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ABSTRACT

We compared the response properties of single units to tones and sinusoidally rippled spec-
tral stimuli in the primary auditory cortex (AI) of the barbiturate-anesthetized ferret. Using
two-tone stimuli, we determined the response area of each cell and parameterized it in terms
of best frequency (BF), the bandwidth of the excitatory responses at 20dB above threshold
(BW20), and an asymmetry index measuring the balance of inhibition and excitation around
the BF. Using frequency-modulated (FM) tones, we also determined a directional sensitivity
index for the cell. Using broadband stimuli (1-20 kHz) with sinusoidally modulated spectral
envelopes (ripples), we measured the response magnitude of each cell as a function of ripple
frequency () and ripple phase (®), and then reconstructed the magnitude and phase of a ripple
transfer function. Most cells (approximately 90%) were tuned to a specific ripple frequency,
denoted as a characteristic ripple frequency (2,). Most cells also exhibited a linear ripple phase
as a function of Q. The intercept of the phase function defined as the characteristic ripple
phase (®,), and is interpreted as the best ripple phase to drive the cell; the slope of the phase
function reflects the location of the response area of the cell along the tonotopic axis. By in-
verse Fourier transforming the transfer function, we obtain the response field (RF) of the cell,
an analogue of the response area measured with tonal stimuli. Like the response area, the RF
was parametrized by the following measures: BFpp, which is the location of the maximum
of the RF along the tonotopic axis, §2,, which is roughly inversely proportional to the width
of the RF, and ®, which reflects the asymmetry of the RF. In the ferret, €1, ranges from 0.2
to 3 cycles/octave, with the average of the distribution around 1.0. ®,, ranges over the full
cycle in a Gaussian-like distribution around 0°. For a subgroup of cells the sinusoidal modu-
lations of the spectrum were presented both on linear and logarithmic amplitude scale. The
responses were not notably different. The effect of the variations of amplitude of the sinusoidal
modulation was studied. The largest effect was observed for the magnitude transfer function,
which increased with amplitude and then saturated. The parameters €2, and ®, did not vary
significantly with ripple amplitude. Typically, cells respond best to intermediate sound levels of
the ripple stimulus, i.e., the magnitude transfer function shows a nonmonotonic dependence on
overall stimulus level. The phase function and €, do not depend much on level. The effects of
a few nonlinearities on the responses are examined briefly. Effects of nonlinearities as threshold
and saturation of the neural firing rates are examined. It is found that (non)monoticity of the
rate level function of a cell could be distinguished from its ripple response characterisitics. The
RF of a cell closely corresponds to the response area measured with tone stimuli. Regression
analysis shows that: (A) BFgp is very similar to the tonal BF; (B) €, is inversely correlated
to the excitatory bandwidth; (C) ®, is correlated to the asymmetry of the response area. Re-
sponses to rippled spectra in Al resemble closely the response properties to sinusoidal gratings
in the primary visual cortex (VI). This provides a unified framework within which to inter-
pret the functional organization of both corticies. Basic differences between the two systems,
however, are also evident as the lack in Al of a substantial simple/complex distinction in the
responses. It is hypothesized that Al effectively analyzes an arbitrary input spectrum into a
weighted sum of ripple components of different ripple frequencies and phases. This analysis is
performed locally around each BF by a two-dimensional bank of filters tuned to different Q,
and ®, values. Psychophysical support and implications of this hypothesis are also discussed
in relation to the perception of timbre and other auditory tasks.
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INTRODUCTION

Response areas of cells along the isofrequency planes of the mammalian primary audi-
tory cortex (AI) have recently been shown to be systematically organized with respect to two
properties: their excitatory bandwidths (Schreiner and Mendelson 1990) and their asymmetry
(Shamma et al. 1993). To measure the response areas, these investigations employed simple
tones which can be thought of as impulse-like stimuli along the tonotopic axis, as illustrated
in Fig. 1 (A). If cortical cells were to respond linearly, the measured response areas would
reflect the “impulse responses” of the system along the tonotopic axis, and hence can be used
to predict the system’s responses to arbitrary spectra. Furthermore, by Fourier transforming
the impulse response, one obtains the corresponding “transfer function”, which represents the
system’s response to sinusoidally modulated spectra (Fig. 1B), more commonly known in the
psychoacoustical literature as rippled spectra (Green 1986). Consequently, response properties
measured by tonal stimuli might be equally evident from their ripple transfer function.

The suggestion that cortical cells are linear may appear at first glance to be farfetched,
given threshold, saturation, and the nonmonotonic behavior often seen in their rate-level func-
tions. Nevertheless, the ripple transfer function may still yield useful insights into the response
characteristics of a cell. Just as measuring with tones a cell’s bandwidth, tuning quality factor,
or other linear systems response properties is considered meaningful, certain characteristics
of the ripple transfer functions may also prove useful, or possibly related to the properties
measured with tones. It is possible as well that nonlinearities observed with tonal stimuli are
less troublesome with broadband rippled spectra, or negligible over a certain range of stimulus
parameters.

An analogous situation to the above has long existed in experimental studies of auditory-
nerve responses. There, nonlinearities such as threshold, saturation, two-tone suppression, and
adaptation are prevalent (see review in Pickles 1986). These nonlinearities, however, did not
impede measurements of transfer characteristics of auditory-nerve fibers using single tones (e.g.,
Kiang et al. 1965), noise stimuli (e.g., de Boer and de Jongh 1978), or acoustic clicks (e.g.,
Pfeiffer and Kim 1972), all implying strong linear components in the responses.

Our primary goal in this report is to measure the responses of Al cells to rippled spectra
at various ripple frequencies and phases, i.e., to measure their ripple transfer functions, and
the dependence of this function on the amplitude of the ripples and the overall intensity of the
sound. A second objective is to compare characteristic features of these transfer functions to
response properties measurable using tonal stimuli, such as the bandwidth or the asymmetry
of the response area.

Such an approach has proven fruitful in analogous studies of the primary visual cortex (De
Valois and De Valois 1988). There, transfer functions measured using sinusoidally modulated
gratings reveal much about the functional organization of the system, and its response to more
complex stimuli such as oriented bars. In auditory physiology, such stimuli have only been
reported by Calhoun and Schreiner (1993). Recently, several psychoacoustical studies (Hillier
1991; Vrani¢-Sowers and Shamma 1994a, 1994b) have converged on the similar notion that
measuring the perceptual thresholds of rippled spectra may help explain how spectral profiles
are perceived. A somewhat different stimulus, called the “linear ripple” spectrum, has been
used extensively to investigate the perception of pitch (Yost et al. 1978) and in physiologi-
cal experiments in the dorsal cochlear nucleus (Bilsen et al. 1975). Unlike our rippled spectra
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which are sinusoidal along a logarithmic frequency axis (roughly the tonotopic axis), the “linear
ripple” spectra are sinusoidal along the linear frequency axis, mimicing the harmonic structure
of complex sounds.

METHODS

Surgery and animal preparation

The data presented here are obtained from acute experiments in 7 young adult male ferrets
Mustela putorius weighing approximately 1.5 kg. A detailed description of the animal prepa-
ration is given in Shamma et al. (1993). Briefly, the ferrets were anesthetized with sodium
pentobarbital (40 mg/kg). An areflexic level of anesthesia was maintained throughout the
experiment by continuous intravenous infusion of pentobarbital (approximately 5 mg/kg/hr)
diluted with dextrose-electrolyte solution. The ectosylvian gyrus, which includes the primary
auditory cortex was exposed by craniotomy and the overlying dura was incised and reflected.
The brain was covered in 2% agar in saline to reduce pulsations. The contralateral meatus was
exposed, cleaned and partly resected, and subsequently a cone-shaped speculum containing a
Sony MDR-E464 miniature speaker was sutured to the meatal stump.

Acoustic stimuli

Two types of stimuli were used in these experiments. The first type consisted of pure
tone stimuli (single and two-tone bursts, 200 ms duration, 10 ms rise- and fall-times, 50 ms
intertone delay) and FM tones (2 octaves around BF, at sweeping rates 50-250 octaves/s, two
sweep directions). These were generated using two independent function generators, gated and
mixed, and then fed through a common equalizer into the earphone. Other parameters of the
test stimuli are described in RESULTS and in Shamma et al. (1993).

