is uniformly bounded.

As for the first term in (2.29), it is equal to

eεg(t)

ε

{
e−e

βtrzε
∫ t
0 h(s) 1

ε
(eεg(s)−1)ds − 1

}
=
eεg(t)

ε

{
e−e

βtrzε
∫ t
0 h(s)(g(s)+o(1))ds − 1

}
(2.30)
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Since g(·) is bounded, denote
∫ t

0
h(s)(g(s)+o(1))ds = θ(t)H(t), where |θ(t)| ≤M0 ∈

R+ for all t ∈ R+. Therefore the integrand in (2.28) is bounded by

‖m(t, z, β)‖h(t)eβ
trz−eβtrzH(t){1+εθ(t)}p(z),

and under assumption (A.3),
∫∫

m(t, z, β)h(t)eβ
trz−eβtrzH(t){1+εθ(t)}p(z)dzdt < ∞.

Therefore by the Dominated Convergence Theorem, the limit in equation (2.28) can

be passed into the integral in (2.28). Hence∫∫
∂

∂ε

{
m(t, z, β)eβ

trzh(t)p(z)e−e
βtrz

∫ t
0 h(s)eεg(s)dseεg(t)

} ∣∣∣∣
ε=0

dtdz = 0, (2.31)

for all θ ∈ Θ and g ∈ G, which implis that

∫∫
m(t, z, β)eβ

trz−eβtrzH(t)h(t)p(z)

{
g(t)− eβtrz

∫ t

0

h(s)g(s)ds

}
dtdz ≡ 0, (2.32)

for all θ ∈ Θ and g ∈ G.

We can re-write (2.32) by the Fubini Theorem and get for all θ ∈ Θ and g ∈ G

0 ≡
∫
g(t)h(t)

{∫
m(t, z, β)eβ

trz−eβtrzH(t)p(z)dz

−
∫ ∞
t

∫
m(u, z, β)e2βtr−eβtrzH(u)h(u)p(z)dzdu

}
dt

(2.33)

Equation (2.33) implies that for a.e. t ∈ R+ and all β ∈ Uβ0 ,∫
m(t, z, β)eβ

trz−eβtrzH(t)p(z)dz =

∫ ∞
t

[∫
m(u, z, β)e2βtrz−eβtrzH(u)h(u)p(z)dz

]
du,

(2.34)

which is the assertion of the Lemma. �

Lemma 2.3.2 Under assumptions (A.1) - (A.5),

∇t

∫
m(t, z, β)eβ

trz−eβtrzsp(z)dz ≡ 0, for all s, t ∈ R+ and β ∈ Uβ0 . (2.35)
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Proof For fixed β ∈ Uβ0 and h ∈ H, denote

f(t) =

∫
m(t, z, β)eβ

trz−eβtrzH(t)p(z)dz.

Then by (2.34) f(t) is differentiable for all t ∈ R+ and h ∈ H. Differentiating both

sides of (2.34), for all β ∈ Uβ0 and h ∈ H,

f ′(t) = −
∫
m(t, z, β)e2βtrz−eβtrzH(t)h(t)p(z)dz (2.36)

By the definition of the left hand side of (2.36)

f ′(t) = lim
δ→0

1

δ

{∫
m(t+ δ, z, β)eβ

trz−eβtrzH(t+δ) p(z) dz

−
∫
m(t, z, β)eβ

trz−eβtrzH(t) p(z) dz

} (2.37)

Rewrite the difference quotient in (2.37) as

1

δ

∫
m(t, z, β)

{
eβ

trz−eβtrzH(t+δ) − eβtrz−eβ
trzH(t)

}
p(z) dz

+
1

δ

∫
eβ

trz−eβtrzH(t+δ) {m(t+ δ, z, β)−m(t, z, β)} p(z) dz

(2.38)

Next, we discuss the two lines in (2.38). The uniform boundedness of h leads to

supt |H(t+δ)−H(t)| ≤Mε <∞ for |δ| < ε <∞. So by the Dominated Convergence

Theorem, the first term of (2.38) converges to∫
m(t, z, β)∇t

{
eβ

trz−eβtrzH(t)
}
p(z) dz

=−
∫
m(t, z, β)e2βtrz−eβtrzH(t)h(t) p(z) dz.

(2.39)

From (2.36), (2.38), and (2.39), we know that as δ → 0, the second line of (2.38)

converges to zero for all β ∈ Uβ0 , i.e.,

lim
δ→0

1

δ

∫
{m(t+ δ, z, β)−m(t, z, β)} eβtrz−eβ

trzH(t+δ) p(z) dz ≡ 0 (2.40)
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Write the left hand side of (2.40) as the sum of

1

δ

∫
{m(t+ δ, z, β)−m(t, z, β)} eβtrz−eβ

trzH(t) p(z) dz (2.40.a)

and

1

δ

∫
{m(t+ δ, z, β)−m(t, z, β)}

{
eβ

trz−eβtrzH(t+δ) − eβtrz−eβ
trzH(t)

}
p(z) dz

(2.40.b)

As δ → 0, (2.40.a) converges to ∇t

{∫
m(t, z, β)eβ

trz−eβtrzsp(z)dz
} ∣∣

s=H(t)
, which

is the left hand side of (2.35) when H(t) is regarded as a free variable s ∈ R+.

Therefore it suffices to prove that as δ → 0, (2.40.b) converges to 0 for all β ∈ Uβ0

and h ∈ H∗, where H∗ is also a dense class of functions in L1 defined as

H∗ =

{
h : h ∈ H; for each h, there exists ε > 0 such that

h(t) = 0 for all t ∈ (0, ε);

h bounded above and below, for all t ≥ ε;

h bounded above, for all t ≥ ε

}
(2.41)

Then consider t > δ and write (2.40.b) as∫
eβ

trzp(z)
{
m(t+ δ, z, β)e−e

βtrzH(t+δ) −m(t, z, β)e−e
βtrzH(t)

}
dz

−
∫
eβ

trzp(z)m(t, z, β)
{
e−e

βtrzH(t+δ) − e−eβ
trzH(t)

}
dz

−
∫
eβ

trzp(z)e−e
βtrzH(t) {m(t+ δ, z, β)−m(t, z, β)} dz

(2.42)

Then using the identity equation (2.34) proved in Lemma 2.3.1 and the additivity

property, −
∫∞
t+δ

`(s) ds =
∫ t+δ
t

`(s) ds −
∫∞
t
`(s) ds for any integrable function `(·),

26



we re-write (2.42) as the sum of

C1 =

∫ t+δ

t

∫
m(u, z, β)e2β′z

[
h(u− δ) exp(−eβ′zH(u− δ))

− h(u) exp(−eβ′zH(u))
]
p(z)dzdu

(2.43)

and

C2 =

∫ ∞
t

∫
m(u, z, β)e2β′z

[
2h(u) exp(−eβ′zH(u)) (2.44)

− h(u− δ) exp(−eβ′zH(u− δ))− h(u+ δ) exp(−eβ′zH(u+ δ))
]
p(z)dzdu

First, by the Mean Value Theorem, the square-bracketed integrand in C1 is O(δ),

bounded by

M2δ
[
|h′(u− θδ)| e−eβ

′zH(u−θδ) + h2(u− θδ)e−eβ
′zH(u−θδ)

]
(2.45)

where M2 is a uniform upper bound for eβ
trz, h ∈ H∗, and θ ∈ (0, 1). Let k be a

function and C∗1 be a constant such that for all δ ∈ (0, ε) the lower bound of C∗1k(u)

is given by 
a constant M1 ∈ R when u < ε

supθ∈[−1,1] (h′(u− θδ), h2(u− θδ)) when u > ε.

(2.46)

Let K(u) ≥ H(u− ε) for all u ≥ ε. Then (2.45) is bounded by

M2 δ C∗1 k(u) e−e
β′zK(u), for all u > ε, |θ| ≤ 1, 0 < δ < ε,

So the fact that the outer integral in C1 is taken over a shrinking interval (t, t+ δ)

allows us to say that the integral of the integrand given by δ times dz du integrable

function

‖m(u, z, β)‖k(u)e2βtrz−eβtrzK(u)p(z) = o(δ).
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Now we move on to C2. Using the Mean Value Theorem again, the square-

bracketed integrand in C2 is bounded by

δ2 ∂2

∂x2
(h(x) exp(−eβ′zH(x))

∣∣∣
x=u+θ∗δ

(2.47)

where h ∈ H∗ and |θ∗| ≤ 1 but cannot be controlled further. Let k be a function

and C∗2 be a constant such that C∗2k(u) is lower bounded by
a constant M2 ∈ R when u < ε

supθ∈[−1,1] (h′′(u+ θδ), 2h(u+ θδ)h′(u+ θδ), h2(u+ θδ)h′(u+ θδ)) when u > ε.

(2.48)

for all 0 < δ < ε. Let K(u) ≥ H(u− ε) for all u ≥ ε. Then (2.47) is controlled by

δ2C∗2k(u)e−e
βtrzK(u), for all u > ε, |θ∗| ≤ 1, 0 < δ < ε.

Thus , even though the range of integration is now not small, C2 can be shown (with

h ∈ H∗) to be O(δ2). �

Lemma 2.3.3 (Weierstrass) Suppose f is a continuous real-valued function de-

fined on real interval [a, b]. For every ε > 0, there exists a polynomial pf (x) such

that for all x in [a, b], |f(x)−pf (x)| < ε, or equivalently, supx∈[a,b] |f(x)−pf (x)| < ε.

2.3.1 Proof of Theorem 2.1.1

Multiply both sides of (2.35) by a(t) ∈ A, where

A ≡ {a(t) : R→ R; a is compactly supported ,

and continuously differentiable on R+},
(2.49)
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then integrate with respect to t, yielding for all a ∈ A, β ∈ Uβ0 and s ∈ R+,

∫
a(t)

{
∂

∂t

∫
m(t, z, β)eβ

trz−eβtrzsp(z)dz

}
dt ≡ 0. (2.50)

Integrate (2.50) by parts, yielding for all a ∈ A, β ∈ Uβ0 and s ∈ R+,

∫
a′(t)

∫
m(t, z, β)eβ

trz−eβtrzsp(z)dzdt ≡ 0. (2.51)

Now, multiply both sides of (2.34) by a′(t), then integrate with respect to t. Together

with equation (2.51), we conclude that for all a ∈ A, β ∈ Uβ0 and h ∈ H,

0 ≡
∫
a′(t)

{∫ ∞
t

∫
m(u, z, β)e2βtrz−eβtrzH(u)h(u)p(z)dzdu

}
dt (2.52)

Integrating (2.52) by parts, then we know that for all a ∈ A, β ∈ Uβ0 and h ∈ H,

0 ≡
∫ ∞

0

a(t)

∫
m(t, z, β)e2βtrz−eβtrzH(t)h(t)p(z)dzdt (2.53)

Therefore for all a ∈ A, β ∈ Uβ0 and s, t ∈ R+,

0 ≡
∫
m(t, z, β)e2βtrz−eβtrzsp(z)dz, (2.54)

where we replaced H(t) by s ∈ R+ since H is free to be any function in H. Inte-

grating both sides of (2.54) with respect to s from x to ∞ implies

0 ≡
∫
m(t, z, β)eβ

trz−eβtrzxp(z)dz (2.55)

After integrating again with respect to x on s,∞ or (separately) by differentiating

equation (2.55) under the integral sign arbitrarily many times, then the same formula

(2.55) holds with the first term eβ
trz term replaced by ekβ

trz for any non-negative

integer k.
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Let b(·) be any element of B, the continuous functions on the real line and apply

the Weierstrass’ theorem stated in Lemma 2.3.3 to approximate b by polynomials

uniformly on the compact set of possible βtrz values, yielding

0 ≡
∫
m(t, z, β)b(βtrz)p(z)dz, for all t ∈ R+, β ∈ Uβ0 , b ∈ B. (2.56)

Now, let us demonstrate the singularity of the matrix Eβ0,λ0 {∇βm(t, z, β0)},

which is a violation of (2.3) with β = β0 and thus proves the non-existence of

the CEE. Differentiate both sides of (2.55) with respect to βtr, i.e., the Jacobian of

function m(t, z, ·), yielding for all t, s ∈ R+ and β ∈ Uβ0 ,

0 ≡
∫
∇βm(t, z, β)eβ

trz−eβtrzsp(z)dz −
∫
m(t, z, β)cs(β

trz) z p(z) dz, (2.57)

where cs(β
trz)z = ∇β(eβ

trz−eβtrzs). Multiply both sides of (2.57) by βtr and use

equation (2.57) by choosing cs(β
trz)βtrz ∈ B and then setting s = H(t). Then for

all t ∈ R+, h ∈ H and β ∈ Uβ0

0 ≡ βtr
∫
∇βm(t, z, β)eβ

trz−eβtrzH(t)p(z)dz. (2.58)

Equation (2.58) holds for a specific choice of β = β0, which contradicts the non-

sigularity of matrix
∫
∇βm(t, z, β0)eβ

tr
0 z−e

βtr0 zsp(z)dz as described in (2.3). �

2.3.2 Proof of Theorem 2.2.1

Note that (2.20) is true for any hazard rate function λC , therefore it is satisfied

when C puts its mass at a point c, i.e., for a constant c ∈ R+, ΛC(s) = Λc(s), where

Λc(s) =


0 when s < c,

∞ when s > c.

(2.59)
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Then (2.20) implies that for any c ∈ R+, λ ∈ H and β,

0 ≡
∫∫ c

0

m1(t, z, β)λ(teβ
trz)eβ

trz−Λ(teβ
trz)p(z)dtdz

+

∫
m0(c, z, β)e−Λ(ceβ

trz)p(z)dz

=

∫∫ ceβ
trz

0

m1(se−β
trz, z, β)λ(s)e−Λ(s)p(z)dsdz

+

∫
e−Λ(ceβ

trz)m0(c, z, β)p(z)dz,

(2.60)

Since (2.60) is satisfied by any λ ∈ H, let Λ(s) = Λt(s), where Λt(s) is defined as in

(2.59). Then (2.60) implies

0 ≡
∫
I
{
t < ceβ

trz
}
m1(te−β

trz, z, β)p(z)dz

+

∫
I
{
t > ceβ

trz
}
m0(c, z, β)p(z)dz, for all c ∈ R+, t ∈ R+, β

(2.61)

Next, we prove statement (a). Then (b) can be shown with the same strategy.

Proof of (a) In this part, we assume m0(c, z, β) ≡ 0 for all c ∈ R+, z ∈ Z and

β ∈ Uβ0 . Hence (2.61) becomes

0 ≡
∫
I
{
t < ceβ

trz
}
m1(te−β

trz, z, β)p(z)dz, for all t ∈ R+, β (2.62)

Since (2.62) holds for all t, c ∈ R+, therefore consider a class of functions A as

follows,

A ≡
{
a(t) : a(t) is essentially bounded , t ∈ R+

}
then for any a(t) ∈ A, β, and c ∈ R+, integrating a(t) multiplied by (2.62) against

Lebesgue measure on (0,∞) gives for all c ∈ R+, a ∈ A, β ∈ Uβ0 and z ∈ Z,

0 ≡
∫∫ ceβ

trz

0

a(t)m1(te−β
trz, z, β)p(z)dtdz. (2.63)
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Differentiate (2.63) with respect to c, yielding for all a ∈ A, β ∈ Uβ0 , z ∈ Z and

a.e. in c,

0 ≡
∫
eβ

trza(ceβ
trz)m1(c, z, β)p(z)dz. (2.64)

By specific series of choices of a(ceβ
trz) = eβ

trz·kI
{
ceβ

trz ≥ τ
}

for fixed τ, c ∈ R+

and k ∈ Z+, we know that (2.64) implies for all k ∈ Z+ and τ ∈ R+,

0 =

∫
eβ

trz·kI
{
ceβ

trz ≥ τ
}
m1(c, z, β)p(z)dz (2.65)

Let τ → 0, for all a ∈ A, β ∈ Uβ0 , k ∈ Z+, z ∈ Z and c ∈ R+

0 =

∫
eβ

trz·km1(c, z, β)p(z)dz (2.66)

By Weierstrass’ theorem described in Lemma 2.3.3, for b ∈ B, β ∈ Uβ0 , k ∈ Z+,

z ∈ Z and c ∈ R+,

0 =

∫
b(βtrz)m1(c, z, β)p(z)dz, (2.67)

where B is the family of differentiable functions with bounded support.

To show the non existence of CEE via deriving the singularity of

Eβ0,λ0
{
∇βm

1(T, Z, β0)
}
, (2.68)

let us differentiate both sides of (2.67) with respect to β, then for b ∈ B, β ∈ Uβ0 ,

k ∈ Z+, z ∈ Z and c ∈ R+,∫
βtr∇βm

1(c, z, β)b(βtrz)p(z)dz = −
∫
βtrzb′(βtrz)m1(c, z, β)p(z)dz = 0 (2.69)

Choose b(βtrz) = eβ
trzh(eβ

trz)e−H(eβ
trzc) and integrate against dc. Then (2.69) im-

plies

βtr0 Eβ0,λ0
{
∇βm

1(T, Z, β0)
}
≡ 0. (2.70)
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This contradiction of non-singularity completes the proof of (a).

Proof of (b) In this part, we assume that m1(t, z, β) ≡ 0 for all t ∈ R+, z ∈ Z

and β ∈ Uβ0 . Hence (2.61) becomes

0 ≡
∫
I
{
t > ceβ

trz
}
m0(c, z, β)p(z)dz, for all c ∈ R+, z ∈ Z, β ∈ Uβ0 (2.71)

In fact, we can show the contradiction of singularity described in (2.70) following

the same steps in proving (a) on page 31. �
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Chapter 3: ϕ-Transformation Model

3.1 Introduction

In this section, we discuss the ϕ-Transformation model, which serves as the most

general worked-out example for the Extended Estimating Equations (EEE). Let Ti

be the lifetime for the ith individual for i = 1, . . . , n, and consider the model

Ti = ϕ(ε, β0, Zi), i = 1, . . . , n (3.1)

where Zi = (Zi1, . . . Zip)
tr is a covariate, εi is the error that is independently iden-

tically distributed (i.i.d.) with common differentiable distribution F (x), and haz-

ard rate function λ(x), β0 ∈ Rp is the unknown coefficient to be estimated, and

ϕ(x, y, z) : R×Rp×Rp → R+ is a given function, where ϕ(·, y, z) is strictly increas-

ing and continuously differentiable, and ϕ(x, ·, z) is differentiable. We also assume

that the support of T and the support of ε do not depend on parameter (β, F ).

In practice, sometimes we are not able to observe the complete lifetime Ti. Let us

use Ci to denote the right censoring variable, assumed to be identically distributed

with a common distribution function denoted by H. Assume that conditionally

given Zi, Ti and Ci are independent. When Ti are subject to right censoring, the
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data collected are random vectors

(Vi,∆i, Zi), i = 1, . . . , n (3.2)

where Vi = min(Ti, Ci), and ∆i = I {Ti ≤ Ci} is equal to 1 when Ti does not exceed

the right censoring variable Ci, and 0 otherwise.

The ϕ-transformation model relates to many other important models in statistics,

and we mention the following examples. First, when ϕ(x, y, z) depends on the

structural parameter y only through ytrz and is linear in ytrz and x, i.e.,

Ti = βtr0 Zi + εi, (3.3)

then the ϕ-transformation model becomes the usual linear model. Nothing needs to

be changed when the lifetime Ti is replaced by h(Ti), where h(·) is a known monotone

function. When h(Ti) = lnTi, (3.3) becomes the Accelerated Failure Time (AFT)

model. Therefore the AFT model is an example of the ϕ-transformation model. A

review of the linear model and the AFT can be found in page 8 of Chapter 1.

Another important class of models that is related to the ϕ-transformation model

is the nonlinear regression model with additive independent errors ( [39], Chapter

5), namely,

Ti = µ(Zi, β0) + εi, (3.4)

where µ(·, β0) is given, Ti is continuous, and εi is independent of Zi. This model

assumes that there is a basic underlying distribution for the lifetime, but the location

shifts according to covariate Z. In (3.4), ϕ(ε, Z, β) = µ(Z, β) + ε, and one way to
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generalize it is to allow a shape change in Ti, i.e.,

h(Ti) = b0(βtr1 Zi) + εb1(βtr2 Zi),

where hR+ 7→ R is a known monotone function, b0 and b1 are both known func-

tions, and b1 is strictly positive. This way, both the location and the shape change

according to covariates.

It is not necessary that the transformation function ϕ(x, y, z) has an analytical

form. A possible choice is to let ϕ(x, y, z) be an integral of a known positive rate

function, i.e., let b(s, β, z) : R× Rd × Rd → R+ be a given function, then

h(Ti) = ϕ(ε, Zi, β0) =

∫ ε

−∞
b(s, β0, Zi)ds. (3.5)

The time Ti is known as “operational time”, and model (3.5) may have different in-

terpretation in practice depending on the choice of b(s, β0, z). For example, b(s, β0, z)

can describe the wearing-out rate of a device. This rate can depend on a structural

parameter β0, and a covariate Zi that differs from device to device. This type of

model is also discussed by Nikulin in [3].

This chapter is organized as follows. In Section 3.2, we establish an EEE for β0

using martingale theory. In Section 3.3, we prove the consistency and asymptotic

normality of the estimator of β0. Technical lemmas not given in detail in Section

3.3 are postponed to Section 3.4.
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3.2 Extended Estimating Equations and Martingales

To construct the EEE that yields an estimator of β0 for the ϕ-transformation

model (3.1), we follow Tsiatis [38] by building a martingale on the residual scale.

Let NT
i (v) be the counting process for the ith individual for lifetime Ti, and let

Y T
i (v) be the at-risk indicator for lifetime Ti, i.e.,

NT
i (v) = ∆i ··· I {Vi ≤ v} ; Y T

i (v) = I {Vi ≥ v} (3.6)

Since ϕ(·, y, z) is strictly increasing, we can define its inverse function,

ϕ−1(t, y, z) : R+ × R→ R such that ϕ(u, y, z) = t ⇔ ϕ−1(t, y, z) = u. (3.7)

Let ζi be the residual when Ti is censored, i.e., ζi = ϕ−1(Ci, β0, Zi). Then we can

write the counting process and at-risk indicator for residual εi as follows,

N ε
i (u) = I {min(εi, ζi) ≤ u, εi ≤ ζi} (3.8)

Since ϕ−1(u, y, z) is also strictly increasing,

I {min(εi, ζi) ≤ u} = I {min(ϕ(εi, β0, Zi), ϕ(ζi, β0, Zi)) ≤ ϕ(u, β0, Zi)}

= I {min(Ti, Ci) ≤ ϕ(u, β0, Zi)} ,
(3.9)

and

I {εi ≤ ζi} = I {ϕ(εi, β0, Zi) ≤ ϕ(ζi, β0, Zi)} = I {Ti ≤ Ci} = ∆i, (3.10)

From (3.6)-(3.10), we know that

N ε
i (u) = I {min(Ti, Ci) ≤ ϕ(u, β0, Zi),∆i = 1} = NT

i (ϕ(u, β0, Zi)) (3.11)
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As for the at-risk indicator Y ε
i (u),

Y ε
i (u) = I {min(εi, ζi) ≥ u}

= I {min(ϕ(εi, β0, Zi), ϕ(ζi, β0, Zi)) ≥ ϕ(u, β0, Zi)}

= I {min(Ti, Ci) ≥ ϕ(u, β0, Zi)} = Y T
i (ϕ(u, β0, Zi)) .

(3.12)

Since the counting process and at-risk indicator for εi and Ti have the relationship

described in (3.11) and (3.12), from now on we will mainly use NT
i (·) and Y T

i (·)

to construct estimators, and define Ni(·) = NT
i (·), Yi(·) = Y T

i (·) for the sake of

simplicity. Assume that Vi’s are nondegenerate, then there exists a constant T ∗

such that for some ξ > 0,

P {Vi ≥ T ∗ + ξ} ≥ ψ > 0, for all i. (3.13)

Let us introduce additional notations to be used throughout this chapter. For a

function g(x1, x2, x3), let ∇ig(x1, x2, x3) = ∂g(x1, x2, x3)/∂xi. Define

J(u, β1, β2, z) ≡ ϕ−1(ϕ(u, β1, z), β2, z) (3.14)

Note that by the chain rule, as shown in Lemma 3.4.1,

γ(u, β0, z) = ∇2J(u, β, β0, z)|β=β0 =
∇2ϕ(u, β0, z)

∇1ϕ(u, β0, z)
. (3.15)

In addition, assume the following regularity conditions:

(A.1) The density function of ε, f(x) = dF (x)/dx, exists and is bounded by K1

on (−∞, T ∗ + ξ], where T ∗, ξ are as in (3.13). The hazard rate λ(x) is twice

differentiable.
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(A.2) The density function for Ci exists, and h(x) = −dH(x)/dx ≤ K2, for all

x ≤ T ∗ + ξ.

(A.3) There exists θ(u, β0, Z) with E|θ(u, β0, Z)| <∞ such that

|λ(J(u, β,β0, Zi))− λ(u)− γ(u, β0, Zi)
tr(β − β0)λ′(u)|

≤ ‖β − β0‖2θ(u, β0, Zi), for β ∈ Uβ0(n−1/2), and u ∈ R,
(3.16)

almost surely in Zi, where Uβ0(n
−1/2) is a n−1/2 neighbourhood of β0.

(A.4) There exists a constant c such that P {‖Zi‖ < c} = 1.

(A.5) Let µβ0(u, β) = E {Z1I {V1 > ϕ(u, β, Z1)}}/E {I {V1 > ϕ(u, β, Z1)}}. Then

sup
β∈Uβ0 (n−1/2),u≤T ∗+ξ

‖Z̄(u, β)− µβ0(u, β)‖ P−−→ 0, as n→∞,

where

Z̄(u, β) =

∑n
j=1 ZjYj (ϕ(u, β, Zj))∑n
j=1 Yj (ϕ(u, β, Zj))

. (3.17)

(A.6) Let Aβ0(u, β) ≡ E
{
I(V1 > ϕ(u, β, Z1))(Z1 − Z̄(u, β))γ(u, β0, Z1)tr

}
, then

sup
β∈Uβ0 (n−1/2),u≤T ∗+ξ

∣∣∣∣ 1n
n∑
i=1

Yi (ϕ(u, β, Zi))
{
Zi − Z̄(u, β)

}
γ(u, β0, Zi)

tr−Aβ0(u, β)

∣∣∣∣
approaches zero in probability, and for all β ∈ Uβ0(n−1/2)

∫ T ∗

−∞
λ′(u)Aβ0(u, β)du is non singular.

(A.7) For β ∈ Uβ0(n−1/2), E {Λ (J(T ∗, β0, β, Z))} = M <∞.

(A.8) ϕ(·, y, z), ϕ(x, ·, z) and ϕ−1(·, y, z) are all Lipschitz continuous; ϕ(·, y, z) is

continuously differentiable, and ∇2ϕ(x, ·, z) is Lipschitz continuous.
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(A.9) ϕ(·, y, z) is strictly increasing.

(A.10) E
∥∥∥∫ T ∗−∞ γ(u, β0, Zi)λ

′(u)du
∥∥∥ <∞.

3.2.1 Remarks and Sufficient Conditions for Assumptions

First, let us discuss assumption (A.3). Note that the left hand side of (3.16) is

the Taylor expansion of λ(J(u, ·, β0, Zi)) at β = β0, the remainder of which is (β −

β0)tr∂2λ(J(u, β, β0, Zi))/∂β
2|β=β∗(β − β0), for β∗. Also recall that J(u, β1, β2, z) =

ϕ−1(ϕ(u, β1, z), β2). Therefore one way to guarantee (3.16) in assumption (A.3) is

to assume that

(i) ∂2ϕ(u, β, z)/∂β2 and ∂2ϕ−1(u, β, z)/∂β2 exists

(ii) λ′(u) is Lipschitz continuous continuous.

As for the boundedness of E|θ(u, β0, Zi)|, it is guaranteed if the derivatives in (i)

are continuous in z.

In assumptions (A.5) and (A.6), the pointwise convergence for fixed β and u

can be obtained using the Law of Large Numbers (LLN) . We can show that this

convergence uniform in β ∈ Uβ0(n
−1/2) and u ≤ T ∗ + ξ using empirical process

theory. For example, we can show that

F ≡ f(v, z;u, β) : I
{
v ≥ ϕ(u, β, z)(z − Z̄(u, β))

}
is a Glivenko-Cantelli class, which can be established under the assumption that

function ϕ(x, y, z) is Lipschitz continuous in x and y using the Example 19.11 and

Example 19.20 in [41].
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The boundedness of the expected value mentioned in (A.7) and (A.10) is guar-

anteed by the smoothness of Λ(·) and J(u, β0, ·, z), and the bounded support of Z.

Under assumption (A.8), J(u, β1, ·, z) is Lipschitz. Since J(u, β0, β0, z) = 1, we know

that |J(u, β0, β, z)| ≤ 1 + c‖β− β0‖, hence (A.7) is satisfied. (A.10) is guaranteed if

we assume that γ(u, β0, z) is bounded for any u and z.

Define

Sn(β) =
n∑
i=1

∫ T ∗

−∞
dNi (ϕ(u, β, Zi))

{
Zi − Z̄(u, β)

}
, (3.18)

where Z̄(u, β) is defined in (3.17). From now on, let us use P denote the probability

measure under the true nuisance and structural parameter. Then we construct the

martingale in the following proposition.

