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In this dissertation, we address the stabilization of uncertain systems de-
scribed by finite, countably infinite or uncountable families of systems. We adopt
an approach that enables us to consider control systems with merely continuous
dynamics as well as continuous time-invariant and time-varying feedback laws.

We show that for any countable family of asymptotically stabilizable systems,
there exists a continuous nonlinear time-invariant controller that simultaneously
stabilizes (not asymptotically) the family. Although these controllers do not
achieve simultaneous asymptotic stabilization in the general case, we manage to
modify our construction in order to design continuous time-invariant feedback
laws that simultaneously asymptotically stabilize certain pairs of systems in the
plane.

By introducing continuous time-varying feedback laws, we then prove that
any finite family of linear time-invariant (LTT) systems is simultaneously asymp-
totically stabilizable by means of continuous nonlinear time-varying feedback,






if each system of the family is asymptotically stabilizable by a LTT controller.
We also provide sufficient conditions for the simultaneous asymptotic stabiliz-
ability of countably infinite families of LTI systems, by means of continuous
time-varying feedback.

We then obtain sufficient conditions for the existence of a continuous time-
varying feedback law that simultaneously asymptotically stabilizes a finite family
of nonlinear systems. We illustrate these results by establishing the simultane-
ous asymptotic stabilizability of the elements of a class of pairs of homogeneous
nonlinear systems.

We finally consider a class of parameterized families of systems in the plane
[where the parameter lies in an uncountable set] that are not robustly asymp-
totically stabilizable by means of C' feedback. We solve their robust asymptotic
stabilization by means of continuous feedback, through a new approach where a
robust asymptotic stabilizer is considered as a feedback law that simultaneously
robustly asymptotically stabilizes two sub-families of the family under consider-
ation.
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Chapter 1

Introduction and Definitions

In this dissertation, we discuss the stabilization and asymptotic stabilization
of uncertain systems described by parameterized families of nonlinear control
systems where the parameter lies in a set that is either finite, countably infinite
or uncountable. Given such a family, our goal is to construct a continuous
time-invariant or time-varying feedback law which stabilizes or asymptotically
stabilizes each one of the systems in the family.

This introductory chapter is organized as follows: In section 1.1, we define
the models of uncertainty that we will consider, present the main objective of
this dissertation, and point out the motivations. We also briefly review the
existing results on the control of uncertain systems. The main contributions
of the dissertation are then presented in Section 1.2 while an outline of the
dissertation is provided in Section 1.3. Finally, the chapter is completed with a
presentation of the main definitions used in the dissertation.

1.1 Introduction

The control of deterministic uncertain systems by non-adaptive controllers, has
been a long standing and challenging problem in control theory. The first results
on that matter were obtained between the early thirties and the early sixties.
During this period, three cornerstone studies were published: In 1932, Nyquist
[61] made precise the trade-off between dynamic stability and large-loop gain.
Thirteen years later, Bode [13] presented a control strategy for uncertain systems
based on the Nyquist frequency domain stability criterion and Black’s concept
of large-loop gain for system accuracy. Finally, Horowitz [46] generalized Bode’s
design strategy. These results dealt mainly with single-input single-output sys-
tems with uncertainty in the gain and phase, and laid the ground for further



work on more general uncertain systems.

However, from the mid-sixties to the mid-seventies, uncertain systems were
mainly ignored by the control community that was preoccupied with developing
state variable concepts such as controllability, observability and linear quadratic

regulator theory. The few results obtained during this period are summarized in
Cruz [18].

The focus then shifted to the design of controllers for multivariable systems
using the newly developed state space concepts. This led, in particular, to the
Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) presented in
Doyle and Stein [28]. Around the same time, important results on the analysis
of multi-variable systems were reported. For example, the concept of coprime
matrix fraction was introduced as a design tool in Youla et al. [80], the Youla
parameterization of all stabilizing controllers of a given plant was also derived
in Youla et al. [80], and the Nyquist stability criterion was generalized to multi-
variable systems by Rosenbrock, MacFarlane and Postlethwaite [58, 66]. These
technical results turned out to play key roles in some of the methods used in the
control of uncertain systems, which have been subsequently proposed.

Prior to presenting the main objectives of this dissertation, we review the
different models of uncertain systems that we will consider.

1.1.1 Uncertainty models

We distinguish four classes of uncertain systems: those with dynamic uncer-
tainty, those with parametric uncertainty, those represented by a finite family of
systems, and those described by a countably infinite family of systems.

A system with dynamic uncertainty is described by a nominal system to-
gether with an unstructured but bounded perturbation. In the frequency do-
main approach, an uncertain linear time invariant (LTT) system P(s) is typically
represented by a formula of the form

P(s) = Ry(s)+A(s) or  Pls) = P(s)[1+A(s)],

where Py(s) is the nominal system and A(s) is a bounded (in some norm) LTI
perturbation with no particular structure. In the state space approach the dy-
namics of an uncertain linear or nonlinear system with dynamic uncertainty is
given by

z = folz) + v(t),

where £ = fo(z) is the nominal system and v(-) is a bounded perturbation.
This description of uncertainty usually accounts for unmodeled high frequency



dynamics as well as for the effect of linearization or time variation of a nominal
system. Although we do not study this type of uncertain systems in this disser-
tation, in view of their importance in the control literature, we review the main
related results in Subsection 1.1.4.

On the other hand, an uncertain system with parametric uncertainty is rep-
resented by a parameterized family of systems {S (), v € '} where 7 is a vector
of parameters, and I is an uncountable index set. While the structure of the per-
turbation is not taken into account in systems with dynamic uncertainty, here it
is assumed that the structure of each member of the family S(v) is known. Such
models are naturally well-suited for representing systems with uncertain physical
parameters that are known to lie within certain bounds. Some scientists argue
[30] that in most practical cases, the high frequency unmodeled dynamics are
negligible once an uncertainty model with the appropriate parameters is derived.
In any case, it is plain that parametric models contain more information than
models with dynamic uncertainty and should therefore yield finer controllers.

A system with “finite uncertainty” is represented by a finite family of systems
{Si, ¢ =1,...,I} [where I > 2 is an integer|. Such a family may represent a
nominal system with its failed modes [2, 29, 69] or the dynamics of a system at
several operating points [1] such as a nonlinear system that has been linearized
at different operating points.

Finally, a system with “countably infinite uncertainty” is described by a
countably infinite family of systems {S;, ¢ = 1,2,...}. Such a family may
represent a system with an infinite number of failed modes or the dynamics of
a system at an infinite number of operating points. As we shall see in Section
1.1.3, if this countable family is a sub-family of a parameterized family of control
systems, then the investigation of control problems related to this sub-family may
yield important information on the parameterized family.

Although finite and countably infinite families of systems are simply param-
eterized families where the parameter lies in a countable set, the approaches for
solving the related control problems are generally different. We will therefore
distinguish the three cases in this dissertation.

The design of a non-adaptive controller that asymptotically stabilizes
each one of the systems of a family of systems is called robust (resp. simultane-
ous) asymptotic stabilization if this family represents an uncertain systems with
dynamic or parametric (resp. with finite or countably infinite) uncertainty.

The design of a non-adaptive controller which robustly (resp. simultaneously)
asymptotically stabilizes an uncertain system with dynamic or parametric (resp.
finite or countably infinite) uncertainty and which achieves some performance
requirements is called robust (resp. simultaneous) control.



1.1.2 Main objective

In this dissertation, we consider finite, countably infinite and parameterized
families of systems. Given such a family, our main objective is to investigate
the existence of a non-adaptive controller that asymptotically stabilizes each
one of the systems of the family. In particular, we aim at proposing design
procedures that are applicable to families of nonlinear systems with possibly
merely continuous dynamics.

To reach this objective we seek either continuous time-invariant or time-
varying controllers.

The practical motivations for addressing these problems are presented in the
next subsection, while the need for studying uncertain nonlinear systems will
be clear from the literature survey in Subsection 1.1.4.

1.1.3 Motivation

While the practical usefulness of robust control and stabilization is now well
established (applications can be found in [7, 20, 33, 65]), the possible applications
for the control and stabilization of finite families of systems are not as well known.
Nevertheless, there are applications that beg for controllers coping with finite
uncertainty such as flight control and fault tolerant systems.

Indeed, as noted in Ackermann [1], flight control systems are typically very
redundant and complex for two main reasons. First, in order to satisfy the safety
requirements imposed by the regulation, the on-board systems must be able to
cope with the many failures that can occur for instance in the actuators, sensors,
controllers, and electrical systems. Secondly, the models found in flight control
problems being highly nonlinear, they are usually linearized at several operating
points corresponding to normal regimes, and a controller for each one of these
linearized models is then designed. Controllers achieving simultaneous control or
stabilization would therefore significantly simplify flight control systems. More
generally, such controllers would benefit all plants with different failed or normal
modes. In particular, they would be very useful for systems such as aircrafts,
public transportation vehicles, nuclear plants, and chemical plants, where failures
can lead to “catastrophic” consequences. In such systems a human operator is
often present. Thus, although this kind of controllers would not probably yield
the same level of performance as a gain scheduling controller, it could be used at
the lowest hierarchical level in order to avoid the catastrophic effect of a failure
and leave the time to the human operator to react.

Control of fault-prone systems have also been addressed in the context of



control of hybrid systems [47]. In this framework, the system is modeled as a
hybrid system with autonomous jump, i.e., it is described by a finite family of
control systems {S;, i =1,...,I} (the failed and normal modes) together with
a continuous time discrete state random process 7(¢) that takes values in the set
{1,..., I} (the occurrence of the failures). Whenever r(¢) jumps from a value iy
to a value %;, the hybrid system switches from dynamics S;, to S;,. These models
can also represent airplanes subject to exogenous disturbances such as wind,
manufacturing processes, and solar thermal receivers (see [59] and references
therein). In general, a controller that simultaneously asymptotically stabilizes
the family {S;, ¢ = 1,...,I} does not necessarily asymptotically stabilizes a
hybrid system that switches between the systems of this family. However, we
believe that in some cases this may be true, if for example the switchings are
not “too frequent”. It would then be of great interest to obtain conditions
under which simultaneous asymptotic stabilization of a family of systems yields
asymptotic stabilization of a related switched system.

The simultaneous asymptotic stabilization of infinite families has been men-
tioned in a few papers, but has never been really addressed. In our view, the
motivation for studying this problem is two-fold: First, because a countable fam-
ily of systems {S;, ¢ = 1,2,...} may be a sub-family of a parameterized family
of systems {S(7v), v € T'}, if we can can show that the family {S;, i =1,2,...}
is not simultaneously asymptotically stabilizable by some class of feedback laws,
then we are ensured that the parameterized family {S(v), v € T'} is not robustly
asymptotically stabilizable by the same class of feedback laws. In this way, we
may be able to obtain useful necessary conditions for the robust asymptotic
stabilization of parameterized families of systems. Secondly, in practical imple-
mentations, the set I' where the parameter lies, is always discretized and may be
represented by a countably infinite set {71,72,...}. In that case, we believe that
in some situations, the simultaneous stabilization of the family {S(y1), S(72), ...}
may suffice to provide “practical” robust stabilization [in some sense| to the fam-
ily {S(v), v € I'}. We do not investigate further this matter in this dissertation,
and leave this topic for further research.

1.1.4 Literature survey

The modern area of robust control of systems with dynamic uncertainty origi-
nated from Zames [82], who first discussed the Ho, control problem. Two years
later, Zames and Francis [83] provided the first Ho, design procedure and solved
the H, sensitivity design problem for single-input single-output systems. It was
then generalized to multi-input multi-output systems by Doyle [26]. Although
these procedures solved the H., problem analytically, the obtained controllers
were very complex and further investigation was conducted, leading to two sim-
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pler H, controller design methodologies. The first one was obtained by Glover
and Doyle [34] who used the same approach as that in [26]. The second one
was found by Doyle et al. [27] through a more direct approach. Because these
‘Hoo controllers have often poor performances, it is now well established that the
Ho, norm alone cannot yield satisfying robust controllers and that some of the
structure of the uncertainty must be accounted for. In order to cope with this
problem, several approaches such as p-analysis and u-synthesis methods [25, 63],
Hs/Hoo theory [70], Hy theory [27], £1 theory (see [20] and references therein),
and the loop shaping method [65], have been proposed.

We stress that all the aforementioned methodologies address the control of
linear time invariant systems with dynamic uncertainty and structured dynamic
uncertainty [i.e., systems with dynamic uncertainty where some of the structure
of the uncertainty is taken into account]. For nonlinear systems with dynamic
uncertainty, little theory is available. The nonlinear H,, control theory [76]
is still a new area that has not yet proven to be successful in the design of
controllers. Moreover, this method does not provide stabilization of each one
of the systems of the family. There exist other approaches such as Lyapunov
methods [17, 35, 36]. However, either the resulting controllers produced by these
last methods are discontinuous and do not guarantee the existence of solution to
the closed-loop differential equation, or stabilization of each one of the systems
of the uncertain family is not ensured.

Research on systems with parametric uncertainty has evolved differently from
that on systems with dynamic uncertainty, and has focussed on obtaining stabil-
ity criteria rather than on constructing controllers. In 1983, the western control
community discovered the remarkable paper [54] of Kharitonov where it is proved
that the stability of certain parameterized families of polynomials is that of four
distinguished polynomials of the families. Since then, this theorem has been
an inspiration for most of the research on stability of systems with parametric
uncertainty, and a great deal of papers presenting extensions, generalization, or
new proofs of Kharitonov Theorem, have been published. One of the significant
results that has followed is the Edge Theorem introduced by Barlett, Hollot and
Lin [6]. This theorem reduces the problem of checking the stability of some poly-
topes of polynomials to that of checking the stability of their edges. The zero
exclusion principle was then developed and several numerical tests [19, 23, 71]
based on this concept, were provided. Systems with uncertain parameters lying
in spherical bounded sets have also been considered [72], and a theory for linear
systems with multilinear parameter perturbation has been initiated [7].

One of the major weakness of the theory on stabilization of uncertain systems
with parametric uncertainty lies in the lack of theory for families of nonlinear
systems. Further, because all the afore-mentioned results have been obtained



for families of polynomials, it is not clear how to extend the previous concepts
to the nonlinear setting.

Most of the research related to the control of finite families of systems
addresses the simultaneous asymptotic stabilization of linear systems. This
problem was first posed by Saeks and Murray [69] in 1982. The simultaneous
asymptotic stabilization of two LTI systems by means of LTI feedback, was com-
pletely solved in [69] for single-input single-output systems and in Vidyasagar
and Viswanadham [78] for multi-input multi-output systems, by using the Youla
parameterization [81]. For more than three systems, the problem is consider-
ably more complex and is still a topic of current interest. Although necessary
and sufficient conditions for the simultaneous asymptotic stabilizability of three
LTI systems are provided in Blondel et al. [12], Ghosh and Byrnes [31], and
Vidyasagar and Viswanadham [78], it turns out that none of them is imple-
mentable. It is therefore not clear whether the stabilizability of three LTT sys-
tems by means of LTI feedback can be computationally decided. To date, this
issue is still open. However, it is now known that a general algorithm for testing
whether three LTI systems are simultaneously stabilizable by a LTI controller
would require the computation of a transcendental function, which indicates its
high computational complexity [9, 11].

To overcome the limitations of LTT controllers, the use of time-varying feed-
back laws and merely continuous feedback laws for simultaneous stabilization,
has been investigated: Kabamba and Yang [48] established the simultaneous
asymptotic stabilizability of finite families of LTI systems by means of open loop
time-varying feedback laws which involve both the sampled output of the sys-
tem and a periodic function of time. On the other hand, Zhang and Blondel [84]
obtained sufficient conditions for the simultaneous asymptotic stabilizability of
such families by controllers based on LTI feedback laws combined with zero-th
order hold functions and samplers. While both these design procedures comprise
a sampling scheme, Khargonekar et al. [52] introduced a method that does not in-
volve any discretization strategy and proved that any finite family of stabilizable
LTI systems can be simultaneously asymptotically stabilized by a periodic linear
time varying feedback law which is piecewise continuous. Finally, Petersen
[64] derived a necessary and sufficient condition for the simultaneous quadratic
asymptotic stabilizability of single-input LTI systems by means of continuous
feedback. Unfortunately, this condition is not really useful because it relies on a
matrix that may be hard to find and for which no design procedure is given.

While families of linear systems have been the main focus of research on
simultaneous asymptotic stabilization, the case of families of nonlinear systems
has never been addressed in the literature. Also, to the best of our knowledge,
there exists no published work on the simultaneous asymptotic stabilization of



countably infinite families of systems.

It now clearly appears that the control of uncertain nonlinear systems is
an area that begs for results. On the other hand, because the simultaneous
stabilization of LTI systems by means of LTI feedback is a difficult issue that is
mainly unsolved, we strongly feel that the investigation of alternative types of
simultaneous stabilizers for such families should be pushed further.

1.2 Contributions

In this dissertation, our main focus is the stabilization and asymptotic stabiliza-

tion of countable and parameterized families of systems. Our contributions are
four-fold.

e First, we introduce a new method to interpolate feedback laws, that enables
us to prove that given any finite or countably infinite family of general
nonlinear systems with continuous vector-field, there exists a merely con-
tinuous feedback law that simultaneously stabilizes (not asymptotically)
the family, if each system of the family is asymptotically stabilizable by
means of continuous feedback.

We actually find two feedback laws that solve the simultaneous stabilization
problem. The first one depends on a partition of unity while the second
one is simpler and does not involve a partition of unity.

In case the systems of the family are globally asymptotically stabilizable,
we establish the existence of a continuous feedback law which not only
simultaneously stabilizes the family but also yields boundedness of the
trajectories of the corresponding closed-loop systems starting at any initial
state in IR".

We stress that these result are new and that our constructions do not
provide simultaneous asymptotic stabilization. However, the idea behind
these constructions will prove to be useful for the design of controllers that
achieve simultaneous asymptotic stabilization.

e Indeed, by introducing time-varying feedback laws and by modifying the
construction used to derive the previous results, we are then able to prove
that given any finite family of LTI systems that are individually stabiliz-
able by means of LTI feedback, there exists a continuous time-varying
feedback law which simultaneously globally exponentially stabilizes the
family.



Because our approach does not involve any discretization scheme as in
(48, 84], our result should be compared to that of Khargonekar et al. [52]. In
this paper, it was proved that any finite family of stabilizable LTI systems
is simultaneously stabilizable by a periodic linear time varying feedback
law which is piecewise continuous. Although the controller that we
derive is nonlinear it offers the advantage of being continuous. Moreover,
while the controller proposed in [52] is not explicit and is obtained through
an iterative procedure, the controller that we find in this dissertation is
given by an explicit formula. Finally, we also obtain a lower bound on
the exponential rates of convergence of the closed-loop systems while the
authors of [52] do not study the rates of convergence of the closed-loop
systems that they obtain.

We then consider countably infinite families of LTI systems that are asymp-
totically stabilizable by LTI feedback laws and derive sufficient conditions

for their asymptotic stabilizability by means of continuous time-varying
feedback.

e By extending the previous approach to the nonlinear setting, we are able to
give sufficient conditions for the simultaneous local and global asymptotic
stabilizability of finite families of nonlinear systems by means of continu-
ous time-varying feedback laws. We then use these conditions in order to
establish the simultaneous asymptotic stabilizability of the elements of a
class of pairs of homogeneous nonlinear control systems.

We point out that the simultaneous asymptotic stabilization of families of
nonlinear systems has not been previously addressed in the literature.

e Finally, we introduce a new approach to the robust asymptotic stabilization
of parameterized families of systems. We view this problem as a “simulta-
neous design” in the sense that a robust asymptotic stabilizer is considered
as a feedback law that simultaneously robustly asymptotically sta-
bilizes a finite number of sub-families of the original family. By using this
approach and by modifying the construction that enables us to establish
the simultaneous stabilizability of countable families of systems, we then
design merely continuous robust asymptotic stabilizers for some parame-
terized families of nonlinear systems in the plane, that do not admit any
C" robust stabilizer.

To the best of our knowledge, there exists no previous result on robust
asymptotic stabilization (in this sense) of nonlinear systems by means of
continuous feedback.

One of the novelties of our work lies in the fact that we consider very general
systems with possibly merely continuous dynamics that may be asymptotically

9



stabilizable by merely continuous feedback laws. We also use controllers which
are merely continuous (time-varying or time-invariant). The notions of merely
continuous control systems and the use of continuous feedback for stabilization
purpose is a relatively new concept that has been clarified only since the late
eighties [3, 21, 49]. While such notions have become quite popular in the field of
nonlinear stabilization, it is not as well-spread in the robust control community,
and we hope that this dissertation will help to fill the gap between these two
fields.

1.3 Outline of the dissertation

This dissertation is organized as follows:

In Chapter 2, we consider finite families of nonlinear control systems with
continuous dynamics, and assume that each one of these systems is asymp-
totically stabilizable by means of continuous feedback. We then establish the
simultaneous stabilizability of such families by means of continuous feedback.
The cases of families of globally asymptotically stabilizable systems as well as
families of linear systems are also discussed.

By adapting the construction introduced in Chapter 2, we prove in Chapter
3, that any countably infinite family of stabilizable systems, is simultaneously
stabilizable by means of continuous feedback. We then apply our results to
families of globally asymptotically stabilizable systems and to families of LTT
systems.

In Chapter 4, we introduce time-varying feedback and consider finite families
of LTT systems that are individually asymptotically stabilizable by means of LTI
feedback. By modifying the construction of Chapter 2, we prove that given any
such family, there exists a continuous time-varying feedback law that simulta-
neously globally exponentially stabilizes this family. We then derive sufficient
conditions for the existence of a time-varying feedback law that simultaneously
globally asymptotically stabilizes a countably infinite family of LTI systems.

Chapter 5 contains our discussion on the simultaneous asymptotic stabiliza-
tion of finite families of nonlinear systems. We derive sufficient conditions for the
existence of a time-varying feedback law that simultaneously locally or globally
asymptotically stabilizes such a family. By using these conditions we then prove
the simultaneous asymptotic stabilizability of the elements of a class of pairs of
homogeneous nonlinear control systems.

In Chapter 6, we establish the simultaneous asymptotic stabilizability of
certain pairs of systems in the plane by means of continuous time-invariant
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feedback.

Finally, in Chapter 7, we derive a continuous time-invariant feedback law that
robustly asymptotically stabilizes the families of a class of parameterized families

of nonlinear systems in the plane that do not admit a C' robust asymptotic
stabilizer.

Our conclusions and suggestions for future work are presented in Chapter 8.

1.4 Definitions

We now present several definitions that are used throughout this dissertation.

1.4.1 Definitions related to stability

For z in R", we let ||z|| denote its Euclidean norm, and for » > 0 and z; in
R™ we let B,(zo) denote the open ball B.(z) = {z € R"™ : ||z — zo| < 7}.
Further, given an autonomous (resp. time-varying) dynamical system, we let
z(-,xo) (resp. z(-, zg, %)) denote any one of its trajectories that starts at o at
time ¢t = 0 (resp. t = %), for each zy in R" (resp. for each zy in R™ and each
to > 0).

Definition 1.1 (Stability of autonomous systems) Let f : R" — R" be a
continuous mapping with f(0) = 0. The system (S) : & = f(z) is

i) stable if for each € > 0, there exists 6 > 0 such that for each t > 0 and
each solution z(.,zo) of (S), we have ||z(t,20)|| < € whenever zy lies in B;(0).

ii) is locally asymptotically stable if it is stable and if there exists § > 0
such that each solution z(., o) of (S) satisfies z(t,z9) = 0 as t — oo whenever
||zo]| < 6.

iii) is globally asymptotically stable if (ii) holds for all § > 0.
Definition 1.2 (Stability of time-varying systems) Let f : [0,00) x R" —
R"™ be a continuous mapping such that f(t,0) = 0 for each t > 0, and let
z(+, Zo, to) denote the trajectory of the system (S) : & = f(t,x) for any given z
in R™ and ty > 0. The system (S) is
i) stable, if for each € > 0 and each to > 0, there exists §(e,to) > 0 such that

lz(t, o, t0)|| <&, ¢>t0, To € Bie,ty)(0)-
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ii) uniformly stable if (i) holds with ¢ independent of t,.

iii) locally asymptotically stable, if it is stable according to (i) and for each
to > 0, there exists 6(to) > 0 such that

tlgrnoo:c(t,xo,to) =0, =z € Bﬁ(to)(o)-

iv) locally uniformly asymptotically stable if it is uniformly stable according to
(ii), and there exists § > 0 independent of to such that z(t, zo,ty) converges
uniformly in o and ty to the origin as t tends to +oo, for each o in Bj(0)
and each ty > 0.

v) locally exponentially stable if there exist some positive reals -, 8, and L such
that
2(t, o, t0)l| < Lijaolle™*), ¢ > o,

for each ty > 0 and each zy in Bj(0).
vi) locally uniformly stable with exponential (uniform) convergence, if there

exist some positive reals v and &, and a mapping h : (0,00) — (0, 00) such
that lirggr h{r) =0 and
r—

Izt 20,2l S h(llzol)e™), ¢ >,

for each ty > 0 and each xy in Bs(0).

If Definition 1.2 (iii), (iv), (v), (vi) respectively hold for all § > 0, the
system (S) is said to be respectively globally asymptotically stable, globally
uniformly asymptotically stable, globally exponentially stable, and globally uni-
formly asymptotically stable with exponential convergence.

Both Definition 1.1 and 1.2 can be found in [77] except for Definition 1.2
(vi). This last definition is more general than that of exponential stability but
reduces to this concept if the mapping h satisfies h(r) < ar for each r > 0 close
to 0. Here, we allow more general mappings h, but the fundamental idea of
uniform (in ¢3) exponential convergence is preserved. Furthermore, it is plain
that the requirement Tl_i_)r(g h(r) = 0 yields uniform stability.

We now let Z be a countable set (finite or infinite) and we let {S;, i € Z} be
a collection of control systems

Si: &= fi(z,u),

where the state z is in R", the input » is in R™ and f;(0,0) = 0.
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Definition 1.3 (Stabilization) Let i be in Z.

i) A feedback law u : R® — R™ such that u(0) = 0, stabilizes (resp. asymp-
totically stabilizes) the system S; if the closed-loop system & = fi(x,u(x)) is
stable according to Definition 1.1 (i) (resp. locally asymptotically stable accord-
ing to Definition 1.1 (ii)).

ii) A feedback law u : [0,00) x R® = R™ such that u(t,0) = 0 for all t > 0, re-
spectively locally asymptotically, locally uniformly asymptotically, and locally ez-
ponentially stabilizes S; if the closed-loop system & = f;(x,u(t,x)) is respectively
locally asymptotically, locally uniformly asymptotically, and locally exponentially
stable according to Definition 1.2 (iii), (iv), and (v), respectively.

We emphasize that in Definition 1.3 (i), we use the word “stable” in the
basic sense, i.e, stable according to Definition 1.1 (i), while in the control theory
literature it is commonly used to denote “locally asymptotically stable” accord-
ing to Definition 1.1 (ii). In the sequel, we will often omit the term “locally”
and unless otherwise stated “asymptotically stable” will mean “locally asymp-
totically stable”.

Definition 1.4 (Simultaneous stabilization) A feedback law u simultaneously
stabilizes (resp. asymptotically stabilizes) the family of control systems {S;, i €
T}, if u stabilizes (resp. asymptotically stabilizes) each one of the system of the
family, according to the appropriate definition.

We now let T' be an uncountable subset of R* and we let {S(7), v € T'} be
a parameterized family of control system

S(): & = fylz,u),

where the state z is in R", the input  is in R™ and f,(0) = 0 for each v in T.

Definition 1.5 (Robust stabilization) A feedback law u : R" — R™ robustly
asymyptotically stabilizes the family {S(vy), v € T}, if it is independent of the
parameter v and if it locally asymptotically stabilizes the system S(v) for each 7y
inT.

1.4.2 Miscellaneous

Given a positive definite matrix M, we let Ayin (M) and Apqez (M), denote respec-
tively its smallest and largest eigenvalues. As usual, the infimum of a mapping
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over the empty set is taken to be equal to +00. Further, we let IR and Z denote
the set of reals and integers respectively.

For a given integer ¥ > 1 and two Banach spaces X and Y, a mapping
f:X =Y, is said to be C* if it is k times continuously differentiable on X.
Further f is said to be C? if it is continuous on X, while it is said to be “smooth”
or equivalently C* if it is C* for all k£ > 0.

Assume that U is a neighborhood of the origin in R"”, and let £ > 0 be an
integer. A mapping f : U — Y is said to be almost C* if it is C* on U\{0}.

Because, we extensively use the concept of Lyapunov functions, we now define
them.

Definition 1.6 (Lyapunov function) Let U be a neighborhood of the origin
in R™. A mapping V : U — [0, 00) is said to be a Lyapunov function if it is C*
and if the following holds :

o V(z)=0 &2=0.

o There exists a continuous mapping f : U — R"™ such that f(0) = 0 and
VV(z)f(z) <0 for each z in U\{0}.

If in addition U = R" and V(x) converges to +00 as ||z|| tends to +oo, the
Lyapunov function V is said to be radially unbounded.

Throughout, we consider solely time-invariant feedback laws v : R® — R™
(resp. time-varying feedback laws v : [0,00) x R™ — RR™) such that we have
u(0) = 0 (resp. v(¢,0) = 0 for each ¢ > 0). This is a usual and natural re-
quirement imposed on feedback laws that are used for stabilization purpose.
Indeed, if the feedback law v stabilizes or asymptotically stabilizes a control
system & = f(x,u) satisfying f(0,0) = 0, then the previous assumptions on v
means that no control energy is necessary in order to maintain the corresponding
closed-loop system at the the origin once it has reached this state.

Finally, recall that if f : R"™ — R"™ (resp. f : [0,00) x R* — R") is con-
tinuous, then for each zy in R" and each ¢, in [0, 00), the differential equation

z = f(z) (resp. £ = f(¢,z)) admits a solution (possibly not unique) that starts
from z, at time o {38, pp. 10].

Throughout, we always consider control systems # = f(z,u) where the map-
ping f : R® x R™ — IR" is continuous on a neighborhood of the origin, together
with time-invariant (resp. time-varying) feedback laws v : R"™ — R™ (resp.
v : [0,00) x R® — IR™) such that there exists a neighborhood of the origin U
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with v continuous on D (resp. on [0,00) X D). Therefore, we are ensured that
given xo in some neighborhood of the origin and any ¢, > 0, the closed-loop

system & = f(z,v(z)) (resp. £ = f(z,v(¢,z))) admits at least one solution that
starts from x, (resp. from zy at time ¢p).

We now define the concept of a partition of unity, which will be the technical
key to the derivation of our results. This definition can be found in [79, pp. 8.

Definition 1.7 (Partition of unity) Let M be o differentiable manifold. A
partition of unity on M is a collection {p,, o € A} of C® functions defined
from M into [0,1] [where A is an arbitrary index set, not assumed countable]
such that

e The collection of support {support(pa), o € A} is locally finite.
e > fa=1onM.

acA

A partition of unity {p,, o € A} is subordinate to an open cover {Ug, 8 € B}
of a differentiable manifold, if for each « in A there exists # in B such that the
support of p, is included in Usp.

The following theorem can be found in [79, pp. 10].

Theorem 1.1 Let M be a differentiable manifold, and let {U,, o € A} be an
open cover of M. Then, there ezists a partition of unity {ps, o € A} subordinate
to the cover {Uy, o € A} such that the support of py is included in Uy, for each
o in A.

We finally introduce a notation that is extensively used throughout this dis-
sertation.

Definition 1.8 Let {zn,, m = ...,—1,0,1,...} be a sequence of positive in-
tegers. Further, for each i = 1,...,2, and each n in Z, let Q} belong to a
given class of mathematical objects. Then, {QF, i = 1,...,2,}3%,, {QF, @ =
Loy Zotnq, and {QF, i =1,...,%,},cz denote respectively the sequences

2 3
QL-",Q;N %)""sz) 19+

- -2 -2 -1 -1
“-7me3) Ql Yy ey T 1 )"-7Qx_1)

and

-1 -1 0 0 Ol 1
QT L QR Qe By -y Ry
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Chapter 2

Simultaneous Stabilization of Finite
Families of Nonlinear Systems

In this chapter, we show that if each system of a finite family of general non-
linear systems is asymptotically stabilizable by means of continuous feedback,
then there exists a continuous feedback law that simultaneously stabilizes (not
asymptotically) the family. For any such family, we construct a simultane-
ous stabilizer through a new method for interpolating feedback laws. Given
a sequence of nested sets {U",¢ = 1,...,1}%2,, and a collection of mappings
{u; : R® - R™, i =1,...,I}, this method enables us to design a continuous
mapping v : R® — R™ which is equal to u; on the boundary U} for each
i1=1,...,Jandeach n=1,2,....

For any finite family of stabilizable systems, we find two feedback laws that
solve the simultaneous stabilization problem. The first one is constructed in
Section 2.2 and depends on a partition of unity. Because this partition of unity
might be difficult to express, we present in Section 2.3 a simpler simultaneous
stabilizer that does not involve a partition of unity. In case the systems of the
family are globally asymptotically stabilizable, we derive a feedback law that
not only simultaneously stabilizes the family, but also yields boundedness of the
trajectories of the corresponding closed-loop systems. On the other hand, if the
systems of the family are LTI and asymptotically stabilizable by means of LTI
feedback, we provide a simple procedure to construct a simultaneous stabilizer.
Finally, some technical lemmas are presented in Section 2.4.
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2.1 Problem definition

Throughout this chapter, we consider a family {S;, ¢ =1,...,I} of systems
Sii T = fi(iL',U), 'i=1,...,I, (21)

where I > 2 is an integer, the state z lies in R", the input u is in R™, and for
each i =1,...,I, the mapping f; : R x R™ — IR" is continuous on a neighbor-
hood of the origin with f;(0,0) = 0.

Recall that we use the word “stable” in the basic sense, i.e, stable according
to Definition 1.1 (i), while in the control theory literature it is commonly used
to denote “locally asymptotically stable” according to Definition 1.1 (ii).

The purpose of this chapter is to discuss the simultaneous stabilization of the
family {S;, i =1,..., I}, according to Definition 1.4 and under the assumption
that for each 1 =1,..., I, the system §; is locally asymptotically stabilizable by
means of continuous and almost C* feedback [for some & in {0,1,...}].

The originality of this problem is four-fold. First, we discuss the simultaneous
stabilization whereas all the studies on finite families of systems usually address
their simultaneous asymptotic stabilization. Secondly, we consider families of
nonlinear systems while all the studies on simultaneous asymptotic stabiliza-
tion have focussed on families of linear systems (see [10] for a recent survey
on this topic). Thirdly, we only impose that the dynamics of the systems S; be
continuous and that the systems S; be asymptotically stabilizable by means of
continuous feedback. Fourthly, we use merely continuous controllers.

Although simultaneous stabilization is a topic that has not been addressed
in the literature, we feel that studying this problem may yield a new insight
into the simultaneous asymptotic stabilization problem and that it is an issue
worth raising. In this dissertation, this approach proves to be successful, and the
method introduced here will turn out to play a key role in the derivation of most
of our results on simultaneous asymptotic stabilization. We also believe that
simultaneous stabilizers may be useful for “practically” stabilizing families of
systems that cannot be simultaneously asymptotically stabilized. For example,
in case the systems S; are globally asymptotically stabilizable, the controller of
Section 2.3.2 yields boundedness of the trajectories of the corresponding closed-
loop systems and may be used in order to avoid the divergence of a system
resulting from a failure.

Because we consider systems that are stabilizable by means of possibly merely
continuous feedback, it is natural to seek a merely continuous simultaneous sta-
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bilizer. Thus, the results from simultaneous asymptotic stabilization of linear
systems by linear feedback laws are of little help in addressing our problem, and
we draw our inspiration from recent results obtained in the context of stabiliza-
tion of nonlinear systems [see [5] for an overview].

The use of merely continuous controllers for stabilization purpose can be
traced back to the work of Sussmann [74] and Artstein [4], but it is only since
the late eighties that this idea has become clearer throughout the papers by
Tsinias [75], Sontag [73], Kawski [49], and Dayawansa et al. [21]. In these papers,
surprisingly general results were obtained, namely in the context of stabilization
of low dimensional systems. It is therefore natural to hope for interesting results
when applying merely continuous feedback laws to simultaneous stabilization
problems.

The only published work that addresses the simultaneous asymptotic stabi-
lization by means of merely continuous feedback is Petersen [64]. In this paper,
a necessary and sufficient condition for the simultaneous quadratic asymptotic
stabilization of single-input linear systems by means of continuous feedback is
derived. Unfortunately, this condition is not really useful because it depends on
a matrix that may be hard to find, and for which no design procedure is given.

The purpose of the next section is to prove the following theorem whose proof
is postponed to Subsection 2.2.2.

Theorem 2.1 Let k be in {0,1,...}. Assume that for each i =1,...,I, there
exists a feedback law u; : R™ — R™ which is continuous and almost C* on some
neighborhood of the origin, and which locally asymptotically stabilizes the system
S;. Then, there exists a feedback law v : R™ — R™, which is continuous and

almost C* on a neighborhood of the origin, and which simultaneously stabilizes
the family {S;, i=1,...,I}.

This somewhat surprisingly general result is proved through a rather simple
proof that nevertheless yields a new insight into the simultaneous stabilization
and asymptotic stabilization problems.

2.2 Simultaneous stabilization

In this section we present a proof of Theorem 2.1. The general lines of the proof
are as follows: For each ¢ = 1,...,I, we let V; denote a Lyapunov function for
the system z = f;(z, ui(z)). We define a sequence of neighborhoods of the origin
{Ur,i =1,...,I}32, such that for each i = 1,...,I the boundaries of the sets
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Ur,n=1,2,... are level sets of V;. Then, we design a continuous feedback law
v which is equal to u; on the boundaries of the sets U, n = 1,2,.... It follows
that for each ¢ = 1,...,I and each n = 1,2,..., the set Uf is invariant with
respect to the system & = f;(z,v(z)). We conclude that for each i = 1,...,1,
the feedback law v stabilizes S; upon noting that the family {U}22, is a base
at the origin.

The following lemma will be the key for proving the invariance of sets Uzn

2.2.1 Invariance criteria

The next lemma is the main argument to prove the invariance of the set U,. It
is also used in the proofs of Proposition 2.1 and Theorem 2.2, and in the next
chapter.

Lemma 2.1 Let D be a bounded neighborhood of the origin (resp. D = R")
and let V : D — [0,00) be a Lyapunov function. Let f : D — R" be a con-
tinuous mapping and let (S) denote the system & = f(x). Further, let 8 be in
(0, mie%fp V(x)) and let WP denote the set WP = DNV~([0, 8) ). Finally, assume
that

VV(z)f(z) < 0, z€dWr. (2.2)

Then, the set W* is invariant with respect to the system (S).