The second type of stimuli were broadband complex sounds. This stimulus, schematically
shown in Fig. 2, consisted of 101 tones that were equally spaced along the logarithmic frequency
axis and spanning 4.32 octaves (e.g., 1-20 kHz or 0.25-5 kHz). The range was chosen such that
the best frequency (BF) of the cell tested lay well within the stimulus’ spectrum. The envelope
of the complex was then modulated sinusoidally either on a linear or on a logarithmic amplitude
scale to create the so-called ripple spectrum. In the linear case, the amplitude of the ripple
was defined as the maximum percentage change in the component amplitudes (left ordinate in
Fig. 2). In the logarithmic scale case, it was taken as the logarithm of the ratio of the amplitude
of the highest (peak) to the lowest (valley) components in the complex (right ordinate in
Fig. 2). The overall level of the complex stimulus was defined by the level of a single frequency
component, L; dB SPL in the flat complex. Thus, the overall level for a flat complex with 101
components (ripple amplitude AA at zero) was taken to be L; +10log(101) =~ L; +20 dB. The
overall level was varied over a range of 30 dB. Higher levels were avoided to ensure the linearity
of our acoustic delivery system.

The ripple frequency () is measured in units of cycles/octave against the logarithmic
frequency axis (see Fig. 2). The ripple phase (®) is measured in radians (or degrees) relative to
a sinewave starting at the left edge (low frequency edge) of the complex (Fig. 2). The complex
stimulus bursts had 10 ms rise/fall time and 50 ms duration. They were computer synthesized,
gated, and then fed through a common equalizer into the earphone.
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Calibration of the sound delivery system (up to 20 kHz) was performed in situ using a
1/8-in. Briiel & Kjaer probe microphone (type 4170). The microphone was inserted into the
ear canal through the wall of the speculum to within 5 mm of the tympanic membrane. The
speculum and microphone setup resembles closely that suggested by Evans (1979). See more
details in Shamma et al. (1993). Maximum tone intensities used were limited to 85 dB SPL to
avoid any distortion.

Recordings

Action potentials from single units were recorded using glass-insulated tungsten microelec-
trodes with 5-6 MQ tip impedances. Neural signals were led through a window discriminator
and the time of spike occurrence relative to stimulus delivery was stored using a Hewlett-
Packard 9000/800 series minicomputer. The computer also controlled stimulus delivery, and
created various raster displays and spike count histograms of the responses.

In each animal, electrode penetrations were made orthogonal to the cortical surface. An
experiment consisted of about 10 useful microelectrode penetrations. In each penetration, 1-7
cells were studied, typically at depths of 350-600 pm corresponding to cortical layers III and
IV where excitatory phasic responses to single tones are strongest (Shamma et al. 1993).

Data analysis for the tonal stimuli

For each cell, we first manually determined the best frequency (BF), defined as the frequency
of the lowest threshold, followed by a response curve with up to 1/8 octave resolution at low
intensity. The rate-level function at BF was measured in order to determine the cell’s response
threshold and the nonmonotonicity, i.e., whether the spike count decreased by more than 25%
as intensity was increased.

Subsequently, the response area was determined using the two-tone stimulus described in
detail in Shamma et al. (1993). Briefly, it consisted of two tone bursts of equal duration with
staggered onset times. The first tone burst (T1) was presented at several different frequencies
centered around the BF of the cell to measure the excitatory response area. Since many cells
exhibit low spontaneous firing rates, a second tone burst (T2) was fixed at BF, with a 50 ms
delay relative to T1, to provide a level of background activity against which the inhibitory
response area could be measured. Staggered onset times for T1 and T2 were used in order to
segregate the phasic responses to the two tones, which made it relatively easy to determine in
the same test the borders of the excitatory responses to T1 and of the inhibitory influences
upon T2 as described in Shamma et al. (1993). Note that the term “response area” is used
here to denote the response of a cell as a function of a tone’s frequency and intensity. In the
experiments reported here, the responses were usually obtained only at two intensities (around
20 dB above the threshold at BF), thus in using the term response area reference is made only
to specific slices of the area (see Shamma et al. (1993) for a fuller discussion of these response
measures).

The bandwidth of the excitatory response area was determined at 20 dB above the threshold
at BF, and denoted as BW20. The upper and lower frequencies were found by interpolation
using a criterium of 10% of the maximum response. A correction was made for possible spon-
taneous activity.

Another important feature of the response area is the asymmetry of its inhibitory and
excitatory portions around the BF. To quantify this feature, the following simple statistic was
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introduced in Shamma et al. (1993):

A = BoBF - R<BF, (1)
R.pr + Repr
where Rspr and R gy are the total number of spikes to both tones for an equal number of
frequencies above and below the BF, respectively. If the excitatory and inhibitory responses
are approximately symmetric around BF, the measure (M) will be near zero. Inhibition of T2
responses by T1 stimuli above BF and/or spread of T1 excitation to lower frequencies (< BF)
causes M to be negative. Conversely, stronger low frequency inhibition or high frequency T1
excitation produces positive M values. Note that the M index as defined above is computed
at one T1 intensity. Since the two-tone test was performed at two intensities of T1, indices are
computed for both intensities, and then averaged.
Finally, FM tones were presented in two sweep directions, and at different rates and at
similar intensities as in the two-tone tests. The symmetry of the average responses to the two
sweep directions was assessed using the index C as follows (Shamma et al. 1993):

_RI-R?
" Rl+RT (2)

where Rl and R| are the spike counts to the up and down sweeps, respectively. The index is
computed for each intensity presented, and then averaged.

C

Data analysis for the rippled spectrum stimuli

Following the tonal stimuli, a series of tests were carried out using rippled spectra with a
range of ripple frequencies  (typically from 0-4 cycles/octave with different resolutions) and
ripple phases ® (from 0-7x/4 in n/4 steps). Different ripple amplitudes and overall stimulus
levels were also tested.

Figure 3 illustrates the display and initial analysis applied to the data. Here the cell was
tested over ripple frequencies 0-2 cycles/octave in steps of 0.4 cycles/octave. In Fig. 3A, the
raster shows the responses to different phases of the ripple at = 0.8 cycles/octave. The
response spike counts were made over a 50 ms time window starting shortly (10 ms) after the
onset of the stimulus as indicated by the short arrows. From each such raster, spike counts were
computed showing the dependence of the response on the phase of the ripple (inset plot to the
right of the raster). All spike counts reflect the total responses obtained from 20 repetitions of
each stimulus. In Fig. 3B, such spike counts from all ripple frequencies are combined in one
display. Note that for each ripple frequency, the baseline of the plot is set equal to the average
spike count from all 8 phases.

In order to analyze the different components of the response, and specifically to estimate
the level of the component synchronized to each ripple frequency, an 8-point Fourier transform
is performed on the spike counts at each ripple frequency (Fig. 3C). The first column is the
baseline or the DC component in the responses to each ripple (or simply the average spike
count). The second column (labeled AC;(f2)) lists the magnitude and phase of the primary
response component synchronized to the ripple frequency . In effect, this is the amplitude and
phase of the sinusoid that best fits the data at each ripple frequency (solid lines in Fig. 3B).
Higher-order harmonics of the response to each ripple are listed in the other columns.
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If the cell responses were completely linear and noise-free, AC1(0) (the synchronized com-
ponent to a flat spectrum) and high-order harmonics at all  would vanish. In that case,
AC4(9) is the transfer function of the cell. However, this is rarely the case. So in order to take
into account the magnitude of the nonlinearity and to reduce the effects of statistical noise, a
normalized measure of the AC;(f2) responses (called T'(2)) is defined as follows:

JAC@)] — [AC:(0))

Y IV Y]

if |ACY ()] - [AC1(0)] 2 0 (3)

T(Q) = 0 if |AC1(R)] — |ACL(0)] < 0

where |AC;(Q)]| is the magnitude of the response AC;(2). Thus, aside from removal of the bias
AC4(0), the normalized transfer function T'(Q2) de-emphasizes magnitude estimates where the
high-order harmonics are comparable to the AC,(2), i.e., where reponses are highly nonlinearly
distorted or very noisy. Note that the normalization does not affect the phase of the responses.
In general terms T'(2) can be written as follows:

T() = |T(Q)]e*® (4)

Figure 4A illustrates the magnitude |T'(Q)| and the unwrapped phase ®(Q2) of the transfer
function T'(Q) for the cell in Fig. 3. This ripple transfer function can be inverse Fourier trans-
formed to obtain the impulse response of the cell shown in Fig. 4B. For a linearly responding
cell, this function would be identical to a slice of the response area of the cell such as measured
with two-tone stimuli. However, given likely nonlinearities in the responses, the two functions
will not be identical. In order to distinguish it from the response area, this impulse response
will be called the response field (RF) of the cell, and thought of as analogous to a slice of the
response area of the cell measured at a given tone intensity. Repeating the measurements at
different ripple amplitudes, we would obtain the full RF. Furthermore, performing the mea-
surements at different overall sound levels is similar to choosing different overall levels of the
two-tone stimuli.

