Bifurcation Control of Chaotic
Dynamical Systems

by H.O. Wang and E.H. Abed

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 92-67



Bifurcation Control of Chaotic

Dynamical Systems*

Hua O. Wang and Eyad H. Abed

Department of Electrical Engineering
and the Institute for Systems Research

University of Maryland, College Park, MD 20742 USA

Manuscript: June 6, 1992

Abstract

A nonlinear system which exhibits bifurcations, transient chaos, and fully developed
chaos is considered, with the goal of illustrating the role of two ideas in the control
of chaotic dynamical systems. The first of these ideas is the need for robust control,
in the sense that, even with an uncertain dynamic model of the system, the design
ensures stabilization without at the same time changing the underlying equilibrium
structure of the system. Secondly, the paper shows how focusing on the control of
primary bifurcations in the model can result in the taming of chaos. The latter is an
example of the ‘bifurcation control’ approach. When employed along with a dynamic
feedback approach to the equilibrium structure preservation issue noted above, this
results in a family of robust feedback controllers by which one can achieve various
types of ‘stability’ for the system.
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1 Introduction

Recently, significant attention has been focused on developing techniques for the control
of chaotic dynamical systems [1,2,3,4,5,6]. Of course, at the outset, one must realize that
there is no obvious way to define the ‘control of chaos’ problem. This is in direct contrast
to more traditional dynamical system control problems, such as the textbook problem of
stabilization of an equilibrium position of a nonlinear system. Although even this textbook
problem allows for various interpretations for the achieved margin of stability, decay rate,
etc., these can all be viewed within the same basic framework. Chaos, on the other hand, is a
rich, global dynamic behavior, and its ‘stabilization’ can have vastly differing interpretations.
For example, references [2,3] employ a small amplitude control law in a restricted region of
the state space, thereby stabilizing a pre-existing equilibrium or periodic orbit. Since the
control vanishes in most of the state space, closed-loop system trajectories follow erratic paths
for some time, until they enter part of the neighborhood in which the control is effective,
after which they are attracted to the equilibrium or periodic orbit of interest. Other authors
apply nonlocal linear or nonlinear feedback to stabilize nominal equilibrium points [1,5].
Also, some authors are taking a control systems approach to the analysis of chaos, which
may prove useful in control design (see [7,8,9]). This summary of previous work on control
of chaos is of necessity very brief, and the reader is referred to the original papers for details.

In general, the techniques for feedback control of chaos presented thus far in the literature
have some common features, which we feel are important to briefly summarize. The control
is usually designed for parameter values where the system is known to exhibit chaotic motion,
and is typically of the form v = u(z — z¢) where z is the system state vector, and x is an
unstable equilibrium of interest, which lies on a chaotic attractor. The control function u
is not necessarily smooth. Thus, the control consists of direct state (or output) feedback
around zg, a specific equilibrium of interest. Note that xo can also be a periodic orbit, as
observed in [2,3].

The approach pursued in the present paper is directed toward nonlinear systems which

undergo bifurcations, and possibly chaotic motion, as a parameter is quasistatically varied.



Such systems naturally possess several, and possibly infinitely many, equilibria and periodic
orbits. The approach is of particular relevance to systems for which the model possesses a
high degree of uncertainty. Often, an engineering system is designed to perform well, and to
be stable, for a large range of parameter values. However, technological demands are pushing
systems to the limits of their performance, and many engineering systems are being operated
under conditions which may be viewed as ‘stressed.’ It is this stressed operation which gives
rise to nonlinear dynamic phenomena, such as bifurcations leading, in some cases, to chaos.
We take an approach which is in mathematical synergy with this description.

We consider nonlinear systems depending, for simplicity, on a single bifurcation parame-
ter. For the ‘usual’ values of the parameter, the system operates at a stable equilibrium, and
perturbations away from this mode of operation tend to be attenuated (stability). As the
parameter is varied, the equilibrium loses stability at a bifurcation point, giving rise to new
equilibria or periodic orbits, perhaps. If any of the bifurcated solutions is stable, the system
may operate at such a solution. For greater variations of the parameter, these bifurcated
solutions may also lose stability, and so on. There are several scenarios by which successive
bifurcations can result in a chaotic invariant set; these are discussed extensively in the chaos
literature. What is important about these scenarios from a control of chaos perspective, how-
ever, is that the appearance of chaos depends heavily on various aspects of the succession of
bifurcations. Suppose a particular control significantly reduces the amplitude of a bifurcated
solution, or significantly enhances its stability, over a nontrivial parameter range. Then, one
might expect that the occurrence of chaos might be ‘delayed’ to even greater variations in
the parameter, or might be extinguished completely.

This work differs from previous techniques in another respect, related to nonlinear model
uncertainty. Under model uncertainty, a nonlinear static state feedback controller designed
relative to a given equilibrium will influence not only the stability, but also the location, of
this and other system equilibria. To circumvent this difficulty, we employ a form of dynarnic
feedback which exactly preserves all system equilibria. This uses washout filters in a way

which retains sufficient freedom to stabilize bifurcations, and to delay their occurrence if



desired (see [10]). Besides preserving system equilibria, the incorporation of washout filters
in the feedback control facilitates the design of a control which does not depend on the
bifurcation parameter. This is also important to achieving a control which is effective over
a range of parameter values, instead of at one specific parameter value.

