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1. Introduction

Optimal scheduling problems arise in many contexts, including inventory control
systems and unit commitment scheduling in electric power systems. These problems
typically involve stochastic dynamical systems, admitting discrete state transitions at
random times as control actions, and incurring both switching costs and continuous run-
ning costs. Using the dynamic programming principle, one can show that the optimality
conditions for these problems are expressed mathematically by quasi-variational inequali-
ties (QVI). It is difficult to treat QVI’s explicitly, and most of the work has focussed on

proving existence, uniqueness, and regularity of solutions.

In our case, the state system is forced by Poisson noises. Since the infinitesimal
generator of the state process is first order and has a translation in the argument, the
associated QVI is first order and fully nonlinear; and so, the standard existence and
uniqueness theory developed for diffusion - parabolic systems does not apply. To treat
the problem, we use the method of wiscosity solutions introduced by M. G. Crandall
and P. L. Lions [1]; see also P. L. Lions [2]. Various properties of viscosity solutions

are developed in Crandall - Evans - Lions [3]. We use the approach in Capuzzo Dolcetta
- Evans [4] developed for deterministic systemsl. We prove that the value function u
associated with the optimization problem is a viscosity solution of the corresponding
(QVI). Existence of solutions to the (QVI) is shown by using a discrete approximation to
an associated penalized system and then using results for accretive operators as in [7].
On the other hand, we use dynamic programming to obtain a decreasing sequence of
value functions u; optimal for controls with at most | switches, which converges uni-
formly. This approach was used to obtain a maximum solution of certain (QVI) in
Menaldi [10-11] without nondegeneracy assumptions. In Blankenship - Menaldi [12],

related problems were treated involving the application of (QVI) to power generation

lcases with white noise models are treated in [5] and [6], while control problems for. diffusion processes
with jumps are treated in Bensoussan [7]. See also [8] for an introduction to the subject.



systems with scheduling delays. See also [13][14] for a survey of viscosity methods for

the control of diffusions.

The optimal stochastic control of linear regulator systems with Poisson noise distur-
bances is considered in [15]; stochastic stability properties of linear systems with multi-
plicative Poisson noises are derived in [16]. See also [17].

1.1 Problem Statement.

Let (Q,F,P) be a probability space and {F;, t > 0} a non-decreasing, right-
continuous family of completed sub o-flelds of F such that F;, T F 4 F ¢ > 0. Con-

sider the general nonlinear dynamical system

{ dy, () = g (y, (£),a(t))dt  + h(y, (£),a(t )dN o )(t) (1)

Yz (0) =1z

where N;(¢), 7=1,..,m, are independent Poisson processes with intensities X,
1=1,....m. «(t) is a right continuous, piecewise constant random function with finite
range 1,...,m, and is measurable with respect to Fy,, { > 0. Actually, « is an admissible
control consisting of random switching times 0; and random switching decisions d; such

that 6; are adapted to {F; } and d; are Fy - measurable so that

OEHO<91<'~-§9i_1§9i§9,~+1, 91'—‘*‘/—00 a.s.

d; € {1,...,m}, di # d;,iff; < oo (1.2)
And so
aft) & d 6, <t <b;., 120
is indeed F; - measurable.

Let the set of all admissible controls with initial setting d be



A? 2 {o | a={6;, d;} satisfies the above properties (1.3)

with nitial setting dy = d }.

We take the performance index to be

THay & B, 4 {f f (g (0)a(t))e P dt + f}k(di“pdne“""}
(4

9!
— B, AN [ F () diye Pdt + k(diydi)e ")) (1.4)

i=1 0, 4

where B > 0 is a discount factor and k(d ,d) is the cost of switching® from d to d such

that
k(d,d)>o0itd #£d; k(d,d)=0 (1.5)
k(d.d) < k(d,d) + k(d,d)itd % d % d.
Without loss of generality, we can define k, 2 min { /c(d,;i), d #% ;i }. We assume [

> 0, ¢ and h are bounded and Lipschitz continuous

lg(z.d)] < |lg]] < oo

lq(a.d) ~ q(z.d)| <L |z-z| (1.6)
with ¢ = f, ¢ and h,forallz,:; € R", dCE1,..,m.

Under these assumptions, (1.1) has a unique solution. Defining the value function

ud(x) i Z.Tlf de(a')’ z € IRn:d € {1)-")m} (17)
ac Al

we want to design an optimal control o™ such that

wi(z) = JHa*) = inf JY o). (1.8)
ae Al

2The case when the switching costs can be zero is treated in section 5.



Remark. Ny@y(t) is an inhomogeneous Poisson process with intensity function

>\a(t)'

1.2 Summary of Results.

In section 2 we show that the optimal value function u d(z) in (1.6) maybe defined
as the limit of the value functions u,d(x) of systems with a finite number [ of switches as
[ — oo (Theorem 2.3). We show that the convergence is uniform (Theorem 2.5); and we
derive two representations of u%(z) as the optimal value function (Theorems 2.6 and
2.7). We describe the associated optimal (control) switching policy (Theorem 2.8), and we

use it to obtain an additional estimate on the convergence of uld tou?.

In section 3 we derive the QVI which must be satisfied by the optimal value func-
tion (equation (3.3)). We show that the optimal value function is a viscosity solution of

the QVI (Theorem 3.1). Then we show that the solution is unique.

In section 4 we prove that the QVI has a viscosity solution by constructing a
sequence of solutions to a penalized system (equation (4.2)) and proving that hese solu-
tions are uniformly bounded and uniformly Hdlder continuous (Theorem 4.4). We show
that the limit of the sequence of solutions to the penalized system is a viscosity solution

of the QVI.

In section 5 we consider the case when the switching costs vanish (k (d,;i) = 0 for
d # ;i in (1.4)). In this case the optimal value function u is independent of the initial
control configuration d (since we can switch for “‘free’” at any time), and it (formally)
satisfies a Hamiliton - Jacobi - Bellman equation which is fully nonlinear in syu . The
method of viscosity solutions is required to treat this case. We show that the optimal

value function corresponding to non-zero switching costs will converge to u as the



switching costs tend to zero, and that u is the unique viscosity solution of the Hamiliton
- Jacobi - Bellman equation. The result is analogous to those in Capuzzo Dolcetta -
Evans [4]. Thus, the method of viscosity solutions provides a complete framework for the
treatment of the optimal control problem (1.1) - (1.8) over the full range of parameter

values and operating regimes.
2. Dynamic Programming and Some Preliminary Results.

Before using dynamic programming to investigate the properties of the value func-

tion ud(x ), we need some preliminary results.

Lemma 2.1. For any stopping time 7 which is adapted to {F,} and any measur-

able bounded function ¢, we have
E [q (Y, (E+7)) l FT] — E‘yz nq (yyz (7)(t ))- (2.1)

Proof. Since

T+t T+t
v+ =y (1) + [ g (s)alsNds + [ h(y,(s).a(s))dN o (s)

t t
=y, (0 + [o((s+D.a(s)ds + [h(y,(s+7).a(5)dN g5 4n(s)
0 [

(2.2)

where

Aoz(s) = a(s +7)

N.(s) = Ni(s+7) — N;(7.

We claim N ;(s) is a Poisson process which is independent of 7. Since 7 is adapted to F}

and

F.={B € F | BNO{r<t} e F},



we know 7 is /' -measurable. Thus

PN (s)=k] = PN (s +7)-N; (r)—Fk]

— B{PN;(s +1)-N;(D=k | F]}.