Since these tests take a relatively long time to conduct, it was nearly impossible to hold
a single unit long enough to measure both its full response area and its RFs at several ripple
amplitudes. Moreover, it was desirable to examine the RFs from a large number of cells.
Consequently, to compare the RFs and response areas, the RF was characterized in terms of
parameters similar to the bandwidth and asymmetry indices used to describe the response
area. These and other parameters of interest here are indicated in Fig. 4A. The first is the
ripple frequency (£2,) at which the magnitude of the transfer function, |T'()|, is maximum.
We shall call this parameter the characteristic ripple of the cell. This parameter reflects the
width of the RF near its center. In general, the higher the characteristic ripple, the narrower
the corresponding RF.

Two other parameters are derived from a linear fit of the phase function according to

B(Q) = 2,0 + B, (5)

where z, is the slope of the line, and ®, is its intercept. The parameter z, represents the location
(in octaves) of the center of the RF relative to the left edge of the ripple (Fig. 4B). The center of
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the RF is defined as the center of the envelope of the RF (dashed line in Fig. 4B); this envelope
is computed from the analytic signal corresponding to the RF function (see Oppenheim and
Schafer 1990). The parameter ®, shall be called the characteristic phase. It roughly reflects
the asymmetry of the RF about its center. For instance, the RF is symmetric for ®, = 0, and
strongly asymmetric for ®, = £90°. This is illustrated in Fig. 4C where the RF of the cell is
computed for different ®,’s by simply sliding its fitted phase function ®(f) vertically.

The straight line fit of the phase data was done in two ways. The first was to select the
reliable phase values (e.g., those for which the magnitude of AC1(2) is 50% larger than the other
response harmonics), and then to fit these points using regular least square error procedures.
The second method was to compare the RF obtained from the transfer function, |7'(2) |72 to
the approximate RF obtained from the same transfer function assuming it has linear phase, i.e.,
|T (Q/)Jgj(”°9+¢°). The search and comparison was performed by first selecting a ®,, computing
the RF, and then testing different z, values by cross correlating it with the RF. The location
and value of the maximum of the correlation function indicate, respectively, the best z, for that
®, and the similarity of the two RFs. This procedure was then repeated for —7 < ®, < 7 at
the desired resolution. The best estimates of the ®, and z, are those that produce the largest
correlation maximum. The primary advantage of the latter procedure is that it requires no
selection of phase data. Furthermore, it produces an indicator of the reliability of the linear-
phase assumption, namely the largest maximum of the correlation function normalized by the
length of the two RFs (a maximum value of 1 indicates a perfect fit; 0 indicates no similarity).
For instance, the phase-fit indicator for the responses in Fig. 4 is 0.99. In most cases, the two
fitting procedures produce very similar results. When significantly different (> 30°), the first
method is prefered since only reliable phase estimates are used.

Another response measure of interest is the location of the maximum of the RF along the
stimulus (tonotopic) axis (BFpgp). This can be roughly compared to the BF of the cell, or more
accurately to the maximum of a slice in the cell’s response area at some appropriate intensity.
In the cases where BFgr changes significantly with ripple amplitude or sound intensity, the
estimate from the lowest stimulus levels is selected.

In this paper three response parameters in particular are used top describe the ripple re-
sponses of Al units: the characteristic ripple frequency ), the characteristic phase ®, and the
RF’s best frequency BFgr.

RESULTS

The data illustrated here were collected from a total of 104 single-unit recordings in 7
animals. All these units responded to tones. For 92 of tested Al units (88 %) responses to
rippled spectra were locked to the phase of the stimulus. An example of dependence on phase
is shown in Fig. 3A, where for a 180° shift the response changes from maximum to minimum
(zero). In this paper the responses are considered with respect to their phase-following (or
vector-strength) of the ripple. The response irrespective of phase (e.g., the average rate) is only
discussed in the context of nonlinear behaviour.

In this section detailed features of the responses to the rippled spectra are first described,
together with their dependence on the ripple amplitude and overall sound level. Next, the
correspondence between the shapes of the RFs and of the response areas is examined in general
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terms, and then in specific terms using such parameters as the characteristic ripple and phase,
the response area bandwidth and asymmetry indices.

Responses to rippled spectra

The two most important features of cortical cell responses to rippled spectra were: (1) they
were tuned to specific ripple frequencies (a characteristic ripple £,), and (2) they exhibited
a constant phase delay (a characteristic phase ®,) plus a linear phase function of the ripple
frequency. The first of these features is demonstrated in Fig. 5 for three cells that are tuned
to progressively higher Q,’s ( 0.6, 1.0, 1.8 cycles/octave) as seen in the |T'(€2)| plots in the left
column. Inverting the transfer function T(?) in each case produces the corresponding RFs
(shown in the right column). Cells with higher 2, tended to have narrower RFs. Most cells
exhibited tuning to a single ripple frequency. It was common that the response curve showed
multiple peaks, most often in the form of a weaker tuned response at higher ripple frequencies
(e.g., see |T()| plot in Fig. 5A), and in fewer cases at a lower ripple frequency (as in Fig. 5C).
A few cells had strongly tuned DC(2) responses relative to the phase-following responses; they
are discussed later. Some cells had very weak responses (or even none) in general to rippled
spectra compared to tonal stimuli.

Figure 6 illustrates the transfer functions of 3 cells with comparable characteristic ripples
(Q, = 0.8), but different characteristic phases ®,’s. A typical feature of the phase function
®(Q) is its strongly linear character over a wide range of ripple frequencies (see also Fig. 5).
The slope of this phase function reflects an RF displacement along the tonotopic axis relative
to the low-frequency edge of the stimulus. The linearity of ®(Q) also implies that the transfer
function contributes only a constant phase shift (®,) to all ripple frequencies. The RFs in Fig. 6
have different asymmetries reflecting the different ®,’s.

The distributions of characteristic ripples and phases in our sample are shown in Figs. 7TA
and B. The range of £, is 0.2-3 cycles/octave, and the average of the distribution lies around
1.0. The distribution of ®, is Gaussian like with most cells (61 %) between -45 and +45. The
distribution is slightly biased towards negative values. In Fig. 7C-D, scatter plots of the (0, and
®, against the BF of each unit are shown. The only apparent dependence on BF is seen for the
0,’s where units with a lower BF tend to have smaller values. The joint distribution of these
two response measures is reflected by the scatter plot in Fig. TE. It indicates that the mean
and variance of the ®, distribution remain relatively constant and hence independent of the
Q,. Finally, the average width of the transfer functions |T'(2)| against the Q-axis (measured at
the 3 dB points) is found to be 1.3 octaves (SD = 0.5).

Linear vs. logarithmic ripple spectra

It is unknown whether the central auditory system encodes the shape of the acoustic spec-
trum on a linear or a logarithmic amplitude scale, or via other representations such as the
power spectrum. Because of this uncertainty the responses of 10 cells were measured using
both linear and logarithmic ripples in order to determine whether any of the response features
depended critically on this choice. There are no systematic differences between the responses
to these stimuli. This is illustrated for two units in Fig. 8. Slight differences in magnitude or
phase functions might show up without essentially affecting the estimate of the RF.
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Dependence of the responses on ripple amplitudes

Ripple spectra were presented at various ripple amplitudes in order to assess the stability of
the responses. Figure 9 illustrates typical responses measured in 2 out of a total of 10 cells so
tested. In both units the transfer function was measured at three ripple amplitudes. Over an
intermediate range of amplitudes, the overall scale of the magnitude transfer function increases
with ripple amplitude. The phase function ®(?), and the parameters 2, and ®,, remain
relatively stable with ripple amplitude. At large amplitudes (e.g., at 50% in Fig. 9A), the
growth of |T'(Q)| saturates but the overall shape of the transfer function is not much affected.
With decreasing amplitude, the responses gradually weaken, and the |T'(Q)| becomes more
noisy before disappearing (threshold at about 1 dB or 25%).

Dependence of the responses on stimulus level

Response properties were examined with respect to a change in overall stimulus level in 35
cells. Typical responses are shown for 5 cells in Fig. 10 (2 other examples follow in the next
subsection). As shown in Fig. 10A,B |T'(Q)| is optimal at medium levels and decreases at the
highest level while approximately maintaining its overall shape and Q,. Also, ®(§) functions
are stable with level. Consequently, the shape of the response field does not vary significantly
with level. The nonmonotonic change of |T(2)| with stimulus level is further demonstrated
in Fig. 10C. The responses of 3 units are shown at the characteristic ripple frequency ), over
a 30 dB range starting at threshold level. In two cells, an optimal stimulus level is evident
within the 30 dB range. In the other, the responses grew slower with level and whether |T'(Q)|
decreased at higher stimulus levels (> 65 dB) could not be confirmed. In 12 of 18 cells where we
measured curves as in Fig. 10C nonmonoticity was demonstrated. The nonlinear dependence of
T(€) on level occured both in units that had nonmonotonic (Fig. 10A) or monotonic rate-level
functions for BF tones (Fig. 10B). The possible reasons for the observed nonlinear dependence
of |T(2)| on level are explored in the next subsection.