In this paper, we focus on a system studied by Singer, Wang and Bau [1] as a vehicle
for illustrating the bifurcation control approach. Singer, Wang and Bau study control of a
thermal convection loop using an experimental apparatus, and compare their experimental
results with simulations based on a low order dynamic model. The model is related to the
Lorenz equations [11]; see, e.g., Jackson [12] for a derivation. In [1] simple control laws are
given which suppress chaos in the model and in the experimental apparatus. Two more
recent papers by Bau and coworkers addressing control of chaos are [13], [14].

As stated in the foregoing comments, the bifurcation control approach to control of chaos
will be employed in the present paper. For the convective loop model used in [1], the results
obtained below provide a systematic alternative to construction of control laws. Moreover,
the controlled system possesses the desirable properties discussed above.

The remainder of the paper is organized as follows. Section 2 reviews the thermal con-
vection loop model of [1], and discusses its open loop dynamical behavior. Section 3 provides
a brief summary of concepts and results from [10,15,16] on bifurcation control. Section 4
applies these results to the thermal convection loop model to determine control laws for
suppressing both the transient chaotic and chaotic motion of the thermal convection loop

model. Concluding remarks are given in Section 5.

2 Thermal Convection Loop Model

Singer, Wang and Bau [1] study a thermal convection loop using a combination of experi-
mentation, modeling, and simulation. The analytical model used in [1] is given by the third

order system

1 = —pry+ pay, (1)
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Figure 1: Schematic description of the experimental apparatus

By = —T123 - 2, (2)

.’i)3 = 1T — T3 — R. (3)

where z;,¢ = 1,2, 3, are real, and p and R are positive parameters. The experiment studied in
[1] involves thermal convection in a toroidal vertical loop heated from below and cooled from
above as depicted in Figure 1. The variables z,, x4, z3 correspond, respectively, to the cross-
sectionally averaged velocity in the loop, the temperature difference along the horizontal
direction (side to side), and the temperature difference along the vertical direction (top
to bottom). The parameter R is the Rayleigh number, which is proportional to the net
heating rate, and p denotes the Prandtl number. It is observed experimentally that, as
the heating rate increases, the fluid flow in the loop goes through transitions. For a low
heating rate, the fluid is in the no-motion state. As the heating rate increases, a state of
steady convection arises (clockwise or counterclockwise). Further increases in the heating
rate result in temporally oscillatory, and, eventually, chaotic motion of the fluid.

The transitions above are also reflected by the model (1)-(3). To facilitate discussion of
this model, set p = 4.0 and view R as the bifurcation parameter. A bifurcation diagram
related to this model is given in Figure 2. In this diagram, a solid line represents a stable
equilibrium, a dashed line represents an unstable equilibrium, and an open circle represents

the maximum amplitude of an unstable periodic orbit of (1)-(3). The bifurcation diagram
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Figure 2: Bifurcation diagram for open loop system

is obtained by employing the package AUTO [17]. The model (1)-(3) possesses symmetry,
in that replacing (zy, z2,x3) with (—z1, —22,z3) results in the same set of equations. This
symmetry is reflected in the bifurcation diagram of Fig. 2.

For R < 1.0 the system (1)-(3) has a single, globally attracting, equilibrium point. This
equilibrium, given by 21 = 22 = 0, z3 = — R, corresponds to the no-motion state. At R =1.0
two additional equilibrium points appear through a pitchfork bifurcation. These equilibria,
which are present for all R > 1.0, are given by (z; = 23 = £v/R — 1,23 = —1.0). Denote
these equilibria by C'; and C_, respectively. These two equilibrium points represent the states
of steady convection in the counterclockwise or clockwise directions, respectively. The no-
motion equilibrium state (0,0, —R) loses its stability at the pitchfork bifurcation point, i.e.,
at R = 1.0. The convective equilibria (+v/R — 1, £vR — 1,—1.0) lose their stability in Hopf

bifurcations occurring at R = p(p+4)/(p—2) = 16.0, as depicted in Fig. 2. The bifurcation
diagram of Fig. 2 illustrates that the Hopf bifurcations at the convective equilibria result
in unstable periodic solutions, i.e., these bifurcations are subcritical. Moreover, Fig. 2 also
illustrates the disappearance of the unstable periodic orbit in a blue sky catastrophe [18]
at the approximate value R = 7.3198. Not discernible from Fig. 2 is the fact that the

model (1)-(3) admits erratic behavior for a large range of values of R. This erratic behavior
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Figure 3: A transient chaotic orbit of open loop system for R = 14

may or may not be chaotic. To be more precise, one observes trajectories which appear
chaotic for a long time interval, after which they settle to an equilibrium. One also observes
trajectories which are chaotic in the usual sense. The former type of behavior is often referred
to as “transient chaos.” Transient chaos is observed in simulations of (1)-(3) for parameter
values 7.3198 < R < 15.9, for some initial conditions. (Extensive simulation shows that
initial conditions resulting in transient chaos are more common for larger values of R in this
interval. See Figure 3 for a typical transient chaotic trajectory of the system at R = 14.) At
approximately K = 15.9 the transient chaos is converted to a chaotic attractor by a crisis.
Thus for the relatively narrow range 15.9 < R < 16, there are three possible attractors,
namely C4,C_ and a chaotic attractor, while for R > 16, typical trajectories of the system
(1)-(3) are chaotic. Figure 4 shows a typical chaotic trajectory of the system at R = 19.
The foregoing is a necessarily brief description of the qualitative behavior of (1)-(3) and
its dependence on the parameter R. There are, however, intricate details associated with

the various behaviors and their bifurcations. For instance, there are several stable periodic
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Figure 4: A chaotic orbit of open loop system for R = 19

orbit windows for some large values of R. Within these windows there are three kinds of
bifurcations involving periodic orbits, namely, the saddle-node bifurcation, the symmetry
breaking bifurcation and the period doubling bifurcation [11]. The most noticeable periodic
orbit window corresponds roughly to the parameter range 125 < R < oo.