Proposition 3.2.1 Mi {ϕ(u, β, Zi)} is a martingale with respect to the filtration

Fn(u, β) = σ (Zi, I {Vi ≤ ϕ(s, β, Zi)} ,∆iI {Vi ≤ ϕ(s, β, Zi)} , i = 1, . . . , n, s ≤ u) ,

(3.19)

under P , where

Mi (ϕ(u, β, Zi)) =Ni (ϕ(u, β, Zi)) (3.20)

−
∫ J(u,β,β0,Zi)

−∞
λ(x)Yi (ϕ(x, β0, Zi)) (ρ(x, β0, β, Zi))

−1 dx,

and

ρ(u, β, β0, Zi) = ∇1J(u, β, β0, Zi) =
∇1ϕ(u, β, Zi)

∇1 (ϕ(J(u, β, β0, Zi), β0, Zi))
(3.21)

Proposition 3.2.1 is a direct result of the compensated martingale associated with

the counting process Ni(ϕ(u, β, Zi)). The details of calculation can be found in
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Section 3.4. As a special case of Proposition 3.2.1, when β = β0,

dMi (ϕ(u, β0, Zi)) = dNi (ϕ(u, β0, Zi))− λ(u)Yi (ϕ(u, β0, Zi)) du (3.22)

is a martingale differential with respect to measure P and filtration Fn(u, β0) defined

in (3.19). Since Sn(β) =
n∑
i=1

∫ T ∗
−∞ dMi (ϕ(u, β, Zi))

{
Zi − Z̄(u, β)

}
, it follows that

Eβ0 {Sn(β0)} = 0. (3.23)

The martingale Central Limit Theorem (CLT) implies that n−1/2Sn(β0) is asymp-

totically normal with mean zero and variance σ2(β0), where

σ2(β0) =

∫ T ∗

0

(Z1 − Z̄(u, β0))⊗2λ(u)P {V1 ≥ ϕ(u, β0, Z1)} du. (3.24)

Now, (3.18) is in the form of extended estimating equations defined in the previous

chapter. We can re-write (3.18) as

Sn(β) =
n∑
i=1

∆i

{
Zi −

∑n
j=1 ZjI {ϕ−1(Vj, β, Zj) ≥ ϕ−1(Vi, β, Zi)}∑n
j=1 I {ϕ−1(Vj, β, Zj) ≥ ϕ−1(Vi, β, Zi)}

}
. (3.25)

With the choice of Xi = (Vi, Zi,∆i),

Q(Xi, β) = ∆i, C(Xi) = Zi, k(Xi, Xj, β) = I
{
ϕ−1(Vj, β, Zj) ≥ ϕ−1(Vi, β, Zi)

}
,

equation (3.18) is exactly in the form of
n∑
i=1

mn(Xi,XXX, β) mentioned in (1.10), where

n∑
i=1

mn(Xi,XXX, β) =
n∑
i=1

Q(Xi, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}

with 0 mean under the true parameter value shown in (3.23).

Corollary 3.2.1 Under the ϕ-transformation model assumption, Sn(β) = 0 is an

extended estimating equation, where Sn(β) is defined in (3.25).
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3.3 Estimator for Structural Parameter

In the previous section, we constructed an extended estimating equation Sn(β)

in equation (3.18). The goal of this section is to establish the
√
n-consistency of

estimator β̂n, the estimator for β0 estimated via extended estimating equation Sn(β).

In Theorem 3.3.3, we prove that
√
n(β̂n − β0) is asymptotically normal with mean

zero.

Note that Sn(β) is a step function, which brings the following two problems. First,

there may not exist a root for equation Sn(β) = 0. Second, the usual Taylor expan-

sion method does not apply to Sn(β). Consequently, we adopt the definition of β̂n

given by Jurec̆ková in Section 4 of [24]. Namely, for Sn(β) = (Sn,1(β), . . . , Sn,p(β))tr,

β̂n = arg min
β∈Uβ0

p∑
j=1

{Sn,j(β)}2 , (3.26)

where Uβ0 is a neighbourhood of β0 where there is a unique solution to the minimiza-

tion problem (3.26). In the case when the minimization problem (3.26) has more

than one solution, estimator β̂n is defined as the one with a smaller lexicographic

norm, i.e., if both vectors b̂i = (b̂i,1, . . . , b̂i,p) satisfy (3.26) for i = 1, 2, and b̂1,j = b̂2,j

for j = 1, . . . , k, k < p, and if b̂1,k+1 < b̂2,k+1, then β̂n = b̂1.

Next, we show that Sn(β) is asymptotically linear in a neighbourhood of β0. Let

g(β) =

∫ T ∗

−∞
λ′(u)Aβ0(u, β)du, (3.27)
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where Aβ0(u, β) is the function defined in assumption (A.6) in the previous section

on page 39. Define a linear function of β as follows,

S̃n(β) = Sn(β0) + ng(β0)(β − β0). (3.28)

Let β∗n be the root of S̃n(β) = 0. Consider β ∈ Uβ0(n−1/2), a n−1/2-neighbourhood

of β0. If we can show that Sn(β) is ‘asymptotically equivalent” to S̃n(β), i.e.,

the l∞ norm of Sn(β) − S̃n(β) converges to zero in probability, then β̂n is also

“asymptotically equivalent” to β∗n, namely, they are both asymptotically normal

with mean zero and the identical asymptotic variance. From (3.28), we know that

if g(β0) is nonsingular,

√
n(β∗n − β0) = n−1 {g(β0)}−1 Sn(β0), for β ∈ Uβ0(n−1/2)

is asymptotically normal with mean zero and variance {g(β0)}−1 σ(β0) {g(β0)}−1.

If we can show that
√
n(β̂n − β∗n)

P−−→ 0, then this would imply
√
n(β̂n − β0) is

asymptotically distributed the same as
√
n(β∗n − β0). Argued by Jurec̆ková in [23]

and [24], it would suffice to show that

sup
β∈Uβ0 (n−1/2)

n−1/2|Sn(β)− S̃n(β)| P−−→ 0. (3.29)

We will show (3.29) in two steps. In Theorem 3.3.1, we will show the pointwise

convergence of (3.29), then we get the uniformity in β in Theorem 3.3.2.

Now, let us start with the first step, i.e., the pointwise convergence by writing

Sn(β) as the summation of

Sn1(β) =
n∑
i=1

∫ T ∗

−∞
dMi {ϕ(u, β, Zi)}

{
Zi − Z̄(u, β)

}
(3.30)
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and

Sn2(β) =
n∑
i=1

∫ T ∗

−∞

{
λ(J(u, β,β0, Zi)ρ(u, β, β0, Zi)− λ(u)

}
(3.31)

× Yi {ϕ(u, β, Zi)}
{
Zi − Z̄(u, β)

}
du.

We show that n−1/2|Sn1(β) − Sn(β0)| P−−→ 0 for fixed value β ∈ Uβ0(n
−1/2) using

Lenglart’s Inequality and the predictable variation process in Lemma 3.4.2 and

Lemma 3.4.3, and that n−1/2|Sn2− ng(β0)(β − β0)| P−−→ 0 in Lemma 3.4.4 and 3.4.5

using the Lipshitz assumption mentioned in (A.8). A careful statement and proof

of Lemma 3.4.2-3.4.5 can be found on page 50-57 of Section 3.4. Now, we are ready

to discuss the pointwise asymptotic linearity of Sn(β) for any fixed β ∈ Uβ0(n−1/2)

as follows,

Theorem 3.3.1 Under assumptions (A.1), (A.3), and (A.5)-(A.8) for any fixed βn

that belongs to Uβ0
(
n−1/2

)
,

1√
n
|Sn(βn)− S̃n(βn)| P−−→ 0. (3.32)

Proof: Note that we can write Sn(β) = Sn1(β) + Sn2(β), and that S̃n(β) =

Sn(β0) + ng(β0)(β − β0). Therefore the proof is complete since

1√
n
|Sn1(βn)− Sn(β0)| P−−→ 0, (3.33)

1√
n
|Sn2(βn)− ng(β0)(βn − β0)| = 1√

n
· n · ‖βn − β0‖op(1)

P−−→ 0, (3.34)

where we get (3.33) and (3.34) by Lemma 3.4.3 and 3.4.5, respectively.

In Theorem 3.3.1, we have shown the pointwise linearity of Sn(β). The next

theorem guarantees that such linearity is uniform for β that belongs to a small
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neighbourhood of β0.

Theorem 3.3.2 Under the assumptions (A.1)-(A.8), for any ε > 0, there exists

δ > 0 such that

lim
n→∞

P

{
sup

0≤‖β∗−βn‖≤δn−1/2

n−1/2‖Sn(β∗)− Sn(βn)‖ ≥ ε

}
= 0, (3.35)

for any |d| < C.

The proof of the theorem uses the same technique as Tsiatis in [38]. The idea is

to show that for a choice of sufficiently fine partitions of interval [−C,C], function

Sn(β) does not fluctuate too much within the sub-intervals. Details of the proof are

presented in Section 3.4. Now, we are ready to conclude the
√
n-consistency of β̂n

mentioned at the very beginning of this section

Theorem 3.3.3 Let β̂n the solution to

β̂n = arg min
β∈Uβ0

p∑
j=1

{Sn,j(β)}2 , (3.36)

where Uβ0 is a neighbourhood of β0 such that β̂n is unique. Then under (A.1)-(A.8),

√
n(β̂n − β0)

D−−→ N(0, {g(β0)}−1 σ2(β0) {g(β0)}−1).

Proof: Let β∗n be the solution to S̃n(β) = 0, where

S̃n(β) = Sn(β0) + ng(β0)(β − β0). (3.37)

If σ2(β0) denotes the asymptotic variance of n−1/2Sn(β0) mentioned under (3.23),

then

√
n(β∗n − β0) = n−1/2 {g(β0)}−1 Sn(β0) (3.38)
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is asymptotically normal with mean zero and variance {g(β0)}−1 σ2(β0) {g(β0)}−1.

On the other hand, by Theorem 3.3.2,

sup
β∈Uβ0 (n−1/2)

n−1/2|Sn(β)− S̃n(β)| P−−→ 0, (3.39)

which as proved by Jurec̆ková in [23] implies
√
n(β̂n − β∗n)

P−−→ 0. As a result,

√
n(β̂n − β0) follows the same asymptotic distribution as

√
n(β∗n − β0), and we

complete the proof.

3.4 Some Proofs

Lemma 3.4.1 Let J(u, β1, β2, z) = ϕ−1(ϕ(u, β1, z), β2, z), then

(J1) ∇1J(u, β1, β2, z) = ρ(u, β1, β2, z), and ∇2J(u, β1, β2, z) = γ(u, β1, β2, z)),

where

ρ(u, β1, β2, z) =
∇1ϕ(u, β1, z)

∇1ϕ(J(u, β1, β2, z), β2, z)
,

γ(u, β1, β2, z) =
∇2ϕ(u, β1, z)

∇1ϕ(J(u, β1, β2, z), β2, z)
.

(3.40)

(J2) Let x = J(u, β1, β2, z), then u = J(u, β2, β1, z), and

ρ(x, β1, β2, z) =
1

ρ(u, β2, β1, z)
(3.41)

(J3) J(u, ·, β2, z) is Lipschitz.

(J4) There exists a constant c such that |ρ(u, β1, β2, z)− 1| ≤ c‖β1 − β2‖.

(J1) By chain rule,

∇1J(u, β1, β2, Zi) = ∇1ϕ
−1(ϕ(u, β1, z), β2, z) · ∇1ϕ(u, β1, z)

∇2J(u, β1, β2, Zi) = ∇1ϕ
−1(ϕ(u, β1, z), β2, z) · ∇2ϕ(u, β1, z)

(3.42)
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Let w = ϕ(u, β1, z). Since ϕ(ϕ−1(w, β2, z), β2, z) = w, differentiate both sides

with respect to w, yielding ∇1ϕ(ϕ−1(w, β2, z), β2, z) · ∇1ϕ
−1(w, β2, z) = 1.

Therefore

∇1ϕ
−1(ϕ(u, β1, z), β2, z) = ∇1ϕ

−1(w, β2, z)

=
1

∇1ϕ(ϕ−1(w, β2, z), β2, z)

=
1

∇1ϕ(J(u, β1, β2, z), β2, z)
.

(3.43)

Then (3.40) is obtained by plugging (3.43) into (3.42).

(J2) If x = J(u, β1, β2, z) = ϕ−1(ϕ(u, β1, z), β2, z), then u = ϕ−1(ϕ(x, β2, z), β1, z) =

J(x, β2, β1, z). As for (3.41), it is true since

ρ(u, β1, β2, z) =
∇1ϕ(u, β1, z)

∇1ϕ (J(u, β1, β2, z), β2, z)

=
∇1ϕ(J(x, β2, β1, z), β1, z)

∇1ϕ(x, β2, z)
=

1

ρ(x, β2, β1, z)
.

(J3) Let b1 and b2 be two distinct points in Uβ0 . Under assumption (A.8), ϕ−1(·, β2, z)

and ϕ(u, ·, z) are both Lipschitz. Therefore there exist constants c1 and c2 such

that

|J(u, b1, β2, z)− J(u, b2, β2, z)| = |ϕ−1 (ϕ(u, b1, z), β2, z)− ϕ−1 (ϕ(u, b2, z), β2, z) |

≤ c1|ϕ(u, b1, z)− ϕ(u, b2, z)| ≤ c1c2‖b1 − b2‖

(J4) By the definition of ρ(u, β1, β2, z) in (3.21)

|ρ(u, β1, β2, Zi)− 1| =
∣∣∣∣ ∇1ϕ(u, β1, Zi)

∇1ϕ (J(u, β1, β2, Zi), β2, Zi)
− 1

∣∣∣∣
=
|∇1ϕ(u, β1, Zi)−∇1ϕ (J(u, β1, β2, Zi), β2, Zi) |

|∇1ϕ (J(u, β1, β2, Zi), β2, Zi) |

(3.44)

Since ϕ(·, x, y) is assumed to be strictly increasing, the denominator of (3.44)

is strictly greater than a positive constant m. Use D denote the numerator of
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(3.44), then (3.44) is bounded byD/m. Since both∇1ϕ(·, y, z) and∇2ϕ(x, ·, z)

are Lipschitz continuous under assumption (A.8),

D ≤ |∇1ϕ(u, β1, Zi)−∇1ϕ (J(u, β1, β2, Zi), β1, Zi) |

+ |∇1ϕ (J(u, β1, β2, Zi), β1, Zi)−∇1ϕ (J(u, β1, β2, Zi), β2, Zi) |

≤ c1‖u− J(u, β1, β2, Zi)‖+ c2‖β1 − β2‖ (3.45)

Note that we can write u = J(u, β2, β2, Zi), therefore by (J3), the first term in

(3.45) is bounded by c1c3‖βn−β0‖. Then the conclusion holds with the choice

of c = c1c2 + c2.
�

3.4.1 Proof of Proposition 3.2.1

Proof: Recall that we would like to prove dMT
i (ϕ(u, β, Zi)) is a martingale with

filtration Fn(u, β) in (3.19), where

dMT
i (ϕ(u, β, Zi)) =dNT

i (ϕ(u, β, Zi))

− λ (J(u, β, β0, Zi))Y
T
i (ϕ(u, β, Zi)) ρ(u, β, β0, Zi)du,

(3.46)

and NT
i (u) and Y T

i (u) are defined in (3.6), λ(u) is the hazard rate function for ε, and

ρ(u, β, β0, Zi) is defined in Lemma 3.4.1. Change the variable in (3.46) by setting

u = J(v, β0, β, Zi) = ϕ−1 (ϕ(v, β0, Zi), β, Zi) (3.47)

then ϕ(u, β, Zi) = ϕ(v, β0, Zi), and

NT
i (ϕ(u, β, Zi)) = NT

i (ϕ(v, β0, Zi)) = N ε
i (v), (3.48)
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where we get the second equation in (3.48) since N ε
i (v) = NT

i (ϕ(v, β0, Zi)) as shown

in (3.11). By the compensated counting process martingale established in [21],

M ε
i (v) is a martingale, where

M ε
i (v) = N ε

i (v)− λ(v)Y ε
i (v)dv (3.49)

By (3.47), v = J(u, β, β0, Zi) = ϕ−1(ϕ(u, β, Zi), β0, Zi), which implies that

dv = ∇1J(u, β, β0, Zi)du = ρ(u, β, β0, Zi)du (3.50)

where the last equation in (3.50) guaranteed by (J1) of Lemma 3.4.1. Then the

conclusion is a result of (3.48), (3.49) and (3.50).

3.4.2 Proof of Lemma 3.4.2-3.4.5

In Lemma 3.4.2 and 3.4.3, we will show that for any fixed β in a n−1/2 neighbour-

hood of β0, the L2 distance between (3.30) and Sn(β0) converges to 0 in probability

whereas Lemma 3.4.4 and 3.4.5 will show the same conclusion for (3.31) and the

term ng(β0)(β − β0).

Lemma 3.4.2 Let βn be a sequence of nonrandom vectors converging to β0, then

under the assumptions (A.5) and (A.7),

1√
n

{ n∑
i=1

∫ T ∗

∞
dMi (ϕ(u, βn, Zi)}

{
Zi − Z̄(u, βn)

)
−
∫ T ∗

∞
dMi (ϕ(u, βn, Zi)) {Zi − µβ0(u, βn)}

} (3.51)

converges to 0 in probability.
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Proof: Let us first consider the scalar case when β ∈ R. The expression in (3.51)

is equal to R(T ∗), where by Proposition 3.2.1,

R(u) =
1√
n

n∑
i=1

∫ u

∞
dMi (ϕ(x, βn, Zi))

{
Z̄(x, βn)− µβ0(x, βn)

}
.

is a martingale under P with respect to

Fn(u, βn) = σ {Zi, I [Vi ≤ ϕ(u, βn, Zi)] ,∆iI [Vi ≤ ϕ(u, βn, Zi)] , i = 1, . . . n}

Therefore using the vector form of Lenglart’s Inequality (see Appendix I, I.2 of [2]),

P {|R(T ∗)| > ε} ≤ δ

ε2
+ P

{
1

n

n∑
i=1

∫ T ∗

−∞
(Z̄(u, βn)− µβ0(u, βn))2

× λ (J(u, βn, β0, Zi)) ρ(u, βn, β0, Zi)

× Yi (ϕ(u, βn, Zi)) du > δ

} (3.52)

By assumption (A.5), we can find N(ε,K) such that for any n > N(ε,K),

P

{
sup
u≤T ∗
|Z̄(u, βn)− µβ0(u, βn)| > K

}
< ε,

hence with probability exceeding 1− ε, the integral in (3.52) is bounded by

K2

∫ T ∗

−∞
λ (J(u, βn, , β0, Zi)) ρ(u, βn, β0, Zi)Yi (ϕ(u, βn, Zi)) du (3.53)

Let x = J(u, βn, β0, Zi), then by property (J1) and (J2) in Lemma 3.4.1, u =

J(x, β0, βn, Zi), du = ρ(x, β0, βn, Zi)dx, and

ρ(u, βn, β0, Zi) =
1

ρ(x, β0, βn, Zi)

Therefore (3.53) is bounded by

K2

∫ J(T ∗,β0,βn,Zi)

−∞
λ(x)dx = K2Λ (J(T ∗, β0, βn, Zi)) ,
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Consequently, the average of the integral in (3.52) over n is bounded by

K2n−1

n∑
i=1

Λ (J(T ∗, β0, βn, Zi))

with probability greater than 1−ε. By assumption (A.7), if we choose K ≤ (δ/M)1/2

and δ = ε3 , then the probability in (1.48) is smaller than ε for n > N(ε,K).

Now, consider the vector-valued parameter case, i.e., β ∈ Rp. Let t = (t1, . . . , tp)
tr

be a unit vector, let

R(T ∗) =
n∑
i=1

ηi, where ηi = (ηi1, . . . , ηip)
tr (3.54)

then

∣∣ttrR(T ∗)
∣∣ =

∣∣∣∣∣
n∑
i=1

ttrηi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

p∑
j=1

tjηij

∣∣∣∣∣ =

∣∣∣∣∣
p∑
j=1

tj

(
n∑
i=1

ηij

)∣∣∣∣∣ ≤
p∑
j=1

|tj|

∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣
(3.55)

Since ‖t‖ = 1 implies tk ≤ 1 for k = 1, . . . , p, therefore

|ttrR(T ∗)| ≤
p∑
j=1

∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣ (3.56)

Therefore

P

{
sup

t∈Rp,‖t‖=1

|ttrR(T ∗)| ≥ ε

}
≤ P

{
p∑
j=1

∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣
}
≤ pmax

j
P

{∣∣∣∣∣
n∑
i=1

ηij

∣∣∣∣∣ ≥ ε

p

}

(3.57)

The probability in (3.57) converges to zero by applying the univariate Lenglart’s

inequality to P

{∣∣∣∣ n∑
i=1

ηij

∣∣∣∣ ≥ ε/p

}
. Therefore the conclusion is true for β ∈ Rp.
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Lemma 3.4.3 Let βn be a sequence of nonrandom vectors converging to β0, then

under assumptions (A.4), (A.5), (A.7) and (A.8),

1√
n

{
n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, βn, Zi))

{
Zi − Z̄(u, βn)

}
− Sn(β0)

}
P−−→ 0. (3.58)

Proof: (3.58) can be written as the summation of the following three terms,

1√
n

[ n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, βn, Zi))

{
Zi − Z̄(u, βn)

}
−

n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, βn, Zi)} (Zi − µβ0(u, βn)}

]
,

(3.59)

1√
n

[ n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, βn, Zi)) {Zi − µβ0(u, βn)}

−
n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, β0, Zi)) {Zi − µβ0(u, β0)}

]
,

(3.60)

and

1√
n

[
n∑
i=1

∫ T ∗

−∞
dMi (ϕ(u, β0, Zi)) {Zi − µβ0(u, β0)} − Sn(β0)

]
. (3.61)

By Lemma 3.4.2, (3.59) and (3.61) converges to zero in probability. We focus on

the asymptotic behavior of (3.60). Let u = J(x, β0, βn, Zi), then the first integral in

equation (3.60) is∫ J(T ∗,βn,β0,Zi)

−∞
dMi (ϕ(x, β0, Zi)) {Zi − µβ0 (J(x, β0, βn, Zi), βn)} . (3.62)

Write (3.60) is equal to the summation of A, B and C, where

A = − 1√
n

[
n∑
i=1

∫ T ∗

−∞
dMi (ϕ(x, β0, Zi)) {µβ0 (J(x, β0, βn, Zi), βn)− µβ0(x, β0)}

]
,

(3.63)

B =
1√
n

[ n∑
i=1

∫ J(T ∗,βn,β0,Zi)

T ∗
dMi (ϕ(x, β0, Zi))

× I {T ∗ > J(T ∗, β0, βn, Zi)} {Zi − µβ0 (J(x, β0, βn, Zi), βn)}
] (3.64)
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and

C =
1√
n

[ n∑
i=1

∫ T ∗

J(T ∗,βn,β0,Zi)

dMi (ϕ(x, β0, Zi))

× I {T ∗ < J(T ∗, β0, βn, Zi)} {Zi − µβ0 (J(x, β0, βn, Zi), βn)}
]
.

(3.65)

Since A, B and C integrated up to u are all Fn(u, β0) martingales, condition on Zi,

V ar(A) =
1

n

n∑
i=1

∫ T ∗

−∞
{µβ0 (J(x, β0, βn, Zi), βn)− µβ0(u, β0)}⊗2

×λ(x)P {Vi ≥ ϕ(x, β0, Zi)} dx

V ar(B) =
1

n

n∑
i∈κ1

∫ J(T ∗,βn,β0,Zi)

T ∗
{Zi − µβ0 (J(x, β0, βn, Zi), βn)}⊗2

×λ(x)P {Vi ≥ ϕ(x, β0, Zi)} dx

and

V ar(C) =
1

n

n∑
i∈κ2

∫ T ∗

J(T ∗,βn,β0,Zi)

{Zi − µβ0 (J(x, β0, βn, Zi), βn)}⊗2

×λ(x)P {Vi ≥ ϕ(x, β0, Zi)} dx

where we calculate the variances using the predictable variation process

〈dMi, dMi〉 = λ(u)Yi (ϕ(u, β0, Zi)) .

By definition of µβ0(x, β) in assumption (A.5) and the boundedness of Zi assumed

in assumption (A.4), we know that µβ0(x, β) is bounded by 1 for all x and β, which

implies

‖V ar(A)‖ ≤ 4

n

n∑
i=1

∫ T ∗

−∞
λ(x)S(x)dx ≤ 4.
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Therefore by the continuity of µβ0(u, β), ϕ(x, y) and the dominated convergence

theorem, ‖V ar(A)‖ converges to 0. therefore (3.63) converges to 0 in probability.

As for (3.64), note that

V ar(B) =
1

n

∑
i∈κ1

∫ J(T ∗,βn,β0,Zi)

T ∗
{Zi − µβ0 (J(x, β0, βn, Zi), βn)}⊗2

× λ(x)P {Vi ≥ ϕ(x, β0, Zi)} dx

Since Vi = min(Ti, Ci)

P {Vi ≥ ϕ(x, β0, Zi)} ≤ P {Ti ≥ ϕ(x, β0, Zi)} = P
{
ϕ−1(Ti, β0, Zi) ≥ x

}
= P {εi ≥ x} = S(x),

and that λ(x)S(x) = f(x), we know that

V ar(B) ≤ 1

n

n∑
κ1

∫ J(T ∗,βn,β0,Zi)

T ∗
λ(x)S(x)dx. (3.66)

Since λ(x)S(x) = f(x) is bounded by 1, (3.66) implies that

V ar(B) ≤ 4K1n
−1

n∑
i=1

{J(T ∗, βn, β0, Zi)− T ∗} (3.67)

Note that T ∗ = J(T ∗, β0, β0, Zi). Since J(u, ·, β2, z) is Lipschitz as shown in (J3)

of Lemma 3.4.1, there exists a constant c such that the terms in the summand of

the right hand side of (3.67) is bounded by c‖βn − β0‖, which implies that V ar(B)

goes to 0 in probability. Using the same approach, we conclude that V ar(C) also

approaches 0 in probability. Hence the proof is complete.

Lemma 3.4.4 Let Sn2 be defined as in (3.31), and Sn3 be

Sn3 =
n∑
i=1

∫ T ∗

−∞

{
λ(J(u, βn, β0, Zi))− λ(u)

}
(3.68)

× Yi (ϕ(u, βn, Zi))
{
Zi − Z̄(u, βn)

}
du,
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then under assumption (A.1) and (A.8),

n−1 · |Sn2(β)− Sn3(β)| P−−→ 0. (3.69)

Proof: By (3.31) and (3.68),

n−1|Sn2(β)− Sn3(β)| ≤ n−1

n∑
i=1

∫ T ∗

−∞
λ(J(u, βn, β0, Zi))

× |ρ(u, βn, β0, Zi)− 1|Yi (ϕ(u, βn, Zi)) ‖Zi − Z̄(u, βn)‖du

≤ 2n−1

n∑
i=1

∫ T ∗

−∞
λ(J(u, βn, β0, Zi))

× |ρ(u, βn, β0, Zi)− 1|Yi (ϕ(u, βn, Zi)) du (3.70)

By (J4), |ρ(u, βn, β0, Zi)− 1| ≤ c‖βn − β0‖, therefore by (3.70), we can see that

n−1|Sn2(β)− Sn3(β)| ≤ 2c‖βn − β0‖n−1

n∑
i=1

∫ T ∗

−∞
λ (J(u, βn, β0, Zi))

× Yi (ϕ(u, βn, Zi)) du

(3.71)

Since

E {Yi (ϕ(u, βn, Zi))} ≤ P {Ti ≥ ϕ(u, βn, Zi)}

= P {ε ≥ J(u, βn, β0, Zi)}

= S (J(u, βn, β0, Zi)) ,

(3.72)

we know that

n−1|Sn2(β)− Sn3(β)| ≤ 2c‖βn − β0‖n−1

n∑
i=1

∫ T ∗

−∞
λ (J(u, βn, β0, Zi))

× S (J(u, βn, β0, Zi)) du

= 2c‖βn − β0‖n−1

n∑
i=1

∫ T ∗

−∞
f (J(u, βn, β0, Zi)) du

= 2c‖βn − β0‖n−1

n∑
i=1

F (J(T ∗, βn, β0, Zi)) (3.73)
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By assumption (A.1), F (J(T ∗, βn, β0, Zi)) is bounded by {c1c2‖βn − β0‖+ 1}, there-

fore by (3.73), n−1|Sn2(β)− Sn3(β)| approaches 0 in probability.

Lemma 3.4.5 Let g(β0) =
∫ T ∗
−∞ λ

′(u)Aβ0(u, β)du, and Sn2(β) as shown in (3.31),

then under assumptions (A.1), (A.3), (A.6) and (A.8),

n−1Sn2(β) = g(β0)(β − β0) + oP (‖βn − β0‖) (3.74)

Proof: By Lemma 3.4.4, it suffices to show

n−1Sn3 = g(β0)(β − β0) + oP (‖β − β0‖). (3.75)

Note that the left hand side of (3.75) is the summation of

n−1

n∑
i=1

∫ T ∗

−∞
λ′(u)Yi (ϕ(u, β0, Zi))

{
Zi − Z̄(u, βn)

}
γ(u, β0, Zi)

trdu(βn − β0) (3.76)

and

n−1

n∑
i=1

∫ T ∗

−∞
Yi (ϕ(u, β0, Zi))

{
Zi − Z̄(u, βn)

}
(3.77)

× {λ (J(u, βn, β0, Zi))− λ(u)− λ′(u)γ(u, β0, Zi)
tr(βn − β0)}du

where γ(u, β0, Zi) is defined in (3.15). By assumption (A.6), (3.76) converges to

∫ T ∗

−∞
λ′(u)Aβ0(u, β0)du(βn − β0) = g(β0)(βn − β0). (3.78)

As for (3.77), it is bounded by

2n−1‖βn − β0‖2

n∑
i=1

∫ T ∗

−∞
|θ(u, βn, Zi)|du (3.79)

Since the average over n in (3.79) is bounded in probability by assumption (A.3),

we finish the proof by (3.78) and (3.79).
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3.4.3 Proof of Theorem 3.3.2

First, let us consider a uni-variate β ∈ R. We form a mesh with space approaching

zero from −C to C using a finite number points d0, . . . , dm. By Theorem 3.3.1, for

βn,i = β0 + di/
√
n,

max
i≤m

{
n−1/2‖Sn(βn,i)− S̃n(βn,i)‖

}
P−−→ 0. (3.80)

In order to prove (3.35), we must show that n−1/2Sn(β) does not fluctuate too

much from βn,i to βn,i+1 for i = 1, . . . ,m for any choice of partition points d0, . . . , dm.

More specifically, for any ε > 0, there exists a positive δ such that for βn = β0 +

δn−1/2,

lim
n→∞

P

{
sup

βn≤β∗≤βn+δn−1/2

n−1/2‖Sn(β∗)− Sn(βn)‖ ≥ ε

}
= 0, (3.81)

for any |d| < C.