Since a right continuous Poisson process is a Feller process,® then N; is a strong Markov

process. Thus, for t > s,

PIN(t) = N(s)=k] = P [N;(t +7-N; (s +7)—k
= E {P[N;(t +7-N; (s +D=k | F, , ]}

= B P [N; (t +7)-N; (s +1)=k | N;(s+7), 7]}

Nt )k ~X, (t=s)
- k! ¢

= P [N; (¢ +7)-N; (s +n)=k | N;(s+71), 7] (2.3)

Moreover, if 0 < t, < ¢, < -+ - < ¢ < o0, and

Nl(t]) — Nz(t]‘l) = Nt(t] -+ T) — ]Vz(t]—l + 'T),
then by the strong Markov property and (2.3)
P{N(te)=ko, N;(t)-N;(to)=ky, ..., N;(¢ N (4_)=k}
= E{IN, g+ 08, 00— ko I, (0 4 0Nyt 1=k DNty 4108, (1 19—ty )

—E{E{ - E

A {IN, 1y + 1N, 0=k, In g, T SYACIET, S B R S I

=Lk {E{ o {[N,(to +1)-N,(N=ky "~~~ [N,(t,_l + =N, (5 + =k 4

| times
' E{[N,(e, + 1N, (t_, + 1)=k | N(t_, + T} | Fl,_2+'f} SR Fto-/—r}}
=EAE - BNt 0-N,0=ko "IN 0Nty s nmhy | Fopyert o | Fopyrd)
imes
PN (4;)-N;(t;_))=k } (2.4)

%See & B. Dynkin, Markov Processes, Vol. 1, Springer-Verlag, Berlin, 1965 (section 2.18, pp. 69).



where [ denotes the indicator function. By induction, (2.4) is equal to

P{N;(to)=ko} - - PAN;(t,)-N; (. )=k},
so that IV; has independent increments. Thus, V; is the Poisson process with intensity
A Since yy ((t) 2 y,(t-+7) is a unique solution of (2.2), the statistics of y , (t) and

y, (t) are the same if ;v == . From (2.2), we know that
E {q (yz (t +T)) | F'r} - Eyz(‘r) q (yz (t +T))

= E‘yI (n 4 (.7/ Y, (T)(t ))

- Eyz (n) q (yyt (T)(t ))

QED
Lemma 2.2. For eachd € {1,.., m} and z € R",
) w'@) < pip {u'(@) + k(d.d)) (2.5)
(1) For any stopping time § > 0,
8
wl(@) < E{f [ (y,(s)d)e “Prds + w(y, (0)e (2.6)
0

Proof. (i) Let d, d € {1,...,m} be such that ;1#0,' Set a = {6;, d;} € Al
Define @ = {Aﬁi, Zii}ioio by Aﬁo = 0, 210 = d,hﬁi =0,_,, cAi, = d; , for ¢ > 1. Then
ﬁ9i — §,_, is adapted to {F,} and cAz’Z = d;_; is Iy - measurable, so that o€ Al
Thus,

u(z) < i)

00 AG‘ - . ~ o
—E{x [, T)die Mds + kdiade ™)

1 =1



8

i

B {kdd) + S [Fs)die Pds + k(diodi)e ™)

i=146, ,

— k(d,d) + Ji).

Sincea € A ¢ and ;i are arbitrary, we know that
d < min { k(d.d) + u® )
U(x)_(rir;l;;{ (d,d) + u(z)}

(i) Let @« = {0;, d;} € A ¢ and fix a stopping time § > 0. Define o = {%, Zi,}

by

0, =0, + 0, d; =d;, i > 1.

Then §; = 6; +0 is adapted to {F,} and d; = d; is F7y - measurable, so that

a € AY. Thus, from Lemma 2.1,

wl(z) < JHo)

0, +0
=E\ 5 f [ (yp(s)d; e P ds + k(d;_y,dy)e - (8, +10)
i=10,_, +94
9 o
=FE{ [f(y(s)d)e Pds + E [ 7 (g (s +0),di e P ds
° i=19'_1

+ k(diydiye """ ]e*ﬂ" ‘F,,} }

0 w
=FE\ [f(g(s)d)e “Pds + E, Y [ 1 (y,, (8).d: 1)e P9 ds
0

t=160,_4



+ k(di—lrdi)e e :'6 - B0 }

[
—E [ (g (s)d)e P ds + Jlg(a)e P
1]

Since o« € A 4 is arbitrary, we have

g
ul(z) SE | [[(y(s)d)e Pds + ul(y, (6) e ¥
0

QED
Notation. Forz € R",d € 1,....m,
Me A min{u? + k(d d)}.
[ul(z) gl;r;{u (z) (d.d)} (2.7)

Now, we want to use the dynamic programming principle to show there exists a
convergent sequence {u,d} of optimal solutions of the problem with respect to controls

which have at most [ switches.

Foreach 2 €ER", d €1,...m, let
0

ul(z) & [ f (g (s)d)e P ds. (2.8)
0

Notation. If uw,v € C@OR"™)™, then we say u > v if u® >v*, V¥
d =1,...,m.

Define an operator I'y:C'(R")™ — C(IR") by



¢
Pou(@) & af B4 [ [ g (s)d)e Pds + e PMiul(y, @) . (29)
= 0

Here we understand the infimum is taken for all stopping times # > 0 adapted to {F), }

If 4 > v, then for each ¢ > 0, there exists a stopping time §, > 0 and d, Fge - measur-

able such that

06
Pyu(e) > E 3 [ fy(s)d)e Pds + e Pul(y, (00) + k(d.d)l | - e
O
a(
>E [ [ uGs)de Pds + e "y, 00) + k(d.d)) | - ¢
0

> T v{z) — e

Let € | 0, we have T'yu > Tyv. Let 0 < 5 < 1, then

Pyl(t-mu + no]

[
— inf E [ f(s)d)e Pds + e PMY(1-n)u+nv)(y, (6)
=0 0

[
> inf B [/ ((s)d)e Pds + e P{a-mpM*ul(y, (0) + 2Mv)(y, ()}
= 0

> (1 - mlzu(z) + nlgv(z).

Thus, I'; is a non-decreasing, concave function.

10



Suppose we are given u;_;. We can define
d, A
w(z) = Tyu_y(z). (2.10)

Since uf(z) =T, ulz) < ug(x), then by the non-decreasing property of I'y;, we have

wl(z) =Tluy(z) < T uz) and so
0 < ufe) Sube) < - < wie) < LI 211)

Thus, uld(x) converges. We can define

ud (z) 2 lim uf2). (2.12)
=00
Theorem 2.3.
uiz) = inf{ JXay) | oy € A® has at most | switches } (2.13)
and thus
d _ . d a d
U () =u"(z) = aénj{d.fz(oe). (2.14)

Proof. Clearly, (2.13) is satisfied for [ =0. Suppose (2.13) is true for /-1 and the

switching policy o, = {0/ V%d} % € A¢,\* d =1, ..., m. Then let
0 — inf {stopping time 0 >0 | uy (y,(0) = M*[u;_)(y,(9)) as. }  (2.15)
and

d = any F3 — measurable randam variable d £ d such that

My )y, 0) = vy (y, @) + k(d,d) as. (2.16)
Now, we can define o = {/'%, d}%} by

0" =0, dy* =d

11



R (2.17)

Then 8¢ =7 and by induction 0} ¢ =0/} % + 8§ 2 <4 < I, are adapted to {F,}

while d'% =d and d4}¢= dil_”ll’d, 2<: <!, are F, s - measurable. Thus,
oz,* e A d. By the principle of dynamic programming,

uld(m) < sz(oz,), o; has at most [ switches.

