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Abstract

This paper discusses the use of the back propagation neural network for sensor
failure detection in process control systems. The back propagation paradigm along
with traditional fault detection algorithms such as the finite integral squared error
method and the nearest neighbor method are discussed. The algorithm is applied
to the Internal Model Control (IMC) structure for a first order linear time invari-
ant plant subject to high model uncertainty. Compared to traditional methods,
the back propagation technique is shown to be able to accurately discern the su-
percritical failures from their subcritical counterparts. The use of on-line adapted
back propagation fault detection systems in nonlinear plants is also investigated.

INTRODUCTION .

Significant interactions exist between the operation of the controller and that of the diag-
nostic module. The purpose of a diagnostic module is to detect failures of the actuators
and sensors used in the control system. The main source of these interactions is the
presence of model-plant mismatch. This mismatch can cause the performance of the
control system to deteriorate and trigger false alarms by the detection system. On the
other hand there is also the risk of missing serious failures when the threshold criteria
for the detection system are relaxed in order to avoid false alarms.

The literature on Failure Detection is extensive and various approaches have been

proposed. For a survey of the existing methods, the reader is referred to Isermann [1]
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and Willsky [2]. In this paper, motivated by certain recent promising approaches to
failure detection, we use Neural Networks to detect sensor failure in chemical process
control systems. This Neural Networks approach appears to be better suited to meet
the special needs of such systems. Kosut and Walker [3] attempted to quantify the
problem of robust failure detection by defining a threshold measure that incorporates the
effect of model uncertainty. Recently, Nett et al [4] propose an integrated approach to
designing control and failure detection systems. Their approach holds great promise as it
allows one to compensate for the effect of the control system actions on the signals that
are monitored by the failure detection system for a multi-input, multi-output process.
This method can be coupled to different kinds of failure detection criteria or measures. In
addition to developing this new “four-parameter controller” framework, Nett et al [4] also
develop analytic expressions for computing the type of threshold measure defined in [3].
This measure is a truncated Hy—norm of the monitored signals (finite integral squared
error-FISE) and a failure is detected only if its effect on the norm is larger than the
maximum that can possibly be caused by model-plant mismatch and noise. The measure
is inherently conservative in declaring a failure and this poses questions on its usefulness
in process control applications. In such applications the model un(éertainty is usually
very large, while small sensor errors can have a significant economic effect. This seems
to be quite different from the situation in flight control, where the model uncertainty
is usually small while the type of failures that need to be detected are relatively large.
In flight control applications, where large life-threatening failures are the ones thét are
important and where false alarms should be avoided to the greatest possible extent,
the FISE criterion seems to be quite appropriate. Note that, in [4] as well as in [5],
expressions are provided for computing the smallest detectable failures when using FISE
criteria. The size of these failures can be used as a measure of the conservativeness of
the method for a particular application.

Our approach to the problem of robust failure detection for process control systems, is
to take into account explicitly the effect of the control system in designing the detection
system, in the lines of [4]. However, instead of using the FISE criterion, we use a Neural

Network to distinguish between patterns caused by sensor failures and those caused by
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Figure 1: Four-Parameter controller-diagnostic module

SYSTEM DESCRIPTION

Consider the multi-parameter controller/diagnostic module studied in [4] as shown in
Figure 1. Let 2/,¢,¢’ and w’ correspond to diagnostic signél, sensor failure, actuator
failure and set point change respectively. Further, P and P refer to the plant and its
model. '

A simple, yet nontrivial example is analyzed with a view to quantitatively demonstrate
the efficacy of the proposed approach. Consider a standard IMC ( Internal Model Cohtrol,
see, e.g., Morari and Zafiriou [6] ) controller in conjunction with a stable, first order,
linear, time invariant plant beset with relatively high model error, embedded in the
process gain, for purposes of simplicity. For this system, the parameters of Figure 1

become as shown below, where @ is the transfer function of the IMC controller.

