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While deep learning has led to remarkable advancements across various domains, the

widespread adoption of neural network models has brought forth significant challenges such

as vulnerability to adversarial attacks and model unfairness. These challenges have profound

implications for privacy, security, and societal impact, requiring thorough investigation and de-

velopment of effective mitigation strategies.

In this work we address both these challenges. We study adversarial robustness of deep

learning models and explore defense mechanisms against poisoning attacks. We also explore the

sources of algorithmic bias and evaluate existing bias mitigation strategies in neural networks.

Through this work, we aim to contribute to the understanding and enhancement of both adversar-

ial robustness and fairness of deep learning systems.
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Chapter 1: Introduction

Recently, deep learning has led to remarkable advancements across various domains en-

abling significant progress in fields such as computer vision, robotics, and natural language

processing. Furthermore, today neural networks are omnipresent in industrial and research ap-

plications spanning various high stakes environments such as healthcare, self-driving cars, and

finance. As deep learning models are increasingly integrated into these critical applications, it

becomes imperative to examine their limitations and address potential challenges to ensure their

safe and reliable use. In this work we address two key challenges of deep neural networks – their

vulnerability to adversarial attacks and their tendency to produce biased predictions.

In adversarial attacks malicious actors deliberately manipulate input data to deceive the

model and induce misclassifications or erroneous outputs. Adversarial attacks pose a serious

threat to the reliability of deep learning systems, raising concerns regarding safety as well as

potential privacy risks. In our work, we study adversarial robustness of deep learning models and

develop defense mechanisms against poisoning attacks.

The second challenge is the issue of unfairness in deep learning models. As deep learn-

ing systems are increasingly deployed in industry, ensuring fairness becomes paramount since

biases and discriminatory behavior within neural networks can lead to significant societal con-

sequences. Developing an understanding of these biases is important for helping protect against
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disproportionate harmful outcomes impacting vulnerable groups and perpetuating existing soci-

etal inequalities.

This thesis comprises a comprehensive exploration of these challenges in four parts and

is organised as follows. In Chapter 3, we examine adversarial robustness of face recognition

systems. Leveraging adversarial attacks, we develop a tool, LowKey, for modifying face images

to protect social media users from unauthorized surveillance. Our system pre-processes user

images before they are made publicly available on social media outlets so they cannot be used by

a third party for facial recognition purposes. In particular LowKey works by moving the feature

space representations of gallery faces so that they do not match corresponding probe images

while preserving image quality. We find that our method effectively degrades the performance of

even commercial-grade black-box face recognition APIs, whose inner workings are not publicly

known. We released a research prototype of LowKey to the public through a web interface.

In Chapter 4, we explore defences against data poisoning and backdoor attacks which, in

contrast to inference-time attacks, manipulate victim models by maliciously modifying training

data. Many previous defenses against poisoning either fail in the face of increasingly strong

attacks, or lead to significant accuracy trade-offs. We find that strong data augmentations, such

as MixUp and CutMix, can significantly diminish the threat of poisoning and backdoor attacks

while improving the model’s performance.

After that we delve into studying the origins of unfairness in deep learning models. One

major source of model bias is dataset imbalance with respect to a protected attribute. In Chapter

5 we focus on unraveling the complex effects that dataset imbalance can have on model bias for

face identification systems. Interestingly, we find that the gallery set imbalance is as important as

train set data imbalance and the effects of imbalance in train and gallery sets can amplify (in case
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of images) or cancel (in case of identities) each other. We also observe that train and test class

imbalances are not the only drivers of bias in face recognition systems.

Much effort has been devoted to understanding and correcting biases in classical machine

learning models, where overfitting is not a pernicious issue and where fairness constraints im-

posed at train time often generalize to test data. In Chapter 6 we explore the behavior of existing

methods for bias mitigation in neural networks, shedding light on their effectiveness and uncov-

ering potential unintended consequences of algorithmic fairness approaches.
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Chapter 2: Preliminaries

2.1 Neural Networks

According to the definition of a neural network from [Goodfellow et al., 2016],

The goal of a neural network is to approximate some function f ∗. For example, for a

classifier, y = f ∗(x) maps an input x to a category y. A neural network defines a mapping y =

f(x; θ) and learns the value of the parameters θ that result in the best function approximation.

Neural networks can be represented as a composition of n functions, called layers

f(x) = fn ◦ fn−1 ◦ ... ◦ f1(x),

which can be any linear or non-linear functions or a composition of functions. The simplest

example of a neural network is a multi-layer perceptron, where each layer fi is a linear function

followed by a rectified linear activation function fi = σ(Aix + bi), σ(x) = [max(xi, 0)]. The

depth of a neural network refers to the number of layers in the model. Each layer fi has a set of

learnable parameters θi and the combination of parameters in all layers is denoted by θ. During

neural network training, we optimize parameters of the model θ to drive f(x) to match f ∗(x).

Convolutional Neural Networks (CNNs) are a specialized type of neural network archi-

tecture that are highly effective in computer vision tasks. Unlike traditional neural networks,
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CNNs exploit the spatial structure of input data, making them well-suited for image analysis.

The fundamental operation in a CNN is the convolutional layer, which consists of a set of learn-

able small-sized matrices, called filters, that are convolved with the input data to produce feature

maps. By sliding the filters across the input, the CNN is able to capture local patterns and spa-

tial dependencies. CNNs also incorporate pooling layers, which downsample the feature maps

to reduce their spatial dimensions and make computation more efficient. In addition to convo-

lutional and pooling layers, modern CNN architectures typically include residual connections,

normalization layers, as well as fully connected layers at the end of the network.

One of the advantages of neural networks is that they can be used for automatic feature

learning. During training, these systems learn representations of the input x at the intermediate

layers fi(x), which can subsequently be used for the target task such as classification at the output

layer.

Neural networks are trained using the principle of empirical risk minimization, which

involves solving an optimization problem to minimize the expected loss of a model over a

data distribution. The loss quantifies the discrepancy between the outputs of the network and

the ground truth labels associated with inputs. More formally, consider a dataset of samples

D = {(xi, yi)}Ni=1 drawn from some distribution D, then we solve the following optimization

problem with respect to the network parameters:

min
θ

EDL(fθ(x), y)

The choice of the loss function depends on the specific task. In this work we focus on im-

age classification problems, where it is common to use cross-entropy loss function in conjunction
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with softmax function. Let ϕ be the output vector of fθ for some sample x with entries corre-

sponding to classes in the dataset. Then, softmax function converts network output scores into

a probability distruibution over the classes, and cross-entropy loss enforces the model to assign

high score to the correct class:

s(ϕ)i =
eϕi∑
j e

ϕj

c(ϕ, y) = − log(s(ϕ)y)

The minimization problem is typically solved with gradient-based methods, such as stochas-

tic gradient descent.

2.2 Face Recognition

Throughout this work we extensively use face recognition systems in our experiments. In

Chapter 3 we explore adversarial robustness of face recognition systems, in Chapter 5 we inves-

tigate the influence of data imbalance on bias in face identification, and in Chapter 6 we evaluate

the effectiveness of bias mitigation techniques in the context of face recognition and medical im-

age classification systems. In this section we detail necessary definitions and approaches in face

recognition (FR).

State-of-the-art face recognition systems are based on neural networks. Those models are

trained in a classification manner using special loss functions designed for better class separation.

The main difference between a classification model and a facial recognition model is that the latter

should be able to recognize images of people it has never seen during training, i.e. images from
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new classes. To recognize photos of new identities (probe images), the system needs access to

a database consisting of photos with known identities (gallery images). Then, to recognize a

person on a probe image xi, the model extracts its feature vector fi and finds gallery images with

the closest feature vectors in cosine distance using a k-nearest neighbors search. The matched

images are used to reveal the identity.

Face Identification is the task of answering the question, “who is this person?” Identifica-

tion entails comparing a probe image to gallery images in order to find potential matches.

Face Verification answers the question, “is this person who they say they are?”, or equiv-

alently “are these two photos of the same person?” Verification is used, for example, to unlock

phones.

To enhance the discriminative power of the learned features, face recognition models are

trained using specialized loss functions. These loss functions are designed to promote greater

angular separation between features belonging to different classes, while simultaneously main-

taining a compact intra-class distance. Two examples of such loss functions are CosFace [Wang

et al., 2018] and ArcFace [Deng et al., 2019].

Let us re-formulate cross-entropy loss in terms in cosine similarity. For an input image x,

the corresponding feature vector f and label y, the cross-entropy loss can be written as:

LCE = − log
eϕy∑
j e

ϕj
, ϕj = W T

j f = ∥Wj∥∥f∥ cos θj

where W is the weight of the fully-connected layer, and θj is the angle between f and weight vec-

tor corresponding to j−th class Wj . Let us fix the norm of weight matrix of the fully-connected
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layer W and feature vector f :

∥f∥ = s, ∥W∥ = 1

Then, the normalized version of cross-entropy loss (NCE) can be written as

LNCE = − log
es cos(θy)∑
j e

s cos(θj)

To promote better angular feature discrimination, CosFace loss introduces an additive an-

gular margin to the traditional cross-entropy loss

LCosFace = − log

(
es(cos(θy)−m)

es(cos(θy)−m) +
∑

j ̸=y e
s cos(θj)

)

subject to

W =
W ∗

∥W ∗∥
, f =

f ∗

∥f ∗∥
, cos(θj) = W T

j f

Intuitively, adding angular margin penalizes the model for having a small cosine similarity be-

tween the feature vector of an image and the weight vector of the fully-connected layer corre-

sponding to the correct label. Similarly, the ArcFace loss introduces an adaptive angular margin:

LArcFace = − log

(
es(cos(θy+m)))

es(cos(θy+m)) +
∑

j ̸=y e
s cos(θj)

)
.
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Chapter 3: LowKey: Leveraging Adversarial Attacks to Protect Social Media

Users from Facial Recognition

Joint work with Micah Goldblum, Harrison Foley, Shiyuan Duan, John P Dickerson, Gavin

Taylor and Tom Goldstein. Appeared at the International Conference on Learning Representa-

tions (ICLR), 2021.

Facial recognition systems are increasingly deployed by private corporations, government

agencies, and contractors for consumer services and mass surveillance programs alike. These

systems are typically built by scraping social media profiles for user images. Adversarial pertur-

bations have been proposed for bypassing facial recognition systems. However, existing methods

fail on full-scale systems and commercial APIs. We develop our own adversarial filter that ac-

counts for the entire image processing pipeline and is demonstrably effective against industrial-

grade pipelines that include face detection and large scale databases. Additionally, we release

an easy-to-use webtool that significantly degrades the accuracy of Amazon Rekognition and the

Microsoft Azure Face Recognition API, reducing the accuracy of each to below 1%.
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Figure 3.1: Top: original images, Bottom: protected by LowKey.