On the other hand, by induction and Lemma 2.1,

)
ule)=E [ [ (g (s)d)e Pds + k(d,d)e P + ui (y,@)e *
0
-9- —
=E { [ f(y.(s)d)e Pds + k(d,d)e P
0
01~1,;
1= I-1,dy, ~Bs
+ Ey,(?),z? e’ E f—f(yyt@(s),diﬁl’ e ds
=1 0‘1_—11,11
+ k(di d/a,d)e—ﬂ&""d] } }
y pa—
=E [ f(y(s)d)e Pds + k(d,d)e #
0
9,"1';-#5

gplnd 7
S| L T d e s v k(a2 e M0

i=1 | g/ 17F

12



gl,d
! ' _ 1,4
=P\ X [df(yz(s),di’_'i’)e*ﬂfr ds + k(di¢ dfHe P (2.18)
=1 9;-‘1

— de(al*)-

Thus (2.13) and (2.14) follow.

QED
Lemma 2.4. For each 0 < v < min { 1, ———ﬁ—— }
L (1+>‘max)
|ufz) ~ wlz)| < C le — 2|7 (2.19)
foralll < | < oo andx,:; € IR" with
177
o 1l
"B AL ) (2:20)

where
Nmax == max {Xy, . . ., A\ }.
If B > L(1 4+ Ap.y), then v can be taken to be 1.

Proof. Without loss of generality, we can assume u,d(z)z u,d(x). Let

a ={0;,d;} € A% be the optimal policies with at most [ switches at state z.

Then,
lufz) - ufz)| < ule) - wiz) < JHoy) — J(ay)

<E [ |f W) - £l @a)]efd (221)

o~ 3

Since

13



¢

vit) - )=z -2 + [lgwhs)ou(s) — g (s)ay(s))ds
0

¢

+ s ) (s)) = by} (s)0(s MdNG (),
0

then taking the expectation, we have

¢

E |ylirid ()] < le-z| + LO0md [ E | 4i(s)-4} (s) ] ds.

By Gronwall’s inequality

E |yle)rvi ()| < | 77 | o LAt
so that

< IPFTE | f i) - F @i @)

<N PL | a—g |7 O

Thus, from (2.21),
~ N oo
lufz) — wlz)] < (| |77 [2—a |7 [ P mH 0Pl gy
0

[/ ][

= | - |7
B =L (14 )

2 C ez |7

For | — oo,

|l (2) - ub(@)] < |ud (@) - w¥e)]

+olufz) - wlz)| + Ju¥E) - ul ()]

<C lz - 2|7+ |ub@) - uwlz)]

14

(2.22)



+ | uf@) - ud @)

As | — oo, the last two terms tend to zero. We have (2.19).

QED

Remark. Since N; has independent increments, then F, is independent of any

sub o-fleld generated by {N;(¢)-N;(s), s < t,7i =1, ..., m}, so that for t > s,

L (14N )£ =5
E [ ylt)vi )] | F1 < |uks) = uf (s)| et Hhmedtt=)

Thus,

luf(yls) - v )] <Oy 1ul(s) - i (s)|7  as

Remark. If kb, > —Uf?l—l- , then uq(z) is the optimal solution, i.e., no switching

occurs.

We can obtain the following estimate by the method in {10][11].

Theorem 2.5. If0 < ky < J-lf?l—l- then

o wly 1< 1] |1 - @29

Thus, u; | o untformly.

z—w——ifJZOandw < z, we have

w
V4 z

Proof. Using the fact that —q———j——
o

15



6

PO)z) = inf B | [ f (g (s)d)e ™ ds + e M? [0)(y, (0))
= 0
6
mn s e P ds e Pl
2 B AT () d)e P ds o+ ko

6

E [ f(y(s)d)e Pds + koe
> inf | —

d
o = ug(z)
E [ ] (y,(s).d)e " ds
0
_ E kge g
Z;go p- ug(z)
B [ [ (y(s)d)e™ds
[
> inf | L Eee 7 4(z)
n u x
>0 B f ¢ - 0
B
Bko d
> ug(z)
e
& qoug(e).
Thus, if — pov < u - v Splu,OSPbPzS

1,and 0 < u, v < uy, then
rgv(z) > Ty0)(z) > qouf(z) >

d
qou“(z) 2 qolgu(z)
so that by the property of I'y,

(2.25)

16



Pgv(z) 2 Lyl(1-pJul(z)
=TIy [(1-pJu + p,0l(z)

2 (1-przu(z) + pLy0)z).

Thus,

Tyu(z) - Tyu(z) < pylgu(z) — Ty (0)(z)]

< pa(1-go)lgu ().

On the other hand,

Fgu(@) 2 Ta(1-pv](z)
=T4[(1-plv + pOJ(z)

2 (I-plgv(z) + poly(0)z),

so that

Fyu(z) - Tyo(z) 2 —po[lyv(z) — Ty(0)2)]

2 ~po(l-qolgv(2).
Hence, by induction,
—pa(1-go)' Tdv(z) < Dfu(z) - Tfv(z) < py(1-g9) Tjulz), V¥ I 2 1. (226)
Note that
uf(z) > Dyuole) >+ > Djug(x) > Lyu(z)
and with p, = p,=1,1 > [,
u® — ]| = |[fug - Tow || < (-q9)' [|ug |-

Let 7 — oo and the result follows.

QED

17



Theorem 2.6.
4
uo (@) = i {B [ [ (g (s)d)e P ds + M fugl(y, (0)e ¥} (227)
= 0
Proof. Since

& (@)= lim uYz)
| —00

3

[
= lim inf E {f [ (y,(s).d)e P ds + e M iy, 0)
[ —00 820 o

and vy, <y < 4 < ug, then

M) < M) < M% [y

so that

0
uho (2) 2 inf E{] [ (g(s)d)e P ds + e ~PM* lul(y, (0)}.
= 0

On the other hand, from Theorem 2.5, u; | U o Uniformly. Thus, for each small € > 0

and stopping time § > 0, there exists [ sufficiently large so that
M [u o)y, (0)) > M®[u,_,)(y, (6)) — e

and so

[
E{[ fs)d)e #ds + e M u )y, ()}
0

g
>E{ [ [ (y(s)d)e Pds + e MM [u_)(y, ()} - e

> ufz) - e

Letting [ — oo, taking infimum for all stopping time ¢ > 0 and dropping ¢ | 0, we

know

18



[
inf I {[ [ (s)dye Pds + e PM(u J(y, (0)) > ul, (2).

Thus, we have the desired result (2.27).

QED

Theorem 2.7. If 5 z, such that u®(z,) < M*[u)(z,), then 6, > 0 a.s. and

[4
ul(zg) =E { [ [ (g (s)d)e Pds + u(y,(0)e "} (2.28)
0

forallo < 8§ < 0,
Proof. Suppose not, P(f; ==0)=a > 0. Let O, = {w € Q | O(w) =0}. If

= fln?iél}i{ud(xo) + k(d.,d)} - ul(zy) > 0,

then from (2.27), 0; 5% 0 a.s., so that ¢ < 1. Since Yo, () is right continuous, and f is

bounded, then for { small enough,

ul (g (tw) e P < ut(zy) + g— (2.29)
forallw € Q, with P(2,) > 1 - —g and
t
[/ (s)d)e P < % . (2.30)
0

Thus, P(Q,2) 2 —g~ . Let Qg = Q\ (@) Then, from (2.27), (2.29) and (2.30),
we have

t
W) > E { [ [ (nfs)d)e Pds + ul(y.(00)e "} Iq,
0

19



14
B[S afs)d)e ™ ds + ut(y(t) e ™} g g,
J :

Let

t, w € QN0 .