Not only do Egs. (1)-(3) resemble the Lorenz equations, but there is a simple transfor-

mation mapping the Lorenz system into (1)-(3). The Lorenz equations are

& = —oz+oy, (4)
Yy = rz—y-—az, (5)
Z = zy— bz, (6)

where o,r and b are three positive parameters. Equations (1)-(3) can be obtained from the

Lorenz equations by the transformation

2 = =z, (7)

T2 = Y, ‘(8)



T3 = 2T, (9)

with the identifications R = r,p = o and b = 1. Hence, studies of the Lorenz equations
have a direct bearing on the system (1)-(3). We should note that the homoclinic orbits
at R = 7.3198, which may be viewed as being ‘caused’ by the subcriticality of the Hopf
bifurcations, are important to the appearance of the transient chaotic and chaotic motions of
the model studied here. Indeed, the transient chaos occurring near the homoclinic bifurcation
results from a Sil’nikov-type bifurcation [19], [11]. (The model also exhibits chaotic behavior
in other, distant parameter ranges arising from period doubling cascades.) Before pursuing
the design of feedback control laws for the system above, it is necessary to briefly summarize

results on bifurcation control.

3 Bifurcation Control Laws

Consider a one-parameter family of nonlinear autonomous control systems

z = fulz,u). (10)

where r € IR" is the state vector, u € IR is the system parameter, f, is a smooth map
from IR" x IR to IR" and u is a scalar input. Local bifurcation control deals with the
design of smooth control laws u = u(z) which stabilize a bifurcation occurring in the one-
parameter family of systems (10). These control laws exist generically, even if the critical
eigenvalues of the linearized system at the equilibrium of interest are uncontrollable. The
direct state feedback control designs of [15] result in transforming a subcritical (unstable)
Hopf bifurcation to a supercritical, and hence stable, bifurcation. This was extended to
stabilization of Hopf bifurcations using dynamic feedback through washout filters in [10,
16]). The washout filter-aided feedback control law developed in [10,16] has many desirable
features. The control law does not require an accurate knowledge of the system equilibria
and it exactly preserves all system equilibria. Also the incorporation of washout filters

in the feedback control facilitates the design of a control which does not depend on the



bifurcation parameter. This is important to achieving a control which is effective over a
range of parameter values.

The design procedure aims to ensure the asymptotic stability of the Hopf bifurcation
point as well as orbital asymptotic stability of the periodic solutions emerging from the
bifurcation point for a range of parameter values. Suppose for u = 0, z.,, is the nominal
equilibrium of (10) with g = g. and the following hypothesis (hypothesis(H)) holds: The
Jacobian matrix Dy f,, (2e,.,0) has a simple pair of nonzero pure imaginary eigenvalues
A (pe) = jwe and Ap(p) = —jw, with w. # 0 and the transversality condition

ORe[M(pc)]

is satisfied, and all the remaining eigenvalues are in the open left half complex plane.
The Hopf Bifurcation Theorem [20], [21] asserts the existence of a one-parameter family
Pe, 0 < € < g of nonconstant periodic solutions of system (10) emerging from = = z.,_ at
the parameter value p. for ¢, sufficiently small. The periodic solution p.(¢) occurring at
parameter values u(€) have period near 27w, . Exactly one of the characteristic exponents

of p. governs the asymptotic stability and is given by a real, smooth and even function
Ble) = Ba€” + Pac” + - (12)

That is, pe is orbitally asymptotically stable if 3(e) < 0 but is unstable if (¢) > 0. Gener-
ically the local stability of the bifurcated periodic solutions p, is typically decided by the
sign of the coefficient ;. Note the sign of 3, also determines the stability of the critical
equilibrium point z., . Therefore, a feedback control law u = u(z) which renders 8, < 0
will stabilize both the Hopf bifurcation point and the bifurcated periodic solutions.

There are several concerns about this form of control function u. Usually the argument
of u is & = ¢ — ., but this limits the control to one parameter value . since f,(z. ., u(z —
Te,u.)) does not necessarily vanish for p # p.. Here z., is an equilibrium point of f,(z.,,0).
Another option is to take the argument of the control function to be &, = z — z.,. Clearly
this requires knowledge of the whole branch of equilibria within the neighborhood of z, .

of interest and more severely requires the control u to depend on the parameter x. Even
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if z., can be determined accurately, if the system has multiple equilibrium branches, i.e.,
there is at least one equilibrium point z} , # z.,,, the control above still does not preserve
other branches like z ,. These concerns lead to the employment of the outputs of washout
filters as the arguments to the control u in [10].

Specifically, in Eq. (10), for each system state variable z;, ¢ = 1,...,n, introduce a

washout filter governed by the dynamic equation
z; = x; — di2; (13)

along with output equation

yi = x; — dizi. (14)

Here, the d; are positive parameters (this corresponds to using stable washout filters). In
this formulation, n washout filters, one for each system state, are present. In fact, the actual
number of washout filters needed, and hence also the resulting increase in system order, can
usually be taken less than n.

The advantages of using washout filters in this way stem from the resulting properties
of equilibrium preservation and automatic equilibrium (operating point) following. For in-
stance, if u = u(y) with «(0) = 0 where y is a washout filter output (14), clearly y vanishes
at steady-state. Hence the x components of a closed loop equilibrium are identical with the
corresponding components of the open loop equilibrium. Also, since Eq. (14) can always be
written as

Y =T, — dZ,' = (:l)Z -— :C,'eyl‘) hnd d(z2 — Zie,y,)’ (15)

the control function v = u(y) is guaranteed to center at the correct operating point. Moreover
it is shown in [16] that, at a Hopf bifurcation point, the extended system (10) and (13) has
the same stability coeflicient 35 as that of the original system (10).