The results can be summarized with two general observations: (1) there is only a narrow
effective (or “best”) range of levels (usually 20 dB) over which T'(f2) responses are large. (2)
®,, and to a lesser extent §,, are relatively stable with stimulus level in the optimal range.

Nonlinearities in the responses

All the results so far have emphasized the linear character of the responses to ripple stimuli.
However, several nonlinearities exert strong influences on the responses. Two relatively easy
to describe nonlinearities are threshold and saturation. The threshold nonlinearity implies
half-wave rectification of the phase- locked responses.

Figures 11 and 12 show the effects of nonlinearities on the ripple responses for cells with
nonmonotonic and monotonic rate-level functions at BF tones (plots A), respectively. The
effects of the threshold nonlinearity are most evident at the lower stimulus levels, i.e., for
the 50 dB responses in both examples shown. The effects are similar for nonmonotonic and
monotonic cells. For instance, the nonmonotonic cell (Fig. 11) responds to a 50 dB flat spectrum
(2 = 0) at an average spike count of 1.7 (DC(0) = 1.7 in Fig. 11D). However, when = 0.4
the responses become strongly modulated by the phase of the ripple (Fig. 11B), increasing up
to 12 in one half cycle, and becoming half-wave rectified in the other. This rectification creates
a large DC(f?) component which is proportional to |T(Q)] as seen in Fig. 11D (plot at 50 dB).
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Exactly the same observations apply to the 50 dB data of the monotonic cell illustrated in
Fig. 12.

However, at the higher stimulus level (60 dB), the responses of the two types of cells di-
verge significantly. For the nonmonotonic cell, all phase-locked responses become suppressed
(Fig. 11B), and hence both |T(?)| and DC(f) decrease together in amplitude (Figs. 11C and
D at 60 dB). For the monotonic cell in Fig. 12, increasing the stimulus level to 60 dB drives
the responses harder into saturation. Consequently, the DC(f2) response increases with level
(Fig. 12D). In contrast, the phase-modulated responses (Figs. 12B and C) decrease, and hence
|T(Q)| and DC(Q) are inversely related. Note also that |T'(Q)] is most distorted (saturated)
near §),, sometimes causing the entire function to appear slightly shifted downwards (Fig. 12C).

In a few cells, the response patterns exhibited complex features that could not be fit within
the data analysis framework presented so far. For instance, 4 units had a strongly tuned DC(2),
and only weak T'(2) responses. In 3 others, the tuned DC({2) responses could not be simply
related to T() as was the case earlier in Figs. 11 and 12. Such a response is illustrated in
Fig. 13, where the T'(Q) is tuned to a rather low Q, = 0.4, whereas DC({) is strongly tuned to
a much higher and apparently unrelated ripple frequency (5 cycles/octave). Since most cells in
our sample were tested over a limited ripple frequency range (0 — 4 cycles/octave), it is unclear
whether the DC(Q) tuning at high ripple frequencies is common.

Comparison between the RF and response area

Figure 14A compares RF's (solid lines) to response areas as derived from two-tone responses
(dashed lines) for three different cells. The RF's of different asymmetries and bandwidths match
closely their response area counterparts (apart from the artificial elevation of responses towards
the response area edges due to the BF tone (T2) of the two-tone stimulus). A qualitatively
good correspondence is found in most cells, even in cells that have atypical RFs and response
areas. An example of such responses is a double-peaked excitatory tuning which is illustrated
in Fig. 14B.

In order to quantify more efficiently this relationship for all units, three types of parameters
were computed from the RFs and response areas, and juxtaposed in scatter plots; they reflect
the BF, the bandwidth, and the asymmetry of the response areas and fields.

Comparison between the BF and the BFrp

The simplest measure of the correspondence between a unit’s responses from tonal and
rippled stimuli is in terms of its estimated BF. This is shown in Fig. 15 as a scatter plot between
the BF measured with a single tone against the maximum of the RF (BFgr), compiled from
all units where both parameters could be measured. Obviously, for a majority of the cells the
parameters were very similar. Only for 9 % of the cells the BF measures differed by more than
half of an octave.

Comparison between BW20 and the characteristic ripple (),

Another parametric comparison between the response area and the RF of a cell is in terms
of their widths. For the response area, the bandwidth is measured from the excitatory tone

responses 20 dB above threshold, BW20. For the RF, we measured the width of the positive
peak between the zero crossings. Figure 16A shows the scatter plot of the RF width versus
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BW20. In this plot only RFs with a single dominant positive peak are included (|®,| < 90°).
The correlation between the two plot parameters is significant (p < 0.01).

Since the width of the RF is only indirectly related to the parameters of the ripple transfer
function, the relation of the characteristic ripple 2, to BW20 was directly examined. €, is
expected to be inversely proportional to the RF width and BW20 (Figs. 4 and 5), and this is
indeed supported by the scatter plot of Fig. 16B. More precisely, for a small BW20 the best
ripple varies from 0.2 to 3 cycles/octave and for broadly tuned cells (BW20 > 1.5 octave) the
best ripple is smaller than 1.2 cycles/oct. Despite their considerable scatter (r = —0.27), these
data indicate that a cell is likely to be best driven by ripples with frequencies that match the
outlines of the excitatory and inhibitory fields of the response area.

It is evident from the scatter plots in Fig. 16 that (, is not always a good measure of the
RF width. The reason for this is illustrated in Fig. 6 where the cells have the same nominal ,,
but quite different widths of their RFs. This reflects the different shapes and widths of their
|T(Q)]| functions. Specifically, if the |T()| spreads out considerably beyond its €2, (e.g., as in
Fig. 6B), then the RF will be narrower than predicted exclusively by its ,.

The linearity of the phase function ()

The phase of the transfer function was fit by a straight line whose slope (z,) and intercept
(®,) were associated with the horizontal shift and asymmetry of the RF, respectively (see
Fig. 4). One indicator of the accuracy of this fit is the normalized match between the RF of the
cell (cf. Fig. 4B), and the reconstructed RF computed from the same transfer function assuming
the phase function is linear (cf. Fig. 4C). If the two patterns are identical the indicator is 1
and if they are random the indicator is 0. As is evident in all examples in Figs. 4-10, the linear
fit is accurate. In 84% of all cells responding to the ripples, the indicator exceeded 0.9. That
is, in these cases, the assumption of a linear phase is justified, and the ®, and z, are both
meaningful measures of the RF.

Comparison between M and C asymmetry indices and the characteristic phase ®,

The asymmetry of the response areas and of the RF's are compared in Fig. 17A. The asymme-
try of the RF is indicated by the characteristic phase ®, and it is plotted against the asymmetry
of the response area as reflected by the M index. There is a positive correlation between the
two parameters which is weak but significant (r = 0.33; p < 0.01). Furthermore, in Fig. 17B
®, is plotted versus the asymmetry measure obtained from FM responses, the C' index. Here
it is more evident that the asymmetry measures from tonal and ripple stimuli do correspond
(r = 0.42; p < 0.001). For comparison, the M and C indices for the same cells are plotted
against each other in Fig. 17C. The correlation between the two tonal measures is only slightly
larger than that of the tone-ripple response comparison (r = 0.46; p < 0.001).

DISCUSSION

The linearity of cortical cell responses to spectral ripples

Responses of single-units in Al suggest that there is generally a good correspondence between
the shape of a response area (measured with tonal stimuli) and that of the RF (measured
with ripple transfer functions). Specifically, for most cells the BFgp is very similar to BF
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(Fig. 15), and there is a reasonable correlation between the response area bandwidth and the
RF width and €, (Fig. 16), and between the asymmetry of the response area and that of
the RF (Fig. 17). These findings in single units are confirmed in another set of experiments
with multiunit recordings (Versnel et al. 1994). The correspondences between ripple and tonal
responses must imply that there is a significant linear component in the cells’ responses, or
that at least, the nonlinearities do not completely distort such linear response measures as the
transfer function 7'(Q). This conclusion is consistent with findings by Nelken et al. (1994) that
responses to complex sounds (e.g., nine-tone complexes) are predictable on the basis of the
response areas measured with two-tone stimuli.

However, it is also evident from the various scatter plots that, apart from the BF-BFgp
comparison, the correlations between the tonal and ripple response parameters are noisy. Apart
from various response nonlinearities, which will be discussed in more detail later, other sources
may contribute to this scatter. Primary among them is the approximate nature of the response
parameters. For example, while parameters such as the Q, and ®, capture efficiently the
shape of of the RF, they nevertheless can vary over a certain range without causing significant
distortion of the RF (e.g., as in all cases of Figs. 8-10). Thus, measurements of these and
other parameters (e.g., BW20 and M index) at one or a limited range of stimulus conditions
must cause significant reduction in the correlations in Figs. 15-17. Nevertheless, given these
and other possible sources of measurement errors, the persistance of a significant correlation
between the tonal and ripple response measures is a testimony to the robustness of the linear
component in the responses.