Then it is easy to check that € is adapted to {F, } and

. |
ul(@o) > E { [ f (ya(s)d)e P ds + uw'(y, (0) ¢ ¥
4]

which contradicts (2.6). Hence, a==0. By (2.27) and Lemma 2.1, we have for any

0<0<0,

b
W (@) = E { [ [ (yas)d)e P ds + M*ui(y, 00 ™}
(6]

[ 6,
= E{[f (g (s)d)e P ds + E(ff (y;(s).d)e 5 ds +My[ul(y, 0,) | Fgl}
0 6

] 6,18
=L [ [ (Was)d)e P ds + By )| [ [ (uy, @fs).d)e % ds
0 0

+Mﬂwmwwpme”“”]ewﬂ
0

g
> E { [ [ (g fs)d)e P ds + u(y(0) e}
0

By (2.8), we have (2.28).

QED
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Now, suppose we have a H&lder continuous function u? satisfying (1.6). We can

define an optimal policy a* = {0;, d;} € A¢ as follows.

If we are given 0;_, d;_,, then set

0; 2 inf { stopping time 0 > 0, ; | u™(y, () = M“u](y, ) a.s. )

(2.31)

If §; < oo, set

d; = any Fy — measurable random variable d € {r, . ..,m}, d # d;_,

such that Md“l[u} (¥, (0;)) = u%(y, 0;)) + k(d,;l) a.s. (2.32)
and
Y, (£) controlled by decision d;_, when 0;_, <t < 0,.
Theorem 2.8. The control policy o defined by (2.31) and (2.32) is opltimal, i.e.,
U d(x) == sz(oz*) = mind sz(oz). In addition, 8; — oo a.s. as 1 — oo.

agc A

Proof. Set y; ; = y,(Y;_;). By Theorem 2.6 and Lemma 2.2,

0; - 91—1
d,_ - d,_ - B8, -8,.4)
WMy =By a v [ Ty s)die Pds + u Sy e !
0

gl
- _9;— dl-— ”ﬂ(gl _01— )
—=E 3 [ [ ((s)diye s 4wy e AR,
9; 1

Since
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d,_ d,_ d,
Y ) = MU () = w () k(d;i_y,d;) a.s.,

we have by Lemma 2.1,

-~ B0,y d,_
€ #. u 1(%‘—1)
9'
=1 ST Gelodige P ds + k(dipd)e ™™ + ulyye ™ | F,
g

11

Summing up all i until some 0, = oo and taking expectation, we have
9!
- s
w'(@)=E {53 [ [ ((s)diye P ds + k(d; yd)e * (2.33)
1210,
= JHa").

As from (1.6), we have proved ax is optimal. We claim 0; — oo a.s. as 1 — co. Sup-

pose not, then =} T > O such that 0; < T for all i with positive probability 6. Then

from (2.11) and (2.33),

W > 5B kg pdye ™ > s1kge 475
ﬁ 121 1 2>1

which is unbounded, a contradiction.

QED
Corollary 2.9. We have the additional estimate

e - “&HS—LMUZ——~ (2.34)

Bk (1 +1)
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Proof. From (2.31) and (2.32), we obtain an optimal policy
of = {8;,d;} € A Let o — {8}, d}} € A? be the first | switches such that
ﬂi’ =0, a’il = d; fori < [ and 01-1 = oo for i > [. Denote by y,f(t) and y, (¢t) the tra-
jectories corresponding to the controls ; and o, respectively. Then yzl(t) =y, (t) for

0<1t < 6,, Hence,

0< ufz) — ul(z) < JHey) - JHa™)

<E [ fyis)d)e Pds

by 11

< -H—{B—l— E ¢ M (2.35)

Since k(d; . d;j) > ko, ¢ 7 j as.,and 0; < 0,4y, ¢ < [+1 as., we have

{+1
P« 1NN pd o dye P
¢ S Tan 2, Flheek)e e (2.36)

Since

0: .
wh (2) = JHa*) = E {X) [ [y (s)di)e P ds + k(diyde ™)

i=16,,
<ul@) < UL
B
we have
B3 ke ™ < AL (2.57)
i =1

so that from (2.34) - (2.36),

0 < ufa) - ul (2) < —HLIE

T BPhk(l+1)
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for all x € IR". Thus (3.18) follows.

QED

3. Viscosity Solutions of the Quasi-Variational Inequality (QVI).

We want to derive necessary and sufficient conditions for the optimal solution
v9(x), x€ R", d € {1,.,m}. Assume for the moment that the value functions
1

u', ..., u™ belong to C''(IR™). Then by the necessary condition in Lemma 2.2, we

have

. { ul(z) - ul(y, ()

¢
}SE L[ f ((s)d)e P ds
t t %

+ [Lﬂ—tt—‘—l]ud(mm}

(3.1)

and so, we obtain a differential form as ¢ | 0,
— gz, d)yvul(z) — N[u(z+h(z,d) -~ v*(@) < f(z,d) - Bul(z) (3.2)

for all 2 € MR" and d &€ 1,...,m. Combining (2.5), (2.28) and (3.2), we obtain a quasi-

variational inequality (QVI)
max { Bu? —g¢ vu? ~Ngul(C+r)-u?)- [ u? - Miu)t=0  (33)
on IR", where
FEO) 2 S6d), gfC) & g d), hY() & h(, d). (3.4)

Note that (3.3) is a fully nonlinear first order partial differential equation which does not

admit a differentiable solution in general. But, we can treat it using the method of
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viscosity solutions, which was introduced by M. G. Crandall and P. L. Lions [1], and
which was used for deterministic switching problems by I. Capuzzo Dolcetta and L. C.

Evans [4].

We denote by BUC (IR")™, the space of bounded, uniformly continuous R™ -valued

functions on IR™ .

Definition. A function ©» == (u%, ..., u™) € C(R")™ is said to be a
viscosity solution of the (QVI) if for each d € {1,...,m} and each ¢ € C'(IR") such that
(i) if u? - ¢ attains a local maximum at z, € IR", then

max { fu’(zo) — 9%(20)Vh(ze) — Nglu’(zoth (ze)) - u’(zg) - [ ¥ (zy),

ul(ag) — M?[uj(zg) } < 0O (3.5)
and
(ii) if u? — ¢ attains a local minimum at zo € IR", then

max { Bu?(z9) — 9%(20)Vb(ze) — Ng[u (zo+h % (zo) ~ u®(z0)] = [ %(20),

wl(zg) - M%ul(zg) } > 0. (3.6)

Theorem 3.1. Under the previous assumptions, the wvalue function u =

(ul, ..., u™) with

ul(z) & inf JHa)
ae Al

is a viscosity solution of the (QVI) (3.3).

Proof. By Lemma 2.4, u € BUC(R")™. Now, let ¢ € CYR"). If v - ¢

attains a local maximum at 2, € IR" for some d, then
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ul(zo) — d(zo) > u(z) - ¢(2) (3.7)

for all z in some ball B (z4,6), with € sufficiently small. By Lemma 2.2 (ii), we have

{ ul(z) — u(y, (1))
E

t
}SE = [ ] Wafs)d)e P ds
t t 0

gt
sl e |

(3.8)
Since g is bounded, Lipschitz continuous and y, is right continuous, then for sufficiently

small { > 0

t
zi(t) & zg + [ g(y,(s).d)ds (3.9)
0

belongs to some ball B (2,¢) a.s., so that by the mean value theorem,

> F

P { ul (o) - ul(z,(1)) }

{ (zo) — d(zy(1))
t

¢ } — — g% (z0) V(2 ,)3.10)

as { — 0. Since ¢ is small,

0 with probability 1-X\; ¢t 40 (¢)
N;(t) = 1 with probability Az {+o () (3.11)
> 2 with probability o (f).