Cp = 1
Cu = 0 (1)
Ca = Q@ = —Cxn

We will attempt the design of a sensor failure classifier based on neural networks with



back propagation. The diagnostic signal is
Z=[1+(P-P)Q]" [¢+(P-P)Qu] 2)

In addition, we restrict fluctuations in setpoint as well as sensor failures to step functions
of varying magnitude as well as onset times. An appropriate representation is,

P = K[/(rs+1),

1/(rs +1),

(rs+1)/(As+ 1), (3)
= mexp(—Tws)/s

Qexp(—748)/s
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These functions are subject to the constraints

|m| < My

K-1 <1 | )
Téy Tw € [OvT/2]

Let the maximum steady state error allowed in the product quality be §% and the
reference value of the output be yo = 1. The largest steady state fractional error caused
by a sensor failure in tixe IMC control system for the operating region defined by m,,
is /(1 — my). Therefore, supercritical sensor failures that must be detected by the

diagnostic module must subscribe to the following

Q] > der (5)
where ¢cr = (1 —m,)6/100.

Subcritical failures, the complements of the above are permitted to persist in the dynam-
ical system under consideration. The parameters governing. the system: é,m,,, !, T, A and
T are set at 5.0, 0.4, 0.4, 0.025, 0.025 and 0.25 which lead to the small value of 0.03 for
der-

The above values correspond to a 40% uncertainty in the steady state gain of the
model, while no more than 5% steady state offset is permitted. Such values are quite
common in chemical and oil industries ( see, e. g., the distillation system in Prett and
Garcia [7] ). The IMC controller is designed to correspond to a nominal closed-loop time
constant equal to one-tenth of the open-loop. Note that it is equivalent to a standard
proportional-integral (PI) controller [6]. The length of the observation is taken equal to

the nominal closed-loop time constant.



Let S denote the five dimensional subspace to which the parameters determining the
diagnostic failure signal belong. The subspace S contains the five parameters Q, K, m, 7,,

and 74 such that
—2¢cr < Q < 2¢cr
1-I<K <141
=Ty S m S +mu
0 <7y, 76 £0.5T

(6)

Hence we limit the signals used in the tests to those created by sensor failures up to
twice the magnitude of the critical limit and to setpoint changes or failures that have
lasted at least for 50 % of the time window span. Further let p;; denote the probability
that a signal with actual fault status index i be classified as possessing j. It must be
understood that the fault status index of a subcritical failure is defined to be zero while
the corresponding index for a supercritical failure is set at unity. Clearly poo and p;; refer
to the probability of not raising the alarm for a subcritical failure and the probability
of accurately predicting a supercritical failure. On the other hand, po; and pyo refer to
the probability of false alarms and misses respectively. The sum of the latter pair is the

measure of diagnostic error.

INTEGRAL MEASURE

Excluding the effect of noise, the miss threshold [3] is defined as the maximum of the

integral of the variable 2z’ over all values of w' and A where A refers to model error.
Jmiss = sup (1]l (7)
A

In accordance with the FISE criterion, a failure must necessarily generate a diagnostic
signal with norm exceeding the miss threshold to be detected in the presence of setpoint
fluctuations. Further, diagnostics are to be performed over a finite temporal window
(0,T).

FISE diagnostics performed on 2048 samples, drawn randomly from the space of
parameters S, are illustrated in Figure 2. The boxes and adjoining rectangles depicted
in Figure 2, represent the fault cognition statistics due to FISE. In particular, pgo, the

probability of correct identification of subcritical faults is that fraction of the total number
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Figure 2: FISE (Calibration Set of Back Propagation)

of samples which is enclosed in FGKJ. Likewise, p;1, the probability of exact identification
of supercritical failures is the fraction residing in the union of boxes ABFE and CDHG.
Furthermore, po1, the probability of false alarm and py¢, the probability of missing a
supercritical failure are the fractions of the samples residiﬁg in BCGF and the union
of EFJI and GHLK respectively. The parabola-shaped curve lying amid the samples
describes the average of the fault status for each sensor fault size. The definitions stated
here are valid for all the figures exhibiting fault detection statistics and therefore, are not
repeated in the sections that follow. Since the samples were drawn randomly, the total
number of supercritical samples differ from the population of subcritical counterparts,
although not significantly. Judging from Figure 2, it is clear that FISE does not give
rise to any false alarms. However, it misses nearly 97 % of supercritical failures. This is
not surprising, given the nature of the criterion and the large model error, coupled with

relatively small critical failure threshold.
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Figure 3: Back Propagation based diagnostics
DIAGNOSTICS WITH BACK PROPAGATION