Functional significance of the response characteristics

The vast majority of units encountered in AI exhibited tuned responses as a function of
ripple frequency, i.e., had a well defined characteristic ripple. Furthermore, the characteristic
ripples spanned a range of frequencies (0.2 - 3 cycles/octave), and were not simply clustered
around one value (Fig. 7A). These findings suggest that Al cells can in principle function as
ripple bandpass filters, analyzing an input spectral profile into seperate channels tuned around
different characteristic ripple frequencies. Equivalently, from the perspective of their response
area bandwidths, they can be said to have a range of bandwidths so as to analyze the input
spectral profile into different scales. Thus, cells with broader bandwidths respond best to the
gross (slowly varying) features of the profile, whereas narrowly tuned units detect the fine
(rapidly varying) features of the profile. The validity of this functional view is strengthened by
the psychoacoustical findings discussed later in this section, and by the physiological mappings
demonstrating a spatially organized distribution of this response property across the surface of
AI (Schreiner and Mendelson 1990; Heil et al. 1992; Versnel et al. 1994).

The second important property of Al responses is the linearity of their phase functions
®(Q). This implies that, apart from a linear phase shift due to the RF location relative to the
left edge of the ripple stimulus (cf. Fig. 4B), the transfer function T'(?) of an AI cell has a
constant phase ®,. The functional interpretation of this finding is that a unit is selective not
only to a characteristic ripple frequency (£,), but also to a particular (characteristic) phase
®, of that ripple. In this sense, Al cells analyze the input spectral profile into yet another
dimension, namely the phase of the ripples. This interpretation is consistent with findings that
AI cells with asymmetric response areas are selectively responsive to spectral profiles with the
opposite asymmetry (Shamma et al. 1993; Vrani¢ et al. 1993), since the characteristic phase
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is correlated with the asymmetry of the response area (Fig. 17).

There are, however, two important constraints on the above ripple analysis model. The
first is that the distributions of the €2, and ®, are are not uniform. Instead, 2, in the ferret
is largely limited below 2 cycles/octave, while ®, is dominant around 0 (Fig. 7B). The second
constraint is that each cell is only optimally responsive over a narrow range of stimulus levels
(roughly 20 dB) (Fig. 10C). This limitation, however, can easily be overcome if a population
of cells are responsive to different “best” overall stimulus levels (as suggested by Fig. 10C).

In summary, Al response properties to rippled spectra suggest that it may function as a
bank of ripple bandpass filters computing the local Fourier transform of the input spectral
profile. For instance, a unit with a characteristic ripple frequency ), and phase ®, would
analyze the local region of the profile around its BF. More intuitively, the ripple frequency axis
can be considered as a scale axis, with coarser views of the profile available at the low ripple
filters, and finer details at the high ripple filters. Similarly, the ripple phase sensitivity axis can
be seen as explicitly encoding the local asymmetry of the profile at each scale. The strength of
its output reflects both the ripple frequency content near €2,, and the local asymmetry (relative
to ®,) of that region of the profile. An array of such analyzers at different BFs, Q,’s and ®,’s
would then perform the complete profile transformation.

The response nonlinearities and their implications

The correspondence observed between the various response measures using tonal and rippled
stimuli suggests that threshold and saturation nonlinearities do not significantly disrupt the
predominantly linear character of the responses. Linear response measures such as the ripple
transfer function may indeed provide a meaningful characterization of a unit’s response area.
Perhaps the best way to explain this apparent paradox is by analogy to the effects of cochlear
nonlinearities on the phase-locked responses of the auditory nerve.

For instance, the threshold nonlinearity of the cochlear hair cell rectifies the phase-locked
responses of the auditory-nerve creating DC and higher harmonics that follow very similar
trends as those described earlier in conjunction with Figs. 11 and 12 (Dallos and Santos-Sacchi
1983; Shamma et al. 1986). Thus, it is possible to measure on an auditory-nerve fiber an AC
transfer function (analogous to T'(Q) in AlI) based entirely on the phase-locked responses of
the fiber using a swept single tone (Rose et al. 1971) or reverse-correlation techniques with a
noise stimulus (de Boer and de Jongh 1978). Because of hair cell threshold, the synchronous
responses are normally accompanied by a similarly tuned DC component (usually called the
“average rate” response), much like the DC(f2) component in Al responses (see Shamma et al.
(1986) for a detailed discussion of these different response measures).

The saturation nonlinearity limits the growth of the ripple phase-locked responses in Al cells
(Fig. 10) in an analogous manner to that seen in the synchronous responses on the auditory
nerve. Note, however, that the decrease of |T'(Q2)| at the highest stimulus levels is not analo-
gously seen in auditory-nerve fibers (Rose et al. 1971) because they normally operate near the
threshold knee of the nonlinear transfer characteristics of the hair cell and not near saturation.

Despite threshold and saturation nonlinearities, AC transfer functions on the auditory nerve
are a valuable predictive measure of a fiber’s response to broadband stimuli (Deng et al. 1988).
It is in this sense that one may conjecture that ripple transfer functions 7'(2) are also useful
in describing Al responses to a spectral profile.

A different source of nonlinear interactions is the uncertain “internal” representation of a
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spectral ripple at the input of the central auditory system. Both linearly and logarithmically
amplitude modulated rippled spectra were used as spectral profiles in our experiments. Clearly,
one or both of these sinusoidal spectra may appear distorted to the central auditory system.
This kind of “input nonlinearity” creates additional DC and higher harmonic components
that are not explicitly accounted for in the stimulus. Nevertheless, the experimental results
summarized in Fig. 8 suggest that the two inputs produce similar responses, suggesting that
the distortion harmonics are smaller than the primary ripple and, for each unit, lie sufficiently
away from its characteristic ripple (i.e., outside of the |T'(2)]).

All our experiments employed single ripples to measure the transfer functions T'(Q2), i.e.,
analogous to measuring the cochlear bandpass filters with single tones. This leaves a funda-
mental question unanswered: do responses to multiple simultaneous ripples combine linearly?
That is, in what sense and to what extent does the law of superposition hold in the hypothetical
ripple analysis of AI? The answers to these questions have important implications both for the
functional organization of AI and the peripheral representations of the acoustic spectrum. For
instance, if superposition holds, then it must imply that it also holds at the cochlear outputs,
and that the multitude of well known peripheral nonlinearities somehow do not destroy the
linearity of the ripple analysis (Wang and Shamma 1994).

There are undoubtedly a host of other factors that affect the details of the responses, such as
cell adaptation, anesthesia, and interactions among cells. For instance, the commonly observed
double (and even triple) peaked transfer functions (Figs. 5A, 6B), may well reflect disinhibition
associated with lateral inhibitory interactions among cells with different characteristic ripples,
analogous to those observed in the visual cortex (De Valois and Tootell 1983). Also, it is possible
that the depression of spontaneous activity caused by the anesthesia (Brugge and Merzenich
1973; Pfingst and O’Connor 1981) may exaggerate the effects of the threshold nonlinearity. All
these factors and other previously discussed nonlinearities may induce their effects anywhere
along the auditory pathway. In fact, the experiments here do not reveal the site of origin of
any of the response features described in this paper since no similar physiological experiments
using rippled spectra have been reported in pre-cortical structures.

Finally, a basic property of auditory-nerve responses is the loss of synchrony to high fre-
quency tones (Palmer and Russell 1986), presumably due to the hair cell lowpass filter (Shamma
et al. 1986). In this case, only (the nonlinear) DC or average rate tuning curve can be measured,
and the responses are therefore insensitive to the phase of the tone. Analogously, in the ferret
Al, there is a general decline in the number of cells tuned to higher ripple frequencies (Fig. 7A).
This decline, however, is unlikely to be due to an analogous filtering of the ripple phase-locked
responses since they can still be measured in some cells at ripples up to 4 cycles/octave (e.g.,
Fig. 9B). Furthermore, the decline does not seem to be compensated by an abundance of
cells that are exclusively “DC(£2) tuned” to higher ripples (> 1.5 cycles/octave) and are hence
phase-insensitive. Instead, this narrow range of {},’s may reflect a genuine species-specific range
of ripples to which the ferret is sensitive. And therefore, it is possible that in other species,
there exists a broader range of characteristic ripples, or a large population of purely DC-tuned,
phase-insensitive cells. In fact, this distinction between ripple phase-sensitive (linear) and rip-
ple phase-insensitive (nonlinear) cells is identical to the distinction between simple (linear) and
complex (nonlinear) cells of the visual cortex (Hubel and Wiesel 1962; De Valois et al. 1982).
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Relation to spatial frequency analysis in the visual cortex

Physiological and psychophysical experiments with ripple-like stimuli (or gratings) in the
visual system have been carried out for over two decades (see De Valois and De Valois (1988) for
a thorough review). In the primary visual cortex (VI), cells display similar responses to those
described here in Al For instance, the transfer function of a VI cell is tuned around a specific
grating frequency (usually called “spatial frequency”), and its inverse transform predicts well
the receptive field of the cell measured by impulse-like stimuli as light dots (De Valois et al.
1982). Thus, just as in Al, visual cortical responses have a substantial linear component that is
not disrupted by threshold, saturation, and other nonlinearities. Furthermore, psychophysical
data has accumulated in the visual literature that supports the notion that these tuned response
features are perceptually relevant (De Valois and De Valois 1988).