Thus,

5 { ud(xl(t))—ud(yzo(t)) }
4

o )\dt+0(t)
_—t—-—-—-—

E {u®(@y(t)-u (@) +h (g () | 1 < 8} O(tt)

— N [u?(zy) — ul(zoth?(zo))] (3.12)
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as ¢ | 0. In addition,

E [ (y(s)) = (1-Xgs+0(s ) E {f “(a,(s) | 1,5}
+ (Ags+0(s) « E {f “(a1(s)+h " (g (r0))) | <5 }

v+ 0(s) « (high order jumps).

(3.13)
Thus,
t
. 1 ) ~ Bs .
lim B — [ f (s (s).d)e P ds = [ (z0.d), (3.14)
- 0
so that the right hand side of (3.8) tends to
[(zo) - Bul(zy). (3.15)

From (2.5), (3.8) - (3.15), we know that (3.5) holds.

On the other hand, if w? — ¢ attains a local minimum at 29 € R" for some d,

then
wl(z0) = $lzo) < u'(2) - (2) (3.16)
for all z in some ball B (z4,6) with € small. If
wl(z0) = M [u](zy),

(3.6) follows, otherwise, by Theorem 2.7 for t small enough,

{ u?(zo) = u?(y, () }
E

t
t B =[] s)d)e " ds
[0}

_ﬂt B
; [e—t—ml-) w0 |

(3.17)
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In the same way, let

¢
(1) & zg + [ gy, (s).d)ds
0

then the right hand side of (3.17) tends to

[ %zo) — Bul(zy) (3.18)

as ¢ | 0. In the same manner,

d . d -
. { u?(z0) = u'(z,(t)) }s e { $(z0) — Blz4(t)) } (3.19)
t t
— — 9%(20)V(z0)
and
d 1t _ d » t
E { e p e }ﬂd[ud(zo) - ulGoth(z))  (320)

as t | 0. In view of (3.17) - (3.20), we know that (3.6) holds. Thus, u is a viscosity

.

solution of the (QVTI).

QED

Before showing the existence of a solution to the (QVI), we show that (3.3) admits a
unique solution, so that any functions constructed to satisfy (3.3) must be the optimal

solution.

Lemma 3.2. Ifu= (u', ..., u™) is any viscosity solution of (3.3), then

vl (z) < Mulz), Vz €R', d € {1,...,m} (3.21)
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Proof. Suppose = z, € IR" such that (3.21) does not hold. Then for
u € COIR™)™,
ud(x) > ud(x) + k(d,;i) (3.22)

for all 2 € B(zy€), € small and some d % d. It is not hard to show that there exists
a smooth function ¢ € CL(IR") such that u? — ¢ attains a local maximum at some point

r, € B(xg¢). Thus, by the definition of viscosity solution,

max { fu’(z,) - ¢%(z)vé(z,) — Nglul(z+h¥ () - ul(z)) - [ 4(zy),

Ud(xl) - Md[u](a,l)} <o

In particular, u (z,) < M4 u I(z,) which contradicts (3.22).

QED
Theorem 3.3. If u — (ul, ..., u™) and v = (v}, ..., v™) are viscosity solu-
tions of (8.3). Thenu=v.
Proof. Since u,v € BUC(IR")™, let
K = max {Jfu |}, llo .1} < co.
Choose v € C(IR™) such that
70) = 5K, |vv| < 10K
0 < z) <5K ifz %0 (3.23)
Yz)y=0 if |z | > 1.
and let vy (z) = fy(—x—), € > 0, z € IR". Consider the auxiliary function
€
dy,. 4 d _
P (z,y) = u(z) - v (y) + vle-y) (3.24)

Since u,v and 7, are bounded, then for each ¢ > 0, 5 (z,y,) € IR*" such that
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d d
max @ (z,, > sup max &®*(z, - €.
1<d<m (o) 2 z,5 1<d<m (.y) (3.25)

Since the supremum in (3.25) may not be attained at some point, we have to add an
additional small function to make it occur. Fix ¢ > 0 and (ry,), choose

¢ € CYHIR*) such that

fzpy) =1 0< €<, |V€| <2
fz,y) <1 if(z,y)7 (z1,y,) (3.26)
ae,y)=0 if |z—z,|® + |y-y,|® > 1

Define
vi(z,y) =o' (z,y) + 2e€(z.y)
=ul(z) ~ v(y) + Wlz-y) + 2L .Y).
Then for any d, (24,5, such that | z,-2,|% + |y,—y,|* > 1, we have &2,y,) = 0

and

T (24y,) = 0% (z,y,) < sup max o4 (z,y).

But by (3.25),

d d d
max WV (z,, = max ®“(z,, + 2¢ > sup max &% (x,y) + ¢,
e (z1,Y1) e (21,91) = x,51§d§m (z,y)

so that 3 (24,y,) € IR*™ with

2oz, |2 + lyoy,|? <1 (3.27)
and ;i such that
d d,
v (2,,Y, — max max ¥ (z,y).
(z0.Y0) lax max (z.y) (3.28)
We claim that |z, — yo| = 0(e) as ¢ | 0. Note that suppose [z, — yo| > € Then,
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UH(zo,y0) = ul(z0) — v4yo) + V(ToYe) + 26T 0,Y0)

< 2K + 2¢ < 3K

where we can assume 2¢ < K without loss of generality. But,

\I/;i(x,x): u‘}(x) - v;l(x) + 7[0) + 2¢&(z,2)

> - K - K + 5K — 3K

which is a contradiction, so that |z, — y,| << e. We will refine the above estimate as

follows. Since W% attains a maximum at (24,¥0), then
d d
u (o) — ViYoo) + Y2g-yo) + 2€8(z0,¥0)
d
= V' (z0,Y0)
> Wi (z02,)

—ul@g) - vi(zg) + 10) + 2e&(zgr0)

which implies

1Zo-y0) > 10) + vi(yo) — vi(ze) + 2e(E(zozo) — EToyo)

= Y(0) + o(1) as €] 0

for v continuous, |z, - ¥o] < ¢and 0 < & < 1. Thus, from (3.29)

o
lim 7[ °6y° ] = lim 5 (z4-yo) > 5K
£—

€—0

and so
Ty
im L Fovel
€lo €
e, |z ~ yo| = o(€) as e | 0. For fixed y,, let

6rz) A vi(ye) - Ta—yo) — 2 yo).
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Then ¢, € CY(IR") and \I/d(x,yo) —ul(z) - ¢,(z) attains its maximum at z, so

that

max { ful(zg) — 0% (20)Thi(ze) — Nilud(ze +hi(z) — ul(zy)] ~ 1 %(zo),

wi@g) ~ Miul(ze)} <o (3.31)
In the same way, for fixed z,, let
$o(y) & ul(zg) + Ydzoy) + 2E(z0y). (3.32)

Then ¢, € CHR") and - \I/d(xo,y) = vd(y) — ¢o(y) attains its minimum at y,.

Thus,

max { Bv(yo) — 9% (re) Vosyo) — Milv(ye +hi(We) — vi(ye)l ~ f(ya).

vi(yo) = M[v(yo) } > 0. (3.33)
We consider the following two cases.