3.1 Introduction

Facial recognition systems (FR) are widely deployed for mass surveillance by government

agencies, government contractors, and private companies alike on massive databases of images

belonging to private individuals [Hartzog, 2020, Derringer, 2019, Weise and Singer, 2020]. Re-

cently, these systems have been thrust into the limelight in the midst of outrage over invasion

into personal life and concerns regarding fairness [Singer, 2018, Lohr, 2018, Cherepanova et al.,

2021]. Practitioners populate their databases by hoarding publicly available images from social

media outlets, and so users are forced to choose between keeping their images outside of public

view or taking their chances with mass surveillance.

We develop a tool, LowKey, for protecting users from unauthorized surveillance by lever-

aging methods from the adversarial attack literature, and make it available to the public as a

webtool. LowKey is the first such evasion tool that is effective against commercial facial recog-

nition APIs. Our system pre-processes user images before they are made publicly available on

social media outlets so they cannot be used by a third party for facial recognition purposes. We

establish the effectiveness of LowKey throughout this work.
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Our contributions can be summarized as follows:

• We design a black-box adversarial attack on facial recognition models. Our algorithm

moves the feature space representations of gallery faces so that they do not match corre-

sponding probe images while preserving image quality.

• We interrogate the performance of our method on commercial black-box APIs, including

Amazon Rekognition and Microsoft Azure Face, whose inner workings are not publicly

known. We provide comprehensive comparisons with the existing data poisoning alter-

native, Fawkes [Shan et al., 2020], and we find that while Fawkes is ineffective in every

experiment, our method consistently prevents facial recognition.

• We release an easy-to-use webtool, LowKey, so that social media users are no longer con-

fronted with a choice between withdrawing their social media presence from public view

and risking the repercussions of being surveilled.

3.2 Related Work

Neural networks are known to be vulnerable to adversarial attacks, small perturbations to

inputs that do not change semantic content, and yet cause the network to misbehave [Goodfellow

et al., 2014]. The adversarial attack literature has largely focused on developing new algorithms

that, in simulations, are able to fool neural networks [Carlini and Wagner, 2017, Chiang et al.,

2020]. Most works to date focus on the idea of physical world attacks, in which the attacker

places adversarial patterns on an object in hopes that the adversarial properties transfer to an im-

age of the object. Such attacks do not succeed reliably because the adversarial perturbation must

survive imaging under various lighting conditions, object orientations, and occlusions [Kurakin
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et al., 2018]. While researchers have succeeded in crafting such attacks against realistic systems,

these attacks do not work consistently across environments [Wu et al., 2020, Xu et al., 2020,

Goldblum et al., 2021]. In facial recognition, attacks have largely focused on physical backdoor

threat models, evasion attacks on verification [Wenger et al., 2020, Zhong and Deng, 2020] and

attacks on face detection [Pedraza et al., 2018]. Unlike these physical threat models, the setting

in which we operate is purely digital, meaning that we can manipulate the contents of digital

media at the bit level, and then hand manipulated data directly to a machine learning system.

The ability to digitally manipulate media greatly simplifies the task of attacking a system, and

has been shown to enhance transferability to black box industrial systems for applications like

copyright detection [Saadatpanah et al., 2020] and financial time series analysis [Goldblum et al.,

2021].

Recently, the Fawkes algorithm was developed for preventing social media images from

being used by unauthorized facial recognition systems [Shan et al., 2020]. However, Fawkes,

along with the experimental setup on which it is evaluated in the original work, suffers from

critical problems. First, Fawkes assumes that facial recognition practitioners train their models on

each individual’s data. However, high-performance FR systems instead harness large pre-trained

Siamese networks [Liu et al., 2017, Deng et al., 2019]. Second, the authors primarily use image

classifiers. In contrast, commercial systems are trained with FR-specific heads and loss functions,

as opposed to the standard cross-entropy loss used by classifiers. Third, the authors perform

evaluations on very small datasets. Specifically, they test Fawkes against commercial APIs with

a gallery containing only 50 images. Fourth, the system was only evaluated using top-1 accuracy,

but FR users such as police departments often compile a list of suspects rather than a single

individual. As a result, other metrics like top-50 accuracy are often used in facial recognition,
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and are a more realistic metric for when a system has been successfully suppressed. Fifth, while

the original work portrays Fawkes’ perturbations are undetectable by the human eye, experience

with the codebase suggests the opposite (indeed, a New York Times journalist likewise noted

that the Fawkes images she was shown during a demonstration were visibly heavily distorted).

Finally, Fawkes has not yet released an app or a webtool, and regular social media users are

unlikely to make use of git repositories. Our attack avoids the aforementioned limitations, and

we perform thorough evaluations on a large collection of images and identities. When comparing

with Fawkes, we use the authors’ own implementation in order to make sure that all evaluations

are fair. Furthermore, we use Fawkes’ highest protection setting to make sure that LowKey

performs better than Fawkes’ best attack. Another work uses targeted adversarial attack on probe

images for facial recognition systems so that they cannot be matched with images in a database

[Yang et al., 2021].

3.3 The LowKey Attack on Mass Surveillance

3.3.1 Problem Setup

To help make our work more widely accessible, we begin by introducing common facial

recognition terms.

Gallery images are database images with known identities. These often originate from

such sources as passport photos and social media profiles. The gallery is used as a reference for

comparing new images.

Probe images are new photos whose subject the FR system user wants to identify. For

example, probe images may be extracted from video surveillance footage. The extracted images
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Figure 3.2: The LowKey pipeline. When users protect their publicly available images with
LowKey, facial recognition systems cannot match these harvested images with new images of
the user, for example from surveillance cameras.

are then fed into the FR system, and matches to gallery images with known identities.

Identification is the task of answering the question, “who is this person?” Identification

entails comparing a probe image to gallery images in order to find potential matches. In contrast,

verification answers the question, “is this person who they say they are?”, or equivalently “are

these two photos of the same person?” Verification is used, for example, to unlock phones.

In our work, we focus on identification, which can be used for mass surveillance. State-

of-the-art facial recognition systems first detect and align faces before extracting facial features

from the probe image using a neural network. These systems then find gallery images with the

closest feature vectors using a k-nearest neighbors search. The matched gallery images are then

considered as likely identities corresponding to the person in the probe photo. LowKey applies a

filter to user images which may end up in an organization’s database of gallery images. The result

is to corrupt the gallery feature vectors so that they will not match feature vectors corresponding
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to the user’s probe images. A visual depiction of the LowKey pipeline can be found in Figure

3.2.

3.3.2 The LowKey attack

LowKey manipulates potential gallery images so that they do not match probe images of

the same person. LowKey does this by generating a perturbed image whose feature vector lies

far away from the original image, while simultaneously minimizing a perceptual similarity loss

between the original and perturbed image. Maximizing the distance in feature space prevents the

image from matching other images of the individual, while the perceptual similarity loss prevents

the image quality from degrading. In this section, we formulate the optimization problem, and

describe a number of important details.

LowKey is designed to evade proprietary FR systems that contain pre-processing steps and

neural network backbones that are not publicly known. In order to improve the transferability of

our attack to unknown facial recognition systems, LowKey simultaneously attacks an ensemble of

models with various backbone architectures that are produced using different training algorithms.

Additionally, for each model in the ensemble, the objective function considers the locations of

feature vectors of the attacked image both with and without a Gaussian blur. We find that this

technique improves both the appearance and transferability of attacked images. Experiments

and ablations concerning ensembling and Gaussian smoothing can be found in Section 3.6. For

perceptual similarity loss, we use LPIPS, a metric based on ℓ2 distance in the feature space of an

ImageNet-trained feature extractor [Zhang et al., 2018]. LPIPS has been used effectively in the

image classification setting to improve the image quality of adversarial examples [Laidlaw et al.,
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2021].

Formally, the optimization problem we solve is

max
x′

1

2n

n∑
i=1

non-smoothed︷ ︸︸ ︷
∥fi(A(x))− fi(A(x

′))∥22+
smoothed︷ ︸︸ ︷

∥fi(A(x))− fi(A(G(x′)))∥22
∥fi(A(x))∥2

− αLPIPS(x, x′)︸ ︷︷ ︸
perceptual loss

, (3.1)

where x is the original image, x′ is the perturbed image, fi denotes the ith model in our

ensemble, G is the Gaussian smoothing function with fixed parameters, and A denotes face de-

tection and extraction followed by 112 × 112 resizing and alignment. The face detection step is

an important part of the LowKey objective function, as commercial systems rely on face detec-

tion and extraction because probe images often contain a scene much larger than a face, or else

contain a face who’s alignment is not compatible with the face recognition system.

We solve this maximization problem iteratively with signed gradient ascent, which is known

to be highly effective for breaking common image classification systems [Madry et al., 2017a].

Namely, we iteratively update x′ by adding the sign of the gradient of the maximization objective

(3.1) with respect to x′. By doing this, we move x′ and G(x′) far away from the original image

x in the feature spaces of models fi used in the LowKey ensemble. The ensemble contains four

feature extractors, IR-152 and ResNet-152 backbones trained with ArcFace and CosFace heads.

More details can be found in the next section.

Additional details concerning attack hyperparameters can be found in Section 3.8.1.
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3.4 Experimental Design

Our ensemble of models contains ArcFace and CosFace facial recognition systems [Deng

et al., 2019, Wang et al., 2018]. For each of these systems, we train ResNet-50, ResNet-152, IR-

50, and IR-152 backbones on the MS-Celeb-1M dataset, which contains over five million images

from over 85,000 identities [He et al., 2016, Deng et al., 2019, Guo et al., 2016]. We use these

models both in our ensemble to generate attacks and to perform controlled experiments in Section

3.6. Additional details on our models and their training routines can be found in Section 3.8.1.

We primarily test our attacks on the FaceScrub dataset, a standard identification benchmark

from the MegaFace challenge, which contains over 100,000 images from 530 known identities

as well as one million distractor images [Kemelmacher-Shlizerman et al., 2016]. We discard

near-duplicate images from the dataset as is common practice in the facial recognition literature

[Zhang et al., 2020]. We also perform experiments on the UMDFaces dataset, which can be

found in Section 3.8.3 [Bansal et al., 2017]. We treat one tenth of each identity’s images as probe

images, and we insert the remaining images into the gallery. We randomly select 100 identities

and apply LowKey to each of their gallery images. This setting simulates a small pool of LowKey

users among a larger population of non-users. Then, in order to perform a single evaluation trial

of identification, we randomly sample one probe image from a known identity and find its closest

matches within the remainder of the FaceScrub dataset, according to the facial recognition model.