Proof: We prove the lemma by a contradiction argument: Assume that W’ is
not invariant with respect to (S). Then, there exists z; in W’ such that the
trajectory z(-,zo) of (S) starting from z, at time ¢t = 0, does not remain forever
in W". By combining Lemma B.3 (ii) (with D, V and WP) with the fact that
g < mier}ij V(z), we exhibit ¢ > 0 and h > 0 such that

z(t,zo) € OWP, V(z(t,z0)) = B, (2.3)
and for each h in (0, k),
z(E+h,zo0) € V7I(]0,8]) with z(+ h,zo) € D. (2.4)

From (2.2) and (2.3) we easily get

Wbz Gy(a( z0)) f(2G,20)) < 0.

ot
Thus, in view of (2.3), there exists & in (0, k] such that
V(zE+h,z0)) < V(e z0) = B, he(0,h), (2.5)
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a contradiction with the strict inequality
V((E(f-}— haxO)) > ﬂ, h e (O)E),

which follows from (2.4). The lemma then follows by contradiction. [

We note that the proof of this lemma does not hold if we merely assume that
VV(z) f(x) <0, z€doWh,

instead of (2.2). Indeed, this new assumption does not yield the companion
relation of (2.5), namely

V(zE+h,z0)) < V(z(zo)) = 6, he(0,h),

and we do not obtain the invariance of the set Wﬂ.

We finally prove Theorem 2.1 in the next section.

2.2.2 A proof of Theorem 2.1

We are now able to prove Theorem 2.1.

Proof Theorem 2.1 :
Recall that the infimum of a real-valued mapping over the empty set is +00.
Construction of the simultaneous stabilizer :

Let U; be a neighborhood of the origin such that the mappings f;(-, u;(-))
and u; are continuous on U;, with u; almost C* on U; for each s = 1,..., 1.
By the Converse Lyapunov Theorem [56] and the local asymptotic stability of
z = fi(z,u;(x)), there exist a bounded neighborhood of the origin D; C U; and
a Lyapunov function V; : D; — [0, 00), satisfying

VVi(z) fi(z,ui(z)) < 0, z e D)\{0},

I

foreachi =1,...,I. Let D be a bounded neighborhood of the origin D C ﬂ D;,
1

so that we have '

VVi(z) fi(z,ui(x)) < 0, ze€D\{0}, i=1,...,1. (2.6)
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For each 1 =1,...,I and each # > 0, we define W'f by setting
WP & {zeD:Vi(z) < B},

and we construct a sequence of neighborhoods of the origin as follows: By ap-
plying Lemma 2.4 (with D, Vi,...,Vs), we obtain a sequence of positive reals
{8, i=1,..., 1}, satisfying

gt < zierngV}(x), n=12,..., i=1,...,1, (2.7)
gr — 0 as n—oo, i=1,...,1, (2.8)
with
n —pan+l
Wit S W n=1,2,..., (2.9)
Wh S W =21, n=1,2,.... (2.10)

Upon setting
ur A WX, i=1,...,I, n=12,...

the inclusions (2.9) and (2.10) translate to

ur ST and U, D U, i=2,...,I, n=12,.... (2.11)

% R

From (2.7) and Lemma B.3 (i), we get U, C D and we therefore have a sequence
of nested neighborhoods

D >U > ..>0U >
U: > ... D U D

such that each neighborhood contains the closure of the neighborhood that fol-
lows. We now define the set A? for each ¢ = 1,...,7 and each n = 1,2,... by
setting
Ay
Ay

D\U,, and AM20U""\U; n=23,...

n Fn+1
I—I\Ul ’ 7?,21,2,...,

> e

and
AP £ UL N\U;,,, i=2,...1-1, n=12,...,

if I > 3. From (2.8), it is readily seen that for each 7 = 1,...,I, the family
{Ulr}%2, is a base at the origin so that {UP, i =1,...,1}%, is also a base at
the origin. This combined with the inclusions (2.11) and Lemma B.4 implies
that {A?, ¢ =1,...,I}%2, is an open cover of D\{0}. Thus, by Theorem 1.1
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there exists a partition of unity {¢?, i =1,...,I}%, subordinate to the open
cover {A}, i =1,...,I}32, and such that the support of ¢7 is included in A?
for each i = 1,...,1 and each n = 1,2,.... We now define the feedback law
v: D — R™ by setting

0, z=0
"= 2;%@)4?(%), z € D\{0}

Before proving that v simultaneously stabilizes {S;, i = 1,...,I}, we study the
regularity of v around the origin.

The mapping v is almost C* and continuous at the origin :

Let = be in D\{0} and let r be in (0, ||z||) satisfying B,(0) C D. Because
{U}22, is a base at the origin composed of nested neighborhoods, there exists
an integer n, such that

Ur ¢ B.(0), n=n+1,n+2,....

It follows from the definition of v together with the fact that the support of ¢
is included in U} for each i =1,...,I, and each n =1, 2,.. ., that

W) = BV uew), ve DED. (2.12)

Because the mappings u; and ¢* are C* on D\{0} for each i = 1,...,I and each
n = 1,2,..., we obtain from (2.12) that v is C* on D\{0}. Furthermore, the
mappings ¢’ summing up to 1, we get

lo@)ll < max ([u(z); ... l[w(@)l), =€ D,

and continuity of v at the origin follows from that of the mappings u;,i =1,..., 1.

Stability :
From the definitions of the sets U and Af, it is not hard to see that for

(3]
eachi =1,...,I, and each n = 1,2,..., the boundary QU is included in A7
and does not intersect with any other set AT". Thus, because the support of
the mapping ¢ is included in A} foreachi=1,...,7 and each n =1,2,..., it

follows from the definition of v that

v(z) =ui(x), ze€dU®, i=1,...,I, n=12,...
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This, together with (2.6) and the fact that U; is included in D for each i =
1,...,T and each n =1,2,..., yield

VVi(z) fi(z,v(z)) < 0, z€dU}, i=1,....,], n=12,.... (2.13)

For each i = 1,...,I and each n = 1,2, ..., by combining (2.13) with Lemma
2.1 applied with D, V;, fi(-,v(-)) and S, we obtain that the set U7 is invariant
with respect to the system & = f;(z,v(x)).

We now fix ¢ = 1,...,I and we let € > 0 be given. Because the family
{Ul}%, is a base at the origin, there exists a positive integer 7 satisfying

U; C B.(0).

t

Let § > 0 be such that Bs(0) C U,. Then, the invariance of the set U, with
respect to the system & = f;(x,v(z)) implies that each trajectory of this system
starting in B;(0) remains in B.(0) forever. In short the feedback law v stabilizes
the system S;. The proof of the theorem is complete upon noting that the
previous argument holds for each i =1,...,I.

In view of the comment that follows Lemma 2.1, it is easily seen that for the
previous construction to be valid, it is necessary that

VVi(z) fi(z,v(z)) < 0, ze€dU?, i=1,....,1, n=12,....

Therefore, if the system S; is merely stabilizable (not asymptotically) for each
1 =1,...,1, then the previous construction does not yield simultaneous stabi-
lizability of the family {S;, i =1,...,T}.

We now consider the feedback law v obtained in the previous proof and
we show that we can replace the mappings of the partition of unity {¢, ¢ =
1,..., I}, that appear in the expression of v, by simpler mappings.

2.3 A simple expression for a simultaneous sta-
bilizer

Our goal in this section is to show that we can circumvent the computation of
the partition of unity {¢?, i =1,...,I}%, that appears in the expression of the
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simultaneous stabilizer constructed in the proof of Theorem 2.1. The general
idea to construct this explicit simultaneous stabilizer is the following.

We first note that in the proof of Theorem 2.1, we do not actually need
that the mappings of the partition of unity {¢? : ¢ = 1,...,1}%2, sum up
to 1. For this proof to carry over it suffices to have a collection of mappings
{@¢, i=1,...,1}%, that take non-negative values, that sum up to a real less
than 1 and that satisfy

F@)=1 and @) =0, sefeeD: Vile) =4}, (,m)# (i,n),

for each s = 1,...,I, and each n = 1,2,.... Building upon these comments,
we construct a more explicit simultaneous stabilizer for the family {S; : i =
1,...,I}. Then, in case S; and u; are linear, we exhibit a simple design procedure
that yields this explicit feedback law.

2.3.1 Derivation of the stabilizer

Throughout this subsection, we let k£ be in {0,1,...}, and we consider the fam-
ily of systems {S;, ¢ = 1,...,I} as defined in (2.1). We assume that for each
1 = 1,...,1, there exists a feedback law u; : R® — R™ which is continuous
and almost C* on a neighborhood of the origin, and which locally asymptoti-
cally stabilizes the system S;. Our goal is to construct a simultaneous stabilizer
v : R® = R™ for the family {S;, ¢ =1,...,I}, which does not involve a parti-
tion of unity.

Let U; be a neighborhood of the origin such that the mappings f;(-, ui(-))
and wu; are continuous on U;, with u; almost C* on U; for each i = 1,...,1.
By the Converse Lyapunov Theorem [56] and the local asymptotic stability of
i = f;(z,us(z)), there exist a neighborhood of the origin D; C U; and a C*
Lyapunov function V; : D; — [0, 00) [where k; > 1 is an integer]|, satisfying

VVi(z) fi(z,ui(z)) < 0, =z € D;\{0},
for each i =1,...,I. Let D be a bounded neighborhood of the origin satisfying
I
D c () D, so that we have

=1

VVi(z) fi(z,ui(z)) < 0, zeD\{0}, i=1,...,I. (2.14)

We let k' denote the integer
k' = min(k, ki, ..., k1),
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and for each 8 >0 and each s =1,...,I, we set W# £ DNV, 7*([0,8)). By
applying Lemma 2.5 (with D, Vi,...,V}), we obtain three sequences of positive
reals {of, 1 = 1,..., 1}, {6F i =1,..., I}, and {7}, i = 1,...,I}}2,
such that we have

of, B, Y —=0asn—o00, i=1,...,1, (2.15)
and

$i€nafDV§(m) > A > B>, i=1,...,1, n=12,..., (2.16)

together with

n n+1
Wit > Wit , n=12..., (2.17)
and . .
Wi o WY, i=2,...,1, n=1,2,.... (2.18)
For each i = 1,...,T and each n = 1,2,..., we now define the mappings 7} :
D — [0, 1] by setting:
Vi(@)=pP?
TP Vi(o) € (o, B7)
) = Vi(=)=BF)* . .
WO = T i Via) € (550 (219
0, otherwise

Finally, we let 7 : D — R™ be given by

and we prove the following theorem.

Proposition 2.1 The feedback law v is continuous and almost C* on D, and
simultaneously stabilizes the family {S;, i=1,...,1}.

Proof: First we note that (2.16), (2.17), and (2.18) yield a sequence of nested
neighborhoods

711 11 a% 'Y% aF
D > w* o> Wit > Wyt > W2 > ... > W, D
72 2 a2 72 a2
wit > Wit > Wit O W, O ... O W, D (2.20)
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such that each neighborhood contains the closure of the neighborhood that fol-
lows. For each i =1,...,1 and each n =1,2,..., we let II? denote the set

M £ {z e D:q'(z)#0}.
In view of (2.20), the definition of the mapping ¢ yields
= WA\We, i=1,....1, n=1,2,..., (2.21)

together with
I N I3 =0, (i,n)# (j,m). (2.22)

Let = be in D\{0} and let r be in (0, ||z]|) satisfying B,(0) C D. Because

{W{’? }o2, is a base at the origin composed of nested neighborhoods, there exists
an integer n, such that

W{Y? C B{0), n=n+1,n.+2,....

It follows from the definition of T together with the fact that II? is included in
W/ foreach i =1,...,I, and each n =1,2,..., that

o) = 32X uw)R), ve DB (2.23)

Because the mappings u; and g7 are C¥ on D\{0} for each i = 1,..., T and each
n=1,2,...[follows from Lemma B.6 applied to g7] we easily obtain from (2.23)
that 7 is C* on D\{0}. Furthermore, (2.22) implies that

[o@)| < max (|lur(@)]],- -, lur(2)l)), = €D,

and continuity of 7 at the origin follows from that of the mappings u;,i = 1,..., I.

Stability:

From (2.22) and the definition of the mappings g}, we deduce that for each
t=1,...,] and each n =1,2,..., we have

T(z) = 1 with g"(z) = 0, z¢€ 8Wiﬂ?, (4, m) # (i, n),
and the definition of T yields
T(z) = uilz), z¢€ oW’
This, together with (2.14) imply that

VVi(z) fi(z,o(z)) < 0, ze€dW, i=1,...,I, n=1,2,.... (2.24)
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We now fix 4 = 1,...,I. For each n = 1,2,..., by combining Lemma 2.1
with (2.24), we obtain that the set Wf " is invariant with respect to the system
& = f;(z,v(z)) and stability of this system follows from the fact that {W/” }2
is a base at the origin. The proof of the theorem is complete upon noting that
the previous argument holds for each i =1,..., 1. [ |

The simultaneous stabilizer 7 does not rely anymore on a partition of unity.
In fact, we have replaced the partition of unity that appears in the expression
of v by more explicit mappings, that depend on three sequences of positive reals
{7, i=1,.., 02, {8 i=1,..., 1}, and {a}, i = 1,...,1}2,. To
express these sequences, it is necessary to find, for each ¢ = 2,..., I, a condition
on the two positive reals « and 3, that yields the inclusion

DNnVZi([0,e)) > DNV;7H([0,4)),
as well as a condition for the inclusion
DnVY[0,«)) > DnVY([o,4])

to be satisfied. In case the system S; and the feedback law u; are linear for each
i=1,...,1, as we shall see in Subsection 2.3.3, these conditions are well known
and the feedback law 7 is therefore entirely explicit.

On the other hand if the feedback law u; globally asymptotically stabilizes
the system S; for each 7 = 1,...,1, the previous construction can be slightly
modified in order to yield a feedback law © that simultaneously stabilizes the
family {S;, ¢ =1,...,1} and such that for each s = 1,..., I, all the trajectories
of the closed loop system & = f;(z,7(z)) are bounded.

2.3.2 Application to globally asymptotically stabilizable
systems

We now consider the family {S;, ¢ = 1,...,1} of nonlinear systems as defined
in (2.1) and we let k be in {0,1,...}. We assume that for each i = 1,...,1,
there exists a continuous and almost C* feedback law u; : R® — R™ which
globally asymptotically stabilizes S;. Further, we assume that the mapping
fi(-;u;(+)) is continuous on IR™ for each 7 = 1,...,I. Thus, by the Converse
Lyapunov Theorem [56], there exists a C* radially unbounded Lyapunov function
Vi : R® = [0, 00) for the system z = f;(z,u;(x)). It is easy to adapt Lemma 2.5
(applied with D, Vi,---,V}) in order to obtain the following lemma.
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Lemma 2.2 Let I > 2 be an integer. For eachi=1,...,I, letV; : R™ — [0, 00)
be a radially unbounded Lyapunov function and let Wiﬂ denote the set

Wl £ {zeD:Vi(z) < B}, B>0.

Then, there exist sequences of positive reals {af, i = 1,...,I} ez, {BF, i =
Loy Itpez, and {¥?, i =1,...,1},cz converging to 0 and +o00 as n tends to
+00 and -oo respectively and satisfying

n n<+1
Wit > W, neZz,

n n
o i

ot D W) i=2,...,I, neZ.

This lemma produces three two-sided sequences of positive reals {a, i =

Lo ITheez, {67, i = 1,..., I}z, and {77, i = 1,...,I},.z that yield a
two-sided sequence of neighborhoods

) 0 ' 0 0 0 | 0
WS> W o W S W S ... D WM D
v B} ol " o
W S WA S W S WE S D WS
v ik o 3 aj
wyr o Wyt o Wyt O W, O ... O Wt D

such that each neighborhood contains the closure of the neighborhood that fol-
lows. For each i = 1,...,I and each n in Z, we let the mapping ¢ : R™ — [0, 1]
be given by the formula (2.19) and we define the mapping  : R* — R™ by
setting

@) = ¥ YT @)ul), zeR

nEZ =1
We now let = be in R™ \{0} and we note that

{zeR": qz) #0} ¢ WI\W,

for each 4 = 1,...,I and each n in Z. Thus, because {77, ¢ = 1,...,I},z
converges to 0 and +00 as n tends to +oo and —oco respectively, there exist a
neighborhood U, of x and a positive integer N satisfying

I

) = 3 ST W), ye U,

n=-—N i=1

and we easily conclude that 7 is C* on R™ \{0}. Further, because the mappings

of the collection {@?, i =1,...,1},cz sum up to a real less than 1, we get
[P@)I < min (Jlur(@)], -, lu(@)]), zeR?,
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and continuity of ¥ follows from that of the mappings u; and g} for each i =
1,...,1 and n in Z.

Fixi =1,...,1. By an argument similar to that used in the proof of Theorem
2.1, we obtain that for each 1 = 1,...,I and each n in Z, the trajectories of
z = fi(z,0(x)) starting in W,ﬂ " remain in this set forever. It follows that
stabilizes .S;. Next, for each zy in R", because nl_l;r_noo B = 400, there exists n in

Z such that z( lies in Wf v Therefore, for each zy in R"”, there exists n in Z
such that the trajectories of £ = f;(z,o(x)) starting from x, remain forever in

the bounded set Wf ¥, We summarize these results in the following corollary.

Theorem 2.2 Letk bein {0,1,...}, and assume that for eachi=1,...,1I, there
exists a continuous and almost C* feedback law u; : R™ — R™, which globally
asymptotically stabilizes S;. Further, assume that the mapping fi(-, wi(-)) : R" —
R" is continuous for each i = 1,...,I. Then, there erists a continuous and
almost C* feedback law v : R™ — R™, such that the following holds.

i) 7 simultaneously stabilizes the family {S;, i=1,...,T}.

ii) The trajectories of the system & = fi(x,9(x)), starting at o, are bounded
for each o in R™ and eachi=1,...,1.

2.3.3 Application to families of linear systems

We now assume that for each i = 1,..., I, the system S; and the feedback law
u; are linear and we let V; : R" — [0, 00) be a Lyapunov function for the system
% = fi(z,u;(x)) given by Vi(z) = a? P, z, where P, is a positive definite matrix.
It is well known that in this case u; globally asymptotically stabilizes the system
S;, for each ¢ = 1,..., I, so that we can use the construction of Subsection 2.3.2
in order to obtain a simultaneous stabilizer.

However, in this particular case, it turns out that the sequence of reals

{of, i=1,..., I}z, {8 i=1,..., I}z and {77, i =1,...,1},.7 used in
Subsection 2.3.2 for the construction of the stabilizer, may be obtained through
the lemma below instead of Lemma 2.2.

Indeed, the sequences produced by Lemma 2.3 satisfy each one of the asser-
tions of Lemma 2.2, and have the advantage of being more explicit than those
produced by Lemma, 2.2.

Lemma 2.3 Let I > 2 be an integer. For eachi=1,...,1, let P; be a positive
definite matriz, let L and = L denote respectively its smallest and largest eigen-
value, let V; : R" — [0 oo) denote the mapping given by Vi(z) = z* P;z, and
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let 0; be in (0,1). Furthermore, let m; be in (0,%%) and let 7; be in (0, Bzt ait) for
each i =2,...,1. Assume that

(1 ooomr) (62 ---62) < 1 (2.25)

and let 4, be an arbitrary positive real. Finally, let the sequences of positive
reals {77, i=1,..., I}z, {BF, i=1,..., I}z and {oF, i=1,...,T},c7 be
defined by setting on one hand

7?:’717 ﬂzn':ezfy,:’” O[?:QZ/B?, ’I;Z].,...,I, n=0,1,..., (226)
with
n+1

YT o= may and '=mol,, i=2,...,], n=0,1,..., (2.27)

and on the other hand

At VR
ot =L and of =L i=T-1,...,1, n=-1,-2,... (2.28)
M Ti41
with
Br=% gnd =Pl 1.1, n=-1,-2,.... (2.29)
0; 0;
Then, for each n in Z we have
Viz1((0, 0f-1)) Vil ([o,]), i=2,...,1, (2.30)
Vi ([0, o)) ViH([0,74%1). (2.31)
and for eacht=1,...,I we have

Bt —0 as n — oo,
B — 0o as n — —oo.

Proof:

In what follows we fix n = 1,2,.... Let § > 0. It is well known that for each
i =1,...,1I, the set V;71([0,6]) is the volume bounded by an ellipsoid centered
at the origin with smallest axis v/m; ¢ and largest axis +/M; d. Thus, (2.30) and
(2.31) will hold if we have

n Mi-1 n+1 my n
;< o, and < ==
Yi Mz i—1 M M1
M ,
Because 7 is in (0, M ) and the real ; is in (0, ]\141) foreach 1 =2,...,I, we
i

obtain (2.30) and (2. 31)
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Further, it is easily checked from the assumptions that for each i = 1,...,T
we have

Bt = (mem) (0701 BF, neZ,

and it follows from (2.25) combined with the definition of of and ~" that for
each 1 = 1,...,I, the sequences {V'},cz, {8} ncz and {a?},cz converge to 0
and 400 as n tends to +0o and —oo respectively. [ |

In the particular case I = 2, Theorem 2.1 and Proposition 2.1, are also proved
in Ho-Mock-Qai and Dayawansa [41] and [43] respectively. The constructions
presented in these two papers are similar to those introduced in this chapter,
but may seem simpler because I = 2.

Finally, we present in the next section several technical lemmas that were
used in the proof of the Theorem 2.1 and in Subsection 2.3.1.

2.4 Technical lemmas

The following lemma was used in the proof of Theorem 2.1, for the construction
of the sequence of neighborhoods {U}*, ¢ =1,...,I}%,.

Lemma 2.4 Let I > 2 be an integer and let D be a bounded neighborhood of
the origin (resp. let D = R"). For eachi = 1,...,1, let V; : D — [0,00) be
a Lyapunov function (resp. a radially unbounded Lyapunov function). Further,
foreachi=1,...,1 and each B3 > 0, let I/Vf denote the set

Wf £ {zeD:Vi(z) < B}
Then, there ezists a sequence of positive reals {47, i =1,..., 1}, satisfying:

B < infVile), i=1,..,1,

Bt — 0 as n—ooo, i=1,...,1,
57 ot

wyt o> Wit , n=1,2,...

Wi S W i=9,.. I, n=1,2,..

Proof: We define the sequence {g, i =1,...,I}%2, by induction on 7 and ;.

For n = 1, we first pick 4} in (0, ie%fD Vi(z)). Then, foreach i =2,...,I, we
T
define 8} from 8}, as described hereafter: By Lemma B.1, for each i = 2,..., T
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the family {Wiﬂ }s>0 is a neighborhood base at the origin with W2 C Wf for all
o < 3, so that we can pick 8} in the interval (0, ierg; Vi(x) ) such that
x

Bi_ T
Wit o Wik,

For n = 2,3,..., we define the sequence {G, i = 1,...,I} from the sequence

{6¥', i=1,...,I} as follows: By Lemma B.1 applied to {W{a}ﬁ>0, there exists
n—1
B¢ in the interval (0, 212_] such that

n-—1 —An
Wi o Wi

Similarly, for each ¢ = 2,...,I, we define 8 from 8P ,: By using Lemma B.1,
n—1
we select BF in (0, 2“2—] such that

Wi > W

It is plain from this construction that for each ¢ =1,..., I, we have

lim 3 =0.

n—o0

The result is then proved upon noting that by construction 5 < ie%fD Vi(z) for
z
eachi=1,..., I [}

The next lemma is used in Subsection 2.3.1 to obtain an explicit simultaneous
stabilizer.

Lemma 2.5 Let I > 2 be an integer, and let D be a bounded neighborhood of
the origin (resp. D = R"™). For eachi = 1,...,I, let V; : D — [0,00) be a
Lyapunov function (resp. a radially unbounded Lyapunov function) and let I/Vf
denote the set

Wf & {zeD:Vi(z) < B}, B>0.
Then, there exist sequences of positive reals {a, 1 = 1,..., 1}, {B*, i =

1,0, 132, and {7, i =1,..., I}, converging to the origin as n tends to co
and satisfying

mier%)fDV;(a:) > > B > o, i=1,...,I, n=12,...,

with
of wi
W, > Wi, n=12,...,

n 7
o i

S S W oi=2,...,1, n=1,2,....



Proof: We define the sequence {7%, i =1,..., I3, {8} i=1,...,1}3,, and
{af, i =1,...,I}3, by induction on n and 1.
For n = 1, we pick 41 in (0, iEnafD Vi(z)) and we choose 3] and «f such that
T

At > B > a! > 0. Then, for each 5 = 2,...,1, we define 7}, 8} and o] as
follows: By using Lemma B.1 (with D and V;), we pick 4} in (O’xg}a% Vi(z) )
such that . )

Qi1 3

-1 D Wi,

and we choose 8} and o} satisfying 4} > 8} > a; > 0.

For n = 2,3,..., we define the sequence {7, 3% af i = 1,...,I} from the
sequence {77, "1, ot i=1,...,1} as described below:
7w

For i = 1, we select 47 in (0, 5 | (Lemma B.1) satisfying

1

Wi o> WhL

We then choose S and of such that 47 > G > of > 0.

n—1

Next, for each i = 2,...,I, we pick 47 in (0, ’7’2 ] (Lemma B.1) such that

oy N7
i1 D Wi,

and we choose 8 and of such that 4] > 8 > of > 0.

It is then easily seen that the obtained sequences satisfy the assertions of the
lemma. [ |
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Chapter 3

Simultaneous Stabilization of Infinite
Families of Nonlinear Systems

By generalizing the construction introduced in the proof of Theorem 2.1, we now
establish the simultaneous stabilizability of any countably infinite family of
asymptotically stabilizable systems.

We follow the organization of the previous chapter and start in Section 3.2
by constructing a simultaneous stabilizer based on a partition of unity. Then, we
show in Section 3.3 how we can circumvent the computation of this partition of
unity and exhibit a simpler simultaneous stabilizer. We then apply our results to
families of globally asymptotically stabilizable systems and to families of linear
systems. Finally, we present in Section 3.4 some technical results.

3.1 Problem definition

Throughout this chapter, we consider the countably infinite family {S;, i =
1,2,...} of systems

Si: @ = fiz,u), 1=1,2,..., (3.1)

where the state = lies in R", the input v is in R™, and for each : = 1,2,...,
the mapping f; : R* x R™ — IR" is continuous on a neighborhood of the origin
with £;(0,0) = 0.

We let k£ be in {0,1,...}, and we assume that for each i = 1,2,..., there
exists a continuous and almost C* feedback law u; that locally asymptotically
stabilizes the system S;. Under these assumptions, we establish the simultaneous
stabilizability of the family {S;, ¢ =1,2,...} by means of continuous feedback.
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The motivations for studying the simultaneous stabilization and asymptotic
stabilization of infinite families of systems are the following.

A countably infinite family may be a sub-family of a larger parameterized
family {S(v), v € T}, where the set I' is uncountable. In this case, if the
countable family is not simultaneously stabilizable by some class of feedback
laws, then it follows that the family {S(7), v € '} cannot be robustly stabilizable
by the feedback laws of this class. In this way, we may be able to obtain useful
necessary conditions for the robust stabilizability and asymptotic stabilizability
of the family {S(v), v € T'}. Further, in practical implementations, the set of
parameter values I' is always represented by a countable set {7;,7,...}, and
the simultaneously stabilizability or asymptotic stabilizability of the family of
systems {S(71),S(72), ...} may suffice to ensure “practical” robust stability (in
some sense) of the family {S(), v € T'}. It is not the purpose of this dissertation
to go into this matter more closely, but it would be certainly of great practical
interest to clarify this idea and find conditions under which the robust stability of
a parameterized family of systems is “practically” equivalent to the simultaneous
stability of one of its countable sub-families.

We present in the next section the main result of this chapter.

3.2 Simultaneous stabilization

The purpose of this section is to prove Theorem 3.1. Although, the main idea
of the proof is similar to that of the proof of Theorem 2.1, because we have
an infinite number of systems, the construction is technically more involved
and additional care is needed in order to ensure that the obtained simultaneous
stabilizer is continuous and almost C* on a neighborhood of the origin.

The main lines of the proof of this theorem are as follows: For each ¢ =
1,2,..., we let V; denote a Lyapunov function for the asymptotically stable
system & = fi(z,u;(x)). We construct a base at the origin {U", i = 1,...,n}%,
composed of nested neighborhoods, such that the boundary of the set U is a
Lyapunov level set of V; for each i =1,2,... and each n = 4,5+ 1,.... We then
design a continuous feedback law v which is equal to u; on the boundary of the
set U for each i =1,2,... and eachn = 4,7+ 1,.... Foreach i = 1,2,..., we
conclude that v stabilizes S; upon noting that the sets of the family {U, }2.

are invariant with respect to £ = f;(z,v(z)) and that {U}2, is a base at the
origin.

Theorem 3.1 Let k be in {0,1,...}. Further, assume that for eachi=1,2,...,
there exists a feedback law u; : R™ — R™ which is continuous and almost C* on a
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neighborhood of the origin, and which locally asymptotically stabilizes the system
S;. Then, there exists a feedback law v : R® — R™ which is continuous and
almost C* on a neighborhood of the origin, and which simultaneously stabilizes
the family {S;, 1=1,2,...}.

Proof:

Construction of the simultaneous stabilizer :

Let U; be a neighborhood of the origin such that the mappings f;(-, u;(*))
and wu; are continuous on U;, with u; almost C* on U; for each ¢ = 1,2,....
By the Converse Lyapunov Theorem [56] and the local asymptotic stability of
& = fi(z,u;(z)), there exists a bounded neighborhood of the origin D; C U; and
a Lyapunov function V; : D; — [0, 00), satisfying

VVi(z) fi(z,ui(z)) < 0, =€ D;\{0}, (3.2)
foreach 1 =1,2,.... Foreachi=1,2,..., we let I/V,-ﬂ denote the set

I/Vf £ {zeD;:Vi(z) < g}, B>0,
and we define the mapping @; : D; — R™ by setting

_ _J ui(z), =ze€DiND,
Ui(z) = { 0, z € D)\D;

Let 6 > 0. By applying Lemma 3.3 with 6 and the families {D;, i = 1,2,...},
{Vi, 1=1,2,...} and {u;, ¢ =1,2,...}, we obtain a sequence of positive reals
{BF, i=1,...,n}2, satisfying

By < még}f) Valz), n=1,2,..., (3.3)
g — 0 as n—o0, 1=12,.... (3.4)

Upon setting
Ui"éI/Vf", i=1,...,n, n=1,2,...,

the remaining assertions of Lemma 3.3 translate to

vl 5 U} and UM, D TU;, i=2,...,n, n=23,..., (3.5)
with
U, , C D, n=23,..., (3.6)
and
e ()| <%, z€DyNUY, k=1,....,n+2, n=12,.... (3.7)
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From Lemma B.3 (i) combined with (3.3) we get D; D Ui and in view of (3.5),
we have a sequence of nested neighborhoods

D, > Ul >

U > U2 >
Ui > U3 > Ui > (3.8)
D ...

such that each neighborhood contains the closure of the neighborhood that fol-
lows.

For each n = 1,2,... and each i = 1,...,n, we now define the sets A? by
setting
=2
A{ 2 Dl\Ula
—1\ T
A’,11' é 1?—11\U27 n:273a“' ’
AY =2 UP\Usy, i=2,...,n—1, n=34,...,
Ar A pr \TTT n=2,3,....
Because the family {U, i =1,...,n}32, is a base at the origin [follows from

(3.4)] composed of nested neighborhoods, Lemma B.4 implies that the family
{A}, i=1,...,n}%, is an open cover of D;\{0}.

By Theorem 1.1 there exists a partition of unity {¢*, ¢ = 1,...,n}%, sub-
ordinate to the cover {A}, i = 1,...,n}%,} such that the support of ¢ is
included in A} for each i =1,...,n and each n = 1,2,... . We now define the

feedback law v : D; — IR™ by setting

0’ =0
v(w) = { >, S ae)de), 5 € D0}

n=1

and we prove that v is almost C* and continuous at the origin.
v is almost C* :

Let z be in D;1\{0} and let r be in (0, ||z]|) with B.(0) C D,. Because
{Upr, i=1,...,n}%, is a base at the origin composed of nested neighborhoods,
there exists an integer N such that

UNU{UR, i=1,..., )%y, C B(0). (3.9)
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This together with the fact that the support of each mapping ¢? is included in
A? imply that

1 u;(y)ai(y), y € Di\B:(0). (3.10)

o) = 3

n
n=114i=

Note that D;\B,(0) is a neighborhood of z.

We now show that v is C* on D;\B,(0), by proving that the mapping @; ¢ :
D;\{0} - R™is C* on D;\{0}, foreach i =1,...,nand each n =1,2,....

We fixn =2,3,... and i = 1,...,n. By definition of %; we have @; = u; on
D;, so that
u(y) ' (y) = wy)d'(v), ve DinD;)\{0}. (3.11)
Further, as the support of ¢} is included in A}, we get
ai(y) ) = 0, ye (D\B])\{0}. (3.12)

Because ¢ is smooth on D;\{0} and u; is C* on D;\{0}, it follows from (3.11)
and (3.12) that @; ¢* is C* on

((D\A}) U (D1 0 Dy)) \{0}. (3.13)
Next, by proving that Z? C D;, foreachi=1,...,n and each n = 2,3,..., we

show that the set in (3.13) is equal to D;\{0}. By combining the definition of
the sets A? with (3.5) and (3.6), we obtain for each n = 2,3, ... the inclusions

K’ll - an c Dl)
A c U, ,cU'cD, i=1,...,n—1,
A, c U,_, C D, [ follows from (3.6)],

and because we also have A, C D;\{0} from (3.8), we get

?

This implies that the set in (3.13) is equal to D;\{0}, and it follows that the
mapping %; ¢* is C* on D;\{0} for each i = 1,...,n and each n = 2,3,....
Moreover, the mapping %q} is C* on D;\{0}, since by definition of #;, we have
U1t = u1qt on D1\{0}. In view of (3.10), we conclude that for each z in D;\{0},
there exists a neighborhood U, of z included in D;\{0} such that the mapping
v is C* on U,. In short, the mapping v is C* on D;\{0}.

Next, we prove that v is continuous at the origin.
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Continuity of v :

We fix n = 2,3,.... From the definition of the sets AT, it is easily checked
that for each m=n+2,n+3,..., we have

- +1 .
U\ ) nAT =0, j=1,...,m,
and because the support of each function ¢}* is included in AT, we get

1 m
— _ 1
S a(z) M (z), =€ UM\TUns,. (3.14)
1 j=1

n

i M+

v(z) =

As the functions ¢f* sum up to 1, we obtain from (3.14) that

. _ - +1
(@)l < max([[ay(@)l],- ., [[ansa(@)]), 2 € UpZ{\Upia,

so that (3.7) combined with the definition of the mappings @;, 1 = 1,2,... yield

4 —=n
lo(@)|] < T z € U \Unis. (3.15)

Further, upon noting that the family {U}}2, is a base at the origin composed of
nested neighborhoods such that each neighborhood contains the closure of the
neighborhood that follows, we deduce from Lemma B.4 that

o0
_ —1\ 575+l
U'll_ll\{o} = U (UZLL—% Un+1) ) I = 2) 37 ey
n=l

and (3.15) implies that

6 _
o)l < 7=, e U0}, 1=23,....

As 2241 — 0 as [ — oo, continuity of v at the origin follows from the fact that
{U}}; is a base at the origin.

Finally, we show that the feedback law v simultaneously stabilizes the family
of systems {S;, i =1,2,...}.
Stability :

The following argument is almost the same as that used in the proof of The-
orem 2.1 to prove that v simultaneously stabilizes the family {S;, i =1,...,T}.
The main difference is that here, to show that v stabilizes the system S; for

39



each i = 1,2,..., we need to consider the family {UP}%2, instead of the family
{UP}52, because of the “pyramidal” structure of the sequence of neighborhoods
{UF, i=1,...,n}%,.

From the definitions of the sets U and A, it is not hard to see that for

eachi=1,2,... and each n =4,i+1,..., the boundary U} is included in A?
and does not intersect with any other set AT'. Thus, because the support of the

mapping ¢} is included in A} for each ¢ =1,2,... and each n = 4,4 + 1,..., it
follows from the definition of v that
v(z) =w(z), z€dU!, n=di+1,..., i=12,....

This, together with (3.2) and the fact that U, is included in D; for each i =
1,2,...and each n =14, 4+ 1,..., yield

VVi(z) fi(z,v(z)) < 0, z€dU}, n=4i+1,..., t=12,.... (3.16)

For each i =1,2,... and each n = 4,7+ 1,..., by combining (3.16) with Lemma
2.1 applied with D, Vi, f;(-,v(-)) and B we obtain that the set U is invariant
with respect to the system & = f;(z, v(x)).

For each i = 1,2,..., because the family {U*}32, is a base at the origin, by

using the invariance of the sets T]—?, n=1,1+1,..., it is easily checked that v
stabilizes the system S;, which completes the proof of the theorem. |

We now show how to circumvent the computation of the partition of unity
that appears in the expression of the simultaneous stabilizer, just obtained.

3.3 A simple expression for a simultaneous sta-
bilizer

Following the construction of an explicit simultaneous stabilizer for a finite fam-
ilies of nonlinear systems, we obtain in this section a more explicit feedback law
7 that simultaneously stabilizes the family {S;, ¢ = 1,2,...} and that involves
no partition of unity.

Our design follows the same lines as that of section 2.3: In the expression of
the feedback law v obtained through the proof of Theorem 3.1, we replace the
mappings of the partition of unity {¢%,7 = 1,...,n}$2, by the mappings of a
new family {g*, i =1,...,n}52, that sum up to a real less than 1 and such that
for each n =1,2,... and each i = 1,...,n we have

g(z)y=1 with gi'(z) =0, =zedlUp, (j4,m)# (i,n).
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In Subsection 3.3.1, we study the case of a family {S;, i = 1,2,...} of general
nonlinear systems. Then, in Subsection 3.3.2, we look at the case where S; is
globally asymptotically stabilizable for each ¢ = 1,2,.... Finally, in Subsection
3.3.3, we present a simple design procedure that produces the explicit simulta-
neous stabilizer in case the system S; and the feedback law w; are linear for each
i=1,2,...

3.3.1 Derivation of the stabilizer

We let k& be in {0,1,...}. Further, we consider the family of systems {S;, i =
1,2,...} as defined in (3.1) and we assume that for each ¢ = 1,2,..., there
exists a feedback law u; : IR® — IRR™ which is continuous and almost C* on
a neighborhood of the origin, and which locally asymptotically stabilizes the
system S;.