Case (i) v;l(yo) < Mgl[v](yo). Then from (3.31)

Bul(zy) < g5y Voi(ze) + Nilul(@ogrhi(ze) — ul(ze) + f(z0)

= g(}(wo)' [ - %‘ V’Y[ x(:yo ] - 2€V, g(xo,yo) }
+ ap [ meth i (@g) — ul(zg) + [ i(zy). (3.34)

By (3.33), we have

Bol(ye) > 0%y Vo) + Nlv Worhi(ye) - viwel + 1 (o)

o Yo

€

= g%&[ Loy 2o 2ev,,£(xo,yo>}
+ Nalolyotrh o) — vl + fiwo). (3.35)

From (3.34) and (3.35), we get

32



Biut(ze) - vi(yo)l

< - Lg%y - glwol v

[ To~ Yo
€ €

] ~ 2e[v, Ezoye) + ¥y EToyo)]

+ Nt @ethi@e) ~ ullzg) - vi(othi(yy) + vi(yo)l

+ 4o~ 4w (3.36)
Note that, since | zy-yo| = o (¢€), f and g are Lipschitz continuous, we have
|90 - [ | = o) (3.37)
L vvl ‘J] 04 - gt yo | < mKL—"—”—‘:y—"' —o(1) (339
as € | 0 and
2¢(| V. &m0yl | + [V E&@0y0)|) < 8 (3.39)

Moreover,

”Zi(xo) - U&(yo) + Yl2o=Yo) + 2€&(7y,Y0)
= ‘I’Zl(mmyo)
> Wiz thd(z o)y + hi(zy))

— u g th (50) - v (Yorh (@e) + V(To-ye) + 2eE(xorh?(ze)yorh (o).
Thus,

wl(ze) — ul(@othi(ze) — vi(ye) + vi(yeth®(yy)
> 08 (gorhi(ye) — v (yothi(ze) + 2e[E(@oth®(@o)yo +hi(ze) — Ezoyo)

=o0(1) as €0 (3.40)
From (3.36) - (3.40), we know that
wi(zg) — v4(yo) < o(1) (3.41)

Again,

33



U;i(xo) - ”Zi(yo) + YZ oY) + 2€&(20,¥0)
= ‘1’(}(1’0,90)
> vi(z,x)

= ul(z) - v¥(x) + V{0) + 2c&(z,7)
which implies
uwi(z) - vi(z)

< ul(zg) - vi(ye)] + Mzoue) - 7O) + 2elE(zoye) — £z ,2)]

== ¢ (1) as €] 0.

Thus, u?(z) < v%(z) for all x € R" and d € {1,...,m}. If we change the role of u and

v in our argument, we have v%(z) < u®(z). Hence, u = v.
Case (ii) Ua(yo) = ]\/[d[v}(yo). Then = ;! £ ;1 such that
vi(yo) = vi(ye) + k(d.d). (3.42)
Then,
Ud(zo) - ”d(?/o) + Yd@gYo) + 268(24,Y0)
= ‘I’d(C‘?o:yo)
> ¥ (24,y0)

—ul@y) -~ v ) + WEeve) + 26ET0Y0)
which implies
wi(ze) — ulg) > vi(yo) — viyo) — k(d,d).
But in general,
Wiz < ullag) + k(d.d),

S0 that
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Wiz — ullzg) = vi(ye) — v9(yo)
and
W (2050) = ¥ (20y0).

Now, we can consider the same situation with index d instead of index d . If there exists

d # d such that
vl (o) = vl (o) + k(d,d).
From (3.42),
v o) = vy + k(d.d) + k(d.D)
=~ vi(yy) + k(d,d)
which contradicts
vy < vi(ye) + k(d.d), v d #d.

Hence, we are in case (i) with index d instead of index d and the proof is completed.
QED

4. Existence of Viscosity Solutions.

Now, we use a finite difference approximation to construct a sequence of solutions

which converges to the solution of (3.3).

Let p € C*(IR") such that
plz) =0 1z <0
p(z)y >0, z >0 (4.1)

0<p(z)y<1, p’'(z)>0torz >0
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and p(z) = p(i), xER", e > 0.
€

Consider the penalized system of approximation.

Bul(z) - %[u?megd(z))—uﬁ(x)] - N lud (@ +h(2)-ul(z))
d d T o d
+ Zpe(ue(z)‘ue (Zl?)—k(d,d))mf (I) (4.2)
d5d

or

wlz) - é[u?(ﬁeyd(z))—u?(z)l - %{ué’(mh%»—uf(z)]
1 d d T 1

—/—B—,E plue (z)-u¢ (z k(d,d)) = Ef d(.’l? ). (4.3)
dsAd

_’l_

We  define  operators AL, I, C(R*®)™ — C(IR")™ such that Au =

(Alu, ..., A™u), IIju = (I}w, ..., 0" ) and Myu = (IL'u, . . ., IL,"u) where
Alu(z) & -é{u"(megd(z)) ~ u'(z)] (4.9)
fu(z) 2 —%[ud(ﬂr+hd(m)) ~ u®(z)) (4.5)
Miu(z) & %E p(u (2 )-u(z -k (d,d)). (4.6)
»

Definition. (i) An operator §:X — X with domain D (S5) is said to be accretive

on the real Banach space X if

e — 2z + AS@)-S@)I|| > |z - = | (4.7)

forallx,.:z eD(S), " v>0.

(ii) An operator S is said to be m—accretive on X if S is accretive on X and the

range R (I +7S) = X for all v > 0 (or equivalently for some v > 0).
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The following lemma is from Evans [9, pp. 242].

Perturbation Lemma 4.1. If S is m-accretive on X =C(R")™ and T is accre-

tive, Lipschitz continuous everywhere defined on X, then (S+T) is m-accretive on X, in

particular, the range R({+S+71T) = C(R™")™

Lemma 4.2, A is m-accretive on C(IR")™.

Proof. Suppose there exist 2, and d such that

wi(zg) - ui(zy) — max sup |uf(z) - ui(z)| °

oup S fle - ull s
then
Alu(zg) - Abu(zy)
= - o Wheo +eo¥mo) - uiiag) + 3o 4@+ e (o) — w (o)
= 5 ('m0~ w @)l - [ eo +eg wo) — ulleo +eg @)}
= ool = ] = e +enea) - wiao +eg o))
>0
so that

u—u +sAu-Aw)|| > v (zo)u(z) + 1A% u (zo)a%ud(z0)]
> ul(zg) — ul(sg)

= [lu - ul]
If there exists no z, such that (4.8) holds, then for each ¢ > 0, let x, d, be such that
d, -~ d, -
u () —u (@) > |lu - ul] - ¢

Choose ¢ € C'Y(IR") such that
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§($5) =1

0< ¢z) <1 forz 5 z,

(4.9)

fz)=0 for ||lz-z .|| > 1.
Consider the auxiliary function

oi(z) & uwi(z) - ul(z) + 2edz). (4.10)
Then,
d€ dE - d( -
() =u () - u () + 2 > [|lu-ul| + ¢

and

o4(z) = ul(x) — ul(z) < |Juul|

d
if &€ B(x1), so that there is a d; such that & ' attains a maximum at z, say, in the
ball B(z,1). Thus,

2

Au(ey) - ATu(ey) = It - (o, +eg "z )))

L

Be

{[“dl(”h) - 11111(“”1) + 2eq(x )]

- ey FegPi(my) - w e, +eg i @y) + 2e(zy +eg Uz )]}

>0
so that
||u~{t +'7(Au—A1;)|]
> w iz )-u @) + A (e )-A"u (2y)]

> o%Yz)) - 2ci(zy) + -27} o, +eg X (20) ~ o(ay)]
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> ||®|] + o(1) ase | Osince¢ € C*
>u'(a) - u'@) + 2de) + o(1) aselo
> ||u~1;|| - € + 2(x,) + o(1) as €} O
— |l = ul| + o(1) asc]|o.

Letting ¢ | O, we show that A is accretive. To show R (I4+ A) = C(R" Y™, i.e., the equa-

tion u + Au = ¢ is solvable for all ¢ € C'(IR")™. Then,

wl(z) — = [ui(s+eg@)) - ul(z)] = ¢%(z)
Be

or

ul(z) = Hl/& [ud(z+eg?(z)) + Peq?(a)]

A Tut(z),

and

d d S d 4 d
Tu®(z) - Tv®(z) = T he [u(z+eg®(2)) - v (2 +eg ()]
1 d d
< g et vt

which implies

7] 1
1Tuf = Tot || < [t - ¥

so T is a contraction. By the contraction mapping theorem, there exists a unique fixed

solution u?¢ € C(IR"™). Hence, A is m-accretive.