It is well known that only the quadratic and cubic terms occurring in a nonlinear system
undergoing a Hopf bifurcation influence the value of ;. Thus only the linear, quadratic and
cubic terms in an applied control u have potential for influencing 3;. Now assume any linear

feedback, which may be used to modify the critical parameter value pu., is reflected in the
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nominal system (10) and (13). Then the feedback control u may be assumed to be of the

form
u=yTQ.y + Cu(¥,¥,y), (16)

where y is the vector of washout filter outputs y; = z; — d;z;, @y is a real symmetric n X n
matrix and C, is a cubic form generated by a scalar-valued symmetric trilinear form. Such
a control law is independent of the equilibrium points, and, because of its nonlinearity,
preserves the linear stability characteristics of the original system.

Due to space limitations, we only briefly summarize the results for the situation that the
critical eigenvalues of the linearized system at the equilibrium of interest are controllable,
which is the case of the convection loop dynamics. The Taylor series expansion of (10) with

respect to z and v at ¢ =z, ,u = 0 gives
&=Aod+bu+---. (17)

where & := z — ., . Let r be the right (column) and [ the left (row) eigenvector of Ao with
eigenvalue jw.. Normalize by setting the first component of r to 1 and then choose [ so that
Ir = 1. From the well known PBH test[22], controllability of the critical mode is equivalent
to the requirement /b # 0. In such case a linear stabilizing feedback exists. Interestingly it
is shown in [15,16] that a cubic stabilization feedback also exists. That is @, can be set to
0 in Eq. (16). For simplicity, let the washout filter parameters d; all be given by a common
value, say d > 0. The closed-loop stability coefficient §; of the overall system (10), (13),
(14) and (16) (with @, = 0) is given by [16]:

B; = By + 2R, (18)

where f; is the stability coefficient of the original system (10) or the extended system (10),
(13) and A is given by

_ 3wi(we +jd)
GRSk

where r, [, b, d and w, are from above. From this we see the control can be any cubic function

A Cu(r,r, 7). (19)

Cu(y,y,y) such as ReA is sufficiently negative to ensure 85 < 0. Such control stabilizes the

12



Hopf bifurcation point and the periodic solutions emerging from the Hopf bifurcation point

for a range of parameter values.

4 Bifurcation Control of Convection Dynamics

In this section, we employ the bifurcation control results above to determine control laws for
suppressing both the transient chaotic and chaotic motion of the system (1)-(3). In the course
of seeking control laws for suppression of chaos, we shall also employ feedback to achieve
other, subsidiary goals. For instance, in the next subsection we consider use of feedback
to delay to higher values of the Rayleigh number the occurrence of the Hopf bifurcations
from the convective equilibria C. This addresses a question which arises rather naturally in
the context of using feedback to modify the phase portrait of system (1)-(3) in useful ways.
The control laws developed for achieving this delay in Hopf bifurcation parameter values
have a feature which occurs throughout this paper: they do not result in any change in the
set of equilibria, even in the presence of model uncertainty. This is achieved using dynamic

feedback incorporating washout filters, as proposed in [10,16].

4.1 Delaying the Hopf Bifurcations

Recall that the convective equilibria Cy lose their stability at Hopf bifurcations occurring at
R = 16. In this subsection, we give controllers which result in changing this critical value of
R to some prescribed value. In practice, the prescribed value would likely be greater than
the nominal (open loop) value, so as to result in an increase in the range of parameter values
for which the system exhibits stable steady motion.

Linearizing the model (1)-(3) at the upper equilibrium Cy of Fig. 2, we find that, for
R = 16, the Jacobian matrix has a pair of imaginary eigenvalues +iw, where w. = 4.47214
(recall that p = 4). Next we present a feedback control scheme which allows one to modify
the critical value of R at which the Hopf bifurcations occur, and to do so without modifying

the equilibria of (1)-(3). The state variable x3 is readily observable.
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A linear washout filter aided feedback with measurement of z3 is a dynamic feedback

described as follows. The closed loop system is given by

Ty = —pz1+pzy (20)
T = —T1%3— Tz, (21)
T3 = 19— 23— R+ u, (22)
Ty = Tz— dzg, (23)

where x4 is the washout filter state, and where the control u is of the form
u=—ky, (24)
with y an output variable, given by
Y= 3 — dzy. (25)

Here, k; is a scalar (linear) feedback gain.

This control preserves the symmetry inherent in the model (1)-(3). Thus, in discussing
the effects of the controller above, remarks specific to the upper equilibrium branch C apply
also to the lower branch C_.

The control above is a dynamic feedback control. By adjusting the linear control gain k;
one can delay the Hopf bifurcations to occur at any desired parameter value. The relationship
between the critical parameter value R and the control gain k; can be determined by finding
the conditions under which the Jacobian of the overall system (20) - (25) possesses a pair of

pure imaginary eigenvalues. This relationship translates to the conditions

(Rd — 2p + 2Rp + dp)?