Ripple (or grating) phase has played only a secondary role in most physiological experiments
of spatial frequency selectivity in VI. Nevertheless, it has served to distinguish cleanly between
two fundamental classes of cortical cells, simple and complex cells, long recognized by a variety
of other criteria (Hubel and Wiesel 1962). Thus, while both cell types have tuned transfer
function magnitudes, only simple cells exhibit clear phase-locked responses. The distributions
of these two cell types in VI are basically comparable (De Valois and De Valois 1988). By
contrast, there are very few units that can be analogously called “complex cells” in the ferret
Al as most exhibit robust “linear” sensitivity to the phase of the ripple.

Another significant difference between the responses of Al and VI with respect to ripple
phase sensitivity concerns the relative dearth in our Al sample of units with “reverse” RFs,
i.e., with |@,| > 150 (as in Fig. 14B). Such RFs in VI (known as off-center-on-surround) are
at least as common as their counterparts. It is possible they were missed in AI due to a bias
in the sampling procedures, or are concentrated in sub-areas of Al as yet undiscovered in the
ferret. For instance, such cells (exhibiting doubly-tuned excitatory response areas) have been
reported to be concentrated in the dorsal area of Al in the cat (Sutter and Schreiner 1991).

Finally, it is possible to give a simple interpretation of orientation selectivity in VI within
the context of spatial frequency analysis, and relate it to ripple analysis in Al Visual gratings
are two-dimensional in nature with “spatial frequencies” defined along two axes of a scene (e.g,
Q. and §,). Oriented gratings can be uniquely defined (within a quadrant) by a combination of
these two spatial frequencies. For instance, vertical (horizontal) gratings are those with (), =0
(2, = 0), while those with equal spatial frequencies (Q; = ;) correspond gratings oriented
at 45°. Thus, VI cells (simple or complex) tuned to different spatial frequency combinations
would exhibit orientation selectivity. Since spectral ripples are one-dimensional, “orientation
selectivity” as defined above simply reduces to tuning along one dimension, i.e., the usual
characteristic ripple (£2,). However, it is crucial to recognize that apart from the dimensionality
of the input signal, the mechanisms giving rise to orientation selectivity in VI are identical to
those seen in Al

Relation to psychoacoustics

We suggested so far that a spectral profile of an acoustic stimulus is analyzed by Al fil-
ters, each operating locally on the tonotopic axis and each filtering both ripple frequencies to
encode the profile scale and ripple phases to encode the profile asymmetry. There are many
psychoacoustical implications of this hypothesis, but very few experiments have been carried
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out so far to test them. One of the earliest studies by Green (1986), and a recent more detailed
elaboration on it by Hillier (1991), tested the sensitivity of human subjects to rippled spectra of
different frequencies. They both found increased sensitivity and uniformity of thresholds around
approximately 1-3 cycles/octave; nevertheless, subjects responded over a broad range of ripples
well exceeding 10 cycles/octave. Similarly, recent measurements (Vranié-Sowers and Shamma
1994a) revealed that ripple phase sensitivity up to approximately 1 cycle/octave is constant at
around 6° regardless of ripple frequency. Above 1 cycle/octave, threshold increased gradually.
These thresholds values and trends are almost identical to those found in corresponding visual
experiments (De Valois and De Valois 1988).

In summary, it is hypothesized that the auditory system analyzes locally the spectral pro-
file along a ripple frequency (scale) and a phase (asymmetry) dimension (Vrani¢-Sowers and
Shamma 1994b). An implication of this hypothesis is that the perception of timbre (as far as
determined by the shape of the spectral profile) may be more accurately described using the
ripple analyzed profile, rather than the profile itself. Similarly, and more generally, descriptions
of higher level auditory perceptual tasks involving complex sounds, such as spatial localization,
pitch perception, speech recognition, and detection of spatial and spectral motion, should be
based upon an explicit representation of the ripple transformation of the spectral profile.
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Figure Legends

FIG. 1. Scheme of presumed responses of an array of Al cells uniformly distributed along the
tonotopic axis. A: The responses to a single tone. The tone is represented by an impulse
stimulus along the tonotopic axis. The tone evokes a pattern of cells’ responses along the
axis that mirrors the typical response area of a single cell with its excitatory tuned center
and inhibitory sidebands (shaded region). The pattern is slightly asymmetric, thus reflecting
asymmetric response areas of the array’s cells. B: The response pattern evoked by a rippled
spectrum stimulus. The stimulus is represented by a sinusoid along the tonotopic axis. The
output is an alternating (sinusoidal) pattern of excitation and inhibition, that is amplified or
attenuated in amplitude, and phase-shifted relative to the input pattern. A transfer function
can be measured by noting the amplitude and phase of the output relative to the input ripple
at various ripple frequencies. As in A, the cells in this scheme have asymmetric response areas
reflected here by a phase shift.

FIG. 2. Scheme of a rippled spectrum stimulus. It is composed of 101 tones equally spaced
along the logarithmic frequency axis between 1-20 kHz. The envelope is sinusoidally modulated
on either a linear (left ordinate) or a logarithmic (right ordinate) amplitude scale. The ripple
phase is defined relative to a sinewave starting at the left edge. For the ripple shown, the
amplitude (AA) is either 50% (linear) or 10 dB (logarithmic), the ripple frequency 2 = 0.5
cycles/octave, and the ripple phase ® = 90°.

FIG. 3. The analysis of the responses to rippled stimuli. A: Raster of the responses of an Al cell
(#148/06¢; BF of 7.5 kHz) to a rippled spectrum stimulus (£ = 0.8 cycles/octave) at various
ripple phases (0° — 315° in steps of 45°). The stimulus burst starts at 100 ms and lasts for 50
ms. Stimulus is repeated 20 times for each ripple phase. Spike counts as a function of the ripple
are computed over a 50 ms window as indicated by the bold arrows, and are displayed in the
inset plot to the right of the raster. B: Spike counts as a function of ripple phase for various
ripple frequencies {2 between 0 and 2 cycles/octave. At each 2, spike counts are indicated by
the circles, and the abscissa is placed at the spike count averaged over all phases. The solid
line is the best sinusoidal fit to the points (in the sense of mean square error). C: An 8-point
Fourier transform of the spike counts at each ) yields estimates of the average spike count,
DC(), and the amplitude and phase of the best sinusoidal fit, AC;(Q), and of the 2"¢, 374,
and 4% (distortion) harmonics of the fundamental ().

FIG. 4. The transfer function and the response field. A: The transfer function T'(Q) derived from
the responses in Fig. 2. Plot to the left is of the |AC;(Q)|, the magnitude of the fundamental
component of the Fourier analysis in Fig. 2C. |T'(Q?)| is a normalized version of |AC(€2)|. The
characteristic ripple €, is the location of the maximum of |T'(Q)|. Plot to the right depicts the
phase function ®(2) (filled circles) of the fundamental component AC:(f2) (or of the transfer
function T(Q2)). The solid line represents a linear fit to the data with intercept ®, and slope z,.
B: The response field (RF) of the cell derived by an inverse Fourier transform of the transfer
function T'(2). The dashed curve represents the envelope of the RF. The distance from the left
edge of the rippled spectrum to the center of the RF envelope is equal to the slope z, in ®(1)
(see A). The location of the maximum of the RF is defined as BFgpr. C: Several RFs derived
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from the same |T'(Q)| and =z, as in A, but with different ®,’s. Changing the ®,’s results in RFs
of different asymmetries.

FIG. 5. Examples of ripple responses from three cells (A, B, C) with different character-
istic ripples (2, = 0.6,1.0,2.0 cycles/octave, respectively), but similar asymmetries (®, =
—10°,17°,—11°). For each cell, the left plot depicts the magnitude of its ripple transfer func-
tion |T'(?)|. Data points are connected by straight line segments, and are then smoothed by
linearly interpolating the slopes between the midpoints of adjacent segments. The middle plot
represents the phase function ®({2), and the linear fit to the data points. The phase-fit indi-
cators for the three cells are 0.99, 1.00, and 0.99. The right plot illustrates the corresponding
RF.