Distance is measured in feature space of the model. If the FR model selects a match from the

same identity, then the trial is a success.

Rank-k Accuracy. For each probe image, we consider the model successful in the rank-k

setting if the correct identity appears among the k closest gallery images in the model’s feature
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Amazon rank-1 Amazon rank-50 Microsoft rank-1

Clean

Fawkes

LowKey

93.7% 95.4% 90.5%

77.5% 94.9% 74.2%

0.6% 2.4% 0.1%

Table 3.1: An evaluation of Amazon Rekognition and Microsoft Azure Face on FaceScrub data
with LowKey and Fawkes protection (a small number, and lighter color, indicates a successful
attack). LowKey consistently achieves virtually flawless protection, while Fawkes provides little
protection.

space. To test the transferability of our attack we compute rank-1 and rank-50 accuracy for attack,

and test feature extractors from our set of trained FR models.

3.5 Breaking Commercial Black-Box APIs

The ultimate test for our protection tool is against commercial systems. These systems are

proprietary, and their exact specifications are not publicly available. We test LowKey in the black-

box setting using two commercial facial recognition APIs: Amazon Rekognition and Microsoft

Azure Face. We also compare against Fawkes. We generate Fawkes images using the authors’

own code and hyperparameters to ensure a fair comparison, and we use the highest protection

setting their code offers.

Amazon Rekognition Amazon Rekognition is a commercial tool for detecting and rec-

ognizing faces in photos. Rekognition works by matching probe images with uploaded gallery

images that have known labels. Amazon does not describe how their algorithm works, but their

approach seemingly does not involve training a model on uploaded images (at least not in a super-

vised manner). We test the Rekognition API using the FaceScrub dataset (including distractors)

where 100 randomly selected identities have their images attacked as described in Section 3.4.

18



We observe that LowKey is highly effective, and even in the setting of rank-50 accuracy, Rekog-

nition can only recognize 2.4% of probe images belonging to users protected with LowKey. In

contrast, Fawkes fails, with 77.5% of probe images belonging to its users recognized correctly in

the rank-1 setting and 94.9% of these images recognized correctly when the 50 closest matches

are considered. This is close to the performance of Amazon Rekognition on clean images.

Microsoft Azure Face We repeat a similar experiment on the Microsoft Azure Facial

Recognition API. In contrast to Amazon’s API, Microsoft updates their model on the uploaded

gallery of images. Therefore, only known identities can be used, so we only include images

corresponding to the 530 known identities from FaceScrub and no distractors. The Azure system

recognizes only 0.1% of probe images whose gallery images are under the protection of LowKey.

Even though Fawkes is designed to perform data poisoning, and authors claim it is especially well

suited to Microsoft Azure Face, in our experiments, Azure is still able to recognize more than

74% of probe images uploaded by users who employ Fawkes.

We conclude from these experiments that LowKey is both highly effective and transferable

to even state-of-the-art industrial facial recognition systems. In the next section, we explore

several components of our attack in order to uncover the tools of its success.

3.6 Additional Experiments

The effectiveness of our protection tool hinges on several properties:

1. The attack must transfer effectively to unseen models.

2. Images must look acceptable to users.

3. LowKey must run sufficiently fast so that run-time does not outweigh its protective benefits.
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4. Attacked images must remain effective after being saved in PNG and JPG formats.

5. The algorithm must scale to images of any size.

We conduct extensive experiments in this section with a variety of facial recognition sys-

tems to interrogate these properties of LowKey.

3.6.1 Ensembles and Transferability

In developing the ensemble of models used to compute our attack, we examine the extent to

which attacks generated by one model are effective against another. By including an eclectic mix

of models in our ensemble, we are able to ensure that LowKey produces images that fool a wide

variety of facial recognition systems. To this end, we evaluate attacks on all pairs of source and

victim models with ResNet-50, ResNet-152, IR-50, and IR-152 backbones, and both ArcFace and

CosFace heads. For each victim model, we additionally measure performance on clean images,

our ensembled attack, and Fawkes. See Table 3.2 for a comparison of the rank-50 performance

of these combinations. Additional evaluations in the rank-1 setting and on the UMDFaces dataset

can be found in Section 3.8.2 and 3.8.3 respectively. Note that entries for which the attacker and

defender models are identical depict white-box performance, while entries for which these model

differ depict black-box transferability.

We observe in these experiments that adversarial attacks generated by IR architectures

transfer better to IR-based facial recognition systems, while attacks generated by ResNet ar-

chitectures transfer better to other ResNet systems. In general, attacks computed on 152-layer

backbones are more effective than attacks computed on 50-layer backbones, and deeper networks

are also more difficult to fool. Moreover, attacks transfer better between models trained with the
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean
Fawkes
IR-50A
IR-50C

IR-152A
IR-152C
RN-50A
RN-50C

RN-152A
RN-152C
Ensemble

A
tta

ck
er

96.8% 96.8% 96.7% 96.8% 96.8% 96.8% 96.7% 96.7%
96.6% 96.7% 96.7% 96.7% 96.7% 96.5% 96.6% 96.6%
0.4% 22.2% 11.9% 35.2% 33.6% 46.4% 45.7% 53.0%
4.9% 0.3% 4.1% 8.0% 23.1% 25.9% 31.4% 28.6%
9.9% 18.3% 0.1% 26.1% 41.6% 46.2% 49.6% 48.9%
2.8% 1.6% 1.5% 0.5% 11.9% 13.9% 18.8% 16.3%

26.4% 35.7% 36.3% 43.0% 0.9% 13.3% 17.4% 24.2%
33.8% 36.5% 41.1% 42.9% 9.9% 0.2% 17.9% 21.1%
16.8% 22.0% 21.1% 28.2% 5.2% 8.8% 0.3% 7.6%
14.8% 19.2% 19.9% 24.3% 6.7% 6.9% 7.1% 0.5%
3.0% 2.4% 2.1% 0.6% 3.1% 4.2% 5.5% 0.9%

Table 3.2: Rank-50 accuracy of the LowKey and Fawkes attacks. After the first two rows, each
row represents LowKey attacks generated from the same model. Each column represents infer-
ence on a single model. The first two letters in the model’s name denote the type of backbone:
IR or ResNet (RN). The last letter in the model’s name indicates the type of head; “A” denotes
ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate more success-
ful attacks.

same head. An ensemble of models of all combinations of ResNet-152 and IR-152 backbones as

well as ArcFace and CosFace heads generates attacks that transfer effectively to all models and

fool models at only a slightly lower rate than white-box attacks.

3.6.2 Gaussian Smoothing

We incorporate Gaussian smoothing as a pre-processing step in our objective function (3.1)

to make our perturbations smoother and more robust. Intuitively, this promotes the effectiveness

of the attacked image even when a denoising filter is applied. The presence of blur forces the

adversarial perturbation to rely on smoother/low-frequency image modifications rather than ad-

versarial “noise.” Empirically, we find that attacks computed with this procedure produce slightly
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

Without GS

With GSA
tta

ck
er

96.7% 96.8% 96.6% 96.9% 96.7% 96.7% 96.7% 96.7%

78.6% 74.0% 74.4% 64.6% 75.5% 76.0% 77.8% 74.2%

4.2% 4.8% 4.4% 2.8% 7.9% 7.1% 9.6% 3.2%

Table 3.3: Rank-50 accuracy of FR models tested on blurred LowKey images computed
with/without Gaussian smoothing.

smoother and more aesthetically pleasing perturbations without sharp lines and high-frequency

oscillations. See Figure 3.3 for a visual comparison of images produced with and without Gaus-

sian smoothing in the LowKey pipeline.

We additionally produce images both with and without smoothing in the attack pipeline.

Before feeding them into facial recognition systems, we defend the system against our attacks by

applying a Gaussian smoothing pre-processing step just before inference.

We find that facial recognition systems which use this pre-processing step perform equally

well on rank-50 (but not rank-1) accuracy compared to performance without smoothing, and

they are also able to defeat attacks which are not computed with Gaussian smoothing. On the

other hand, attacks computed using Gaussian smoothing are able to counteract this defense and

fool the facial recognition system (see Table 3.3). This suggests that attacks that use Gaussian

smoothing in their pipeline are more robust and harder to defend against. See Section 3.8.6 for

details regarding Gaussian smoothing hyperparameters.

3.6.3 Run-Time

In order for users to be willing to use our tool, LowKey must run fast enough that it is not

an inconvenience to use. Computing adversarial attacks is a computationally expensive task. We
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Figure 3.3: LowKey attacked images computed without (above) and with (below) Gaussian
smoothing.

compare run-time to Fawkes as a baseline and test both attacks on a single NVIDIA GeForce RTX

2080 TI GPU. We attack one image at a time with no batching for fair comparison, and we average

over runs on every full-size gallery image from each of five randomly selected identities from

FaceScrub. While Fawkes averages 54 seconds per image, LowKey only averages 32 seconds per

image. In addition to providing far superior protection, LowKey runs significantly faster than the

existing method, providing users a smoother and more convenient experience.

3.6.4 Robustness to Image Compression

Since users may save their images in various formats after passing them through LowKey,

the images we produce must provide protection even after being saved in common formats. Our

baseline tests are conducted with images saved in uncompressed PNG format. To test perfor-

mance under compression, we convert protected images to JPEG format and repeat our experi-

ments on commercial APIs. While compression very slightly decreases performance, the attack
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Figure 3.4: First row: Original large images, Second row: Images protected with LowKey
(medium magnitude), Third row: Images protected with LowKey (large magnitude).

is still very effective: Microsoft Azure Face is now able to recognize 0.2% of images compared

to 0.1% when saved in the PNG format. Likewise, Amazon Rekognition now recognizes 3.8%

of probe images compared to 2.4% previously.

3.6.5 Scalability to All Image Sizes (Disclaimer)

Many tools in deep learning require that inputs be of particular dimensions, but user images

on social media sites come in all shapes and sizes. Therefore, LowKey must be flexible. Since the

detection and alignment pipeline in our attack resizes images in a differentiable fashion, we can
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attack images of any size and aspect ratio. Additionally, we apply the LPIPS penalty to the entire

original image, which prevents box-shaped artifacts from developing on the boundaries of the

rectangle containing the face. Since LowKey does not have a fixed attack budget, perturbations

may have different magnitudes on different images. Figure 3.4 shows the variability of LowKey

perturbations on very large images; the image of Tom Hanks (first column) is one of the best

looking examples of LowKey on large images, while the image of Tina Fey (last column) is one

of the worst looking examples. Protecting very large images is a more challenging task than

protecting small images because of the black-box detection, alignment, and re-scaling used in

APIs which affect large images more significantly. These experiments indicate that users will

receive stronger protection if they use LowKey on smaller images.