Traditional applications of connectionist systems, reported in Rumelhart and McClel-.
land’s [8] compendium suggest that back propagation can be viewed as an accurate
pattern recognition device. Recently, Gorman and Sejnowski [9] reported the application
of the back propagation paradigm to the classification of sonar returns from similarly
shaped undersea targets. Superior pattern classification properties with overall accuracy
as high as 90 % were noted in their work. An accurate design of a biosensor based on
the interpretation of fluorescence spectra is described in the work of Mc Avoy et al [10].
Hoskins and Himmelblau [11] reported a back propagation based design of process fault
detection system with creditable performance characteristics. Recently, Passino et al [12]
used a certain type of neural networks called the multilayer perceptron, as a numeric-
to~symbolic converter in a failure diagnosis application on an aircraft example.

The objective here is to design a back propagation based detection system capable
of detecting sensor failures that are smaller than those detected by FISE, by looking at
a finite collection of Fourier coefficients of 2z’ as can be seen in Figure 3. It is beyond

the scope of this paper to discuss the governing equations of back propagation and the
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various strategies of training and prediction. In essence, the unknown coefficients in the
back propagation based approximation of fault status, referred to as weights, are altered
in the direction along which the error function (the sum of squares of the deviations
between the predictions and the exact values) is minimized. The interested reader is

referred to {8] and Jacobs [13].

Input—Output Pair

While training the Neural Network, for a given diagnostic signal 2/(t), the input is a
scaled vector of cosine transforms given by the integral
T
[(IO/T)/ Z'(t) cos (nwt /T)dt
0 n=0,...,23
The output is set at 0.95 for supercritical failures and 0.05 if otherwise. During testing,
net predictions greater than 0.50 are interpreted as supercritical.

The calibration data base is composed of continuous, random samples drawn from S
while the test data base is a fixed discrete set of 2048 samples, also drawn from S. The
parameters governing the test set were simply the end points of seven equally spaced
subdivisions of the Q2-interval taken together with three equally spaced partitions of the
intervals corresponding to the remaining parameters.

Initially, weights were randomized between —0.5 and +0.5, and the heuristic momen-
tum method described in [13] was implemented. The learning process was periodically
interrupted between 250 presentations of the calibration patterns, and diagnostics were
generated on the fixed test set. Test as well as calibration diagnostics were monitored
throughout the usage of the neuro-computer. Amplitude of fluctuations in the weight
vector and diagnostic errors were found to decrease gradually with respect to the dura-
tion of training. After nearly 5,000 presentations of calibration patterns, the momentum
factor [13] was increased to promote stability. For all practical purposes, convergent solu-
tions were obtained after nearly two hours of training and testing which involved roughly
50,000 presentations of calibration patterns. The amount of time required to simulate
the neural network in question is strictly real time. Since the neuro-computer was set to

process the problem of interest exclusively, the time reported is a close approximation of

9
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Figure 4: Back Propagation (Calibration Set)

CPU time. The networks were simulated on an IBM AT compatible Zenith 386 equipped
with the C callable, ANZA Plus Neuro-computing system:

If different (random) initial weights are selected, the weight state vector at the termi-
nation of neurocomputation is usually different. However, the diagnostics of the neural
net on a given database remains essentially invariant, thus supporting the well known
conjecture [14] that the error surface of the back propagation network is composed of
multiple global minima rather than local minima.

The governing equations of back propagation imply that the norm of the weight vector
at the solution decreases with increasing value of the norm of the mean input vector. In
typical applications [8], at the beginning of simulation, weights are randomized between
moderate or small limits of opposite signs. In this work, tenfold amplification of each
input vector generated convergent results within the reasonable time frame of 2 hours
while unit amplification gave rise to a weight state of high predictive error which is for
all practical purposes a non-solution. This is not surprising because of the relation of
the back propagation learning law to the Steepest descent method, whose convergence

properties can be significantly affected by variable scaling.