+(2+d+ ki + p)*(—2dp + 2Rdp)

~(2+d+k +p)(Rd—2p+2Rp

+dp)(R+2d+ ki +p+dp+ kip) =0, (26)

kk+p+d+2>0, and R> 1 (27)

14
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Figure 5: Two-parameter curve of Hopf bifurcation points for linear ‘delaying’ control
In the case p = 4.0 and d = 0.5, these conditions are tantamount to the restriction

—15<k<?2 (28)

on the gain k;. To delay occurrence of the Hopf bifurcations, however, one must further
restrict k; to be positive. Indeed, negative values of k; in the interval —1.5 < k; < 2 result
in moving the Hopf bifurcations to smaller values of R. Figure 5 shows the 2-parameter (k;
and R) curve of the Hopf bifurcation points, i.e., the relationship between k; and critical
parameter value R. Figures 6(a) and 6(b) depict the bifurcation diagrams for the closed
loop system with (a) &y = 0.182538 and (b) k; = —0.234191, respectively. In Figure 6(a),
the Hopf bifurcations are delayed to R = 21, while in Figure 6(b), the Hopf bifurcations are
moved ahead to R = 11.

The foregoing discussion has resulted in linear, dynamic feedback control laws which
can be tuned to result in moving the Hopf bifurcation points to any desired value of K >
1. These control laws also ensure asymptotic stability of the convective equilibria for all
values of R up to the desired critical value. Despite this positive conclusion, the closed loop
system incorporating the control laws given above still exhibits chaotic and transient chaotic

behavior. This chaotic behavior is delayed to greater values of R if 0 < k; < 2, and moved
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ahead to lesser values if —1.5 < k; < 0.

From the discussion above it is clear that linear feedback can stabilize the convective
equilibria for arbitrary ranges of the parameter. Also as shown below, further increases
in the control gain result in the annihilation of the Hopf bifurcations. These, however, do
not imply that such a feedback can suppress chaos in the system. The transient chaos
and chaos which occur due to the presence of homoclinic orbits in the open loop system
can be suppressed by this type of linear dynamic feedback with a higher feedback gain.
Specifically, for gains k; > 2 and for p = 4,d = 0.5, it can be shown that both the upper
and lower convective equilibria are rendered asymptotically stable, and that the system no
longer exhibits chaos or transient chaos that arise through the homoclinic orbits and loss of
stability of the convective equilibria. However, the chaotic motion in the open loop system
which results from period doubling cascades persists for the closed loop system with linear
feedback. Moreover, for large values of R (e.g. R > 275), besides the two stable convective
equilibria as attractors, there are large amplitude stable period orbits.

We proceed to investigate two alternatives to linear feedback of the type considered above.
First, a nonlinear feedback control law can be designed to stabilize the Hopf bifurcations and
introduce a small amplitude stable limit cycle which surrounds the equilibrium for parameter
values at which it is unstable. Second, one can employ a combined linear-plus-nonlinear
feedback to suppress chaos in the closed loop system. The linear part of the feedback is
tuned to delay the Hopf bifurcations to a desired value of R, and the nonlinear part of the
feedback is chosen to stabilize the Hopf bifurcations occurring in the closed loop system.
The linear-plus-nonlinear feedback control alternative is the more versatile of these.

Before proceeding to issues of nonlinear control design, we remark that the control in-
troduced in the foregoing does not affect the stability of the nominal equilibrium branch,
(0,0, —~R,—R/d). This is easy to prove by examining the associated characteristic polyno-

mial

Do(s) = s*+Q2+d+k+p)s®+(1+2d+k +2p+dp+ kp — pR)s*
+(d+p+2dp+ kip— pR — dpR — kipR)s + dp — dpR. (29)

17



Clearly for R > 1, Do(s) is not a Hurwitz polynomial, i.e., (0,0, —R, —R/d) is unstable for

R > 1. This is the same as in the open loop case.

4.2 Stabilizing the Hopf Bifurcations

Suppose a dynamic linear feedback has been introduced as in the foregoing subsection, re-
sulting in positioning the Hopf bifurcations to a desired value of R. One result of such a
control is to affect the bifurcated periodic solutions which emerge at the two Hopf bifurca-
tions. Recall that these bifurcations are subcritical for the open loop system (see Fig. 2).
The subcriticality of the Hopf bifurcations is crucial to the appearance of transient chaos
and chaos in the model for various values of R. Thus the question arises as to whether or not
the feedback controller of the previous subsection can be modified to result in stabilization
of the Hopf bifurcations. Next, we summarize some positive results in this direction.

From formulae (18) and (19) it can be seen that any cubic function Cy(y,y,y) such that
ReA\ is sufficiently negative to ensure 85 < 0 will serve to stabilize the Hopf bifurcations.
In other words, there is a family of stabilizing, purely cubic nonlinear controllers. We now
choose the simplest such stabilizing control law. The closed loop system again takes the

form (20)-(25), except that now the controller is
u = —kyy>. (30)

Here, k,, is the nonlinear feedback gain.

Again this control preserves the symmetry inherent in the model (1)-(3). Thus, in dis-
cussing the effects of the controller above, remarks specific to the Hopf bifurcation associated
with the upper equilibrium branch C apply also to that of the lower branch C_.