We begin with constructing the explicit stabilizer. Let U; be a neighborhood
of the origin such that the mappings f;(-,u;(-)) and u; are continuous on Uj,
with u; almost C*¥ on U; for each i = 1,2,.... By the Converse Lyapunov
Theorem [56] and the local asymptotic stability of ¢ = f;(z, u;(z)), there exists
a bounded neighborhood of the origin D; C U; and a C*% Lyapunov function
Vi : D; — [0,00) [where k; > 1 is an integer], satisfying

VVi(z) fi(z,ui(z)) < 0, z € D;\{0}, (3.17)
for each ¢ =1,2,.... We define &’ by setting

k' £ min[k, inf (k;)].

i=1,2,...
Foreach i =1,2,..., we let Wiﬂ denote the set

WP 2 {zeD;:Viz) < B}, B>0,
and we define the mapping @, : D; — R™ by setting

_ _J ui(z), =zeDinD;
Uz(ib') - { 0, T € Dl\Dz

Let 6 > 0. By applying Lemma 3.4 with ¢ and the families {D;, i = 1,2,...},
{Vi, i =1,2,...} and {w;, i = 1,2,...}, we obtain three sequence of positive
reals {77, i = 1,...,n}32,, {6 i =1,...,n}2, and {a?, i = 1,...,n}2,
converging to 0 as n tends to oo and satisfying

xieggil/;(x) > > 6 >0, i=1,...,n, n=12,..., (3.18)

41



with

an—l

n—1 TN _
n—1 DW]_ s n—2,3,...
n

al =7 .
W2t DWW/, i=2,...,n, n=23,....

and p
lluk(2)]| < e TeD,NWPh, k=1,...,n+2.

We note that the sequences obtained through Lemma 3.4 yield a sequence of
nested neighborhoods

1 1
Dy > W' > W' > W >
2 o? 2 2 o
Wit > Wit > Wit D> W2 > W,2 D W, O (3.19)
3 . .
wh

such that each neighborhood contains the closure of the neighborhood that fol-
lows.

Next, for each ¢ = 1,2,... and each n = 4,7+ 1,..., we define the mappings
@7 : D, — [0,1] by setting

(V;(2)—B7)?
TSI i Vi(a) € (of, )
T (x) = (V; (@)-B1)%
¢ e Vi=BT =7 =M% if Vi(z) € [BF, )
0, otherwise

and we let 7: D; — IR™ be given by

We now prove the following theorem.

Proposition 3.1 The feedback lawT is continuous and almost C¥ on D;. More-
over T simultaneously stabilizes the family {S;, i =1,2,...}.

Proof:

The mapping 7 is almost C* :

For each n =1,2,... and each ¢ =1,...,n, we let II? denote the set

I} = {z€Di:T(z) #0},
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so that (3.18) combined with Lemma B.3 (i) and (3.19) yield

e = WA\We. (3.20)

Let = be in D;\{0} and let r be in (0, ||z||) with B.(0) C D;. Because

{W??, i=1,...,n}2%, is a base at the origin composed of nested neighborhoods,
there exists an integer N such that

Wy, i=1,...,n}%Nu C B(0).

This together with (3.20) imply that

n

)=23 mWeEw), veD\B0). (3.21)

=1

We note that D;\B,(0) is a neighborhood of = and we show that 7 is C¥
on D;\B,(0), by proving that the mapping ;g is C¥ on D;\{0} for each
t=1,...,nandeachn=1,2,....

We fix n in {1,2,...} and 4 in {1,...,n}. By definition of @; we have @; = u;
on D; N Dy, so that

LW T (Y) = w@ T @), ye (DinD)\{o}. (3.22)
Further, the definition of TI? yields
LW TW) = 0, ye (D) \{o}. (3.23)

Because g7 is C* on D;\{0} [follows from Lemma B.6] and u; is C¥' on D;\{0}
it follows from (3.22) and (3.23) that ;g7 is C* on

((D\TT) U (D1 0 Dy)) \{0}. (3.24)

3

Next, by combining (3.18) with (3.20) and Lemma B.3 (i), we get

M c WF c D,

] 13

Thus the set in (3.24) is equal to D;\{0} and it follows that %; g" is C¥ on
D;\{0}, for each n = 1,2,... and each i = 1,...,n. We easily conclude from
(3.21) that the mapping v is C’“' on D;\{0}.

We now show that the mapping 7 is continuous at the origin.
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Continuity of 7 :

We fix n in {2,3,...}. Because the set II7" is included in W;”m for each
m=n+2,n+3,...and each j =1,...,m, we obtain from (3.19) that

n+1

(wENWER ) nmp o (wENTE) w0,
and it follows that

n+1

n+l m —

— — —-_m ﬂr':—l n+l

o(z) = Y Y ai(x)Tz), xeW,” \Wn_p] . (3.25)
m=1 j=1

Upon setting

W i=1,...,n n=1,2,.

one can easily adapt the argument used in the proof of Theorem 3.1 to show
that ¥ is continuous at the origin in order to prove that 7 (as defined here) is
continuous at the origin.

>

ur

[

Stability :

We fix n=1,2,...and ¢ = 1,...,n. Because " € (0, éréfl') Vi(z)), Lemma
z€dD;
B.3 (i) together with (3.19) yield

au; = D;nVH(BY).

It is then easily seen that for each z in U}, we have G} (z) = 1 with g*(z) =0
for all (j,m) # (3,n). It follows that

(z) = w(z), =z €U},
and from (3.17) we obtain
VVi(z) fi(z,9(z)) < 0, z€ U} (3.26)

We now fix 1 = 1,2,.... In view of (3.26), Lemma 2.1 yields the invariance of
the set U, with respect to the system & = f;(z,9(x)), for each n = 4,5+ 1,....
This, combined with the fact that {U}52, is a base at the origin, imply that @
stabilizes S;. The proof of the theorem is complete upon noting that this last
argument holds for each i =1,2,.... [ ]

We now discuss the case where the feedback law u; globally asymptotically
stabilizes S; foreach 1 =1,2,....
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3.3.2 Application to globally asymptotically stabilizable
systems

Throughout this subsection, we consider the family of systems {S;, ¢ =1,2,...}
as defined in (3.1). We assume that for each ¢ = 1,2, .. ., there exists a continuous
and almost C* feedback law u; that globally asymptotically stabilizes the system
S;. We then construct a feedback law T that simultaneously stabilizes the family
{S;, + = 1,2,...} and such that for each i = 1,2,..., the trajectories of T =
fi{z,5(x)) are bounded.

The stabilizing feedback law is based on a sequence of neighborhoods that
has a different structure from that introduced in the previous subsection. This
sequence if the union of a sequence similar to the one represented in (3.19)
together with another sequence that has the “shape of an inverted pyramid”. To
construct this sequence, we use both Lemma 3.4 and Lemma 3.5.

Theorem 3.2 Let k be in {0,1,...}. Assume that for each i = 1,2,... there
exists a continuous and almost C* feedback law u; : R™ — R™, which globally
asymptotically stabilizes S;. Further, assume that the mapping f;(-, u;(-)) : R® —
R” is continuous for each i = 1,2,.... Then, there exists a continuous and
almost C* feedback law v : R™ — R™, such that the following holds.

i) 7 simultaneously stabilizes the family {S;, i1 =1,2,...}.

ii) The trajectories of the system & = fi(x,(x)), starting at xo, are bounded
for each o in R™ and eachi=1,2,....
Proof:

Construction of 7 :

By the Converse Lyapunov Theorem [56], there exists a C* radially unbounded
Lyapunov function V; : R" — [0, co) such that

VVi(z) fi(z,u;(z)) < 0, z€ R"\{0}. (3.27)
For each i1 =1,2,..., we let I/Viﬂ denote the set
wf 2 v ([0,8)), B>0.

Let § > 0. By applying Lemma 3.4 with 6 and the families {D; = R", i =
L2,...}, {V, ¢t =1,2,...} and {u;, 1 = 1,2,...}, we obtain three sequence

of positive reals {7}, ¢ = 1,...,n}2,, {# i =1,...,n}2, and {a?, i =
1,...,n}%, converging to 0 as n tends to co and satisfying the assertions of the
lemma.
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Now by applying Lemma 3.5 with +] as defined in the sequence {7, i =
1,...,n}3%,, we obtain three sequences {¥*, i = 1,...,|n|};2,, {8 i =
L., n|}2, and {of, i = 1,...,|n|};3 converging to +oo as n tends to
-oo and satisfying the assertions of the lemma.

It is not hard to see from the assertion of Lemmas 3.4 and 3.5 that we have
o> B > o, i=1,...,|n|, neZ\{0},
with
ue(z)|| < % geWh, k=1,...,n+2, n=12,..

Moreover, the obtained sequences yield a sequence of nested neighborhoods

wh :
1,7—2 B2 0‘1_2 72—2 ;2 a;-z
w'* o> Wit O W > W, o W, > W, D
1 -1 1
wh o> Wt > Wt D (3.28)
1 1 1 .
W o> Wyt o> Wit D
2 2 2 2 2 2
Wi oS WH S Wl S W o> WS> W >
3 . .
Wit

such that each neighborhood contains the closure of the neighborhood that fol-
lows.

For each n in Z\{0} and each ¢ = 1,...,|n|, we define the mappings g}’ :
R™ — [0, 1] by setting

(V;(2)—pT)? _
TSt Vi(z) € (of, )
ik — (Vi (2)-B87)2
g, (xr) = i i _
WS\ TR i ) e oron)
0, otherwise

and we let 7: IR® — R™ be given by

—-oo  |n|

éﬁ?(x)ui(x) + > Y @ (z)u(z), zeR".

400
o(z) = X_:l

n n=-1 i=1

We now study the regularity of .

7 is almost C* and continuous on R" :
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Let z be in R™\{0} and let 7 and R be in (0, ||lz]|) and (||z||, +00) respec-
tively. Because {’Y{l}nel\{o} converges to 0 and +0o as n tends to +00 and —oo
respectively, it follows from the fact that V; is radially unbounded that there
exists a positive integer n such that

Wi 5 B(0) with Bg(0) c W .

Therefore, we have

O

m=1 1

TWuly) + > YT @wly), v e BrO)\B(0),

m —n |m| —_—
=1 m=-1 i=1

and it follows that 7 is C* on R™\{0}.
Upon noting that

+

M3

o(z) = T (2)us(z), =ewn,

n
n=1 i=1

and by using the argument given in the proof of Theorem 3.1 to prove that 7 is
continuous at the origin, we obtain the continuity of & (as defined here) at the
origin.

Stability :

It is easily seen that

U(z) = wilz), zeV7Y (B, i=1,...,|n|, n= ey, —2,-1,1,2, ...,
Thus, by Lemma, 2.1, the set Wf ¥ is invariant with respect to ¢ = f;(z, 9(x)), for
each s =1,2,... and each n in Z\{0}. For each i = 1,2,..., because {W’f" Y,
is a base at the origin, the previous comment implies that ¥ stabilizes S;. Fur-
ther, let 4 = 1,2,... and let z, be in R". Because {6 }222; converges to +00

there exists an integer n such that Ty € Wf " and it follows that each trajectory

of & = fi(z,%(z)) starting from z, remains in the bounded set W'f ¥, Hence the
theorem. n

In the next subsection, we show that the design procedure presented in the
proof of Theorem 3.2 reduces to a rather simple procedure if the system S; and
the feedback law u; are linear for each § — 1,2,....
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3.3.3 Application to families of linear systems

We now assume that for each i = 1,2,..., the system S; and the feedback law
u; are linear and we let V; : R™ — [0,00) be a Lyapunov function for the
system & = f;(x,u;(x)) given by V;(z) = z* P,z, where P, is a positive definite
matrix. In this case, the two lemmas below yield more explicit and simple design
procedures that produce sequences of positive reals having the same properties
as those obtained through Lemmas 3.4 and 3.5. We can therefore use these new
sequences to define a simultaneous stabilizer ¥ for the family {S;, i =1,2,...},
exactly as we did in the proof of Theorem 3.2, and all the arguments used in
this proof carry over to this case.

Lemma 3.1 Foreachi=1,2,..., let P; be a positive definite matriz, let M% and
m% denote respectively its smallest and largest eigenvalue, let V; : R™ — [0, 00)
denote the mapping given by Vi(z) = z* P, z, and let the mapping u; : R® — R™
be continuous on a neighborhood of the origin with u;(0) = 0. Further, for each
i=1,2,..., let 6; be in (0,1), and let the sequence {m;}2, be such that

i1 1
0<m < min(—n;\/lz—il, @) =28 (3.29)
Next, let 0 > 0 and let {k;}2, be a sequence of positive reals such that
ki > 1 with k,-AZﬁH% <1, i=12,.... (3.30)
Finally, let the sequences of positive reals {7F, ¢ = 1,...,n},, {8, i =

1,...,n}2, and {a?, i = 1,...,n}, be defined by choosing vi > 0 and *
in (0, mpal_y] for eachn =2,3,... such that

6
||ue(z)|| < e zeVH0,vY), k=1,...,n+2, n=12...,

and by setting
B =67, o =686 i=1,...,n, n=12,...,

with
Mp—1 - .
W= kn_’lea;‘_%, B =mal,, i=2,...,n, n=2.3,....
Then, for eachn =2,3,... we have
Vili((0,en71)) 2 Vii([0,771), (3.31)
Vi:i([oaag—-l)) 2 Vi_l([o’fﬁ]% 1=2,...,n, (3'32)

together with
v, BF, of -0 as n—o0, 1=1,2,....
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Proof: In what follows we fix n = 1,2,.... Let 6 > 0. It is well known that
for each 7 = 1,2,..., the set V;7!([0,d]) is the volume bounded by an ellipsoid
centered at the origin with smallest axis \/m;d and largest axis \/M;Jd. Thus,
(3.31) and (3.32) will hold if we have

Mp-1 1 mi—1 o .
v? < Y ap_; and 7 < 2 Y- t=2,...,n, n=2,3,...
1 b

Because k%”ﬁ-; < 77%’; and the real 7; is in (0, 7) for each 1 = 2,...,n and
n

each n = 2,3, ..., we obtain (3.31) and (3.32).
Next, we set

2

yl—l(

2
k1M10 )

>

Un 67) +In(me02) + ... +In(m,02), n=2,3,...,

In (k My
and from (3.29) together with (3.30), we obtain that
Yo < In(mb?), n=2,3,.... (3.33)
We now fix ¢ = 1,2,.... It is not hard to check that
In(y*) < gty oy +In(y), 1=1,2,....

Therefore, (3.33) combined with the fact that In(m26%) < 0, imply that v co
verges to 0 as / tends to oo, and the proof of the lemma is complete. |

Lemma 3.2 Foreachi=1,2,..., let P; be a positive definite matriz, let = and
1 denote respectively its smallest and largest eigenvalue, let V; : R" — [0 00)

denote the mapping given by Vi(x) = a* Pz, and let 6; be in (0,1). Further, let
71 be a given positive real and let {n;}2, and {r;}2, be sequences of positive
reals such that

M; .
r: > max(l, 02) with n; > max(—*L, 62), i=1,2,.... (3.34)

(]

Finally, let the sequences of positive reals {77, i = 1,...,|n|}72,, {BF, i =
Lo, |n}n22y and {af, i=1,...,|n|},Z, be defined by setting
R

= 27%, /an = = Y;

=5 i=1,...,n, n=-1,-2,.
) ) i n|, n
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with

- ’

n = — —
Q1| — n=-1,-2,...

o = MLy, t=1,...,n+1, n=-2,-3,...
Then, for each n = —2,-3, ... we have

Vit(0,0) o Vil ([0,924]), i=1,...,In+1], (3.35)

together with

V|;i1|([0a O/Z—-lu)) ) Vl_l( [077? )7 n= _17 —2) R (3‘36)
and
W o400 as n —-00, t=1,2,.... (3.37)

Proof: By using the fact that for each ¢ = 1,2,... and each § > 0, the set
V1[0, ) is the volume of an ellipsoid, it follows that the inclusions (3.35) and
(3.36) will hold if

- 1 . Mi+1
ol > o with @ > ——i41
In—1| Mip—1] m;

Thus, because r; > 1 and 7; > Mnf'l' for each i = 1,2,..., we obtain that (3.35)
and (3.36) hold.

Next, we set

M].Tl-i-l ﬂ)_'_“._'_ln(y_;.)’ l=1,2,....

)+ln(0l2

=1
Y Il( 9[2+1ml+1

It is not hard to check that for each ¢ = 1,2,..., we have
In(y" = yi+ g+ + v +in(y), 1=1,2,..,

and because the definition of y;, [ = 1,2,... together with (3.34) yield
g > (L) >0, 1=12,...,

-8

we obtain that In(y;*~") converges to +oco as I tends to +o0o. Hence, (3.37) and
the lemma. m
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3.4 Technical lemmas
We now present a lemma that is needed for the proof of Theorem 3.1

Lemma 3.3 For each i = 1,2,..., let D; be a bounded neighborhood of the
origin (resp. D; = R"), let V; : D; — [0,00) be a Lyapunov function (resp.
radially unbounded Lyapunov function), and let the mapping u; : D; — R™ be
continuous on a neighborhood of the origin with u;(0) = 0. Let 8 > 0, and for
each1=1,2,... let W}ﬂ denote the set

= {zeD;: Vi(z)< B}, B>0.
Then, there exists a sequence of positive reals {BF, i =1,...,n}2, such that

T < inf Vy(z), n=12,...,

x€8Dy,
B — 0 as n—oo, i=12,...,

n—1 —ﬂ"’
DW]_I, n=2,3,...,

Wi
ﬂ?—l —ﬂ? N —
I/I/i_]_ DWZ ; 2—2,...,77,, n—2,3,...,

with .
W € Dn, n=23,...,
and
0 gn
lur(z)|] < - zeDyNWi», k=1,...,n+2, n=12,...
Proof: We define the sequence {47, i =1,...,n}2, by induction on n and s.

Because {W{} 45, is a base at the origin Wlth W1 C WY for all @ < 8 (Lemma
B.1), continuity at the origin of u; combined with the fact that u(0) = 0 for
each k = 1,2, 3, yields the existence of 8] in (0, él{}g Vi(z)) such that

T 1

lug(@)|| < 6, ze€DynWH, k=123

For n = 2,3,..., we define the sequence {87, i = 1,...,n} from the sequence

{B77%, i = 1,...,n — 1} as described hereafter: First, by using Lemma B.1
n—1

applied to {W{} 4.0 we choose 87 in (0, &2_] such that

n—1 —nn
Wit 5 W

51



Similarly, for each ¢ = 2,...,n—1, Lemma B.1 considered with {I/Vzﬂ }s>0 enables
n—1
us to define B from B, and B*~' by selecting 7 in (0, 3'2—] such that

Wi S W

2

When ¢ =n — 1, we choose 3} such that we have the additional inclusion

Wi ¢ D,.

n-1

Finally, by combining Lemma B.1 with the continuity of uy at the origin for each
k=1,...,n+2, we pick 8} in (0, Eigg V() ) such that
z n

Wnn—l D) Wﬁn’

and p
llue(z)|| < - TE DynWh  k=1,...,n+2.
It is plain from this construction that for each i = 1,2, ..., the sequence {8},
converges to 0 as n tends to oo, and that for each n = 1,2,..., we have
By < églf) Va(z), so that the lemma follows. ]
T n

The next lemma is used in order to construct an explicit simultaneous stabi-
lizer.

Lemma 3.4 For each i = 1,2,..., let D; be a bounded neighborhood of the
origin (resp. D; = R"), let V; : D; — [0,00) be a Lyapunov function (resp.
radially unbounded Lyapunov function), and let the mapping u; : D; — R™ be
continuous on a neighborhood of the origin with u;(0) = 0. For eachi=1,2,...
let Wf denote the set

WP & {zeD;: Viz)< B}, B>0,

and let @ > 0. Then, there exists sequences of positive reals {af, i = 1,...,n}3,,
{8, i=1,...,n}52, and {7F, i =1,...,n}3,, converging to the origin as n
tends to oo and such that

inf > > g > o, i=1,...,n, n=12,...,

T€BD;
with
an:l n
% SR =23,
aiy s :
i:1 DW,L", '522,...,71, n=2,3,...,
and

6 n
||2r ()| < - ce€Dy WP, k=1,...,n+2, n=12,....
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Proof: We define the sequence {7*, i =1,...,n}3%,, {8 i=1,...,n}52, and

n=1
{of, i=1,...,n}32, by induction on n and i. Because {W/} 40 is a base at the

origin with W2 ¢ W? for all o« < 8 (Lemma B.1), continuity at the origin of uy
combined with the fact that uz(0) = 0 for each k = 1,2, 3, yields the existence
of v{ in (0, i;%)fg Vi(z)) such that

z 1

lun(@) < 6, zeWl, k=123

We then choose (] and o} satisfying 41 > 8 > af > 0.

For n = 2,3,..., we define the sequence {~", ", & i = 1,...,n} from the

sequence {7/"!, i =1,...,n— 1} as described hereafter: First, by using Lemma

n—1
B.1 applied to {W{'},~o we choose 77 in (0, B5—] satisfying
apl] T
Wn—l > Wl ’
and we pick 87 and of such that 4} > 7' > of > 0.

Similarly, for each i = 2,...,n — 1, Lemma B.1 considered with {W]},~o

n—1
enables us to define 47 from 4 ; by selecting ¥ in (0, 14-2——] satisfying

n n
@ fH

a7 Y
-1 2 Wz :

We then select 8] and of such that 7" > 8 > of > 0. When i =n—1, we
choose 8P in order to have the additional inclusion

W=l c D,.

n—

For i = n, Lemma B.1 yields the existence of 4% in (0, Eiglf) Va(z) ) satisfying

n n
W’,?n—l ») WYn

n

and in view of the continuity of u; at the origin for each £k = 1,...,n + 1 we
select B and o such that 4 > G > o > 0 with

6 n
lus(@)| < —, reDyNWP k=1,...,n+2.

It is then easily seen from this construction that for each i = 1, 2,..., the reals
v, B¢ and of tend to 0 as m goes to oo and that the remaining assertions of
the lemma hold. ]
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Lemma 3.5 For eachi=1,2,..., let V;: R" — [0,00) be a radially unbounded
Lyapunov function and let Wf denote the set

WP & {zeD;: Viz)< B}, B>0.

Let v} be a given positive reals. Then, there exists sequences of positive reals

{of, i=1,...,n};2, {6, i=1,...,|In]}32 and {7, i =1,...,|n|}:2,
converging to +00 as n tends to —oo and satisfying

arl >yl with 4% > B > of, i=1,...,]n[, n=-1,-2,...

and

o g
n—1 1 —
e DWW, n=-1,-2,...

i = .
W OWiY, i=1,...,n+1], n=-2-3,....

Proof: We define the sequence {1, i =1,...,|n|};22, {6 i=1,...,|n|}x,
and {aP, i=1,...,|n|};2, by induction on n and .

First, we choose ai', 87! and 77! such that

wh> B> e >
For n = —2,-3,..., we define the sequence {af, 5, ~*, i = 1,...,|n|} from
the sequence {of™, i = 1,...,|n + 1|} as described hereafter: First, by using
Lemma B.1 applied to {W|?L|}a>0 we choose oy satisfying

o™ n+1
Wi > W,
and we pick S and 7 such that vj2, > B[ > of,.
Similarly, for each i = |n + 1|,...,1, Lemma B.1 considered with {W}4s0
enables us to define of from 47,; by selecting o > 207" such that
Wia? 2 Wﬁﬁl-

We then select 5 and of such that 4 > 8 > af. It is easily seen from this
construction that for each ¢ = 1,2, ..., the reals 4, 3" and of tend to +00 as n
goes to —oo and that the remaining assertions of the lemma hold. [ |
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Chapter 4

Time-Varying Simultaneous
Asymptotic Stabilization of Linear
Systems

We now introduce time-varying feedback laws and enrich the ideas introduced
in Chapter 2 in order to prove that given any finite family LTI systems that are
asymptotically stabilizable by means of LTT feedback, there exists a continuous
time-varying feedback law that simultaneously globally exponentially stabilizes
this family. We then derive sufficient conditions for the simultaneous asymptotic
stabilizability of countably infinite families of stabilizable LTI systems. In both
cases we provide simple design procedures as well as explicit controllers.

The construction of the simultaneous asymptotic stabilizer for finite families,
differs significantly from the methods proposed in the literature in that we do not
use any discretizing method and the controller that we provide is nonlinear and
continuous. On the other hand, we do not know of any work that addresses the
simultaneous asymptotic stabilization of countably infinite families of systems.

The case of finite families is discussed in Section 4.2 while that of countably
infinite families is presented in Section 4.3. In Section 4.4 we illustrate these
results with some examples. Finally, Section 4.5 contains some technical results.

4.1 Introduction

The design of time-varying feedback laws that simultaneous stabilize or simulta-
neously steer to the origin each one of the systems of a finite family of systems has
been investigated in several papers. In [63], Khargonekar, Poolla and Tannen-
baum consider finite collections of discrete time linear systems that individually
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admits a dead-beat controller. They show that given any such family, there ex-
ists a periodic linear time-varying (LTV) controller that simultaneously steers
the systems of the family to the origin. In fact, the constructed feedback law
periodically switches between the dead-beat controller of each system in order to
steer each one of them to the origin. Along the same lines, Olbrot [62] proves that
given any finite collection of continuous time or discrete time systems which are
controllable in finite time to the origin, there exists a periodically time-varying
feedback law that simultaneously steers each one of the systems of the family
to the origin. Besides, discrete time LTV systems described by autoregressive
moving average are considered in [32] and a procedure for the design of a simul-
taneous asymptotic stabilizer is proposed.

In the context of simultaneous stabilization of finite families of LTI systems by
means of time-varying feedback, there exist three main results in the literature:
In [48], Kabamba and Yang establish the simultaneous asymptotic stabilizabil-
ity of such families by means of open loop periodically time-varying feedback.
The controller that they find involves both the sampled output of the system
and a periodic function of time. The resulting closed loop systems are therefore
periodic linear systems whose asymptotic stability can be studied by means of
Floquet Theory. On the other hand, Zhang and Blondel [84] propose a sufficient
condition for the simultaneous asymptotic stabilizability of finite families of LTI
systems by controllers based on LTT feedback laws together with zero-th order
hold functions and samplers. While both of the two aforementioned design pro-
cedures comprise a sampling scheme, Khargonekar et al. [52] adopt a method
that does not involve any discretization strategy and prove that any finite fam-
ily of stabilizable LTI systems can be simultaneously asymptotically stabilized
by a periodic LTV controller which is piecewise continuous with respect to
the time. Although a design procedure can be deduced from [52], neither the
simultaneous stabilizer nor the rates of convergence of the closed-loop systems
are explicit.

In the following section we consider finite families of LTI systems that can
be asymptotically stabilized by means of LTI feedback. Given any such family,
we establish the existence of a continuous time-varying feedback law that simul-
taneously globally exponentially stabilizes the family. To prove this result,
we adapt the ideas introduced in Chapter 2 to the use of time-varying feedback
laws. Because our approach does not comprise a discretizing scheme, it should
be compared to that used in Khargonekar et al. [52]. There are actually two
main differences between the results derived in [52] by Khargonekar et al. and
ours: First their controller is discontinuous and linear while ours is contin-
uous and nonlinear. Secondly, we obtain explicit controllers as well as a lower
bound on the exponential rate of convergence, while neither the controller nor
the rates of convergence are explicit in [52].
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4.2 Finite families

Throughout this section, we consider a finite family {S;, i =1,...,I} of linear
systems
Sii SU=A,$+BZU, ’i=1,...,I,

where I > 2 is a positive integer, the state z lies in R", the input » is in R™
and for each ¢ = 1,...,I, the matrices A; and B; belong to R™" and R"*™
respectively. Finally, for each ¢ = 1,...,I, we assume that there exists K; in
IR™ ™ such that the linear feedback law u; : R® — R™ given by u;(z) = Kz
asymptotically stabilizes S;.

Our goal is to prove the following theorem.

Theorem 4.1 Assume that for each i = 1,...,1, there exists a linear feedback
law wu; that asymptotically stabilizes the linear system S;. Then, there exists a
time-varying feedback law v : [0,00) x R® — RR", continuous on [0,00) x R",
C* on [0,00) x (R™\{0}), which simultaneously globally exponentially stabilizes
the family {S;, i =1,...,I}.

The general lines of the proof of this theorem are as follows: For each i =
1,...,I, we let V; denote a Lyapunov function for the system & = (A4; + B;Kj)z.
We introduce a sequence {b%(-), s = 1,..., I}, .z of mappings defined from [0, co)
into (0, +00), decreasing to 0 as ¢ tends to +00, and such that for each ¢ > 0, the
sequence of neighborhoods {V; ([0, b7(t)) ) }.cz is a base at the origin. We then
design a time-varying feedback law v(¢,z) such that for each ¢ = 1,...,1, each
n in Z and each t > 0, we have v(t,z) = u;(z) for all z in V;"*(b2(t)). Finally,
we show that for each i = 1,...,1, each n in Z and each ¢, > 0, each trajectory
of the system # = fi(z,v(t,x)), that starts in the set V;7'([0,b}(Zo)]) at time
t = to, remains in the set V;7*([0,bP(¢)]) for all t > ¢,. Foreach i =1,...,I, we
conclude that v asymptotically stabilizes the system S;, upon noting that the
mapping b converges to 0 as ¢ tends to +oo for each n in Z.

We now present a technical lemma which is used to prove that the trajectory
z(-, g, ) of the system S; lies in V;7*([0,b2(t)]), for each t > ¢, whenever z,
belongs to V;7* ([0, b7(to)] ).

4.2.1 Invariance criteria

The following lemma is the key to prove the invariance of the set V;([0,b}(¢)])
for each ¢ > 0. It is also used in Section 4.3 and in Chapter 5.

57



Lemma 4.1 Let D be a bounded neighborhood of the origin in R™ (resp. D =
R") and let V : D — (0,00) be a Lyapunov function (resp. a radially unbounded
Lyapunov function). Further, let the mapping f : [0,00) x D — R" be contin-
uous, and let the mapping b : [0,00) — (0,$iel}9fD V(z)) be C*. Finally, for each
B >0 set

WP £ {zeD: V(z) < B},

and assume that
VV(z) f(t,z) < b(t), zedW*™® >0 (4.1)

Then, for each ty > 0 and each xy in Wb(tO), the trajectory x(-,zo,tp) of T =
f(t,x) starting from xy at time ty satisfies
m(taxO,tO) € Wb(t)) t 2 to.

Proof: Fix t; > 0 and z in Wb(tO), and let z(-, zo, %) denote the trajectory of
Z = f(t,z) that starts from zp at time .

For the sake of clarity, we split the proof into that of two claims.

Claim 1: Let t3 > ty be such that z(t,xo,%) lies in D for each t in [to,13).
Then, V(w(t,xo,to)) < b(t), te [to,t3)

Assume that Claim 1 does not hold. Then, there exists ¢, in [y, t3) such that
V(ZL’(t2,(L'o,t0)) > b(tz)

Because V (z(to, zo, to)) —b(to) < 0, continuity of the mapping V' (z(-, 2o, tp)) —b(-)
yields the existence of ¢; in [ty,%5) and h; in (0,¢3 — ;) such that

V(z(tr, %o, to)) — b(t1) = 0, (4.2)

and
V(ﬂ:‘(t1 + h,iL’o,to)) — b(t1 + h) >0, he (0, hl). (4.3)
By assumption x(#;, xo, %) belongs to D, and we obtain from (4.2) that

z(t1, 0, t0) € OWED), (4.4)
This, together with Assumption (4.1) yields

%h:tlv(x(t,xo,to)) = VV(x(t, o, b)) f(t1,2(t1, To, ) ) < b(t1),

and continuity of the mappings VV(-), f(-,-) and b(-), combined with (4.2) yields

V(z(ti + h,20,%)) < b(t1+h), for h >0 small enough,
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a contradiction with (4.3). The proof of Claim 1 is thus complete.

Claim 2: z(t,xo,%0) lies in D, for each t > iy.
Because Claim 2 clearly holds if D = R”, we assume that D is bounded.

Suppose that the claim does not hold. Because z, is in D, Lemma B.2 (iii)
yields the existence of ¢; > t; such that

Z’(tl,xo,to) € BD, (45)

with
.’L‘(t,xo,to) e D, te [to,tl). (46)

This last relation combined with Claim 1, implies that
V(.’L’(t,xo, to)) < b(t), te [to,t1). (47)
On the other hand, from (4.5) and the definition of b, we get

V(m(tl,wo,to)) > xlEIlaf;)V(m) > b(tl),

and continuity of the mapping V(z(-, zo,%y)) — b(:) at ¢; yields the existence of
hy in (0,%; — tp) satisfying

V(J?(tl — h, mo,to)) > b(tl — h), he (0, h]_),

which contradicts (4.7). Hence Claim 2.

Let t3 > ¢p. By Claim 2, the point z(¢, zo,%o) lies in D for each ¢t > ¢;, and
it follows from Claim 1 applied with ¢3 that

V(iﬂ(t,aﬁo,to)) < b(t), te [t(),t3).

The proof of the lemma is completed upon noting that this last argument holds
for all t5 > tg, all zg in W) and all £, > 0. m

We are now able to prove Theorem 4.1.

4.2.2 A proof of Theorem 4.1
Proof of Theorem 4.1 :
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For each i = 1,...,1, because the system & = A;z + B;u;(z) is linear and
asymptotically stable, it admits a Lyapunov function V; : R® — (0,00) such
that Vj(z) = z*P;x where P, is a positive definite matrix. For each i =1,...,1,
let Q; be the positive definite matrix defined by

VVi(z) (Aiz + Biu;(z)) = —2'Q;z, = € R".
For each : =1,...,I and each n in Z, we let I/Viﬂ denote the set
Wi £ ViH([0,9)).

Foreachi =1,...,1,let 6; and =; satisfy the assumptions of Lemma 2.3. Further
let {of, i =1,..., T}z, {6} i=1,..., I}, cz and {47, i =1,...,I},.7 be
defined by the formulas (2.26)-(2.29) given in the statement of Lemma 2.3. Thus,
by Lemma 2.3, for each n in Z we have

Val0,080) D VH([0,97), i=2....1, (4.8)
Vil([0,e7) D ViH([o,411Y), (4.9)
and for each ¢ =1,..., I we have
B =0 as n— 0 with B — o0 as n — —o0.

Construction of the simultaneous stabilizer :

We now seek a C' mapping h : [0,00) — (0,00) such that, the mapping
b} : [0,00) — (0, 00) given by

satisfy
VVi(z) (Aiz + Biui(z) ) < 02(t), =€ V7'(brt), t>0, (4.10)
or equivalently
—2'Qiz < (), zeVU(Mt), t>0, (4.11)
for each ¢ = 1,...,I and each n in Z. In what follows, we fix i = 1,...,I, n
in Z and ¢ > 0. Let z be such that *P,z = b?(t). Then, by elementary linear
algebra, we get
b (%)
_xtx < —_——t N
T Anae(P)

and because we also have —z'Q;z < —)\i(Q;) ztz, inequality (4.11) will be
satisfied if
Amz'n(Qi)

" R(R) 5 < WO, 1

60



Because we require that h(t) > 0 and b}(¢) = Gh(t), inequality (4.12) will hold

if
Bt)  Amin(Qi)
> 4.13
W)~ AmaalP) (419)
We now set p = I rrlnn Amin ((Q’;) and we deduce from (4.13) that the desired
- maw
assertion (4.10) will be satisfied for each 7 = 1,...,I and each n in Z, if
h(t)
—= — > 0. .
g~ 20 (4.14)

where 7 is a fixed constant in (1,00). It is plain that h satisfies (4.14) so that
for each ¢ = 1,...,I and each n in Z, the mapping b? : [0, 00) — (0, c0) defined
by

bF(t) = Brh(t) = Bre™, 120,

satisfies the desired assertion (4.10).

Next, for each ¢ = 1,...,I and each n in Z, we define the mappings a7, ¢ :
[0,00) = (0, 00) by setting
A (t) = 4Fh(t) and al}(t) = of h(t), t>0.

2 ?

For each ¢ > 0, because we have
bt) = 6;cf(t) with ol (t) = 6:;b7(t), t=1,...,I, nelZ,
and
AtHt) = maf(t) with () = mal (), i=2,...,I, neZ,

it is easily checked that the sequences {c!(¢), ¢ = 1,...,I},cz, {b}(¢), i =

3 IT}aez and {a?(t), i = 1,..., I}z, satisfy the assertions of Lemma 2.3.
This together with the fact that h(-) decreases to 0 as t tends to oo, yield for
each tp > 0

supb(t) -0 as n— 400, i=1,...,1, (4.15)
t>to
b (to) > +00 as n— —oo, i=1,...,1I (4.16)
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It also follows from Lemma 2.3 that for each ¢ > 0, we have a double-sided
sequence of neighborhoods

wa® 5 ... W
1 1 1 1 1

chl(t) ) Wlbl(t) 5 Wlal(t) S W2cz(t) S5 00D WIaI(t) 5 (4.17)
2 2 2 2 2

chl ®) o) W1b1 ®) ») Wlal(t) ®) W202(t) » S WIaI(t) S

such that each neighborhood contains the closure of the neighborhood that fol-
lows. In view of this comment, for each i = 1,...,T and each n in Z, we define
the mapping ¢ : [0,00) x R™ — [0, 1] by setting

(Vi (@)= (1))*
TG OTOF i Vi(z) € (a?(t), b2 (1)
@ (t,x) = (Vi(2)= b3 (6))?
Y eVi@=FEI=CTO-F O if Vi(z) € (B(8), c*(8))
0, otherwise

and we let the mapping v : [0,00) x R" — R™ be given by

v(t,z) =Y > wlz)g(t,z), ()€ [0,00) x R".

=1 pneZ

We note that v(¢,0) = 0 for each ¢ > 0 and we show that v is continuous on
[0,00) x R"™ and C* on [0,00) x (R"\{0}).

The feedback law v is continuous on [0,00) x R" and C* on [0, 00) x
(R™\{0}) :

Let (¢,z) be in [0,00) x R™\{0}. It is easily checked from (4.17) that there
exists a unique pair of integer (i,n) in {1,...,I} X Z such that either one of the
following two assertions holds:

o We have V;(z) € [a}(t), c?(t)]. In that case (4.17) together with the conti-

nuity of the mappings V/, aj* and ]! for each j =1,...,I and each m in
Z, yield the existence of a neighborhood U of (¢,z) in [0,00) x (R™\{0})
such that

’U(T, y) = uz(y) q?(T, y)’ (T7 Z/) eU. (4‘18)

e We have Vi(x) € (a}(t),c(t)) where the mapping c¢ denotes either ¢}t

(]
if 2 = I or otherwise ¢},;. In that case the continuity of the mappings
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Vi, af', ¢ for each j = 1,...,T and each m = 1,2,..., yields the exis-
tence a neighborhood U of (¢,z) in [0,00) x (R"\{0}) such that V(y) €
(a?(7),¢(7)), (1,y) € U and it follows that

o(r,y) = 0, (r,y)€l. (4.19)

Because ¢}' is C* on [0, 00) x R" [follows from Lemma B.6] and u; is C*® on
IR™ for each s = 1,...,I and each n in Z, (4.18) and (4.19) imply that v is C*®
on [0, 00) x R"\{0}.

Moreover, because the mappings ¢} take values in [0, 1], the equalities (4.18)
and (4.19) together with the fact that v(¢,0) =0, ¢ > 0 yield

[o@t, o)l < max(ur(@)l],..., lur(@)]]), (%) € [0,00) x R,
and continuity of u; for each ¢ = 1,...,I, implies that v is continuous at each

point (¢,0), ¢t > 0. Therefore, v is continuous on [0, c0) x R™.