QED
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Remark. In the same manner, we can show II; is m-accretive.

Lemma 4.2. II, is accretive.
Proof. Define
Ay (z) = ul(z) - uwi(z) - k(d.d)
Suppose I z4 and d such that

u‘}(xo) - &&(xo)zm?x sup | ud(z) - &d(x)[ = ]]u—{t][

L (4.11)
Then, for any :i £ Zi,
Allu(zy) - abdu(zy)
— [whzg) - ul(zg) = K(d,d)] - [ul(sg) ~ u(re) ~ k(d,d)
= [whze) ~ utwo)) - [whay) - ul(zy)
> 0.
Since p, is continuously increasing, we have
pdA (@) > ot (zg)
and so
Hzglu(xo) > Hj{z(zo).
Thus,
-t +~(puTLu) || > ul(zy) — wb(zg) + A u(zy) - Mfu(zy)
> udzg) — ut(z,)
— [Ju-u]| (4.12)

which shows that I, is accretive. Again, if there exists no zy such that (4.11) holds, we

can consider a similar auxiliary function as (4.10) to show (4.12).
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Lemma 4.3. I1 = 11; + II, is Lipschitz continuous on C (IR™)™ .

Proof. Since

|t (z) - M () |

| — wl(@+hi (@) + ul(2) + vi(@e+h%(z)) - vi(2)]|

_ M
3
A
< —g— [Jul(e) — vi(z)| + |ul(@+h%(2)) - vi(@+a%(2))]]
<2t flu-ol],
we have
e - I || < 21\5— [u~v .
Again,
|H2du(x) - szv(x)l
=% |53 puu (2)-u?(@)h(d,d) ~ pvi(@)vi()k(d,d))]
d4d
S%E e ell 1u%(z) = vi(z) — ui(z) + vi(z)]
Y
< 2y,
Be
so that
It~ M | < 2 v ]|
Thus,

D) ju-v ||

2
e — Tv [| < = D +
g
which shows that IT is Lipschitz continuous on C (IR™)™.
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QED

By the Perturbation Lemma 4.1, A + II is m-accretive and so, for each ¢ > 0, we

have a solution u, € CAR™)™ of (4.3).

Theorem 4.4.

B o<ulx)< JJ—fé—‘l ,e>0,d €1,..m.

g

i) For each 0 < v < min | —H— 11,
(- Fore ’ L ()

|ul(z) - uf(;z)| Sole—;th, r €ER", e>0 d € {1, ..

with the same constant C', in (2.20). If f > L (1+Ny,y), we can take v = 1.

Proof. (i) Suppose 7 7, and d such that

uf(zo):m}n miﬂr; uf(x)
z € R"

then
wl (20 < u? (zq) + k(d.d), d #£4d,
so that
%; plud (zo)-u? (zo)-k(d,d)) = o.
it

Thus from (4.3), we have
. L
ul (zg) > = [ %zo) >0,
B
so that

ul(z) > uf(zg) >0
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If there exist no 2, ¢ such that the minimum in (4.13) occurs, we can consider

uf(x) — 2¢¢(z) instead of uf(x) to force the minimum in (4.13) to occur. The same

analysis can be adapted from the proof of Lemma 4.2 to show (4.14).

Without loss of generality, we can assume there exists x4, d such that

uf(zl)zmax max u?(z).
d zremr”

Then from (4.3), we have

ul (2 < %ﬂ(xl)s ﬂ%ﬂ.

Thus,
0<ul(r) < ul () < LMB_LL_
(ii) Let
d d
y Y

where v will be determined later.

Again, without loss of generality, we can suppose = d, Ty, Yo Such that

@d(xo,yo) = m:?x max ®%(z Y)
z.y

and v (zo+y,) - u(zy) > 0, ¥, £ 0. Then
uf (ot+yo) — “g (zo) > uf (zotyo) — ug (zo), d 7é d,
so that

P (otye) — ul otyo)k(d,d)) > pdu? (zo)-ul (zo)k(d,d)). (4.15)

Since
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. L - . .
Uéi (Tgt+yo) — Eg[“g (x0+y0+6gd(x0+y0)) - “g (2 o+yo)l

>\' “ - -
- 7" Wl (zotyo + h(eatye)) — ul (o + yo))

g Bl otye) - ul oty — k@A) = & [oaotrg (g
dsd
and
wl o) = gtud vy #co¥ag sy - b o)
o ) :
- Wd{ug(xothd(xo)) - uf (2)]
5 D e @) uf ey - bl d) = 5 1 4(zo) (4.17)

dsd

Substracting (4.17) from (4.16), we have

>\~ N -
<1+—ﬁl; +7"> Wl (motyo) — ul (ao))
=%[f5’(xo+yo) — fi@o) - é w (@otyo+ g (@o +yo) — ul (2o + cg*(zo)]
>\‘ N - - -
+ Fd{uz‘ (Zotyo + h(aotye) — ul (g +h(zy)
— LS pdud (motyo-ul (zotye)k(d.d) — plul (zo)-u? (zo)-k(d,d))]
G
dstd
< —é—[f sty — [ L zg) + é wd (@otyo +egl(m0+y0) — ul (2o +eg(zo))
>\'~ - - N -
+ g—[uf (ot yo + h(2otye) — ul (wo+h%(zy)). (4.18)

Dividing (4.18) by | yo |7, we have

Gl Xy | nl oty - ul (@)

pe p |y0|7
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|7 otye) — f (x|

<1
g l?/0|7
bul (@otyo +eg®(motye) ~ ul (2o +eg%(20))| | yo+ €9 (zotyo)eg®(zo) |
Be l1/07L5£7d(5”<)+310)'<f51d(-"”o)[7 190“
L i Ll Gotyeth tyo) - ul @oth @) | yoth (zoty) ~ b)) [
g | yoth®(zotyo) — h%(zo)]” | yol”
1 . 1 . e g
< = Hf H LY+ —— @ (2,y,) (14€L )T + — D% (z4,y,) (1+L)7.
B Be A
Thus,

L'Y

5 [F1FY (4.19)

{ 1+ —=[1-(1el )} + 2 1-(1+L )7 } <I>;i($o,yo) <
pe p -

Let the constant be

a, 21 4+ é—[l{l—f—eL o+ %’ 1-(1+L)7.

Then a, is a decreasing function of v with a, = 1. We want to find the range of -y such

that a, > 0. We claim 1+zv > (1+z)” for x 2 0, 0 < v < 1. Let ¢,(7) 2 (1+z)?
and  @o(7) & 14z~ Since ¢, is a convex increasing function such that
$1(0) = 1 == ¢5(0), and ¢y(1) == 1+z = ¢y(1), ¢1(7) < d3(v), 0 <y < 1. Thus,
1 - (1+z)'> -2+, WV 2 >20,0< v< 1. Hence

R B R L
1= Be g

p

>0 ifvy < min | —"r——,
L (1+>‘max)

1

With this choice of ~, we have
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. I
lq)d (x,y)l < ‘I’d(xo,yo) <

< gl =0,

QED

From the above lemma, {ug} are uniformly bounded and uniformly H&lder con-
tinuous. Then by the Arzela-Ascoli Theorem, there exists a subsequence ¢; such that

d

Uy — u? € C(R") for all d € 1,...,m. The convergence is uniform on each compact

subset of IR". In fact, v is bounded and HOlder continuous with the same H3lder

exponent . We shall prove that u solves the (QVI) in the viscosity sense.