To illustrate the utility of such a nonlinear control law, we state a simple result obtained

using formulae (18) and (19) for 85 in the case p = 4.0 and d = 0.5:
B; = By — 2.42505k,. (31)

The open loop quantity 3; can be computed using either a known algorithm (e.g., [15]) or
the software package BIFOR2 [20]. Using BIFOR2 we obtain 8, = 0.0202740.001087. Thus,
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any choice of control law (30) with &, > 0.009 stabilizes the Hopf bifurcations occurring
at R = 16. This is a local result. To assess the degree to which this is reflected in the
global dynamics of the system, one resorts to extensive computation. Figure 7 shows the
bifurcation diagram for the closed loop system with k, = 0.009. Solid circles indicate stable
limit cycles. The maximum amplitude of a stable limit cycle is given by a solid circle.
The periodic orbits emerging from the Hopf bifurcation points themselves undergo further
bifurcations. In the closed loop system, the stable periodic orbits emerging from the Hopf
bifurcation points lose stability through cyclic fold bifurcations (CFB) [18]. The resulting
unstable periodic orbits regain their stability at the secondary Hopf bifurcations (or Hopf
bifurcations involving periodic orbits). In the interval between the cyclic fold and secondary
Hopf bifurcations, the Ruelle-Takens route to chaos from the secondary Hopf bifurcations
takes place. Simulations suggest that for &, = 0.009, this interval in parameter space is the
only range of parameter values where chaos is present. Simulations along with application
of the bifurcation analysis tool AUTO [17] indicate that slightly larger values of the gain k,
result not only in annihilation of the Ruelle-Takens route to chaos, but also in a reduced
amplitude of the stable limit cycles. This is illustrated in Figure 8, which shows superimposed
bifurcation diagrams for the closed loop system with various control gains k,. Figure 9 shows
a typical system trajectory for the closed-loop system with &, = 2.5 at R = 19.

With this type of control, transient chaos is successfully suppressed, and the previous
chaotic trajectories are replaced by small amplitude stable limit cycles near the convective
equilibria. Moreover, extensive simulations demonstrate that the periodic orbit windows
cease to exist, as does the chaos arising from the period doubling bifurcations associated
with these windows.

We conclude this subsection with a few comments on the Ruelle-Takens route to chaos
and our proposed control. By taking the control gain k, near 0.009, we in fact transfer
the chaos scenario associated with the original system to a new one, namely, the Ruelle-
Takens route to chaos. More significantly, slight increases in &, result in annihilation of this

route to chaos. Thus, the proposed control may also be a candidate for the control of the
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2.5 for R=19

Ruelle-Takens route to chaos in systems with dimension greater than three. The effect of

transferring between different chaos scenarios is also an interesting subject.

4.3 Delaying and Stabilizing the Hopf Bifurcations

As shown in the previous subsections, a linear feedback control can be used to delay the
Hopf bifurcations and a nonlinear one can be employed to stabilize the Hopf bifurcations.
The linear feedback control is only effective to a limited extent in suppressing chaos. The
nonlinear control, on the other hand, is very effective in suppressing chaos without affecting
the linear stability of the original system. However, the linear feedback does increase the
stability margin of the steady convective equilibria. Thus a natural extension to the control
laws above is a combined linear-plus-nonlinear feedback control. The linear part of the
feedback is chosen to delay the Hopf bifurcations to a desired value of R, and the nonlinear

part of the feedback is chosen to stabilize the Hopf bifurcations occurring in the closed loop
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Figure 10: Bifurcation diagram for linear-plus-nonlinear control with k; = 0.182538 and

k, =25

system. Again choosing the simplest such control laws, the closed loop system takes the

form (20)-(25), except that now the controller is
u=—ky— knyB- (32)

The control can be designed in two stages. In the first stage, adjustment of &; is used to
delay the parameter value at which the Hopf bifurcations occur to an acceptable value. In
the second stage, k, is adjusted to stabilize the Hopf bifurcation points and the bifurcated
periodic solutions resulting from the Hopf bifurcations. Figure 10 shows a bifurcation dia-
gram of the closed loop system with one such linear-plus-nonlinear feedback control. Note
that the control law (32) effects both a delay in the occurrence of the Hopf bifurcations, and
stabilization of these bifurcations.

With this type of control, both transient chaos and chaos are successfully suppressed.
The linear component in the control allows one to have control of the stability margin of the
steady convective equilibria. The nonlinear term in the control not only stabilizes the Hopf
bifurcations but also removes the periodic orbits windows. Thus one expects a significantly

improved transient response of the system than that achieved using linear feedback alone.
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So far all the proposed control approaches preserve the “symmetry” of the system because
of the way the control is introduced. Only the asymmetric component z3 of the states is
used in constructing washout filters and controllers. This results in identical control action
for the upper and lower equilibrium branches. The two Hopf bifurcations (upper branch and
lower branch respectively) are relocated and/or stabilized in unison and the resulting stable
convective equilibria and/or the stable limit cycles coexist, each with its respective basin.

Surely these approaches are very effective to relocate or suppress chaos, but for a given
initial condition it is not very clear beforehand to which convective equilibrium or limit cycle
the trajectory converges. It may be desirable not only to suppress chaos but also to be
able to direct a trajectory to the neighborhood of a specified equilibrium. This motivates
the design of another class of controllers, which imparts preference for one equilibrium over

another. This is the subject of the next subsection.

4.4 Targeting Control

We now carry out the design of control laws to “target” a particular equilibrium of the system.
That is, other equilibria or periodic orbits surrounding them are rendered unstable, while
the target equilibrium, or a periodic orbit surrounding it, is stabilized. This is achieved by
using the readily observable symmetric component z, of the state vector in constructing the
controllers. A linear feedback is employed to increase the stability margin of one convective
equilibrium and at the same time to decrease that of another convective equilibrium. A pure
nonlinear feedback, on the other hand, is designed to stabilize the Hopf bifurcation of one
equilibrium branch, leaving the linear stability of the original system and the stability of
the other Hopf bifurcation unchanged. As in the case of the symmetry preserving control
laws in the previous subsections, one can employ a combined linear-plus-nonlinear feedback

approach to achieve other more flexible types of stability.