Global exponential stability :

Throughout the rest of the proof, we fix i = 1,...,I. From the definition of
v, it is not hard to see that

(t,x) =wix), t>0, zeV7Hb(t)), neZ,
Therefore, from (4.10) we get
VVi(z) (Aiz+ Bp(t,z)) < (1), zeV '), t>0, neZ

and upon recalling that W/ = V;"1(8) and W* = V;"1([0, 4]) for each 8 > 0
[follows from Lemma B.3 (i)], Lemma 4.1 implies that for each ¢y > 0 and each
n in Z, the trajectory x(-, zo, to) of & = A;x + B;v(t, x) starting from z, at time
t = 1o, satisfies

7707 (to)

Vi(z(t, 2o, t0)) < BF(E), t>ty, o€ W, (4.20)

Recall that from the definition of the sequence {3!},cz, we have
Btk = (qyemp 62---00)%8r, neZ, k=0,1,....

Upon setting T = —1 log(my ... 62 ...62), the previous equality translates to

BrenfT = grtk necZ, k=0,1,..., (4.21)
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which in turn easily yields
Mt +EkT) = b} (), t>0, neZ, k=0,1,.... (4.22)
Let 2y be in R"™. Because the sequence {b%(0) = G/}, 7 is strictly decreasing

and converges to 0 and +0o as n tends to +0o and —oo respectively, there exists
an integer n such that

BHH0) < Vi(zo) < B}(0). (4.23)

Let to be in [0,00). Then, there exist an integer k¥ and #; in [0,T) such that
to = kT+t}. By combining (4.22) with the fact that the mapping b} is decreasing
for each n in Z, we get

B(0) = bR ((k+1)T) < bFF(to),

so that (4.23) yields 2o € V;71([0,b677%7(¢,)]. Thus, assertion (4.20), implies
that
Vitalt, zort0) < BFNE, ¢ 3o,

and from the expression of b7~*~(¢) we obtain that
V}(m(t, mo,to)) < ﬁ?—k—l e—%(t—to+t6+kT)’ > 1.
Next, using (4.21), we can rewrite this last inequality as
Vi(z(t, 2o, 1)) < B lenltTot) ¢ > ¢,
and from the non-negativeness of ¢, we get
Vi(z(t,z0,t0)) < BIle ) 4> 4, (4.24)

The identity (4.21) yields 8! = eszﬁi’_‘“, so that the inequality "' <
2
e V;(zo) follows from (4.23). Thus, (4.24) implies that

Vile(tao,t) < (HTVi(eo)) €8, ¢ 21,
or equivalently

VVi(z(t, o, t0)) < €§T\/V§(wo) e ) ¢ > ¢,

Because €77 is a constant and the mapping z — 1/V;(z) is a norm on R", we
obtain from the equivalence of all norms on R"™ that v globally exponentially
stabilizes S; [according to Definition 1.2 (v)]. The proof of the theorem is com-
plete upon noting that the previous argument holds for each ¢ =1,...,1.

We note the rates of convergence of the closed-loop systems corresponding
to S; is greater than 2%, foreachi=1,...,1I.
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We now extend this result and we establish the simultaneous asymptotic
stabilizability of a class of countably infinite family of stabilizable LTI systems.

4.3 Infinite families

Throughout this section, we consider a countably infinite family {S;, i =
1,2,...} of linear systems

Si: = Ajx + Bju, 1=12,...,

where the state z lies in R", the input v is in R™ and for each ¢ = 1,2,...,
the matrices A; and B; belong to IR™" and IR™*™ respectively. We assume
that for each ¢ = 1,2,.. ., there exists K; in IR™*" such that the linear feedback
u; : R® — R™ given by u;(z) = K; z for each z in R", asymptotically stabilizes
S;. For each i =1,2,..., we let P, be a positive definite matrix in R™*" and we
let V; : R® — [0,00) be a Lyapunov function for the system = = (4; + B;K;) =
given by Vi(z) = z° P,z for each z in R™. Further, we let Q; be the positive
definite matrix defined by

VV,(:U) ((A, -+ Bsz) CL') = —thiZE, z € R".

The purpose of this section is to prove the following theorem. The proof
is based on the same ideas as those of the proof of Theorem 4.1. The main
difference lies in the structure of the sequence of mappings {47} that must be
considered here.

Theorem 4.2 Assume that, in addition to the enforced assumptions, the fol-
lowing holds:

i) There erists a positive real M such that ||Ki|| < M, i=1,2,....

ii) The real p 2 izif}zf, (%) 18 strictly positive.

Then, there exists a time-varying feedback law v : [0,00) x R" — R™, con-
tinuous on [0,00) x R™, C*® on [0,00) x (R™\{0}), and which simultaneously
globally asymptotically stabilizes the family {S;, i=1,2,...}.
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Proof:
Throughout, we let W’ denote the set
wf & v7Y[0,8)), B>0, i=1,2,....

Let 41 be a given positive real. By applying Lemma 4.2 with 7 and the
family {V;, ¢ = 1,2,...}, we obtain three sequence of positive reals {y?, i =
Looon}2, {6 i=1,...,n}, and {aF, i =1,...,n}, converging to 0 as
n tends to co and satisfying the assertions of the lemma.

Now by applying Lemma 3.2 with 7] as defined in the sequence {y*, i =
1,...,n}32,, we obtain three sequences {77, 7 = 1,...,|n|}z2,, {8F, i =
1,...,n}:2 and {af, i = 1,...,|n|};3 converging to +oo as n tends to
-o00 and satisfying the assertions of the lemma.

)‘min (Qz)

Let p= inf (—) and let ¢ > 1. We note that by Assumption (i)
2

=heye )\maa:(Pi)
of Theorem 4.2, the real p is positive and we let the mapping h : [0, 00) — (0, 00)
be given by

ht) = e, t>0.
For each ¢ = 1,2,...and each n in Z \{0}, we now define the mappings c?, b7, a? :
[0, 00) — (0, 00) by setting

af(t) £ ofh(t), () 2 FFh(t) and c(t) 2 AFh(t), >0,

It is not hard to see from Lemmas 4.2 and 3.2 that for each ¢ > 0 we have

a7'(t) > ci(t) and aﬁ;_lll(t) > (), n=...,—2,-1,2,3,...

Mn—1|

together with

M.
a(t) > n;’_“lcgrl(t), i=1,...,|n|-1, n=...,-3,-2,2,3,...,

7
and
c(t) > bi(t) > af(t), i=1,...,|n|, neZ\{0}.
Thus, for each ¢t > 0, we have a sequence of nested neighborhoods

chl_s(t) :

Wi @ o5 w0 5 w0 S w0 5 0 5 et
ch;l(t) o) W1b1_1(t) ) Wl“i-l(t) o)

ch%(t) 5 Wlbi(t) 5 Wlai(t) 5

chf(t) 5 Wlbﬁ(t) 5 Wlaf(t) S5 W2C§(t) 5 ng(t) 5 W;ﬁ(t) 5
Wf?(t) e

(4.25)
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such that each neighborhood contains the closure of the neighborhood that fol-
lows. Moreover, for each i = 1,2, ..., because o, A and 77 tend to 0 and +co
as n tends respectively to +00 and -0o, we obtain

a(t), br(t), Mt)—> 0 as n — 400, t>0,
ai(t), b(t), c*(t) —» +00 as n — -o00, t>0.

In view of (4.25), we define the mapping ¢[" : [0, 00) x R® — [0, 1] by setting

(Vi(=) b} (1))
e (Vi@ =2 -(P 0)-a?(®)?  if Vi(z) € (al(t), b2 (t)]

q'(t,z) = SACIRL O] . 4.26
v e (Vi(@)—b (£))2 (e} (8)=b2(8))* if Vi(z) € (b;‘(t),c?(t)) ’ ( )

0, otherwise

for each ¢ = 1,2,... and each n in Z\{0}. Finally, we let the mapping v :
[0,00) x R® — R™ be given by

+00 n -0 |n]

v(t,z) =D Y w@)dtz) + Y Y uiz)dt,z), (tz)€[0,00) x R".

n=11i=1 n=-—11i=1

Because the supports of the mappings of the collection {¢?, i =1,... 7n}n€Z\{0}
are disjoint [follows from (4.25)], we have

loal < nf Nl < (nf 1K) lall, (59) € [0,00) x R,

so that Assumption (ii) of Theorem 4.2 yields the continuity of v at any point
(t,0), t > 0.

Further, in view of (4.25) and by using exactly the same argument as that
used in the proof of Theorem 4.1 to show that v is C*® on [0,00) x (R"\{0}),
we obtain that v (as defined here) is C* on [0, 00) x (IR" \{0}).

Stability :
We now fix ¢ =1,2,... and n in Z \{0}. Recall that by definition, we have
Br(t) = fre <, >0,

/\min (Qz )

maa:( z)

with ( > 1 and p =  inf (

1=1,2,...

). Using the inequalities
o' Qir > )‘min(Qi)xtx and o' P < )\maa:(Pi)xtxa
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together with an argument similar to that used in the proof of Theorem 4.1 to
construct the mapping h, we obtain

VVi(z) (Aiz + Biui(z)) < b7(t), zeVi'(Br(), t>0,
and because v(t,z) = u;(z) whenever x € V;"}(b1(t)), we get
VVi(z) (Asz + Biv(t,z)) < b*(t), =€ V7IOR(t), t>0. (4.27)

Next, we fix 1 = 1,2,... and we show that v stabilizes S;: Let ¢ > 0 and ¢, > 0
be given. Because b7 (tp) converges to 0 as n tends to +oo, there exists an integer
n such that W ¢ B,(0). Let § > 0 be such that B;(0) C W??(to) and let zg
be in B;(0). In view of (4.27) and Lemma 4.1, for each ¢ > 1,, the trajectory
z(t, zo, to) of £ = A;z + B;v(t, x) lies in the set Wf?(t). Thus, because b?(-) is a
decreasing function of time, it follows that this trajectory remains in B.(0). In
short v stabilizes S;.

Convergence to the origin :

First, we fix ¢ = 1,2,.... Let x5 be in R*\{0} and let ¢, > 0. As b'(¢o)
converges to +00 as n tends to —oo, there exists an integer n such that zy €
W) 5o that (4.27) yields

2(t, z0,t0) EWr D ie. Vi(z(t,zo0,t0)) < B2(E), t>0.

Thus, it follows from the convergence to 0 of the mapping b?(¢) as t tends to
+00 together with the positive definiteness of V;, that z(¢, 2o, ) converges to 0
as t tends to +00. The proof of Theorem 4.2 is complete upon noting that the
previous argument holds for each i =1,2,.. .. [}

We stress that in order to extend to countably infinite families of LTI sys-
tems, the method introduced in Theorem 4.1 for finite families of LTI systems,
two additional assumptions are needed: Assumption (i) of Theorem 4.2 ensures
that the simultaneous stabilizer is continuous at any point (¢,0), ¢t > 0, while
Assumption (ii) is necessary for the construction of the sequence of mappings

{07}

To the contrary of the finite case, our construction does not yield uniform
stability and uniform asymptotic stability in general. On the other hand, the
stabilizing feedback law v that we obtain through the previous construction de-
pends on the sequences {m;}}%, {k:}X%, {m}i> and {r;}};%. Because these
sequences are not uniquely defined we may consider that they are design pa-
rameters. It would be interesting to find what conditions should be imposed on
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these design parameters and on the systems S;, 7 = 1,2,..., in order that the
system & = f;(z,v(¢, z)) be uniformly asymptotically stable for each s =1,2, .. ..
This is an issue that we do not investigate in the context of this dissertation and
that we leave for further research.

4.4 Examples

We now present a few examples that illustrate Theorem 4.1 and 4.2.

In the following example, we consider a linear system in the plane S that is
asymptotically stabilizable by a linear feedback law. Given a Lyapunov function
for the corresponding closed-loop system, we follow the construction of the proof
of Theorem 4.1 and we produce a mapping b : [0,00) — (0,00) and a feedback
law v : [0, 00) X R? such the following holds: For each ¢y > 0 and each z such
that V(z¢) < b(to), the trajectory of S satisfies V (z(t,zo,%0)) < b(t) for each
t > t,.

Example 1 :

We consider the system

g - T1 = 9 + u
) 1&2—_-11,‘14-%’

where u is a scalar input and we let f : R? x R — R? denote the vector-field of
S. Further, we let P and @ denote the matrices

1.5 -0.5 10

P:(—0.5 1 ) Q_(o 1)'
It is easily checked that the feedback law u : R*> — R given by u(z) = —21,,
asymptotically stabilizes the system S. Moreover, the mapping V : R? — [0, 00)
defined by setting V' (x) = z* Pz for each z in R” is a Lyapunov function for the
corresponding closed-loop system S and we have VV (z) f(z, u(z)) = —z'Qz for
each z in R2. We note that the largest eigenvalue of P is equal to 1.8090 and
we set p = '1_8'10'9'0 Next, we define the mappings a,b,c : [0,00) — (0,00) by
setting

a(t) = 9e5, b(t) = 10e5, and c(t) = 11e%,
for each t > 0 and we let zo = (1,1). Finally, we let the mapping v : [0, 00) x
R™ — R be given by

v(t,z) = —2z2q(t,z), (¢, ) €[0,00) x R,
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Figure 4.1: Linear system in the plane

where ¢(t,z) is obtained by replacing V;, a?, b%, c? by a, b, c respectively, in
the formula (4.26). From the proof of Theorem 4.1, it should be clear that for
each ¢ > 0, the trajectory z(-,z9,0) of £ = f(z,v(t,z)) satisfies

V(z(t, 20, %)) < b(t), t>0,

since V(zp) < b(0). Because b(t) converges to 0 as t tends to +oo it follows
that the state (z;,z2) converges to the origin as ¢ tends to +00. The simulation
results in Fig. 4.1 confirm these facts.

We now give an example where we consider two stabilizable linear systems Sy
and S, with Lyapunov functions V; and V, respectively. Using the construction
of Theorem 4.1, we then construct two mappings by, by : [0,00) — (0, 00) and
a feedback law v : [0,00) x R — IR such that for each ¢, > 0 and each z¢ in
Vi ([0, b1(to)) (resp. V3 ([0, ba(to))) the trajectory x(-,o,to) of Si (resp. Sa)
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satisfies
Vl(x(t1 wO’tO)) < bl(t)’ (I'esp. V‘l(x(t) x())t())) < b2(t) )) t 2 1.

The feedback law v will actually represent two terms of the infinite sum that
appears in the expression of the stabilizing feedback law v constructed in the
proof of Theorem 4.1.

Example 2 :
We consider the pair of scalar systems
S T =z—-u and Se: z =2x+4+u,

where u is a scalar input, and we let fi, fo : R x R — R denote the dynamics of
S1 and S, respectively. It is plain that the two linear feedback laws u;(z) = 2z
and uy(z) = —2z stabilizes S; and S, respectively, and that there exists no
continuous feedback law that simultaneously asymptotically stabilizes S; and
Ss. However, by Theorem 4.1, there exists a time-varying feedback law that
simultaneously stabilizes S; and S,.

We let the Lyapunov function Vi and V, be both equal to the mapping V
given by V(z) = 322, and we note that

VV(CC)fl(ZL','U,]_((E)) = VV(ZL')fQ(.’E,’U,z(m)) = —'3'2) reR.

Further, we let the mappings a;, b;, ¢1, as, by, ¢y be given by

1 2

a;(t) =37t bi(t) = (3+ g)e_t, c(t) = (3+ g)e_t, t>0,
1 2

() =27, b)) =(2+3)e al)=Q2+3)e 20,

and we define the mapping v : [0, 00) X R — IR by setting
'U(t7x) = 2z ‘h(t’x) - 2z Q2(t,x)’ (t’ SC) € [07 OO) X R7

where ¢, (¢, z) and ¢»(t, x) are obtained by replacing V;, af, b, ¢ by respectively
ai, by, ¢ and ag, bs, cp in the formula (4.26). Set zo 2 2. For each i =
1,2, because V (zo) is less than b;(0), the trajectory z(¢, xo,0) of the closed-loop
system obtained once v is fed-back into S; satisfies

Vi(x(t7x070)) < bi(t)7 t>0.

The curves in Fig. 4.2 show the evolution of the Lyapunov function V;, the state
z and the control v(¢,z). Although the curve {(Vi(z(t,zo,0),t), t > 0} crosses
the curve {(b2(t),t), t > 0}, it remains below the curve {(bi(¢),t), ¢ > 0} as
desired. In Fig. 4.3 are presented the simulation results for the system Ss.

We present in the next section, a technical lemma that was used in the proof
of Theorem 4.2.
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4.5 Technical lemma

The following technical lemma was used in the proof of Theorem 4.2, and is a
modified version of Lemma 3.1 which was introduced in the previous chapter to
prove the simultaneous stabilizability of infinite families of linear systems. The
difference between the following lemma and Lemma, 3.1 lies in the fact that here
we do not introduce the constant 6.

Lemma 4.2 Foreachi=1,2,..., let P; be a positive definite matriz, let — and
— denote respectively its smallest and largest eigenvalue, let V; : R™ — [O 00)

denote the mapping given by Vi(z) = z* Pz, and let 6; be in (0,1). Further,

let A1 be a given positive real and let the sequences of positive reals {m;}2, and
{ki}2, be such that

mz]_ ].

0 < m < min(—— M, ’02) i=2,3,..., (4.28)
with
;> 1 2 =1,2,.... :
ki > and leﬁ <1, i=1,2, (4.29)
Finally, let the sequences of positive reals {v7', 1 = 1,...,n}2,, {6, i =

1L,...,n}2, and {of, i=1,...,n}3, be defined by setting
I'Y%A;?]l., IB‘Ln:toYZn, a:L:eZ/B’Ln7 i:]“)""n’ n:]‘,27"‘)
with

m
noo__ n—1
M =

n— 1

n .
—0, v =moy ., 1=2,...,n, n=23,..
kn—1M;

Then, for eachn = 2,3, ... we have
Vi ([0,0071)) o VH([0,7)), (4.30)
‘/;:l([()? a’?—l)) 2 V;_ ([07 Y ] )’ 1=2,...,n, (4'31>

together with

7, B, of =20 as n—o0, 1=1,2,....

Proof: The proof of this lemma is similar to that of Lemma 3.1. However, for
the sake of completeness we produce it below.

In what follows we fix n = 1,2,... and we let § > 0. It is well known 8, p.
44] that for each i = 1,2, ..., the set V;71([0,4]) is the volume bounded by an
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ellipsoid centered at the origin with smallest axis v/m; d and largest axis \/M; ¢.
Thus, (4.30) and (4.31) will hold if we have

My m;_
7 < ﬁa;‘:% and 7 < &.1a?_1, i=2,...,n, n=203,....
7
Bec;zuse we have ﬁn@— < 77%11?‘ for each n = 1,2,..., and the real =; lies in
(0, Z\Z/I ) for each ¢ = 2,...,n and each n = 2,3,..., we already obtain the

inclusions (4.30) and (4.31).

Next, we set

A
= 0
n (klMl 1)
Yo = In ( "02) + In(mab3) + ... +In(m,02), n=2,3,....
ko, M
It follows from (4.28) together with (4.29) that the reals In(m;6?) and In( m—02)
are negative for each i« = 2,3,... and each ¢ = 1,2,... respectively. Thus, we
have
Yn < In(mef3), n=2,3,.... (4.32)

We now fix ¢ = 1,2,.... It is not hard to check from the definition of 4, n =
i,i+1,..., that

() = yi+ Y+ oo+ i +In(y), 1=1,2,..

Therefore, (4.32) combined with the fact that In(m262) < 0 yield the convergence
to 0 of 4/t as I tends to oo, which completes the proof of the lemma. ]

73



2
0
%
>
4
I’
o o 4 6 8
time time

C—
—

time

Figure 4.9: Scalar system St

74



-2
-3
0 2 4
time
4 -
S3h
5,
£
>1
o0 5 6

Figure 4.3: Scalar system S,

75






Chapter 5

Time-Varying Simultaneous
Asymptotic Stabilization of Nonlinear
Systems

In this chapter, we discuss the simultaneous asymptotic stabilization of finite
families of nonlinear systems that are individually asymptotically stabilizable
by continuous feedback laws. By using the approach of Chapter 4, we are able to
provide sufficient conditions for the existence of a continuous time-varying feed-
back law that simultaneously locally or globally asymptotically stabilizes such
a family. We then focus on a class of pairs of homogeneous nonlinear systems,
and by using the previous sufficient conditions, we establish their asymptotic
stabilizability by means of time-varying feedback.

The chapter is organized as follows: We precisely state the problem under
consideration in Section 5.1 while we provide the desired sufficient conditions in
Section 5.2. In section 5.3, we establish the simultaneous asymptotic stabiliz-
ability of certain pairs of homogeneous systems. Finally, Section 5.4 contains a
technical yet important lemma.

5.1 Problem definition
Throughout this chapter, we let I be in {2,3,...}, and we consider a family
{S;, i=1,...,I} of systems

Sii T = fi(.’B,’U), izl,...,I, (51)

where the state z lies in IR", the input u takes value in R™, and for each
i =1,...,I, the mapping f; : R" x R™ — IR" is continuous on a neighborhood
of the origin with f;(0,0) = 0. We assume that for each i = 1,..., 1, the system
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S; is asymptotically stabilizable by means of continuous feedback and we discuss
the simultaneous asymptotic stabilization of the family {S;, ¢ = 1,...,I} by
means of time-varying feedback.

We stress that the simultaneous asymptotic stabilization of nonlinear systems
has not been addressed in the literature. Indeed, all the studies on simultaneous
stabilization have focussed on linear systems. By proving in Chapter 2 that
any finite family of stabilizable nonlinear systems is simultaneously stabilizable
by means of continuous feedback, we have accomplished a first step towards the
understanding of this problem. Here, we continue our investigation and we aim at
constructing time-varying feedback laws that achieves simultaneous asymptotic
stabilization. We adopt the approach of Chapter 4 that has been successful in
producing time-varying simultaneous asymptotic stabilizer for families of linear
systems.

5.2 Simultaneous asymptotic stabilization

We distinguish two cases based on whether the systems S;, ¢ = 1,...,I are
locally or globally asymptotically stabilizable.

5.2.1 Families of locally asymptotically stabilizable sys-
tems

The purpose of this subsection is to prove the following theorem.

Theorem 5.1 Let k > 0 and k' > 1 be two integers. Let D be a bounded
neighborhood of the origin, and assume that there exists a continuous and almost
C* feedback law u; : D — R™ which locally asymptotically stabilizes S; for each
¢t =1,...,1. Further, assume that the mapping fi(-,u;(-)) is continuous on D
and let V; : D — [0,00) be a C¥ Lyapunov function, satisfying

VVi(z) fi(z,ui(z)) < 0, =€ D\{0},

for each i = 1,...,I. Finally, assume that there exists a sequence {b}, i =

L..., I}, of C¥ mappings b7 : [0,00) — (0,00), such that the following as-
sertions hold.

i) supdl(t) >0 as n— o0, i=1,...,I, t;>0.
t>to
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ii) b7 (t) <mi€r})fDW(x), t>0, i=1,...,I, n=12,...
iii) 82(t) >0 as t—o00, i=1,...,I, n=1,2,..
iv) For eachn =1,2,..., we have
Dnvr([0,67()) > DNV, 57 (®)]), t>0,  (5.2)
and for eachn=1,2,... and each i =1,...,I — 1 we have
DAvVH([0,67(1)]) > DNVi([0,b4.(2)), t>0.  (53)
v) For each eachn=1,2,... and each i =1,..., I, we have

V(@) e ue) < B, @eDAVIEE), t>o0.

Let k" = min (k, k). Then, there erists a time-varying feedback law v : [0, 00) X
D — R™, continuous on [0,00) x D, C*¥" on [0,00) x (D\{0}), which simulta-
neously locally asymptotically stabilizes the family {S;, i=1,...,T}.

Proof: For each i =1,...,I and each § > 0, we set
WP £ {zeD: Vi(z) < B},
and immediately see from (ii) and Lemma B.3 (i) that
WiY = Davii(o,6:()]), i=1,...,], n=12..., t20.

In the sequel, we repeatedly use this equality without further reference.

Construction of the simultaneous stabilizer v :

We first construct two sequences {a?, i =1,...,I}%, and {c}, i=1,..., 1},
of mappings a?, b7 : [0,00) — (0, 00), satisfying for each n =1,2,...

ierg"DVi(x) > c(t) > bt) > af(t) > 0, t>0, i=1,...,I, (5.4)

with n —cn 1
a,nd n —c? (1)
wiE® S5 Win®, tx0, i=1,..,1-1. (5.6)
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We define ci : [0, 00) — (0, 00) by setting
1 .
bi(t) + wgéfD Vi(z)
2 ?

Then, for each n = 1,2,... and each i = 1,...,I — 1, we define two C*®
mappings a,cf,; : [0,00) = (0,00) from b} and b7, by applying Lemma 5.2
with b; = b}, by = b, ; and (5.3). The obtained mappings satisfy

B >ai(t) >0,  with inf Viale) > dul) > @), 20,

and .
wH® 5 —érll(t) £>0
7 % ) p .
Finally, for each n = 1,2, ..., we define two C*® mappings a},c}*! : [0,00) —
(0,00) by applying Lemma 5.2 with b = b%, b, = b7 and the inequality (5.2).
The resulting mappings satisfy

b(t) > af(t) >0,  with inf Vi(z) > At(t) > btHe), t>0,
and . g
WI"‘I (t) S Wil ()) t>0.

It is easily seen that the sequences {a}, i=1,..., 7}, , {bF, i=1,..., 1},
and {c}, i=1,...,I}2, satisfy (5.4), (5.5) and (5.6).

We therefore have, for each ¢ > 0, a sequence of nested neighborhoods

D > Wfi(t) > Wfi(t) > W{‘i(t) > chi(t) S5 ... D W,“i(t) »
wi® o wh® 5 wEO 5 s 5 5 pHe 5
(5.7)

such that each neighborhood contains the closure of the neighborhood that fol-
lows.

Next, for each n = 1,2,... and each i = 1,...,1, we define the mapping
q} : [0,00) x D — [0, 1] by setting

(Vi (=)= (£))2
TETTOTCTOSTOR, i Vi(a) € (a3(t), (8]

g (t, ) = LI 0 c— (5.8)
o e OTTORFOBOTif Vi(x) € (7(2), (1))

0, otherwise
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For each ¢ = .,I and each n = 1,2,..., it follows from Lemma B.6
combined with the fact that the mappings a} and ¢} are C*° and the mappings
b7 and V; are C*, that the mapping ¢ is C¥ on [0, oo) x D.

We now define the feedback law v : [0,00) x D — R™ by setting

v(t,z) =) i z)q (t,z), (¢ x)€[0,00)x D. (5.9)

=1 n=1

From the definition of the mappings ¢, we easily obtain that v(¢,0) = 0 for
each t > 0. We next show that v is well-defined, C* on [0, 00) x (D\{0}) and
continuous at any point (¢,0).

Regularity of the feedback law v :

Let (¢,z) be in [0,00) x D\{0}. It should be clear from (5.7) that there exists
a unique pair of integer (¢,n) in {1,...,I} x {1,2,...} such that either one of
the following two assertions holds:

o We have Vj(z) € [al(¢), c!'()]. In that case (5.7) combined with the conti-
nuity of the mappings V;, a} and ¢, yields the existence of a neighborhood
U of (t,z) in [0,00) x (D\{0}) such that

o(r,y) = w(y) ¢ (r,y), (r,y)€U. (5.10)

a® — n41
e We have z € " (t)\W where W denotes either the set W @ ifi =TI or

the set W4 1) therwise. Tn this case, by continuity of the mappings a7,
cft foreach j =1,...,I and each m = 1,2,. .., there exists a neighborhood
U of (t,z) in [0, 00) x (D\{0}) such that

v(r,y) = 0, (r,y)eU. (5.11)

Recall that k” = min (k, k'). Thus, because the mappings ¢* and u; are C*’ on

[0,00) x D and D\{0} respectively, (5.10) and (5.11) imply that v is C¥" on
[0, 00) x (D\{0}).

Moreover, because v(t,0) = 0 for each ¢ > 0, (5.10) together with (5.11) yield

lo @)l < max ([lus(@)l],. .., flur(@)N),  (42) € [0,00) x D,

so that v is continuous at any point (¢,0), ¢ > 0. Thus v is continuous on
[0,00) x D.
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Asymptotic Stability :

In what follows, we fix i = 1,...,] and n = 1,2,.... Because apvi”?(t) —
D N VY (bE(t)) and ¢P(t,x) = 1 for each z in V;7}(bP(t)) and each t > 0, we
obtain from (5.10) that

o(t,®) = uwlz), zedw; ", t20,
and it follows from the assumption (v) that

< ), zeawr® t>o0.

From this last inequality combined with Lemma 4.1, we obtain that the
point (¢, o, tp) of the trajectory of £ = f;(z, v(t, z)) starting from z, at time %,
satisfies

2(t,z0,t) € WA® >4, (5.12)

for each ty; > 0, each z; in o), Using this last result, we now prove that v
asymptotically stabilizes the system S;, foreach i =1,...,1.

We fix ¢ = 1,...,1 and we let € > 0 and {;, > 0 be arbitrary reals. By
Assumption (i), there exists an integer 7 satisfying

W§up{b?(t): t>t0} C B&(O)
so that o
WO ¢ B.0), t>t. (5.13)

Let 6 > 0 be such that B;(0) C W?UO) and let zy be in Bs(0). By (5.12), we
have

2(t,z0,80) € Wo D >4, (5.14)

and in view of (5.13), we find that x(¢, zo, to) € B.(0) for each ¢ > ;. In short for
each € > 0 and each ¢y > 0, there exist §(¢p,&) > 0 such that whenever ||zo]| < ¢
we have ||z(¢, zg, to)|| < &, t > to. Thus, the origin is a stable equilibrium point
for the system & = f;(z, v(¢t, z)).

We now arbitrarily pick n = 1,2,... and we let §p be such that
B;,(0) ¢ WrE®,

Recall that ¢ is fixed in {1,...,I} and let z¢ be in Bs,(0). From (5.12) and
Assumption (iii), we easily deduce that V;(z(t,zo,%)) —= 0 as ¢t — oo and that
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z(t, Zo, o) lies in D for each ¢ > t;. We conclude from the positive-definiteness
of V; on D that
z(t, 2o, t9) = 0 as t — oo.

In view of the previous stability results, this last relation implies that the system
%z = fi(z,v(t,z)) is locally asymptotically stable. The proof of the theorem is
complete upon noting that this last results holds for each ¢ =1,..., 1. [ |

To the contrary of the case where the system S; and the stabilizing feedback
law u; are linear for each ¢ = 1,..., I, the feedback law v obtained through the
proof of Theorem 5.1 does not yield uniform asymptotic stability. Indeed, as the
initial time ¢, increases, it follows from the assumption (iii) of Theorem 5.1 that
the domain of attraction of the closed-loop systems obtained once v is fed-back
into the system S;,7 = 1,..., I, becomes smaller and smaller.

We believe that in some cases, it may be possible to slightly modify the
construction of the proof of Theorem 5.1 in order to obtain a feedback law v that
yields a larger domain of attraction. The following example gives an idea on how
one may proceed. Assume that in addition to the assumptions of Theorem 5.1,
there exists T' > 0 satisfying

bt -T) > bi(t), t>T,
so that for each t > T, we have

byt —T)> - >bit—=T)> 2t —T)>--->b2(t—T) >by(t) >---> b(t).

For each n = —1,-3,... and each i = 1,..., I, we define the mappings b?,b?_l :
[0, 00) — [0, 00) by setting

) - 4 O t< oLy

g bf(t—n+1 ), t2n+1T’

and

Bl =

0, t< Ly
b}(t—n+1 ), t2n+1T

For each 4 = 1,...,I and each n = —1,-3,..., we define ¢7, ¢*~"' : [0,00) X

D — [0,1] by letting ¢?(t,2) and ¢~ '(t,z) be given by the formula (5.8) for

t> lﬁl—;—lT and by setting ¢*(t,2) = ¢/ '(t,z) = 0 for t < Jm—;—lT. Finally,
we let the feedback law v : [0,00) x D — R™ be given by

I
v(t,z) = > u(x)gl(t,z), (t,z)€[0,00) x D.

1=l nelZ
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By slightly adapting the proof of Theorem 5.1, it is not hard to check that v
simultaneously asymptotically stabilizes the family {S;, i = 1,...,I}. Further-
more, for each ¢ > 0, the domain of attraction of the corresponding closed loop
systems is larger than V;7'([0,52(T))) instead of becoming smaller and smaller
as ¢ goes to +00.

We next consider the case where the system S; is globally asymptotically
stabilizable for each ¢ = 1,..., I, and obtain a global version of Theorem 5.2.

5.2.2 Families of globally asymptotically stabilizable sys-
tems

In case the system S; is globally asymptotically stabilizable for each ¢ =1,..., 1,
then under some assumptions we establish the existence of a time-varying feed-

back law that simultaneously globally asymptotically stabilizes the family {S;, i =
1,..., I}

Theorem 5.2 Let k > 0 and k' > 1 be two integers. Assume that there ez-
ists a continuous and almost C* feedback law u; : R® — R™, which globally
asymptotically stabilizes S; for each i =1,...,I. Further, assume that the map-
ping fi(-,ui()) is continuous on R™ and let V; : R™ — [0,00) be a C¥ radially
unbounded Lyapunov function, satisfying

VVi(z) file,ui(z)) < 0, =zeR"\{0},

for each i = 1,...,1. Finally, assume that there exists a sequence {b?, i =

1,..., I} ez of C¥ mappings b7 : [0,00) — (0,00), such that the following
assertions hold.

i) supbi(t) >0 as n— 400, i=1,...,I, t,>0,
t>tg
ii) (tp) > +00 as n— -0, i=1,...,I, t >0,

iii) () 20 ast—oo0, i=1,...,I, neZ.

iv) For each n in Z, we have

Vrr([o,82(t)) D V(0,674 (1)]), t>0, (5.15)
and for eachn in Z and each i =1,...,I, we have
Vi ([0,67(®)]) D Vii([0,684(2)), t=0. (5.16)
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v) For eachn in Z and eachi=1,...,I, we have

VVi(z) filz, ui(z)) < bMt), z €V IBrE), t>0.

Let k" = min (k, k). Then, there exists a time-varying feedback law v : [0, 00) x
R" — R™, continuous on [0,00) x R", C*¥" on [0, 00) x (R™\{0}), which simul-
taneously globally asymptotically stabilizes the family {S;, i=1,...,I}.

Proof: The proof of Theorem 5.1 can be easily transposed to this case. However,
for the sake of completeness, we sketch the proof below.

As usual for each i =1,..., 1, we set
WP £ v([0,8), >0,

By combining Lemma 5.2 with (5.1 ) and (5.16), we obtain two sequences
{a}, i = 1,..., I}z and {c}, ¢ = 1,...,T},cz of C® mappings a?, cf :
[0,00) — (0, 00), satisfying

a(t) > b () > al(t) >0, t>0, i=1,...,I, neZ,

[

with 1 (t)

w5 e t>0,

and n n(8)
I/I/viai(t) D W-:r-ll ) tZO’ i=1)"'71_1’ nez.

Then, for each ¢ = 1,...,1 and each n in Z, we define the C¥' mapping q
[0,00) x R™ — [0,1] by setting

(V;(2)=b7(¢))?
e(Vi(w)—b?(t))Q—(b?(t)—a?(t))z’ if V;(:c) € (a?(t),b?(t)]

n = Vi(@)=b (1) 5.17
HEOZ) TR, v () T

0, otherwise

and we let v : [0,00) x R" — R™ be given by

ZZu, z)q*(t,z), (t,z) € [0,00) x R™.

=1 pelZ

By using the same argument as that used in the proof of Theorem 5.1, it can be
checked that the mapping v is continuous on [0,00) x R™ and C*" on [0, 00) x

(R™\{0}).
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We now fix i = 1,...,I and we show that v globally asymptotically stabilizes
S;. From the definition of v we get

v(t,z) = ui(zx), € BI/Vib?(t), t>0, neZ,
and it follows from Assumption (v) that

VVi(z) filz,v(t, 7)) = VVi(e) fi(z, wi(z))
< M), t>0, xe@W’ib?(t), neZ.

This last inequality combined with Lemma, 4.1, implies that for each ¢, > 0, each
t > ty, each zg in W:‘ ) and each n in Z, the point z(t, g, tp) of the trajectory
of & = fy(z,v(t, 7)) lies in W .

This together with Assumption (i) yields stability of £ = f;(z,v(¢,z)). Fur-
thermore, for each zo in R™ and each ¢, > 0, by Assumption (ii) there exists an

integer 7 such that zo € Wo . Thus, z(t, zo, t0) lies in W2 ® for each ¢ > to,
and in view of Assumption (iii), convergence of z(%, Zo, %) to 0 as ¢ tends to +o00

follows, which completes the proof of the theorem. [ |

Finally, we illustrate Theorem 5.1 and 5.2, by solving in the next section
the simultaneous asymptotic stabilization of a class of pairs of stabilizable sys-
tems whose corresponding asymptotically stable closed-loop systems are homo-
geneous.

5.3 Simultaneous stabilization of homogeneous
systems

Throughout this section, we consider a pair of control systems

Si: = f(z) — g(x)u and Sy = f(z) + 9(z)y, (5.18)
where the state x lies in R™ and the input u lies in R™. We assume that the
mappings f : R® — R" and g : R® — R™ are continuous with f(0) = 0, and
that there exists a continuous feedback law u : R® — IR™, that asymptotically

stabilizes S», so that —u locally asymptotically stabilizes S;. We define the
mapping F': R® — R" by setting

F(z) = f(z) + g(z)u(z), ze€R" (5.19)
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and we assume that F' is homogeneous i.e., there exists s in R and (ry,...,r,)
in (0, +00)™ such that

)\S+T1F1(IL')
F(A\"zy,..., Az,) = | : , zeRM\{0}, A>0, (5.20)
A+ B ()

with F; being the i-th coordinate mapping of F for each i = 1,...,n.

The purpose of this section is to establish the existence of a continuous time-
varying feedback law that simultaneously asymptotically stabilizes S; and Ss,
regardless of the homogeneity degree s of F.

Before, presenting our results, we need some definitions. For a given mapping
¢ : R — R}, we let ¢; denote its 3-th coordinate mapping for each ¢ = 1,...,1.
Further, the mapping ¢ is said to be homogeneous if there exists s in R [s is
called the homogeneity degree of ¢] and (r,...,7;) in (0, +00)? such that

/\s+r1 ¢1(117)
(A" z1,. ., Ag) = | , ze€R"\{0}, A>0.
)\8+T"¢1($‘)

We present in the next section, a few preliminary results.

5.3.1 Preliminary results

The stabilization of homogeneous control systems has been recently addressed
by several authors, e.g., Andreini et al. [3], Kawski [50], and Dayawansa et
al. [22]. The main reason for this attention lies in the fact that homogeneity
properties play an important role in the theory on the stabilization of linear
systems by linear feedback laws. Thus, it is natural to expect similar results for
the stabilization of homogeneous systems by homogeneous feedback laws. Given
an homogeneous system if an homogeneous stabilizing feedback law exists then
the corresponding closed-loop system may be homogeneous as assumed here.