We test the effectiveness of LowKey on large images by protecting gallery images of 10

identities from Facescrub (with 17 images in the gallery on average) and using 20 probe images

per person. We also vary the magnitude of the perturbation to find the smallest perturbation

that is sufficient to protect images (Table 3.4). In this way, we find that users may trade off

some protection in exchange for better looking images at their own discretion. Additionally, we

find that LowKey works much better with smaller gallery sizes; when only 5 gallery images are

used, the performance of Amazon Rekognition drops from 32.5% to 11% in the rank-50 setting.

This observation suggests that users can upload new profile pictures less frequently in order to

decrease the number of gallery images corresponding to their identity and thus enhance their

protection. Finally, the quality of probe images is also important; when small probe images are

used, like those which would occur in low resolution security camera footage, the accuracy of

Amazon Rekognition drops from 32.5% to 19%.
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Amazon rank-1 Amazon rank-50 Microsoft rank-1

Clean

LowKey 10

LowKey 20

LowKey 30

LowKey 40

LowKey 50

89.0% 98.5% 86.0%

63.0% 94.5% 75.5%

34.0% 59.5% 30.5%

20.5% 36.5% 12.7%

14.5% 36.0% 3.0%

11.0% 32.5% 0.0%

Table 3.4: Evaluation of LowKey on full-size images. Rows indicate levels of magnitude of
LowKey (denoted by the number of attack steps).

3.7 Discussion

In this work, we develop a tool for protecting users from unauthorized facial recognition.

Our tool adversarially pre-processes user images before they are uploaded to social media. These

pre-processed images are useless for third-party organizations who collect them for facial recog-

nition. While we have shown that LowKey is highly effective against commercial black-box

APIs, it does not protect users 100% of the time and may be circumvented by specially engi-

neered robust systems. Thus, we hope that users will still remain cautious about publicly reveal-

ing personal information. One interesting future direction is to produce adversarial filters that

are more aesthetically pleasing in order to promote wider use of this tool. However, it may be

that there is no free lunch, and one cannot fool state-of-the-art facial recognition systems with-

out visible perturbations. Facial recognition systems are not fragile, and other attacks that have

attempted to break them have failed. Finally, we note that one of our goals in making this tool

widely available is to promote broader awareness of facial recognition and the ethical issues it

raises. Our webtool can be found at lowkey.umiacs.umd.edu.
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3.8 Experimental Details and Additional Results

3.8.1 Implementation Details

We train all of our feature extractors using focal loss [Lin et al., 2017] with a batch size

of 512 for 120 epochs. We use an initial learning rate of 0.1 and decrease it by a factor of 10 at

epochs 35, 65 and 95. For the optimizer, we use SGD with a momentum of 0.9 and weight decay

of 5e-4.

For our adversarial attacks, we use 0.05 for the perceptual similarity penalty, σ = 3 and

window size 7 for the Gaussian smoothing term. Attacks are computed using signed SGD for 50

epochs with a learning rate of 0.0025.

For face detection and aligning models as well as for training routines, we use the face.evoLVe.PyTorch

github repository [Zhao, 2020].

3.8.2 Rank-1 accuracy on FaceScrub data

See Table 3.5.

3.8.3 Results on UMDFaces dataset

We repeat controlled experiments on the UMDFaces dataset which contains over 367,000

photos of 8,277 identities. For UMDFaces, we also choose 100 identities at random and attack

their gallery images while keeping one-tenth of each identity’s photos as probe images. Experi-

mental results are reported in Tables 3.6 and 3.7. It can be seen that the effectiveness of LowKey

attacks on the UMDFaces dataset is slightly lower, which is likely a result of the much smaller
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean
Fawkes
IR-50A
IR-50C

IR-152A
IR-152C
RN-50A
RN-50C

RN-152A
RN-152C
Ensemble

A
tta

ck
er

95.6% 96.1% 96.0% 96.2% 95.8% 95.9% 95.9% 96.0%
71.2% 76.2% 74.4% 78.2% 73.9% 76.0% 76.0% 71.2%
0.0% 3.5% 0.5% 6.4% 5.0% 8.2% 8.7% 12.4%
0.1% 0.0% 0.1% 9.0% 3.3% 3.3% 3.6% 5.3%
0.3% 1.8% 0.0% 4.2% 6.8% 8.9% 9.4% 10.8%
0.1% 0.1% 0.1% 0.0% 1.0% 1.4% 2.2% 2.9%
3.8% 7.0% 6.8% 8.3% 0.9% 2.0% 2.8% 4.6%
3.1% 5.7% 5.6% 7.9% 1.2% 0.1% 2.0% 3.5%
1.5% 3.1% 2.7% 4.9% 0.3% 0.5% 0.0% 0.4%
1.7% 2.6% 3.1% 3.9% 0.8% 0.8% 0.5% 0.0%
0.0% 0.0% 0.1% 0.0% 0.2% 0.4% 0.6% 0.1%

Table 3.5: Rank-1 accuracy of the LowKey and Fawkes attacks on the FaceScrub dataset. After
the first two rows, each row represents LowKey attacks generated from the same model. Each
column represents inference on a single model. The first two letters in the model’s name denote
the type of backbone: IR or ResNet (RN). The last letter in the model’s name indicates the type
of head; “A” denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors,
indicate more successful attacks.

gallery.

3.8.4 Can we reduce the size of our attack?

In order to make our attacks more aesthetically pleasing, we try to reduce the size of pertur-

bation by increasing the perceptual similarity penalty from 0.05 to 0.08. This attack is depicted in

Figure 3.5 as a ”LowKey small attack”. Unfortunately, even a small decrease in the perturbation

size results in a huge decrease in efficiency of the attack. In the rank-50 setting Amazon Rekog-

nition is able to recognize 17.2% of probe images belonging to users protected with a LowKey

small attack. Similarly, Microsoft Azure Face recognizes 5.5% of probe images. Results of

controlled experiments are reported in Tables 3.8 and 3.9.
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

IR-50A

IR-50C

IR-152A

IR-152C

RN-50A

RN-50C

RN-152A

RN-152C

Ensemble

A
tta

ck
er

98.6% 98.3% 98.6% 98.6% 98.3% 98.3% 98.6% 98.6%

0.3% 38.9% 25.9% 48.6% 47.7% 55.7% 57.1% 62.2%

13.6% 0.3% 16.5% 17.6% 37.5% 39.2% 51.4% 46.3%

23.0% 32.1% 0.0% 36.4% 52.8% 56.5% 58.2% 58.5%

8.8% 8.8% 9.1% 1.1% 26.7% 28.1% 34.9% 31.8%

51.4% 56.3% 47.2% 53.1% 0.3% 30.7% 38.4% 43.2%

49.4% 48.3% 55.1% 54.0% 23.0% 1.1% 37.2% 36.4%

30.4% 38.1% 39.8% 43.8% 18.8% 22.2% 3.4% 25.9%

26.4% 33.8% 35.5% 37.8% 17.3% 18.2% 16.8% 3.4%

10.5% 4.5% 9.7% 8.8% 15.1% 6.5% 12.8% 13.6%

Table 3.6: Rank-50 accuracy of LowKey attacks on the UMDFaces dataset. After the first row,
each row represents LowKey attacks generated from the same model. Each column represents
inference on a single model. The first two letters in the model’s name denote the type of back-
bone: IR or ResNet (RN). The last letter in the model’s name indicates the type of head; “A”
denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate more
successful attacks.

3.8.5 Comparison with Fawkes

By comparing a set of images protected with LowKey and Fawkes tools, we can see that

both attacks are noticeable, but distort images in different ways. While Fawkes adds conspicuous

artifacts on the face (such as mustaches or lines on the nose), LowKey attack mostly changes the

textures and adds spots on a person’s skin. See Figure 3.5 for a visual comparison.

3.8.6 Gaussian Smoothing in LowKey

For the parameters of the Gaussian smoothing term in the optimization problem (3.1), we

use 3 for σ and 7 for window size. For the defensive Gaussian blur, we use σ = 2 and no window

size.
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

IR-50A

IR-50C

IR-152A

IR-152C

RN-50A

RN-50C

RN-152A

RN-152C

Ensemble

A
tta

ck
er

96.0% 97.2% 96.9% 96.9% 96.3% 96.6% 97.2% 96.3%

0.0% 12.2% 6.3% 18.2% 17.6% 25.9% 28.1% 31.3%

1.7% 0.0% 2.6% 4.3% 11.6% 13.9% 17.3% 21.0%

4.3% 12.8% 0.0% 14.5% 22.4% 25.6% 29.5% 30.1%

1.7% 2.0% 2.6% 0.0% 6.8% 9.7% 13.6% 11.4%

26.4% 31.0% 13.9% 26.4% 0.0% 9.4% 15.1% 19.0%

14.5% 21.3% 20.7% 25.3% 6.5% 0.6% 12.8% 14.8%

9.7% 16.2% 16.8% 17.9% 5.1% 7.1% 0.3% 7.4%

7.4% 10.2% 11.9% 13.1% 3.1% 4.5% 5.4% 0.9%

2.8% 1.7% 2.6% 3.1% 5.1% 2.0% 3.1% 4.0%

Table 3.7: Rank-1 accuracy of LowKey attack attacks on the UMDFaces dataset. After the
first row, each row represents LowKey attacks generated from the same model. Each column
represents inference on a single model. The first two letters in the model’s name denote the type
of backbone: IR or ResNet (RN). The last letter in the model’s name indicates the type of head;
“A” denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate
more successful attacks.