As for the case when β ∈ Rp, we consider a p-dimensional mesh by allowing β to

change its coordinate one at a time. More specifically, for a fixed β∗, define

β̌n,j = (β∗(1), . . . , β∗(j), β(j+1)
n , . . . , β(p)

n )tr,

then

Sn(β∗)− Sn(βn) =

p−1∑
j=0

{
Sn(β̌n,j+1)− Sn(β̌n,j)

}
. (3.82)

Therefore

‖Sn(β∗)− Sn(βn)‖ ≤ p ·max
j

∥∥Sn(β̌n,j+1)− Sn(β̌n,j)
∥∥ (3.83)
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In the right hand side of (3.83), the change only occurs in the (j + 1)th coordinate,

and the other coordinates are fixed. Consequently, the uniform convergence for

β ∈ Rp will follow if we can show (3.81) for β ∈ R.

For the rest of this subsection, without loss of generality, assume that β ∈ R.

Recall that Vi = min(Ti, Ci). Define the residuals ri as

ri ≡ r(Vi, β, β0, Zi) = ϕ−1(Vi, β, Zi) = J (εi, β0, β, Zi) ,

We can complete the proof of (3.81) by putting a probabilistic bound on the maxi-

mum change of Sn(β∗) as β∗ varies from βn to βn + δn−1/2. Recall that

Sn(β) =
n∑
i=1

∆i

{
Zi −

∑n
j=1 ZjI {Vj ≥ ϕ(εi, Zj, βi)}∑n
j=1 I {Vj ≥ ϕ(εi, Zj, βi)}

}
(3.84)

so Sn(β∗) is a function of the ranks of residuals ri, hence change in Sn(β∗) occurs

whenever the change of β∗ from βn to βn+δn−1/2 leads to a change of ri, i = 1, . . . , n.

Therefore the maximum change of Sn(β∗) can be calculated by computing F1 × F2,

where

L1 = #[pairs of interchanged ranks ],

L2 =

 the maximum change of Sn(β∗)
for each such interchange

 (3.85)

In Lemma 3.4.6, we investigate the two factors of (3.85). Then, using Lemma

3.4.6, we prove the uniform linearity as stated in Theorem 3.3.2.

Lemma 3.4.6 Let T ∗ be a value such that P {Vi ≥ T ∗ + ξ} ≥ ψ > 0. Define

Bn ≡

{
XXX∞ :

1

n

n∑
i=1

I {Vi ≥ T ∗ + ξ} ≥ ψ

2

}
, (3.86)
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where XXX∞ = {Xi}ni=1. Under assumption (A.4) and (A.8), for any ε > 0, there

exists Nε such that for any n > Nε,

(i) P {Bn} > 1− ε;

(ii) for n > Nε and XXX∞ ∈ Bn, P {nL2 ≤ 6c/ψ} ≥ 1− ε.

(iii) L1 =
n∑
i=1

n∑
j 6=i

I(Aij), where Aij is the event |Vi − Vj| ≤ c · δn−1/2

Proof: The conclusion (i) in is guaranteed by the Law of Large Numbers. Next,

let us consider (ii) which shows how to bound L2 in (3.85). Note that whenever the

change of β∗ from βn to βn+δn−1/2 causes an interchange in ranks of the residual, the

interchange must happen between two adjacent order statistics of ri, i = 1, . . . , n.

Let
{
r(i)

}n
i=1

be the set of order statistics of {ri}ni=1, and denote the corresponding

covariate and failure indicator by Z(i)(β
∗) and ∆(i)(β

∗), then Sn(β∗) can be written

as
n∑
i=1

∆i(β
∗)
{
Z(i)(β

∗)− Z̄(i)

}
, where Z̄(i)(β

∗) =
n∑
k=i

Z(k)(β
∗)

n− i+ 1
. (3.87)

Now, assume that the change of β∗ from βn to βn + δn−1/2 causes an interchange in

ranks between two adjacent order statistics r(j) and r(j+1), then the new Sn(β∗+) is

j−1∑
i=1

∆i(β
∗)
{
Z(i)(β

∗)− Z̄(i)(β
∗)
}

+ ∆(j+1)(β
∗)
{
Z(j+1)(β

∗)− Z̄(j)(β
∗)
}

+ ∆(j)(β
∗)

{
Z(j)(β

∗)−
Z̄(j+2)(β

∗)(n− j − 1) + Z(j)(β
∗)

n− j

}
+

n∑
i=j+2

∆i(β
∗)
{
Z(i)(β

∗)− Z̄(i)(β
∗)
}
.

(3.88)
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Hence the difference of Sn(β∗) before and after the interchange in r(j) and r(j+1) is

(3.87) minus (3.88), which equals to

{
∆(j+1)(β

∗)−∆(j)(β
∗)
}{Z̄(j+2)(β

∗)(n− j − 1)

n− j
− Z̄(j)(β

∗)

}
+

∆(j+1)(β
∗)Z(j+1)(β

∗)

n− j
−

∆(j)(β
∗)Z(j)(β

∗)

n− j
,

(3.89)

where we use the fact that

Z̄(j+1)(β
∗) =

∑n
k=j+1 Z(k)(β

∗)

n− j
=
Z̄(j+2)(β

∗)(n− j − 1) + Zj+1(β∗)

n− j
.

Then (3.89) is equal to

Z(j+1) − Z(j)

n− j
if ∆(j) = ∆(j+1) = 1

−
Z(j)

(n− j)(n− j + 1)
+

Z(j+1)

n− j + 1
+

Z̄(j+2)(n− j − 1)

(n− j)(n− j + 1)
if ∆(j) = 1 and ∆(j+1) = 0

Z̄(j+1) − Z(j)

n− j + 1
if ∆(j) = 0 and ∆(j+1) = 1

(3.90)

For any of the three cases in (3.90), since ‖Zi‖’s are bounded by a constant c with

probability 1 under assumption (A.4), the change in Sn(β∗) is bounded by c/(n−j),

where n− j is the number of ri’s at risk at the point where the interchange occurs.

Consider XXX∞ ∈ Bn on which

1

n

n∑
i=1

I {Vi ≥ T ∗ + ξ} ≥ ψ

2
.

Since Sn(β) is computed for ri’s that are less than ϕ−1(T ∗, βn, Zi), forXXX∞ ∈ Bn, the

number of the ri’s at risk will exceed nψ/2 if an interchange occurs, i.e., n−j ≥ nψ/2.

Consequently, the change in Sn(β) is bounded by (6c/ψ)n−1.
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Then we try to find L1 in (3.85), i.e., the number of interchanges when β∗ varies

from βn to βn + δn−1/2. An interchange between (i, j) will occur for βij if εi = εj.

Therefore by assumption (A.4) and (A.8), an interchange occurring for values of β∗

between βn and βn + δn−1/2 implies

|Vi − Vj| =
∣∣∣∣ϕ (εi, βn, Zi)− ϕ

(
εi, βn +

δ√
n
, Zj

) ∣∣∣∣ ≤ C2 ·
δ√
n

(3.91)

The total number of interchanges equates

L1 =
n∑
i=1

n∑
j 6=i

I(Aij),

where Aij denotes the event in (3.91).

Proof of Theorem 3.3.2 In Lemma 3.4.6, we have shown that the maximum

change of Sn(β) after each interchange in ranks is bounded by (4/ψ)n−1, and the

the number of interchanges as β∗ varies from βn to βn+δn−1/2 is L1. If we can show

that

lim
n→∞

P
{
n−3/2L1 ≥ ε

}
= 0 (3.92)

for some δ > 0 that is to be chosen properly, then the proof is complete, i.e.,

lim
n→∞

P

{
sup

0≤‖β∗−βn‖≤δn−1/2

n−1/2‖Sn(β∗)− Sn(βn)‖ ≥ ε

}
= 0.

For 1 ≤ i < j ≤ n, Let

Wij = I(Aij) + I(Aji),

Ui =
n∑
j 6=i

{E(Wij|Vi)− E(Wij)} ,

Uij = Wij − E(Wij|Vi)− E(Wij|Vj) + E(Wij).
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Then

L−E {L1} =
n∑
i=1

Ui +
n∑ n∑
i<j

Uij

is the sum of pairwise uncorrelated random variables. Let f ∗i (u) be the density

function of Vi, hence fi(u) = f(u)H(u) + h(u)S(u). Let

P {Aij|Vi} =

∫ C2δ/
√
n

0

f ∗j (u)du ≤ 2(K1 +K2)C2δ√
n

,

where the inequality can be attained by assumption A and B. Similarly, P {Aji|Vi} ≤

2(K1 +K2)C2δ/
√
n, so

|E {Wij|Vi} | ≤ 4(K1 +K2)C2δn
−1/2,

therefore

E {L1} ≤ 2(K1 +K2)C2δn
3/2, σ2(M) =

n∑
i=1

σ2(Ui) +
n∑ n∑
i<j

σ2(Vij) = O(n2)

Since in (3.92), P
{
n−3/2L1 ≥ ε

}
is bounded by P

{
|L1 − E(L1)| ≥ n3/2ε− E(L1)

}
,

using the Chebyshev’s inequality,

P
{
|L1 − E(L1)| ≥ n3/2ε− E(L1)

}
≤ σ2(L1)

(n3/2ε− E(L1))2

≤ Cn2

(n3/2ε− 2(K1 +K2)C2δn3/2)2
,

(3.93)

where C is a constant. Let δ = ε/ {3C2(K1 +K2)}, then the probability in (3.93)

is bounded by 3C/(nε2), hence we have shown (3.85). �
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3.5 List of Notations

T = ϕ(ε, β0, Z) page 34

J(u, β1, β2, z) ≡ ϕ−1(ϕ(u, β1, z), β2, z) page 38

γ(u, β0, z) = ∇2J(u, β, β0, z)|β=β0 =
∇2ϕ(u, β0, z)

∇1ϕ(u, β0, z)
. page 38

Z̄(u, β) =

∑n
j=1 ZjYj {ϕ(u, β, Zj)}∑n
j=1 Yj {ϕ(u, β, Zj)}

page 39

Sn(β) =
n∑
i=1

∫ T ∗

−∞
dNT

i {ϕ(u, β, Zi)}
{
Zi − Z̄(u, β)

}
page 41

ρ(u, β, β0, Zi) = ∇1J(u, β, β0, Zi) =
∇1ϕ(u, β, Zi)

∇1 (ϕ(J(u, β, β0, Zi), β0, Zi))
page 41

Mi (ϕ(u, β, Zi)) = Ni (ϕ(u, β, Zi))−
∫ J(u,β,β0,Zi)

−∞

λ(x)Yi (ϕ(x, β0, Zi))

ρ(x, β0, β, Zi)
dx page 41

S̃n(β) = Sn(β0) + g(β0)(β − β0) page 44
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Chapter 4: Technical Results I: Owen’s Lemmas & Empirical Process

Consider d-dimensional independently identically distributed (i.i.d.) random vec-

tors from a common distribution family

X1, . . . , Xn ∼ Pθ, where θ = (β, λ). (4.1)

The parameter θ is consisted of the structural part β ∈ Rp, and the nuisance part

λ ∈ H that is infinite dimensional. Classic Estimating Equation (CEE) assumes

there exists function m(x, β) satisfying Definition 1.1.1 in Section 1.2. We extended

the CEE to the Extended Estimating Equation (EEE) in Definition 1.2.1, in which

the estimating function is denoted by mn(x,xxx, β). A direct way of constructing an

estimator from the CEE and EEE is solving

β̃n : Sn(β) = 0, (4.2)

where Sn(β) =
n∑
i=1

m(Xi, β) or Sn(β) =
n∑
i=1

mn(Xi,XXX, β).

Under the CEE setting, another way to construct an estimator for β0 is through

the Empirical Likelihood (EL) method using Sn(β) = 0 as a constraint. The method
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is first to define the probability vector {p̂i(β,Xi,XXX, β0)}ni=1 that solves
maxppp

∏
pi, where ppp = (p1, . . . , pn);

subject to
n∑
i=1

pi = 1, pi ∈ (0, 1),
n∑
i=1

pim(Xi, β) = 0.

(4.3)

Then β̂n can be defined via maximizing the Profile Empirical Likelihood (pEL), or

equivalently, minimizing the negative logarithm of the pEL, i.e.

β̂n = arg min
β
l(β), where l(β) = −

n∑
i=1

ln (p̂i(β,Xi,XXX, β0)) (4.4)

However, to prove that there exists a neighborhood Uβ0 of β0 such that for any β ∈

Uβ0 , there exists a unique solution to (4.3), and to establish the asymptotic behavior

of β̂n, we need to prove lemmas parallel to Lemma 11.2 and 11.4 in [32] by Owen,

and Lemma 1 and Theorem 1 by Qin in [33]. Since the major difference between the

CEE and the EEE is the appearance of the higher order summations in the latter,

the simplest torms of the Law of Large Numbers (LLN) and Central Limit Theorem

(CLT) cannot be applied directly in the EEE setting. To handle more general forms

of summation, we introduce the concepts of Donsker and GlivenKo-Cantelli classes

in the empirical process theory using the series of examples in Chapter 19 of [41].

4.1 Assumptions and Notations

Let Xi, for i = 1, . . . , n be the i.i.d. sample defined in (4.1) with common distri-

bution function FX(x, θ) supported on Rd. Let Uβ0 be a neighbourhood of β0 that

66



will be defined in Lemma 5.2.2 and (5.48), and define

mn(Xi,XXX, β) = Q(Xi, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}
. (4.5)

m̄n(XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β). (4.6)

Z∗n(XXX, β) = max
1≤i≤n

‖mn(Xi,XXX, β)‖; (4.7)

kc(Xi, β) = E {C(Xj)k(Xi, Xj, β)|Xi} , for i 6= j; (4.8)

k̄(Xi, β) = E {k(Xi, Xj, β)|Xi} , for i 6= j; (4.9)

η(Xi, Xj, β) = C(Xj)k(Xi, Xj, β)− kc(Xi, β), for i 6= j (4.10)

E {·} ≡ Eθ0 {·} ; P {·} ≡ Pθ0 {·} (4.11)

Note that η(Xi, Xj, β) is defined such that Eθ {η(Xi, Xj, β)|Xi} ≡ 0, for all θ ∈ Θ.

In this Chapter, we also use O(·), o(·) to represent the almost sure magnitude, and

OP (·) and oP (·) the magnitude in probability. A more detailed definition of these

four notations can be found in Chapter 1 of [36]. In general, for a vector υ ∈ Rr,

‖υ‖ denotes the Euclidean norm.

Assumptions

(A.1) Eβ0,λ {mn(X,XXX, β0)} = 0, for all λ ∈ H.

(A.2) For all x and β ∈ Uβ0 , ‖C(x)‖ < b <∞, |Q(x, β)| < M <∞.

(A.3) Eθ {∇βm(X,XXX, β)} is nonsingular for θ ∈ Uβ0 ×H.

(A.4) For any (x, θ) ∈ Rd× (Uβ0 ×H), k(·, ·, ·) > 0; for positive γ that is close to 1,

E
{
k̄(Xi, β0)−γ

}
<∞
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(A.5) For each x and xxx, ∇βmn(x,xxx, β) exists for β in Uβ0 , and is continuous at β0.

(A.6) E {∇βmn(x,xxx, β0)} is of full rank p.

(A.7) E[mn(X,XXX, β0)mtr
n (X,XXX, β0)] is positive definite.

(A.8) There exists a constant M such that the jth component ηj of η = η(x,X, β0)

in (4.10) satisfies |ηj| ≤M , and

E
{
e|ηj |/M − 1− ηj

M

}
M2 ≤ 1

2
var(ηj).

(A.9) There exists M such that for any β, ‖k(x, y, β)‖ < M .

(A.10) Let α = (x, β) ∈ Rd × Uβ0 with Euclidean norm, and k(x, y, β) = kα(y).

There exists a measurable function b(y) : Rd 7→ R such that for any α1 6= α2,

|kα1(y)− kα2(y)| ≤ b(y)‖α1 − α2‖,

and E {|b(X1)|} <∞.

(A.11) Let γ > 0 be close to 1, then E
{
k̄(X1, β0)−γ

}
<∞.

4.2 Lemmas Parallel to Owen, and Qin and Lawless

In this section, we provide some lemmas that are parallel to Lemmas 11.2 through

11.4 in Chapter 11 of [32], which are used by Owen to establish the Nonarametric

Maximum Empirical Likelihood (NPMELE) estimator and the Wilks type theorem

when the dimension of the estimating function r equals the dimension of the struc-

tural parameter p. Qin and Lawless also applied these lemmas when generalizing
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Owen’s work to the case when r > p. We will show that under regularity conditions,

even though estimating functions of Extended Estimating Equations (EEE) denoted

by mn(Xi,XXX, β) are no longer i.i.d., the parallel versions of these Lemmas continue

to hold.

The way to overcome loss of independence in EEE is to refer to the tools in

empirical process theory. Compare the following two expressions,

mn(Xi,XXX, β) = Q(Xi, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}
(4.12)

versus

V (Xi, β) = Q(Xi, β)

{
C(Xi)−

E {C(Y )k(Xi, Y, β)|Xi}
E {k(Xi, Y, β)|Xi}

}
. (4.13)

Applying the LLN to the numerator and denominator in equation (4.12), then ap-

plying Slutsky’s lemma, we can see that (4.12) and (4.13) are close when n is large.

In order to take advantage of the similarity of (4.12) and (4.13) uniformly over in-

dices i, we need to show the higher order summations in the former converge to the

corresponding terms in the latter in probability, and uniformly in Xi and β ∈ Uβ0 .

More strictly,

Lemma 4.2.1 Suppose k(x, y, β) : Rd×Rd×Uβ0 7→ R+ and C(x) : Rd 7→ Rp satis-

fies assumptions (A.1), (A.2), (A.9) and (A.10), where Uβ0 is a open and bounded

set in Θ that contains the true parameter value β0. Then

sup
(x,β)∈X×Uβ0

∣∣∣∣ 1n
n∑
j=1

k(x,Xj, β)− E {k(x,X, β)}
∣∣∣∣ P−−→ 0 (4.14)
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and

sup
(x,β)∈X×Uβ0

∣∣∣∣ 1n
n∑
j=1

C(Xj)k(x,Xj, β)− E {C(X)k(x,X, β)}
∣∣∣∣ P−−→ 0 (4.15)

The proof of the lemma involves constructing Glivenko-Cantelli classes, and an

application of parametric class discussed by Van der Vaart in Chapter 19 of [41].

The following Proposition is parallel to Lemma 11.2 in Chapter 11 of [32]

Proposition 4.2.1 Let Z∗n(XXX, β) = max1≤i≤n ‖mn(Xi,XXX, β)‖. Under assumptions

(A.3), (A.4) and (A.6), for any fixed β ∈ Θ,

Z∗n(XXX, β) = o(n1/2). (4.16)

To prove Proposition 4.2.1, we decompose mn(Xi,XXX, β) into an i.i.d part and a

non-i.i.d. quotient part. Then the conclusion can be drawn by applying Lemma

11.2 in [32] to the two parts separately.

The following two lemmas play roles that are equivalent to the Law of Iterated

Logarithm (LIL) in [32]. They will be applied to prove the EEE version of Lemma

11.4 in [32].

Lemma 4.2.2 Let 0 < δ < 1/2, then under assumptions (A.2), (A.4), (A.5),

(A.8), (A.9) and (A.10)

n−1/2

n∑
i=1

mn(Xi,XXX, β0) = OP (nδ) (4.17)

Lemma 4.2.3 Let 0 < δ < 1/2, then under assumptions (A.2), (A.4), (A.5),

(A.8), (A.9) and (A.10)

1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖2 = O(nδ). (4.18)
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The proofs of Lemmas 4.2.2 and 4.2.3 involve two steps. First, mn(Xi,XXX, β0) is

split into the summation of an i.i.d. part and a higher order summation quotient

part. The magnitude of the i.i.d. term is given by the LIL, and the quotient bounded

by Berstein’s Inequality listed as a proposition in Section 4.3. We also prove both

lemmas first for univariate β, then generalize the conclusion to the multivariate case.

With the conclusion in Lemma 4.2.3, we present Proposition 4.2.2 which is parallel

to Lemma 11.3 in Chapter 11 of [32].

Proposition 4.2.2 Under assumptions of Lemma 4.2.3,

n−1

n∑
i=1

‖mn(Xi,XXX, β0)‖3 = o(n1/2). (4.19)

The proof of Proposition 4.2.2 is a direct application of Proposition 4.2.1 and

Lemma 4.2.3.

4.3 Some Proofs

Proof of Lemma 4.2.1 The convergence of (4.15) and (4.14) for fixed (x, β) is

guaranteed by the LLN. Therefore the main concern is to prove the uniformity in

parameter (x, β). Let α = (x, β), kα(y) = k(x, y, β) and K = {kα(y), α ∈ X × Uβ0},

where X and Uβ0 are bounded subsets of Rd and Rp as defined in Definition 1.2.1.

Under assumption (A.10), K forms a parametric class mentioned in Example 19.7

on page 271 of [41], which refers to a class of functions that are Lipschitz in a

finite-dimensional parameter on a bounded region, but the function domain may

be unbounded. Therefore K is a Donsker class, and as in Theorem A.0.1, is also a
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Glivenko-Cantelli class. Hence the convergence in (4.15) is uniform in (x, β).

As for (4.14), note that KC = {C(y)kα(y), α ∈ X × Uβ0}, for any α1, α2 ∈ X×Uβ0 ,

‖C(y)kα1(y)− C(y)kα2(y)‖ ≤ ‖C(y)‖ · ‖kα1(y)− kα2(y)‖ (4.20)

Under assumption (A.2), the right hand side of (4.20) is bounded by ‖C(y)‖ ·

b(y)‖α1 − α2‖. Under assumption (A.2) and (A.10),

E| b(Y ) · ‖C(Y )‖ | = E|b(Y )| · E‖C(Y )‖ <∞ (4.21)

ThereforeKC also forms a parametric class mentioned in Theorem A.0.2 of Appendix

A. So with the same reasoning we made for (4.15), the convergence (4.14) is also

uniform in (x, β) ∈ X × Uβ0 . �

Proof of Proposition 4.2.1 Let Z∗n(XXX, β) = max1≤i≤n ‖mn(Xi,XXX, β)‖. Since

mn(X,XXX, β) = Q(X, β)

(
C(X)−

∑n
j=1 C(Xj)k(X,Xj, β)∑n

j=1 k(X,Xj, β)

)
,

For a fixed β, Z∗n(XXX, β) is bounded by the sum of A and B, where

A = max
i
‖Q(Xi, β)C(Xi)‖,

and

B = max
i

∥∥∥∥Q(Xi, β)

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

∥∥∥∥.
By Lemma 11.2 in [32], under assumption (A.6), A = o(n1/2). As for B, it is

bounded by

max
i
|Q(Xi, β)| ·max

i

∥∥∥∥
∑n

j=1C(Xj)k(Xi, Xj, β)∑n
j=1 k(Xi, Xj, β)

∥∥∥∥.
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Since the k(·, ·, β)’s are assumed to be nonnegative in assumption (A.4),

max
i

∥∥∥∥
∑n

j=1C(Xj)k(Xi, Xj, β)∑n
j=1 k(Xi, Xj, β)

∥∥∥∥ ≤ max
i

(∑n
j=1 k(Xi, Xj, β) ·maxj ‖C(Xj)‖∑n

j=1 k(Xi, Xj, β)

)

= max
j

(‖C(Xj)‖).

Then under the boundedness assumption in (A.2),

B ≤ max
i
|Q(Xi, β)|max

i
‖C(Xi)‖ = o(n1/2).

Therefore for any fixed β ∈ Uβ0 , Z∗n(XXX, β) = o(n1/2). �

Before giving the proof of Lemma 4.2.3, we state the Bernstein Inequality as

follows. This is a well-known theorem and can be found in references like [42].

Proposition 4.3.1 (Bernstein’s Inequality) Let X1, . . . , Xn be independent vari-

ables with zero mean such that E|Xi|m ≤ m!Mm−2vi/2, for every m ≥ 2 and all i

and some constant M and vi. Then

P (|X1 + · · ·+Xn| > x) ≤ 2 exp

{
−1

2
· x2

v +Mx

}
,

for v ≥ v1 + · · ·+ vn.

Proof of Lemma 4.2.2 Let us start with the univariate case that β0 ∈ Θ ⊂ R

and C(x) : Rd 7→ R. We can split
√
nm̄n(XXX, β0) as the difference of the following

two terms,

1√
n

n∑
i=1

Q(Xi, β0)

{
C(Xi)−

kc(Xi, β0)

k̄(Xi, β0)

}
(4.22)

and

1√
n

n∑
i=1

Q(Xi, β0)

{∑n
j=1C(Xj)k(Xi, Xj, β0)∑n

j=1 k(Xi, Xj, β0)
− kc(Xi, β0)

k̄(Xi, β0)

}
. (4.23)
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Note that (4.22) is a summation of i.i.d. terms, therefore under assumption (A.5), by

the LIL, it is O(
√

ln lnn), and is asymptotically normal by CLT. Next, we evaluate

the order of magnitude of (4.23). To begin with, let us rewrite (4.23) as

1√
n

n∑
i=1

Q(Xi, β0)

k̄(Xi, β0)
∑n

j=1 k(Xi, Xj, β0)

×
{
k̄(Xi, β)

n∑
j=1

C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)
n∑
j=1

k(Xi, Xj, β0)

}
(4.24)

Then we can split (4.24) into the difference of the following two terms,

1√
n

n∑
i=1

Q(Xi, β0)
1√
n

∑n
j=1 k(Xi, Xj, β0)

1√
n

n∑
j=1

(
C(Xj)k(Xi, Xj, β0)− k̄c(Xi, β0)

)
(4.24.a)

and

1√
n

n∑
i=1

Q(Xi, β0)kc(Xi, β0)

k̄(Xi, β0) 1√
n

∑n
j=1 k(Xi, Xj, β0)

1√
n

n∑
j=1

(
k(Xi, Xj, β0)− k̄(Xi, β0)

)
(4.24.b)

Let us consider the following term in the numerator of (4.24.a),

1√
n

n∑
j=1

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
(4.24.a.1)

=
1√
n

n∑
j:j 6=i

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
+

1√
n

{
C(Xi)k(Xi, Xi, β0)− kc(Xi, β0)

}
Note that by Proposition 4.2.1, for any i = 1, . . . , n, the norm of the second term in

equation (4.24.a.1) is bounded by

1√
n

max
i
‖C(Xi)k(Xi, Xi, β0)− kc(Xi, β0)‖ =

1√
n
· o(n1/2) = o(1).

Therefore for i = 1, . . . , n, we can rewrite (4.24.a.1) as

1√
n

∑
j:j 6=i

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
+ o(1). (4.24.a.2)

74



Then by substituting (4.24.a.2) for (4.24.a.1), we know that (4.24.a) is equal to

1√
n

n∑
i=1

Q(Xi, β0)
1√
n

∑n
j=1 k(Xi, Xj, β0)

×

{
1√
n

∑
j:j 6=i

(
C(Xj)k(Xi, Xj, β0)− k̄c(Xi, β0)

)
+ o(1)

} (4.24.a.3)

By (4.8),

E
{
kc(Xi, β0)

}
= E {C(Xj)k(Xi, Xj, β0)} .

Therefore the terms inside the summation of (4.24.a.2) have expectation zero. More-

over, conditioned on Xi, (4.24.a.2) is the summation of i.i.d. terms with zero mean,

under assumption (A.8), we can apply Bernstein’s inequality in Proposition 4.3.1

with the choice of constant x equals to kn = cn(δ+1)/2. Since δ is between 0 and 1/2,

k2
n

nσ +Mkn
=

n1+δ

σn+Mn(1+δ)/2
∼ nδ

σ
as n→∞

where σ = supx∈X var
{
C(X1)k(x,X1, β0)− k̄c(x, β0)

}
, and ∼ means that the ratio

of the two expressions converges to 1.Hence by Proposition 4.3.1, for i = 1, . . . , n,

P

{∣∣∣∣∣∑
j:j 6=i

C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

∣∣∣∣∣ ≥ kn

∣∣∣∣Xi

}
≤ 2e−cn

δ

.

By putting together all such sets for different i, we get

P

{
max
i

∣∣∣∣∣∑
j:j 6=i

C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

∣∣∣∣∣ ≥ kn

}
≤ 2n e−cn

δ

.

Therefore

∞∑
n=1

P

{
max
i

1√
n

∣∣∣∣∣∑
j:j 6=i

C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

∣∣∣∣∣ ≥ kn√
n

}

≤ 2
∞∑
n=1

ne−cn
δ

<∞.

(4.25)
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By Borel-Cantelli lemma, the inequality above implies that for all n sufficiently

large,

max
i

∣∣∣∣∣ 1√
n

∑
j 6=i

C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

∣∣∣∣∣ ≤ kn√
n

= nδ, a.s. (4.26)

Now, let us discuss the denominator in (4.24.a), namely,

1√
n

n∑
i=1

k(Xi, Xj, β0). (4.27)

In the following proof, we would like to show that under the assumptions that we

have made up to now and assumption (A.11), (4.27) is O(nδ). Split (4.27) in to

1√
n

∑
j:i∈J

k(Xi, Xj, β0) +
1√
n

∑
j:i/∈J

k(Xi, Xj, β0), (4.28)

where J ≡
{
k̄(Xi, β0) < c′n(δ−1)/2

}
. With the same argument used to deduct (4.25),

by the Berstein inequality, for δ∗ = δ/3,

max
i

∣∣∣∣∣ 1√
n

∑
j:j 6=i

k(Xi, Xj, β)− k̄(Xi, β0)

∣∣∣∣∣ ≤ cnδ
∗/2, , a.s. (4.29)

which implies that we can re-write (4.28) as

1√
n

∑
J

k(Xi, Xj, β0)+I
{
k̄(Xi, β0) ≥ c′n(δ−1)/2

}
·
{
k̄(Xi, β0) +O(n(δ∗−1)/2)

}
(4.30)

Next, we discuss the order of magnitude of the two terms in (4.30). Since k(·, ·, ·) is

bounded assumed to be bounded by M in assumption (A.9), and the first term in

(4.30) is symmetric with respect to i, we know that the first term in (4.30)

2M√
n
E { number of i ∈ J } = 2M

√
nP
{
k̄(Xi, β0) < c′n(δ−1)/2

}
= 2M

√
nP
{
k̄(Xi, β0)−γ > c′−γnγ(1−δ)/2}

≤ 2ME
{
k̄(Xi, β0)−γ

}
nγ·

δ−1
2
· 1
2 ≤ nδ

(4.31)
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where γ is the positive constant that is close to 1 defined in (A.11) and the inequality

is attained by the Chebyshev’s inequality. So in (4.30), the first term is OP (nδ).