Targeting an Equilibrium Recall that the convective equilibria Cy lose their stability
at Hopf bifurcations occurring at R = 16. In Subsection 4.1, a linear feedback control is

employed to modify the critical value of R at which both the Hopf bifurcations occur. Here,
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we give controllers which result in changing the critical value of R to two different values for
the C; branch and the C_ branch respectively. In other words, while the critical value of R
at which the Hopf bifurcation associated with the C; (C_) branch occurs is modified to a
larger value of R, the critical value of R associated with the C_ (C}) branch is modified to
a lesser value of R. In doing so, the stability margin of one equilibrium is increased while
that of the other is decreased. Hence, one equilibrium is preferred to the other (“targeted”).

A linear washout filter aided feedback with measurement of z; is a dynamic feedback.

The state variable z, is readily measurable. The closed loop system is given by

&y = —pzy1+ pxa, (33)
Ty = —T1T3— Ta, (34)
T3 = xTy— 23— R+ u, (35)
T4 = T9—dzy, (36)

where the z4 is the washout filter state, and where the control u takes the form

with y an output variable, given by
Yy =Ty — d$4v . (38)

Here, k; is a scalar (linear) feedback gain.

The control does not preserve the symmetry inherent in the model (1)-(3), though it does
preserve the (symmetric) equilibrium structure of (1)-(3). However, the closed loop system
(33)-(38) possesses symmetry involving the control gain k;. That is, replacing (z1, z2, z3, T4)
and k; with (—zy, —x, 3, —14) and —ki, respectively, results in the same set of equations.
Thus, the sign of k; alone determines which equilibrium is stabilized. The effect of positive
ki on the system is opposite to that of negative of k;. This can also be seen from the
characteristic polynomials evaluated at C; and C_. For positive (negative) k; the stability

margin of Cy (C.) is increased in the parameter space and that of C_ (C,) is decreased.
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Figure 11 illustrates the 2-parameter (k; and R) curves of the Hopf bifurcation points,
i.e., the relationship between k; and the critical values of R at which the Hopf bifurcations
occur. Figure 12 shows a bifurcation diagram of the closed loop system for k; = 2.5. It can
be seen that C is rendered stable up to R = 36.0043, and C_ is unstable for B > 1.08538. In
the interval 1.08538 < R < 36.0043 , C, is stable and C_ is unstable. Hence typical system
trajectories converge to Cy. Also note that the Hopf bifurcation at B = 36.0043 is still
subcritical, while the Hopf bifurcation at R = 1.08538 is rendered supercritical. Switching
the sign of ky, say, k; = —2.5, the situation is reversed: C_ is rendered stable in the same
interval. So by reversing the sign of k; one can switch the asymptotic behavior of the system
from one equilibrium to another.

The relationship between k; and the critical values of R at which the Hopf bifurcations

occur is quantified by the conditions

(=2p + dp + kipvVR — 1 + dR + 2pR)? + (2dpR — 2dp)(2 + d + p)?
—(2d+p+dp+kvVR—-1+ R)(—2p+dp

+kpvR—-1+dR+2pR)2+d+p) =0, (39)
—2p+dp+kip/R—14+dR+2pR>0, and R>1. (40)
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Simulation evidence suggests that for some choices of k; there are further bifurcations
involving periodic orbits even for moderate values of R. (Recall that the open loop system
as well as the closed loop with a linear feedback delaying Hopf bifurcations also experience
bifurcations involving periodic orbits for some larger values of R.) However, simulations also
suggest that for |k| < 2.5, such bifurcations are unlikely to occur. This in turn limits the
ability of the proposed control to modify the critical values of R, therefore the ability to
affect the stability margin of Cy. One way to accommodate this limitation is to apply a
control strategy that combines the Hopf bifurcation delaying control and the targeting control
discussed here. The presence of these ‘unwelcome’ bifurcations of periodic orbits signals the
need for caution in applying linear control. Moreover, the closed loop system incorporating
the control laws given above still exhibits chaotic and transient chaotic behavior. This chaotic
(and transient chaotic) behavior is delayed to greater values of R. Also the chaotic (and
transient chaotic) trajectories tend to spend more time around the preferred equilibrium.
Next, we present a nonlinear feedback control which not only suppresses chaos but also
targets a periodic orbit in the vicinity of a given equilibrium.

Before proceeding to issues of nonlinear control design, we again remark that the control

introduced in the foregoing does not affect the stability of the nominal equilibrium branch,
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i.e., the (0,0, —R,0) branch. This is easy to verify by examing the associated characteristic

polynomial.

Targeting the Vicinity of an Equilibrium In Subsection 4.1 a nonlinear dynamic feed-
back is designed to stabilize the Hopf bifurcations and the resulting closed loop system shows
no chaotic behavior. In the previously chaotic region, two stable small amplitude periodic
orbits coexist. Here we employ a similar type of nonlinear feedback but with the goal of
introducing only one of these two periodic orbits. That is, one periodic orbit is rendered
unstable, while a stable periodic orbit is introduced near the targeted equilibrium. This is
achieved by stabilizing the Hopf bifurcation of one equilibrium branch, while not affecting
the linear stability of the original system and the stability of the other Hopf bifurcation.
Using the bifurcation control techniques of Section 3, one can again show that there is a
family of stabilizing, purely cubic nonlinear controllers. With the simplest such control law,

the closed loop system again takes the form (33)- (38), except that now the controller is
u = kyy°. (41)

Here, as before, k, denotes a scalar (nonlinear) feedback gain.
Applying the Hopf bifurcation formulae (18) and (19) to the Hopf bifurcation associated
with Cy at R = 16, we find
Bt = By — 0.35291k,. (42)

For the Hopf bifurcation associated with C_, we have
B; = Bz +0.35291k,. (43)

Recall that 3, = 0.02027 4 0.001087.