Figure 3.5: Panel of different attacks. First row: original images, second row: Fawkes attack,
third row: LowKey small attack, last row: LowKey attack.
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

IR-50A

IR-50C

IR-152A

IR-152C

RN-50A

RN-50C

RN-152A

RN-152C

Ensemble

A
tta

ck
er

96.8% 96.8% 96.7% 96.8% 96.8% 96.8% 96.7% 96.7%

1.0% 41.1% 24.7% 55.2% 49.7% 65.0% 64.2% 68.8%

17.4% 2.6% 20.4% 30.2% 47.0% 49.0% 56.2% 55.6%

28.8% 38.6% 0.3% 49.8% 61.2% 66.6% 69.8% 70.7%

14.2% 14.0% 16.2% 2.7% 37.0% 38.6% 44.4% 42.9%

49.3% 62.3% 64.1% 68.0% 1.5% 35.9% 41.8% 49.3%

57.4% 59.9% 62.1% 64.4% 31.1% 3.6% 46.8% 48.6%

42.9% 51.3% 52.3% 55.0% 25.6% 32.9% 5.6% 35.0%

41.8% 48.9% 47.9% 52.7% 28.2% 29.2% 30.4% 8.5%

18.0% 21.8% 19.4% 12.2% 23.1% 24.3% 27.0% 14.1%

Table 3.8: Rank-50 accuracy of LowKey small attacks on the UMDFaces dataset. After the first
row, each row represents LowKey small attacks generated from the same model. Each column
represents inference on a single model. The first two letters in the model’s name denote the type
of backbone: IR or ResNet (RN). The last letter in the model’s name indicates the type of head;
“A” denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate
more successful attacks.
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IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

IR-50A

IR-50C

IR-152A

IR-152C

RN-50A

RN-50C

RN-152A

RN-152C

Ensemble

A
tta

ck
er

95.6% 96.1% 96.0% 96.2% 95.8% 95.9% 95.9% 96.0%

0.0% 6.1% 2.2% 10.5% 9.7% 14.4% 16.9% 19.5%

1.6% 0.2% 2.5% 5.8% 9.3% 11.1% 14.0% 14.5%

2.2% 5.6% 0.0% 9.6% 14.0% 17.4% 19.2% 20.7%

1.3% 1.7% 2.2% 0.4% 5.1% 7.5% 9.6% 9.7%

8.7% 14.9% 14.8% 17.1% 0.2% 7.6% 7.8% 12.5%

9.9% 14.6% 15.6% 17.2% 5.6% 0.6% 8.8% 11.6%

9.2% 13.5% 12.2% 14.8% 5.7% 7.9% 0.8% 8.5%

6.9% 11.3% 11.8% 12.2% 4.8% 5.3% 6.0% 1.3%

2.6% 3.6% 3.5% 2.9% 4.0% 4.7% 5.4% 3.9%

Table 3.9: Rank-1 accuracy of LowKey small attacks on the UMDFaces dataset. After the first
row, each row represents LowKey small attacks generated from the same model. Each column
represents inference on a single model. The first two letters in the model’s name denote the type
of backbone: IR or ResNet (RN). The last letter in the model’s name indicates the type of head;
“A” denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate
more successful attacks.

IR-50A IR-50C IR-152A IR-152C RN-50A RN-50C RN-152A RN-152C
Defender

Clean

Without GS

With GSA
tta

ck
er

84.4% 85.3% 84.7% 86.1% 86.7% 87.9% 88.5% 89.6%

13.3% 17.9% 15.8% 13.7% 18.9% 20.4% 23.2% 20.6%

0.3% 0.3% 0.1% 0.0% 1.0% 0.9% 0.6% 0.6%

Table 3.10: Rank-1 accuracy of FR models tested on blurred images attacked without and with
the Gaussian smoothing term. The first two letters in the model’s name denote the type of back-
bone: IR or ResNet (RN). The last letter in the model’s name indicates the type of head; “A”
denotes ArcFace, and “C” denotes CosFace. Smaller numbers, and lighter colors, indicate more
successful attacks.
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Chapter 4: Strong Data Augmentation Sanitizes Poisoning and Backdoor At-

tacks Without an Accuracy Tradeoff

Joint work with Eitan Borgnia, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum,

Tom Goldstein and Arjun Gupta. Appeared at the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), 2021.

Data poisoning and backdoor attacks manipulate victim models by maliciously modifying

training data. In light of this growing threat, a recent survey of industry professionals revealed

heightened fear in the private sector regarding data poisoning. Many previous defenses against

poisoning either fail in the face of increasingly strong attacks, or they significantly degrade per-

formance. However, we find that strong data augmentations, such as mixup and CutMix, can sig-

nificantly diminish the threat of poisoning and backdoor attacks without trading off performance.

We further verify the effectiveness of this simple defense against adaptive poisoning methods, and

we compare to baselines including the popular differentially private SGD (DP-SGD) defense. In

the context of backdoors, CutMix greatly mitigates the attack while simultaneously increasing

validation accuracy by 9%.
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4.1 Introduction

Machine learning models have demonstrated tremendous success in many domains from

mobile image processing to security services [Schwartz et al., 2019, Lovisotto et al., 2020]. The

growing availability of vast datasets has aided in this recent success. Practitioners often rely upon

data scraped from the web or sourced from a third party [Papernot, 2018], where the security of

such data can be compromised by malicious actors. Data Poisoning attacks pose a specific threat

in which an attacker modifies a victim’s training data to achieve goals such as targeted misclas-

sification or performance degradation [Goldblum et al., 2022]. Basic data poisoning schemes

implement backdoor triggers in training data, whereas recent works have also demonstrated that

data poisoning schemes can successfully attack deep learning models trained on industrial-scale

datasets without perceptible modifications [Huang et al., 2020, Geiping et al., 2021]. The serious-

ness of these threats is acknowledged by industrial practitioners, who recently ranked poisoning

as the most worrisome threat to their interests [Kumar et al., 2020]. Furthermore, defenses de-

signed for older, less powerful poisoning strategies work by filtering out poisons based on feature

anomalies [Rubinstein et al., 2009] but fail when models are trained from scratch on poisoned

data [Peri et al., 2019, Geiping et al., 2021]. Currently, the only method to prevent state-of-the-

art targeted poisoning relies upon differentially private SGD (DP-SGD) and leads to a significant

drop in validation accuracy [Geiping et al., 2021, Hong et al., 2020].

On the other hand, data augmentation has been a boon to practitioners, aiding in state-of-

the-art performance on a variety of tasks [Zhang et al., 2017a, Gong et al., 2020]. Data aug-

mentation can be used in many regimes, including settings where data is sparse, to improve

generalization [Ni et al., 2021]. Simple augmentations include random crops or horizontal flips.
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Recently, more sophisticated augmentation schemes have emerged that improve model perfor-

mance: mixup takes pairwise convex combinations of randomly sampled training data and uses

the corresponding convex combinations of labels. Not only does this prevent memorization of

corrupt labels and provide robustness to adversarial examples, but it has also been shown to im-

prove generalization [Zhang et al., 2017a]. Another augmentation technique, cutout, randomly

erases patches of training data [DeVries and Taylor, 2017], whereas CutMix instead combines

pairwise randomly sampled training data by taking random patches from one image and overlay-

ing these patches onto other images [Yun et al., 2019]. The labels are then mixed proportionally

to the area of these patches. CutMix enhances model robustness, achieves better test accuracy,

and improves localization ability by encouraging the network to correctly classify images from

a partial view. Finally, MaxUp applies a set of data augmentation techniques (basic or complex)

to the training data and chooses the augmentation method and parameters that achieve the worst

model performance of all the techniques [Gong et al., 2020]. By training against the most “diffi-

cult" data augmentation, MaxUp is able to improve generalization and, in some cases, adversarial

robustness.

We investigate the effects of multiple augmentation strategies on data poisoning attacks.

We find that these modern data augmentation strategies are often more effective than previous

more cumbersome defenses against poisoning while also not sacrificing significant natural vali-

dation accuracy. Our data augmentation defense is additionally convenient for practitioners as it

involves only a small and easy-to-implement change to standard training pipelines.

We empirically analyze this defense both in the setting of a simple backdoor trigger attack

and in the setting of a modern imperceptible targeted data poisoning attack [Geiping et al., 2021].
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4.2 Threat Model

There are many different flavors of poisoning attacks. In this work, we focus on two attacks

from both sides of the spectrum: A simple and robust backdoor trigger attack and a modern

poisoning attack that is targeted and also clean-label. Backdoor trigger attacks insert a specific

trigger pattern (usually a small patch, but sometimes an additive perturbation or non-rectangular

symbol) into training data. If this pattern is then added to images at test time, the network will

misclassify the test image, assigning the label that was placed on the training images poisoned

at train time. In contrast, targeted attacks are those in which the attacker wishes to modify the

victim model to specifically misclassify a set of target images at inference time. Such attacks

are often clean-label, meaning the modified training images retain their semantic content and are

labeled correctly. Such attacks are optimization-based, finding the most effective perturbation

of training data using gradient descent. This can make the attack especially hard to detect for

sanitization-based defenses because it does not significantly degrade clean accuracy [Huang et al.,

2020, Geiping et al., 2021]. We focus on both backdoor and clean-label attacks because of their

renewed and recent interest in the community and because they cover the poisoning literature

from two sides.

Any poisoning threat model can be formally described as a bilevel problem. Let F (x, θ)

be a neural network taking inputs x ∈ Rn with parameters θ ∈ Rp. The attacker is allowed to

modify P samples out of N total samples (where P ≪ N ) by adding perturbation ∆i to the

ith training image. The perturbation is constrained in the ℓ0 norm for the patch-based/backdoor

trigger attack, or the ℓ∞-norm in the case of optimization-based attacks we consider.

Attackers wish to find ∆ so that a set of T target samples (xt
i, y

t
i)

T
i=1 are classified with the
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new, incorrect, adversarial labels yadv
i after training by minimizing loss function L:

min
∆∈C

T∑
i=1

L
(
F (xt

i, θ(∆)), yadv
i

)
(4.1)

θ(∆) ∈θ
1

N

N∑
i=1

L(F (xi +∆i, θ), yi). (4.2)

In this framework, we can understand backdoor attacks as choosing the optimal ∆ directly based

on a given rule (here via patch insertion onto training images with the target label yadv
i ), whereas

optimization-based methods such as [Geiping et al., 2021] optimize some approximation of the

(intractable) full bilevel optimization problem. Witches’ Brew [Geiping et al., 2021] approxi-

mately optimizes ∆ by modifying training data so the gradient of the training objective is aligned

with the gradient of the adversarial loss L
(
F (xt

i, θ(∆)), yadv
i

)
, using optimization methods based

on adversarial literature [Madry et al., 2017b, Chiang et al., 2020].

Both backdoor attacks and targeted data poisoning attacks rely upon the expressiveness

of modern deep networks trained from scratch in order to “gerrymander" the network’s deci-

sion boundary around specific target images [Geiping et al., 2021] — they behave normally on

validation data and the chosen target is often made into a class outlier. As a result, changes

in the training procedure, such as strong data augmentation, may have a significant impact on

the success of poisoning by imposing regularity on the decision boundary and preventing target

images from being gerrymandered into the wrong class [Schwarzschild et al., 2021]. Note the

sensitivity of poisoning to changes in training has been confirmed by defenses involving gradient

clipping/noising, which is the only defense shown in [Geiping et al., 2021, Hong et al., 2020]

to degrade poisoning success. However, this defense ultimately proves impractical because of
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Poison Success (100%) Val Accuracy (100%) Poison Success (10%) Val Accuracy (10%)
Baseline 100% 85% 57% 94%
mixup 100% 85% 42% 95%

CutMix 36% 94% 23% 95%

Table 4.1: Poison success and (clean) validation accuracy in the from-scratch setting against
backdoor attacks. The first two columns correspond to poisoning all images in the target class,
the last two columns correspond to poisoning 10% of images in the target class. All values are
averaged over 4 runs.

the decreased natural accuracy that comes with robustness to poisoning. Thus, we aim to bridge

this gap and develop small changes in training via data augmentation that defend against data

poisoning without impeding normal training.