10
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Figure 5: Back Propagation (Test Set)

Regarding the number of hidden nodes, note that, for purposes of simplicity, the
dimension of the hidden layer was chosen strictly on the basis of the neural network’s
ability to correctly identify failures from a linear, uncertain plant subject to internal
model control. The size of the hidden layer was typically determined by requiring thé
neural network under considera?ion to minimize the total diagnostic errors [po1 + P1o)
of calibration and test databases, between two and three hours of neurocomputation in
real time. When the total number of hidden nodes were fewer than 23, diagnostic errors
of caiibration and test databases were very high, thus rendering the sum unaccebtable
in design consideration. As the number of hidden elements increase toward 23, both
calibration and test diagnostic errors continue to decrease. Further increase of number of
hidden elements beyond 23 caused the calibration error to fall while the test error grew,
which led to the choice of 23 hidden computational neurons.

Diagnostics performed by the trained network on 2048 random samples appear in
Figure 4 while the corresponding result for the test set is shown in Figure 5. Back
propagation based diagnostic errors of test and calibration sets are significantly less than

their FISE counterparts. In particular, although the former gives rise to false alarms, it
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misses only 25 % of the supercritical failures while the latter misses nearly 97 %.

NONLINEAR SYSTEMS

We now consider the application of the trained back propagation to a plant with a
nonlinear gain, whose values fall within the limits of the uncertain gain of the linear
model used in training. Let Upin and Up,, correspond to the minimum and maximum
values of U, the manipulated variable, at steady state for the linear uncertain model.
For the operating region defined by m, and the model uncertainty bounded by [, these

values are
Unae = Up+my,/(1=1) 1.67 (8)
Unin = Up—m,/(1=1) 0.33

The value Uy is the reference value for U, taken to be unity. Let the plant be described

[

by the following, where G(U) is a nonlinear function of U and y the true plant output
(not the deviation from yo).

defdt = —z/7+ G(U)
Then in order for the uncertain linear model of the system under study to be a reasonable
description of the nonlinear plant, G(U) must satisfy the following, where (10) must be

satisfied for all U between Upnin and Unaz-

1-1< dG/dU <1+ : (10)
l};r(rjlo dGldU = 1 “(11)
GUo) = %o (12)

Equation (10) describes the steady state gain uncertainty of the linear model, (11) the
nominal steady state gain and (12) the relationship between the reference values for Uy
and yo which are assumed to correspond to an equilibrium state.
Second Order Non-linearity

G=03U%+04U +0.3 (13)

Figure 6 describes the variation of dG/dU with respect to the manipulated variable.

12
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Figure 6: Nonlinear Systems

Note that during transients, the non-linear response can be nearly twice as large that of

the linear reference model.

Oscillatory Non-linearity
G=U+(21/37)[1 — cos [(3n/2)(U - 1)]] (14)

Judging from Figure 6, it is clear that dG/dU is bounded by the limiting values of
the linear system’s process gain, not only during steady state but also throughout the

transient case.

On-line Training Issues

Let us first focus on the second order nonlinearity. The test data base was chosen to
be a fixed, discrete set of 512 samples drawn from S. Diagnostics performed by the
back propagation trained exclusively on the linear plant, are illustrated in Figure 7. In
comparison with the diagnostics performed by the above net on the test set pertaining

to the linear plant, shown in Figure 5, one finds

Pp1,2nd order =~ Poilinear
P10,2nd order < Piolinear

13
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Figure 7: Back Propagation (2nd Order System before On-line Training)

This observation supports the fact that the diagnostic signal of the 2nd order plant can
be significantly larger than its lineargcounterpart, due to the fact that the uncertain linear
model is not a good description of the nonlinearity during the transient.

In order to reduce the false alarms associated with the non-linear plant, a hybrid
calibration data base composed of subcritical signals from the plant and supercritical
states from the model (linear system) was desired. Consider the operation of the neural
network in parallel to the IMC controlled nonlinear plant whose linear model is assumed
known. The neural network is to be trained on-line on plant data which can be safely
assumed to be essentially failure free. Therefore training exclusively upon plant data will
cause the neural net to only suppress false alarms. In order that the neural network does
not miss supercritical sensor faults, fault rich database must necessarily be included in
the knowledge base. This is generated from the linear model and uncertainity bounds
known to the engineer. During on-line training, the neural net is linked back and forth
between diagnostic signal outlets from the nonlinear plant and its model based simulation
program. During the linkage with real plant, the network learns to suppress false alarms

and while being connected to the computer model, it learns to not to miss supercritical

14
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Figure 8: Back Propagation (2nd Order System after On-line Training)

faults. The scenario detailed thus far is clearly emulated by alternately feeding random
patterns from the linear data base and its nonlinear counterpart.