Combining (4.26) - (4.31) we know that (4.24.a.3) is bounded in probability by

2

n

n∑
i=1

Q(Xi, β0)

OP (nδ) + I
{
k̄(Xi, β0) ≥ c′n(δ−1)/2

}
k̄(Xi, β0) +O(n(δ∗−1)/2)

nδ. (4.32)

With the choice of δ∗ = δ/3, by the LIL for i.i.d. summands, the order of (4.32) is

given by O(
√

ln lnn/n).

By far we have shown that (4.24.a.3) is O(nδ). Since (4.24.a.3) equals to (4.24.a),

the latter is also O(nδ). Using the same strategy, we can also prove that (4.24.b) is

O(nδ). Therefore
√
nm̄n(XXX, β0) = O(nδ).

Next, we generalize our conclusion to vector valued β0 and C(x). It suffices to

show that (4.26) holds for β0 ∈ Rp and C(x) : Rd 7→ Rp. Define a p-dimensional

vector ηj = (ηj1, . . . , ηjp)
tr, where

ηj = C(Xj)k(Xi, Xj, β0)− kc(Xi, β0), j = 1, . . . , n and i 6= j.

Then by (4.26), for each component ηjk of ηj,

P

{
lim sup
n→∞

1√
n

∑
j:j 6=i

ηjk ≥
kn√
n

}
= 0, k = 1, . . . , p. (4.33)

Let t = (t1, . . . , tp)
tr be a unit vector in Rp,∣∣∣∣ n∑

j:j 6=i

ttrηi

∣∣∣∣ =

∣∣∣∣ n∑
j:j 6=i

p∑
k=1

tkηjk

∣∣∣∣ =

∣∣∣∣ p∑
k=1

tk

(
n∑

j:j 6=i

ηjk

)∣∣∣∣ ≤ p∑
k=1

|tk|
∣∣∣∣ n∑
i=1

ηjk

∣∣∣∣ (4.34)

where we attain the inequality using triangle inequality. Since ‖t‖ = 1, |tk| ≤ 1 for

k = 1, . . . p, then together with (4.34),∣∣∣∣ n∑
j=1

ttrηi

∣∣∣∣ ≤ p∑
k=1

∣∣∣∣ n∑
j:j 6=i

ηjk

∣∣∣∣ (4.35)
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Note that (4.35) holds for any unit vector in Rp, which indicates that

P

{
sup

t∈Rp,‖t‖=1

∣∣∣∣ n∑
j:j 6=i

ttrηj

∣∣∣∣ ≥ kn

}
≤ P

{
p∑

k=1

∣∣∣∣ n∑
j:j 6=i

ηjk

∣∣∣∣ ≥ kn

}

≤ pmax
k
P

{∣∣∣∣ n∑
j:j 6=i

ηjk

∣∣∣∣ ≥ kn
p

}
(4.36)

Then combine (4.33) and (4.36), we know that

P

{
lim sup
n→∞

sup
t∈Rp,‖t‖=1

∣∣∣∣ 1√
n

n∑
j:j 6=i

ttrηj

∣∣∣∣ ≥ kn√
n

}
= 0 (4.37)

�

Proof of Lemma 4.2.3 Note that we can split the left hand side of (4.18) as the

summation of the following three expressions,

1

n

n∑
i=1

Q(Xi, β0)2C(Xi)
trC(Xi) = O

(√
ln lnn

n

)
, (4.18.a)

− 2

n

n∑
i=1

Q(Xi, β0)2C(Xi)
tr

∑n
j=1C(Xj)k(Xi, Xj, β0)∑n

j=1 k(Xi, Xj, β0)
= O(nδ), (4.18.b)

1

n

n∑
i=1

Q(Xi, β0)2

[∑n
j=1C(Xj)k(Xi, Xj, β0)/n

]tr [∑n
j=1C(Xj)k(Xi, Xj, β0)/n

]
[∑n

j=1 k(Xi, Xj, β0)/n
]2 ,

(4.18.c)

where we get the order of (4.18.a) and (4.18.b) applying the LIL and the same

strategy used in the proof of (4.26), respectively. Next, we investigate the order of

(4.18.c). By the proof of Lemma 4.2.2, an almost sure upper bound of (4.18.c),

4

n

n∑
i=1

Q(Xi, β0)2

k̄(Xi, β0)2

[
1

n

n∑
j=1

C(Xj)k(Xi, Xj, β0)

]tr [
1

n

n∑
j=1

C(Xj)k(Xi, Xj, β0)

]
(4.38)

Similar to the proof of Lemma 4.2.2, let us assume that C(X) and β0 are scalar

valued then generalize the conclusion into vector valued case. Applying the same
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method in the proof of Lemma 4.2.2 where equation (4.24.a.2) was attained, we can

show that for i = 1, . . . , n,

1

n

n∑
j=1

C(Xj)k(Xi, Xj, β0) =
1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) + o(1).

Next, we show that for kn = O(n
1
2
δ+ 5

4 ).

1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) ≤ kn
n
, a.s., for i = 1, . . . , n.

Case 1 If C(X)k(x,X, β0) is centered at 0 under β0, Let kn = O(n
1
2
δ+ 5

4 ) be the

constant mentioned in Bernstein’s Inequality. Since δ is between 0 and 1/2,

O

(
x2

nσ +Mx

)
= O

(
nδ+

5
2

nσ +Mn
1
2
δ+ 5

4

)
= O

(
n

1
2
δ+ 5

4

)
.

Hence by Proposition 4.3.1, for i = 1, . . . , n

P

{
n∑

j:j 6=i

C(Xj)k(Xi, Xj, β0) ≥ kn

∣∣∣∣ Xi

}
≤ e−k

2
n/(nσ+Mkn) = e−cn

1
2 δ+

5
4 .

By putting together all such sets for i = 1, . . . , n, we get

P

{
n∑

j:j 6=i

C(Xj)k(Xi, Xj, β0) ≥ kn

}
≤ e−k

2
n/(nσ+Mkn) = e−cn

1
2 δ+

5
4 .

Therefore

n∑
i=1

P

{
1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) ≥ kn
n

}
≤

n∑
i=1

e−n
1
2 δ+

5
4 <∞

By Borel-Cantelli lemma, the inequality above indicates that

P

{
lim sup
n→∞

1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) ≥ kn
n

}
= 0, (4.39)

which shows that

1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) = O

(
kn
n

)
= O

(
n

1
2
δ+ 1

4

)
,
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and that

1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) ≤ kn
n
, a.s. (4.40)

Case 2 C(X)k(x,X, β0) is centered at E {C(X)k(x,X, β0)} = µ(x, β0) 6= 0, then

by (4.39)

1

n

n∑
j:j 6=i

{C(Xj)k(Xi, Xj, β0)− µ(Xi, β0)} = O

(
kn
n

)
= O

(
n

1
2
δ+ 1

4

)
, (4.41)

and

1

n

n∑
j:j 6=i

{C(Xj)k(Xi, Xj, β0)− µ(Xi, β0)} ≤ kn
n
, a.s. (4.42)

From (4.41) and (4.42), we know that

1

n

n∑
j:j 6=i

C(Xj)k(Xi, Xj, β0) = µ(X1, β0) +O(n
1
2
δ+ 1

4 ) = O(n
1
2
δ+ 1

4 ) (4.43)

and

1

n

n∑
j 6=i

C(Xj)k(Xi, Xj, β0) ≤ kn + nµ(X1, β)

n
=
kn
n
, a.s. (4.44)

Plug (4.44) into (4.38), yielding an almost sure upper bound for (4.18.c)

4

n

n∑
i=1

Q(Xi, β0)2

k̄(Xi, β0)2
· kn
n
· kn
n

= O

(√
ln lnn

n

)
·O

(
n

1
2
δ+ 5

4

n

)
·O

(
n

1
2
δ+ 5

4

n

)
= O(nδ)

(4.45)

Therefore
n∑
i=1

‖mn(Xi,XXX, β)‖2/n is also O(nδ). This conclusion can be extended for

β0 ∈ Rp using the same strategy as the proof of Lemma 4.2.2. �

Proof of Proposition 4.2.2 Since Z∗n(XXX, β0) = max1≤i≤n ‖mn(Xi,XXX, β0)‖, write

1

n

n∑
i=1

‖mn(Xi,XXX, β)‖3 ≤ Z∗n(XXX, β0) · 1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖2, (4.46)
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By Proposition 4.2.1, Z∗n(XXX, β0) = o(n1/2). By Lemma 4.2.3, the second factor on

the right hand side of (4.46) is O(nδ) with δ between 0 and 1/2. Therefore

1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖3 = o(n1/2).

�
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Chapter 5: Technical Results II: Zero in the Convex Hull Theorems

In this chapter, we continue to discuss the technical results for Classic Estimat-

ing Equations (CEE) and Extended Estimating Equations (EEE), with the same

notations and assumptions in Chapter 4, from pages 65 - 68. We define a neigh-

bourhood of β0 such that for all β in this neighbourhood, the Empirical Likelihood

(EL) method has a unique maximizer with probability approaching 1.

Under the CEE setting, consider random samples X1, . . . , Xn from distribution

family Pθ, where θ = (β, λ) ∈ Θ × H, Θ ⊂ Rp and H infinite dimensional. Using

the Lagrange multiplier method, it can be shown that for fixed β, if there exists a

unique solution to
maxppp

n∏
i=1

pi where ppp = (p1, . . . , pn);

subject to
n∑
i=1

pi = 1, pi ∈ (0, 1),
n∑
i=1

pim(Xi, β) = 0,

(5.1)

then the solution is given by

p̂i(β,Xi,XXX) =
1

n
· 1

1 + ttrm(Xi, β)
,

where t = t(β,XXX) solves
n∑
i=1

m(Xi, β)

1 + ttrm(Xi, β)
= 0.

(5.2)
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A typical interpretation of p̂i(β,Xi,XXX) is that the distribution of X1 is approxi-

mated by the modified empirical measure
n∑
i=1

piδXi . This is why the condition

Eθ0 {m(X1, β0)} = 0

is rendered through the approximating distribution of X1 as
n∑
i=1

pim(Xi, β0) = 0

connecting the pi’s and β.

Owen in [32], and Qin and Lawless in [33], claimed that for a fixed β, a sufficient

condition for problem (5.2) to have a local unique solution is “zero in the convex

hull”, i.e., for fixed β ∈ Uβ0 , 000 ∈ Conv(β) ⊂ Rr, where

Conv ≡

{
n∑
i=1

pim(Xi, β) :
n∑
i=1

pi = 1, pi ∈ (0, 1), β ∈ Uβ0

}
. (5.3)

However, they did not state explicitly how the set Uβ0 in (5.3) is constructed, and

whether (5.3) is a deterministic fact, or an asymptotic result.

In the following section, we answer the two questions in the previous paragraph.

Then we generalize these conclusions to discontinuous estimating function m(x, ·).

In Section 5.2, we prove the existence and uniqueness of solutions to (5.1) under the

EEE setting with estimating function mn(x,xxx, β) that is continuous with respect

to β. For the discontinuous case, we prove the conclusion for the ϕ-transformation

model, which to our knowledge, is the broadest class of semiparametric models

satisfying the EEE definitions.
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5.1 Classic Estimating Equation

In this section, under the CEE setting, we establish the uniqueness of solutions to

maximization problem (5.1) initially for continuous estimating functions, then for

discontinuous ones.

5.1.1 Continuous Criterion Function

We prove the existence and uniqueness of solutions to (5.1) in the following steps.

First, we demonstrate that (5.3) is true when β = β0 and that p̂i(β0, Xi,XXX) is

the calculus maximizer of (5.1). Then, using the continuity of m(x, ·), we apply

Rolle’s theorem on the gradient of the Lagrangian of the negative logarithm of the

Profile Empirical Likelihood (pEL) function to prove the uniqueness of solution to

the second equation in (5.2). Finally, combining the results in the previous two

steps with a continuation method, we prove that there exists a neighbourhood of β0

on which (5.1) has a calculus maximum with probability approaching 1.

Let us start with the first step described in the previous paragraph, which is

showing 0 ∈ Conv(β0) with probability approaching 1.

Lemma 5.1.1 For i.i.d. random variables X1, . . . , Xn, assume that m(x, ·) is con-
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tinuous, and

E {m(X1, β0)} = 0; (5.4)

E
{
m(X1, β0)⊗2

}
= Σ is positive definite. (5.5)

E‖m(X1, β0)‖3 <∞. (5.6)

For any constant K > 0, let XXX = {Xi}∞i=1, t0 be a unit vector in Rp.

(a) Let λ0 be the smallest eigenvalue of Σ, and I ∈ Rp×p be the identity matrix,

define

A(1)
K,n =

{
XXX : inf

t0

1√
n

n∑
i=1

ttr0 m(Xi, β0) ≥ −K

}
, (5.7)

A(2)
ε,n =

{
XXX :

∥∥∥∥ 1

n

n∑
i=1

m(Xi, β0)⊗2 − Σ

∥∥∥∥
2

≤ ε

}
, (5.8)

A(3)
n =

{
XXX :

1

n

n∑
i=1

‖m(Xi, β0)‖3 ≤ 2 · E‖g(X1, β0)‖3

}
, (5.9)

A(4)
n =

{
XXX :

1

n

n∑
i=1

m(Xi, β0)⊗2 ≥ 1

2
λ0I

}
. (5.10)

Then for any ε ∈ (0, λ0), there exist Kε and Nε, such that

(i) for any n ≥ Nε, P
{
A(1)
Kε,n

}
≥ 1− ε;

(ii) the following limits are all identical to 1

lim
n1→∞

P

{ ⋂
n≥n1

A(2)
ε,n

}
, lim

n1→∞
P

{ ⋂
n≥n1

A(3)
n

}
, lim

n1→∞
P

{ ⋂
n≥n1

A(4)
n

}
.

(b) Let Conv(β0) be the convex hull of m(Xi, β0). For any ε > 0, there exist Kε

and Nε such that P {A∗ε} ≥ 1− ε, where

A∗ε =
⋂
n≥Nε

{
A(1)
Kε,n
∩ A(2)

ε,n ∩ A(3)
n ∩ A(4)

n

}
, (5.11)
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and for n > Nε and XXX ∈ A∗ε, P {0 ∈ int (Convn(β0)) |XXX ∈ A∗ε} ≥ 1−ε, where

in general, int(·) denotes the interior of a set.

Now, let us go back to the EL problem, which is essentially solving
maxppp

∏n
i=1 pi, where ppp = (p1, . . . , pn),

subject to pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pim(Xi, β) = 0,

(5.12)

for any fixed β. Given β, by the concavity of
n∑
i=1

ln(pi) in ppp, a unique maxi-

mum exists provided that 0 is in the interior of Convn(β), the convex hull of

m(X1, β), . . . ,m(Xn, β). By Lemma 5.1.1, for any ε, there exists Nε such that

for any n > Nε and XXX∞ ∈ Aε,

P {0 ∈ int (Conv(β0)) |XXX ∈ A∗ε} > 1− ε.

Thus for n > Nε, with β = β0, there exists a unique solution p̂pp0 to the maximization

problem in (5.12) with probability greater than 1− ε.

To conclude that the unique maximizer over ppp’s for fixed β = β0 is a calculus

maximizer, we need to show that there is a ball of dimension n−1−p for ppp’s within

which to take the derivative, where p is the dimension of m(X1, β0). Let 111 be an

1 × n vector with all entries equal to 1, 000 be a p × 1 vector with all entries equal

to 0, M0 = (m(X1, β0), . . . ,m(Xn, β0)) be a p × n matrix, and M = (111tr,M tr
0 )tr

be a (p + 1) × n matrix. Lemma 5.1.1 guarantees the existence and uniqueness of

solutions to maximization problem (5.12). Use p̂pp0 to denote that solution, then p̂pp0
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belongs to

P ≡

{
ppp : Mppp = (1,000tr)tr, all pi > 0,

n∑
i=1

pi = 1

}
(5.13)

For any vvv in the null space of M and α ∈ R, define

ppp =
1

1 + αvvv · 111
· (p̂pp0 + αvvv),

we know that Mppp = (1,000tr)tr, hence for small α such that the entries for ppp are all

positive, we know that ppp belongs to P . Furthermore, vvv is in the null space of M ,

and rank(M) = p + 1, so dim(P) = n − p − 1. Observing that XXX∞ ∈ A(2)
ε,n for

ε < λ0, there is a relative open set P of dimension n − p − 1 within which we can

take derivative.

Next, we give the form of the unique solution to (5.12) when β = β0 and n > Nε,

using Lagrange multipliers λ ∈ R and t ∈ Rp. Define G(ppp, λ, t) as

G =
n∑
i=1

ln pi − λ

{
n∑
i=1

pi − 1

}
− nttr

n∑
i=1

pim(Xi, β0)

To maximize the concave function G, differentiate G with respect to pi, i = 1, . . . , n,

then set the derivatives to be zero,

∂G

∂pi
=

1

pi
− λ− nttrm(Xi, β0) = 0, i = 1, . . . , n. (5.14)

Multiply the equations above by pi, then add them together,

n− λ
n∑
i=1

pi − nttr
n∑
i=1

pim(Xi, β0) = 0 (5.15)

By the constraints in (5.12), (5.15) implies that n − λ = 0, so n = λ. Therefore

from equation (5.14),

p̂i =
1

n {1 + ttr0 m(Xi, β0)}
(5.16)
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Since
n∑
i=1

p̂im(Xi, β0) = 000, the vector t must solve the following equation,

1

n

n∑
i=1

m(Xi, β0)

1 + ttrm(Xi, β0)
= 000. (5.17)

Important Event In Lemma 5.1.1, we proved that for any ε, there exists Nε such

that P {A∗ε} ≥ 1− ε, where

A∗ε =
⋂
n≥Nε

{
A(1)
Kε,n
∩ A(2)

ε,n ∩ A(3)
n ∩ A(4)

n

}
.

Furthermore, let Σ(β, β0) = Eβ0 {m(X1, β)⊗2}. Since Σ(β, β0) is continuous, and

Σ = Eβ0
{
m(X1, β0)⊗2

}
= Σ(β0, β0)

is positive definite, there exists Uβ0 , a neighbourhood of β0 such that for all β in

Uβ0 , matrix Σ(β, β0) is positive definite, i.e.,

Uβ0 ≡ {β : Σ(β, β0) is positive definite} . (5.18)

Then, consider the following class of functions,

G ≡ {m(x, β) : β ∈ Uβ0} ,

In Chapter 4, we assumed

(A.11) Let α = (x, β) ∈ Rd×Θ with Euclidean norm, and k(x, y, β) = kα(y). There

exists a measurable function b(y) : Rd 7→ R such that for any α1 6= α2,

|kα1(y)− kα2(y)| ≤ b(y)‖α1 − α2‖,

88



Since m(x, β) is Lipschitz continuous with respect to β, by Example 19.7 on page

271 of [41], we know that G is a Donsker class, which implies that

sup
β∈Uβ0

∥∥∥∥∥ 1

n

n∑
i=1

m(Xi, β)⊗2 − Σ(β, β0)

∥∥∥∥∥
2

a.s.−−→ 0,

therefore P
{
A(5)
ε,n

}
≥ 1− ε, where

A(5)
ε,n =

{
XXX : sup

β∈Uβ0

∥∥∥∥∥ 1

n

n∑
i=1

m(Xi, β)⊗2 − Σ

∥∥∥∥∥
2

≤ ε

2

}
,

Let λ0 be the smallest eigenvalue of Σ, and 0 < ε < 2λ0/3. For Lemma 5.1.2 through

Theorem 5.1.1, we restrict our discussion to XXX ∈ A+
ε , where the set A+

ε = A∗ε
⋂
A(5)
ε,n

and P {A+
ε } > 1− 2ε.

The following lemma states the uniquness of t = t(β) for β ∈ Uβ0 and XXX ∈ A+
ε .

The proof is given by contradiction using Rolle’s theorem.

Lemma 5.1.2 Under the assumptions of Lemma 5.1.1, and (A.11), for XXX ∈ A+
ε

and any fixed β in set Uβ0 defined in (5.18), if there exists a solution t to equation

g(t,XXX, β) = 0, then the solution must be unique a.s., where

g(t,XXX, β) =
1

n

n∑
i=1

m(Xi, β)

1 + ttrm(Xi, β)
,

Note that the unique solution of (5.12), denoted by p̂i in (5.16), must lie in (0, 1),

therefore 1 + ttrm(Xi, β) > 1/n, for all i. Define

Dβ(XXX) =

{
t : for all i, 1 + ttrm(Xi, β) >

1

n

}
. (5.19)

Our goal is to show that for any fixed β ∈ Uβ0 , there is a unique solution t(β) to

the maximization problem (5.12).
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Theorem 5.1.1 Under the assumptions of Lemma 5.1.1, for any β ∈ Uβ0 and for

any XXX ∈ A+
ε , there exists a unique solution t(β) ∈ Dβ(XXX) to the maximization

problem (5.12).

5.1.2 Discontinuous Criterion Function

When the criterion function m(x, β) is no longer continuous with respect to β,

many methods we used in the the continuous case no longer applies, for example,

Rolle’s theorem in Lemma 5.1.2 and the continuation method in Theorem 5.1.1.

Therefore we seek different ways to attain the existence and uniqueness of solutions

to maximization problem (5.1) for β in some neighbourhood of β0. We prove a more

general version of the “zero in the convex hull” theorem in the previous section,

namely, we demonstrate that the statement is true not only for convex hull Conv(β0),

but also true for Conv(β) with probability approaching 1, when β belongs to some

neighbourhood of β0 that is to be specified, i.e.,

000 ∈ Conv(β), for β ∈ U∗β0 (5.20)

If we can prove (5.20), then for any β ∈ U∗β0 , the maximization problem (5.1) is

guaranteed to have a unique solution for any β ∈ U∗β0 .

To reach this goal, instead of assigning m(Xi, β) with the constant probability

mass 1/n in Lemma 5.1.1, we construct a random probability vector as follows. Let

Wi be i.i.d. random variables, i = 1, . . . , n that follow an exponential distribution
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with E(W1) = 1, and also assume that {Wi}ni=1 is independent of {Xi}ni=1. Let

q(x, β) =
dPβ(x)

dPβ0(x)
(5.21)

be the Radon-Nikodym derivative of Pβ with respect to Pβ0 , and define

W ∗
i = Wiq(Xi, β), i = 1, . . . , n (5.22)

Then

E {W ∗
1 } =

∫∫
w
dPβ(x)

dPβ0(x)
dPβ0(x)dPW (w) =

∫
w

{∫
dPβ(x)

}
dPW (w)

=

∫
wdPW (w) = 1

and

E {W ∗
1 |X1} = E {W1q(X1, β)|X1} = q(X1, β) (5.23)

Define V = (V1, . . . , Vn) be a vector in the simplex ∆n defined in (5.72), where

Vi =
W ∗
i

n∑
i=1

W ∗
i

. (5.24)

We would like to show that 000 ∈ in (Convn(β)) with weights in (5.23). Assume that

(A.12) Assume that Σ2(β, β0) and Σ3(β, β0) are two continuous functions given by

Σ2(β, β0) = Eβ0
{
q2(X1, β)m(X1, β)⊗2

}
(5.25)

Σ3(β, β0) = Eβ0
{
q3(X1, β)‖m(X1, β)‖3

}
(5.26)

with Σ2(β0, β0) = Eβ0 {m(X1, β0)⊗2} and Σ3(β, β0) = Eβ0 {‖m(X1, β0)‖3}

Since Σ2(β, β0) and Σ3(β, β0) are both continuous with respect to β, we define

U∗β0 ≡ {β : Σ2(β, β0) is positive definite, and Σ3(β, β0) is bounded} . (5.27)
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Now we are ready to establish the “zero in the convex hull” theorem for discontin-

uous estimating function. The following lemma is a generalization of Lemma 5.1.1,

which essentially states 0 ∈ Conv(β) for all β ∈ U∗β0 .

Lemma 5.1.3 Assume that (5.4)-(5.6) in Lemma 5.1.1, and (A.12) are satisfied.

For β ∈ U∗β0 defined in (5.27), for any constant K > 0, let XXX = {Xi}∞i=1, t0 be a

unit vector in Rp.

(a) Let λ2(β, β0) be the smallest eigenvalue of Σ2(β, β0). Define

B(1)
K,n =

{
XXX : inf

t0

1√
n

n∑
i=1

ttr0 q(Xi, β)m(Xi, β) ≥ −K

}
, (5.28)

B(2)
ε,n =

{
XXX :

∥∥∥∥ 1

n

n∑
i=1

q(Xi, β)m(Xi, β)⊗2 − Σ∗(β, β0)

∥∥∥∥
2

≤ ε

}
, (5.29)

B(3)
n =

{
XXX :

1

n

n∑
i=1

‖q(Xi, β)m(Xi, β)‖3 ≤ 2 · Σ3(β, β0)

}
, (5.30)

B(4)
n =

{
XXX :

1

n

n∑
i=1

q(Xi, β)m(Xi, β)⊗2 ≥ 1

2
λ∗0(β, β0)I

}
. (5.31)

Then for any ε, there exists Kε and Nε, such that

(i) for any n ≥ Nε, P
{
B(1)
Kε,n

}
≥ 1− ε;

(ii) the following limits are all identical to 1,

lim
n1→∞

P

{ ⋂
n≥n1

B(2)
ε,n

}
= lim

n1→∞
P

{ ⋂
n≥n1

B(3)
n

}
= lim

n1→∞
P

{ ⋂
n≥n1

B(4)
n

}
.

(b) Let Convn(β) be the convex hull of m(Xi, β). For any ε > 0, there exist Kε

and Nε such that P {B∗ε} ≥ 1− ε, where

B∗ε =
⋂
n≥Nε

{
B(1)
Kε,n
∩ B(2)

ε,n ∩ B(3)
n ∩ B(4)

n

}
, (5.32)

and for n > Nε and XXX ∈ B∗ε , P {0 ∈ Convo
n(β) |XXX∞ ∈ B∗ε} ≥ 1− ε.
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5.2 Extended Estimating Equation

In this section, we extend the conclusions in the previous section when the con-

straints of the EL maximization is an EEE. In Section 5.2.1, we prove the uniqueness

of solutions to the EL maximization in (5.1) for mn(x,xxx, β) that is continuous with

respect to β. In Section 5.2.2, we discuss the case when mn(x,xxx, β) is no longer

continuous with respect to β.

5.2.1 Continuous Criterion Function

We can make the same conclusion for mn(Xi,XXX, β0) if we can show that (a)

in the Lemma 5.1.1 is true. Note that the conclusions of (5.7) and (5.9) are

guaranteed by the asymptotic normality of n−1/2
n∑
i=1

mn(Xi,XXX, β0) and the order

of
n∑
i=1

‖mn(Xi,XXX, β0)‖3, respectively, which has been proved in Lemma 4.2.2 and

Proposition 4.2.2. As for the conclusion regarding (5.8) and (5.10), it suffices to

show

1

n

n∑
i=1

mn(Xi,XXX, β0)⊗2 P−−→ Σ (5.33)

We will discuss the conditions for (5.33) in the following proposition, then state and

prove a result for continuous mn(x,xxx, β) that is parallel to Lemma 5.1.1.

Proposition 5.2.1 Let Yi, i = 1, 2 be random variables that are i.i.d. as X1, and

are independent of XXX = (X1, . . . , Xn). Under assumptions (A.2), (A.4), (A.9), and

(A.10),

1

n

n∑
i=1

mn(Xi,XXX, β0)⊗2 P−−→ Σ, (5.34)
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where

Σ = E

{
Q(Y1, β0)2

[
C(Y1)− E {C(Y2)k(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

]⊗2
}
. (5.35)

Next, we present a result that is parallel to Lemma 5.1.1 for extended estimating

equations.

Lemma 5.2.1 For i.i.d. random variables XXXn = (X1, . . . , Xn), assume that the es-

timating function mn(Xi,XXX, β0) satisfies (A.2), (A.9) and (A.10). For any constant

K > 0, let XXX∞ = {Xi}∞i=1, and t0 be a unit vector in Rp.

(a) Let λ0 be the smallest eigenvalue of Σ, and I ∈ Rp×p be the identity matrix,

define

C(1)
K,n =

{
XXX∞ : inf

t0

1√
n

n∑
i=1

ttr0 mn(Xi,XXX, β0) ≥ −K

}
, (5.36)

C(2)
ε,n =

{
XXX∞ :

∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β0)⊗2 − Σ

∥∥∥∥
2

≤ ε

}
, (5.37)

C(3)
n =

{
XXX∞ :

1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖3 ≤ C

}
, (5.38)

C(4)
n =

{
XXX∞ :

1

n

n∑
i=1

mng(Xi,XXX, β0)⊗2 ≥ 1

2
λ0I

}
. (5.39)

where C in (5.38) is a constant in R that is greater than E‖mn(X1,XXX, β0)‖3.

Then for any ε, there exists Kε and Nε, such that

(i) for any n ≥ Nε, P
{
C(1)
Kε,n

}
≥ 1− ε;

(ii) the following limits are all identical to 1,

lim
n1→∞

P

{ ⋂
n≥n1

C(2)
ε,n

}
= lim

n1→∞
P

{ ⋂
n≥n1

C(3)
n

}
= lim

n1→∞
P

{ ⋂
n≥n1

C(4)
n

}
.
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(b) Let Conv(β0) be the convex hull of mn(Xi,XXX, β0). For any ε > 0, there exist

Kε and Nε such that P {C∗ε} ≥ 1− ε, where

C∗ε =
⋂
n≥Nε

{
C(1)
Kε,n
∩ C(2)

ε,n ∩ C(3)
n ∩ C(4)

n

}
, (5.40)

and for n > Nε and XXX∞ ∈ C∗ε , P {0 ∈ Convn(β0)o} ≥ 1− ε.