4.3 Method

Mixup can be interpreted as a method for convexifying class regions in the input space

[Zhang et al., 2017a]. By enforcing that convex combinations of training points are assigned

convex combinations of the labels, this augmentation method regularizes class boundaries, and

removes small non-convex regions. In particular, we are motivated by the idea of using mixup to

promote the removal of small “gerrymandered” regions in input space in which a target/poisoned

data instance is assigned an adversarial label while being surrounded by (non-poisoned) instances

with different labels.

In our experiments, we generalize the mixup process from [Zhang et al., 2017a] for mixture

width k. Instead of a Beta distribution, convex coefficients are drawn from a Dirichlet distribution

Dir[α, . . . , α] of order k with interpolation parameter α = 1.

We implement CutMix [Yun et al., 2019] as follows: Let D = {(xi, yi)}ni=1 be the training

dataset with xi ∈ Rw×h×c. Let (xi, yi) and (xj, yj) be two randomly sampled feature-target
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Figure 4.1: An illustration of CutMix with poisoned data (truck) and non-poisoned data (deer).
CutMix chops up the patch, lessening its visual impact in training data.

pairs. We randomly generate a box M ∈ {0, 1}w×h that indicates the pixels to be cut/pasted. All

values of M are defined to be one except in a box centered at (rx, ry) where they are zero. To

obtain the box location, we randomly sample the center rx ∼ Unif(0, w) and ry ∼ Unif(0, h).

As in mixup, we use a coefficient λ ∼ Dir[1, 1] to determine the relative contribution from

each of the two randomly sampled data points. i.e. rw = w
√
1− λ and rh = h

√
1− λ give

the width and height for the patch of zeros in M . The augmented image for CutMix becomes

x̃ = M
⊙

xi + (1−M)
⊙

xj with label ỹ = λyi + (1− λ)yj obtained by mixing initial labels

proportionally to the size of M . The binary operation
⊙

represents element-wise multiplication.

Cutout is similar, but the patch remains black. The cutout data point is given by x̃ = M
⊙

xi

with label yi.

The procedure for MaxUp is taken from [Gong et al., 2020]: For each data point xi in the

original training set D = {(xi, yi)}ni=1, a set {x̃i,j}mj=1 of augmented data points are produced.

Learning is defined according to a modified ERM,

min
θ

Ex∼D[max
j

L(x̃i,j, θ)].
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Figure 4.2: Mixup averages perturbed and clean images.

4.4 Experiments

4.4.1 Defending Against Backdoor Trigger Attacks

We first demonstrate the effectiveness of data augmentation at mitigating backdoor attacks

while at the same time increasing test accuracy. To establish baselines for backdoor attacks, we

train a ResNet-18 [He et al., 2016] on the CIFAR-10 dataset consisting of 50, 000 images in 10

balanced classes [Krizhevsky et al., 2009]. We insert triggers into the training set by adding

4×4 patches to training images in a randomly selected target class. We then evaluate on patched

images from a new base class to see if the patched images are misclassified into the target class.

Basic Attack (%) Adaptive Attack (%) Validation Accuracy (%)
Baseline 90.00 90.00 92.08

DP-SGD, 0.01 77.00 86.00 91.33
DP-SGD, 0.05 1.00 40.00 81.62

mixup 45.00 72.00 91.50
mixup (4-way) 5.00 55.00 87.45

CutMix 75.00 60.00 91.62
cutout 60.00 81.25 91.64

MaxUp-cutout 5.00 20.00 86.05

Table 4.2: Poison success and (clean) validation error results for the from-scratch setting against
Witches’ Brew. All values are averaged over 20 runs. Lower values in the first two columns are
better. Higher numbers in the last column are better.
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We perform this experiment in two different settings: when all training images in the base class

are patched and when only 10% are patched. These two scenarios reflect varying access an

adversary might have to their victim’s training data.

We report the success of this attack at causing base images to be misclassified with the

target label in Table 4.1. Although mixup data augmentation does not defend against the backdoor

attack, CutMix dramatically reduces the success rate of the poison attack from 100% to 36% while

simultaneously increasing validation accuracy by 9%. One explanation for the ineffectiveness of

mixup in this domain is that, under this strategy, the base class can still be associated with the

patch. On the other hand, CutMix randomly replaces parts of the images and therefore may cut

patches apart. Moreover, CutMix improves clean validation accuracy since the network learns

relevant features from the target class rather than simply relying on the patch.

4.4.2 Defending Against Targeted Poisoning Attacks

We now evaluate data augmentation as a defense against targeted poisoning attacks. To

this end, we use the state-of-the-art method, Witches’ Brew [Geiping et al., 2021], as well as an

adaptive version in which attacks are generated on networks trained with the same data augmen-

tations as the victim. We train a ResNet-18 on CIFAR-10, and we consider a threat model with

ℓ∞ bound 16/255 and a budget of 1%. For all experiments, we consider a baseline model trained

with random horizontal flips and random crops. We then compare modern data augmentation

against differential-privacy based defenses with a special focus on practical clean validation ac-

curacy. We average success over 20 runs, where each run consists of a randomly chosen target

image and a randomly chosen adversarial label. In each run, a new model is trained from scratch
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on the poisoned training set and evaluated on the target image. The lower the attack’s success

rate, the more effective the defense.

Table 4.2 shows that we can defend using differentially private SGD (DP-SGD) [Abadi

et al., 2016] with sufficient amounts of Gaussian noise added to all training gradients — but

this comes at a tremendous costs in validation accuracy. In this setting of an optimization-based

attack, we also have to contend with another factor: adaptive attacks. An adaptive attack threat

model assumes that the attacker is aware of the defense and can optimize their attack w.r.t to this

defense. This attack is highlighted in the second column of Table 4.2. In this work, we adapt

WitchesBrew to advanced data augmentation by incorporating the data augmentation into the

training phase of the clean model used in the attack. This way poisoned data is created based

on a model trained to be invariant to these augmentations. We adapt differential privacy as in

[Geiping et al., 2021] by a straight-through estimate, finding it to be mitigated especially well by

an adaptive attack.

In contrast to the loss of validation accuracy incurred by DP-SGD defenses, the defenses

via data augmentation (lower rows in Table 4.2, blue dots in Figure 4.3) lose almost no validation

accuracy. Nonetheless, they reduce poison success by up to 60% in the case of MaxUp based on

four cutouts. Also notable is that for this case of optimization-based poisoning attacks, mixup

seems to be the optimal data augmentation among those tried which do not degrade validation

accuracy. We conjecture that this is due to the implicit linearity enforced between data points

by mixup optimization, which makes it harder for the poisoning scheme to successfully generate

outliers. We can even further increase the defensive capabilities of mixup by considering a four-

fold mixture of images instead of the two-fold mixtures discussed in [Zhang et al., 2017a]. This

defense is even stronger than vanilla mixup in both cases, but the four-fold mixtures of images
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leads to data modifications so stark that they negatively influence validation accuracy.

In comparison to the backdoor trigger attacks, CutMix is less effective against the non-

adaptive attack. However, we also find that for the adaptive setting, CutMix improves upon

mixup. This is likely because the entire image perturbation appears in the mixed image when

mixup is used, enabling reliable poisoning. In contrast, an adaptive attack on CutMix cannot a

priori know the location of the cut patch, hence the attack is impeded even if it is known that

CutMix is used.

4.5 Conclusions

Data poisoning attacks are increasingly threatening to machine learning practitioners. By

and large, defenses have not kept pace with rapidly improved attacks. We demonstrate that mod-

ern data augmentation schemes can mitigate from-scratch poisoning while maintaining natural

accuracy for both backdoor triggers and optimization-based attacks. We think these results sug-

gest the possibility of specially-designed augmentations for poison defense, and we think this

may be a fruitful direction for future research.
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Figure 4.3: Poison success vs. (clean) validation accuracy for non-adaptive attacks (top) and
adaptive attacks (bottom).
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Chapter 5: A Deep Dive into Dataset Imbalance and Bias in Face Identification

Joint work with Steven Reich, Samuel Dooley, Hossein Souri, Micah Goldblum and Tom

Goldstein. Accepted for publication at the AAAI/ACM Conference on AI, Ethics, and Society

(AIES), 2023.

As the deployment of automated face recognition (FR) systems proliferates, bias in these

systems is not just an academic question, but a matter of public concern. Media portrayals often

center imbalance as the main source of bias, i.e., that FR models perform worse on images of

non-white people or women because these demographic groups are underrepresented in training

data. Recent academic research paints a more nuanced picture of this relationship. However, pre-

vious studies of data imbalance in FR have focused exclusively on the face verification setting,

while the face identification setting has been largely ignored, despite being deployed in sensitive

applications such as law enforcement. This is an unfortunate omission, as ‘imbalance’ is a more

complex matter in identification; imbalance may arise in not only the training data, but also the

testing data, and furthermore may affect the proportion of identities belonging to each demo-

graphic group or the number of images belonging to each identity. In this work, we address this

gap in the research by thoroughly exploring the effects of each kind of imbalance possible in face

identification, and discuss other factors which may impact bias in this setting.
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5.1 Introduction

Automated face recognition is becoming increasingly prevalent in modern life, with ap-

plications ranging from improving user experience (such as automatic face-tagging of photos)

to security (e.g., phone unlocking or crime suspect identification). While these advances are

impressive achievements, decades of research have demonstrated disparate performance in FR

systems depending on a subject’s race [Phillips et al., 2011, Cavazos et al., 2020], gender pre-

sentation [Alvi et al., 2018, Albiero et al., 2020], age [Klare et al., 2012], and other factors. This

is especially concerning for FR systems deployed in sensitive applications like law enforcement;

incorrectly tagging a personal photo may be a mild inconvenience, but incorrectly identifying the

subject of a surveillance image could have life-changing consequences. Accordingly, media and

public scrutiny of bias in these systems has increased, in some cases resulting in policy changes.