Again one can see that the sign of k, can be used for switching between the equilibria
(actually, between periodic orbits in their vicinity). Also for k, > 0.06233, the control
u = k,y3is a stabilizing control for the Hopf bifurcation associated with Cy. For &, <
—0.06233 the control u stabilizes the Hopf bifurcation associated with C_. By changing the

sign of k, one can switch the asymptotic behavior of the system from one periodic orbit
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Figure 13: Bifurcation diagram for nonlinear ‘targeting’ control with k, = 2.5

to another. These are local results. Bifurcation analysis and simulation evidence indicate
that larger values of |k,| increase the stability margin in parameter space and also ensure
a smaller amplitude of the periodic orbits. Figure 13 shows a bifurcation diagram of the
closed loop system with k, = 2.5. Note that the Hopf bifurcation point as well as the
bifurcated periodic solutions associated with C, are stabilized while those associated with
C_ are rendered unstable.

From a stability point of view, this approach results in the system preferring one peri-
odic orbit to another. However, simulations show that though chaos is no longer present,
the domain of attraction of the preferred (targeted) periodic orbit is not the whole space.
Although one might hope that all trajectories of the closed loop system converge to the pre-
ferred period orbit (the only attractor), simulations indicate that some trajectories diverge
to infinity. The stable manifold of the nominal saddle equilibrium separates the domains
of attraction for the target periodic orbit and infinity. In the closed loop system, even the
stable convective equilibrium for which the associated Hopf bifurcation is still subcritical has
its domain of attraction significantly reduced as compared with the case for the open loop
system. These undesirable effects can, fortunately, be circumvented by the scheme described

next. This scheme is basically the same as that used by [3], except that in [3] linearization
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and pole placement are employed.

Define a neighborhood D(Cy,¢€) around C; or C_. The neighborhood D can be of any
shape, e.g., a ball. Denote ¢ the minimum distance from the points on the boundary of D
to Cy. The size of D can be changed by adjusting e. Now suppose the target periodic orbit
is near Cy, i.e., the objective is such that for almost all initial conditions in the basin of
the chaotic attractor, the dynamics of the system converges to the desired periodic orbit
surrounding C,. Continue to use the nonlinear control function (41). However, activate the
control only if a trajectory from any given initial condition reaches D. Usually the trajectory
is locked onto the desired attractor. In case the trajectory does wonder away from D, then
deactivate the control and wait for the trajectory to enter D again. The ergodic nature of the
chaotic dynamics ensures that the state trajectory eventually enters into this neighborhood.
A typical trajectory experiences a chaotic transient. This may prove to be undesirable in
some cases. Again, by switching the control, i.e., the sign of k, we can switch the system
dynamics from one periodic orbit to another one.

Let us conclude this section with some remarks on the relationship among the various
controllers presented. First, note that linear feedback and nonlinear feedback are presented
separately in this subsection. However, they may be combined to yield a controller of the
form v = kjy + k,y>® which introduces further freedom in the achievable dynamical structure
of the system and its limit sets. Moreover, one can also combine the targeting control results
of the current subsection with control laws for delaying bifurcations and those for stabilizing
bifurcations presented in previous subsections. In general, these control laws illustrate how
the bifurcation control approach may be employed to yield various stability goals related to

the bifurcations displayed by a given system, without modifying its equilibrium structure.

5 Conclusions

Using bifurcation control ideas, control laws have been systematically designed for the sup-

pression of both transient chaotic and chaotic motion in a thermal convection system model.
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The control laws exactly preserve all the equilibrium branches of the system, and can be
designed to simultaneously stabilize both convective equilibrium branches. This stabilization
can take one of two forms. One can literally stabilize the equilibria using linear dynamic
feedback. But the closed loop system can still exhibit transient chaotic and chaotic motion
for some value (larger) of the Rayleigh number R due to bifurcations of periodic orbits.
Alternatively, it is possible to re-locate the Hopf bifurcations to occur at higher values of
the Rayleigh number R, and then employ nonlinear control to ensure stability of these bi-
furcations. In this way, a small amplitude stable limit cycle is introduced which surrounds
the equilibrium for parameter values at which it is unstable. Simulations show that this
control scheme is effective in suppressing chaos for any parameter range. For some param-
eter ranges the choice between linear feedback and linear-plus-nonlinear feedback depends
on several factors, including degree of confidence in the model and available net gain. How-
ever, both types of feedback are related in their structure, especially in their incorporation
of washout filters and preservation of model symmetry. Other controllers are also designed
so that in addition to the goal of taming chaos, one can “target” a particular equilibrium
or its vicinity. That is, other equilibria or periodic orbits are rendered unstable, while the
target equilibrium or periodic orbit is stabilized. By changing the signs of the controllers,
one can switch the asymptotic behavior of the system from one equilibrium or periodic orbit
to another.

Although this paper has focused on a particular model with particular set of bifurcations,
the approach itself may be viewed in the following general terms. Design of feedback control
laws directed at primary bifurcations in a succession of bifurcations leading to chaos is a
viable technique for the taming of chaos. Chaos can be suppressed, relocated in param-
eter and state space, and its type may be changed. Moreover, this can be achieved in a
robust fashion, maintaining the positions of system equilibria even in the presence of model
uncertainty. The resulting controllers do not depend on the bifurcation parameter and are

effective over a range of parameter values.
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