It is therefore necessary to investigate the properties of asymptotically stable
homogeneous systems. Studies on that matter encompasses the work of Hahn
[37] and Rosier [67]. In this last paper, Rosier extended Hahn’s results and estab-
lished the existence of an homogeneous radially unbounded Lyapunov function
for any given asymptotically stable homogeneous system. More precisely, he
obtained the following theorem.
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Theorem 5.3 Let F' : R" — R" be a continuous mapping with F(0) = 0.
Assume that F is homogeneous or equivalently that there exist (ri,...,7r,) in
(0, +00)™ and s in R such that

F,(A"zy,...,A™x,) = XNTE(zy,...,2,), t=1,...,n, A>0, z€R.

Further, assume that the system (S) : & = F(x) is asymptotically stable. Let p be

in{1,2,...}, and letk > p Jax ;. Then, (S) admits a C? radially unbounded
i=1,...,n

homogeneous Lyapunov function V : R™ — [0, 00), which satisfies

VV(z)F(z) < 0, ze€R"\{0}, (5.21)

and
V(A"zy,...,A™"x,) = MV(z), zcR"\{0}, A>0. (5.22)

We now let p =1 and we choose & satisfying

k > max(r;) and 1+ % > 0.

i=1,...,n

Let V be a radially unbounded Lyapunov function for the system & = F(xz),
obtained through Theorem 5.3 [applied with p = 1, k and F as defined here].
We stress that V' satisfies (5.22), and that (5.21) together with the radial un-
boundedness of V' implies that the system & = F(z) is globally asymptotically
stable. Further, as mentioned in [67, p. 470], the identities (5.20) and (5.22)
yield

VV(A"zy,...,A™2,) F(\"zq, ..., A™z,) = MYV (z) F(x), (5.23)
for each z in R"\{0} and each X > 0.

In order, to prove the simultaneous asymptotic stabilizability of S; and Ss,
the idea is to use the Lyapunov function V to define a sequence of mappings
{b},1 =1,2}2, or {b,% = 1,2},.7 satisfying the assumptions of Theorem 5.1
or 5.2. The following simple yet important lemma will be the key for constructing
these mappings.

Lemma 5.1 There exists 8 > 0 such that we have
VV(z)F(z) < —6p'*%, €V 'p), p>0. (5.24)

Proof: Let p > 0 and let z be in V~'(p). By Lemma 1 in [67], there exists a
unique positive real o and a unique y in "' = {y € R™: ||y|| = 1} satisfying

z = ("y,...,a"™y), (5.25)
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so that
VV(z)F(z) = o VV(y) F(y). (5.26)

Because V() = p, we obtain from the homogeneity of V' combined with (5.25)
that @ = (V@j) *, and it follows from (5.26) that

1+£
P &
VV(z)F(z) = | —— VV(y) F(y). 5.27
@Fe = (705) VWF (527
Upon setting
A A a_M
m = max VV(@)Fy), M = max V(y), and 6= I
equality (5.27) yields
—m s
VV(z)F(z) < MiTE ptE < —6p'tE,
which completes the proof of the lemma. [

Throughout, we let 0 satisfy (5.24), and we seek a parameterized family of
mappings hg : [0,00) — (0, 00) such that for each § in some interval included in
(0, 0), we have '

— Bhg(t)T% < hg(t), t>0, (5.28)

with hg(0) = B. We distinguish three cases based on the the sign of s.

1) If s = 0, then for each § > 0, we define hg : [0,00) — (0,00) by setting
hs(t) = Be™®, t>0. (5.29)
It is plain that hg(0) = 5 and that (5.28) holds.
2) If s > 0, then for each 3 > 0, we define hg : [0,00) — (0, 00) by setting

holt) = L ixo (5.30)

CEDA

By direct computation, we get hﬂ = —Bhs(t)+% for each t > 0, so that
(5.28) holds. Furthermore, we clearly have hg(0) = 8.

88



3) If s <0, we set

[N

B2 [0 (;—:)_e F (5.31)

and for each 3 in (0, 3], we define hg : [0, 00) — (0, 00) by setting

B, t<

= ﬁe_(t—ﬁ)z t>

Y

(5.32)

<l <[

By Lemma B.13 applied with r =1 + %, 6 =1 and @ as defined here, we
obtain (5.28).

We now fix 3 in (0,00) if s > 0 (resp. B in (0, 3] if s < 0). By definition, the
mapping hg given by either one of the formulas (5.29) and (5.30) (resp. (5.32)),
satisfies the inequality (5.28), and because (5.24) holds with @ as defined here,
it follows that

VV(z)F(z) < hg(t), =€V hg(t), t>0. (5.33)

Next, it is easily seen that hg is non increasing and converges to 0 as ¢ tends to
+00, in all three cases. By direct inspection of the formulas (5.29) and (5.30) if
s > 0 (resp. by Lemma B.13 if s < 0), we obtain

ho(t) < ho(t), 20,
for each 3 and each « in (0, 00) (resp. (0, ]) with 8 < .

Using the mapping hg, we finally prove the simultaneous asymptotic stabi-
lizability of S; and Ss.

5.3.2 Simultaneous asymptotic stabilization

The purpose of this subsection is to prove the following proposition.

Proposition 5.1 Let the systems S1 and S>, and the mapping F : R* - R"
satisfy the assumptions (5.18), (5.19) and (5.20). Then, the following holds:

i) If s = 0, then there exists a continuous time-varying feedback law v :
[0,00) x R™ — R™, which simultaneously globally uniformly asymptotically sta-
bilizes S1 and Ss, with uniform exponential convergence of the corresponding
closed-loop systems [according to Definition 1.2 (vi)].
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ii) If s > 0, then there ezists a continuous time-varying feedback law v :
[0,00) x R® — R™, which simultaneously globally asymptotically stabilizes S;
and S,.

iii) If s < 0, then there there exists a continuous time-varying feedback law
which simultaneously locally asymptotically stabilizes S; and S

Proof:
Simultaneous asymptotic stabilization in the case s > 0

Throughout this paragraph, we assume s > 0. We let 3 be in (0,1) and we
define the sequences {37, i = 1,2}, .z by setting

gr = (B and B} £ (B neZ.
Further, for each i = 1,2, and each n in Z, we let of and 4] be such that
w > > e > > > a >t neZ,
and we define the mappings a?, b%, ¢ : [0,00) — (0,00) by setting
ai(t) = hop(t), (1) = hg(?) and  c¢(t) = hyp(t), t>0,

with hg defined by (5.29) if s = 0 (resp. by (5.30) if s > 0). Because hg satisfies
(5.33), it follows from the definition of the mappings b7, that

VV(z)F(z) < b¥t), =€V {hg(t)), t>0, (5.34)

for each 2 = 1,2 and each n in Z, which yields Assumption (v) of Theorem 5.2.
Further, by combining the equality 57(0) = 8P with the fact that the mapping
b is decreasing and converges to 0 as ¢ tends to +oo, it is easily checked that
Assumption (i)-(iv) of Theorem 5.2 also hold. Therefore, by Theorem 5.2, there
exists a continuous time-varying feedback law v : [0, 00) x R® — R™ that simul-
taneously globally asymptotically stabilizes S; and S;.

For each ¢ = 1,2, and each n in Z, we let the mapping ¢? : [0,00) X R" —
[0,1] be defined by the formula (5.17), with af, b? and ¢} as given here, after
substituting V for V.

Finally, we define the mapping v : [0,00) x R® — IR™ by setting

v(t,z) = — Y u(z)gl(t,z) + %u(w) gy (t,z), (t,7)€[0,00) x R".
nel ne
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It is easily seen from the proof of Theorem 5.2, that v simultaneously globally
asymptotically stabilizes S; and S if s = 0 (resp. s > 0), and that v is continuous
on [0,00) x R".

If s =0, we now show that the feedback law v also yields uniform stability
and uniform exponential convergence, by using an argument similar to that used
in the proof of Theorem 4.1 to prove exponential stability.

Global uniform asymptotic stability and exponential convergence in
the case s =0:

Throughout, we assume that s = 0, so that we have
Bt) = (B)>™ te™® and  BE(@t) = ()™, t>0, neZ,
and upon setting T' = —-}; In(G3?%), these definitions yield
W t+kT) = oP5(¢t), t>0, neZ k=01,..., i=12 (535)
We fix ¢ = 1,2 and we let 2y be in R™. Because the sequence {67(0)},cz

is strictly decreasing, and converges to +co and 0 as n tends to —oco and +o0
respectively, there exists 7 in Z such that

BH(0) < Vi) < B0). (5.36)

Further, let ¢y be in [0, 00). Then, there exists ¢, in [0,7) and an integer &
satisfying to = kT + ¢;. By combining (5.35) with the fact that the mapping b}
is decreasing for each n in Z, we get

B 0) = 7 F N ((k+1)T) < 65 (o),

so that (5.36) yields V (zq) < b *~1(t;). Therefore, Lemma 4.1 combined with
(5.34), imply that

V(z(t,0,%0)) < WEF7L(E), > . (5.37)

Nezct, for z in R", Lemma 1 in [67] yields the existence of (A;) > 0 and y in
Sl = {z € R™: ||z|| = 1} satisfying

x = ( ()\:c)rlyla EEER ()‘l‘)rnyn )’

and upon setting my = n})'in1 V(y), we get
yeS™=

Viz) = M) V() > my(De)™. (5.38)
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We now define r and R by setting r = m1n r; and R = max T;, and we obtain
i=1,..,n i=1

2 _ 2r1, 2 2rn ()\z)zRa if ()\m) 2 1
el = a0 < { Qe G920

Thus, for each ¢ > ), the inequalities (5.37) and (5.38) together with the ex-
pression of b ~*~1(t) yield

& i _ .
||:c(t,:1:0,t0)HR < zmv e Bt, if ()‘z(t,wo,to)) > 1,

ﬁiﬁ,—-l—k

my

k —- .
“m(t)antO)”r < € Gt’ if (’\w(t,mo,to)) <1,

Because tg = kT + t; with ¢ > 0, it is easily seen from (5.35) that

- ¥4
n—l k R
lo(t, 20, %) < (m—v) 50T, (Nagrzotm) 2 1,

ﬂﬁ_l % 0L (t—t

my

A

“:L‘(t, :L'o,to)”

for each t > ¢35, whence

|=(¢, %o, 0)[| < max !(&1) (ﬂ n_) ] e PRt >0 (5.39)

my

A-1\ % /pga-1\ %
e [(22)* (2]
my my

depends solely on ||zo|| (uniformly in %), and because b'(0) converges to 0 as
||zo]| tends to O [follows from the definition of 71, global uniform asymptotic sta-

bility with exponential convergence follows from (5.39) [according to Definition
1.2 (vi)].

Note that the real

Simultaneous local asymptotic stabilization in the case s < 0 :

We let

B
2n—1
with 3 given by (5.31), and we let b7 : [0,00) — (0, 00) be defined by

bi(t) = hgp(t), 1

A
pr =

and gy = %, n=12,...,

Vv
=
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for each i = 1,2, and each n = 1,2,..., with hg : [0,00) — (0,00) given by
(5.32). Because the mappings b7 are decreasing and. converge to 0 as ¢ tends to
+00, it is easily checked from the equality 67(0) = 57 that Assumptions (i)-(iv)
of Theorem 5.1 hold. Moreover, because hg satisfies (5.33), Assumption (v)
follows from the definition of b7 for each i = 1,2 and each n = 1,2,.... There-
fore, Theorem 5.1 yields the existence of a continuous time-varying feedback law
v :[0,00) x V7I([0,8+ 1)) — R™ that simultaneously locally asymptotically
stabilizes S; and Ss. [ ]

We note that the previous construction does not depend directly on the
control systems S; and S,. What really matters is that the application of —u
and u to S1 and S, respectively, yields an homogeneous system z = F(z). In fact,
the previous construction can be easily modified in order to prove the following
corollary.

Corollary 5.4 Let I > 2 be an integer. For each i =1,...,1, let the mapping
fi :R"xR™ — R" be continuous with f;(0,0) = 0, and assume that there exists
a continuous mapping u; : R™ — R™, such that £ = f;(x,u;(x)) is asymptotically
stable. Further, assume that there exists an homogeneous mapping F : R® — R"
such that

filz,ui(z)) = F(z), zeR* i=1,...,1,
and let s be the homogeneity degree of F. Then, the following holds :

i) If s = 0, then there ezists a continuous time-varying feedback law v :
[0,00) xR™ — R™, which simultaneously globally uniformly stabilizes the family
{Si, i = 1,...,I}, with uniform exponential convergence of the corresponding
closed-loop systems [according to Definition 1.2 (vi)].

ii) If s > 0, then there exists a continuous time-varying feedback law v :
[0,00) x R™ — R™, which simultaneously globally asymptotically stabilizes the
family {S;, i=1,...,1}.

iii) If s < 0, then there there exists a continuous time-varying feedback

law which simultaneously locally asymptotically stabilizes the family {S;, i =
1,...,1}.

We complete this chapter by providing the technical lemma that was used in
the proof of Theorem 5.1 and 5.2.
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5.4 'Technical lemma

In this section, we present a technical lemma that was used in the proof of
Theorem 5.1 and 5.2.

Lemma 5.2 Let Dy and D, be two bounded neighborhoods of the origin (resp.
D, = Dy =R"), and let V; : D; — [0,00) and V3 : Dy — [0,00) be two
Lyapunov functions (resp. two radially unbounded Lyapunov functions). Further,
let b, and by be two continuous mappings from [0, 00) into (O’xéng) 1 Vi(z)) and

(o, mélallf:) i Va(z) ) respectively, such that
DynVH([0,b1(2))) D Dan V5 ([0,62(2)] ), ¢ >0, (5.40)
Then, there erist two C™® mappings a; : [0,00) — (0, é%f; Vi(z)) and ¢y :
T 1
[0, 00) — (0, églf) Va(z) ), such that for each t > 0, we have
©€0D3
b1(t) > ay(t) and  c(t) > baoft), (5.41)
together with
Dy nVH([0,a1())) D Do n V([0 c2(t)] )- (5.42)
Proof: For each ¢ > 0 and each §; either in (0,¢) if ¢ > 0 or in (0, 00) if ¢t = 0,
we let I(t,0;) denote the set

o (E=b,t+8) if t>0
I(tyét) _{ [0,5t) if t::O .

As usual T(t,d;) denotes the closure of I(t,d;).
We first construct a mapping a; satisfying by (t) > a1(t) and
DinViH([0,a1(t)) D DanV3H([0,52(8)] ),

for each ¢t > 0.

Construction of a; :

Fix ¢ in [0, 00). In view of (5.40), Lemma B.12 (applied with Dy, D;, V1, Vs,
by and by) yields the existence of §; > 0 (with &; in (0,t) if ¢ > 0) such that

Dy nVyH([0, min bi(r))) D DanV5 ([0, max by(7)]) (5.43)
TEI(,0¢) T€l(

y0¢
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In view of this last inclusion, it follows from Lemma B.11 that there exists oy
such that we have

a; € (0, min b(7)), (5.44)
T€I(t,04)
and
DinV7H[0,4)) D Dan V5 ([0, n_l(ax)bg(T)]). (5.45)
T€I(t,8:

For each ¢ in [0,00) let &; and oy be such that (5.43), (5.44) and (5.45) are
satisfied.

Because the family {I(t, 0;) }+c(0,00) is an open cover of [0, 00) (in its subspace
topology), it follows from the fact that [0, 00) is Lindeldf that we can extract
from this cover a countable sub-cover {I(¢;, 0, ) }52, of [0, 00) with ¢ < tp41,k =
0,1,.... If necessary we choose d; and d; in (0,dy,], for each k = 0,1,..., such
that the sets

I,2[0,6)) and L2 (-0, t+0), k=12,...,

form an open cover {I;}%2, of [0,00) and any ¢ in [0,00) lies in at most two
successive sets I and Ij;.

By Theorem 1.1 there exists a partition of unity {5}, subordinate to
{I£}32,\{0} such that for each k = 1,2,..., the support of p; is included in I
and the support of gy is included in (0, dty).

We now define the mapping p;, : [0,00) — [0,1], for each £ = 0,1,..., by
setting

pe(t) =P(t), ¢>0, k=0,1,...,
and
p(0)=0, k=1,2,...; po(0) = 1. (5.46)

Because the support of pi is included in I for each k = 1,2,... and in I;\{0}
for £ = 0, it is easily seen from (5.46) that for each k = 0,1, ..., the mapping py

is C* on [0, 00), and its support is included in I;. Also note that the sum ) _ py
k=0

is identically equal to 1 on [0, c0).
We now define the mapping a; : [0, 00) — (0, 00) by setting
a1(t) = Zatk pi(t), t>0.
k=0

It is plain from this definition that a,(t) is positive for each ¢t > 0, since o, is
positive for each £k = 0,1,... and the mapping p; sum up to 1.
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Smoothness and properties of q; :

We first prove that a; is C* on [0, 00). Let ¢ be in [0, 00). Then, there exists
an open neighborhood U; of ¢ in [0, 00) that intersects with at most two sets I,
and Ix of the family {I;}32,. Therefore, we have
a (1) = g, pe(T) + Ctya prs1(r), TeEU,

and it follows that a; is well-defined and C* on [0, 00).
We now show that we have
bi(t) > ai(t), t>0, (5.47)
and
DinVH([0,a1(8))) D DanVyY([0,b(2)]), t>0. (5.48)

Let t be in [0,00). Then, as previously noted, ¢ lies either in a unique set I, or
in two successive sets Iy and I, of the family {I;}2,. If ¢ lies in a unique set
Iy, then we get

ai(t) = o,. (5.49)

By definition of I}, we have
T, € T(t,6;,), k=0,1,... (5.50)

so that min b;(7) < minb;(7) and (5.44) combined with (5.49) yield b, (t) >
TEI(ty,0¢;,) 7€l

ay, or equivalently b1(¢) > a;(t). On the other hand, the inclusion (5.48) follows
easily from (5.45).

If ¢ lies in two sets of the family {I,}2,, then there exists k in {0,1,...}
such that
a1(t) = atk pk(t) + atk+1 pk+1(t). (551)

We first note that a,(t) is a convex combination of oy, and oy, .. since the
mappings of the family {p,}$2, sum up to 1. In view of (5.44) we have

by (t) > Oy and b (t) > (T
so that (5.51) yields b1(¢) > a1(t). Furthermore, from (5.45) we obtain
DinViH([0,ce,)) D Dan V3 ([0,00()]), =k k+1,

and since we have a,(t) > min (ay,, ay,,,) [follows from (5.51)], the desired in-
clusion (5.48) follows. Therefore, the mapping a; satisfies the assertions (5.47)
and (5.48).
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Construction of ¢, :

Using the mappings a;, by, and the inclusion (5.48), we now produce a map-
ping ¢s : [0, 00) — (0, 00) such that for all ¢ > 0, we have

ca(t) € (bg(t),wég£2%(x) ), t>0, (5.52)
and
Dy nVH([0,a1(8))) D DNV H([0,0(2)]), t>0. (5.53)

The construction is similar to that of a;. For each ¢ > 0, by combining
Lemma B.12 (with Dy, D,, Vi, V3, a; and by) with (5.48), we obtain §; > 0 such
that

DinVH([0, min ai(7))) D DNV ([0, max by(7)])
TEI(t,8¢) TE€I(t,0:)

and by Lemma B.11 we get ; satisfying

" € (ngfgt)bz(f),mégngz(w)) (5.54)
with
Dy n VY[, rg(in)a(T))) S5 Dy N V5[0, ). (5.55)
Tel(t,d;

Let {I(tx, 0, )}, be a countable open sub-cover of {I(¢,d:)}:>0 such that ¢ <
te+1,k = 0,1,.... If necessary, we choose §; and &} in (0,d; ] such that the sets

*

IO £ [0,(5t0) and Ik £ (tk — 4 i + (5;;), k= 1,2, ..

ty?

form an open cover {I;}%2, of [0,00) and any ¢ in [0, 00) lies in at most two
successive sets I, and Ij;.

We then let {p;}22, be a partition of unity subordinate to {I;}32,\{0}. For
each k = 0,1,..., by extending p; exactly as we did in the construction of ay,
we obtain a C™ mapping py, : [0, 00) — [0, 1] whose support is included in I. In

o0

addition, the summation ) pj is identically equal to 1 on [0, co).
k=0

We finally define the mapping ¢, : [0, 00) — (0, 00), by setting

x>
ca(t) =D vupi(t), t>0.
k=0

Because <y, is positive for each k¥ = 0,1,... and the mappings p; sum up to 1,
we have co(t) > 0 for each ¢ > 0. For each ¢ > 0, it is plain that there exist a
neighborhood of ¢ that intersects with at most two sets of the family {I;}2,.
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Because the support of the mapping py is included in I, for each k = 0,1, ...,
it follows that the mapping c, is well-defined and C* on [0, 00).

We now fix ¢ > 0. If ¢ lies in a unique set I, then c3(¢) = v, and (5.52)
follows from (5.54) while (5.53) is obtained from (5.55).

If t lies in two sets I and Ij1, the real cy(t) is a convex combination of +;,
and ¥, . In view of (5.54), the reals y,, and -y, ,, both lie in ( by(%), égg Va(z) ),
T 2

and (5.52) follows. Further, because the inclusion (5.55) holds for both ~;, and
Vtr41» W€ Obtain

Dl N Vl—l( [07 al(t)) ) i D2 N Vz_l( [O) max (7tk77tk+1)) )7

and (5.53) is finally obtained from the inequality max (v, ,¥;,,) = ¢c2(t). Hence
the lemma. ]
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Chapter 6

Time-Invariant Simultaneous
Asymptotic Stabilization in the Plane

In Chapter 4 and 5, we enriched the approach introduced in Chapter 2 in order
to design time-varying feedback laws that simultaneously asymptotically stabi-
lize families of systems of arbitrary dimension. Here, we show that the ideas
introduced in Chapter 2, can be refined differently in order to provide time-
invariant asymptotic stabilizers for a class of systems in the plane.

The chapter is organized as follows: We begin with stating the problem under
consideration, and we then prove the simultaneous asymptotic stabilizability of
the considered pairs of systems in Section 6.2. We finally give some concluding
remarks in Section 6.3 and present some technical lemmas in section 6.4.

6.1 Introduction

Throughout this chapter, we consider the pair of systems

e AL I
To = U o = U

where a_, a,, b, are positive, b_ is negative and u is a scalar input. Using

elementary algebra, it is easily seen that these two systems are not simultane-

ously asymptotically stabilizable by means of C'! feedback. To design a merely

continuous simultaneous asymptotic stabilizer for S_ and S,, we modify the

construction introduced in the proof of Theorem 2.1.

Given two control systems S; and S, that are globally asymptotically stabi-
lizable by the continuous time-invariant feedback laws u; and us respectively, it
follows from Theorem 2.2 that we can construct a simultaneous stabilizer (not
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asymptotic) for S; and Sy as follows: We let V; (resp. Va) denote a Lyapunov
function for the closed-loop system obtained once u; (resp. us) is fed-back into .S;
(resp. S5). We introduce a base at the origin {U;},cz such that the boundaries
of the odd (resp. even) sets Uspy1 (resp. Usy) are Lyapunov level sets of Vi (resp.
Va). We design a feedback law v which is equal to u; (resp. u2) on the boundaries
of the odd (resp. even) sets Usp,41 (resp. Us,), and we conclude that v stabilizes
S1 (resp. S2) upon noting that the family {Uspt1}nez (resp. {Uan}nez) is a base
at the origin.

In general, the obtained feedback law v does not provide asymptotic stability
to Sy (resp. Sa), because it is not guaranteed that the positive limit set in Ugp4
(resp. Uay) of the closed-loop system corresponding to Sy (resp. Sz), is the trivial
set {0}.

In the particular setup of this chapter, it turns out that we can actually
construct a base at the origin {W;},.z (whose boundaries are not level sets of
Lyapunov functions) and a feedback law uy, such that the odd sets Wont1 (resp.
W) are invariant with respect to the closed-loop systems corresponding to the
application of ug, to S_ (resp. S,). Because the considered systems are in the
plane, we can use the Poincaré-Bendixson Theory in order to guarantee that the
positive limit set of S_ (resp. S, ) in the compact sets Way 1 (resp. Way), is the
trivial set {0}. In this way, we obtain both stability and asymptotic convergence
to the origin.

6.2 Simultaneous asymptotic stabilization

The purpose of this section is to establish the existence of a merely continuous

and time-invariant feedback law that simultaneously globally asymptotically sta-
bilizes S_ and S,.

This result is contained in the following theorem. The general line of the
proof is to construct two feedback laws u;, and uko that globally asymptotically
stabilize S_ and S, respectively. We introduce two bases at the origin {Wﬁ }s>0
and {Wj }gs0 such that for each 8 > 0, the neighborhoods Wy and W are
invariant with respect to the systems S_ (with u = u ) and S, (Wlth u = u,j'o)
respectively. We then construct a new base at the origin {W }jez such that
the odd (resp. even) sets Wayi1 (resp. Wa,) belong to the family {Wj;}ss0
(resp. {Wﬁ }s>0)- Flnally, we define a continuous feedback law uy, which is
equal to uy, (resp. uj, +) on the boundary of the odd sets Wa,,; (resp. even
sets Way,). It follows that the closure of each neighborhood of the base at the

origin {Want1}nez (resp. {Wa,},cz) is invariant with respect to the closed-loop
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system obtained once uy, is fed back into S_ (resp. S,). This implies that uy,
simultaneously stabilizes S_ and S,. Asymptotic stability is then established by
proving that the only positive limit set of the system S_ (resp. S,) with u = uy,,
in the sets Woy,41 (resp. Way,), is the origin.

Theorem 6.1 Assume that a_, a, and b, are positive, and that b_ is negative.
Then, there exists a continuous and almost C*® feedback law v : R? — R, that
simultaneously globally asymptotically stabilizes the systems S_ and S,.

Proof: Throughout the proof, we use the following notation: For each z in IR?,
we denote by z; and z, its coordinates, and we define the mappings, f_, f, :
R? = R by setting f_(z) = a_x; + b_zo and f,(z) = a,z1 + b,xo respectively.
For a_ subset Y of R?, we denote by Y its symmetric with respect to the origin,
jie., V2 {—y: y € Y}. Finally, for each real o, we let £, denote the half-line

£ {zeR?: z; = axy, z; >0}

Construction of u; and ujf:

Let 6, 1 and & be fixed positive reals with § > max (X s o =2=) § > 20 and
p < min (¥, =2=). Consider Fig. 6.1, and for each § > 0, let Wi and Wy

a4+’ a-
be the open subsets of R? bounded by the closed curves in bold. The sets
Wy and W are symmetric with respect to the origin. The segments [As, A1]
and [Aq, A3] are respectively horizontal and vertical, while the segments [As, A4

and [Ay4, A;] have respective slopes ‘ai% —4 and E—l = p. Furthermore, the

segments [Bs, By] and [Bs, By] are respectively horlzontal and vertical, while the
segments [Bi, By| and [Bs, Bs] have respective slopes E_l = ¢ and g@- — .

From the assumptions made on 6, § and p, it is easily checked that W5 and W[?,"
are well-defined for each 8 > 0. We now define the following open subsets of

R2\{0}:

R; : region between the half-lines s _ by and X b
a+ -
Ry : region between the half-lines ¥ ,_ and 229,

“Za_

R3 : region between the half-lines ¥y and ¥_g,

R4 : region between the half-lines ¥_99 and ¥ o, ,
2a+

Qg : region delimited by ¥ »_, £ »_ and the segment [A,, A3], (6.1)

2q

T : region delimited by ¥ 5., ¥+, and the segment [B;, By). (6.2)
at

2a .4
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Figure 6.1: Neighborhoods W and W

Because {Ry, .., Ry, R, .., R,} [where R; is the symmetric set of R; with re-
spect to the origin for each i = 1,2, 3,4] is an open cover of IR? \{0}, by Theorem
1.1, there exists a C'*° partition of unity {px, .., ps, P1, .., Da } subordinate to it such
that the support of p; (resp. 5;) is included in R; (resp. R;) for each i = 1,2, 3, 4.

For each k > 0, we now define the mappings uj, uf : R? — R, by setting

0 ifr=0
ur (@) = —kzs (p1(z) + p1(z) )
k +L1(2a_z1 + b_x2) (po(z) + p3(z) + Pa(z) + P3(2))
—3 (5521 + b_zs) (pa(z) + Palz)) otherwise,

and
0 ifx=0
ui (z) = { —kzy (pr(2) + Pilz) ) + 2(%Ex1 + bywo) (p2(x) + Pa(z))
—ﬁ(2a+m1 + b,x2) (ps(x) + pa(z) + P3(x) + Ps(z))  otherwise.

Because the mapping p; (resp. ;) is C* on R?\{0} for each i = 1,2,3,4, it
is plain that u; and uf are C* on IR?\{0} for each k > 0. Furthermore, the
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mappings of a partition of unity summing up to 1, it is readily seen from the
definition of u; and uj that

_ 1 1 a_
|uk (CC)' < max ([km2|, ;'2&_1’1 +b_(L‘2|, g';ﬂ?l + b_SL'zI) , TE ]R,2,

and

1a
+ < k =12 b
lut(@)] < max (| zal, Lio0sas + byl 51

o+ b+a:2|) z € R,

and continuity of u; and u} at the origin follows for each k > 0.

Construction of u:

We first note that the families {W }s>0 and {W3 } g0 are bases at the origin
such that W C Wy and Wﬂ C Wﬂ, for all 8 < @. This, together with the fact
that for each bounded subset U of IR? there exists # > 0 such that U C W4 and
UcC Wﬂ , yield the existence of a sequence of positive reals {8;};cz satlsfylng

B;i =0 as j — +00 and B; = +00 as j — —oo, (6.3)

with . .
W;}Zn D> Wg,.., and Waon D Wy, neZ. (6.4)

Using the notation
W = W5 and  Wap =Wj, |, neZ,
the inclusions (6.4) translate to
W, D Wip, JjeZ. (6.5)

By Lemma B.4 combined with (6.3) and (6.5), we obtain that {W;_\\Wj41};cz
is an open cover of R?\{0}. Thus, Theorem 1.1 yields the existence of a partition
of unity {g;};cz subordinate to {W;_1\W41};cz such that the support of g; is
included in W;_1\W 44, for each j in Z.

Finally, for each k > 0, we define the feedback law u; : R = R by setting
0 ifzx=20
u (@) =\ uf(z) Y gen(@) + up(2) Y gonsa(z) otherwise.
nel neZ

Fix £k > 0 and let z be in R*\{0}. It is easily checked that there exists a
neighborhood U, of z such that U, intersects with at most three sets of the

103



collection {W;_1\W41},;cz. As the support of the mapping g; is included in
W;_1\W ;1. for each j in Z, it follows that on U,, the infinite sums in the
expressions of u(z) reduce to the sum of at most three terms. This last comment
combined with the smoothness on R? \{0} of the mappings up,uy and g, j € Z
imply that uy is C*° on IR?\{0}. Furthermore, the mappings g; summing up to
1, we get

[ur(z)| < max (Jui (z)], |ug (2)]), =€ R,

and for each k£ > 0, continuity of u; at the origin follows from that of u; and

Invariance of the sets W; :

We now show that there exists ko > 0 such that for each n in Z, the sets
Woni1 and Qp, .. (resp. W, and T'g,,) are invariant with respect to the vector-

field [f_, uk,]* (resp. [fy, ur,)?)-

Recall that Qg,,,, and T, denote the sectors of Wy,; and Wy, [or equiva-
lently W5, = and W ] defined by (6.1) and (6.2) respectively.

We note that for each m in Z, the boundary W, is included in W,,,_1\W 11
and does not intersect with any other set W;_;\W ;1. Because the support of
the mapping g; is included in W;_;\W, for each j in Z, and the mappings g;
sum up to 1, we obtain

up(z) = up(z), =€ MWapy1, neZ, (6.6)

and
up(z) = ut(z), z€W,,, necZ. (6.7)

Next, because uj (z) and ujf (x) are both equal to —kz, for z in the set £_»_ U
2a._
Y b, , we get
2a4.
up(z) = —kzy, © € T o UT o, . (6.8)

2a_ 2a+

By definition of u;, we also have

up(z) >0, =z € L 4 U Y by, (6.9)
a_ a+
and R
up(z) <0, =z € X s UZT 4. (6.10)
a_ a+

Let k_ and k4 be obtained through Lemmas 6.1 and 6.2 [with z and § as defined
here] and set ko = max (k_, k). We now fix n in Z and show that the set Wona1
is invariant with respect to the vector-field [f_, ug,]t. This will be proved if for
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each z in the boundary 0W5,1, the vector [f_(z), ug,(z)]* points inside the set
W2n+1-

Because the intersection of more than two sets in {R,.. .,R4,§1, .. .,R;} is
empty, for each z in Wy, 41, the vector [f_(z), uy (x)]* either reduces to one of
the vectors listed in the different assertions of Lemma 6.1, and therefore points
inside Wy, 41, or is a convex combination of two of them. In the latter case,
[f-(z), ug, (x)]* points inside Wopn41 either because we have a convex combina-
tion, or because we have f_(z) < 0 (resp. f_(z) > 0) on the segments [A;, A3]
(vesp. [Ag, A3]) of OWp,y1. By (6.6), we have uy, = u;, on OWapq and it follows
that the vector [f_(z), uk,(z)]* points inside Wa,41 for each z in OWopy1.

Therefore, the set W, is invariant with respect to the vector-field [f_, u,]t,
for each n in Z.

Similarly, (6.8), (6.9) and Assertion (i) of Lemma 6.1 yield the invariance of
the set Qg, ., With respect to the vector-field [f_, ug,)®, for each n in Z.

__ On the other hand, (6.7), (6.8), (6.10) and Lemma 6.2 imply that the sets
Wy, and Tg,, are invariant with respect to the vector-field [f,,u,]*, for each n
in Z.

Asymptotic stability:

We now show that the feedback law ug, globally asymptotically stabilizes the
system S_. Let S_ denote the system obtained once Uy, is fed back into S_. Fix
nin Z and let zo be in Wy, 41. In view of (6.9), we have ug,(z) # 0 for all z
in R?\{0} with f_(z) = 0, so that the origin is the unique equilibrium point
of S_in Wans1. Thus, by the invariance with respect to S_ of the compact set
W ant1, and the Poincaré-Bendixson Theorem [38, p. 151], the positive limit set
P(xp) of o in Wy, is either equal to {0} or to a nontrivial periodic orbit O.
If we assume that P(zo) = O, then by Theorem 3.1 in [38, p. 150], O encir-
cles the origin. This contradicts the invariance of Qﬂzn .1 With respect to S_,

and we conclude that P(zo) = {0}. Therefore, each trajectory of S_ starting
in Wy, remains in Wy, 1 and converges to the origin [38, Corollary 1.1 p. 146].

Because this last result holds for each n in Z, and the family {Wy,u11},c7 is
a base at the origin that covers IR?, the feedback law u; globally asymptotically
stabilizes the system S_.
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Similarly, from the invariance of the sets W, and Tﬁ% with respect to the
vector-field [f,, ug,]* for each n in Z, and the Poincaré-Bendixson Theorem [38]
combined with (6.10), it follows that uy, globally asymptotically stabilizes the
system S, which completes the proof of the theorem. [ |

6.3 Concluding remarks

The idea of constructing a feedback law wuy, together with a base at the origin
{Wons1}nez and a “sector” Tg, ., in each neighborhood Wy, 1, such that both
Wont1 and Tg,, ., are invariant with respect to the closed-loop S._ (with u = ug,),
originated from Dayawansa, Martin and Knowles [21]. In [21], this technique is
applied to the construction of a feedback law that asymptotically stabilizes a
single system in the plane. Here, given two systems S_ and S,, we produce a
controller that achieves these “invariance requirements” simultaneously for both
systems S_ and S,, so that it simultaneously asymptotically stabilizes S_ and
Sy. We design such a controller by using the interpolation method of Chapter
2.

The proof of Theorem 6.1, can actually be adapted in order to prove the
simultaneous asymptotic stabilizability by means of time-invariant feedback, of
any finite (resp. countably infinite) family {S;, i = 1,...,I} (resp. {S;, 1 =
1,2,...}) of systems

:k2=u ’

S - {561 = fi(z1,29)

where f; : R? — R is real analytic on a neighborhood of the origin, with

Ofs szll,wz lo.0) # 0 and %%zl(o,o) # 0 for each ¢ = 1,...,I (resp. i =

1,2,...). However, because this result is a particular case of a more general
result established in the next chapter, we will not prove it.

6.4 Technical lemmas

We now present two technical lemmas that were used in the proof of Theorems
6.1.

Lemma 6.1 Assume that a_, a, and b, are positive, and that b_ is negative.

Let p and & be some positive reals with p < —2—: and %bf < 8. Then, there

exists k_ > 0 such that the following holds:
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i) For each k > k_, the vector [f_(x), —kx,]* points into the region below & _ »_

2a_

for eachz inX__ , and into the region above &_+_ for eachx in &__ .

2a_ 2a_ 2a_

ii) For each § > 0, let Dg denote the set Dg 2{zeR?: z; = pzs+B, 1 > 0}.
Then, for each 3 > 0, the vector [f_(z), ﬁ(2a_a:1 + b_x2)]* points towards
the left of Dg for each x in Dg below X—v_, and towards the right of D};

for each z in Dy above $-o_.

iii) For each 7 > 0, let L, denote the set L, £ {z € R?: 21 = —6z0 — 7, 21 >
0}. Then, for each T > 0, the vector [f_(z), —3(%-z1 + b_z»)]* points into
the region above L, for each x in L, and into the region below L. for each
xin L,.

Proof: We only prove the first part of the assertions of the lemma as the
arguments carry over to the second part of the assertions.

(i) Let = be in E%. We have f_(z) = b Zo, SO that —%%2 = _%Z?'
Because —%%2 is less than —Qba; for k large enough, the claim follows.

(ii) Let 8 > 0 and let = be in Dg below £-i_. As we have f_(z) > 0 and
a_z1 > 0, we immediately obtain T_%%)E < u, for all § > 0. Hence the claim.
M

(iii) Let 7 > 0 and let = be in D,. Because we have %5z, > 0, we easily get
1,8

_13(__;_‘”%"””—2) < %-, for all 7 > 0. Hence the result. u

The proof of the following lemma is similar to that of Lemma 6.1 and is
therefore omitted.

Lemma 6.2 Assume that a_, a, and b, are positive, and that b_ is negative.