FIG. 6. Examples of ripple responses from three cells (4, B, C) with different characteristic
phases (&, = —106°,7°,53°, respectively), but similar characteristic ripples (2, = 0.8 — 1.0
cycles/octave). Other details of the plots are as in Fig. 5. The phase-fit indicators for the three
cells are 0.98, 0.98, 0.93.

FIG. 7. Distributions of ripple response parameters in single-unit recordings in AI. A: Distri-
bution of characteristic ripple §,. B: Distribution of characteristic phase ®,. C: Distribution of
{1, as a function of BF. The solid line represents the linear regression, which indicates a weak
but significant correlation (r = 0.25, P < 0.05). D: Distribution of ®, as a function of BF. E:
Combined distribution of 2, and ®,. At four intervals of Q, (0-0.6; 0.6-1.2; 1.2-1.8; > 1.8) the
means and SD of ®, were computed; the dashed lines represent a smoothed connection of the
25D edges.

FIG. 8. Examples of ripple responses from two cells (A, B) with rippled inputs defined on a
logarithmic (solid line, open circle) or linear (dashed line, filled circle) amplitude scale. Orga-

nization and symbols of the plots are as in Fig. 5. The phase-fit indicators for the two cells
both are 1.00.

FIG. 9. Examples of ripple responses from two cells (4, B) for various ripple amplitudes. For
both cases three ripple amplitudes were presented as indicated in the bottom legend. The ripples
are defined on a linear amplitude scale in (A), and a logarithmic scale in (B). Organization and
symbols of the plots are as in Fig. 5. The phase-fit indicators for the unit in (A4) at the three
ripple amplitudes (in decending order) are 0.99, 0.99, and 0.98. The phase-fit indicators for the
unit in (B) are 0.87, 0.89, and 0.74.

FIG. 10. Examples of ripple responses as a function of overall level of the stimulus. Plots in A
and B are organized as in Fig. 5. A: A nonmonotonic unit tested at three stimulus levels. B:
A monotonic unit tested at two stimulus levels. C: Response magnitude at the characteristic
ripple, |T(©2 = £,)|, as a function of overall stimulus level for three cells.

FIG. 11. The effects of nonlinearities on the ripple responses of a non- monotonic cell. A: The
nonmonotonic rate-level function of the cell measured with a single tone at BF (8.5 kHz). B:
Responses as a function of ripple phase at {8 = 0.4 cycles/octave, at two overall levels. Details
as in Fig. 3B. C: Magnitude of ripple transfer functions at levels as in B. Details as in Fig. 4A.
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D: The DC(€) component of the response at levels as in B. The responses are computed as
shown in Fig. 2C. Note that the trend of response decrease with increase of level, is similar as

in C.

FIG. 12. The effects of the nonlinearities on the ripple responses of a monotonic cell. All plots
as in Fig. 11. Plots B,C and D for two different overall stimulus levels. A: The rate-level
function at a BF tone of 2.0 kHz. B: The phase-locked responses at 2 = 1.5 cycles/octave.
C: Magnitude of ripple transfer functions. D: The DC() response. Note that the trends of
AC(Q) and DC(2) responses level are opposite.

FIG. 13. Magnitude of ripple transfer function |T'(?)| (top) and the DC(2) responses (bottom)
of a more complex cell. Plots as in Fig. 44 and Fig. 3B, respectively. The two curves are
uncorrelated to each other. The DC() is tuned at high ripple frequencies (4 - 7 cycles/octave)
whereas the AC component is tuned to a low ripple frequency (0.4 cycles/octave).

FIG. 14. Comparison between tonal response areas and ripple response fields (RFs). A: Ex-
amples of responses from three cells. The response areas (dashed lines) are measured using the
two-tone paradigm, and hence the response counts are artificially elevated towards the edges
(cf. Shamma et al. 1993). The RFs and response areas exhibit similar bandwidths, asymme-
tries, and BFs. B: An atypical example of a cell with both RF and excitatory response area
double tuned.

FIG. 15. Scatter plot comparing the BF measured with a single tone (abscissa) to the BFgp
predicted from the ripple responses (ordinate). The solid line represents the BFgr = BF line
and the dashed lines represent the half-octave deviations. In only 7 cases the deviations are
half of an octave or larger.

FIG. 16. ‘Ripple response measures compared to the bandwidth of the response areas. The
solid lines represent linear regression lines. Correlation measures are indicated in the right-
hand corner. In both plots only cells with |®,| < 90° are used. A: The width of the RF versus
the bandwidth of the response area, BW20. B: The characteristic ripple 0, versus BW20.

FIG. 17. The asymmetry of the RF reflected by characteristic ripple phase compared to tonal
measures. Only cells with [®,] < 90° are used. A: The characteristic phase ®, versus the
response area asymmetry, M index. B: The characteristic phase @, versus FM direction sensi-
tivity, C index. C: Scatter plot between C index and M index.



A

Output Impulse Response —_ — — - Spontaneous activity level
Neural Array 000000000 ee0eerseo000000
Input Tone Spectrum Tonotopic axis (low ~ high)
B
Output Ripple — - Spontaneous activity level
Neural Array 0/0/0000.0000.0.0.000000000000
Input Ripple Spectrum

Tonotopic Axis (low - high)

Figure 1



Linear Logarithmic

A Y . T T T T T T T AT I
N
\ ]AA an ( 10 dB

1 2 4 8 16 20
Frequency (kHz)

Figure 2



A 148/06¢
Phase (deg)

0 .}.E
90
| |@=08
180 cycles/octave
1 T
270
B 72 2 10 . 20
0 100 200
Time (ms) Spike Count
Stimulus
C
Q DCOQ) AC(Q) AC,Q ACQ) AC(Q
1.98 247 3.29 1.00
o0 o O . Q=00 |00 1625 129° 45° -112° -90°

9.81 2.30 241 0.25
[} Q -
/04\ Q=04 |04 | 1162 o Troe oa oo

o 11, 1 057 2.25
"7 a-08 |os | 1262 vs 313

T 111° -61° -32° 90°

Spike Count
w
o o
|

ey
(4]

o
L

7] o
g ° o 7.78 5.15 4.17 375
o Q=12
'\(',,_-"/5 o 12| 1438 174° 129° 141° -90°
o
o 5.15 3.95 0.45 3.00
o 20 Q=18 |L6 | 1275 . !
o e -124 -55 139° -90°
5.24 1.03 140 3.25
e Q=20 |20 9.8 -98° -14° 58° -90°
e

136 180 225 270 315 360

Ripple Phase (degrees)

Figure 3



D(Q
2 IACLQ) D
o v Go=—
04 o / N Q,=0.8 0
g 8 / }3 - -2
Sel /@ g -
g . o 3
%4_ / e T bro
24 < -8n |
0 T T 1 v 1 T T 1 -10n T v T ' T T 1
00 04 08 12 16 2.0 00 04 08 12 16
Q (cycles/octave) Q (cycles/octave)
Response Field

'E !

: ! 0

8 n/
— A

2 A

Q.

) -0.05 - BFpp =7.3kHz

-0.1
T T T
1 2 4 8 16 20

Frequency (kHz)

Figure 4

]
2.0

$o=~T/2

$o=—m/d

¢o=+1/4

Oo=+m/2

2 4 8
Frequency (kHz)

16 20



Spike Count

Spike Count

Spike Count

| T

00 08 16 24 32
6 o

0
0.0 0.8

Q (cycles/octave)

T
16 24 32 4.0

¢ (radians)

¢ (radians)

¢ (radians)

i 1(9)

8, =-10°

-4 |
-6
-81 |
-107 4
-12n
-14rn

-16m

2n
0
~27
47
-6m

-81

-10xn

0.0

0.8 16 24 32 40

¢ =-11°

o =

Q

00 08

16 24 32 40
Q (cycles/octave)

Figure 5

-0.5

Spike Count

,Spike Count

Spike Count

0.5

0.5

0.5

05

0.5

RF
| BF, = 5.2 kHz
O \/\vf\f
BF . = 8.8 kHz

[ | I 1
2 4 8

Frequency (kHz)

BL0//S

qso/sv 1

P90/2st



Spike Count

Spike Count

Spike Count

T

Q,-08

0.5 4

07— FF—1—
00 08 16 24 32 40

Q (cycles/octave)

¢ (radians)

(radians)

&
a
1

-
-10m 5

I
00 08 16 24 32 4.0

¢ (radians)

2 -

-2n -

41

-67

d©Q)

$,--106°

21

0
-2n -
-4

-67

2R -

0

-2

47

-6

-8

0 =+53°

00 08 16 24 32 40

Q (cycles/octave)