Now, let us go back to the EL problem, which for any fixed β, is essentially the

following maximization problem
maxppp

∏n
i=1 pi, where ppp = (p1, . . . , pn)

subject to pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pimn(Xi,XXX, β) = 0

(5.41)

Note that for a given β, a unique maximum exists provided that 0 is in the inte-

rior of set Conv(β), the convex hull of mn(X1,XXX, β), . . . ,mn(Xn,XXX, β). Since by

Lemma 5.2.1, for any ε, there exists Nε such that for any n > Nε and XXX∞ ∈ Cε,

P {0 ∈ Convo(β0)} > 1− ε, we know that for n > Nε, there exist a unique solution

denoted by p̂pp0 to the maximization problem in (5.41) with β = β0, with probability

greater than 1− ε.

To know that the unique maximizer is a calculus maximizer, we need to know

that there is a ball of dimension n−1−p for ppp’s within which to take the derivative,

where p is the dimension of mn(X1,XXX, β). Let 111 be an 1× n vector with all entries

equal to 1, and 000 be a p× 1 vector with all entries equal to 0,

M0 = (mn(X1,XXX, β), . . . ,mn(Xn,XXX, β))
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be a p×n matrix, and M = (111tr,M tr
0 )tr be a (p+1)×n matrix. Suppose there exists

one solution to the maximization problem (5.41) denoted by p̂pp0. Then p̂pp0 belongs to

P ≡

{
ppp : Mppp = (1,000tr)tr, all pi > 0,

n∑
i=1

pi = 1

}
(5.42)

For any vvv in the null space of M and α ∈ R, define

ppp =
1

1 + αvvv · 111
· (p̂pp0 + αvvv),

we know that Mppp = (1,000tr)tr, hence for small α such that the entries for ppp are all

positive, we know that ppp belongs to P . Furthermore, vvv is in the null space of M ,

and dim(M) = p + 1, so dim(P) = n − p − 1. Therefore we know that there is a

relative open set P of dimension n− p− 1 within which we can take derivative.

Next, we give the form of the unique solution to (5.41) when β = β0 and n > Nε,

using Lagrange multipliers λ ∈ R and t ∈ Rp. Define G(ppp, λ, t) as

G =
n∑
i=1

ln pi − λ

{
n∑
i=1

pi − 1

}
− nttr

n∑
i=1

pimn(Xi,XXX, β0)

To maximize the concave function G, differentiate G with respect to pi, i = 1, . . . , n,

then set the derivatives to be zero,

∂G

∂pi
=

1

pi
− λ− nttrmn(Xi,XXX, β0) = 0, i = 1, . . . , n. (5.43)

Multiply the equations above by pi, then add them together,

n− λ
n∑
i=1

pi − nttr
n∑
i=1

pimn(Xi,XXX, β0) = 0 (5.44)

By the constraintts in (5.41), (5.44) indicates that n − λ = 0, so n = λ. Therefore

from equation (5.43),

p̂i =
1

n {1 + ttr0 mn(Xi,XXX, β0)}
(5.45)
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Since
n∑
i=1

p̂imn(Xi,XXX, β0) = 000, the vector t must solve the following equation,

1

n

n∑
i=1

mn(Xi,XXX, β0)

1 + ttrmn(Xi,XXX, β0)
= 000. (5.46)

Important Event In Lemma 5.2.1, we proved that for any ε, there exists Nε such

that P {C∗ε} ≥ 1− ε, where

C∗ε =
⋂
n≥Nε

{
C(1)
Kε,n
∩ C(2)

ε,n ∩ C(3)
n ∩ C(4)

n

}
.

Furthermore, let

Σ(β, β0) = E

{
Q(Y1, β)2

[
C(Y1)− E {C(Y2)k(Y1, Y2, β)|Y1}

E {k(Y1, Y2, β)|Y1}

]⊗2
}
. (5.47)

Since Σ(β, β0) is continuous, and by (5.35),

Σ = E

{
Q(Y1, β0)2

[
C(Y1)− E {C(Y2)k(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

]⊗2
}

= Σ(β0, β0)

is positive definite, there exists Uβ0 , a neighbourhood of β0 such that for all β in

Uβ0 , matrix Σ(β, β0) is positive definite, i.e.,

Uβ0 ≡ {β : Σ(β, β0) is positive definite} . (5.48)

Then, consider the following class of functions,

G ≡ {mn(Xi,XXX, β) : β ∈ Uβ0} ,

By Example 19.7 on Page 271 of [41] and Lemma 4.2.1, we know that family G is a

Donsker class, which implies that

sup
β∈Uβ0

∥∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β)⊗2 − Σ(β, β0)

∥∥∥∥∥
2

a.s.−−→ 0,
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therefore P
{
C(5)
ε,n

}
≥ 1− ε, where

C(5)
ε,n =

{
XXX : sup

β∈Uβ0

∥∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β)⊗2 − Σ

∥∥∥∥∥
2

≤ ε

2

}
,

Let λ0 be the smallest eigenvalue of Σ, and 0 < ε < λ0. For Lemma 5.2.2 through

Theorem 5.2.1, we restrict our discussion to XXX∞ ∈ C+
ε , where the set

C+
ε = C∗ε

⋂
C(5)
ε,n (5.49)

and P {C+
ε } > 1− 2ε.

Lemma 5.2.2 Under the assumptions of Lemma 4.2.1 and Lemma 5.1.1, for XXX∞ ∈

C+
ε and any β in set Uβ0 defined in (5.48), if there exists a solution t to equation

g(t,XXX, β) = 0, then the solution must be unique, where

g(t,XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β)

1 + ttrmn(Xi,XXX, β)
, (5.50)

Note that the unique solution of (5.41), denoted by p̂i in (5.45), must lie in (0, 1),

therefore 1 + ttrmn(Xi,XXX, β0) > 1/n, for all i. Define

Dβ(XXX) =

{
t : for all i, 1 + ttrmn(Xi,XXX, β) >

1

n

}
. (5.51)

Our goal is to show that for any fixed β ∈ Uβ0 , there is a unique solution t(β) to

the maximization problem (5.41).

Theorem 5.2.1 Under assumptions of Lemma 5.2.1, for any β ∈ Uβ0 and XXX ∈ C+
ε ,

there exists a unique solution t(β) to the maximization problem (5.41).
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5.2.2 Discontinuous Criterion Function

Similar to the strategy with used in the proof under CEE settings, when the

criterion function mn(Xi,XXX, β) is no longer continuous with respect to β, we use

random variables instead of the fixed constant 1/n as the probability mass assigned

to each mn(Xi,XXX, β), i = 1, . . . , n. More specifically, let Pβ0(x) be the cumulative

density function of X1, and q(x, β) be the Radon-Nicodym derivative of Pβ(x) with

respect to Pβ0(x), i.e.,

q(x, β) =
dPβ(x)

dPβ0(x)
, (5.52)

Let Y1 ∼ Pβ0 be independent of XXX∞ = {Xi}∞i=1, and

V (Xi, β) = Q(Xi, β)

{
C(Xi)−

E {C(Y1)k(Xi, Y1, β)|Xi}
E {k(Xi, Y1, β)|Xi}

}
(5.53)

We claim that E {V (Xi, β0)} = 0 because,

0 = E {mn(Xi,XXX, β0)} = lim
n→∞

E {mn(Xi,XXX, β0)}

= E
{

lim
n→∞

mn(Xi,XXX, β0)
}

= E
{
E
{

lim
n→∞

mn(Xi,XXX, β0)|X1

}}
= E {V (X1, β0)} ,

(5.54)

therefore

Eβ0 {q(X1, β)V (X1, β)} =

∫
V (x, β) · dPβ(x)

dPβ0(x)
dPβ0(x) = 0.

Assume that

Eβ0
{
q2(X1, β)

}
<∞, for all β ∈ Uβ0 , (5.55)

then by the CLT, for any t0 ∈ Rp with ‖t0‖ = 1 and Σ∗(β, , β0) = Eβ0 {q2(X1)V (X1, β)⊗2},

1√
n

n∑
i=1

q(Xi)t
tr
0 V (Xi, β)

D−−→ N(0, ttr0 Σ∗(β, , β0)t0) (5.56)
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At this point, we would like to point two facts. First, by (5.54), V (Xi, β) is eligible

as a criterion function of CEE, and based on the discussion in the previous sections,

there exists Uβ0 such that 0 ∈ Conv(β), for all β ∈ Uβ0 . Another heuristic observa-

tion is that mn(Xi,XXX, β) and V (Xi, β) are “close” in some sense because they only

distinct by the quotient term, and by LLN and Slutsky’s lemma, the quotient term

in mn(Xi,XXX, β) converges to that in V (Xi, β) in probability.

However, in order to pass the desirable feature of V (Xi, β) to mn(Xi,XXX, β), for

any fixed β ∈ Uβ0 , we need n−1/2‖mn(x,XXX)−V (x, β)‖ to be bounded uniform in x,

i.e.,

sup
x∈X
‖mn(x,XXX, β)− V (x, β)‖ = OP (n−1/2). (5.57)

By Example 19.11 in [41] by Van der Vaart, if we know that

(i) function k(x, ·, ·) has bounded variation

(ii) for any ε > 0 and δε > 0, let Xε ≡ {x : E {k(x,X, β)} > δε}, then for any

constant cε > 0, there exists Nε such that for any n > Nε,

P


∥∥∥∥∥∥ 1√

n

∑
i:Xi∈X cε

mn(Xi,XXX, β)

∥∥∥∥∥∥ ≥ cε

 < ε, (5.58)

then (5.57) is guaranteed.

Since up to now, the broadest class of semiparametric models for which the struc-

tural parameter can be defined via EEE is the ϕ-transformation model discussed in

Chapter 3, for the rest of this chapter, we restrict our attention to the mn(Xi,XXX, β)

under the ϕ-transformation model assumptions.
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Recall that under the ϕ-transformation model assumption, k(x, ·, ·) is an indicator

function, therefore (ii) on page 100 is satisfied. Let us consider a martingale assump-

tion that guarantees (ii) in the previous lemma. Assume thatXi = (Ti, Ci, Zi), where

the lifetime Ti and the right censoring variable Ci are independent conditional on

covariate Zi. Recall that under the ϕ-transformation model assumption,

Ti = ϕ(εi, β
tr
0 Zi), (5.59)

where ϕ(x, ·) is strictly increasing, εi is the residual with distribution function F (x)

and hazard rate λ(x). Let ζi be the residual when lifetime is censored, i.e., Ci =

ϕ(ζi, β
tr
0 Zi). Use the classic method in [21] and construct the compensated counting

process martingales

Mi

{
ϕ(u, βtr0 Zi)

}
= Ni

{
ϕ(u, βtr0 Zi)

}
−
∫ u

−∞
λ(x)Yi

{
ϕ(x, βtr0 Zi)

}
dx (5.60)

is a martingale with respect to measure Pβ0 and filtration

Fn(u) = σ(Xi, Ni(ϕ(s, βtr0 Zi)), Yi(ϕ(s, βtr0 Zi)) : s ≤ u, i = 1, . . . , n)

where Vi = min(Ti, Ci) is the observed time, ∆i = I {Ti ≤ Ci} is the non-censored

indicator, Ni(x) = I {Ti ≤ x,∆i = 1}, Yi(x) = I {Vi ≥ x} is the at-risk indicator,

Q(Xi, β) = ∆i, C(Xi) = C(Zi), k(Xi, Xj, β) = Yj(ϕ(εi, β
tr
0 Zj)), (5.61)

Then we can write

Sn(β0) =
n∑
i=1

mn(Xi,XXX, β0)

=
n∑
i=1

Q(Xi, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}

=
n∑
i=1

∆i

{
C(Zi)−

∑n
j=1C(Zj)Yj {ϕ(εi, β

tr
0 Zj)}∑n

j=1 Yj {ϕ(εi, βtr0 Zj)}

} (5.62)
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By (5.60), together with the model assumption (5.59), on the residual scale,

Sn(β0) =
n∑
i=1

∫
dNi

{
ϕ(u, βtr0 Zi)

}{
C(Zi)− C̄(u, β0)

}
=

n∑
i=1

∫
dMi

{
ϕ(u, βtr0 Zi)

}{
C(Zi)− C̄(u, β0)

} (5.63)

where

C̄(u, β0) =

∑n
j=1C(Zj)Yj {ϕ(u, βtr0 Zj)}∑n

j=1 Yj {ϕ(u, βtr0 Zj)}

Note that Eβ0 {Sn(β0)} = 0 due to the martingale property. Recall that the pre-

dictable variation process 〈dMi, dMi〉 = λ(u)Yi {ϕ(u, βtr0 Zi)} du as mentioned in [1],

hence

V ar {Sn(β0)} = E

{∫ n∑
i=1

{
C(Zi)− C̄(u, β0)

}2
λ(u)P

{
Vi ≥ ϕ(u, βtr0 Zi)

}
du

∣∣∣∣ ZZZ
}

Under assumption (A.2), ‖C(x)‖ < b, for all x ∈ X , therefore

∥∥V ar {n−1/2Sn(β0)
}∥∥ ≤ 4b2

n

n∑
i=1

∫
λ(u)S(u)du ≤ 4b2.

Now that we have established (5.57), for any ε > 0, there exists Cε and Nε such

that for any n > Nε,

sup
x
‖mn(x,XXX, β)− V (Xi, β)‖ ≤ Cε√

n
, w.p. no less than 1− ε

therefore P
{
C(6)
ε,n

}
> 1− ε, where

C(6)
ε,n ≡

{
XXX : sup

x
‖mn(x,XXX, β)− V (Xi, β)‖ ≤ Kε√

n

}
, (5.64)

Let q(x, β) be he Radon-Nikodym derivative defined in (5.52), and as we have as-

sumed in (5.55), E {q(X1, β)2} < ∞, for any β ∈ Uβ0 . Then by the law of large
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numbers, any fixed β ∈ Uβ0 , we know that P
{
C(7)
ε,n

}
> 1− ε, where

C(7)
ε,n ≡

{
XXX :

1

n

n∑
i=1

q(Xi, β)2 < Eβ0
{
q(X1, β)2

}}
, (5.65)

Now, we can update the definition of C+
ε in (5.49) by including C

(6)
ε,n and C

(7)
ε,n, namely,

C+
ε ≡ C∗ε

⋂{
7⋂
i=5

C(i)
ε,n

}
, (5.66)

and P {C+
ε } > 1− 4ε for n > Nε.

Theorem 5.2.2 Under assumptions of (5.57), for any β ∈ Uβ0 and XXX∞ ∈ C+
ε , 0

belongs to int (Conv(β)).
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5.3 Some Proofs

5.3.1 Proofs Under the CEE Setting

Let us state two widely used lemmas without proof. The Lyapunov Central Limit

Theorem was found in Chapter 27 of [6], and the Hyperplane Separation Theorem

was found in Chapter 2 of [7].

Lemma 5.3.1 (Lyapunov Central Limit Theorem) Suppose Z1, . . . , Zn are in-

dependent random variables, each with finite expected value µi and variance σ2
i .

Define

s2
n =

n∑
i=1

σ2
i

If for some δ > 0, the Lyapunovs condition

1

s2+δ
n

n∑
i=1

E
[
|Zi − µi|2+δ

]
→ 0 (5.67)

as n → ∞ is satisfied, then a sum of (Zi − µ)/sn converges in distribution to a

standard normal random variable, as n goes to infinity:

1

sn

n∑
i=1

(Zi − µi)
D−→ N(0, 1). (5.68)

Lemma 5.3.2 (Hyperplane Separation Theorem) Let A and B be two dis-

joint nonempty convex sets. If A is open, then there exist a nonzero vector v and

real number c such that

〈x, v〉 > c and 〈y, v〉 ≤ c

for all x in A and y in B.
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In general, for two matrices A and B in Rp×p

A > B ⇔ A−B is positive definite.

Proof of Lemma 5.1.1 First, let us show that (a) is true. Under assumptions

(5.4)-(5.6), by law of large numbers, we know that (ii) is true. Note that by the

multivariate central limit theorem,

Sn =
1√
n

n∑
i=1

m(Xi, β0)
D−−→ S∞ ∼ N(0,Σ). (5.69)

Since S∞ follows a multivariate normal distribution, for any ε > 0 and any unit

vector t0 ∈ Rp, there exists Kε such that

P

{
inf
t0
ttr0 S∞ < −Kε

}
<
ε

2
. (5.70)

By (5.69), there exists Nε such that for any n > Nε,∣∣∣∣P {inf
t0
ttr0 Sn < −Kε

}
− P

{
inf
t0
ttr0 S∞ < −Kε

} ∣∣∣∣ < ε

2
(5.71)

Combining (5.70) and (5.71), we conclude that P {inft0 t
tr
0 Sn < −Kε} < ε, hence

the conclusion for (i) is also true.

Next, we prove (b) using Lemma 5.3.2. Let Convn(β0) be the convex hull of

m(Xi, β0), then we want to show that the two sets

A = {0} , B = int (Convn(β0)) =

{
n∑
i=1

vim(Xi, β0); v ∈ ∆n

}

are not separated, where

∆n =

{
v = (v1, . . . , vn) :

n∑
i=1

vi = 1, vi ∈ (0, 1)

}
. (5.72)
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By Lemma 5.3.2, the statement 0 ∈ Convo
n(β0) is equivalent to

∀t0 ∈ Rp with ‖t0‖ = 1 and ∀a ≤ 0,

∃z ∈ int (Convn(β0)) such that ttr0 z > a.

(5.73)

To prove (5.73), we will show in the following paragraphs that for any ε > 0,

nonpositive constant a = −c/
√
n and vector t0 ∈ Rp with ‖t0‖ = 1, there exists Nε

such that for n > Nε, given XXX ∈ A∗ε

inf
t0
P

{
ttr0

n∑
i=1

Vim(Xi, β0) ≥ − c√
n

∣∣∣∣ XXX
}
> 0, for XXX ∈ A∗ε, (5.74)

where we consider V = v as a continuously distributed random vector in symplex

denoted by ∆n, and z in (5.73) for each t0 is a value
n∑
i=1

Vi(ω)m(Xi, β0) for ω in the

event where the probability is positive in (5.74). Note that (5.74) is true if we can

prove the case when a = 0, namely, for n > Nε,

inf
t0
P

{
ttr0

n∑
i=1

Vim(Xi, β0) ≥ 0

∣∣∣∣ XXX
}
> 0, for XXX ∈ A∗ε (5.75)

We prove (5.75) by constructing V in the following way. Let Wi be i.i.d. random

variables that follow an exponential distribution with mean that equals to 1, and

let V = (V1, . . . , Vn) with

Vi =
Wi
n∑
i=1

Wi

. (5.76)
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Let W =
n∑
i=1

Wi/n and t0 be a unit vector in Rp, then the probability in (5.75) can

be written as

P

{
ttr0

n∑
i=1

Vim(Xi, β0) ≥ 0

∣∣∣∣ XXX
}

=P

{
1√
n

n∑
i=1

ttr0 Wim(Xi, β0) ≥ 0

∣∣∣∣ XXX
}

=P

{
1√
n

n∑
i=1

ttr0 m(Xi, β0) +
1√
n

n∑
i=1

ttr0 (Wi − 1)m(Xi, β0) ≥ 0

∣∣∣∣ XXX
}

=P

{
1√
n

n∑
i=1

ttr0 (Wi − 1)m(Xi, β0) ≥ − 1√
n

n∑
i=1

ttr0 m(Xi, β0)

∣∣∣∣ XXX
}

(5.77)

Combining (5.77) and the conclusion (i) in (a), we obtain for n > Nε, any nonneg-

ative constant Kε, and XXX ∈ A∗ε

P

{
ttr0

n∑
i=1

Vim(Xi, β0) ≥ 0

∣∣∣∣ XXX
}

≥ P

{
1√
n

n∑
i=1

ttr0 (Wi − 1)m(Xi, β0) ≥ Kε

∣∣∣∣ XXX
} (5.78)

Next, we show that the term n−1/2
n∑
i=1

ttr0 (Wi−1)m(Xi, β0) in (5.78) satisfies (5.67)

in Lemma 5.3.1, with the choice of δ = 1, Zi = ttr0 (Wi − 1)m(Xi, β0), and

µi = E
{

(Wi − 1) · ttr0 m(Xi, β0)|Xi

}
= 0;

σ2
i = var

{
(Wi − 1) · ttr0 m(Xi, β0)|Xi

}
= ttr0 m(Xi, β0)⊗2t0.

Let s2
n = ttr0

{
n∑
i=1

m(Xi, β0)⊗2

}
t0, then the left hand side of (5.67) becomes

1

s3
n

n∑
i=1

E
{
‖(Wi − 1) · ttr0 m(Xi, β)‖3|Xi

}
≤
(

2

n−3/2s3
n

)
·

(
1

n

n∑
i=1

‖m(Xi, β0)‖3

)
·
(

1√
n

) (5.79)
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By Lemma 5.3.1, given XXX ∈ A∗ε, it follows that n−1/2
n∑
i=1

ttr0 (Wi − 1)m(Xi, β0) is

asymptotically normal, i.e., for any unit vector s ∈ Rp,

n−1/2

n∑
i=1

(Wi − 1) · strm(Xi, β0)
D−−→ N

(
0, strΣs

)
, with probability 1. (5.80)

Note that by the strong law of large numbers, W converges to EW1 = 1 almost

surely, therefore for n > Nε, constant Kε > 0, and XXX ∈ A∗ε

P

{
inf
s

[
1√
n

n∑
i=1

(Wi − 1)strm(Xi, β0)

]
≥ Kε

∣∣∣∣ XXX
}
> 0. (5.81)

Combining (5.77), (5.78) and (5.81), we get that for any n > Nε, constant a =

−c/
√
n, unit vector t0 ∈ Rp, and XXX ∈ B∗ε ,

P

{
ttr0

n∑
i=1

Vim(Xi, β0) ≥ 0

∣∣∣∣ XXX
}

≥ P

{
inf

s∈Rp:‖s‖=1

1√
n

n∑
i=1

(Wi − 1)strm(Xi, β0) ≥ Kε

∣∣∣∣ XXX
}
> 0,

(5.82)

and hence we complete the proof. �

Lemma 5.3.3 (Implicit Function Theorem) Let f : Rn+m → Rm be a contin-

uously differentiable function, and let Rn+m have coordinates (x, y). Fix a point

(a, b) = (a1, . . . , an, b1, . . . , bm) with f(a, b) = c, where c ∈ Rm. If the Jacobian

matrix Jf,y(a, b) = [(∂fi/∂yj)(a, b)]is invertible, then there exists an open set U

containing a, an open set V containing b, and a unique continuously differentiable

function g : U → V such that

{(x, g(x))|x ∈ U} = {(x, y) ∈ U × V |f(x, y) = c}.
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Proof of Lemma 5.1.2 For ε smaller than λ0, the smallest eigenvalue of Σ, on

the event A+
ε , for any fixed β ∈ Uβ0 ,∥∥∥∥∥ 1

n

n∑
i=1

m(Xi, β)⊗2 − Σ(β, β0)

∥∥∥∥∥
2

<
ε

2

Since β ∈ Uβ0 , we know that Σ(β, β0) is positive definite, hence

1

n

n∑
i=1

m(Xi, β)⊗2 is positive definite for β ∈ Uβ0 . (5.83)

By contradiction, we can show that the conclusion is true for any fixed β ∈ Uβ0 .

Suppose that for a fixed β ∈ Uβ0 , there exist distinct t1 and t2 such that

g(t1,XXX, β) = g(t2,XXX, β) = 0.

Therefore by Rolle’s theorem from [15], there exists s ∈ (0, 1) such that for t3 =

st1 + (1− s)t2, ∂g(t3,XXX, β)/∂s = 0, i.e.,

(t1 − t2)tr

{
1

n

n∑
i=1

m(Xi, β)⊗2

(1 + ttr3 m(Xi, β))2

}
(t1 − t2) = 0, (5.84)

which implies

1

n

n∑
i=1

m(Xi, β)⊗2 is singular,

contradicting (5.83). �

Proof of Theorem 5.1.1 Define C in the following way:

C ≡ {β∗ ∈ Uβ0 : ∃ rβ∗ > 0 such that for any β ∈ Brβ∗ (β
∗),

there exists t = t(β) such that m(t,XXX, β) = 0},
(5.85)

where

g(t,XXX, β) =
1

n

n∑
i=1

m(Xi, β)

1 + ttrm(Xi, β)
. (5.86)
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First, we show that for any fixed β∗ such that the equation g(t,XXX, β∗) = 0 has

a solution t = t∗, then β∗ ∈ C. By (5.86), g(t∗,XXX, β∗) = 0 implies 000 belongs

to int (Convn(β∗)), consequently, there exists a unique solution to the maximizing

problem (5.12) with the choice of β = β∗. Since this unique solution is bounded by

0 and 1, i.e.,

1

n
· 1

1 + t∗trm(Xi, β∗)
∈ (0, 1) for i = 1, . . . , n,

we know that t∗ ∈ Dβ∗(XXX). Since g(t∗,XXX, β∗) = 0, ∂g(t,XXX, β)/∂t|(t∗,β∗) is neg-

ative definite. By the implicit function theorem, there exists rβ∗ such that for

β ∈ Brβ∗ (β
∗), equation g(t,XXX, β) = 0 has a solution t = t(β). Therefore t∗ ∈ C.

In particular, since we have shown in (5.16) that when β = β0, there exists t0

such that g(t0,XXX, β0) = 0, we know that the conclusion in the previous paragraph

is true for there is β = β0, i.e., β0 ∈ C.

Next, we show that C = Uβ0 , i.e., for any β∗ ∈ Uβ0 , β∗ also belongs to C. Let

ρmax = sup {s : β0 + r(β∗ − β0) ∈ C, for all 0 < r < s} , (5.87)

By contradiction, we can show that ρmax ≥ 1. Otherwise, suppose ρmax < 1. By

equation (5.87), we know that

β = β0 + r(β∗ − β0) ∈ C, for all r < ρmax (5.88)

Let {rk}∞k=1 be a series of increasing positive numbers that are bounded by ρmax,

and

βk = β0 + rk(β
∗ − β0), for 0 < rk < ρmax. (5.89)
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Therefore by (5.88), βk ∈ C, which together with (5.85) - (5.87) implies for each βk,

1

n

n∑
i=1

m(Xi, βk)

1 + t(βk)trm(Xi, βk)
= 0 and 1 + ttr(βk)m(Xi, βk) ≥

1

n
(5.90)

Let

βmax = lim
k→∞

βk = β0 + ρmax(β∗ − β0) (5.91)

then by taking the limit of (5.90) as k goes to ∞,

1

n

n∑
i=1

m(Xi, βmax)

1 + t(βmax)trm(Xi, βmax)
= 0. (5.92)

Therefore 000 belongs to int (Convn(βmax)). Consequently, there exists a unique solu-

tion to the maximizing problem (5.12) with β = βmax. Since the unique solution is

in (0, 1), we know that t(βmax) ∈ Dβmax(XXX). Similar to the previous proof, βmax ∈ C.

By the definition of C, there exists rmax such that for all β ∈ Brmax(βmax), we know

that t = t(β) solves g(t,XXX, β) = 0. Therefore β = β0 + r(β∗ − β0) ∈ C, where

r = ρmax + rmax/4 > ρmax

contradicts the definition of ρmax, hence ρmax ≥ 1 and we conclude that β∗ ∈ C. �

Proof of Lemma 5.1.3 First, let us show that (a) is true. By the LLN, we know

that statement (ii) is true. Note that

E {q(X1, β)m(X1, β)} =

∫
m(x, β)

dPβ(x)

dPβ0(x)
dPβ0(x) = 0,

by the multivariate central limit theorem,

Sn =
1√
n

n∑
i=1

q(Xi, β)m(Xi, β)
Dβ0−−→ S∞ ∼ N(0,Σ∗(β, β0)). (5.93)
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Since S∞ follows a multivariate normal distribution, for any ε > 0 and any unit

vector t0 ∈ Rp, there exists Kε such that

P

{
inf
t0
ttr0 S∞ < −Kε

}
<
ε

2
. (5.94)

By (5.93), there exists Nε such that for any n > Nε,∣∣∣∣P {inf
t0
ttr0 Sn < −Kε

}
− P

{
inf
t0
ttr0 S∞ < −Kε

} ∣∣∣∣ < ε

2
(5.95)

Combining (5.94) and (5.95), we conclude that P {inft0 t
tr
0 Sn < −Kε} < ε, hence

the conclusion for (i) is also true.

Next, we prove (b) using Lemma 5.3.2. Let Convn(β) be the convex hull of

m(Xi, β), then we want to show that the two sets

A = {0} , B = Convn(β) =

{
n∑
i=1

vim(Xi, β); v ∈ ∆n

}

are not separated, where

∆n =

{
v = (v1, . . . , vn) :

n∑
i=1

vi = 1, vi ∈ (0, 1)

}
.

By Lemma 5.3.2, the statement 0 ∈ int (Convn(β)) is equivalent to

∀t0 ∈ Rp with ‖t0‖ = 1 and ∀a ≤ 0,

∃z ∈ int (Convn(β)) such that ttr0 z > a.