Let u and 6 be some positive reals with p < -gi and _2. < 4. Then, there
+

a_
exists ky > 0 such that the following holds.

i) For each k > kg, the vector [f,(z), —kxo]* points into the region above

Z_zbd__ for each x in E_;i, and into the region below Z_%,__ for each = in
2a4 204 2a4

E_B__ .
2a4
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ii) For each 8 > 0, let Dg denote the set Dg S{zeR*: 2= —puzy+ 5, 11 >
0}. Then, for each B > 0, the vector [f.(z), —+(2a,21 + byxo)]* points
towards the left of Dg for each x in Dg above ¥-v, , and towards the right

at

of Dg for each x in Dj below S
ot
iii) For each 7 > 0, let L, denote the set L, = {z € R?: z; = 0x,—7, 1 > 0}.
Then, for each T > 0, the vector [fi(x), (%21 + byx2)]* points into the

region below L, for each = in L., and into the region above ET for each x
mn L,.
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Chapter 7

Robust Asymptotic Stabilization in
the Plane

Throughout this chapter we consider a class of parameterized families of non-
linear systems in the plane and we discuss their robust asymptotic stabiliza-
tion around a parameter value at which the corresponding families of linearized
systems are not controllable. Because these families do not admit C' robust
asymptotic stabilizers, we investigate the existence of merely continuous ro-
bust asymptotic stabilizers. In particular, we introduce a new approach to the
robust asymptotic stabilization, where a robust asymptotic stabilizer of a param-
eterized family of systems is considered as a feedback law that simultaneously
robustly asymptotically stabilizes two distinct sub-families of the original fam-
ily. More precisely, we construct in Section 7.3 a robust asymptotic stabilizer for
a parameterized family of systems as follows: We design the robust asymptotic
stabilizers of two of its sub-families by extending the ideas introduced in the pre-
vious chapter. We then piece together these two robust asymptotic stabilizers
using the interpolation method of Chapter 2.

The chapter is organized as follows: We first present the problem under
consideration, and then discuss the robust asymptotic stabilization case by case
in Section 7.2, 7.3, and 7.4. In Section 7.5, we show that in some cases, the
families under consideration, are robustly asymptotically stabilizable by means
of continuous and almost C* feedback, while they are not by means of Lipschitz
continuous feedback. Finally, we give in Section 7.6, simple expressions for the
robust asymptotic stabilizers constructed in Section 7.2.
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7.1 Problem definition

In this chapter, we consider a parameterized family of systems in the plane

S(y) : {ih = f7($1,$2) ’

ii)2=u

where 7y is a real parameter, f, : R? — R is real analytic on a neighborhood
of the origin and u is a scalar control. We assume that + lies in some interval
[—Co, ¢1] where {y and (; are positive and that the mappings a,b: [—(o, (1] = R
defined by

df, (a1, Ofy(z1,
_ Ofy(z1,29) ”"2)|0,0) and b(’y)=—%|(om’ (7.1)

are C® on [—(p, (1]. We let ' denote the set [—(p, 0)U (0, (1] and we assume that
b(0) = 0, a(vy) # 0 and b(y) # 0 for all -y in T..

We investigate here the existence of a time-invariant feedback law u that is
continuous at the origin and that robustly asymptotically stabilizes the family of
systems {S(v), v € I'} according to Definition 1.5. In fact we study the robust
asymptotic stabilization of the family around a parameter value at which the
corresponding family of linearized systems is not controllable.

Our primary motivation for studying this robust stabilization problem is to
try to understand the robust stabilizability of a family of systems around a pa-
rameter value at which the family has a singularity. In this particular case the
singularity is the loss of controllability of the family of linearized systems cor-
responding to S(v). More precisely, we wish to answer the following question:
Under the assumption that the family of systems {S(v), v € T'} is robustly
asymptotically stabilizable by means of continuous feedback, does it exist a con-
tinuous feedback law which robustly asymptotically stabilizes the family of sys-
tems {S(7v), v € T'} and which stabilizes (not necessarily asymptotically) the
system S(0) ? '

It is natural to believe that the answer to this question is positive and that
the robust asymptotic stabilizability of the family of systems S(v) is in a certain
sense a property which is continuous with respect to the parameter .

To answer this question, it would be necessary to also study the robust asymp-
totic stabilization of the family of systems {S(v), v € [~(o, (1]}. Although there
exist some cases where we can solve this last robust stabilization problem, we
have not been able to complete this investigation, and we leave this issue for
further research.
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To our knowledge the only published work addressing the robust stabiliza-
tion of a family of systems around a parameter value at which the family “loses”
its controllability is that of Colonius and Kliemann [16]. They consider pa-
rameterized families of scalar control systems whose corresponding families of
uncontrolled systems undergo bifurcation at some parameter value. Using the
notion of control sets [15], they derive necessary and sufficient conditions for the
robust asymptotic stabilizability of such families by means of piecewise constant
controls and around the bifurcation parameter.

One of the originalities of our work lies in the fact that we show that dynamic
feedback laws may achieve robust stabilization for families of systems that do
not admit a continuous static robust stabilizer. Indeed, consider the family
{Z(7), v € T} of scalar systems

2(7) P E= f»Y(ZL',U),

where the state x and the input u lie in R. For each v in T, the system S(7y) is the
system resulting from the application of dynamic feedback to £(v). If the map-
ping f, is such that a(y) > 0 on T', b(y) < 0 whenever = is negative and b(y) > 0
whenever 7y is positive, then it is easily seen that any two systems ¥(y_) and
(v4+) with v_ and ~; respectively negative and positive, are not simultaneously
asymptotically stabilizable by means of continuous feedback. Thus, there ex-
ists no continuous static feedback law that robustly asymptotically stabilizes the
family {3(v), v € I'}. However, as we shall see, there exists a continuous static
feedback law that robustly asymptotically stabilizes {S(v), v € T'}, i.e., there
exists a continuous dynamic feedback law that robustly asymptotically stabi-
lizes the family {Z(v), v € T'}. This robust asymptotic stabilizer is constructed
through a new approach where a robust asymptotic stabilizer is considered as
a feedback law that simultaneously robustly asymptotically stabilizes two sub-
families of the original family. More precisely, we first construct the robust
asymptotic stabilizers of two particular sub-families using the ideas introduced
in the previous chapter. We then piece together the two robust asymptotic sta-
bilizers using the interpolation method of Chapter 2, in order to obtain a robust
asymptotic stabilizer for the original family.

We emphasize that the robust asymptotic stabilization [in this sense| of pa-
rameterized families of nonlinear systems by means of merely continuous feed-
back has not been addressed yet in the literature.

We complete this section with a few comments on the system S(v): As usual
for a given z in R2, we let z; and z, denote its coordinates. We note that for
each v in T, Lemma A.6 combined with the enforced assumptions imply that
there exist some neighborhoods of the origin U, and I, in R? and IR respectively,
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and some real analytic mappings h, : U, = R and ¢, : I, — R such that
Fr(@1,22) = hy(z1,72) (31 — dy(22)), (21, 72) € Uy, (7.2)

with h,(0) = a(y), #,(0) = 0 and ¢ (0) = —ZJ(%. Therefore, for each v in I" we

have

hy(z) = a(y) + hy(c)  with %y (z) =0 as =0, (7.3)
and
Py(z) = —(—2%%3:2 + dy(z2)  with %5_2) —0as 22— 0. (74)

Next, for each v in T', because a(-) and b(-) do not vanish on I', we obtain from
(7.2), (7.3) and (7.4), the following lemma.

Lemma 7.1 For each -y in T, there exists a neighborhood of the origin U, =
I, x J, of the origin, such that the following equality holds

{x €U, : fy(z) =0} = {(Sy(22),22) : T2 € Jy},

where ¢, (-) is strictly monotone on J,. Moreover, h,(-) and ¢,(-) are analytic
on U, and J, respectively, and satisfy (7.2), (7.3) and (7.4).

Finally, a few words about the notation and terminology used in this chapter.

For any subset I of IR, we denote respectively by I~ and It, the sets
I"={pel: p<0} and I* £ {pecI: p>0}. For asubset Y of R?, we
let ¥ denote its symmetric with respect to the origin and Y its symmetric with
respect to the z-axis, i.e,

VY 2 {~y: yeY} and  Y* & {(y,—p) € R®: (y, ) €Y}

Finally, for each positive reals « and 3, and for each v in T', we define

Qo = {z€R?: z; = (z2)1*%, 7, > 0}

14+a
Ay = {zeR?: xlz(fﬁz)z , To > 0}
\I’ﬁ = {l' € IR,2 I Xy =T ln(%), Ty > ,B}
I, 2 {zeR?: f,(z)=0}
I £ {zeR’: f,(z)=0, =, >0}
A

I {zeR?: f,(z)=0, 2, <0}
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In order to discuss the robust asymptotic stabilization of the family {S(y), v € r'},
we introduce the family {S.,(7), v € T'} of linearized systems
. &1 = a()z1+b(y)T2
so: {528 .
We distinguish several cases based on the sign of a(-) and b(-). Recall that a(-)

and b(-) take nonzero values on I' so that, by continuity, both have a constant
sign on I'~ and T'*.

In each section, without further reference, we omit the cases a(-) < 0onT, as
in that case any feedback law u(x) = —kx,, where k is a positive real, robustly
asymptotically stabilizes the family {S.(v), ¥ € I'} and the family {S(v), v € T}

7.2 Robust stabilization when the sign of b(-)
is constant on I

In this section, we assume that b(-) is either negative on T' or positive on T.
Moreover, we assume that a(-) is either positive on the entire set T', or negative
on '™ and positive on T't. We restrict our discussion to these two cases as the
remaining case a(-) positive on I'™ and negative on I'* is obtained from the latter
by replacing I'” by I't and vice versa.

Under these assumptions, because the mappings a(-) and b(-) are C* on
I' U{0} and do not vanish on T, it is easily checked by using elementary lin-
ear algebra, that the family {S.(v), ¥ € '} and the family {S(vy), v € T'} are
robustly asymptotically stabilizable by C* (linear) feedback if and only if %%

does not converge to 0 as v goes to 0. If %&% converges to 0 as -y goes to 0,

a linear feedback law with an “infinite gain” would be necessary in order to ro-
bustly asymptotically stabilize the family {S(v), v € T'}. As we shall see below,
it turns out that the family {S(v), v € '} is robustly asymptotically stabiliz-
able by means of continuous, almost C* feedback. Indeed, we will establish the
following theorem:

Theorem 7.1 Assume that either a(-) is positive on the entire set T', or a(:)
is negative on T~ and positive on TF. Furthermore, assume that b(-) is either

negative on T, or positive on T'. Assume that % converges to 0 as 7y tends to

0. Then, there exists a feedback law v : IR?* — R which is continuous and almost
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C®™ on a neighborhood of the origin, and which robustly asymptotically stabilizes
the family of systems {S(v), y € T'}.

In order to avoid a lengthy proof we introduce an intermediate lemma, which
is the key in proving Theorem 7.1.

7.2.1 Stabilizability when a(-) > 0 on I'*, a(-) < 0 on I'"
and b(-) <O0onT

In the following lemma we establish the robust asymptotic stabilizability of the
family {S(y), v € T} in the case a(-) >0 on I't, a(-) <0 on I'~ and b(:) < 0 on
T.

The main lines of the proof are as follows: We first construct a feedback
law ug, based on some partition of unity. Next, we introduce a base at the
origin {Wps} g0 which is independent of the parameter 4. We show that for each
parameter value v in the set T', there exists a positive real 3, such that for each
B in (0,4,] the set W is invariant with respect to the vector field [fy, u,)*.
This enables us to conclude stability of the corresponding closed-loop system.
Furthermore, by proving that the only positive limit set in Wﬁ is the origin, we
deduce that uy, locally asymptotically stabilizes the system S(7).

Lemma 7.2 Theorem 7.1 holds if in addition to the assumptions of the theorem
we have a(-) >0 on T, a() <0 on T~ and b(-) <0 onT.

Proof:
Construction of the stabilizing feedback law :

Recall that a(-) and b(-) are C™ on T and that a(-) does not vanish on T.
Thus, because ZJ(%% — 0 as v — 0, there exists § > 0 such that |§(%§| < 6
for all 4 in T. Therefore, for each v in T*, the halfline {x € R? : z; =
—zi(:%@, Ty > 0} (resp. {z € R?: z;, = —%(%%:cg, Zo < 0}) is above the half-

line {x € R? : z, = 0z,, 75 > 0} (resp. below the half-line {z € R? : z; =
0:172, Ty < O})

Let o be a constant in (0,1), and consider Fig. 7.1: For each 8 > 0, let
W denote the neighborhood of the origin bounded by the closed curve in bold.
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Figure 7.1: Neighborhood Wjp

Because the curves ¥4 and Q, intersect for each 8 > 0 (Lemma C.1), the neigh-
borhood Wj is well-defined for each 8 > 0.

Besides, as ), is tangent to the zo-axis at the origin, {1, is above the half-line
{z € R? : z; = 0x,, z, > 0} for z, small enough. Moreover, by Lemma C.1, the
unique point [h(3), h(F) ln(ﬂﬁ@)] at which the sets {x € R?: z; = 8z, 1, > 0}
and Uy intersect is such that h(8) — 0 as 8 — 0. Thus, there exists § > 0
such that for each 3 in (0, 8], the point [(8), A(8) In(*2)] is below Q. Fur-
thermore, as h(8) = 0 as B — 0, it is easily seen from the definition of Wj,
that {Wps}ge(o,5) is @ base at the origin.

In view of the comments made above, we can now define the following open
subsets of W5\{0}:

R: = region in Wj between the curves {z € R?: z; = —20x,, x5 > 0}
and Q,,
Ry, = region in W5 between the curves A,
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and {z € R?: 2, = 20z,, 2, > 0},

Ry 2 region in W between the half-lines {z € R?: 2, =0zs, 2o > 0}
and {z € R®: z; = —0z,, 75 < 0},

Qp = region delimited by Q,, A, and the segment [(v, @), (v, w)].

We note that {R;, R,, R3, R, R,, R;;} [where R; is the symmetric of R; with re-
spect to the origin for each i = 1,2,3] is an open cover of W;\{0}. Thus, by
Theorem 1.1, there exists a partition of unity {pi, ps, ps, D1, P2, D3} subordinate
to this cover and such that for the support of p; (resp. p;) is included in R; (resp.
R;) for each i = 1,2, 3.

For each k£ > 0, we now define the feedback law u;, : W5 — R by setting

0 ifz=0
ur(z) = § K [—(z2)'"p1(x) + (31 + 22)p2() + 21p3(2)
+(—z2) 71 (z) + (z1 + T2)P2(x) + 21P3(x)] otherwise.

(7.5)

We note that the regions R; and R, do not contain any point of the form (z,,0),

and that the support of p; and p; are included in R; and Rl, respectively.

Therefore, it follows from the smoothness of the mapping p; and p; on W5\ {0}

for each ¢ = 1,2, 3, that u; is C* on W5\{0}, for each k > 0. Furthermore, the

mappings of a partition of unity summing up to 1, it is readily seen from the

definition of u; that

lug(z)] < k max (22|, |21 + 22|, |24]), = € Wj,

and continuity of u; at the origin follows for each k& > 0.

Invariance of the sets Ws and Qj :
The following claim is the key argument to establish robust asymptotic sta-
bility.

Claim 1: There exists ko > 0, and for each v in T there exists By in (0, B] such
that the sets Wg and Q are invariant with respect to the vector field [f., ug,)?
for each 3 in (0, 5,].

We note that the invariance of —Wﬁ will be proved if for each z in the bound-
ary OWp, the vector [f,(z), u,(x)]* points inside the set Wp.
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By applying Lemmas C.3 and C.4 (with 6, 3, « as given here, and I = T,
p=1,n=1—-a,n =1-qa), we obtain two positive reals k; and k,. We set
ko = max (k,, k2). Thus, for each +y in T there exists a neighborhood of the origin
Uy such that the assertions of both lemmas hold for each k > ko . For each «y in
T, let 3, in (0, 8] be such that for each 8 in (0, 3,], we have W; C U,

For each v in I'", Lemma 7.1 combined with Assertion (7.4) yield the ex-
istence of 3, < S, such that TI} (resp. II;) is in the sector {x € Wp, : 21 <
0,73 > 0} (resp. {z € Wy, : 2y > 0,2, < 0}) with f,(z) < 0 (resp. fy(:c) > 0)
for each z above (resp. below) I+ UTI-.

Similarly, for each 7 be in T'*, there exists 8, < /3, such that IT¥ (resp. I17) is
in the sector {zx € W, :x; > 0,25 > 0} (resp. {x € Wp, :21 < 0 za < 0}) w1th
fy(x) < 0 (resp. fy(z) > O) for each z above (resp. below) II¥ UTI;. Further,

because the curves {2, and Q are tangent to the zq-axis it follows from the fact
that IIT U TI7 is tangent to the line {zx € R* : z; = —%mz} that G, can be

chosen small enough so that for each 3 in (0, 8,] the curve Q, (resp. {,) is above
I} (resp. below II).

Next, we fix v in " and 8 in (0, 3,]. From the definition of £,, it is easily
checked that for each z in the segment [(v, @), (v, w)] (vesp. [(—v, —¢p), (—v, —w)])
of OWp, we have f,(z) <0 (resp. fy(z) > 0), so that [f,(z), uk,(z)]’ points into
Wp.

Further, recall that for each i = 1, 2, 3, the support of the mappings p; (resp.
;) is included in R; (resp. R;) and note that the intersection of more than two
sets of the family { Ry, R», R, R, R,, R3} is empty. Thus, for each = in 0Wp, the
vector [fy(z), uk,(z)]® either reduces to one of the vectors listed in the different
assertions of Lemmas C.3 and C.4, and therefore points inside W, or is a convex
combination of two of them. In the latter case, we obtain that [f,(z), uk,(z)]*
points inside Wj either from the fact that we have a convex combination or from
the fact that we have f,(z) <0 (resp. f,(x) > 0) on the segments [(v, ), (v, w)]

(resp. [(—v, —¢), (—v, —w)]) of OWp.

Finally, for each = in £, N Wj, because uy,(x) is positive and f,(z) is nega-
tive [follows from the definition of 8], the vector [f,(z), uk,(2)]* points into Q.
This, combined with the assertion of Lemma C.3 (ii) and the fact that § < g,,
implies that @'ﬂ is an invariant set with respect to the vector-field [f,, u,|*. The
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proof of Claim 1 is completed upon noting that the previous results hold for each
v in T and each G in (0, §,].

Robust asymptotic stability :

We now prove that the feedback law uy,, where kg is as given in Claim 1,
robustly asymptotically stabilizes the family {S(v), v € T'}. Fix 4 in T and let
S(7y) denote the closed-loop system obtained once g, is fed back into S(y). Let
B, be as defined in Claim 1, let § be in (0, 8,], and let 2o be in Wg. In view of
the definition of 3,, we have uy,(z) # 0 for all z in W\ {0} such that £, (z) = 0.
Thus, the origin is the unique equilibrium point of S(v) in W and from the
invariance with respect to S(v) of the compact set W s (Claim 1) combined with
the Poincaré-Bendixson Theorem [38], it follows that the positive limit set P(z,)
of 2o in W is either equal to {0} or to a nontrivial periodic orbit O.

If we assume that P(z¢) = O, then by Theorem 3.1 in [38, p. 150], O encircles
the origin. This contradicts the invariance of the set (s and we conclude that

P(xo) = {0}. Therefore, each trajectory of S(v) starting in W g converges to the
origin [38, Corollary 1.1 p. 1486].

As {Ws}o<p<p, is a base at the origin, we easily obtain that the feedback law
ug, locally asymptotically stabilizes the system S(v) for each « in T. In short,

U, robustly asymptotically stabilizes the family {S(v), v € T'}, which completes
the proof. [ |

Using this lemma we now prove Theorem 7.1.
7.2.2 Proof of Theorem 7.1
We are now able to prove Theorem 7.1.

Proof of Theorem 7.1 :
We distinguish three cases.
a)a(-)>0onT*, a(-)<0onT and b(:) <0onT :

The results follows from Lemma, 7.2.

b) a(-)>0on T+, a(-)<O0onT~ and b(-) >0on T :
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We consider the family {S(v), v € T'} of systems

() : {«"61 = fy(on )

:b2=u

ofy(x1,—2 ofy(z1,—x
Thus, we have Af‘&&vl—ﬁko,o) = a(vy) and ‘f71—622—i)|(0,0) = —b(vy). Because

—b(-) is negative on T', by (a), there exists a feedback laws uy, that robustly
asymptotically stabilize {S(v), v € T'}. In other words, the system

{i’l = f7($1,—x2) (76)

Ty = Uk (Z1,%2)

is asymptotically stable for each v in I'. By the change of variable (z1,z;5)
(x1, —22), the system (7.6) is transformed into the asymptotically stable system

{j/'l = f"/(x17x2)

Ty = —upy(x1, —T2)

and we conclude that the feedback law v, given by vy, (x1,22) = —ug, (21, —22),
robustly asymptotically stabilizes the family {S(v), v € T'}.

c) a(-) >0 on I, and b(-) is either positive or negative on I :

In that case, the result follows easily from the arguments given in (a) and
(b) by replacing I't by T and '~ by 0.

It is easily seen from the proof of Theorem 7.1 that each one of the feedback
law of the collection {ug, k& € [ko,00)} robustly asymptotically stabilizes the

family {S(vy), v € T'}.

7.3 Robust stabilization when a(-) is positive
and the sign of b(-) changes

In this section, we only consider the case b(-) negative on I'~ and positive on
I'*. The symmetric case b(-) positive on I'" and negative on I't is obtained
from the former by replacing I'* by I'™ and vice versa. It is easily checked that
given any two systems S(vy-) and S(v4), with v- < 0 and 4 > 0, there exist
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neither a C! feedback law that simultaneously asymptotically stabilizes these
two systems, nor a continuous static feedback law that simultaneously stabilizes
= fy_(x,u) and & = f,, (x,u). Thus, the family {# = f,(z,u), v € T} (resp.
{S(v), v € T'}) is not robustly stabilizable by means of continuous (resp. C')
feedback. However, as we shall see below, the family {S(v), v € T'} is robustly
asymptotically stabilizable by means of continuous feedback.

This result is proved by designing a feedback law that simultaneously robustly
asymptotically stabilizes the families {S(y), v € "} and {S(v), v € I't}. More
precisely, we define two mappings u;:o and u that robustly asymptotically sta-
bilize the family {S(v), v € [*} and {S(v), v € T~} respectively, by using a
first partition of unity similar to that introduced in the proof of Theorem 7.1.
Then, in order to obtain a feedback law that robustly asymptotically stabilizes
the entire family {S(v), v € T'}, we “piece” together v} and uj, by using the in-
terpolation method of Chapter 2. Robust asymptotic stability is shown through
an argument similar to that used in the proof of Theorem 7.1.

Theorem 7.2 Assume that a(-) is positive on T, and that b(-) is respectively
negative on T~ and positive on Tt. Then, there exists a feedback law v : R2 - R
which is continuous and almost C® on a neighborhood of the origin, and which
robustly asymptotically stabilizes the family of systems {S(v), v € T'}.

Proof: For the sake of clarity we divide the proof of the theorem into two cases.

a) The case M—)O as v — 0:
a(7)

Construction of u; and u} :

In that case, the assumptions on a(-) and b(-) yield the existence of § > 0 such
that |g£(%%| <@ forallyinT. Let o be a constant in (0,1) and consider Fig. 7.2

and Fig. 7.3: For each § > 0, we let Wj; and WE be the open subsets of
R? bounded by the closed curves in bold, in Fig. 7.2 and Fig. 7.3 respectively.
The neighborhood Wﬂ'* is obtained by rotating Wj around the z,-axis by 180
degrees. In Fig. 7.2, the segments [ﬁs,Al] and [Aj, A3] are respectively horizon-
tal and vertical, while the segments [As, As] and [A4, As] have respective slopes
g% = —§ and %%12- = p where u and § are fixed positive reals such that § > 26.

Combining this last inequality with the fact that the curves ¥4 and 2, intersect
for each 8 > 0 (Lemma C.1), we obtain that the neighborhoods Wj and Wﬂ'*
are well-defined for each 8 > 0.
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Figure 7.2: Neighborhood Wy in the case %%% —0asy—=0

Besides, because the curve {2, is tangent to the z,-axis at the origin, it is
above the half-line {x € R?: z, = fz,, T5 > 0} for x5 small enough. Further-
more, Lemma C.1 yields the existence of 3 > 0 such that for each 3 in (0, 5],
the intersection of {x € R? : z; = Ox,, 2, > 0} with U4 is below {2,. Finally,
it is easily checked that 3 can be chosen such that for each 3 in (0, 8], both As
and the intersection of [Ag, As] with {z € R?: z, = —f1x, 22 < 0} are above
2%,. We now define the set W by

A W UWE
W = Wy uUuWwy.

In view of the comments made above and the symmetry of the neighborhoods
Wj and W, we can define the following open subsets of W\{0}:

R: £ region in W between the curves Qg and 2,,
R, = region in W between the curves A, and {x: z; = 20z,, x5 > 0},
R; = region in W between the half-lines {z : z; = 0z, 22 > 0} and
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Figure 7.3: Neighborhood W in the case %%% —0as vy—0

{z: 1= —0z,, 2o <0},
R4 = region in W between the half-line {z : z; = —20z,, 2, < 0}

and the curve A},
Qg region delimited by A,, €2, and the segment [A,, A3],
region delimited by €2j,, A}, and the segment [By, Bs],

Ts

Because {Ry, .., Ry, R1, .., R,} is an open cover of W\{0}, by Theorem 1.1 there
exists a partition of unity {p, .., ps, P1, .., Ps} subordiAnate to this cover such that
the support of p; (resp. p;) is included in R; (resp. R;) for each i =1,...,4.

A
A
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For each k > 0, we now define the mappings u;,uf : W — R, by setting

0 ifx=0
ue (z) = —k(z2)'~p1(x) + k(z1 + z2)pa(x) + k1 p3(z) — (21)? pa()
k +k(—z2) 7*P1(z) + k(1 + 2)Pa () + k1 P3(~’L')h (21)? Pa(x)
otherwise,
and
0 ifr=0

— kx1 p3(x) + k(=21 + 22)pa(z)
) kxq pg(SL') + k(—(L‘1 + x2)ﬁ4(a:)
otherwise.

+(z) = —k(z2)7p1(2) + (21) pa()
+h(—22)'" "‘pl(w) (1)? Pa(z

The argument given in the proof of Theorem 7.1 to show the smoothness of uy
transposes easily here, and for each k > 0, both mappings u; and u; are C* on
W\{0} and continuous at the origin.

Using uj, and u}, we now construct the desired stabilizing feedback law u.

Construction of wu; :

It is not hard to see from Lemma C.2 that both families {Wj } 4¢3 and
{W§ }sc(0,5) are bases at the origin with

W; CcW; and Wi CWF whenever §< g (7.7)

Thus, there exists a sequence of positive reals {5;}%2, included in (0, 3] such
that

WimnCcW;, j7=012,.... (7.8)
and
B; =0 as j — o0 (7.9)
where we have set
Wo = Wi, n=0,12,...,
A

Want1 Wi 7 =0,1,2,..

Combining the inclusions (7.8) with the fact that {W;}32, is a base at the origin
[which follows from (7.9)], it is not hard to check that {W;_1\W;;1}%, is an
open cover of Wo\{0}. Let {g;}32, be a partition of unity subordinate to the
cover {W;_1\W;41}32, such that the support of g; is included in W;_1\W 41,
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for each j = 1,2,... [follows from Theorem 1.1].

For each k > 0, we now define the feedback law u; : Wy — IR by setting
0 ifz=0
— o0 o0
ug(x) = uf (z) D qon(@) + ug (2) )" gont1(x) otherwise.
n=1 n=0

Next, we fix £ > 0 and we show that u; is C* on W;\{0} and continuous
at the origin. Let z be in Wy\{0}. It is easily checked that there exists a
neighborhood U, of z such that U, intersects with at most three sets of the
collection {W;_1\W 4. }%21- Because the support of each mapping g; is included
in Wj_l\Wj+1, the infinite sums in the expressions of u; reduce to the sum of
at most three fixed terms on U,. Therefore, the smoothness of u; on W5\ {0}
follows from that of the mappings uy, v} and ¢;, j = 1,2,.. ..

Furthermore the mappings of a partition of unity summing up to 1, it is
readily seen from the definition of u; that

lug(2)] < max(|uf ()], |ug (2)]), = € Wo\{0},

and for each k > 0, continuity of u; at the origin follows from that of u; and

+
up .

The key argument for proving robust asymptotic stabilizability lies in the
following claim.

Invariance of the sets W; :

Claim 1: There ezists ko > 0, and for each v in I'™ (resp. in I'") there ezists
an integer n, such that the sets Wonyy and Qg, ., (resp. Wan and Tp,,) are
invariant with respect to the vector field [f,, ug,|* for each n =n,,n, +1,....

The invariance of Wj will be proved if for each z in the boundary 0W;, the
vector [f, (), uk,(2)]* points inside the set W;.
By definition of the partition of unity {g;}$2,, we have
gn(z) =1 and ¢i(z)=0, j#m, (7.10)

for each z in some set_ Win—1\W 41 which does not belong to any other set
of the family {W;_1\W;11}52,. Therefore, because for each m = 1,2,..., the
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boundary 0W,, of the neighborhood % is included in W,,_;\W,,41 and does
not intersect with any other set W;_1\W 1, j # m, the definition of u;, yields

ug(z) = uf(z), z€ MWy, n=12,..., (7.11)

and
up(z) = ugp(z), =€ MWpy, n=0,1,.... (7.12)

Recall that for each j = 1,2,... we have W; C W,. Because uj (z) and uj (z)’
are both equal to —k(z3)'™* if z is in A, N W, and to k(—z,)*~% if z is in
A:NW, , we get

up(z) = —k(z2)'™%, zE€ANW,, j=1,2,... (7.13)

and .
up(z) = k(—22)'™%, € ANW,;, j=1,2,.... (7.14)

Furthermore, by definition of u; we have
up(z) >0, z€Q,NW;, j=12,... (7.15)

and .
up(z) <0, zeQBNW,, jij=12,.... (7.16)

From Lemmas C.6 applied with I = I'", and 6, ¢ as given here (resp. Lemma
C.7 applied with I = ', and @, § as given here), we obtain for each v in I'~
(resp. in T'), a neighborhood V, such that the assertions of Lemma C.6 (resp.
Lemma C.7) hold.

We now apply Lemmas C.3 and C.4 (with 6, u, 8 and « as given here, and
I=T",np=1-0qa,7 =1—-«) and Lemma C.5 (with 6, y, @ as given here,
and I =T, n =1 — «): we obtain positive reals k,, k, and k3, and for each v
in ', we get a neighborhood of the origin U, such that the assumptions of the
lemmas hold for each k£ > max (ky, ko, k3) and each z in U,. Without loss of
generality, for each « in T', we take U, C V,,. Moreover, for each + in I'" (resp.
T'*t) we let 3, in (0, 3] be such that W5 C Uy (resp. Wg’ C U,). We also set

ko £ max (k1, k2, k3), so that the assertions of the three lemmas hold for each
k> k.

Next, we fix v in I'" and we define 3, as follows: In view of lemma 7.1 and
Assertion (7.4), there exists B, < By such that II¥ N Wg. (resp. II; NWj ) is in
the sector {z € Wy : z1 > 0,25 > 0} (resp. {z € Wy : 21 < 0,2, < 0}) with
fy(x) < 0 (resp. f,,(a:) > 0) for each = above (resp. below) the curve I1,,.
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Further, because the curves (1, and ﬁa are tangent to the x,-axis, it follows
from the the fact that I1, is tangent to the line {z € R?:z; = —%%%1172} at the

origin that @, can be chosen small enough so that for each 3 in (0, 8,] the curve
Qq (resp. {1y) is above T} (resp. below II).

Similarly, for each « in T'*, there exists 3, in (0, 3,] such that the set TL¥ NWj
(resp. TI; N Wy ) is in the sector {z € Wi : 21 < 0,35 > 0} (resp. {z eWy :
z; > 0,29 < O}) with f.(z) > 0 (resp. fq( ) < 0) for each z in W above

(resp. below) the curve I1,.Moreover, 3, can be chosen such that we also have
the curve €2, N W4, (resp. Qs NW; ) above the curve I} (resp. below II7).

Because (3; — 0 as j — oo, the family {W,-}j___1 is a base at the origin, and
for each - in T, there exists an integer n., such that

Bi < By, Jj=2ny,2n,+1,... (7.17)

and
W, c Uy, j=2n,2n,+1,.... (7.18)

It follows from (7.17) and the inclusions (7.7) that for each n = n7, ny +1,.

the neighborhood Wg, _ (resp. W, ) is included in Wj_ (resp. Wﬂ ). In other
words, for each n = nfy,n,, +1,. the neighborhood W2n+1 (resp. Way) is in-
cluded in Wy (resp. W ) Thus the definition of 3, implies that for each z
on the vertical segments "of OWany1 (vesp. OWa,), we have f,(z) < 0 for z in
[A2, A3] (resp. [Ba, Bs)) while f,(x) > 0 for z in [Ay, As] (resp. [Bs, Bs)).

Fix v in T~ and n in {n,,n, +1,...}. Recall that for each ¢ =1, 2,3, 4, the
support of the mappings p; (resp. pz) is included in R; (resp. R1) Further note
that the intersection of more than two sets of the family { Ry, ..., R4, Rl, R4}
is empty. Thus, for each z in OWapn41, the vector [f,(x), uy, (a:)]t either reduces
to one of the vectors listed in the different assertions of Lemmas C.3, C.4 and
C.6, and therefore points inside Wy, 1, or is a convex combination of two of
them. In the latter case, [f,(z),ug,(x)]* points inside W,y either because we
have a convex combination, or because we have f,(z) < 0 (resp. f,(z) > 0) on
the vertical segments [As, As] (resp. [Ay, As]) of OWan41.

By (7.12), uk, = ug, on OWsay1 and it follows that the vector [f, (), ug, (x)]*
points inside Wy, 11, for each = in OWy, ;4.

Because we have uy, (z) > 0 [by (7.15)] and f,(z) < 0 for each z in Q,NWonq1,
the vector [fy(z), uk,(z)]* points inside Qg,,,,. Further, (7.13) combined with
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the assertions of Lemma C.3 (ii) imply that the vector [f,(z), ug,(x)]* points
inside Qg,,,,, for each z in Ay N Wapty. Thus, as fopi1 < B, it follows from the
definition of 3, that the vector [f,(z), uk,(2)]* points inside Qg,,,, for each z in

aQﬁ2n+1 .

Therefore, for each n in {n,,ny +1,...}, the sets Wyn11 and Qp, ,, are in-
variant with respect to the vector-field [f,, u, .

Similarly, (7.11), (7.14), (7.16), (7.17) and (7.18), together with the asser-
tions of Lemmas C.5 and C.7 yield the invariance with respect to the vector-
field [f,, ug,]t of the sets Wy, and aﬁw for each « in T't and for each n in
{ny,ny +1,...}. The proof of Claim 1 is now complete.

Robust asymptotic stability :

Let ko be as defined in Claim 1. Fix v in I'". Let n, be as given in Claim
1 and let n =n,,n,+1,.... In view of (7.17) and the definition of §,, we have
Uk (x) # 0 for all z in Wayyy\{0} with f,(z) = 0, so that the origin is the
unique equilibrium point in Wy, 11 of the system S() obtained once uy, is fed
back into S(y). Thus, by the invariance of the compact set Wans1 With respect
to S(7) (Claim 1), and the Poincaré-Bendixson Theorem [38], the positive limit
set P(zo) of 29 in W, is either equal to {0} or to a nontrivial periodic orbit

0.

If we assume that P(zo) = O, then by Theorem 3.1 in [38, p. 150], O encircles
the origin. This contradicts the invariance of the set @4, ., and we conclude that

P(x) = {0}. Therefore, each trajectory of S(7) starting in Wy, ,, remains in

W ant1 and converges to the origin [38, Corollary 1.1 p. 146].

As {Wany1}nz,, is a base at the origin, we obtain that the feedback law uy,
locally asymptotically stabilizes the system S(-y) for each « in I'".

Similarly, by using the invariance of the sets W, and Tﬂzn, we get that uy,
locally asymptotically stabilizes S(v) for each ~ in T't.

We have therefore proved that if % — 0 as v — 0 then {S(v), v € T'} is ro-

bustly asymptotically stabilizable by means of continuous feedback. To complete
the proof of the theorem we now consider the remaining case.

b) The case % does not converge to 0 as v tends to 0
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In this case, because a(-) and b(-) are C*° and do not vanish on I', we have
[g&% — +00 as v — 0. Therefore, there exists § > 0 such that |2J(%%| >

8, v € T. The result is now obtained through the same arguments as those in
the proof of (a) with 6 as defined above. |

We note that the robust asymptotic stabilizer that we have found is not
unique. In fact, each one of the feedback laws of the collection {ux, k € [ko, 00)}
robustly asymptotically stabilizes the family {S(v), v € T'}.

To complete our study, we now investigate the case when the sign of both
a(-) and b(-) change as -y takes the value 0.

7.4 Robust stabilization when the signs of a(-)
and b(-) change

The next theorem yields a necessary condition for robust asymptotic stabiliz-
ability of the family {S(v), v € T'}, in case a(-) is negative on I'” and positive
on I't. The companion case a(-) positive on I~ and negative on I't is easily
deduced from the following results by replacing I'™ by I'* and vice versa.

Theorem 7.3 Assume that a(-) is negative on '™ and positive on T't, and that
b(-) is negative (resp. positive) on T'~ and positive (resp. negative) on T't. If
the family {S(v), v € T'} is robustly asymptotically stabilizable by a feedback law
v:R? = R which is continuous on a neighborhood of the origin, then we have

b(y-) b(v+) bly+) _ b(y-)
a(y-) . a(v+) a(7v+) : 0(7—))’
for all v in T~ and all 44 in T*.

(resp. (7.19)

Proof: We only consider the case b(-) negative on '~ and positive on T't, as

the arguments presented below carry over to the case b(-) positive on I'”™ and
negative on I't.

We prove the theorem by a contradiction argument. Suppose that there exists
a continuous feedback law v that robustly asymptotically stabilizes the family
{S(7), v € T'} and that (7.19) does not hold. Then, there exist y_ and 7 in '~
and T'* respectively such that

b(y-) b(v4)
a(r-) ~ alys)
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and it follows that the half-line {z € R? : z, = —%z;%xg,xQ > 0} is below the

half-line {z € R?: 2, = _Z(:yy+ Zo, 2 > 0}. This together with Lemma 7.1

and Assertion (7.4) yield the existence of a ball B,(0) of radius € such that the
following holds.

i) I3 N B,(0) and II#, N B.(0) are in the sector {x € R*: z; < 0,2, > 0},
i) I N B.(0) is below I, N B,(0),

iii) For each z in {z € B,(0) : 1 < 0} we have f,_(z) > 0 whenever z is below
I} and f,_(z) <0 whenever z is above IT_,

iv) For each z in {z € B,(0) : 2; < 0} we have f,, (z) > 0 whenever z is above
I}, and f,_(z) < 0 whenever z is below II .

Because v locally asymptotically stabilizes S(y-) and S(v4), it follows from (iii)
and (iv) that € can be chosen small enough so that

v(zg) <0, ze€l NB(0) and w(z)>0, zellf NBI0).