Figure 6

Spike Count

Spike Count

Spike Count

RF
0.015 -
0.005 ] /\ /
-0.005 | Y
BF,,=9.4kHz
-0.015
0.4 —
0.2
0.0 o AW
Y \/V
0.2 BF,.=6.7kHz
-0.4
0.015 _
0.005 A /\
T ‘v’\ T T
-0.005 | \/
BF,. =73 kHz
-0.015 I : | B
1 2 4 8 16 20
Frequency (kHz)

890/0S1

020/4G1

PEO/LST



Count

Count

a

20 4
N =84 r=026 N=82
P =0.02
___ . 3 - o
)
&
| L
10 '§'
7 2
<
Q
a
0 l_ NI '|_—! T [—'-1 LI 0 o
0 2 3 4 1 2 5 10
Q, (cycles/oct) Best Frequency (kHz)
16 D 180
— N=§82 ]
120 - © _“0
-
) e — ’O (@]
% 60 o - o0
] 8 ] o o) O
] |
i L] 50 J I O N o8 3. Qo
8 . °3 %% %869
~ o)
g -60 - P55 090 °
1 9 00
N ~ T O
-120 ~ Co o
1 ~
0 — — !_I -180 . >
<180 -120 -60 ()} 60 120 180 1 2 5 10
@ (degrees) Best Frequency (kHz)
E 180
4 / / N = 82
1l o
120 2 _ ~0
10 ~ e O
@ 60 - o © o ©
] ] o) o)
'5:0 0 a8 Q g QK‘B @ 008 O
5] A4 %
= e O
o] AP OB
S -60 - (e} P O o
@g OO
120 4 © _— o
QO —~_ o
~
-180 —o 9 o~ . T
0 1 2 3 4

20

Q, (cycles/oct)

Figure 7

20



>

Spike Count

Spike Count

4
o

0.0

0

~

00 04 08 12 16 20

7 e ° Q,=12,09
(o] [ ]

0 03 06 09 12 1.5 1.8

Q (cycles/octave)

¢ (radians)

¢ (radians)

D(Q) RF

2R 0.15 —
—_120° _1190 ’
0 0, = 1%0,1.12 _ P\
c 0.05 ] /
3 ]
(@} \
\/
.g-o.os 4
A BF .= l%, %Q_kHz
-6n T T T T ) -0.15
00 04 08 12 16 20
2r - 0.2
0
o =—42°, —84°
-2n ’ o’ 3 €
-47 8
(&
67 | :gl_‘)
Q
-87 7)
101 BF o= 1_5_, :l_.3_kHz
-12n T T T 1T 0.2 T I I w
0.0 0.3 0.6 09 1.2 1.5 18

1 2 4 8

Q (cycles/octave) Frequency (kHz)

O_ Log (10dB) —®_ Linear (90%)

Figure 8

16 20

o/0/6v1

qro/8r L



=

Spike Count
v

0

Spike Count
> o @ B

N
1

0

Figure 9

T D(Q) RF
21:j 0.15 -
9,=-52°,-58°, -23° ;
04 [e] [ J A i
& 2n 5 0054
= R R /ot I
© 4 ] &) I __‘ﬂ
5 - . . A anm
(o] X Lo
£ 6 ‘a -0.05 v
S‘ (D (4
-81 BF .= 110,115, 11.0kHz
L AL ML AL N A -0.15
00 08 1.6 24 32 40 00 08 16 24 32 40
Q (cycles/octave) Q (cycles/octave)
30 % _®_ 50% A 75%
27 —
Q,=-,12,08 0 ¢, =+7°,+1°,+21°
A O ® A ] o . A
- =21 -
A,’/ N o 4n- 5
. N g -6m | 8
T -8n
g o g
~~-10% Q.
©-12r @
-147w
00 |o|8I '116 v2|4 -3|2 14[0 -16% —1— T — — ) 0.4 l [ I [‘
0 08 1. 4 3. . 00 08 16 24 32 40 h 5 4 8 16 20
Q (cycles/octave) Q (cycles/octave) Frequency (kHz)
2dB _e 10dB ..A_. 15dB

q90/LY1

2T0/LST



Spike Count

=

Spike Count

P!

Spike Count

RF

o~
B
'
.
TN
I AR S
" \ ]
\l\/ [l 1
5 Ve
’

-0.03 BF,.=95,9.8,9.8 kHz ‘

Stimulus Level (dB)

Figure 10

I I I H
2 4 8 16 20

Frequency (kHz)

\

| T(©)| DQ)
4 2n - 0.06
Q, =12,08,08
® 5 o e A 04 ¢, =-150°-101°,-108° 0.03 4
) o} o PN €
3 3
2 - S -2r . O 0
© Q
= X
©  -4n (?)-
\\ o4 A
04 g = B S S e s e 0.0
00 08 16 24 32 4.0 00 08 16 24 32 40 1
Q (cycles/octave) Q (cycles/octave)
_O_ 450B ®_ 55dB A 65dB
8 - 27 - 0.4 -
Q, =038,08 04 0.3
°© e 9. =-5°,-22° "~
6 - O -27 ’ ‘—
—_ [e] [ ] [ 0.2
g nq 3
4] S 6n O o1
& 2
£ 8o S0
2 - ©- -10%; w
om 0.1 4
Y P -14n LA L A JELA -0.2
00 08 16 24 32 40 00 08 16 24 32 4.0
o 50dB _e_ 60dB
6
m 157/05d
-~ Q,=10
o 157/05¢
— Q,=08
A 157/04e
..... 12

\
P fa A
A
~ u
BF,,=6.0kHz, 5.5kHz

PSO/LST

390/Z81



Spike Count

Spike Count

30,

154

16 -
14
12 4
10
8
6 -
4 ]
24

04 T T T T R —
-180-135 -90 45 0 45 90 135 180

Or i L} L L} 1
35 45 55 65 75 85

Intensity (dB SPL)

o [ ] ~

Phase (degrees)

Spike Count

Spike Count

Figure 11

149/07¢

IT(C)|

0.0

00 04 08 12 16 20
Q (cycles/octave)

O 50dB ® 60dB




Spike Count

Spike Count

15

104

54

0 1 1 1 1 1
35 45 55 65 75 85

Intensity (dB SPL)
16 - ®
14
12

0

1180-135 -90 -45 0
Phase (degrees)

45 90 135 180

Figure 12

Spike Count

Spike Count

0

3.
[T(C)}
o Q,-0.7,1.0
® O
2 ]
14
° o N2
0.0 05 10 15 20 25 3.0
. DC©)

00 05 10 15 2.0 2.5 3.0
Q (cycles/octave)

O 50dB °

60 dB

152/09b



Spike Count

Spike Count

TI T TR rr i)

20 40 60 80
Q (cycles/octave)

Figure 13



Spike Count

148/04b
[o]
20 - _0.15
/\‘
15 ‘,’ \\ L 0.10
! 9 loos E
10 o A ; 8
e N A N AR T Y B
(o) \ b =
5 4 \ J [l
\Ke'/ L-0.05 O
/
04 .0.10
-5 S -0.15
1.0 10.0 20.0
Frequency (kHz)
$o=-90°
M-Index = -0.32
3
ol ° 1T
€
=1
3
$ o
.a- 1_
(]
0 f——9—1-P35959
0.0 08 16 24 32 40

157/09d 148/03e
(o]
40 - ~0.050 o - 0.1
30 L 0.05
o -0.025 30
!
20 - ! 0
1
—e) .;",I —-0.000 45
10 w a, |-0.05
54
1 S ———r—rr}-0.025 0 — -0.1
05 1.0 10.0 1.0 10.0 20.0
Frequency (kHz) Frequency (kHz)
9o=0° 0o =+25°
M-Index = -0.05 M-Index = +0.11
Q
15 o ~0.03
[ 0.02
10 .
-0.01 =
©
=
; 0.00 &
5
L-0.01
0 ———r 0.02
1.0 10.0 20.0

Figure 14



BF from RF (kHz)

5 10 26

Best Frequency (kHz)

Figure 15



|¢, | < 90°
N=67

o] r=0.32
P =0.007

RF Width (oct)

BW20 (oct)
3

] 19, < 90°

i N =67

] QO r=-0.29
= 2] P =0.02
(¥}
£
g
)
)
&

=}

G

BW20 (oct)

Figure 16



N=67 o
90 r=033 (06} l¢ol <90

P =0.007
60

I S S N N |
O

@, (degrees)
G
%
e
o]

D, (degrees)

30 @ © %o
i A 8
4 o) 0]
90 - ° 0% o
-6 -4 -2 0 2 4 6
Index M
IN=60 °
2 =042 © o] <30
g0 P =0:0007 o
] o)
) O
" S M
0] oc%@)ooégo &
] o
.30 - oS o 199)
- Bo @
60 - oC0 d
4 f0) o
90 4 © o) 0i O
-8 -4 0 4 8
Index C
N=59 | < 90°
8 1r=0.46 i
1P =0.0002 o 5

Figure 17