(5.96)

To prove (5.96), we will show in the following paragraphs that for any ε > 0,

nonpositive constant a = −c/
√
n and vector t0 ∈ Rp with ‖t0‖ = 1, there exists Nε

such that for n > Nε, given XXX ∈ B∗ε

inf
t0
P

{
ttr0

n∑
i=1

Vim(Xi, β) ≥ − c√
n

∣∣∣∣ XXX
}
> 0, for XXX ∈ B∗ε , (5.97)

112



where we consider V = v as a continuously distributed random vector in ∆n, and z

in equation (5.96) for each t0 is a value
n∑
i=1

Vi(ω)m(Xi, β) for ω in the event where

the probability is positive in (5.97). Note that (5.97) is true if we can prove the case

when choosing a = 0, namely, for n > Nε,

inf
t0
P

{
ttr0

n∑
i=1

Vim(Xi, β) > 0

∣∣∣∣ XXX
}
> 1− ε, for XXX ∈ B∗ε (5.98)

We prove (5.98) using V defined in (5.24). Let W ∗ =
n∑
i=1

W ∗
i /n and t0 be a unit

vector in Rp, then the probability in (5.98) can be written as

P

{
ttr0

n∑
i=1

Vim(Xi, β) ≥ 0

∣∣∣∣ XXX
}

=P

{
1√
n

n∑
i=1

ttr0 W
∗
i m(Xi, β) ≥ 0

∣∣∣∣ XXX
}

(5.99)

=P

{
1√
n

n∑
i=1

ttr0 q(Xi, β)m(Xi, β) +
1√
n

n∑
i=1

ttr0 {W ∗
i − q(Xi, β)}m(Xi, β) ≥ 0

∣∣∣∣ XXX
}

=P

{
1√
n

n∑
i=1

ttr0 {W ∗
i − q(Xi, β)}m(Xi, β) ≥ − 1√

n

n∑
i=1

ttr0 q(Xi, β)m(Xi, β)

∣∣∣∣ XXX
}
,

Combining (5.99) and conclusion (i) in (a), we obtain for n > Nε, any nonnegative

constant c and Kε, and XXX ∈ B∗ε

P

{
ttr0

n∑
i=1

Vim(Xi, β) ≥ 0

∣∣∣∣ XXX
}

≥ P

{
1√
n

n∑
i=1

ttr0 {W ∗
i − q(Xi, β)}m(Xi, β) ≥ Kε

∣∣∣∣ XXX
} (5.100)

Next, we show that the term n−1/2
n∑
i=1

ttr0 {W ∗
i − q(Xi, β)}m(Xi, β) in (5.100) sat-

isfies equation (5.67) in Lemma 5.3.1, with the choice of δ = 1,

Zi = ttr0 {W ∗
i − q(Xi, β)}m(Xi, β),
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by (5.23)

µi = E
{
{W ∗

i − q(Xi, β)} · ttr0 m(Xi, β)|Xi

}
= 0;

σ2
i = var

{
{W ∗

i − q(Xi, β)} · ttr0 m(Xi, β)|Xi

}
= ttr0 q(Xi, β)2m(Xi, β)⊗2t0.

Let s2
n = ttr0

{
n∑
i=1

q(Xi, β)2m(Xi, β)⊗2

}
t0, then the left hand side of (5.67) becomes

1

s3
n

n∑
i=1

E
{
‖ {W ∗

i − q(Xi, β)} · ttr0 m(Xi, β)‖3|Xi

}
≤
(

2

n−3/2s3
n

)
·

(
1

n

n∑
i=1

‖q(Xi, β)m(Xi, β)‖3

)
·
(

1√
n

) (5.101)

By Lemma 5.3.1, givenXXX ∈ B∗ε , it follows that n−1/2
n∑
i=1

ttr0 {W ∗
i − q(Xi, β)}m(Xi, β)

is asymptotically normal, i.e., for any unit vector s ∈ Rp,

n−1/2

n∑
i=1

{W ∗
i − q(Xi, β)} · strm(Xi, β)

Dβ0−−→ N
(
0, strΣ∗(β, β0)s

)
, (5.102)

with probability 1. Note that by the strong law of large numbers, as n goes to

infinity, W ∗ converges to EW ∗
1 = 1 almost surely, therefore for any n > Nε, positive

constant Kε, and XXX ∈ B∗ε

P

{
inf
s

[
1√
n

n∑
i=1

{W ∗
i − q(Xi, β)} strm(Xi, β)

]
≥ Kε

∣∣∣∣ XXX
}
> 0. (5.103)

Combining (5.99), (5.100) and (5.103), we get that for any n > Nε, constant a =

−c/
√
n, unit vector t0 ∈ Rp, and XXX ∈ B∗ε ,

P

{
ttr0

n∑
i=1

Vim(Xi, β) ≥ 0

∣∣∣∣ XXX
}

≥ P

{
inf

s∈Rp:‖s‖=1

1√
n

n∑
i=1

{W ∗
i − q(Xi, β)} strm(Xi, β) ≥ Kε

∣∣∣∣ XXX
}
> 0,

(5.104)

and hence we complete the proof. �
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5.3.2 Proofs Under the EEE Setting

In order to prove Proposition 5.2.1, we first prove the following lemma.

Lemma 5.3.4 Let {Ui,j}ni,j=1 and {Vi}ni=1 be p-dimensional random vectors, and

{Zi,j}ni,j=1 and {Wi}ni=1 be random variables with finite means and variances, respec-

tively. Suppose that Wi > 0 a.s., and that as n→∞,

sup
i

1

n

n∑
j=1

(Ui,j − Vi)
P−−→ 0 and sup

i

1

n

n∑
j=1

(Zi,j −Wi)
P−−→ 0, (5.105)

If for any i, there exists a constant b ∈ R such that∥∥∥∑n
j=1 Ui,j

∥∥∥∣∣∣∑n
j=1 Zi,j

∣∣∣ ≤ b and
‖Vi‖
|Wi|

≤ b (5.106)

then for any i, as n→∞, ∥∥∥∥∥
∑n

j=1 Ui,j∑n
j=1 Zi,j

− Vi
Wi

∥∥∥∥∥ P−−→ 0. (5.107)

Proof: First, by the triangle inequality and (5.106), we know that for any i, the

left hand side of (5.107) must be bounded; also, note that it equates to∥∥∥∥∥Wi

∑n
j=1(Ui,j − Vi)/n− Vi

∑n
j=1(Zi,j −Wi)/n

Wi

∑n
j=1 Zi,j/n

∥∥∥∥∥ ,
which is bounded by∥∥∥∥∥

∑n
j=1(Ui,j − Vi)/n∑n

j=1 Zi,j/n

∥∥∥∥∥+

∥∥∥∥ ViWi

∥∥∥∥ ·
∥∥∥∥∥
∑n

j=1(Zi,j −Wi)/n∑n
j=1 Zi,j/n

∥∥∥∥∥ (5.108)

Moreover, notice that by the law of large numbers, for any i = 1, 2, . . . ,

1

n

n∑
j=1

Zi,j
P−−→Wi, a.s., (5.109)

so the conclusion follows by (5.105), (5.106) and (5.109).
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Proof of Proposition 5.2.1 Note that we can write the left hand side of (5.34)

as

1

n

n∑
i=1

Q(Xi, β0)2

{
C(Xi)−

∑n
j=1 C(Xj)k(Xi, Xj, β0)∑n

j=1 k(Xi, Xj, β0)

}⊗2

(5.110)

=
1

n

n∑
i=1

Q(Xi, β0)2C(Xi)
⊗2 (5.111)

− 1

n

n∑
i=1

Q(Xi, β0)2

∑n
j=1 C(Xi)C(Xj)

trk(Xi, Xj, β0)∑n
j=1 k(Xi, Xj, β0)

(5.112)

− 1

n

n∑
i=1

Q(Xi, β0)2

∑n
j=1 C(Xj)C(Xi)

trk(Xi, Xj, β0)∑n
j=1 k(Xi, Xj, β0)

(5.113)

+
1

n

n∑
i=1

Q(Xi, β0)2

{∑n
j=1C(Xi)k(Xi, Xj, β0)

}⊗2

{∑n
j=1 k(Xi, Xj, β0)

}2 , (5.114)

and the right hand side of (5.34) as

Σ = E

{
Q(Y1, β0)2

[
C(Y1)− E {C(Y2)k(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

]⊗2
}

= E
{
Q(Y1, β0)2C(Y1)⊗2

}
(5.111’)

− E
{
Q(Y1, β0)2E {C(Y1)C(Y2)trk(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

}
(5.112’)

− E
{
Q(Y1, β0)2E {C(Y2)C(Y1)trk(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

}
(5.113’)

− E

{
Q(Y1, β0)2 [E {C(Y2)trk(Y1, Y2, β0)|Y1}]⊗2

[E {k(Y1, Y2, β0)|Y1}]2

}
(5.114’)

By law of large numbers, (5.111) converges to (5.111’) in probability. Now, let us

show that (5.112) converges to (5.112’) in probability. Note that by adding and

subtracting the term

Q(Xi, β0)2E {C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi}
E {k(Xi, Y2, β0)|Xi}

, (5.115)
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we can write (5.112) as the summation of

A =
1

n

n∑
i=1

Q(Xi, β0)2

{∑n
j=1 C(Xi)C(Xj)

trk(Xi, Xj, β0)∑n
j=1 k(Xi, Xj, β0)

− E {C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi}
E {k(Xi, Y2, β0)|Xi}

} (5.112.a)

and

B =
1

n

n∑
i=1

Q(Xi, β0)2

{
E {C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi}

E {k(Xi, Y2, β0)|Xi}

}
(5.112.b)

By LLN, (5.112.b) converges to (5.112’) in probability. Next, we show that (5.112.a)

converges to zero in probability. Let

d(Xi,XXX, β0) =

∑n
j=1C(Xi)C(Xj)

trk(Xi, Xj, β0)∑n
j=1 k(Xi, Xj, β0)

− E {C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi}
E {k(Xi, Y2, β0)|Xi}

.

(5.116)

First, we apply Lemma 5.3.4 to (5.116) by setting

Ui,j = C(Xi)C(Xj)
trk(Xi, Xj, β0),

Vi = E
{
C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi

}
Zi,j = k(Xi, Xj, β0),

Wi = E {k(Xi, Y2, β0)|Xi} .

(5.117)

The assumption (5.106) in Lemma 5.3.4 is guaranteed by Lemma 4.2.1 under as-

sumptions (A.2), (A.9) and (A.10). By (A.2), there exists a constant b such that

‖C(x)‖ ≤ b for all x, hence

‖
∑n

j=1 Ui,j‖
‖
∑n

j=1 Zi,j‖
=
‖
∑n

j=1C(Xi)C(Xj)
trk(Xi, Xj, β0)‖

‖
∑n

j=1 k(Xi, Xj, β0)‖
≤ b2

‖Vi‖
|Wi|

=
‖E {C(Xi)C(Y2)trk(Xi, Y2, β0)|Xi} ‖

E {k(Xi, Y2, β0|Xi}
≤ b2 |E {k(Xi, Y2, β0)|Xi} |

E {k(Xi, Y2, β0)|Xi}
= b2
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Therefore the conclusion (5.107) of Lemma 5.3.4 holds. Moreover, notice that

(i) C(x) and k(x, y, β) are both bounded by a fixed constant under assumptions

(A.2) and (A.9);

(ii) X ≡support(X1) and Uβ0 are both bounded in Rp;

The convergences in (4.15) and (4.14) actually hold in Lp norm, where p = 1, 2, . . . ,

therefore

E {‖d(Xi,XXX, β0)‖ | Xi}
P−−→ 0, for any i. (5.118)

Note that as a random variable, the left hand side of (5.118) also satisfied (i) and

(ii), hence it also converges in Lr norm, and

E {‖d(Xi,XXX, β0)‖} → 0, for any i.

E
{
‖d(Xi,XXX, β0)‖2

}
→ d <∞, for any i.

(5.119)

Recall that under assumption (A.2), |Q(x, β0)| < M <∞, for any x, hence

‖A‖ =
1

n

n∑
i=1

Q(Xi, β0)2‖d(Xi,XXX, β0)‖ ≤M2 · 1

n

n∑
i=1

‖d(Xi,XXX, β0)‖ (5.120)

Therefore for any ε > 0,

P {‖A‖ > ε} ≤ P

{
M2 · 1

n

n∑
i=1

‖d(Xi,XXX, β0)‖ > ε

}

≤ ε

M2

(
E
{
‖d(Xi,XXX, β0)‖2

})1/2 → 0,

(5.121)

where we got the last inequality by Chebyshev’s Inequality, and the convergence to

zero by (5.119). Hence the conclusions follows by the definition of convergence in

probability. �
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Proof of Lemma 5.2.1 First, let us show that (a) is true. Under assumption

(A.2) and (A.9), apply Proposition 5.2.1, we know that n−1
n∑
i=1

mn(Xi,XXX, β0)⊗2 con-

verges to Σ in probability. Therefore the conclusions for (5.37) and (5.39) are true.

By Proposition 4.2.2, the conclusion for (5.38) is true. As for the conclusion in

(5.36), it is guaranteed by the asymptotic normality of n−1/2
n∑
i=1

mn(Xi,XXX, β0) shown

in Lemma 4.2.2.

To prove (b), we follow the steps in the proof of part (b) in Lemma 5.1.1. Recall

that by Lemma 5.3.2, the conclusion that 0 belongs to the int (Convn(β0)), which is

the convex hull of mn(Xi,XXX, β0), can be drawn by showing for any ε > 0 and unit

vector t0 ∈ Rp, there exists Nε such that for n > Nε, given XXX∞ ∈ C∗ε ,

inf
t0
P

{
ttr0

n∑
i=1

Vimn(Xi,XXX, β0) ≥ 0

∣∣∣∣XXX∞
}
> 1− ε, for XXX∞ ∈ C∗ε ,

where V = v is as constructed in (5.76). Note that with g(Xi, β0) replaced by

the term mn(Xi,XXX, β0), (5.77) and (5.78) are both true , and (5.79) is true by

Proposition 5.2.1 and Lemma 4.2.2. Therefore the conditions for the Lyapunov

central limit theorem mentioned in Lemma 5.3.1 are verified with respect to {Wi}

variables under the extended estimating equation setting, and given XXX∞ ∈ C∗ε , it

follows that

n−1/2

n∑
i=1

ttr0 (Wi − 1)mn(Xi,XXX, β0)

is asymptotically normal, i.e., for any unit vector s ∈ Rp,

n−1/2

n∑
i=1

ttr0 (Wi − 1)strmn(Xi,XXX, β0)
D−−→ N(0, strΣs), with probability 1.
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Therefore (5.81) and (5.82) are both true with g(Xi, β0) replaced by mn(Xi,XXX, β0),

and we finish the proof. �

Proof of Lemma 5.2.2 For ε smaller than λ0, the smallest eigenvalue of Σ, on

the event C+
ε , for any fixed β ∈ Uβ0 ,∥∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β)⊗2 − Σ(β, β0)

∥∥∥∥∥
2

<
ε

2

Since β ∈ Uβ0 , we know that Σ(β, β0) is positive definite, hence

1

n

n∑
i=1

mn(Xi,XXX, β)⊗2 is positive definite for β ∈ Uβ0 . (5.122)

By contradiction, we can show that the conclusion is true for any fixed β ∈ Uβ0 .

Suppose that for a fixed β ∈ Uβ0 , there exist distinct t1 and t2 such that g(t1,XXX, β) =

g(t2,XXX, β) = 0. Therefore by Rolle’s theorem from [15], there exists s ∈ (0, 1) such

that for t3 = st1 + (1− s)t2, ∂g(t3,XXX, β)/∂s = 0, i.e.,

(t1 − t2)tr

{
1

n

n∑
i=1

mn(Xi,XXX, β)⊗2

(1 + ttr3 mn(Xi,XXX, β))2

}
(t1 − t2) = 0, (5.123)

which implies

1

n

n∑
i=1

mn(Xi,XXX, β)⊗2 is singular,

contradicting (5.122). �

Proof of Theorem 5.2.1 Define C in the following way:

C ≡ {β∗ ∈ Uβ0 : ∃ rβ∗ > 0 such that for any β ∈ Brβ∗ (β
∗),

there exists t = t(β) such that g(t,XXX, β) = 0},
(5.124)

where

g(t,XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β)

1 + ttrmn(Xi,XXX, β)
. (5.125)
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First, we show that for any fixed β∗ such that the equation g(t,XXX, β∗) = 0 has

a solution t = t∗, then β∗ ∈ C. By (5.125), g(t∗,XXX, β∗) = 0 implies 000 belongs

to int (Convn(β∗)), consequently, there exists a unique solution to the maximizing

problem (5.41) with the choice of β = β∗. Since this unique solution is bounded by

0 and 1, i.e.,

1

n
· 1

1 + t∗trmn(Xi,XXX, β∗)
∈ (0, 1) for i = 1, . . . , n,

we know that t∗ ∈ Dβ∗(XXX). Since g(t∗,XXX, β∗) = 0, ∂g(t,XXX, β)/∂t|(t∗,β∗) is neg-

ative definite. By the implicit function theorem, there exists rβ∗ such that for

β ∈ Brβ∗ (β
∗), equation g(t,XXX, β) = 0 has a solution t = t(β). Therefore t∗ ∈ C.

In particular, since we have shown in (5.45) that when β = β0, there exists t0

such that g(t0,XXX, β0) = 0, we know that the conclusion in the previous paragraph

is true for there is β = β0, i.e., β0 ∈ C.

Next, we show that C = Uβ0 , i.e., for any β∗ ∈ Uβ0 , β∗ also belongs to C. Let

ρmax = sup {s : β0 + r(β∗ − β0) ∈ C, for all 0 < r < s} , (5.126)

By contradiction, we can show that ρmax ≥ 1. Otherwise, suppose ρmax < 1. By

equation (5.126), we know that

β = β0 + r(β∗ − β0) ∈ C, for all r < ρmax (5.127)

Let {rk}∞k=1 be a series of increasing positive numbers that are bounded by ρmax,

and

βk = β0 + rk(β
∗ − β0), for 0 < rk < ρmax. (5.128)
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Therefore by (5.127), βk ∈ C, which together with (5.85) - (5.87) implies that for

each βk,

1

n

n∑
i=1

mn(Xi,XXX, βk)

1 + t(βk)trmn(Xi,XXX, βk)
= 0 and 1 + ttr(βk)mn(Xi,XXX, βk) ≥

1

n
(5.129)

Let

βmax = lim
k→∞

βk = β0 + ρmax(β∗ − β0) (5.130)

then by taking the limit of (5.129) as k goes to ∞,

1

n

n∑
i=1

mn(Xi,XXX, βmax)

1 + t(βmax)trmn(Xi,XXX, βmax)
= 0. (5.131)

Therefore 000 belongs to int (Convn(βmax)). Consequently, there exists a unique solu-

tion to the maximizing problem (5.41) with β = βmax. Since the unique solution is

in (0, 1), we know that t(βmax) ∈ Dβmax(XXX). Similar to the previous proof, βmax ∈ C.

By the definition of C, there exists rmax such that for all β ∈ Brmax(βmax), we know

that t = t(β) solves g(t,XXX, β) = 0. Therefore β = β0 + r(β∗ − β0) ∈ C, where

r = ρmax + rmax/4 > ρmax

contradicts the definition of ρmax, hence ρmax ≥ 1 and we conclude that β∗ ∈ C. �

Proof of Theorem 5.2.2 Let Ui be i.i.d. random variables that has a uniform

distribution over the span of ttr0 X , and let Ui be independent of XXX∞, hence by

definition, there exists a constant M such that |Ui| ≤M . Define

V ∗i =
U∗i
n∑
i=1

U∗i

where U∗i = Uiq(Xi, β), i = 1, . . . , n (5.132)

122



Let

1√
n

n∑
i=1

U∗i t
tr
0 mn(Xi,XXX, β)

=
1√
n

n∑
i=1

U∗i t
tr
0 V (Xi, β) +

1√
n

n∑
i=1

U∗i t
tr
0 ((mn(Xi,XXX, β)− V (Xi, β))

(5.133)

Note that on the event C+
ε , by the discussion between page 100 and 102, and the

boundedness of U∗i , the second term in (5.133) is OP (1), namely,∣∣∣∣∣ 1√
n

n∑
i=1

U∗i t
tr
0 ((mn(Xi,XXX, β)− V (Xi, β))

∣∣∣∣∣ ≤ 1√
n

n∑
i=1

M · Kε√
n

= MKε. (5.134)

Therefore on event C+
ε , for a fixed β ∈ Uβ0 and any unit vector t0 ∈ Rp

P

{
1√
n

n∑
i=1

U∗i t
tr
0 mn(Xi,XXX, β) > 0

}
≥ P

{
1√
n

n∑
i=1

U∗i t
tr
0 V (Xi, β) > MKε

}

(5.135)

= P

{
1√
n

n∑
i=1

Uiq(Xi, β)ttr0 V (Xi, β) > MKε

}

Using the same procedure as in the proof of Lemma 5.1.3, for n > Nε and XXX ∈ C+
ε ,

by the Lyapunov central limit theorem mentioned in Lemma 5.3.1

P

{
inf

s∈Rp:‖s‖=1

1√
n

n∑
i=1

Uiq(Xi, β)ttr0 V (Xi, β) > MKε

}
> 0 (5.136)

Combine (5.135) and (5.136), yielding,

P

{
1√
n

n∑
i=1

U∗i t
tr
0 mn(Xi,XXX, β) > 0

}
> 0. (5.137)

Note that equation (5.137) implies that under the condition of this lemma, 000 ∈

int (Convn(β)) with weight V ∗i defined in (5.132) with a positive probability. Hence

we complete the proof. �
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Chapter 6: Empirical Likelihood Applied to Extended Estimating

Equations

Consider d-dimensional independently identically distributed (i.i.d.) observations

X1, . . . , Xn
i.i.d.∼ Pθ, i = 1, . . . , n (6.1)

with support X , and parameters

θ = (β, ν) ∈ Rp ×H, (6.2)

and H is a infinite dimensional space such as function space. The Empirical Likeli-

hood (EL) method is an estimation method that maximizes the empirical distribution

subject to constraints. For example, in a classic setting, if there exists a estimating

function

m(x, β) : Rd × Rp 7→ Rr (6.3)

such that Eβ0 {m(X1, β0)} = 0, then the EL method seeks solution to the maxi-

mization problem for a fix β in a neighbourhood of β0
arg maxppp

n∏
i=1

pi, where ppp = (p1, . . . , pn),

subject to
n∑
i=1

pi = 1, pi ∈ (0, 1),
n∑
i=1

pim(Xi, β) = 0.

(6.4)
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The solution of (6.4), given by p̂i(β,Xi) can be used to construct the Profile

Empirical Likelihood. A point estimator for β0 can be constructed via maximizing

the pEL, or equivalently, its negative logarithm value, i.e.,

β̂n = arg min
β
l(β), where l(β) =

n∑
i=1

ln p̂i(β,Xi). (6.5)

EL method has been extensively researched in statistical literature. Owen in

[32] established the Wilks type confidence region when the dimension of β0 equals

the dimension of m(x, β), i.e., r = p. The Wilks type Confidence Region (CR)

does not require calculating the variance covariance matrix of m(X1, β0), and the

E {∇βm(X1, β0)}, and can usually provide a narrower CR then the Wald type statis-

tics.

Another convenient feature of EL method is that it can by pass some regularity

conditions that is essential to estimating equations. For example, the embedded

constraints m(x, β) can have a higher dimension than parameter, i.e., r > p. This

result can be found in Qin and Lawless’s work in [33].

Continuity is a necessary condition for the existence of solution to estimating

equation Sn(β) = 0, where

Sn(β) =
n∑
i=1

m(Xi, β)

and thus cannot be ignored. Under the CEE setting, Owen, and Qin and Lawless

both assumed that the criterion function m(x, ·) is continuous in [32] and [33].

However, we found in some prominent right censored semiparametric model like
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ϕ-transformation model and Cox model, mn(x,xxx, ·) is usually discontinuous due to

the appearance of indicator functions. Therefore in Chapter 5, we show that under

Classic Estimating Equation (CEE) setting with continuous or discontinuous m(x, ·),

and Extended Estimating Equation (EEE) setting with continuous mn(x,xxx, ·), there

exists Uβ0 , a non shrinking neighbourhood of β0 such that for any β ∈ Uβ0 , (6.4) has

a unique solution with probability approaching 1. The same result can be shown

for EEE when mn(Xi,XXX, ·) loses continuity if we restrict to the ϕ-transformation

model discussed in Chapter 3, which is the broadest type of semiparametric model

of which the structural parameter can be constructed via EEE to our knowledge.

6.1 Empirical likelihood of Extended Estimating Equation

In this section, we consider i.i.d. observations

X1, . . . , Xn
i.i.d.∼ Pθ, θ = (β, ν) ∈ Rp ×H, (6.6)

described in (6.1) - (6.2). In Definition 1.2.1 of page 6, we defined EEE as

Sn(β) =
n∑
i=1

mn(Xi,XXX, β) = 0, β ∈ Uβ0 , (6.7)

where Q(x, β) : Rd × Rp 7→ R, k(x, y, β) : Rd × Rd × Rp 7→ R+, C(x) : Rd 7→ Rp,

mn(Xi,XXX, β) = Q(Xi,XXX, β)

{
C(Xi)−

∑n
j=1C(Xj)k(Xi, Xj, β)∑n

j=1 k(Xi, Xj, β)

}
, (6.8)

with Eβ0,ν {mn(X1,XXX, β0)} = 0 for all ν ∈ H, and β̃n is the unique solution to (6.7).

In the following sections, we investigate the asymptotic normality of β̂n, the pEL

estimator, and compare its asymptotic variance matrix of β̃n.
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6.2 Asymptotic Normality Associated with the EEE

In this section, we discuss the asymptotic normality of β̃n via solving EEE, and

β̂n via minimizing the negative logarithm of pEL, i.e.,

β̃n : solution to Sn(β̂n) = 0, where Sn(β) =
n∑
i=1

mn(Xi,XXX, β);

β̂n : arg min
β

n∑
i=1

ln
(
1 + ttr(β)mn(Xi,XXX, β)

) (6.9)

First compute the asymptotic variance matrix of
√
nSn(β0), which lead to the sand-

wich form variance of β̃0. Then we compute the variance for β̂n following the idea

of Qin and Lawless’s Lemma 1 and Theorem 1 in [33]. At the end of this section,

we show that when the dimension of the EEE r equals to the dimension of β0, then

the two variances from β̃n and β̂n are identical.

Theorem 6.2.1 Under assumptions of (A.1) - (A.10), n−1/2
n∑
i=1

mn(Xi,XXX, β0) →

N(0,Σ), where Σ = Σ1 + Σ2, and for

Σ1 = V ar

{
Q(X1, β0)

{
C(X1)− E {C(X2)k(X1, X2, β0)|X1}

E {k(X1, X2, β0)|X1}

}}
Σ2 = V ar {q1(X1, β0)C(X1)}+ V ar {q2(X1, β0)} − 2ΣAB,

(6.10)

and

q1(X1, β0) = E

{
Q(X2, β0)k(X2, X1, β0)

E {k(X2, X3, β0)|X2}

∣∣∣∣ X1

}
,

q2(X1, β0) = E

{
Q(X2, β0)k(X2, X1, β0)E {C(X3)k(X2, X3, β0)|X2}

{E {k(X2, X3, β0)|X2}}2

∣∣∣∣X1

}
ΣAB = E

{
Q(X1, β0)

k̄(X1, β0)
{C(X2)k(X1, X2, β0)− E {C(X4)k(X1, X4, β0)|X1}}

× Q(X3, β0)kc(X3, β0)

k̄(X3, β0)2
{k(X3, X2, β0)− E {k(X3, X4, β0)|X3}}

}
.
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Asymptotic Varaince Covariance of β̃n Using the conclusion in Theorem 6.2.1,

we can calculate the asymptotic variance matrix of β̃n. Let β̃n be the solution to

Sn(β) = 0. We can derive the sandwich formed asymptotic variance covariance

matrix for
√
n(β̃n − β0) using the same Taylor expansion method in Section 5.3

of [41] by Van der Vaart to conclude

√
n(β̃n − β0)

D−−→ N(0, Σ̃), (6.11)

where for Σ defined in Theorem 6.2.1,

Σ̃ = E {∇βmn(X1,XXX, β0)}−1 ΣE {∇βmn(X1,XXX, β0)}−1 (6.12)

Next, we discuss the asymptotic normality of β̂n. The following lemma is parallel

Lemma 1 by Qin and Lawless in [33].

Lemma 6.2.1 Under assumptions (A.1)-(A.10), as n → ∞, with probability, l(β)

is minimized at β̂n in the interior of
{
β : ‖β − β0‖ ≤ n−1/3

}
, with β̂n and t̂n = t(β̂n)

given by

Q1n(β̂n, t̂n) = 0, Q2n(β̂n, t̂n) = 0, (6.13)

where

Q1n(β, t) =
1

n

n∑
i=1

1

1 + ttrmn(Xi,XXX, β)
mn(Xi,XXX, β),

Q2n(β, t) =
1

n

n∑
i=1

1

1 + ttrmn(Xi,XXX, β)

(
∂mn(Xi,XXX, β)

∂β

)tr
t.

The proof of this Lemma is almost identical to Lemma 1 by Qin and Lawless in [33]

after we developed the proceding parallel lemmas in Chapter 4. With Lemma 6.2.1,

we can show the asymptotic normality of
√
n(β̂n − β0).
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Theorem 6.2.2 Under assumptions (A.1) - (A.10),
√
n(β̂n − β0)

D−−→ N(0, V ),

where V is defined in (6.12), where

V =
(
Ŝ−1

22.1Ŝ21Σ̂−1
1

)
Σ
(
Ŝ−1

22.1Ŝ21Σ̂−1
1

)tr
(6.14)

with Σ and Σ1 defined in Theorem 6.2.1, Ŝ21 = E {∇βmn(Xi,XXX, β0)}, and

Ŝ22.1 = Ŝtr21Σ−1
1 Ŝ21. (6.15)

This is an extension of Theorem 1 by Qin and Lawless in [33] under the CEE

setting. We followed their idea of proof after establishing preceding parallel lemmas

in Chapter 4.

Now, assume r = p as in all the other chapters of this thesis, where r is the

dimension of mn(Xi,XXX, β) and p is the dimension of β0. Also assume Ŝ21 =

E {∇βmn(Xi,XXX, β0)} is non singular for β ∈ Uβ0 , where Uβ0 is defined in Theo-

rem 5.2.1. Then (6.14) becomes

V = Ŝ−1
21 Σ1Ŝ

−1
21 Ŝ21Σ−1

1 ΣΣ−1
1 Ŝ21Ŝ

−1
21 Σ1Ŝ

−1
21 = Ŝ−1

21 ΣS−1
21 . (6.16)

Comparing (6.12) and (6.16), we can see that V = Σ̃, i.e., the asymptotic variance

covariance matrix for β̂n is the same as that for β̃n.