Let S be the region of B,(0) below IT}  that is between ITY and {(0,z2) €
R? : z, < 0}. The negativeness of f,, on S [follows from (iv)] combined with the
stability of the system associated with the vector-field [f,,,v]* imply that each
trajectory z(-,zo) of this system starting in S leaves S. Thus, because f,, and
v are negative on I} N B.(0), and f,, is negative on {(0,22) € B.(0) : z2 < 0},
it follows that z(-,zo) cannot leave S, neither through II¥ , nor through the
To-axis. We conclude that z(-, o) leaves S through the boundary of B.(0). In
short z(-, o) leaves B,(0) whenever z; lies in S, a contradiction with the fact
that v stabilizes S(vy). Hence the theorem. ]

In the situation where the necessary condition (7.19) is satisfied, we do not
have any sufficient condition for the robust asymptotic stabilizability of the fam-
ily {S(v), v € T'}. However, for the family of linearized systems {S.(vy), vy € T'}
obtained from {S(), v € T'}, the previous theorem can be refined and we ob-
tain the following necessary and sufficient condition for the robust asymptotic
stabilizability of the family {S.(v), v € T'}.

Theorem 7.4 Assume that a(-) is negative on T~ and positive on T'F, and that
b(+) is negative (resp. positive) on T'~ and positive (resp. negative) on T'F. Then
there exzists a feedback law v : R? — R which is continuous on a neighborhood of
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the origin and which robustly asymptotically stabilizes the family {S.(~), v € T'},
if and only if

b(r-) _ b(7+)

b(vy)  bly-)
a(r) < () <a) (7.20)

(resp. a(v+)  a(yo)

for ally_ in T~ and all y4 in T,

Proof: We only consider the case b(-) negative on I'~ and positive on T't, as
the arguments presented below carry over to the case b(-) positive on I'~ and
negative on I't.

We first show that under (7.20), the family {SL(y), v € T'} is robustly asymp-
totically stabilizable by C* feedback. Under the assumptions made on a(-) and

b(+), g(% converges either to 0, to +0o, or to a positive real 7. Because ZJ(% 15

positive on T, it is easily checked that %(%% converges to some positive real 7
whenever (7.20) holds.

Note that under (7.20), there does not exist any - in I'" and 4 in 't

such that 2%;:3 = 28::)) = 7. Let £ < —sup{a(y):v €T} and define the

feedback law v : R? — R as follows: If %%:’% = 7 for some 7 in I'", set

u(z) = k[%$1+$2]+w?. Ifzi(:r% = 7 for some «y in I'*, set u(z) = k[%x1+x2]—m{‘.

Finally, if % # 7 for all yin T, set u(z) = k[%xl + z5]. By adapting Example

3.8 in [51, p. 118] to our setup, it is not hard to check that u robustly asymp-
totically stabilizes the family {S.(v), v € T'}.

Now, if {SL(v), v € T'} is robustly asymptotically stabilizable by some con-
tinuous feedback law v, then by Theorem 7.3 we have

b(1.) _ b(ya)
ar0) = )’

v- € F_, Y+ € F+.

Assume that there exists 7 and v, in T~ and I'* respectively such that

b(y-) _ b(v+)
a(y-)  aly)’
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and define the set ® by setting

b(v+)
® £ {zeR?: z;=-— +x,x >0
{ L a0

Because the feedback law v stabilizes Si(y-) and Sp(v4), the origin is an iso-
lated equilibrium of the corresponding closed-loop systems and there exists a
neighborhood of the origin U such that v(z) # 0, € ® N U . Because,
a(y-)z1 +b(y-)ze < 0 for all z in the region above ® and a(v, )z, +b(v4 )z, <0
for all z in the region below ®, the neighborhood U can be chosen small enough
so that

v(z) <0 and w(z)>0, ze€dNU,

which is impossible. Therefore, if {S.(v), ¥ € T'} is robustly asymptotically
stabilizable by continuous feedback, then we have

b) _ bls)
aly-) o)

and the proof of the theorem is complete. [ |

- €T7, 44 €T,

The investigation of the robust stabilization of the family {S(vy), v € T'}
is now complete. In case the signs of a(-) and b(-) both change, we provide
a necessary condition the existence of a robust asymptotic stabilizer for the
family {S(v), v € T'}, while we give a necessary and sufficient condition for the
asymptotic stabilizability of the family {S.(v), v € T'}. In all the other cases,
whenever there exists no C* feedback law that robustly asymptotically stabilizes
{S(«), v € T'}, we construct a merely continuous robust asymptotic stabilizer.

The robust stabilization of the particular family {S.(7), v € I'} has been
investigated in Ho-Mock-Qai and Dayawansa [42]. The methods used for this
simpler problem are basically the same as those presented here. However, be-
cause less technicalities are involved these methods may seem clearer.

7.5 Obstruction to Lipschitz robust stabiliza-
tion

Tt is of theoretical interest to establish a classification between classes of feedback
laws with different degree of regularity, according to what they can achieve for
stabilization purpose. For example, by proving that every fully controllable sys-
tem can be asymptotically stabilized by piecewise analytic feedback, Sussmann
[74], showed that the class of piecewise analytic feedback laws is “superior” to
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the class of continuous feedback laws. Here, one may wonder whether Lipschitz
continuous feedback can achieve more than continuous and almost C*° feedback,
for robust stabilization problems .

The following result partially answers this question: We prove that some
family of systems satisfying the assumptions of Theorem 7.1, cannot be robustly
asymptotically stabilized by a feedback law v : R? — R which is Lipschitz
continuous at the origin, while Theorem 7.1 implies that they can be robustly
asymptotically stabilized by means of continuous and almost C* feedback.

Recall that a mapping v : R? — R is Lipschitz continuous at the origin, if
there exists a neighborhood U of the origin and L > 0 such that

[o(@) —v@W)| < Lllz—yll, (z,9) €U

Although, this result may seem to be of limited importance, the construction
provided in the proof is by itself interesting and somewhat surprising.

Theorem 7.5 Assume that a(-) is positive on T' and b(-) is either negative or
positive on T'. If

2
M—)+oo as v — 0, 7.21
b(7)

then, there does not erist any feedback law v : R?* — R that is Lipschitz
continuous at the origin and that robustly asymptotically stabilizes the family

{S(7), veT}.

We prove the theorem only in the case b(-) negative on I, as the proof of the
companion case b(-) positive on I' is similar. Under this assumption Lemma, 7.1
yield the existence of a neighborhood of the origin U, = I, x J, for each v in T,
such that

I, £ {zelU,: fy(z) =0} = {(¢y(22),22) : 32 € J,}, (7.22)

with ¢, (-) strictly increasing on J,, and (7.2), (7.3) and (7.4) fulfilled. Moreover,
for each z5 in J} (resp. J-) we have ¢,(x2) > 0 (resp. ¢,(z2) < 0). Finally, f,
is negative (resp. positive) above (resp. below) {(@,(z2),z2) : z2 € J,}.

Consider Fig. 7.4. For each v in T, we define :
P, £ Open region in U, between the curves {(2¢,(z2), z2), s € Ji}
and {(—2¢,(z2), x2), 22 € J},

P72 Open region in U, between the curves {(—2¢,(z2), z2), =2 € J7}
and {(2¢y(22), z2), T2 € J '},
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Open region in U, between the curves {(—2¢,(x2), 22), 2 € J}}
and {(2¢,(x2),22), z2 € J;},

@, = Open region in U, between the curves {(—2¢,(22),z2), 2 € J.'}
and {(2¢7(.’L'2),.’E2), X9 € J,-;'}

To prove the theorem, we introduce a key intermediate lemma.

Lemma 7.3 Suppose that the assumptions of Theorem 7.5 hold and that b(-) < 0
on T'. Furthermore, assume that there exists a feedback law v : R?* — R which
18 Lipschitz continuous at the origin and which robustly asymptotically stabilizes
the family {S(%), v € T'}. Then, there exists an interval I = (0,() included in T
and for each «y in I, there exists some neighborhoods of the origin i, and ]7 mn

R, included in I, and J, respectively [where I, and J, are as given in (7.22) |
such that:
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i) If the vector [f,(2),u(2)]' points into P, for some v in I and some z in

{20, (z2),2) 1 mp € JF}, then v(y) 20 for ally in P,N{z € R?: z, =
Z2} N (L, X Jn,).

ii) If the vector [f,(w), u(w)] points into Py for some ~y in I and some w in
{(2457(1173),3:22: xe € .7,7}, then v(y) <0 for ally in Py ({z € R? 1 25 =
wa} N (L, X JA,).

Proof: We only prove (i) as the proof of (ii) is similar.

We assume that the claim does not hold. Then, for each n = 1,2,.. ., there
exists 7, in (0,1) such that either one of (i) or (ii) does not hold. We assume
that (i) is violated infinitely many timesasn =1,2,...and we fixnin {1,2,...}.
Then, for each m = 1,2,... there exists zym = (2™, 2"™) in (0, %) X (0,%)
and ynm in Py, N{z € R?: 25 = 23"} such that

o 21" = 2¢,,(25™) and [f,, (Zam), ¥(2nm)]t points into P, [note that this
implies that v(2z,,) > 0 for m large enough],

® U(Ynm) <O0.

1 1
Because (0, —) x (0, E) is included in I, x J,, for m greater than some integer

My, it follows from the fact that [f,, (2n,m), V(2am)]* points into P, that

f'y (Zn m) I n,m
Lm Tev/ < 2 2z .
'U(zn,m) = ¢fyn( 2 )
with
V(Zpm) > 0 and v (Znm) >0, m=mg,m,+1,..., (7.23)

where cﬁﬁm denotes the derivative of ¢,,. Hence,

S (Znm)
2¢/, (25"™)’

Furthermore, in view of (7.23) and the inequality v(ynm) < 0, we get

V(Zpm) > m=mp,mp+1,.... (7.24)

|'U(Zn,m) = V(Yn,m)| > V(Zn,m)
“zn,m - yn,m“ - 275?’7” ’

Thus, the equalities 21"™ = 2¢,,(25™), fy.(Zum) = hy, (Znm) (2ZP™ — by, (257™))
combined with (7.24), yield

m="my,m,+1,....

I'U(zn,m) = V(Yn,m)| > hy, (Zn,m)

> , m=m,,m,+1,... 7.25
Fonm —vnmll = 8L (57 m M+ 1, (7.25)
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Recall that n is fixed in {1,2,.. .} and that h,, (0) = a(v,) with ¢/ _(0) = —%;ym%.
Because 2y, converges to the origin as m tends to oo, the analyticity of tnhe

mappings h,, and ¢, combined with (7.25) yield

Iv(zn,m) - U(yn,m)| N az(’)’n)
”zn,m - yn,m” —8b(vn)

as m — oo,

so that there exists an integer m/, > m,, satisfying

|U(zn,m) - 'U(yn,m)| > a2(’)’n)
lznm = Ynmll = —=8b(v,)’

m=ml,ml,+1,... (7.26)

For each n = 1,2,..., we pick m > m/, such that ||z,.] < %, and we set
~ A . ~ A ~ ~ . .
Zn = Znm With 4, = y, . Because, Z,, and g, converge to the origin, and -,
converges to 0 as n tends to oo, it follows from (7.21) and (7.26) that

[9(22) = 0(a)]

A — 00 as N — 09, (7.27)

a contradiction with the fact that v is Lipschitz continuous at the origin.

If (i) is violated only finitely many times, then (ii) does not hold infinitely
many times, and by a similar argument one can exhibit some sequences {Z,}32,
and {g,}%,, converging to the origin [where g, lies in {z € R*: z, = 3¢} for
each n = 1,2,.. ], such that (7.27) holds. This contradicts also the Lipschitz
continuity of v at the origin and the lemma follows. [ |

By using this lemma, we now prove the theorem.

Proof of Theorem 7.5 :

We only study the case b(-) negative on T', since the proof in the case b(-)
positive on I' is similar.

Assume that there exists a feedback law v that is Lipschitz continuous at
the origin and that robustly asymptotically stabilizes the family {S(v), v € T'}.
Then, there exists an interval I included in I' and some neighborhoods of the
the origin I, and J, included in I, and J, respectively [where I, and J, are as
given in (7.22)], such that Lemma 7.3 (i) and (ii) hold.

Fix v in I and let ¢ > 0 be such that B,(0) is included both in I, x J, and
in the domain of attraction of the closed-loop system S() obtained once v is
fed-back into S(v). Let § > 0 be such that every trajectory that starts in B;(0)
remains in B.(0) forever. Let z = (21,0) be in B;(0) with z; > 0. Because
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fy is positive in the region (P; uQy ) N B.(0), it is easily checked that the

trajectory z(-,z) of S(v) leaves P; UQ; through the curve {(2¢,(z2), z2), o >
0}. Therefore, we may take z is in B.(0) N {(2¢,(z2), z2), x2 > 0} such that the
vector [fy(2),v(2)]* points into P,.

Because f, is negative on P, N B.(0) and v(y) > 0 for each y in {y €
B.(0) : ys = 2} [follows from Lemma 7.3 (i)] the trajectory z(:,2) of S(v)
leaves P, through the curve {(—2¢,(x2),2), z2 > 0}. Further, because f, is
negative on the set Q, N B:(0) and v is non-negative on {y € B.(0) : y» = 2o} it
follows from the fact that the mapping —2¢,(-) is decreasing that z(-, z) enters
the region P through {(2¢,(x2), z2), T2 < 0}. Next, because u(y) < 0 for each
y in {z € B(0) : o = wo} [follows from Lemma 7.3 (ii)] and f, is positive in

Py, the trajectory (-, z) leaves Py through the curve {(—¢,(z2), z2), T2 < 0}.

Finally, because the mapping f, is positive on Q7 and u(y) < 0 for each y in {z €
R?: z, = w,}, we obtain from the fact that the mapping —2¢,(-) is decreasing
that the trajectory z(-, z) leaves Q7 to enter P, through {(2¢,(z2), z2), 22 > 0}.

Therefore, the trajectory z(-, z) spirals toward the origin and the origin is a
focus.

Consider Fig. 7.4. Let Z, w, @ be the points where the trajectory z(-, z) of S(7)
crosses for the first time the curves {(—2¢,(22), 22), 22 > 0}, {(2¢,(22), 2), z2 <
0} and {(—2¢,(z2),z2), z2 < 0} respectively, and let y be the point at which
z(-, z) returns to {(2¢,(x2), z2), z2 > 0} for the first time.

From Lemma 7.3 and the fact that ¢, (-) is strictly increasing, we obtain
Zo > 2o and -z > 7. (7.28)
Further, because f, is negative on ()., we get
—w > —2Z. (7.29)
Next, Lemma 7.3 combined with the fact that ¢, is strictly increasing yield
— Wy > Wy with @ > wy, (7.30)
and f, being negative on Q)7 we get
N > Wi (7.31)
We now obtain from (7.28)-(7.31) that
Y1 > W > —wy > —Z1 > 2.
This, together with the fact that the mapping ¢, is strictly increasing yield

Yo > 2o, (7.32)

136



and it is easily checked that z(-, z) does not spiral towards the origin. A contra-
diction with the stability of S(-y), which completes the proof.

Finally, following the ideas of Section 2.3, we again show that the use of
partitions of unity for the design of controllers does not necessarily yield feedback
laws that cannot be computed and implemented.

7.6 A simple expression for a robust stabilizer

Using the ideas of Section 2.3 of Chapter 2, we now construct an explicit feedback
law that robustly asymptotically stabilizes the family {S(v), v € T'} and that
does not involve a partition of unity.

In the sequel, we assume that the sign of b(-) is constant on I'. In this case,
because there exists a linear feedback law that robustly the family {S(v), v € T'}

if %% does not converge to 0 as -y goes to 0, we also assume that %% converges
to 0 as y goes to 0.

We start by assuming that a(-) > 0 on T'*; a(-) < 0 on T~ and b(-) < 0
on I', and we show that we can circumvent the computation of the partition of
unity {p1, p2, ps, P1, P2, Ps } that appears in the expression of the robust stabilizer
constructed in Section 7.2. We exhibit a family {q1, g2, g3, ¢1, G2, @3} of mappings
that are explicit and by replacing the mappings {p;, ps, ps, D1, D2, D3 } by these new
mappings in the expression of the robust stabilizer (7.5), we obtain a feedback
law that robustly stabilizes the family {S(y), v € T'}.

First, we let o be in (0,1). We define 6, 3, as well as the sets W3, Qp, R,
R, and Rj exactly as we did in the proof of Lemma 7.2. We then introduce the
following subsets of Wj:

S, £ closed region in W; between {z € R?: z; = —20x,, 2, > 0} and
{z € R*: z; = —fz,, 2, > 0}, minus the origin,

Sy = closed region in W5 between {z € R?: z, = —20z,, 12 > 0} and
A,, minus the origin,

Ss = closed region in Wp between A, and (2, minus the origin,

S; = closed region in W3 between ), and {z € R?: 2, =0z, 25 > 0},
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Figure 7.5: Neighborhood W} for explicit robust asymptotic stabilizer

minus the origin,

S5 = closed region in W3 between {z € R?: z; = 6z, zo > 0} and
{z € R?: z; = 20z, x5 > 0}, minus the origin,

St

closed region in Wj5 between {z € R?: z; =0y, 2o > 0} and
{z e R?: z, = —20z,, 25 < 0}, minus the origin,

as shown in Fig. 7.5. The following lemma will be the key for constructing the
desired family of explicit mappings.

Lemma 7.4 Assume that a(-) > 0 onTF, a(-) <0 on T~ and b(-) <0 on T.
Let {q1,42,43,1, G2, @3} be a collection of mappings defined from Wz\{0} into
[0,1], that satisfy the following assertions :

i) The mappings of the collection are C*™ on W3z\{0},

ii) There exists m > 0 such that

;(qi+@')(w) > m, e Wz\{0}.
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ili) g =1 0n Sy (resp. § = 1 on S,), while all the other mappings of the
collection {q1, s, g3, Q, G2, g3} vanish on this set,

iv) g =1 0n Sy (resp. o = 1 on §4), while all the other mappings of the
collection {q1, g2, g3, G1, @2, 3} vanish on this set,

v) gs =1 on Sg (resp. s = 1 on 5'};), while all the other mappings of the
collection {q1, 2, g3, @1, @2, G3} vanish on this set.

Further, for each k > 0, let the mapping Uy, : W; — R be given by

0 ifz=0
U(z) = k [—(22) %0 (2) + (21 + 22) g2 (x) + 2105(2)
+(—22)' %G1 (z) + (21 + 22)%o(T) + 71G3(x)]  otherwise.
(7.33)
Then, for each k > 0, the mapping Uy, is continuous and almost C* on Wj.
Moreover, there exists ky > 0 such that the feedback law gy robustly stabilizes

the family {S(v), v € T'}.

Proof: By using the fact that the mappings of the collection {¢1, g2, ¢s, §1, @2, G }
sum up to a real in [0, 6], together with an argument similar to that used in the
proof of Lemma 7.2, it is easily checked that % is continuous on Wz and C*° on
W;\{0}, for each k£ > 0.

We now define &y and (3, for each 7 in T', exactly as in the proof of Lemma
7.2, and we set

k), £ max(%, ko)

By using the assertions of Lemmas C.3 and C.4 together with an argument simi-
lar to that used in the proof of Lemma 7.2, it is not hard to see that for each +y in
T, the sets W4 and @ are invariant with respect to the vector-field [f,, @y ]* for
each § < B,. It follows from the Poincaré-Bendixson Theorem that Ty robustly
stabilizes the family {S(v), v € T'}. ]

We now seek a collection of mappings {q1, ¢2, g3, 1,32, @3} that satisfy the
assertions of this last lemma. For each 1 = 1,2,3, we let the mappings ¢;, @; :
R?\{0} — [0, 1] be given by

( exp [($1+:;1:-)0a':'2(;$2)2] ’ T € Sl
1, o T € Sz
207 =) o (o) z€S
(wl_Ln);M)z_((zz);M)” ’ 3
| 0, otherwise

139



p )
— (o, )1+ 2
exp (e1=(e2)'*) A zes,
(z1 —(m2)1+a)2_ ((2‘2)21'*'0 )
w(o) = L z €S,
[ z1—012)2
exp | Gl mr z€Ss
L 0, otherwise
(31—20x2)>
eXp [(3’1—2;11:2)2—2(0:,;2)2] , TE S5
(@ = { " z € S
ST (£1+262) -
exp {($1+2;m2)2—2(0a:2)2] y TE S
0, otherwise
( [ z1+072)° N
€xp _(a:1+9;:2)‘ _2(0562)2] ) X € ,;S'}
L, T €Sy
; o
(]1(37) = 9 exp (a:1+_(“’z)1+ ) ea
(—zq)1te T aita2 | 3
(w1+ o ) _( ) )
L0, - otherwise
.
— 14« 2 N
exp (z1t(zon)tte)” ced,

(w1+(—z2)1+°‘)2—((_‘_‘522)li)2 ’
o) = L €8y

xp [(Amzf_f] , z € S

@1-6x2)" —(62)
L 0, otherwise

(m1—20z,)* PN
exp [(21—2;$2)2_2(0$2)2] , & € §5

q: (27) 1’ S Sﬁ

($1+20$2)2
exp [(m1+20x2)2—(9w2)2] , TES

0, otherwise

Lemma 7.5 The mappings of the collection {q, ¢2, 3, 1, G2, G5 } (as defined above)
satisfy the assumptions of Lemma 7.4
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Proof: From the definition of the sets S; and S; for each i = 1,...,6, it is not
hard to see that we have

x €8 & 20z, <z < —0z9 and =z, >0, (7.34)
(x2)1+a
T €Sy, & bz, <17 < 5 and 1z >0,
(x2)1+a e
T € S; & 5 < z; < (z2) and 1z, >0,
z €8S & (22)'* <z < 0z, and x5 >0,
T €8 © 0z < zxy < 20z, and x>0,
r € S & —;—;5:@5% and z; > 0.
Similar assertions can be obtained for §1,...,§5 and §6. In view of the

definition of the mappings ¢; and g for each 7 = 1,2,3 and Lemma B.7, (7.34)
combined with the fact that the sets S5 and S3 do not contain any point of the
form (z;,0), imply that the mappings ¢; and ¢; are C*° on Wj5\{0} for each
i=1,2,3.

3
Next, on the sets Sz, Si, S, S2, Si, and Sg the sum > _ p; + p; is identically
=1
equal to 1. Further, it is not hard to check from the expression of this sum that
for each j = 1,3, 5, there exist two mappings g;, h; : S; = R such that g; does
not vanish on S;, and for each z in S; we have

ot ) (2) = ex hy(z)® o (hy(@) — g;())°
20+ 3)(e) plh:-(x)?—gjw] ¥ p[(hj(w—-g,-(x))?—gj(wV]’

with h;(z) in the interval [0, g;(z)] (resp. [g;(x),0]) if g;(x) is positive (resp.
negative). Similarly, for each j = 1,3,5 there exist mappings g;, hj : S; = R
such that g; does not vanish on S; and for each z in S; we have
~ . 2
(h@) - 5(2)) }
~ N 2 R
(hs(e) = 85(@))” = Bi(x)?

3
+ = exp |=— + ex
2 1 Pt = e [hjcvv—A (x)J p[

with h;(z) in the interval [0,§;(z)] (resp. [g;(z),0]) if §;(z) is positive (resp.
negative). It follows from Lemma B.8 that the sum

S +5)(x) > €73, z € W;\{0}.

i=1
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Therefore, the collection of mappings {q1, g2, ¢s, 31, G2, §3} satisfies the assump-
tions (i) and (ii) of Lemma 7.4, and it is easily seen from the definition of the

mappings ¢; and @; that the remaining assumptions of the lemma are also ful-
filled. [ |

Because, the collection {q1,¢2,93,31,%2, @3} (as defined here) satisfies the
assumptions of Lemma 7.4, there exists kj > 0 such that the feedback law
g, given by the formula (7.33) robustly asymptotically stabilizes the family

{5(7), v €T}

Finally, in the case a(-) negative on I'", a(-) negative on '~ and b(-) is positive
on I', as well as in the case a(-) positive on T" with b(-) either positive or negative
on I, it follows from the proof of Theorem 7.1, that we can find an explicit robust
stabilizer for the family {S(v), v € '}, by constructing a collection of mappings
{¢1,9, 95,81, 8, @3} similar to that introduced above. Because, these mappings
can be easily obtained following the steps of the construction presented here, we
will not construct them here.
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Chapter 8

Conclusions and Future Research

In this dissertation, we have constructed continuous time-invariant or time-
varying controllers that achieve simultaneous stabilization, simultaneous asymp-
totic stabilization or robust asymptotic stabilization. The results that we ob-
tained can be classified in three categories: The first category encompasses the
results of Chapter 2 and 3, where time-invariant simultaneous stabilizers are
constructed. The second one consists of the results of Chapter 4 and 5, where
time-varying controllers are designed for simultaneous asymptotic stabilization
purpose. Finally, the third one comprises the results of Chapter 6 and 7 on the
simultaneous asymptotic stabilization and the robust asymptotic stabilization of
systems in the plane.

We come back to the results of Chapter 2 and 3: It is shown there that every
countable family of control systems with continuous dynamics, is simultaneously
stabilizable by means of continuous time-invariant feedback, if each system of
the family is asymptotically stabilizable by means of continuous feedback.

If, in addition, each one of the systems of the family is globally asymptotically
stabilizable, we established the existence of a continuous feedback law that not
only simultaneously stabilizes the family, but also yields boundedness of the
trajectories of the closed-loop systems starting at any initial state in R".

For any countable family of stabilizable systems, we find two feedback laws
that solve the simultaneous stabilization problem. The first one depends on
a partition of unity while the second one is simpler and does not involve any
partition of unity.

Future work could consist in modifying the construction introduced in Chap-
ter 2, in order to derive time-invariant simultaneous asymptotic stabilizers for
more general families of systems than those considered in Chapter 6. This could
be done by following the ideas introduced in Chapter 6.
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It would also be interesting to try to extend the results of Chapter 2 and 3
to uncountable families of systems.

In our quest for feedback laws achieving simultaneous asymptotic stabiliza-
tion for countable families of systems, we introduced time-varying feedback laws,
and enriched our previous approach to the design of time-invariant simultaneous
stabilizers. The results that followed concern both the simultaneous asymptotic
stabilization of families of LTI systems and those of nonlinear systems.

Given any finite family of LTT systems that are individually asymptotically
stabilizable by means of LTI feedback, we established the existence of a con-
tinuous time-varying feedback law that simultaneously globally exponentially
stabilizes the family. We then provided sufficient conditions for the existence of
a continuous time-varying feedback law that simultaneously globally asymptot-
ically stabilizes a countably infinite family of LTI systems.

Furthermore, we obtained sufficient conditions for the existence of a contin-
uous time-varying feedback law that simultaneously locally or globally asymp-
totically stabilizes a finite family of nonlinear systems. Using these sufficient
conditions, we then established the simultaneous asymptotic stabilizability of
the elements of a class of pairs of homogeneous systems.

In terms of further research on this second part, many directions can be in-
vestigated. The most natural one is of course to try to apply our results to more
concrete examples and to practical applications. This is possible because we
have provided complete design procedures as well as rather simple expressions
for our controllers. From a more theoretical standpoint, it would be interesting
to find whether or not the sufficient conditions for the simultaneous asymptotic
stabilization of nonlinear systems are also necessary. We also believe that it is
possible to modify the construction of the simultaneous local asymptotic stabi-
lizer produced in the proof of Theorem 5.1, so that the domains of attraction of
the closed-loop systems be larger.

Another important direction for future research consists in finding conditions
under which a feedback law that simultaneously asymptotically stabilizes a given
countable family of systems also asymptotically stabilizes a hybrid system whose
dynamics switches between the systems of the family. This investigation could
begin with testing the robustness to autonomous switchings of the simultaneous
asymptotic stabilizers found in this dissertation.

Finally, by modifying the construction of Chapter 2 and by using the Poincaré-
Bendixson theory, we managed to construct time-invariant simultaneous asymp-
totic stabilizers for some pairs of systems in the plane [in Chapter 6], together
with time-invariant robust asymptotic stabilizers for some families of systems in
the plane [in Chapter 7].
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More precisely, in chapter 7, we considered a class of parameterized families
of nonlinear systems in the plane and discussed their robust asymptotic stabiliza-
tion around a parameter value at which the corresponding families of linearized
systems are not controllable. In most of the cases where these families do not ad-
mit a C? robust asymptotic stabilizer, we succeeded in constructing a continuous
time-invariant robust asymptotic stabilizer. In particular, we introduced a new
approach to robust stabilization, where a robust asymptotic stabilizer is consid-
ered as a feedback law that simultaneously robustly asymptotically stabilizes a
finite number of sub-families of the original parameterized family.

We believe that the idea of viewing the robust asymptotic stabilization as a
“simultaneous design” is worth investigating further. Indeed, given a parameter-
ized family of systems, it may be easier to construct robust asymptotic stabilizers
for particular sub-families of this family, and then to find a way to produce a
robust asymptotic stabilizer for the entire family using these “partial” robust
asymptotic stabilizers.

We also feel necessary to continue our investigation on the robust stabiliza-
tion of parameterized families of systems around parameter values at which the
families have some singularities.

To summarize, we have obtained the first results related to a difficult and
promising problem, namely that of simultaneous asymptotic stabilization and ro-
bust asymptotic stabilization of uncertain nonlinear systems. Along our way,
we have also derived new results on the simultaneous stabilization of countable
families of nonlinear systems as well as on the simultaneous asymptotic stabi-
lization of countable families of LTI systems. Merely continuous time-invariant
and time-varying feedback laws have proved to be powerful tools for addressing
such problems, and we believe that their use for the control of uncertain systems
will yield a great deal of interesting results in the future.
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Appendix A

General Facts

In this appendix, we recall more or less easy facts that are used to prove Lemma
A.6. This lemma is repeatedly used in Chapter 7.

A.1 Facts on power series

Throughout we let p be a positive integer, IN be the set {0,1,2,...} and C be
the set of complex numbers. For each z in C and each v = (ny,...,n,) in IN?,
we set z¥ = 2252 ., 2y?. Further, we let K be either equal to C or R and
we let r = (r1,...,7p) be in (0,00)?. Finally for each z in C, we let Z denote its

complex conjugate and |z| its modulus.

The following lemma is a direct consequence of the Remark 9.1.6 in [24, pp.
205].

Lemma A.1 For each v in IN?, let a, and b, be in C. Assume that for each

zin some set D 2 {z € K? : || <1y, i =1,...,p}, the series > a,z” and
veN?

Z b,z" converge absolutely and are equal. Then, we have a, = b,, for each v

veN?P
in IN?.

Lemma A.2 For each v in IN?, let a, be in C. Assume that the series Z a,z”

vEN?
converges absolutely for each z in some set D = {z € K? : |z| < r;, 1 =
1,...,p}. Then, for each z in D, the series Z a,z” converges absolutely and

veN?P
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we have

Y. gz = ) a2 (A1)

vEN? veN?

Proof: By assumption the series »_ |a,||2”| converges for each z in P. Because,
veEN?P
|@,| = |a.|, the series Y [a,||2"| converges for each z in D. Furthermore, for
vEN?P
each z in D and each n in IN, we have

Y wr-Ya = | Y az

veNP|y|<n vENP vENP:|y|>n+1

= | Y (A.2)

veENP:|v|>n+1

and assertion (A.1) follows from (A.2) upon letting n go to co. ]

Lemma A.3 For each v in IN?, let ¢, be in C. Assume that the complex series

Z c,x” converges absolutely to a real number for each x in some set P = {z €
vENP

RP : |z;| <, ¢ =1,...,p}. Then, for each v in IN?, the coefficient c, belongs
to R.

Proof: The assumptions of the lemma imply that

c, ¥ = c,z’, z €P. A3
> > (A.3)

veEN?P vEN?P

Because, z is in R?, the equality (A.3) combined with Lemma A.2 yield

> az’ = Y 61", z€P,

VvEN? veENP

so that by Lemma A.1, we finally get ¢, = ¢,, for each v in IN?| and the desired
result follows. [ |

A.2 Analytic mappings

For the sake of clarity, we produce below an usual definition of an analytic
mapping.
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Definition A.1 [24, pp. 207] Let D be an open in KP. A mapping f : D - K
is analytic on D if for each 2’ in D there exists a neighborhood D' of 2’ and a
sequence {c, : v € NP} in K such that

f(2) = Y ealz=2), zeD. (A.4)

vEN?

If K =R, the mapping f is said to be real analytic on D.

From Abel’s lemma [24, pp. 203] we know that if a series Y c¢,(z — #/)”
veN?
converges at a point z, then it converges absolutely on a neighborhood of this

point. This implies that the series introduced in (A.4) converges absolutely on
D’ and we easily obtain the following lemma.

Lemma A.4 Let U be a neighborhood of the origin in R? and let f : U — R

be a real analytic mapping on U given by f(x) = > c,2”,z € U. Then, there
veEN?
exists a neighborhood D of the origin in CP such that the mapping F : D — C

defined by
F(z)= Y a2, z€D,

veN?P

18 well-defined. Moreover, the series Z ¢z’ converges absolutely for each z in
vEN?
D.

Next, we give the definition of a Weierstrass polynomial.

Definition A.2 [{5, pp. 157]

Let D be a neighborhood of the origin in C x CP~1. A mappingq: D — C
18 a Weierstrass polynomial if

gw,2) = wite (2w +...+eq2), (w,2)€D,
where the mapping e; is analytic on a neighborhood of the origin in CP~1 with

e;(0) =0 foreachi=1,...,d.

The next theorem is a direct consequence of the comments following Def-
inition 6.1.5 [45, pp. 158] and Corollary 6.1.2 [45, pp. 157] of the Weierstrass
Preparation Theorem.
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Theorem A.1 Let D be a neighborhood of the origin in C x CP~! and let F' :
D — C be analytic on D with F(0,0) = 0. Assume that the mapping w >
F(w,0) defined on a neighborhood of the origin in C, does not vanish identically.
Then, the following holds.

1) There exists a unique integer d > 0 such that the mapping w %Ql 18
analytic at the origin and takes a nonzero value at w = 0.

ii) There exists a neighborhood D' of the origin in C x C*~' and two unique
mappings h, q: D' — C such that h is analytic at the origin with h(0) # 0, q is
a Weierstrass polynomial and

F(w,z) = h(w, 2) ¢(w,2), (w,z)€ D' (A.5)
By using this theorem, we now prove the following lemma.

Lemma A.5 Let U be a neighborhood of the origin in Rx RP™! let f: U - R
be real analytic on U and assume that f(w,0) does not vanish identically on
U. Let D be a neighborhood of the origin in C x CP~! and let the mapping
F : D — C be the extension of f to D as defined in Lemma A.4. Let h and g be

the unique analytic mappings obtained through Theorem A.1, i.e. such that we
have

F(w,z) = h(w,2)q(w, 2), (A.6)
for each (w,z) in some neighborhood D" of the origin in C x CP™'. Recall that
h(0) # 0 and that q satisfies

qw,2) = wite (2wt +... +es(2), (z,w)eD,

where for eachi =1,...,d, the mapping e; is analytic on a neighborhood of z = 0
in CP~1 with e;(0) = 0.

Then, there ezists a neighborhood U’ of the origin in R x RP™! such h and
e; are real analytic on U’ for eachi=1,...,d.

Proof: From (A.6) and the definition of F), it is easily seen that for each (z,y)
in some neighborhood of the origin in R x R?~! we have
F(z,y) = f(z,y) = h(z,y)e(z,y) = h(z,y)e(z,y) €R. (A7)

Because
q(z,y) = z¢+ el(y)a:d“1 + ...+ eq(y),
we get

g(z,y) = 2 +e(y)z™ +... +eq(y)
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and (A.7) yields
F(w,2) = h(w,z2) ('w +e1(z)w?! +..‘+Z4(,—z_)-).

By uniqueness of the factorization (A.6), it follows that for each (z,y) in some
neighborhood of the origin in R x R*™!, h(z,y) and e;(z,y) are real for each
t=1,...,d. Thus, Lemma A.3 implies that the mappings h and ¢;,s =1,...,d
are real analytic on some neighborhood of the origin in R x RP~1. ||

We finally prove the lemma that we actually use in this dissertation.

Lemma A.6 Let U be a neighborhood of the origin in R® andlet f : U — R be

real analytic on U. Let o # 0 and 3 be some reals such that Of(z1, l0,0) =

d Qf—%g;ﬁzko,o) = (. Then, there exist neighborhoods of the origin U and

I in R? and R respectively, and two real analytic mappings h : U — R and
¢: I = R such that

f(x1,22) = h(z1,22) (11 — d(22)), (21,72) €T,
with h(0) = &, $(0) = 0 and ¢'(0) = — 2.

«

Proof: Let D be a neighborhood of the origin in C? and let F : D — C be the
extension of f obtained through Lemma A.4. Then, the mapping F' is analytic
on D and we have F(x1,22) = f(x1,22), for each pair of reals (z1,z3) in D.

Ja_zaf SL.32)) 0 # 0, it follows that @—ghﬁh (0,0 7 0, so that the mapping

21— F(zl, ) does not vanish identically on some neighborhood of z; = 0. Thus,
by Theorem A.l, there exists a neighborhood D’ of the origin in C?, a unique
positive integer d and unique mappings h, ey,..., e;: D' = C, analytic on D',
such that

F(z1,2) = h(z1, %) (21 t+e(n)dt+.. .+ ed(zg)) , (z:1,2) €D, (A.S8)

with h(0) # 0 and ¢;(0) = 0 for each ¢ = 1,...,d. Now, from Lemma A.5 and
the definition of F, there exists a neighborhood U of the origin in IR?, such that
the mapping h and e;,72 = 1,...,d are real analytic on U and

f(z1,22) = h(z1,22) (wl +ep(z)zd ..+ ed(a:2)) y (x1,20) € UL

Because Mk 0,00 = @ # 0, we obtain that d = 1 and h(0) = . Moreover,

%ﬂl( 0,0) = B yields e(0) = —‘g. The proof is completed upon setting
= é4. |
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A.3 Miscellaneous

The following theorem can be found in [24, pp. 162].

Theorem A.2 (Mean Value Theorem) Let zy be in K?, let ¢ > 0 and let
[+ Be(zo) = K be differentiable on B.(zy) [where B.(xq) is the open ball of
radius € centered at zo]. Then, we have

1f(z) = f(zo)ll < [l& = =oll sup {|f"(wo +nlx —z))ll, = € Be(xo)-
0<n<1
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Appendix B

Technical Lemmas for Simultaneous
Stabilization

We present in this appendix several technical lemmas that are mainly used to
prove the results on the simultaneous stabilization and asymptotic stabilization
of countable family of systems.

Lemma B.1 Let D be a bounded neighborhood of the origin in R"™ (resp. D =
R") and let V : D — [0,00) be a Lyapunov function (resp. a radially unbounded
Lyapunov function), let WP denote the set WA = {x € D : V(z) < B}. Then,
the family {W#} 55 is a base at the origin such that W* C W# whenever o < 3.