One major source of model bias is dataset imbalance; disparities in rates of representation

of different groups in the dataset. Modern FR systems employ neural networks trained on large

datasets, so naturally much contemporary work focuses on what aspects of the training data may

contribute to unequal performance across demographic groups. Some potential sources that have

been studied include imbalance of the proportion of data belonging to each group [Wang and

Deng, 2020, Gwilliam et al., 2021], low-quality or poorly annotated images [Dooley et al., 2021],

and confounding variables entangled with group membership [Klare et al., 2012, Kortylewski

et al., 2018, Albiero et al., 2020].

Dataset imbalance is a much more complex and nuanced issue than it may seem at first

blush. While a naive conception of ‘dataset imbalance’ is simply as a disparity in the number of

images per group, this disparity can manifest itself as either a gap in the number of identities per
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group, or in the number of images per identity. Furthermore, dataset imbalance can be present in

different ways in both the training and testing data, and these two source of imbalance can have

radically different (and often opposite) effects on downstream model bias.

Past work has only considered the verification setting of FR, where testing consists of

determining whether a pair of images belongs to the same identity. As such, ‘imbalance’ between

demographic groups is not a meaningful concept in the test data. Furthermore, the distinction

between imbalance of identities belonging to a certain demographic group versus that of images

per identity in each demographic group has not been carefully studied in either the testing or the

training data. All of these facets of imbalance are present in the face identification setting, where

testing involves matching a probe image to a gallery of many identities, each of which contains

multiple images. We illustrate this in Figure 5.1.

In this work, we unravel the complex effects that dataset imbalance can have on model bias

for face identification systems. We separately consider imbalance (both in terms of identities

or images per identity) in the train set and in the test set. We also consider the realistic social

use case in which a large dataset is collected from an imbalanced population and then split at

random, resulting in similar dataset imbalance in both the train and test set. We specifically focus

on imbalance with respect to gender presentation, as (when restricting to only male- and female-

identified individuals) this allows the proportion of data in each group to be tuned as a single

parameter, as well as the availability of an ethically obtained identification dataset with gender

presentation metadata of sufficient size to allow for subsampling without significantly degrading

overall performance.

Our findings show that each type of imbalance has a distinct effect on a model’s perfor-

mance on each gender presentation. Furthermore, in the realistic scenario where the train and test
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Example Gallery 2: 
primarily female images
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Example: male identities have more images

Imbalance in the composition of the gallery

Figure 5.1: Examples of imbalance in face identification. Top left: data containing more female
identities than male identities. Top right: data containing the same number of male and female
identities, but more images per male identity. Bottom: two possible test (gallery) sets showing
how the effects of different kinds of imbalance may interact.

set are similarly imbalanced, the train and test imbalance have the potential to interact in a way

that leads to systematic underestimation of the true bias of a model during an audit. Thus any

audit of model bias in face identification must carefully control for these effects.

The remainder of this chapter is structured as follows: Section 5.2 discusses related work,

and Section 5.3 introduces the problem and experimental setup. Sections 5.4 and 5.5 give exper-

imental results related to imbalance in the training set and test set, respectively, and Section 5.6

gives results for experiments where the imbalance in the training set and test set are identical. In

Section 5.7.1, we evaluate randomly initialized feature extractors on test sets with various levels

of imbalance to further isolate the effects of this imbalance from the effects of training. In Sec-

tion 5.7.2, we investigate the correlation between the performance of models trained with various

levels of imbalance and human performance.
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5.2 Related Work

5.2.1 Imbalance in verification

Even before the advent of neural network-based face recognition systems, researchers have

studied how the composition of training data affects verification performance. Phillips et al.

[2011] compared algorithms from the Face Recognition Vendor Test [Phillips et al., 2009] and

found that those developed in East Asia performed better on East Asian Faces, and those devel-

oped in Western countries performed better on Caucasian faces. Klare et al. [2012] expanded

on these results by comparing performance across race, gender presentation, and age cohorts,

observing that training exclusively on images of one demographic group improved performance

on that group and decreased performance on the others. They further conclude that training on

data that is “well distributed across all demographics" helps prevent extreme bias.

Multiple verification datasets have been proposed in the interest of eliminating imbalance

as a source of bias in face verification. The BUPT-BalancedFace dataset [Wang and Deng, 2020]

contains an approximately equal number of identities and images of four racial groups1. Balanced

Faces in the Wild [Robinson et al., 2020] goes a step further, balancing identities and images

across eight categories of race-gender presentation combinations. Also of note is the BUPT-

CBFace dataset [Zhang and Deng, 2020], which is class-balanced (each identity possesses the

same number of images), rather than demographically balanced.

Some recent work in verification has questioned whether perfectly balanced training data

is in fact an optimal setting for reducing bias. Albiero et al. [2020] studied sources of bias along

1This work also introduces BUPT-GlobalFace, which instead approximately matches the distribution across races
to that of the world population.
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gender presentation; among their findings, they observe that balancing the amount of male and

female training images and identities in the training data reduces, but does not eliminate, the

performance gap between gender presentations. Similarly, Gwilliam et al. [2021] trained models

on data with different racial makeups, finding that models which were trained with more images

of African subjects had lower variance in performance on each race than those which were trained

on balanced data.

5.2.2 Bias in Identification

Although the effect of imbalance on bias has only been explicitly studied in face veri-

fication, there is some research on identification which is relevant. The National Institutes of

Standards and Technology performed large-scale testing of commercial identification algorithms,

finding that many (though not all) exhibit gender presentation or racial bias [Grother et al., 2019].

The evaluators speculate that the training data or procedures contribute to this bias, but could not

study this hypothesis due to the proprietary nature of the models. Dooley et al. [2021] evalu-

ated commercial and academic models on a variant of identification in which each probe image

is compared to 9 gallery images of distinct identities, but belonging to the same skin type and

gender presentation. They find that academic models (and some, but not all, commercial models)

exhibit skin type and gender presentation bias despite a testing regime which makes imbalance

effectively irrelevant.
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5.2.3 Imbalance in Deep Learning

Outside the realm of facial recognition, there is much study about the impacts of class

imbalance in deep learning. In standard machine learning techniques, i.e., non-deep learning,

there are many well-studied and proven techniques for handling class imbalances like data-level

techniques [Van Hulse et al., 2007, Chawla et al., 2002, 2004], algorithm-level methods [Elkan,

2001, Ling and Sheng, 2008, Krawczyk, 2016], and hybrid approaches [Chawla et al., 2003, Sun

et al., 2007, Liu et al., 2008]. In deep learning, some take the approach of random over or under

sampling [Hensman and Masko, 2015, Lee et al., 2016, Pouyanfar et al., 2018]. Other methods

adjust the learning procedure by changing the loss function [Wang et al., 2016] or learning cost-

sensitive functions for imbalanced data [Khan et al., 2017]. We refer the reader to Buda et al.

[2018], Johnson and Khoshgoftaar [2019], for a thorough review of deep learning-based imbal-

ance literature. Much of the class-imbalance work has been on computer vision tasks, though

generally has not examined specific analyses like we present in this work like network initializa-

tion, face identification, or intersectional demographic imbalances.

5.2.4 Other sources of bias in facial recognition

Face recognition is a complex, sociotechnical system where biases can originate from the

algorithms [Danks and London, 2017], preprocessing steps [Dooley et al., 2022], and human in-

terpretations [Chouldechova and Roth, 2020]. While we do not explicitly examine these sources,

we refer the reader to Mehrabi et al. [2021], Suresh and Guttag [2019] for a broader overview of

sources of bias in machine learning.
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5.3 Face Identification Setup

Face recognition has two tasks: face verification and face identification. The first refers to

verifying whether a person of interest (called the probe image) and a person in a reference photo

are the same. This is the setting that might be applied, e.g., to phone unlocking or other identity

confirmation. In contrast, face identification involves matching a probe image against a set of

images (called the gallery) with known identities. This application is relevant to search tasks,

such as identifying the subject of a photo from a database of driver’s license or mugshot photos.

In a standard face recognition pipeline, an image is generally first pre-processed by a face

detection system which may serve to locate and align target faces to provide more standardized

images to the recognition model. State-of-the-art face recognition models exploit deep neural

networks which are trained on large-scale face datasets for a classification task. At test time, the

models work as feature extractors, so that the similarity between a probe image and reference

photo (in verification) or gallery photos (in identification) is computed in the feature space. In

verification, the similarity score is then compared with a predefined threshold, while in identi-

fication a k-nearest neighbors search is performed using the similarity scores with the gallery

images.

We focus on the face identification task in our experiments and explore how different kinds

of data balance affect the models performance across demographic groups (specifically, the dis-

parity in performance on male and female targets). We also analyze how algorithmic bias cor-

relates with human bias on InterRace, a manually curated dataset specifically designed for bias

auditing, with challenging face recognition questions and provided annotations for gender pre-

sentation and skin color [Dooley et al., 2021].
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Our experiments use state-of-the-art face recognition models. We train MobileFaceNet

[Chen et al., 2018], ResNet-50, and ResNet-152 [He et al., 2016] feature extractors each with a

CosFace and ArcFace head which improve the class separability of the features by adding angular

margin during training [Deng et al., 2019, Wang et al., 2018]. For training and evaluation we use

the CelebA dataset [Liu et al., 2015], which provides annotations for gender presentation. As our

main research questions focus on the impact of class imbalance, we pay special attention to the

balance of the gender presentation attribute in our training. The original dataset contains more

female identities. As such, we create a balanced training set containing 140,000 images from

7,934 identities with equal number of identities and total number of images from each gender

presentation. We also create a perfectly balanced test set containing 14,000 images from 812

identities. The identities in the train and test sets are disjoint. We call these the default train and

default test sets. All models are trained with class-balanced sampling to ensure equal contribution

of identities to the loss. We additionally include results for models trained without over-sampling

in Section 5.9.1.

Recall that our research question is to investigate how class imbalances affect face identi-

fication. In order to answer this question, we train models on a range of deliberately imbalanced

subsamples of the default training set, and test models on a range of deliberately imbalanced

subsamples of the default test set, in order to explore the impact on the model’s performance for

each gender presentation.

To evaluate the models, we compute rank-1 accuracy over the test set. Specifically, for each

test image we treat the rest of the test set as gallery images and find if the closest gallery image

in the feature space (as defined by cosine similarity) of a model is an image of the same person.

When we make comparisons with human performance (Section 5.7.2), we use the InterRace
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Table 5.1: Details on the number of identities, total number of images and average number of
images per identity used in experiments with train and test data balance. We also report statistics
for the default train and test sets. M denotes male, F denotes female.