6.3 Some Proofs

Proof of Lemma 6.2.1 Note that
√
nm̄n(XXX, β0) can be split into the difference

of

1√
n

n∑
i=1

Q(Xi, β0)

{
C(Xi)−

kc(Xi, β0)

k̄(Xi, β0)

}
. (6.17)

129



and

1√
n

n∑
i=1

Q(Xi, β0)

{
n−1/2

∑n
j=1 C(Xj)k(Xi, Xj, β0)

n−1/2
∑n

j=1 k(Xi, Xj, β0)
− kc(Xi, β0)

k̄(Xi, β0)

}
(6.18)

Since (6.17) is a summation of i.i.d. terms, under assumption (A.1)-(A.3) and (A.5)-

(A.6), by the CLT, it converges to N(0,Σ1), where

Σ1 = V ar

{
Q(X, β0)

{
C(X)− kc(X, β0)

k̄(X, β0)

}}
. (6.19)

Next, we show that (6.18) is also asymptotically normal. Using the same strategy

in the proof of Lemma 4.2.2, first split (6.18) into the difference of the following two

terms,

1√
n

n∑
i=1

Q(Xi, β0)

n−1/2
∑n

j=1 k(Xi, Xj, β0)

1√
n

n∑
j=1

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
(6.18.a)

and

1√
n

n∑
i=1

Q(Xi, β0)kc(Xi, β0)

k̄(Xi, β0)n−1/2
∑n

j=1 k(Xi, Xj, β0)

1√
n

n∑
j=1

{
k(Xi, Xj, β0)− k̄(Xi, β0)

}
.

(6.18.b)

By Lemma 4.2.1, we know that

sup
x∈X

∥∥∥∥∥ 1

n

n∑
j=1

k(x,Xj, β0)− k̄(x, β0)

∥∥∥∥∥ a.s.−−→ 0

Therefore for large n, (6.18.a) and (6.18.b) equals to

A =
1

n

n∑
i=1

Q(Xi, β0)

k̄(Xi, β0)

1√
n

n∑
j=1

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
(6.18.a.1)

and

B =
1

n

n∑
i=1

Q(Xi, β0)kc(Xi, β0)

k̄(Xi, β0)2

1√
n

n∑
j=1

{
k(Xi, Xj, β0)− k̄(Xi, β0)

}
, (6.18.b.1)
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respectively. Let

dµn =
1

n

n∑
i=1

δXi ,

and dµ = dFX , then (6.18.a.1) can be re-written as an integral with respect to the

difference between µn and µ, i.e.

1

n

n∑
i=1

Q(Xi, β0)

k̄(Xi, β0)

∫
C(y)k(Xi, y, β0)

√
n {dµn(y)− dµ(y)} . (6.20)

Let

dγn(y) =
√
n {dµn(y)− dµ(y)} .

Recall that for i = 1, . . . , n,

k̄(Xi, β0) = E {k(Xi, X, β0)|Xi} =

∫
k(Xi, x, β0)dµ(x).

Continuing to use the integrated empirical process notation to replace the sum, we

know that (6.20) is equal to∫
Q(z, β0)∫

k(z, x, β0)dµ(x)
dµn(z)

∫
C(y)k(z, y, β0)dγn(y) (6.21)

Note that, as n→∞, µn → µ, which indicates that the integral in (6.21) approaches∫∫
Q(z, β0)C(y)k(z, y, β0)∫

k(z, x, β0)dµ(x)
dµ(z)dγn(y) (6.22)

Let

q1(y, β0) =

∫
Q(z, β0)k(z, y, β0)∫
k(z, x, β0)dµ(x)

dµ(z), (6.23)

then (6.22) equals to ∫
q1(y, β0)C(y)dγn(y), (6.24)

which converges to N(0, V ar {q1(Y, β0)C(Y )}). Note that for large n, (6.18.a) is

equal to (6.18.a.1) almost surely. Therefore combining (6.20)-(6.24), we conclude
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that (6.18.a) converges to N(0, V ar {q1(Y, β0)C(Y )}). Similarly, (6.18.b) can be

re-written as∫∫
Q(z, β0)k(z, y, β0)

∫
k(z, x, β0)C(x)dµ(x){∫
k(z, x, β0)dµ(x)

}2 dµ(z)dγn(y), (6.25)

which converges to N(0, V ar {q2(Y, β0)}), where

q2(y, β0) =

∫
Q(z, β0)k(z, y, β0)

∫
k(z, x, β0)C(x)dµ(x){∫
k(z, x, β0)dµ(x)

}2 dµ(z). (6.26)

It remains to show the joint normality and the asymptotic covariance of (6.18.a)

and (6.18.b), or equivalently, the covariance of A and B defined in (6.18.a.1) and

(6.18.b.1). Note that

E(A ·B) =
1

n3

n∑
i=1

n∑
i′=1

n∑
j=1

n∑
j′=1

E

{
Q(Xi, β0)

k̄(Xi, β0)

{
C(Xj)k(Xi, Xj, β0)− kc(Xi, β0)

}
(6.27)

× Q(Xi′ , β0)kc(Xi′ , β0)

k̄(Xi′ , β0)2

{
k(Xi′ , Xj′ , β0)− k̄(Xi′ , β0)

}}
Let us consider the following cases which are broken down according to the number

of distinct number of elements in I = {i, j, i′, j′},

Case 1 If the number of distinct elements in I is 1, then there are n identical

terms to be added

Case 2 If the number of distinct elements in I is 2, then there are {C1
4 + C2

4}n(n−

1) identical terms to be added.

Case 3 If the number of distinct elements in I is 3, then there are C1
4 ·n(n−1)(n−2)

identical terms to be added.
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Case 4 If the number of distinct elements in I is 4, then due to the independence

of Xi’s, the expected value in the summand of (6.27) is 0.

Since (6.27) is the summation of groups of identical terms then divided by n3, so

we only need to consider Case 3. Assume that i 6= j and i′ 6= j′ as we did before,

and consider the following subcases for Case 3,

Case 3a i = i′, then the expected values of (6.27) are all equal to

E

{
Q(X1, β0)

k̄(X1, β0)

{
C(X2)k(X1, X2, β0)− kc(X1, β0)

}
(6.28)

× Q(X1, β0)kc(X1, β0)

k̄(X1, β0)2

{
k(X1, X3, β0)− k̄(X1, β0)

}}
.

We can show that (6.28) is identical to 0 by conditioning on X1.

Case 3b i = j′, then the expected values of (6.27) are all equal to

E

{
Q(X1, β0)

k̄(X1, β0)

{
C(X2)k(X1, X2, β0)− kc(X1, β0)

}
(6.29)

× Q(X3, β0)kc(X3, β0)

k̄(X3, β0)2

{
k(X3, X1, β0)− k̄(X3, β0)

}}

We can show that (6.29) is identical to 0 by conditioning on X1 and X3.

Case 3c j = i′, then the expected values of (6.27) are all equal to

E

{
Q(X1, β0)

k̄(X1, β0)

{
C(X2)k(X1, X2, β0)− kc(X1, β0)

}
(6.30)

× Q(X2, β0)kc(X2, β0)

k̄(X2, β0)2

{
k(X2, X3, β0)− k̄(X2, β0)

}}

We can show that (6.30) is identical to 0 by conditioning on X1 and X2
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Case 3d i = 1, j = 2, i′ = 3, j′ = 2, then the expected values of (6.27) are all

equal to

ΣAB = E

{
Q(X1, β0)

k̄(X1, β0)

{
C(X2)k(X1, X2, β0)− kc(X1, β0)

}
(6.31)

× Q(X3, β0)kc(X3, β0)

k̄(X3, β0)2

{
k(X3, X2, β0)− k̄(X3, β0)

}}

Combining (6.18.a), (6.24) and (6.26), we know that (6.18) converges to N(0,Σ2),

where

Σ2 = V ar {q1(Y, β0)C(Y )}+ V ar {q2(Y, β0)} − 2ΣAB (6.32)

As for the asymptotic covariance of (6.17) and (6.18), consider

1

n

n∑
i=1

n∑
i′=1

E

{
Q(Xi, β0)

{
C(Xi)−

kc(Xi, β0)

k̄(Xi, β0)

}
(6.33)

×Q(Xi′ , β0)

{
n−1

∑n
j 6=iC(Xj)k(Xi′ , Xj, β0)

n−1
∑n

j 6=i k(Xi′ , Xj, β0)
− kc(Xi′ , β0)

k̄(Xi′ , β0)

}}
(6.34)

When i 6= i′, then the terms in (6.33) and (6.34) are independent, hence the expected

value of the product of (6.33) and (6.34) equals to the product of their expected

value. Furthermore, notice that (6.33) are centered at zero, therefore when i 6= i′,

the expectation of (6.33)-(6.34) is zero. Next, we consider the case when i = i′.

Since there are n identical terms, we can rewrite the expectation of the (6.33)-(6.34)

as

E

{
Q(X1, β0)

{
C(X1)− kc(X1, β0)

k̄(X1, β0)

}
×Q(X1, β0)

{
n−1

∑n
j 6=iC(Xj)k(X1, Xj, β0)

n−1
∑n

j 6=i k(X1, Xj, β0)
− kc(X1, β0)

k̄(X1, β0)

}}
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Since by strong law of large numbers, as n goes to infinity, n−1
∑n

j=1 C(Xj)k(X1, Xj, β0)

and n−1
∑n

j=1 k(X1, Xj, β0) goes to kc(X1, β0) and k̄(X1, β0), respectively, then by

dominated convergence theorem, the expected value in the expression above also

approach zero as n goes to infinity. Therefore (6.17) and (6.18) are asymptotically

independent, and
√
nm̄n(XXX, β0)→ N(0,Σ) with Σ = Σ1 + Σ2. �

Proof of Lemma 6.2.1 Let β be on the surface of the ball centered at β0 and

with radius n−1/3. Hence for a unit vector u,

β = β0 + un−1/3.

Next, we give a lower bound for l(β) on the surface of the ball. Let υ ∈ Rp be a

unit vector and t = ‖t‖υ. Owen in [32] showed that the (6.35) holds uniformly for

values of β ∈
{
β : ‖β − β0‖ ≤ n−1/3

}
under the CEE setting, i.e., when the criterion

function is given by m(Xi, β)

t(β) =

[
1

n

n∑
i=1

m(Xi, β)⊗2

]−1 [
1

n

n∑
i=1

m(Xi, β)

]
+ o(n−1/3), (6.35)

uniformly about β ∈
{
β : ‖β − β0‖ ≤ n−1/3

}
.

It is essential that (6.35) is still true in the EEE setting, therefore we prove it

following the steps in Qin and Lawless [33] and Owen [32]. Since we have shown the

parallel preceding lemmas in Chapter 4, the steps are not much different than that

in [33] or [32]. Let Yi(Xi,XXX, β) = ttrmn(Xi,XXX, β) and substitute

1

1 + Yi(Xi,XXX, β)
= 1− Yi(Xi,XXX, β)

1 + Yi(Xi,XXX, β)
(6.36)
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Note that

1

n

n∑
i=1

mn(Xi,XXX, β)

1 + ttrmn(Xi,XXX, β)
= 0 (6.37)

can be re-written as

1

n

n∑
i=1

mn(Xi,XXX, β)

1 + Yi(Xi,XXX, β)
= 0 (6.38)

Multiply (6.38) by υ, then plug in (6.36), then we get

0 =
1

n

n∑
i=1

υtrmn(Xi,XXX, β)

(
1− Yi(Xi,XXX, β)

1 + Yi(Xi,XXX, β)

)

= υtr
n∑
i=1

mn(Xi,XXX, β)− 1

n

n∑
i=1

υtrmn(Xi,XXX, β)mn(Xi,XXX, β)trt

1 + Yi(Xi,XXX, β)
. (6.39)

Define

S̃(XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β)⊗2

1 + Yi(Xi,XXX, β)

S(XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β)⊗2,

(6.40)

Plug (6.40) into (6.39), yielding

υtrm̄n(XXX, β) = ‖t‖υtrS̃(XXX, β)υ (6.41)

By the definition of S̃ in (6.40),

S̃(XXX, β) ≥ 1

n

n∑
i=1

mn(Xi,XXX, β)⊗2

1 + maxi Yi(Xi,XXX, β)
= S(XXX, β) · 1

1 + maxi Yi(Xi,XXX, β)
,

implying

S(XXX, β) ≤ S̃(XXX, β)(1 + max
i
Yi(Xi,XXX, β)),

where the notation that A ≥ B for matrix A and B means that A − B is positive

definite. We know that .

‖t‖υtrS(XXX, β)υ ≤ ‖t‖υtrS̃(XXX, β)υ(1 + max
i
Yi(Xi,XXX, β)). (6.42)
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Let Z∗n(XXX, β) = maxi ‖mn(Xi,XXX, β)‖ in (4.7), so

‖t‖υtrS̃(XXX, β)υ(1 + max
i
Yi(Xi,XXX, β)) ≤ ‖t‖υtrS̃(XXX, β)υ(1 + ‖t‖Z∗n(XXX, β)) (6.43)

Now, by (6.41), ‖t‖υtrS̃(XXX, β)υ on the right hand side of (6.43) can be substituted

by υtrm̄n(XXX, β), hence

‖t‖υtrS̃(XXX, β)υ(1 + max
i
Yi(Xi,XXX, β)) ≤ υtrm̄n(XXX, β)(1 + ‖t‖Z∗n(XXX, β)), (6.44)

where

m̄n(XXX, β) =
1

n

n∑
i=1

mn(Xi,XXX, β). (6.45)

Combining (6.42) and (6.44), we attain

‖t‖υtrS(XXX, β)υ ≤ υtrm̄n(XXX, β)(1 + ‖t‖Z∗n(XXX, β)), (6.46)

which result in

‖t‖(υtrS(XXX, β)υ − Z∗n(XXX, β)υtrm̄n(XXX, β)) ≤ υtrm̄n(XXX, β). (6.47)

Note that we assume t = ‖t‖υ and υ is a unit vector. By Proposition 4.2.1 and

Lemma 4.2.2, we know that

Z∗n(XXX, β)υtrm̄n(XXX, β) = o(n1/2)O(nδ−1/2) = o(nδ). (6.48)

Plug (6.48) into (6.47), yielding

‖t‖(υtrS(XXX, β)υ + o(nδ)) ≤ O(nδ−1/2) (6.49)

Since υtrSυ is bounded by the minimum and maximum eigen value of V ar(mn(Xi,XXX, β)),

(6.49) indicates that

‖t‖ = O(n−1/2). (6.50)
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From (6.38) we can see that

0 =
1

n

n∑
i=1

mn(Xi,XXX, β)

(
1− Yi(Xi,XXX, β) +

Yi(Xi,XXX, β)2

1 + Yi(Xi,XXX, β)

)

= m̄n(XXX, β)− S(XXX, β)t+
1

n

n∑
i=1

mn(Xi,XXX, β)

1 + Yi(Xi,XXX, β)
Yi(Xi,XXX, β)2. (6.51)

Now, let us discuss the norm of the last term in (6.51). Recall that Yi(Xi,XXX, β) =

ttrmn(Xi, ,,,β), therefore∥∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β)

1 + Yi(Xi,XXX, β)
Yi(Xi,XXX, β)2

∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

mn(Xi,XXX, β)

1 + Yi(Xi,XXX, β)

(
ttrmn(Xi, ,,,β)

)2

∥∥∥∥∥
≤ 1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖3‖t‖2 1

1 + Yi(Xi,XXX, β)
.

(6.52)

Plug Z∗n(XXX, β) = maximn(Xi,XXX, β) into (6.52), yielding

1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖3‖t‖2 1

1 + Yi(Xi,XXX, β)
(6.53)

≤ Z∗n(XXX, β) · 1

n

n∑
i=1

‖mn(Xi,XXX, β)‖2 · ‖t‖2 · 1

1 + Yi(Xi,XXX, β)
.

Let δ be a number between 0 and 1/2, by Proposition 4.2.1, Lemma 4.2.2 and (6.50),

we know that

1

n

n∑
i=1

‖mn(Xi,XXX, β0)‖3‖t‖2 1

1 + Yi(Xi,XXX, β)
≤ o(n1/2)O(nδ)O(n−1)

= o(n−(1/2−δ))

(6.54)

Equations (6.52)-(6.54) implies that the norm of the last term in (6.51) is of order

n−(1/2−δ), therefore from (6.51), we know that

t = S−1(XXX, β)m̄n(XXX, β) + γ, where γ = o(n−1/3). (6.55)
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Let l(β) be the negative logarithm of the profile empirical likelihood function

l(β) =
n∑
i=1

ln
{

1 + ttr(β)mn(Xi,XXX, β)
}

=
n∑
i=1

ttr(β)mn(Xi,XXX, β)− 1

2

n∑
i=1

[
ttr(β)mn(Xi,XXX, β)

]2
+ o(n1/3) a.s.

(6.56)

By (6.55), we can rewrite the right hand side of (6.56) as

n

2

[
1

n

n∑
i=1

mn(Xi,XXX, β)

]tr [
1

n

n∑
i=1

mn(Xi,XXX, β)⊗2

]−1 [
1

n

n∑
i=1

mn(Xi,XXX, β)

]
+o(n1/3)

(6.57)

Take Taylor expansion of (6.57) around the true parameter value β0, attaining

n

2

[
1

n

n∑
i=1

mn(Xi,XXX, β0) +
1

n

n∑
i=1

∂mn(Xi,XXX, β0)

∂β
un−1/3

]tr [
1

n

n∑
i=1

mn(Xi,XXX, β)⊗2

]−1

×

[
1

n

n∑
i=1

mn(Xi,XXX, β0) +
1

n

n∑
i=1

∂mn(Xi,XXX, β0)

∂β
un−1/3

]
+ o(n1/3) (6.58)

Combining (6.56)-(6.58), by Lemma 4.2.2, we know that

l(β) =
n

2

[
O(n−1/2+δ) + E

(
∂m(X, Y, β0)

∂β

)
un−1/3

]tr
× Σ−1

1

×
[
O(n−1/2+δ) + E

(
∂m(X, Y, β0)

∂β

)
un−1/3

]
+ o(n1/3)

≥ (c− ε)n1/3 a.s.,

where 0 < δ < 1/6, and

Σ1 = E

{
Q(Y1, β0)2

[
C(Y1)− E {C(Y2)k(Y1, Y2, β0)|Y1}

E {k(Y1, Y2, β0)|Y1}

]⊗2
}
. (6.59)
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with Y1, Y2 being i.i.d. replica of X1 by Proposition 5.2.1. Similarly,

l(β0) =
n

2

[
1

n

n∑
i=1

mn(Xi,XXX, β0)

]tr [
1

n

n∑
i=1

mn(Xi,XXX, β0)⊗2

]−1 [
1

n

n∑
i=1

mn(Xi,XXX, β0)

]
a.s.

= O(nδ) a.s.

Since l(β) is continuous for β ∈
{
β|‖β − β0‖ ≤ n−1/3

}
, there exists a minimum for

l(β) in the interior of the ball, and β̂n satisfies

∂l(β)

∂β

∣∣∣∣
β=β̂n

=
n∑
i=1

(∂ttr(β)/∂β)mn(Xi,XXX, β) + ttr(β) (∂mn(Xi,XXX, β)/∂β)

1 + ttr(β)mn(Xi,XXX, β)

∣∣∣∣
β=β̂n

=
n∑
i=1

1

1 + ttr(β)mn(Xi,XXX, β)

(
∂mn(Xi,XXX, β)

∂β

)tr
t(β)

∣∣∣∣
β=β̂n

= 0

�

Proof of Theorem 6.2.2 Let us take the derivative of Q1n and Q2n in Lemma

6.2.1 with respect to β and t and get

∂Q1n(β, 0)

∂β
=

1

n

n∑
i=1

∂mn(Xi,XXX, β)

∂β
,

∂Q1n(β, 0)

∂ttr
=

1

n

n∑
i=1

mn(Xi,XXX, β)⊗2,

∂Q2n(β, 0)

∂β
= 0,

∂Q2n(β, 0)

∂ttr
=

1

n

n∑
i=1

(
∂mn(Xi,XXX, β)

∂β

)tr
.

Then take the Taylor expansion of Q1n(β̂n, t̂n) and Q2n(β̂n, t̂n) at (β0, 0),

0 = Q1n(β̂n, t̂n)

= Q1n(β0, 0) +
∂Q1n(β0, 0)

∂β
(β̂n − β0) +

∂Q1n(β0, 0)

∂ttr
(t̂n − 0) + oP (δn),

0 = Q2n(β̂n, t̂n)

= Q2n(β0, 0) +
∂Q2n(β0, 0)

∂β
(β̂n − β0) +

∂Q2n(β0, 0)

∂ttr
(t̂n − 0) + oP (δn),
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where δn = ‖β̂n − β0‖+ ‖t̂n‖. t̂n

β̂n − β0

 = Ŝ−1
n

 −Q1n(β0, 0) + oP (δn)

oP (δn)

 ,

where

Ŝn =


∂Q1n

∂ttr
∂Q1n

∂β

∂Q2n

∂ttr
0


(β=β0,t=0)

P−−→

 Ŝ11 Ŝ12

Ŝ21 0

 =


−E {mnm

tr
n } E

{
∂mn

∂β

}

E

{
∂mn

∂β

}
0,

 ,

(6.60)

where in (6.60), mn = mn(Xi,XXX, β0).

Q1n(β0, 0) =
1

n

n∑
i=1

mn(Xi,XXX, β0) = OP (n−1/2)

implies that δn = OP (n−1/2). Therefore

√
n(β̂n − β0) = Ŝ−1

22.1Ŝ21Ŝ
−1
11

√
nQ1n(β0, 0) + oP (1),

where

S22.1 =

{
E

(
∂mn

∂β

)tr
(Emnm

tr
n )−1E

(
∂mn

∂β

)}
.

Furthermore, by Lemma 6.2.1,
√
nQ1n(β0, 0)→ N(0, Σ̃), hence

√
n(β̂n − β0)→ N(0, V ), where V = Ŝ−1

22.1Ŝ21Ŝ
−1
11 Σ̃

{
Ŝ−1

22.1Ŝ21Ŝ
−1
11

}tr
. (6.61)

�
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Chapter 7: Computational Results

This chapter is devoted to showing some simulation results under the right cen-

sored Accelerated Lifetime Model (AFT) using Extended Estimating Equation (EEE)

and Profile Empirical Likelihood (pEL) with R (3.4.1). Let T be the lifetime, and

consider the model

Y = βtr0 Z + ε, (7.1)

where Y = ln(T ), β0 ∈ Rp is the structural parameter, Z is the p-dimensional

covariate and ε is the error term centered at zero with unknown hazard rate function.

We assume that T may be subject to right censoring C with unknown distribution

function, therefore the data we actually observe are triplets (V,∆, Z), where

V = min(ln(T ), ln(C)), and ∆ = I {T ≤ C} . (7.2)

In previous chapters, we proposed two ways to construct an estimator for β0, which

were β̃n via solving Extended Estimating Equation (EEE), and β̂n via minimizing

the negative logarithm of the pEL, i.e.:

EEE: β̃n such that Sn(β̃) =
n∑
i=1

mn(Xi,XXX, β̃n) = 0; (7.3)

pEL: β̂n = arg min
β
l(β), where l(β) =

n∑
i=1

ln
(
1 + ttr(β)mn(Xi,XXX, β)

)
(7.4)
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where t(β) = t(β,XXX) is the solution to the gradient of the Lagrangian function

defined in (5.50), and under model assumption (7.1),

mn(Xi,XXX, β) =
n∑
i=1

∆i

{
Zi −

∑n
j=1 ZjI {Vj − βtrZj ≥ Vi − βtrZi}∑n
j=1 I {Vj − βtrZj ≥ Vi − βtrZi}

}
. (7.5)

The purpose of this chapter is to provide algorithms to numerically compute β̃n

and β̂n. Since both Sn(β) and l(β) involve indicator functions, usual root-finding

and optimization methods may not be directly applied here. Then we compare

(7.3) and (7.4) with respect to the asymptotic behavior of β̃n and β̂n under different

parameter settings, the time-efficiency of the two methods, and the local continuity

of Sn(β) and l(β). We also compare the empirical variance-covarince matrices of β̃n

and β̂n with the corresponding theoretical ones, and with each other.

7.1 Description of the Algorithm Associated with the EEE

In this section, we outline the algorithms for computing β̂n and β̃n. To summarize,

we compute β̂n in two steps, namely, first to construct a function t(β) that expresses

the Lagrange multiplier in terms of β, and second to calculate β̂n by maximizing

the pEL. We compute β̃n by minimizing the Euclidean norm of Sn(β) because, due

to the discontinuity issue of Sn(β), a root may not exist.
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7.1.1 Algorithm for Computing the pEL Estimator

Given the AFT model described in (7.1), for fixed β, to find the probability vector

that maximizes the empirical likelihood, we solve the following problem,
arg maxppp

∏
pi, where ppp = (p1, . . . , pn),

subject to
n∑
i=1

pi = 1, pi ∈ (0, 1),
n∑
i=1

pimn(Xi,XXX, β) = 0.

(7.6)

We have proved in Chapter 5 that with probability approaching 1, there exists a

neighbourhood of β0 in which (7.6) has a unique solution given by

p̂i =
1

n
· 1

1 + ttrmn(Xi,XXX, β)
, (7.7)

where t is the solution to
n∑
i=1

mn(Xi,XXX, β)

1 + ttrmn(Xi,XXX, β)
= 0. (7.8)

Therefore the algorithm to compute β̂n is divided into two steps. First, write t as a

function of β and XXX according to (7.8); then after combining (7.1) and (7.7), β̂n is

given by

β̂n = arg min
β

n∑
i=1

ln
(
1 + t(β)trmn(Xi,XXX, β)

)
(7.9)

In the following paragraph, we explain how these two steps are performed using

software R (3.4.1).

Step1: Construct t(β) To construct t(β) we convert the root solving problem of

equation (7.8) into an optimization problem. For any fixed β, let

t∗ = arg max
t
f(t), where f(t) =

n∑
i=1

ln(1 + ttrmn(Xi,XXX, β)) (7.10)
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Since we seek the calculus maximum of (7.10), the solution t∗ must satisfy

∇tf(t∗) = 0, where ∇tf(t) =
n∑
i=1

mn(Xi,XXX, β)

1 + ttrmn(Xi,XXX, β)
(7.11)

In other words, for any fixed β, we can construct t(β) via maximizing in (7.10) using

the nlm function built in R. For any fixed β and XXX, it is easy to verify that ∇⊗2
t f(t)

is always negative definite, therefore the solution of (7.11) is guaranteed to be a

calculus maximum, if it exists. Since tinitial = (0, . . . , 0) always provides a legitimate

probability vector (7.7), we use tinitial as the initial value for the nlm function in this

step.

We also need to pay attention to the domain of f(t), denoted by Df . For the

univariate case, it is easy to show that

Df =
(
−(max

i
(mn(Xi,XXX, β)))−1,−(min

i
(mn(Xi,XXX, β)))−1

)
.

However, for the vector valued β, the analytical form of Df is no longer simple.

In cases when 1 + ttrmn(Xi,XXX, β) has negative components, f(t) is no longer well-

defined. Therefore we replace ln(·) by a monotone function h(·) defined everywhere

but extremely negative at feasible values t. This penalty function should guarantee

that the interactive root-finding method like Newton-Raphson converges. Condi-

tions on h(z) include,

1. h(z) = ln(z) for any z > ε, where ε is a positive constant that is close to 0;

2. For any z1 ∈ R− ∪ {0} and z2 ∈ R+, h(z2) > h(z1). This way, replacing

the function ln(·) by the penalty function will not change the solution to the

maximization problem (7.10);
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3. h(z) is continuous and differentiable for z ∈ R;

4. When seeking a root with Newton-Ralphson, if in the kth step zk < 0, then

h′(zk) should point to the direction such that zk+1 > 0. In other words, if

z < 0, then h′(z) should always guarantee z − h(z)/h′(z) > 0.

A feasible choice of such a function is

h(z) =


ln(z) when z > ε

ln(ε) +
z − ε
ε2

when z ≤ ε

(7.12)

Using h(z), for any fixed β, we define t = t(β) as

t(β) ≡ arg max
t
fh(t), where fh(β) =

n∑
i=1

h(1 + ttrmn(Xi,XXX, β)). (7.13)

Step 2: Estimate β0 After writing the Lagrange multiplier t as a function of

β, we can compute β̂n by minimizing the negative logarithm of the pEL, namely,

β̂n = arg minβ l(β), where

l(β) =
n∑
i=1

ln
(
1 + ttr(β)mn(Xi,XXX, β)

)
(7.14)

The quasi-Newton-Raphson methods do not work for (7.14) under the AFT model

assumption due to the appearance of indicator functions in mn(Xi,XXX, β). Therefore

we use the default Nelder-Mead method in the optim function of R, which is a

topological method that can be applied to nonlinear optimization problems for which

derivatives may not exist. We use the least- square estimator on the uncensored data
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denoted by b0 as the initial value, where

Uncensored Index Set: R = {i : ∆i = 1}, where #R = u

Vector of Uncensored Lifetime: O = (Vk; k ∈ R) ∈ Ru; (7.15)

Matrix of Covariates with Uncensored Observations: H = (Zk : k ∈ R) ∈ Rp×u

then b0 = (H trH)−1H trO and β̂n is computed by optim(b0,l)$par. This choice of

b0 is good for uncensored AFT, but in the right-censored case, a more reasonable

initial choice is the estimator of Koul, Sursarla and van Ryzin in [25].

Restarting Improvement Ideally, with a reasonable initial value, Nelder-Mead

method should give the solution to the minimization problem with a signle appli-

cation of optim. However, the optimization procedure with respect to β turns out

to require multiple restarts. More specifically, let b0 be the least square estimator

calculated on set S, and

br+1 = arg min
β
l(β) with initial value br, r = 0, 1, . . . (7.16)

Let ‖ · ‖1 be the L1 norm on vectors. The sequence of restarts stops when ‖br −

br+1‖1 ≤ 0.01. Ideally, the sequence (7.16) should stop at r = 0. However, we

found that this ideal case only happens when the initial value is good enough, which

occurs especially when the data are uncensored, or using the Koul-Susarla-van Ryzin

estimator in [25] as b0 for right censored data. On the contrary, when the simple least

square estimator is far away from β0, then the restarting improvement is necessary.
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For example, when

Z1 ∼ Bernoulli(0.5), Z2 ∼ N(0, 1), Z3 ∼ ln(F3,5),

Z4 ∼ ln(Beta(5, 3)), ε = Weibull(1)− 1, C = Exp(5.8);

(7.17)

for sample size n = 200 and batches of simulations of size m = 1000, the number of

iterations r are 1, 2 and 3, with frequencies 780, 209 and 11.