Subcritical components were chosen from a collection of 512, random samples obtained
by the methodology already described, while the supercritical were generated by the
neuro—computer as and when needed, in a manner analogous to the previous simulations
of the linear plant. During training, each presentation of a random pattern from the
linear data base was followed by a random entry from the non-linear data base. By
“adopting an overall strategy of training followed by periodic testing, analogous to the
previous simulation studies, convergent weights along with consistent predictions were
noted after roughly two hours, the essence of which is plotted in Figure 8. On-line
training reduces false alarms from 44 % to 20 % at the expense of a smaller, net increase
in the percentage of misses of supercritical failures.

On-line training studies involving the oscillatory nonlinearity are only summarized,
as the specifics on the design of hybrid calibration data base and the training strategy are
identical to those of the 2nd order plant. The diagnostics performed on the test set prior

to on-line training are shown in Figure 9. In comparison with the diagnostics performed
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Figure 9: Back Propagation (Oscillatory System before On-line Training)

by the above net on the test set pertaining to the linear plant, shown in Figure 5, one
finds

Poroscillatory < Poylinear

Pio,oscillatory = Pio,linear
Simulations analogous to those of the 2nd order plant were carried out and the diagnostics
after on-line training are plotted in Figure 10. Upon on-line training, the probability of
missing supercritical failures was reduced from 0.1328 to 0.1250 while the probability of

a false alarm also decreased from 0.031 to 0.014.

NEAREST NEIGHBOR METHOD

In order to rigorously validate the proposed pattern recognition approach to sensor failure
detection, we need to consider classification algorithms that are not restricted by the
integral formulation. The Nearest Neighbor classifier, a well known statistical method
employed in [9] in sonar studies is considered here. In Table 1, back propagation based
diagnostics and the statistics from the current methodology are documented.

The knowledge base for the statistical method is a fixed discrete set of 648 samples

16
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Figure 10: Back Propagation (Oscillatory System after On-line Training)

System | Method Poo Por Pu po Error

Linear | BPN 398 102 366 .134 .236
Nearest | .467 .033 .231 .269 .272
Neighbor

Table 1: Comparison of Back Propagation and Nearest Neighbor Diagnostics
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drawn from S. The parameters governing the same were the end points of seven equally
spaced subdivisions of the {2-interval taken together with two equally spaced partitions
of the intervals corresponding to the rest. In the evaluation of the linear plant, the test is
composed of 648, random samples drawn from S. Comparison reveals that for the linear
plant case, back propagation yields very similar diagnostics to the Nearest Neighbor,
which is not surprising. Comparative studies involving 2nd order or oscillatory plant
gain reveal that the statistical method classifies each test signal into the category of su-
percritical failures. The advantages of the back propagation diagnostics over the Nearest
Neighbor classifier lie in the ability of the former to capture nonlinear characteristics as
well as in its speed. For example, applying the Nearest Neithbor method to the above
test set took over 12 hours on the Zenith 386; this was the reason why the knowledge
base was limited to 648 samples. It is also important to notice that back propagation is

less expensive in terms of storage.

CONCLUSION

A back propagation based sensor failure detection system has been proposed and com-
pared to FISE diagnostics as well as the Nearest Neighbor classifier, for an IMC controlled
system involving an uncertain linear time invariant first order model and linear or non-
linear plants that lie within the model uncertainty bounds. Detailed studies reveal that
the proposed pattern recognition approach to failure detection using back propagation
holds significant promise.

The main advantages of the proposed approach over existing methods are the method’s
ability to capture nonlinear characteristics, the possibility for on-line training and its
speed during on-line implementation. There is no reason however to assume that back
propagation is necessarily the best paradigm for sensor failure detection. Other Neural
Network paradigms such as the Counter Propagation Network ( Hecht-Nielsen [15] ) and
the Neocognitron ( Fukushima, [16] ) should also be investigated. Future work should
also include the effects of actuator failure and study multi~input multi-output systems,

with industrially significant formulations of plants and models.
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