Proof: By definition, {WW?} 5 is a neighborhood base at the origin if and only
if for each &€ > 0, there exists 8 > 0 such that W# C B.(0). Suppose now
that the assertion of the Lemma does not hold. Then, there exists £ > 0 and a
sequence {z,}32, such that

Tn € Wn  and 3, € B:0), n=1,2,.... (B.1)

By definition of W=, the sequence {x,}2, is included in the set D and in the
set W'. By assumption, either D is bounded and in this case D is bounded or
D = R" and in this case the set W is bounded because V is radially unbounded.
It follows that in both situations {z,}52 is included in a compact set so that
there exists a subsequence {z,, }32, which converges to some point 2o in D. In
view of (B.1), we have

and the continuity of V' yields V(z,) = 0. We conclude from the positive defi-
niteness of V' that z; is the origin, a contradiction with (B.1) and the fact that
Zn, — 0 as k — o0.
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Furthermore, it is plain that W® C W?” for « < 8, which completes the
proof. [

It is easily seen that for the previous lemma to hold, it suffices that the
mapping V be continuous and positive definite on D. We do not actually need
the existence of a mapping f: D — R" such that

VV(z) f(z) <0, z€ D\{0}.

Lemma B.2 Let D be an open subset of R™ and let U and F' be respectively open
and closed subsets of R"™ included in D. Let f : [0,00) x D — R" be continuous
and let (S) denote the system © = f(t,z). Throughout, let z(-,zo,%o) : [to, 00) —
IR™ denote the trajectory of (S) starting from a given point zo in D at a given
time to Z 0.

i) Let ty > 0, let zo be in D and let € be in [ty,00). If (%, zo,t0) lies in U
then there exists h > 0 such that

x(f+ h, mo,t()) elU

for each h in (—h,h) if T >ty or for each h in [0,Rh) if T = t,.

ii) Let to > 0, let zo be in F' and assume that the trajectory z(-, o, ) of (S),
does not remain in F for ever. Then, there exists T >ty and h > 0 such that

z(t,z0,t0) €OF and x(t+h,z0)€F, he(0,h).

iii) Let to > 0, let zp be in U and assume that the trajectory z(-, o, ty) of the
system (S), does not remain in U for ever. Then, there exists t; >ty such that

IIJ(tl,ZL'(),t[)) € 0U, with i‘(t,ﬂ')o,to) e U, tE[to,tl).

Proof: (i) Let to > 0, let zo be in D and let ¢ be in (%5, 00). Further, assume that
z(%, zo, to) liesin U. Because z(-, Z¢, ty) is continuous we obtain that z=1(U, z, tp)
is open in [ty, 00) and it follows that =1(U, zg, %) is an union of open disjoint
intervals in ¢y, 00) i.e.,

YU, zo,t0) = [to,bo) U | (ar, by)-
AEA

Because z(%, 2o, to) € U, we either have £ € (¢, by) or there exists ) in A such that
t € (ax,bs). This yields the existence of h > 0 such that £+ h € z71(U, .’L'(),t())
for each h in (—h, h). In other words, z(f + h, z,) lies in U for each h in (—h, h).
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If £ = ¢y, the argument above can be easily modified in order to prove the
claim.

(ii) Let 2o > 0 and let zo be in F. If we assume that the trajectory z(-, ¢, ;)
of (S) does not remain in F, then there exists { > ¢, such that z(£, zo, ) € F*.
Because the set z7'(F*, z¢,%) is the union of open disjoint intervals in [to, 00)
ie.,

x_l(Fc,xo,to) = U(a,\,b,\), (B2)
A€A

there exists X in A such that € (az,b5). From (B.2), z(as, %o, o) lies in F, and
there exists A > 0 such that

z(ax + h,zo,t0) € F° he(0,h).

By (i), this implies that (a3, Zo,%0) ¢ int(F) and it follows that z(as, zo, %) €
OF. Therefore (ii) holds with 7 = aj.

(iii) Let to > 0 and let z be in U. Then, 21 (U, o, %) is an union of open
disjoint intervals in [ty, 00) i.e.,

7 (U, 2o, t0) = [to,b0) U | (ar, ),
AEA

and it follows that z(by, z, to) lies in U® with z(by— h, g, %) in U for h > 0 small
enough. By (i), this implies that z(bg, o, %) lies in U\int(U*®) or equivalently
in QU (follows from elementary topology [68, Proposition 2, pp. 172]), which
completes the proof. =

Lemma B.3 Let D be a bounded neighborhood of the origin in R"™ (resp. D =
R") and let V : D — [0,00) be a Lyapunov function (resp. a radially unbounded
Lyapunov function) for some arbitrary system (S) : & = g(z), where the map-
ping g : D — R" is continuous on D. Let B be in the interval (0, mf V(:c))

and define the set U by setting U= DNV~([0,8)). Then, the followmg holds:

) T=DnV-1([0,4]).

ii) Let zo be in U and let the mapping f : R™ — R" be continuous. If the
trajectory z(:, xo) of the system (S') : £ = f(z) does not remain in U forever,
then there exists t > 0 and h > 0 such that

x(t,z0) € OU with  V(z(t,z0)) = B,
z(f+h,z0) & VU[0,6), he(0h),
z(f+h,z) € D, he(0,h).
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Proof: (i) : From the definition of U and elementary topology we find
U c DnV-1i(0,B)). (B.3)

We now show that U C D. Because, this inclusion trivially holds if D = R",
we assume that D is bounded and we prove the claim by contradiction. If the
inclusion U C D does not hold, then because U C D, there exists y in (D) NT.
Thus, we get

V(y) 2 inf V(z) > B,

a contradiction with the fact that V(y) < § [follows from (B.3)]. Therefore, we
have U C D and it follows from [14, Proposition 5 pp. 24] combined with the
definition of U that

U = DnV-1([0,8)). (B.4)
On the other hand, it is easily checked from the continuity of V' that
DAV, B)) ¢ Dnv=i([0,4]). (B:5)

We now show that these two sets are actually identical, by proving first that
DAVYB) ¢ DNV ([, B).

If DNV~Y(B) = 0, the inclusion trivially holds. Otherwise, let 2o in DNV ~1(4)
and consider the trajectory z(-, zo) of (S) starting from z, at time ¢ = 0. Because
V is a Lyapunov function for the system (S), we have

d
aV(w(t,xo)) <0, t>0,
so that
V(z(t,zo)) < V(zg) = B, t>0. (B.6)
By continuity of the mapping (-, zo) : [0, 00) — R", the sequence {z(, zo)}2,,
converges to zp as n tends to oo. Since z; lies in the open set D, there exists

an integer N such that x(%,mo) belongs to D for each n = N,N +1,.... This
together with (B.6) yields

1
x(;,xo) € DNV7Y[0,8)), n=N,N+1,...,

and it follows that zy belongs to DN V-1([0, 3)). In view of (B.4), this implies
that x, lies in the set DN V-1([0,3) ) and we get

DNV-YB) ¢ DNV-I([0, 7). (B.7)

Because we clearly have DNV~='([0,8)) ¢ DNV-1([0,0)), we conclude from
(B.7) that

DnV=H([0,8]) ¢ DNV-I([0,6)).
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The assertion i) follows from this last inclusion, (B.4) and (B.5).

(ii) : Let zo be in U, and assume that the trajectory z(-,zo) of (S') that
starts from zy at time ¢ = 0, does not remain in U forever. Then, by Lemma
B.2, there exists t > 0 and h > 0 such that

z(t, xy) € U (B.8)
and
z(t+h,20) € U, he(0,h). (B.9)
From (i) and the definition of U, we find
oU = D (V(10,6)\V([0,)), (B.10)
so that (B.8) yields
V(@) = B (B.11)

Moreover, in view of (B.8) and (B.10), z(f, o) lies in the open set D. Thus, by

Lemma B.2 (ii), there exists % in (0, h) such that
z(+h,z) € D, he(0,h). (B.12)
Finally, upon noting that from (B.9) we have
zE+hx) ¢ DNV7Y([0,8]), he(0,h),
relation (B.12) yields
@+ h,z) € V7H([0,8]), he(0,h). (B.13)
The assertion (ii) now follows from (B.8), (B.11), (B.12), and (B.13). [ ]

We note that the previous proof does not yield the assertions (i) and (ii) of
Lemma B.3 if the mapping V is only a positive definite mapping without being
a Lyapunov function for some system.

Lemma B.4 The following two assertions hold:
i) Let {U;}2, be a base at the origin such that
Uy D Uy, 1=0,1,....
Then, the family of open sets {U;_1\U;41}2, is an open cover of Up\{0}.
ii) Let {U,},cz be a base at the origin such that
U D Uy, 1€Z.
Assume that for each z in R™\{0} there exists an integer i such that x lies in

U;. Then, the family of open sets {U;—1\Uit1}icz s an open cover of R™\{0}.
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Proof: We only prove (i) as the proof of (ii) is similar. We note that we have
a sequence of nested neighborhoods

Uy DUy DU DO..., (B.14)

such that each neighborhood contains the closure of the neighborhood that fol-
lows.

Let zo be in Up\{0}. Because the family {U;}32, is a base at the origin
composed of nested neighborhoods, it is easily checked that there exists 4 in
{1,2,...} such that

g € U and 2o & Uipr.
Besides, in view of (B.14), we have
U\Uiz2 = UinUjy, D UinUg,.

Because z lies in U; mgf 1, we obtain that zo belongs to U;\U;42 and it follows
that the family {U;_1\U;;1}32, is an open cover of Up\{0}. |

Lemma B.5 The mapping ¢ : R x R x(0, 00) x (0,00) — [0,1] defined by

T—q— 2
gle=ama?-a?  if 1 € (a,a+ )
—— T—=0—=C 2
0@,0,00) =\ G i sclatraatatp)
0, otheruise

is C* on its domain of definition.

Proof: Let the mappings h, g : R x IR x(0, 00) be given by

0, if y<a
!y—a—a!.z
h(y,a, ) = ew-e—a?-e? = if  ye€ (a,a+ ) >
1, if y>a+o
and
1, if y<b
2
9w BB = T, i ye(,b+p)

0, if y>2b+p

respectively. Because we have
Q('y, a, o, IB) = h(y7 a, a) + g(y7 a+ o, :8) - 1)
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for each (y,a,q, ) in R x R x(0,00) X (0, 00), it suffices to show that  and g
are C* in order to prove that ¢ is C*.

The mapping h is C* :

We fix (2/,d/,¢) in R xR Xx(0,00) and we study the local behavior of the
mapping h around (z’,d/,o/). For each positive reals éz, da and do, with do in
(0, @), we set

Iz = (z' —6z,2' + dx),
I1u = (d' = 6a,d + éa),
Iiw = (d —éa,d +da),

and

Uss.gada = (& — 02,2 + 62) X (o' — da,d’ + da) x (o/ — 6o, & + o).

We now distinguish several cases:

i) If ' < @/, then the positiveness of o’ — 2’ yields the existence of 6z and da
such that
' +0r < d —da,

and it follows that for all (z,a) in I;; X Is, we have 2 < a. By picking do in
(0, '), the previous comment yields

h(z,a,0) = 0, (z,a,0) € L5y X I5g X Isq,
so that h is C* on the neighborhood Uy, 54,50 of (2/, 0, o).
ii) If 2’ > o’ + &/, by a similar argument, we find 6z, da and do satisfying
z > at+o, (2,0,a)€ Usppgsa-

Thus, we get
h(IL', a, 0[) = 17 (3"7 a, 0!) € Uéw,éa,5a7

and it is plain that h is C* on Us; 4o 5a-

iii) Similarly, if 2’ is in (@, @' + ), there exists a neighborhood Uy g4 5o such
that
T € (a,a+a), (x,0,0) € Uspsabas

and we obtain from the definition of A that it is C*° on Uy; 54,60

iv) If ' = o/, we pick da in (0,’). Then, we select = and da satisfying

'+ 6z <ad —da ie. bz +da < o — o

158



This implies that for each (z,a, @) in Us; g, 54, We have £ < a + « and we get

0, if r<a

h(x, a, a) = !z—a—a!2
(t—a—a)2 -k ,

e if z>a

We now let the mapping h : R x(0,00) — IR be given by

- 0, if <0
—_— 2
he,a) = TAT if >0

(<

It is readily seen from this definition that A is C* on both sets (-0, 0) x (0, +00)

and (0, +00) X (0,+00). Next, we fix n =1,2,... and & > 0. Because, -i]me_?E

converges to 0 as = tends to 0%, for each m in Z, we easily obtain that for each
@ > 0, each n-th order partial derivative of the mapping (z,a) > e(@-?-a?
converges to 0 as (z, ) tends to (0%, &). Therefore, we can extend by continuity
each n-th order partial derivatives of h at the point (0,&), and it follows from

[24, Lemma, (8.12.8) pp. 185], that & is C*° on R x(0, 00). Because h(z,a,q) =
h(z — a, a), the previous result implies that h is C™ on Usy 54,40

(v) If ' = o’ + o/, we pick da in (0,¢') and we select da and 6z such that
o +da < ' =6z ie. Jda+dr <.

This implies that a < z for each (z, a, ®) in U, 0,50 and it follows that

(z—a—a}2
h(z,a,0) = { €=, if =z€(ag,a+a)
1, if z>2a+a

Let the mapping h : R* — [0,00) be given by
Z‘Z
As) = { 7T, i 2 <0
1, if 2z>0

It is then easily seen that for each n = 1,2,... and each § in R, every n-th order
partial derivative of h converges to 0 as (y,z) tends to (7, 0~). We now extend
by continuity each n-th order partial derivatives of & and we obtain that % is
C* on R?. Because h(z,a, @) = h(z —a,z —a—a) for each (z,a, @) in Usy 56,605
it follows that h is C* on this neighborhood.

We conclude from (i), (ii), (iii), (iv) and (v), that A is C® on R x R, x (0, o0).
The mappings g and ¢ are C® :
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It is not hard to check that we have
g(z,a,0) = h(-2,—a—0a,0), (z,a,0) € RxRx(0,00),
which implies that g is C*° on R x R x(0, 00).

Therefore, the mapping ¢ is C*° on R x IR x(0, 00) x (0, 00). ]
The following result is a direct consequence of the previous lemma.

Lemma B.6 Let the mappings a,b,c : [0,00) — R be C* on [0, 00) with
a(t) < bt) < c(t), teR,

andletV : R® = R be a C* mapping. Then, the mappingq : [0, 00)xR™ — [0, 1]
given by
(V (2)=b(2))?
eV@)-bEN?-6®-at)?  4if V(a:) = (a(t),b(t))

— z)— 2
q(t) x) - e(V(m)—(l:ztf)))z—b((:()f?)—b(t)).) ,Lf V(.’L’) e [b(t), C(t)) ’ (B15)

0, otherwise

for each (t,z) in [0,00) x R", is C* on [0,00) X R".

Because the proof of the following lemma is similar to that of Lemma B.5,
we omit it.

Lemma B.7 The mapping ¢ : R x R x(0,00)® — [0,1] defined by

!z—a—a!2
e(:c—a—a)‘ —a Zf T € (a’ a -+ a)
1 if t€lat+o,a+a+
q(:c, a, o, IB’ 'Y) = z—a—a—p)2 f [ ' /3) 9
e-a—a=p)’=27  if gelat+a+pfat+a+B+7)
0, otherwise

18 C*°.
Lemma B.8 Let a be a nonzero real and let f be a mapping given by
2 !z—a!2
f(a:) = ez_2¥La‘f + e(e—a)®—a?,

for each z in [0,a] (resp. [a,0]) if a is positive (resp. negative). Then we have
f(x) > e"% for each z in [0,a] (resp. [a,0]).
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Proof: We only prove the case a > 0 as the proof is similar in the case a < 0.

We assume that a is positive and we note that f(a — z) = f(z) for each z in
[0, a]. Thus, the mapping f is symmetric with respect to the set {z = £}, and it

suffices to prove that f(z) > =5 for each 7 in [0,3]. By studying the mapping
$2
e=’=a? as z lies in [0, £], we find that this mapping takes values greater than e_%,

ga:—a)2

and because e(=->-<* is non-negative the lemma follows. [ |

Lemma B.9 Let D be a bounded neighborhood of the origin in R™ (resp. D =
R") and let V : D — [0,00) be a Lyapunov function (resp. a radially unbounded
Lyapunov function). Let I be a closed and bounded interval of [0,00) and let
b:[0,00) = [O,wie%fD V(z)) be a continuous mapping. Then, the set

DnV7YbI)) £ Dn (U V‘l(b(T)))

7€l

18 compact.

Proof: Because I is a closed and bounded interval, the continuity of b yields
DNVHuI))=DnVY [mel}l b(r), mgf(b(T)] ).

Thus, if D = R", the continuity of V' implies that D N V~1(b(I)) is closed.
Moreover, because V is radially unbounded in this case, we obtain that this set
is also bounded, thus compact.

We now assume that D is bounded. If mel}l b(7) is equal to 0, we get

DnV=HeI))=DnVY [O,rgglx b(7)] ), (B.16)
while we otherwise have
DNnV-YuI)) = (B.17)
(D= ([0, maxbD) \ (DA V=([0,minb(r)) ).
Because the real max b(7) belongs to the interval (O’mierfafu V(z) ), it follows from

Lemma B.3 (i) (applied with V', D and max b(7)), that DN V~1(|o, max b(7)])

is compact. Therefore, in view of either (B.16) or (B.17), the set DNV ~=1(b(I))
is compact. |
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Lemma B.10 Let D be a bounded neighborhood of the origin in R™ (resp. D =
R"). Let K be a compact subset of R™ and let U be an open subset of R™.
Further, let V : D — R be a Lyapunov function (resp. a radially unbounded
Lyapunov function) and let B be in (O’xie%fp V(z)). Then the following holds.

i) If we have the inclusion D NV~([0,8)) D K, then there exists o in
(0, B) such that
DnV7i([0,0)) D K.

i) If we have the inclusion U D> DN V~Y([0,0]), then there exists vy in
(8, ier%’fD V(z)) such that

U > DnV=i([0,9]).

Proof: (i) We prove the claim by a contradiction argument. For each n =

1,2,..., weset a, = — % and we assume that the lemma does not hold. Then,
for each n =1, 2,.. ., there exists z, in K such that
T, € DNV(]0,0,)). (B.18)

By compactness of K, the sequence {z,}52, has a subsequence {z,,}$2; that
converges to some point zy in K. It follows from the assumptions that

zo € DNV7I([0,8)). (B.19)

Because D is open, there exists an integer I such that z,, € D, i1 =1,1+1,...
and the assertion (B.18) implies that

Vizg,) > an, 1=1IT+1,....

By continuity of V, this yields V(zg) > (, a contradiction with (B.19). The
assertion (i) then follows by contradiction.

(ii) Foreachn =1,2,..., we set v, £4 +% and we assume that the claim does
not hold. Then, for each n = 1,2, ..., there exists x, satisfying
z, € DNV([0,7.)), (B.20)
with
zn & U. (B.21)

Because we have DN V~1([0,8]) C U, the assertion (B.20) and (B.21) yield

T, € DNV (B,v)), n=12,...,
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and it follows that
B < V(z,) < 1, n=12,.... (B.22)

Since § € (0, inf V() ), there exists an integer N such that vy € (0, inf V(z)).
z€0D xz€8D

Moreover, it is plain that z, € D N V~1([0,7yn]), for each n = N, N +1,....
By Lemma B.9 (applied with D, V, I = [0,y], and b = identity), the set
D N V~1([0,vn]) is compact. Thus there exists a subsequence {z,,}2, that
converges to a point zo in D N V=1([0,vx]). By (B.22), we get

V(iL'()) = :Ba

and it follows that z lies in DNV ([0, B]). Thus, the assumption of the lemma,
implies that o € U. Now, the set U being open, there exists an integer I such

that
Zo, €U, i=11T+1,...,

which contradicts (B.21) and yields (ii). |

Lemma B.11 Let D, and D, be two bounded neighborhood of the origin (resp.
Dy =Dy, =R"), and let Vi : Dy — [0,00) and Vo : Dy — [0,00) be two
Lyapunov functions (resp. radially unbounded Lyapunov functions). Further, let
B and (B be in (O,wégg 1Vl(:c)) and (O’wgalf) sz(x)) respectively, and assume
that

DinVH([0,81)) D DanV;Y([0,5)). (B.23)

Then, there exist oy in (0, B1) and o in (Be, églf) Va(z) ) such that
Din Vi ([0,e1)) D DanV5'([0,72]) (B.24)

Proof: By Lemma B.9 (applied with D,, V,, I = [0, ;] and b = identity), the
set Dy N V57 '([0, B2]) is compact. Thus, Lemma B.10 (i) applied with (B.23),
yields the existence of ¢ in (0, 8;) such that

Din ‘/1_1( [0, 011) ) D DynN ‘/'2—1( [0, ,32] ) (B25)

Because D; NV, '([0, 1)) is open, by using Lemma B.10 (ii) with (B.25), we
obtain v in (8, érglf) Va(z) ) such that (B.24) holds, and the lemma is proved. m
T 2

The following lemma follows from the previous one by continuity of b; and
bs.
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Lemma B.12 Let D; and D, be two bounded neighborhoods of the origin (resp.
Dy = D, = R"), and let Vi : D; — [0,00) and V5 : Dy — [0,00) be two
Lyapunov functions (resp. two radially unbounded Lyapunov functions). Further,
let by and by be two continuous mappings from [0, 00) into (O,wérgg 1 Vi(z)) and

(0, é%f) Va(z) ) respectively. Finally, let t > 0 be such that
T 2

DinVH([0,01(2)) D Dan V5 H([0,b2(2)] ). (B.26)
Then, ift > 0, there exists §; in (0,t) such that

DNV (o, bi(1))) D DynVy'([0, max by(7)]), (B.27)

min
TE[t—04,t+8] TE[t—0¢,t+0¢]

and if t = 0 there exists §; > 0 such that

-1 . -1
DinVi ([0, min bi(r))) > Dy V57 ([0, max ba(r))). (B.28)

Proof: Fix ¢t > 0 satisfying the inclusion (B.26). Because b;(t) and bo(¢) lie
in (0, érgg Vi(z) ) and (0, égg Va(z) ) respectively, Lemma B.11 [applied with
T 1 z 2

Dy, Dy, Vi, Va, 81 = bi(t) and B, = bye(t)] yields the existence of a4 in (0, by(t))
and v, in (ba(t), élél’g Va(z) ) such that
z 2

DinViY([0,1)) D Dan V5 H([0,7]) (B.29)
By continuity of b; and b, at ¢, there exists é; in (0,¢) such that
bi(t) > o with 7y > b(r), 7,7 €[t =6t + 6],
and we get from the inclusion (B.29) that
DinViH[0,b1(7))) D DanVi'([0,b2()]), 7,7 €[t —dst+6;). (B.30)

The mappings b, and b, being continuous on the compact set [t — d;, ¢ + &;], they
achieve their minimum and maximum on this interval, and the desired inclusion
(B.27) follows easily from (B.30).

The arguments above easily transpose to accommodate the case ¢ = 0 by
replacing the intervals [t — &;,t + d;] by [0, 6], which yields the inclusion (B.28)
and completes the proof. ]
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Lemma B.13 Let r be in (0,1), let 8 > 0 and let § > 0. Let 3 be defined by

Pl e

Then, for each 3 in (0, ) the mapping hg : [0, 00) — (0, 00) given by

B, t< &
hﬂ(t) = { _5(t_él__r)2 10—1- )
Be T, t>
satisfies _
hg(t) > —0hg(t)", t>0. (B.31)

Moreover, for each (3 and v positive such that v > (3, we have h.,(t) > hg(t) for
eacht > 0.

_ 1—7 1—r
Proof: Let B bein (0,4]. Ift < ﬁr, the claim clearly holds, Thus, let ¢ > ‘%r
and set y =t — '@:—r. It is easily checked that

h 2
f( ) — h:((tt))r — _26,81—1',!/6—6(1—1')1/ )

Now, by studying the mapping f as y lies in [0, +00), we get

L85\
fly) > —26" (2(1_T)> ez, y=0,

and the desired inequality (B.31) will hold if the right hand side of this last
inequality is greater than the real —6, or equivalently if

g < [0 (12—(57')%6%:‘ 2 _ 3

which is satisfied by assumption.

Further, let g and « be positive reals with v > . Then, we clearly have

1-r

6

hy(®) > ha(t), t<7

1-r
0
Z’;Eﬁ; = (-g—)e‘[?t-%‘—'—ﬂt'] [

and it follows that we have h,(t) > hg(t) for each ¢ > 0. ]

Moreover if ¢t > we get

165



Appendix C

Technical Lemmas for Robust
Asymptotic Stabilization

Throughout this appendix, we let I be some interval in IR and for each + in I, we
let the mapping f, : R? — R be real analytic on a neighborhood of the origin.
Further, we let the mappings a,b: I — R be given by

— 8f7($1,$2) — 6f’y(x17x2)l(0

al) = Loy and b) = R,

and we assume that a(-) and b(-) do not vanish on I.

For each « in I, Lemma A.6 combined with the enforced assumptions imply
that there exist some neighborhoods of the origin U, and I, in R? and R re-
spectively, and some real analytic mappings h, : U, = R and ¢, : I, — IR such
that

Fy(@1,22) = hoy(z1,22) (T1 = 69(22)),  (21,72) € U, (C.1)
with h,(0) = a(v), ¢,(0) = 0 and ¢, (0) = —g(%%. Therefore, for each v in T we

have R R
hy(z) = a(y) + hy(z) with hy(z) >0 as  — 0, (C.2)

and

by(z) = —Z—((:%xz + ¢ (x2) with @é;?_zl —0as 22— 0. (C.3)

We now recall a few definitions that were introduced in Chapter 7.

For a subset Y of R2, we let Y denote its symmetric with respect to the
origin and Y its symmetric with respect to the z;-axis, i.e,

VY 2 {~y: yev} and Y £ {(y1,—y2) ER®: (y1,10) €Y}
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Finally, for each positive reals « and 3, we define

1+a
A, = {zeR?: z =(x2)2 , o >0}
Uy = {ze€R?: zp=zIn(> 1), z1 > B}

g

We are now able to present here several technical lemmas that were used in
the proofs of Theorems 7.1 and 7.2.

Lemma C.1 Let n > 0 and 0 > 1. Then, for each 8 > 0, the intersection of
the sets Q = {x € R? : z, = n(x2)?, zo > 0} and U4 contains a unique point
[h(B), h(B) ln(ﬁ(ﬂ@)] Moreover, we have h(f) — 0 as §— 0.

Proof: It is easily seen that the point x = (z;,22) belongs to the set QN Yy if
and only if x; > 8 with

1.1 L
(el == ln(%). (C.4)
Let f: (8,00) — [0,00) be given by
f@) = bt mG) -1,

As we have f'(z,) = ( )7 [0 =1 In(%) + 1] 2,7, we conclude that f strictly
increases from —1 to +oo as T goes from B to +00, and it follows that for each
B > 0, the mapping f vanishes at a unique value z; = h((5). Because (C.4) holds
if and only if f(z1) = 0, it follows that the point (x1,z2) lies in @ N ¥y if and

only if (z1,22) = [h(8), h(8) In(42)].

Next, we prove that the mapping A : (0,00) — (0,00) converges to 0 as
tends to 0. Set k = (1)9 and let [ : (0,00) — (0,00) be defined by

1_‘?2

l(azl) = 1‘16_k($1) .

We easily obtain

l'(:cl) = e k(wl)T[]_—f-k

(3?1) 7]

so that [ strictly increases from 0 to +o00 as z, goes from 0 to +00. Therefore,
the inverse mapping /=1 or equivalently h strictly increases from 0 to +oo as 3
goes from 0 to +00. Hence the lemma. [ ]
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Lemma C.2 For each positive reals § and (', the curve U4 is on the left of Uy
whenever 3 < 3.

Proof: Let (x1,22) be in g and (zf,z4) be in ¥y with z, = x,. To prove the
lemma, we show by contradiction that 2} < z;. Since z; = z}, we obtain from
the definition of ¥4 and ¥y that

In(%)
Ty _ B
P ey (C5)

By assuming that =} > x; or equivalently that %}- < 1, equality (C.5) yields
1

!

/ !
ln(%) < 0 and it follows that % < % < 1, a contradiction with the inequality

x| > x,. Therefore, we have z} < z; so that the lemma is proved. ]

The next two lemmas were needed in establishing Claim 1 in the proof of
Theorem 7.1.

Lemma C.3 Assume that b(-) is negative on I and a(-) is either positive on I
or negative on I. Further, assume that a(-) and b(-) are bounded on I. Let 0, p
and f be positive reals, let o be in (0,1), let n be in (0,1 — o] and let i’ be in
(0,1]. Then, there exists ky > 0 and for each 7y in I there exists a neighborhood
U, of the origin in R? such that for each k in [k1,00) the following holds:

i) a) For each B > 0 and each z in U, N Uy, the vector [f,(z), k(z1 + o)]*
points towards the left of Ug,

b) For each B > 0 and each z in U, N Wg, the vector [f,(x), kz1]® points
towards the left of s if x is below the half-line {x € R?: 2, =0z, 25 >
0}.
ii) For each z in U, N A,, the vector [fy(z), —k(z2)"]' points into the region
below A, if z is above the half-line {x € R?: z, = Ox,, x5 > 0}.

iii) For each B in (0,5) and for each z in U, N Dg, where Dy denotes the
segment Dg = {z € R? : uzy — 21 = =B, z1 € [0, 8]}, we have:

a) If z is above the line {z € R?: 1 = —0zq, 22 < 0}, then the vector
[fy(x), kz1]* points into the region above Dg.

b) If z is below the line {x € R?: 21 = —20z,, 25 < 0}, then the vector
[f4(z), k(—22)" |t points into the region above Dpg.
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Proof:

(i) Fix yin I and 8 > 0. For each z in Uy, the tangent to ¥y at z is

given by (Ei% = #ﬁ-}x—2 If z is in ¥g with f,(z) < 0, then (a) and (b) are
immediate. Further, because for = in ¥z close enough of the origin, we have
[y(z) < 0 whenever a(y) < 0, throughout this paragraph we implicitly assume
that a(y) > 0 and that f,(z) > 0 for all the points z that we consider. From
(C.2) and (C.3), we obtain the existence of a neighborhood V,, such that we have

hy(z) >0  and - ¢,(x) <0, zeV,,
and it follows from (C.1) that

Ao - hl)_o @) )
k(z1 + x2) S % nto and PR 7k , (C.6)

for each z in V, N ¥g. Now, from the uniform boundedness of a(.) on I there
exists L > 0 satisfying
a(y) <L, vel,

and for each v in I, the analyticity of h, yields the existence of a neighborhood
of the origin U, C V, such that

|hy(z)] < 2L, z€U,.
Thus, in view of (C.6), we get

ffy(x) < E I fi(ﬁ 2L

—_— d < -, U,N¥ys (C7
k(iUl +£L'2) -k 1+ Zo an kl‘l I TE i A ( )
The first inequality in (C.7) yields (a). Furthermore, if z is below the line
{z € R?: 2, = 029, 5 > 0}, then the tangent to ¥ at x is greater than —1%

and claim (b) follows from the second inequality in (C.7).

(ii) Let = be in A, and let 4 be in I. If f,(z) > 0, then the claim clearly
holds. On the other hand, if f,(z) < 0, by setting z; = :c%‘*" it is easily checked
from (C.3) that

—fr(z) _ =)z = éy(2)

k(za)1 k(wa)" ) (C.8)
hy(®) [0 | o $4(@2)] 1o
k [a(v)+ 2 my ] 20

and that ——'ﬁc— [l—l + x5 —7———)] converges to ﬂk'_yl as z tends to 0.

Let L be a positive real such that |b(y)| < L,y € I, then for each «y in I there
exists a neighborhood of the origin V,, such that we have

169



_ ’_L_Y_(i)[m _I__:L.(Zl _ $7(5U2)]

L2
k ‘ta(y) zz Tk’

z eV, (C.9)

The claim now follows from (C.8) and (C.9), upon noticing that for 2o > 0
close enough to the origin we have z," < 3.

(iii) For each v in I, because f, is analytic at the origin there exists e(y) > 0,
such that we have

£i(z) = a(y) +b(7) + g4(x) with g,(y) =0 as y =0,

for each z in B,(,)(0). The uniform boundedness of a(-) and b(-) on I implies
that there exist a positive real L and for each « in I there exists §(y) > 0 such
that () < () and

|/(x)] < L, x € Byy(0).

Thus, the Mean Value Theorem A.2 yields

@ < (ml+lea) sup 153(0)
< L(lz1] + |22])y =z € Byy)(0). (C.10)

Let 3 > 0 and let = be in Dg. Because (a) and (b) clearly hold if f,(x) < 0,
we assume that f,(z) > 0. If z is above the line {x € R?: z; = —01,, 75 < 0},
then —z5 < %‘- and from (C.10) we get

@) _ L -)

kxl - k:c1

L +1)
ko

< T € Bl;(,y)(()). (C.11)

On the other hand if z is below the half-line {x € R? : z; = —20x,, 7o < 0}
we have z; € [0,0] and £ < -1, < ',% and it follows from (C.10) that

pt20 —
k{zfct))n_ < %(1 + ;1;)(/1 +20)" 5", z € Byy(0).  (C.12)

Claim (a) and (b), follow easily from the fact that for £ large enough the
right hand sides of (C.11) and (C.12) are smaller than u, for each 7 in I. |

Lemma C.4 Let I be some subset of R. Assume that b(:) is negative on I
and a(-) is either positive on I or negative on I. Suppose that a(-) and b(-) are
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bounded on I. Let 6, p and (3 be positive reals, let v be in (0,1), let n be in
(0,1 — o] and let oy be in (0,1]. Then, there exists ky > 0 and for each 7 in
I there ezists a neighborhood of the origin U, in R® such that for each k in
[k, +00) the following holds:

i) a) For each B > 0 and each x in U, N Ws, the vector [fy(x), k(z1 + z2)]*
points towards the right of \Ilﬁ

b) For each 3 > 0 and each z in Uy N Uy, the vector [fﬁ,( z), kz1]* points
towards the right of Us if © is above the line {x € R?: z, = fx,, 7o < 0}.

ii) For each z in U, N A, the vector [f,(z), ( —z2)")t points into the region
above A, if z is below the half-line {r e R*: z; = Oy, 75 < 0}.

iii) For each B in (0, 8] and each z in U, N Dy where Dy denotes the segment
Ds2{zecR?: pro—z, =0, 2, € [ 3,0] }, we have:

a) If = is below the line {x € R? : z; = —0z5, x5 > 0}, then the vector
[fy(x), kx1]* points into the regzon below Dﬂ

b) If z is above the line {x € R?: z, = —20z,, 25 > > 0}, then the vector
[f1(z), —k(—xz2)"]* points into the region below Dg.

When b(-) is positive on some subset I of R, the assertions (i), (ii) and (iii)
(a) of Lemma C.3 and C.4 translate to the following lemma.

Lemma C.5 Let I be some subset of R. Assume that b(-) is positive on I and
a(-) is either positive on I or negative on I. Suppose that a(-) and b(-) are
bounded on I. Let 6 and p be positive reals, let « be in (0,1) and let n be in
(0,1—q]. Then, there exists ks > 0 and for eachy in I there exists a neighborhood
of the origin U, in R?, such that for each k in [ks,+00) the following holds.

i) a) For each 8 > 0 and each = in U, N V%, the vector [f(z), k(—z1 + z2)]*
points towards the left of V3.

b) For each 8 > 0 and each x in Uy N U5, the vector [f,(x), —kz1]* points
towards the left of U if x is above the half-line {z € R?: 21 = —0zy, 25 <

0}.

ii) For each x in U, N A%, the vector [f,(z), k(~x2)"]' points into the region
above A, if z is below the half-line {zx € R*: z, = —fz,, 25 < 0}.

iii) For each B in (0, 8] and each z in Dy where Dy denotes the segment Dy =

{x € R*: pzs + 21 = B, 21 € [0, 5] }, the vector [f,(x), —kx1]* points into
the region below Dg if x is below the half-line {z € R?: x; = Oz, 5 > 0}.
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iv) a) For each § > 0 and each z in U, N @f,, the vector [f (), k(—x1 + z2)]*
points towards the right of \Tl;

b) For each 3 > 0 and each x in U7ﬂ@§, the vector [f,(x), —kx:]* points to-
wards the right of @f, if T is below the half-line {x € R? : z, = —0x,, o >

0}.

v) For each z in Uy N A3, the vector [f,(x), —k(—x2)")* points into the region
below A2, if x is above the half-line {x € R* : z; = —0x,, 5 > 0}.

vi) For each B in (0, 8] and each z in U, N 5[3 where 55 denotes the segment
Dsg={z € R?: pzy+ 1z, = -, 1 € [-B,0]}, the vector [f,(z), —kz,]*

——

points into the region above Dg if x is above the half-line {x €¢ R?: z, =
Oz, 25 < 0}.

Finally the last two lemmas are used in the proof of Theorem 7.2.

Lemma C.6 Assume that a(-) is positive on some subset I of R and that b(-)
18 negative on I. Let 6 and § be fized positive reals with 260 < §. Then, for each
v in I, there exists a neighborhood V., of the origin such that for each T > 0 the
following holds:

i) For each x in V., and in the half-line D, £ {z € R2: 2y = —0z0— 7, 1 >
0} the vector [f,(z), —(x1)%]® points into the region above D., if x is below the
half-line {zx € R?: z, = —20x,, 7, < 0}.

il) For each = in V, and in the half-line 57 = {z € R?: 21 = —0z9+7, 71 <
0} the vector [f,(z), (21)%]* points into the region below D, if x is above the half-
line {x € R?: 2, = —20x,, 25 > 0}.

Proof: We only prove (i) as the proof of (ii) is similar. Fix « in I. Since a(y) > 0
and b(vy) < 0, it follows from (C.2) and (C.3) that there exists a neighborhood
U, of the origin such that f,(z) > 0 with h,(z) > 0 and —¢,(z,) > 0 for all z
in U, N D, and all 7 > 0. Therefore, we have

(x)® z}
fz) () (@1 — Ry(22))
< hj(lx)’ zeU,NnD,;, 7>0.
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2
This together with the fact that h,(0) = a(y) > 0, imply that % converges

v
to 0 as z; tends to 0. Thus there exists a neighborhood of the origin V, C U,

(z1)*
such that if z is in V, N D, then we have i ESU) < 4, for all 7 > 0, and the claim
follows. ! [ |

Lemma C.7 Assume that a(-) is positive on some subset I of R and that b(-)
is positive on I. Let § and & be positive reals with 20 < 6. Then, for each vy

in I, there exists a neighborhood U, of the origin such that for each T > 0 the
following holds.

i) For each x in U, and in the half-line D, = {z € R?: 2, = UTo — T, Ty >
0}, the vector [f,(x), (1)%] points into the region below D, if x is above the
half-line {z € R? : 21 = 20z, 2, > 0}.

ii) For each z in U, and in the half-line D, & {zeR?: 2y = pao+7, 21 <
0}, the vector [f,(x), —(x1)%)t points into the region above D, if T is below the
half-line {z € R?: ¢, = 202, 5 < 0}.
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