7.1.2 Algorithm for Computing the Z-Estimator

As we discussed in previous chapters, we can construct an estimator for β0 by

solving the extended estimating equation Sn(β) = 0. Due to the discontinuity of

Sn(β), instead of directly solving the equation, we define

β̃n ≡ arg min
β
‖Sn(β)‖, (7.18)

where ‖·‖ denotes the Euclidean norm. Again, we minimize using optim with initial

value b0, i.e., the least square estimator on set R.

As for the computation of β̂n, the Nelder-Mead method is not guaranteed to give

the local solution to the minimization problem (7.18) in one step. We use the same

restarting strategy described on page 146. In the following section, we will show

that the negative profile log-likelihood function l(β) is much smoother than Sn(β),

therefore we should expect to require more restarts in the calculation of β̃n than β̂n.

This conjecture will be verified numerically in Section 7.4
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7.2 Local Continuity of EEE and pEL

In this section, we compare the local continuity of the EEE Sn(β) with the negative

logarithm of the pEL function l(β). From the plots of l(β) and Sn(β), we will see

clearly that the pEL is much smoother than the EEE. At the end of this section, we

define a quantity tot.dif that measures the continuity pattern in the neighborhood

of β̂n, βLS, and β0. From the histograms tot.dif, we will see that continuity behavior

in the neighborhoods of β̂n and β0 are very similar.

7.2.1 Plots of Projection of EE and EL

Since both Sn(β) and l(β) are defined in Rp, it is not easy to provide a plot

directly. Therefore we plot only one “slice” at a time, namely, project Sn(β) and

l(β) with respect to βi, where in general, for v ∈ Rp, vi is the ith component of v.

More specifically, for EEE

Sn(β) =
n∑
i=1

mn(Xi,XXX, β), β ∈ Uβ0 , (7.19)

consider function dS(s, i, j)

dS(s; β, i, j) = Sn(β + sej) · ei, (7.20)

where β ∈ Uβ0 , s ∈ (−δ, δ) with δ being a small positive number, i, j = 1, . . . , p, and

ei is the ith column of the p× p identity matrix. The function dS(s; β, i, j) allows β

to change only in the direction of ej, then records the value of of the ith component

in Sn(β + s · ej) as output.
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As for the negative log empirical likelihood function, consider

dl(s; β, u, i) = l(β + s · ui), i = 1, . . . , p, (7.21)

where β ∈ Uβ0 , and s ∈ (−δ, δ) for a small positive number δ, and u is a randomly

generated unit direction. In the simulation, we use rnorm(p) to generate u, then

divide it by its Euclidean norm.

We run the simulation under two parameter settings as follows, for β0 = (4, 3, 2, 1)

with normally distributed covariates in Set 1, and none-normally distributed covari-

ates in Set 2,

Set 1: Z1 ∼ Bernoulli(0.5), Z2 ∼ N(0, 1), Z3 ∼ N(3, 25),

Z4 ∼ N(5, 9), ε ∼Weibull(1)− 1, C ∼ Exp(0.015)

(7.22)

and

Set 2: Z1 ∼ Bernoulli(0.5), Z2 ∼ N(0, 1), Z3 ∼ F3,5

Z4 ∼ Beta(5, 3), ε ∼Weibull(1)− 1, C ∼ Exp(.08)

(7.23)

With n = 1000 for m = 1 replica. For this Set 1 and Set 2, censoring rates

are given by 18.6% and 33.2%. β̂n and β̃n in both sets are identical to the second

decimal place, and are (4.01, 3.00, 1.99, 0.99) and (3.86, 3.09, 2.05, 0.80), respectively.

We plot dS for both Set 1 and Set 2. As we can see from Figure 7.1 and 7.2, even for

a large sample size n = 1000, within a small neighbourhood of true β0, the extended

estimating equation has a lot of jumps.
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Figure 7.1: Plot of dS(s; β0, i, j), normal covariates

Figure 7.1 shows a plot of dS(s; β0, i, j) = Sn(β0 + sej)
trei for s ∈ (−0.02, 0.02),

where i, j = 1, . . . , p index horizontal and vertical plots. Horizontal lines indicate

level 0. It implies that the function is only linear and smooth on the diagonal. The

magnitude of the y-coordinates indicates Sn(β) is close to a diagonal matrix times

β.
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Figure 7.2: Plot of dS(s; β0, i, j), non-normal covariates

Figure 7.2 shows a plot of dS(s; β0, i, j) = Sn(β0 + sej)
trei for s ∈ (−0.4, 0.4), where

i, j = 1, . . . , p index horizontal and vertical plots. Horizontal lines indicate level

0. It implies that the function is only linear and smooth on the diagonal. The

magnitude of the y-coordinates indicates Sn(β) is close to a diagonal matrix times

β.
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Then we check the smoothness of the negative profile log likelihood l(β) for β is

in a neighbourhood of β̂n by plotting dl(s; βn, u, i). Figure 7.3 and 7.4 are calculated

under Set 1 (normal covariates) and Set 2 (non-normal covariates), respectively. The

solid vertical line in each picture denotes β̂n, and the dotted vertical line denotes the

true β0. As we can see from Figure 7.3 and 7.4, the distance between the estimated

value and the true parameter value are small, the profile likelihood function is very

smooth within the neighborhood of β̂n, and β̂n is the calculus maximum of l(β) in

each randomly generated directions for both normal and non-normal covariates.
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Figure 7.3: Plot of dl(s; β̂n, u, i), normal covariates

Figure 7.3 shows a plot of dl(s; β̂n, u, i) = l(β̂n + sui) for s ∈ (−0.02, 0.02), where

i, j = 1, . . . , p index horizontal and vertical plots. The solid vertical line in each

picture denotes β̂n, and the dotted vertical line denotes the true β0. The picture

indicates on any random direction, l(β) is smooth and has a parabolic form, and β̂n

is the calculus minimizer of l(β).
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Figure 7.4: Plot of dl(s; β̂n, u, i), non-normal covariates

Figure 7.4 shows a plot of dl(s; β̂n, u, i) = l(β̂n + sui) for s ∈ (−0.4, 0.4), where

i, j = 1, . . . , p index horizontal and vertical plots. The solid vertical line in each

picture denotes β̂n, and the dotted vertical line denotes the true β0. The picture

indicates on any random direction, l(β) is smooth and has a parabolic form, and β̂n

is the calculus minimizer of l(β).
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7.2.2 Quantitative Measurement of Local Continuity of l(β)

In fact, the continuity of the negative profile log-likelihood function l(β), the local

continuity around β0 can be quantified using the total difference of the approximated

derivative for function dl(s; β, i) in the following steps,

1. For fixed, β ∈ Uβ0 , s ∈ (−δ, δ) with δ being a small positive number,

dl(s; β, i) = l(β + s · ei), , i = 1, . . . , p (7.24)

where ei is the ith row of p× p identity matrix.

2. For i = 1, . . . , p, approximate the derivative of dl(s) using

der(s; β, i) =
1

2ε1

(dl(s+ ε1; β, i)− dl(s− ε1; β, i)). (7.25)

3. Generate a grid of points over interval (−a, a) with grid length ε0. Calculate

der(s; β, i) at each grid point. Record the output in a p× l matrix out, where

l is the number of grid points. outi,j approximates the derivative of l(β) in the

direction of βi at the jth grid point, where i = 1, . . . p and j = 1, . . . , l.

4. For each row of the matrix out Step 3, calculate the absolute value of the

difference between the consecutive components,

abs.di,j = |outi,j − outi,j+1|, i = 1, . . . , p, j = 1, . . . , l − 1, (7.26)

then record the row sum these differences, i.e.,

tot.di =
l−1∑
j=1

abs.di,j, where i = 1, . . . , p. (7.27)
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Remark 7.2.1 We do not have a universal criterion to choose a, ε0 and ε1 that

is guaranteed to work for every parametric setting. Since we are only interested in

the local continuity around a fixed β, ε0 should not be too large. The choice of ε1

depends on ε0. In general, the magnitude of ε1/ε0 should not be too large, in which

case, the total difference cannot reflect the subtle differences for different choices of

β; on the other hand, if the ratio is too small, then due to the appearance of the

indicator functions, the total difference would be large for any choice of β.

The quantity tot.di should be much smaller for smooth functions than non-smooth

functions. We also expect the total difference around β̂n,m to be similar to the

total difference of around β0, where m denotes the number of simulations. To test

these conjecture, we use the same simulated data sets in (7.22) in Section 7.1. The

parameters for grids and difference quotients are a = .5, ε0 = .01, ε1 = .001. We

ran the simulation for m = 1000 times with sample size 200. The censoring rate

ranges from 22% to 42% and the simulation means are (3.954,2.970,1.919,0.974).
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Figure 7.5: Plot of tot.diff , normal covariates

This picture shows the histogram of total differences defined in (7.27), where the

first row is for β0, second for β̂n, and third for βLS. The shapes and ranges of

the histogram indicates that the β̂n has a similar continuity pattern compared with

β0, and such pattern cannot be preserved when β is far from β0 evidenced by the

histogram of β̂LS.
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7.3 Convergence of the Estimator

Since t∗ = t(β) is the calculus maxima of f(t) =
n∑
i=1

h(1 + ttrmn(Xi,XXX, β)) for

each fixed β, the gradient ∇tf(t) at t∗ must be zero, i.e.,

g(t∗, β) =
n∑
i=1

mn(Xi,XXX, β)

1 + t∗trmn(Xi,XXX, β)
, where t∗ = t(β). (7.28)

Therefore at β̂n, the gradient g(t(β̂n), β̂n) should be close to zero regardless of

parametric setting or sample size. To test this claim, we did experiments under

β0 = (1, 2, 3, 4)

Set 3: Z1 = Bernoulli(0.5), Z2 = ln (Γ(3)) , Z3 = ln (F3,5) ,

Z4 = ln (Beta(5, 3)) , ε ∼Weibull(1)− 1; C ∼ Exp(0.5)

(7.29)

sample sizes n = 30, 50 and 100 for m = 100 simulations. We found the gradient is

always bounded by a very small number to the magnitude of 1e− 5.

7.4 Asymptotic Normality of the Z-Estimator and pEL Estimator

In this section, we compare β̃n,m, the solution to the EEE, and β̂n,m the value

that minimizes the negative logarithm of the pEL. Under three different parametric

settings, we compare the center of β̃n,m and β̂n,m as well as the empirical variances.

We seek proper sample sizes n1 and n2 such that β̃n1,m and β̂n2,m reaches asymptotic

normality. We also compare the computational efficiency in terms of time lapsed

and iterations that is needed for restarting improvement described on page 147.

Throughout this section, m = 1000 if not otherwise specified.
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7.4.1 Covariates without Normality

Let us start with a parametric setting with covariates that are not normally

distributed. Let β0 = (0.1, 0.2, 0.3, 0.4), and consider Set 3 described in (7.29),

Set 3: Z1 = Bernoulli(0.5), Z2 = ln (Γ(3)) , Z3 = ln (F3,5) ,

Z4 = ln (Beta(5, 3)) , ε ∼Weibull(1)− 1; C ∼ Exp(0.5)

(7.29)

Normality We found that the smallest sample size that is needed to attain nor-

mality is affected by the symmetricity of covariates. Checking the histograms, Z1

and Z3 are appears much more symmetric, the sample size that for β̃1
n, β̃3

n, β̂1
n and

β̂3
n to reach normality is significantly smaller than that for β̃2

n and β̃4
n, and β̂2

n and

β̂4
n. With n = 100, censoring rate ranging from 16% to 43% and mean equal to

29.3%. Based on the Shapiro test, β̃in,m and β̂in,m reaches normality only when i = 1

and i = 3.

When the sample size n = 200, both β̃in,m and β̂in,m pass the Shapiro test for

i = 1, . . . , 4. However, if we use the Mardia’s Test for multivariate normality, then

the sample size needs to be increased to 450. A histograms for β̃i450,1000 and scattered

plot of β̃i450,m against β̃i450,m can be found in Figure 7.6
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Figure 7.6: Histogram and QQ Plots for None-Normal Covariate Covariates
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Accuracy and Asymptotic Variance Covariance The first thing that we com-

pared was whether the two estimators β̂n,m and β̃n,m differs a lot from replica to

replica. In our simulation, we measure this difference using L1 vector norm of

β̃n,m − β̂n,m, which should be very small theoretically for proper n. This is because

when constructing β̂n,m, we first got t = t(β) by

t∗ = arg max
t
f(t), where f(t) =

n∑
i=1

ln(1 + ttrmn(Xi,XXX, β)) (7.30)

for fixed β. Since t is a calculus maxima for f(t),

∇tf(t) =
n∑
i=1

mn(Xi,XXX, β)

1 + t(β)trmn(Xi,XXX, β)
= 0 (7.31)

On the other hand, β̃n is the solution to

Sn(β) =
n∑
i=1

mn(Xi,XXX, β) = 0 (7.32)

Comparing (7.31) and (7.32) we see that Sn(β) is exactly ∇f(t) when t = 0. On the

other hand, theoretically, the solution to (7.30) has a very small magnitude relative

to the order of ‖β − β0‖. Since for large n, ‖β̂n − β0‖ is small, therefore by the

continuity of ∇tf(t), β̃n and β̂n should also be very close as well. We can observe

this fact from the scattered plot of β̃in,m against β̂in,m for i = 1, . . . , p. For n = 100,

the dots is distributed closely to the line y = x. As n grows to 150 and 200, the

linear pattern is even more clear.

As for accuracy, even for n = 100, the mean and median for both β̃n,m and β̂n,m are

very close to the true β0. We have also compared the empirical variance covariacne

matrix of the two estimators denoted by cov1 and cov2. The largest eigenvalues of

cov1 − cov2 for n = 100 is to the magnitude of n−3.

162



Restarting Improvement and Timing We found that β̃n,m is always faster to

compute than β̂n,m. This is because the latter one requires two steps of optimization,

yet the β̃n,m requires only one step. As for the iterations that is needed for the

restarting improvement, we found that β̃n,m always requires more rounds. This is

not surprising because the negative logarithm of the pEL function l(β) is much

smoother than the extended estimating equation function Sn(β). Consequently, it

takes more restartings for to find the minimum value of ‖Sn(β)‖.

7.4.2 Normally Distributed Covariates

We investigate similar aspects of β̃n,m and β̂n,m under β0 = (0.51, 0.15, 1.18, 0.92)

Set 4: Z1 ∼ Bernoulli(0.5), Z2 ∼ N(0, 1) Z3 ∼ N(0.3, 0.25);

Z4 ∼ N(0.1, 0.09), ε ∼Weibull(1)− 1, C ∼ Exp(0.5)

(7.33)

When all the covariates are normally distributed, the n that for β̃in,m β̂in,m to gain

normality is much smaller, where i = 1, . . . , p. For n = 100 with censoring rate

ranging from 15% to 44% and centered at mean = 28%, all components of β̃n,m and

β̂n,m passed the Shapiro normality test. When n = 400, both estimators pass the

Mardia test for multivariate normality. A histograms for β̃i400,1000 and scattered plot

of β̃i400,m against β̃i400,m can be found in Figure 7.7
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Figure 7.7: Histogram and QQ Plots for Normal Covariate Covariates
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Similar to the none-normal setting, the L1 norm of β̃n,m − β̂n,m is always small

evidenced by the the scattered plot of β̃in,m − β̂in,m for i = 1, . . . , 4, on which the

points are distributed closely along the line y = x. The magnitude of the absolute

value of eigen
(
cov(β̃n,m)− cov(β̂n,m)

)
is also small. When n = 450, the eigenvalue

with the largest absolute value is 1.66e-05

Under Set 4, the the EL method is still more costly in terms of time. However, like

in Set 3, the number of iterations needed for restarting improvement is much smaller

for the EL method. When n = 400, 938 replicas are finished by only 1 restarting

and the rest 62 are finished by in 2 restarting iterations for β̂n,m; in comparison,

when calculating β̃n,m, only 834 replicas are finished within 1 restarting, and the

maximum number of iterations is 4.

7.4.3 Extreme Cases

In this section, we consider an “extreme” parameter setting, under which the

lifetime t is either very large or very small. This is rarely seen in practice, however,

we would like to compare the behavior of β̃n and β̂n out of theoretical interest.

Consider β0 = (0.4, 0.3, 0.2, 0.1),

Set 5: Z1 ∼ Bernoulli(0.5), Z2 ∼ N(0, 1), Z3 ∼ F3,5,

Z4 ∼ Beta(5, 3), ε ∼Weibull(1)− 1, C ∼ Exp(0.8)

(7.34)

Under parametric setting (7.34), the censoring rate ranges between 25.8% to 38.6%

with mean around 31.3%. From the histogram, we can see that T and V are severely

skewed to the right with extremely large outliers, which happens because the co-
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variate Z3 is severely skew to the right. Therefore we expect the estimator for β3
0 to

gain asymptotic normality with a much larger n.

For both β̃n,m and β̂n,m, a large sample size is needed in order to attain asymptotic

normality. Unfortunately, we was not able to fine a proper n such that β̃3
n,m or β̂3

n,m

gains normality. For n = 1000, the p-values of Shapiro test on both β̃in,m and β̂in,m

for i = 1, 2, 4 are above 0.6, yet 0.0004 for β̃3
n,m and β̂3

n,m.

In comparison between β̃n,m and β̂n,m they are both very closed evidenced by a

small L1 norm form = 1, . . . , 1000, and the absolute difference of variance covariance

matrices with the magnitude of eigenvalue 1e-5 when n = 1000, and 1e-4 when

n = 500.
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Chapter 8: Contribution and Future Work

In this section, we summarize the major contributions of this thesis, and then

give an outline of what future work can be done related to the Extended Estimating

Equations (EEE), and how to make the extension even further so that the EEE can

be applied to a broader class of semiparametric models.

8.1 Original Contribution

The most important concept we developed in this thesis is the EEE. Motivated

by the lack of coverage of Classic Estimating Equation (CEE) in the regime of

right censored semiparametric models including the widely used Cox model and

Accelerated Failure Time (AFT) model, we see the necessity to extend the scope of

CEE so that it can also serve as a tool for those semiparametric setting.

Inspired by the construction of the partial likelihood equation for Cox model in [11]

and the linear rank equation for the AFT in [38], we establish the EEE by allowing

the criterion function not only depend on data and structural parameter, but also on

the nuisance parameter. Using the concept of Glivenko-Cantelli class and Donsker

class, we are able to prove lemmas parallel to the EL under EEE setting in [32]
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and [33], which lead to the asymptotic normality of the corresponding Z-estimator,

i.e., the root to the EEE.

We also constructed the ϕ-transformation model, which to our knowledge, is the

broadest class of semiparametric models of which the structural estimator can be

defined as the root of EEE. The ϕ-transformation is a generalization of the General

Transformed Model (GMT), and can represent a series of semiparametric models

including linear model, AFT, location-scale model, and operational time model,

and etc. The GMT model has been well research in statistical literature such as

in [38] by Tsiatis. Similar to Tsiatis’s work, we construct a martingale structure

on the residual scale. This structure guarantees the zero mean assumption of EEE.

Then we prove the local asymptotic linearity of the associated EEE around true

structural parameter, which leads to the asymptotic normality of the structural

parameter.

We can also use EEE as a constraint in the Empirical Likelihood (EL) maximiza-

tion. We prove that with criterion functions that are continuous with respect to the

structural parameter, or a martingale structure as described in the ϕ-transformation

model and Cox model, there exists a non-shrinking neighbourhood of the true struc-

tural parameter such that for any fixed value in that neighbourhood, there exists

a unique probability vector that maximizes the EL with probability approaching 1.

Then a structural estimator can be calculated by maximizing the Profile Empirical

Likelihood (pEL). After establishing lemmas that are parallel to those in [32] and [33]
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using empirical process theory, we show that the pEL estimator is asymptotically

normal. When the dimension of the EEE equals to that of the structural parameter,

the asymptotic variance covariance matrix of the pEL is identical to the sandwich-

formed variance covariance matrix of the Z-estimator via solving the corresponding

EEE.

From simulation with R, we are able to visually compare the local continuity of

EEE and the pEL, and we found the latter is much smoother than the former. We

also propose a concept of “total difference” to quantify the local continuity of the

pEL. Although we are not clear about the statistical behavior of this quantity, from

the simulation result, we can see that the pEL estimator preserves a similar pattern

of total difference to the true parameter value. Although strictly speaking, neither

EEE or pEL is continuous with respect to the structural parameter, the pEL does

appear to be more smooth. One benefit of this “continuity” is that it takes much

less iterations to perform the restart improvement procedure using the Nelder-Mead

optimization.

We also find that for a sufficiently large sample size, the Z-estimator and the pEL

estimator are very close. Namely, the L1 distance between the two is small, and the

magnitude of the eigenvalue of the difference between the variance covariance matrix

small as well. The smallest sample size that is needed for the pEL to reach asymp-

totic normality is affected by the skewness of the covariate. The more symmetric

the covariance is, the smaller the threshold sample size is.

169



8.2 Future Work

Under the CEE setting, one of the important benefits of EL is constructing the

Wilk’s type confidence region and develop the EL ratio test. Compared with the

Wald type statistics, the EL confidence region does not involve calculating an vari-

ance covariance matrix, therefore is more computationally efficient. Owen developed

the EL confidence region in [32] for the case when the dimension of the criterion

function r equals the dimension of the structural parameter p, and Qin and Lawless

generalized his conclusion to the case when r > p. Following the thread of Qin and

Lawless’s work, we were able to establish the asymptotic normality of the pEL esti-

mator associated with EEE, however, we did not establish the Wilk’s type theorem

for EEE. Since we have already proved the asymptotic normality of EEE evaluated

at the true structural parameter, with the same Taylor expansion technique applied

to the pEL as the proof of Theorem 2 in [33], we should be able to show the EL

ratio statistic follows a chi squared distribution with degree of freedom equal to the

dimension of the structural parameter, and a confidence region will follow after this

result.

A major advantage of using CEE as a constraint in EL method rather than directly

solving for an Z-estimator is that the former allows the dimension of the CEE r

exceeds that of the structural parameter p. In this thesis, we restrict our discussion

to the case when r = p except for the proof of the lemmas that are parallel to

Lemma 1 and Theorem 1 of [33]. It is appealing to allow r > p under the EEE

170



setting. Related additional proof could involve establishing a neighbourhood of

the true structural parameter on which there exists a unique probability vector

maximizing the EL and etc.

The efficiency is of the Z-estimator and the pEL estimator associated with EEE

is an untouched area in this thesis. Recall that the broadest class of semipara-

metric models associated with the EEE is the ϕ-transformation model, and the ϕ-

transformation model is generalized from the General Transformation Model (GMT).

In [38], Tsiatis proposesd a class of estimators using linear rank tests for the GMT,

and constructed the efficient estimators within this class together with conditions

when they are fully efficient. In Theorem 3 of [33], Qin and Lawless pointed out

the pEL with r > p is efficient in the sense of [40] and [5]. As for EEE, we are

interested in the following two questions. First, when r = p, are the Z-estimator

and pEL efficient in any sense? Second, in the case when r > p, the asymptotic

variance covariance matrices are no longer identical. Therefore it is appealing to

inspect whether the two matrices can become the same after further simplification;

if not, then how does the efficiency compare with one another.

Up to now, the broadest class of semiparametric models that can we construct

to serve as an example of EEE is the ϕ-transformation model. Therefore a natural

question is whether it is possible to extend EEE even further to cover more models.

One such model could be the Frailty Model first introduced by Vaupel in univariate

survival models in [43], and later applied to multivariate situation on familial ten-
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dency in chronic disease incidence by Clayton in [9]. Frailty model introduces an

unobserved random effect in the exponential proportionality part of the Cox model,

i.e.,

λT |Z̃(t),W {t|z̃(t), w} = λ0(t) exp
{

lnW + βtrZ(t)
}
, (8.1)

where lnW is an unobserved continuous random variable unique to the linear pre-

dictor of each observation that is independent of Z, Z = {Z(t) : t ≥ 0} is a p × 1

covariate that may be time dependent, λT |Z̃(t),W {t|z̃(t), w} is the hazard function of

T conditional on W and Z̃(t) = {Z(s), s ≤ t}, λ0(t) is an unspecified base hazard

function. Let f(w, γ) be the density of function of W with unkown parameter γ ∈ R.

Let

θ = (β, γ) ∈ Θ, where Θ = Uβ0 × R,

then (8.1) yields a class of semiparametric models with parameters

ψ = (θ, λ) ∈ Θ×H,

where H ≡
{
λ(s) : λ(u) > 0 for all u ∈ R+;

∫∞
0
λ(u)du =∞

}
. We did some pre-

liminary calculation on the (8.1) assuming W follows a gamma distribution, and

we found that an estimator of β can be defined via maximizing the pEL, which

eventually breaks down to solving the an equation that involves quotients among

three higher order summations. So the question is whether we could make a gen-

eral definition out of the frailty model that is an extended EEE. On the one hand,

this extended EEE should cover cases including like frailty model, ϕ-transformation

model and Cox model; on the other hand, there should be examples beyond those

three semiparametric models that can be investigated using the extended EEE.
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Appendix A: Empirical Process Theory

In this appendix, we first show the that under suitable conditions, if F is a Donsker

class with finite bracketing integral, then it is also a Glivenko-Cantelli class. Then

we prove that under Pθ with θ = (β, µ),

1

n

n∑
j=1

ZjI(Vj > t)eβ
trZj P−−→ E

{
Z1I(V1 > t)eβ

trZ1

}
, (A.1)

where {(Zj, Vj)}∞j=1 are independently identically distributed (i.i.d.) samples defined

in Chapter 1, and the convergence is uniform in parameter (β, t) ⊂ Uβ0×R+, where

Uβ0 is a ball in Rp that contains the true parameter value. Definitions of Donsker,

Glivenko-Cantelli class and bracketing integral J[ ](1,F , L2(P )) < ∞ can be found

on page 269-270, Chapter 19 of [41].

Theorem A.0.1 Let F be a class of measurable functions such that the bracketing

integral J[ ](1,F , L2(P )) <∞. Then F is a Glivenko-Cantelli class.

Proof: Let N[ ](ε,F , Lp(P )) be the ε-bracketing number in Lp defined on page 270

of [41]. By this definition, every ε-bracket in L2 is also a ε-bracket in L1, we know

that

N[ ](ε,F , L1(P )) ≤ N[ ](ε,F , L2(P )).
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By the definition of the bracketing integral on page 270, Section 19.2 in [41],

J[ ](δ,F , L2(P )) =

∫ δ

0

√
lnN[ ](ε,F , L2(P ))dε, (A.2)

Therefore given J[ ](1,F , L2(P )) <∞, then
√

lnN[ ](ε,F , L2(P )) is finite for almost

every ε. Consequently, N[ ](ε,F , L2(P )) < ∞ a.e. By Theorem 19.4 in [41], F is

also Glivenko-Cantelli.

The following theorem is established as part of Example 19.20 on page 277 of [41].

It shows how to construct a new Donsker class from two existing Donsker classes

via Lipschitz transformation.

Theorem A.0.2 (Lipschitz Transformation) Let φ : R2 7→ R be a fixed Lip-

schitz function. If f and g range over Donsker classes F and G with integrable

envelope functions, then the set of functions φ(f, g) is Donsker.

Now we are ready show that the convergence in (A.1) is uniform in parameter

θ = (β, t).

Theorem A.0.3 Let x = (z, s) ∈ Z × R+, θ = (β, t) ∈ Uβ0 × R+, where Z is a

compact and bounded set in Rp and Uβ0 ⊂ Rp is a ball centered at β0. Then

1

n

n∑
j=1

ZjI(Vj > t)eβ
trZj P−−→ E

{
Z1I(V1 > t)eβ

trZ1

}
, (A.3)

and the convergence is uniform in θ.

Proof: For fixed θ = (β, t) ∈ Uβ0 × R+, the convergence of (A.3) is guaranteed

by the Law of Large Numbers (LLN). To prove this convergence is uniform in θ, for
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any fixed θ, define function f(x, θ) with argument x = (z, v) ∈ Z × R+,

f(·, θ) : Z × R+ 7→ R : f(x, θ) = zeβ
trzI(v ≥ t). (A.4)

If we can show that

F = {f(x, θ) = zeβ
trzI(s ≥ t), where θ = (β, t) ∈ Uβ0 × R+}

is Glivenko-Cantelli, then the uniformity is proved. The idea is to consider F as a

Lipschitz transformation of a parametric class and a bounded variation class, then

apply Theorem A.0.2.

For any fixed β, let g(x, β) : (Z × R+)× R+ → R, and

G = {g : g(x, β) = zeβ
trz, where β ∈ Uβ0},

Let us show that G is a parametric class that satisfies conditions for the parametric

class described in Example 19.7 of [41], where β corresponds to θ in Example 19.7.

For any β1 and β2 in Uβ0 ,

|zeβtr1 z − zeβtr2 z| = |z(eβ
tr
1 z − eβtr2 z)| ≤ |z||eβtr1 z − eβtr2 z| (A.5)

Since the exponential function ex is Lipschitz continuous when x is bounded, there

exists a constant C such that

|eβtr1 z − eβtr2 z| ≤ C|βtr1 z − βtr2 z| = C|(β1 − β2)trz| ≤ |β1 − β2||z|

Plug the equation above back into (A.5), yielding

|zeβtr1 z − zeβtr2 z| ≤ C|z|2|β1 − β2|.

Hence we have shown that for m(X) = C|Z|2. Consequently, G is a Donsker class

by Example 19.7 of [41].
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For any fixed t ∈ R+, consider function h(·, t) : R 7→ R of the form of

H = {h(x, t) = I(s ≥ t), where t ∈ R+}.

For any h ∈ H, the variation is 1. Then by the bounded variation class described

in Example 19.11, H is also a Donsker class. Next, we consider the product of

functions from G and H. Let φ(fg) : R2 7→ R be

φ(fg) = fg.

This is a Lipschitz function since z is assumed to be bounded and therefore G is too.

Hence by Theorem A.0.2, the new class of φ(g, h), where g ∈ G and h ∈ H, is also

Donsker, i.e., the class of functions f : Z × R+ × R+ × Uβ0 → R of the form of

F = {f : f(x, θ) = zeβ
trZI(s ≥ t), where θ = (β, t) ∈ Uβ0 × R+}

is also a Donsker class.
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