Theorem 4.5. u, — u locally uniformly in IR" and u solves (3.3) in the viscosity
sense.
Proof. We first claim that u ¢ < M%[u). Suppose not, that is, = Zi #“d,86>0
and an open ball B such that
wi(z)> ul(s) + k(d,d) + 26, = € B.

Asul — ud, ul — oyt uniformly on B, we get

wl(z)>ul @) + k(dd) +6 = € B

for all sufficiently large [. Now, let ¢ € Ol(IR") and without loss of generality, we can
assume 2z, € B is a strict local maximum of ut — ¢; otherwise we can add a small

d d

function to force this to occur. Since u, — u° uniformly on B, ug — ¢ also attains a

strict local maximum at z; &€ B for | large. Since

A
ul (z) — —— [l (@ +egt@m) - ul (@) - —;—[ug (o + k(@) ~ wd (@),

Be,
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+ —;— 33 pe, (ul ()-ul (5)k (d,d)) — % S @),
d5£d

then

P (8) < 53 pe (Wh (m)-ul (a)k(d,d))
15d

< - Bul(z) + é—[uf,m +egt(@) - ul (x)

+ N [wl (z + kO (m) - wl (@) + f%z)
</l + ﬁwm +ergh(@) — gla)]l + MOyl R4 @)Y + IS ||

<2/ [+ {Ivell g 1l + X Oyllh]]" < oo (4.20)

But the left hand side of (4.20) tends to infinity as ¢, — 0, which is a contradiction.
Thus ¢ < M%)
(i) As above, suppose ul —~ ¢ attains a strict local maximum at 2y, € B while

uf[ — ¢ attains a strict local maximum at 2; € B and 2, — Zo. Then, by (4.2),

Buf () — = (uf (@ +eg" @) - vl (@)
l
— g [l (m+h (@) - ul (@) < f )

so that

€

Bul () — = [d(a, +e19%(x) - Bz
{
- N lud (@rh () - ul (@) < f ).

Letting { — oo, we have
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But(zg) — g% (z0) V(o) — Ng (8 (zothi(zy) — ul(ze)] < J 4 (z0)
so that (3.5) holds.

.s d . . .
(ii) Let v € CYIR") and u® -1 attains a strict local minimum at z, If

u(z4) = M*%[u](z,) then (3.6) holds. Otherwise u?(z,) < M%[u)(z,), so that
ug[ (z) < Md[uft](z) for z € some ball B

and uf{ — 1) attains a strict local minimum at z;,. Then we can assume 2z — 2, without

loss of generality. Since ud (z) < M%[u ] (%),
pe, (uf () — M%u l(2)) = 0.
By (4.2),
Bul (%) - %[uz (zr + e (2) = u ()]
= N [l (mrt(@) - vl (@) = f )

so that

Bul (z) - -jl— Wiz +e g% () — W)l
~ g [wd (k) - ul (@) > ).
As | — oo, we have

Bub(zg) — g% (20 Vi(z0) — Mg [ (zoTh(29) — u®(zg)] > [ ¥ (20)

Thus, (3.6) holds at z,. Consequently, u is a viscosity solution of (QVI).

QED
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Remark. In general, v is only H8lder continuous. If we know u has some regu-
larity properties, say u’ exists in some neighborhood, then one can show u satisfies
(3.3) in the ordinary sense. The point is that the derivative of u is not continuous

across characteristic curves.
5. The Case of Vanishing Switching Costs.

In the case when the switching costs vanish (k(d,d) = 0 for some d £ d in (1.4)),
then the dynamics may be switched at any time without incurring a cost; hence, the

minimum cost does not depend on the initial control. That is,
U=yt = - = 2y (5.1)

If we follow the arguments used in the previous sections, we can show that u is bounded
and H8lder continuous with the same H8lder constant 07 used in Lemma 2.4. In u were
continuously differentiable on IR", then by the principle of dynamic programming, u

would be (formally) a solution of the Hamiltonian - Jacobi - Bellman equation
— g% . Y VR N NV B A
max {fu - g° - vu g lwC+h%) —u] - f*}=0 (5.2)
on IR". However, u is not always cl. By invoking the same arguments used in section
4, we can show that v is the unique viscosity solution of (5.2) in the following sense:

Definition 5.1. A bounded and continuous function u on IR" is a viscosity solution of

(5.2) if for each ¢ € C'(JR") such thast

(i) if u — ¢ attains a local maximum at z, € IR", then
d
max { fu(zg) — g(xg)" vulz) (5.3)
=1,.., m

- N [u(z0+hd(x0)) — u(zy)] - fd(xo)} <o
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and

(ii) if u — ¢ attains a local minimum at z, € IR", then

max {fuze) = g(s0)"  Vu o) (5.4)

.....

- >‘d [U(zo+hd(zo)) — u(zy)] — fd(zo)} >0

We now prove that the optimality system is closed; that is, each value function
corresponding to non-zero switching costs will converge to u as the switching costs tend

to zero. The result corresponds to a similar result in Capuzzo Dolcetta - Evans [4].

Theorem 5.1. Suppose we have a set of switching costs { k (d ,gl) } such that

k(dd)>0 *d£d € {1, m} (5.5)

kid,d) < k(d,d) + kid,d), d #dH#d

For each ¢ >0 let u,= (u/, -, ul®) be the unique viscosity solution of the

corresponding QVI with switching costs {ke(d,:z’)} and let u be the unique viscosity
solution of (5.2). If ke(d,;i) — 0 as € — O for all d,;i € {1, - ,m}, thenul — u

ase — 0 foralld € {1,- -,m }.

Proof. Since the { u¢ } are bounded and uniformly H8lder continuous with the

same Holder constant as in Lemma 2.4, there exists a subsequence { ¢; } such that

uld — ud (say) locally, uniformly on IR", \/d. By Lemma 3.2

€

wl < Miu 1 <ul 4k (dd), dF#d (5.6)

1 t

and so, u? < u 4 as ¢; — 0. Since d and d are arbitrary, we can obtain the reverse ine-

quality by reversing the roles of d and d. Thus,

I
=
I
i
[

ul moA gy (5.7)
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It remains to show that u is the viscosity solution.

(i) Suppose ¢ € CN!Rn) and u - ¢ attains a strict local maximum at z,. Then for

each d € {1,.,m } and each sufficiently small ¢; > 0, ui - ¢ attains a local max-
imum at z;{ near z, and xf‘ — ¥y an ¢; — 0. Since u. Is the viscosity solution
corresponding to the switching costs { k(d ,d) }, we have

Bul (xd) - g%l vez?l) (5.8)

g lue @l wht @l ) cuegt @) - fEl) <o
Letting ¢;, — O

Bu(zy) - g% (x0) VP(xo) ~ g (2o +h(2q) ~ u(z0)] — [ (z0)} < 0(5.9)
Thus, (5.3) holds.

(ii) If u - ¢ has a strict local minimum at some point z, then for each d and each

¢; small enough, ufz - ¢ attains a local minimum near z, So we can choose d; and z

such that

(wl - o)) = min min(uf - o)) (5.10)
z € R”

and 2z ~ 2, as ¢; — 0. Hence,

(Wh o)) < Wl - o)) (5.11)
We have
wh ) < ul @) 4 k(dd) W od 4, (5.12)
and so
ue (7)< M® Tu, )(z) (5.13)
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Thus,

Bui () — 9%(x) velz) (5.14)

“ g ue Mz R ) - et ) - T @)Y <o

Passing to the limit as ¢; — O,

Bu(z) — g%(20)  Td(20) - My [U(z0 +h*(20) = ulze) = [ “(20) } > 5.15)

Thus, (5.4) holds.

Since (5.2) has a unique viscosity solution, the limit u is the required solution.

QED
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