Setting M ids F ids Total M img Total F img M img/id F img/id Total id Total img
Train default 3967 3967 70k 70k 17.65 17.65 7934 140k
Train id balance 0 - 3967 0 - 3967 0 - 70k 0 - 70k 17.65 17.65 3967 70k
Train img balance 3967 3967 14k - 56k 14k - 56k 3.53 - 14.11 3.53 - 14.11 7934 70k
Test default 406 406 7k 7k 17.24 17.24 812 14k
Test id balance 0 - 406 0 - 406 0 - 7k 0 - 7k 17.24 17.24 406 7k
Test img balance 406 406 1.4k - 5.6k 1.4k - 5.6k 3.45 - 13.80 3.45 - 13.80 812 7k

dataset [Dooley et al., 2021]. Since the InterRace dataset is derived from both the CelebA and

LFW [Huang et al., 2007] datasets, we additionally train models on the InterRace-train split of

CelebA, containing images of identities not included in the InterRace dataset. Similar to other

experiments, we train models with varying levels of either identity and image imbalance.

5.4 Balance in the Train Set

5.4.1 Balancing the number of identities

Experiment Description. To explore the effect of train set balance in the number of iden-

tities on gender presentation bias, we construct train data splits with different ratios of female

and male identities, while ensuring that the average number of images per identity is the same

across gender presentations. Therefore, in all splits we have the same total number of images and

total number of identities, but the proportion of female and male identities varies. We consider

splits with 0 : 10, 1 : 9, 2 : 8, ..., 10 : 0 ratios, each having 70,000 total images from 3967

identities. We evaluate the models on the (perfectly balanced) default test set and report rank-1

face identification accuracy as described in Section 5.3. More details of train set splits can be

found in Table 5.1.
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Figure 5.2: Train Set Imbalance. Results of experiments that change the train set gender pre-
sentation balance. Top row: male and female accuracy are plotted against the proportion of male
data in the train set. Bottom row: for an alternate view, female accuracy is flipped horizontally,
so that it is plotted against the proportion of female data in the train set. All models are tested on
the default balanced test set.

Results. We compute accuracy scores separately for male and female test images for mod-

els trained on each of the train splits and depict them in Figure 5.2 with solid lines. From the

first row plots, we observe that a higher proportion of male identities in the train set leads to an

increase in male accuracy and decrease in female accuracy, with the most significant drops oc-

curring near the extreme 10 : 0 imbalance. This indicates that it is very important to have at least

a few identities from the target demographic group in the train set; once the representation of the

minority group reaches 10%, the marginal gain of additional identities becomes less. We also

observe that for most models, the female accuracy drops slightly when the proportion of female

identities exceeds 80% of the training data, which does not happen to the male group. Consult

Table 5.2 for the numerical results.
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Regarding the model architectures, MobileFaceNet models trained with both CosFace and

ArcFace heads outperform ResNet models on both female and male images and have smaller

absolute accuracy gap. However, the error ratio is similar across the models, see Table 5.2.

Finally, the accuracy gap is closed for all models when the train set consists of about 10% male

and 90% female identities.

In addition, in the second row of Figure 5.2 we compare how similar these trends are for

females and males by plotting female accuracy against the proportion of female identities in the

train set. One can see that for MobileFaceNet models the accuracy on male and female images

increases similarly when increasing the proportion of “target" identities up to 80%. However, for

ResNet models adding more female identities in the train set results in smaller gains compared to

the effect of adding more male identities on male accuracy.

5.4.2 Balancing the number of images per identity

In the previous subsection, we fixed the average number of images per identity in each

gender presentation and adjusted the number of identities. We now will do the reverse: fix the

number of identities and vary the images per identity.

Experiment Description. We change the average number of images per male and female

identity, but fix the number of identities of each gender presentation. We consider ratios 2 : 8, ...,

8 : 2, each having 70, 000 images from 7, 934 identities. We do not consider more extreme ratios,

which would result in identities with fewer than 3 images.

Results.

The dashed lines in Figure 5.2 illustrate the accuracy of the models trained on described
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data splits. From the first row plots we see that, similar to the previous experiment, increasing

the number of male images in the train set leads to increased accuracy on male and decreased

accuracy on female images. Interestingly, we observe a decrease in performance for both de-

mographic groups when the images of that group constitute more than 60% of train data; this is

most easily visible in the second row of Figure 5.2. However, we find that this effect results from

the widely used class-balanced sampling training strategy, and models trained without the default

oversampling are more robust to imbalance in the number of images per identity, see details in

Section 5.9.1 and Figure 5.8. The “fair point" where female accuracy is closest to male accuracy

occurs when around 20% of images are of males.

When comparing the effect of imbalance in the number of identities and the number of

images per identity (solid and dashed lines respectively in Figure 5.2), we see that ResNet models

are more susceptible to image imbalance than to identity imbalance, which is also a phenomenon

specific to the common class-balanced sampling.

5.5 Balance in the Test Set

5.5.1 Balancing the number of identities

Experiment Description. Analogous to the train set experiments, we split the test data

(the gallery) with different ratios of female and male identities, while keeping the same average

number of images per identity for both demographic groups. For each ratio, we split the test data

with 5 random seeds and report average rank-1 accuracy of the models trained on default train

data. The results are shown in the solid lines of Figure 5.3, as well as in Table 5.4.

Results. We observe that increasing the proportion of identities of a target demographic
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Figure 5.3: Test Set Imbalance. Results of experiments that change the test set gender presenta-
tion balance. Top row: male and female accuracy are plotted against the proportion of male data
in the test set. Bottom row: for an alternate view, female accuracy is flipped horizontally, so that
it is plotted against the proportion of female data in the test set. All models are trained on the
default balanced train set. For each experiment, the test set was split with 5 random seeds, and
the results are averaged across seeds.

group in the test set hurts the model’s performance on that demographic group, and this trend is

similar for male and female images. Intuitively, this is because face recognition models rarely

match images to one of a different demographic group; therefore by adding more identities of

a particular demographic group, we add more potential false matches for images from that de-

mographic group, which leads to higher error rates. We also see that ResNet models are more

sensitive to the number of identities in the gallery set than MobileFaceNet models.

5.5.2 Balancing the number of images per identity

Experiment Description. Now, we investigate how increasing or decreasing the number

of images per identity affects the performance and bias of the models. Again, we split the test
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Figure 5.4: Train & Test Set Imbalance. Results of experiments that adjust the gender presenta-
tion balance in both the train and test set. Top row: male and female accuracy are plotted against
the proportion of male data used in both the train and test set. Bottom row: for an alternate view,
female accuracy is flipped horizontally, so that it is plotted against the proportion of female data
in both the train and test set. For each experiment, the test set was split with 5 random seeds, and
the results are averaged across seeds.

sets with different ratios of total number of images across gender presentations, but same number

of identities, each with 5 random seeds. These results are recorded as dashed lines in Figure 5.3,

as well as in Table 5.5.

Results. Unlike the results with identity balance, increasing the average number of images

per identity leads to performance gains, since this increases the probability of a match with an

image of the same person. Also, image balance affects the performance more significantly than

identity balance, and these trends are similar across all the models and both gender presentations.

Finally, we note that the “fair point" for image balance in the test set occurs at about 30% male

images; contrast this with identity balance, for which no fair point appears to exist.
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5.6 A cautionary tale: matching the balance in the train and gallery data

Using our findings from above, we conclude that common machine learning techniques to

create train and test splits can lead to Simpson’s paradoxes which lead to a false belief that a

model is unbiased. It is standard practice to make random train/test splits of a dataset. If the

original dataset is imbalanced, as is commonly the case, the resulting splits will be imbalanced

in similar ways. As we have seen above, the effects of imbalance in the train and test splits may

oppose one another, causing severe underestimation of model bias when measured using the test

split. This occurs because the minority status of a group in the train split will bias the model

towards low accuracy on that group, while the correspondingly small representation in the test

split will cause an increase in model accuracy, partially or entirely masking the true model bias.

The results for these experiments are presented in Figure 5.4 and Tables 5.6, 5.7.

Balancing the number of identities We create train and test sets with identical distri-

butions of identities. Recalling the results from prior experiments, increasing the number of

identities for the target group in the training stage improves accuracy on that group, while adding

more identities in the gallery degrades it. Interestingly, when we increase the proportion of male

identities in both train and test sets, we observe gains in both male and female accuracy, and that

trend is especially strong for ResNet models.

Balancing the number of images per identity Having more images is beneficial in both

train and test stages. Therefore, the effect of image balance is amplified when both train and

test sets are imbalanced in a similar way. Similar to the train set experiments, having more than

70% female images in both train and test sets leads to slight drops in female accuracy on ResNet

models, which again is a result of the default class-balanced oversampling strategy.
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Figure 5.5: Random Feature Extractors. The plot illustrates male (blue) and female (orange)
accuracy of random feature extractors against the proportion of male images in the test set. The
standard deviation is computed across 10 random initializations.

5.7 Bias comparisons

We ask two concluding questions: one about whether class imbalance captures all the

inherent bias and the other about how the bias we see compares to human biases. First, we

explore how data imbalances cause biases in random networks and find surprising conclusions.

Then, we ask how class imbalances in machines compare to how humans exhibit bias on face

identification tasks.

5.7.1 Bias in random feature extractors

Given a network with random initializations, we would expect that evaluation on a bal-

anced test set would result in equal performance on males and females, and likewise that male

performance on a set with a particular proportion of male identities would be the same as female

performance when that proportion is reversed. However, this is not the case. We test randomly
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initialized feature extractors on galleries with varying levels of image imbalance. Figure 5.5

summarizes the results of these experiments. We observe that both models have higher male per-

formance when the test set is perfectly balanced, and that performance on males is higher when

they make up 80% of the test set than female performance when they make up 80% of the test set.

This provides strong evidence that there are sources of bias that lie outside what we explore here

and which are potential confounders to a thorough study of bias in face identification; further

work on this is warranted.

5.7.2 Are models biased like humans?

Numerous psychological and sociological studies have identified gender, racial, and other

biases in human performance on face recognition tasks. Dooley et al. [2021] studied whether

humans and FR models exhibit similar biases. They evaluated human and machine performance

on the curated InterRace test questions, and found models indeed tend to perform better on the

same groups as, and with comparable gender presentation bias ratios to, humans. In this section,

we use their human survey data to explore two related questions: how correlated are model

and human performance at the question level, and how does this change with different levels of

imbalance in training data?

To answer these questions, we define a metric which allows us to distinguish how well a

model performs on each InterRace identification question. Let

L2 ratio =
∥vprobe − vfalse∥2

∥vprobe − vtrue∥2 + ∥vprobe − vfalse∥2
,

where vprobe, vtrue, vfalse are the feature representations of the probe image, the correct gallery
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Figure 5.6: Pearson correlation of L2 ratio vs. human accuracy for various models as proportion
of male training data varies.

image, and the nearest incorrect gallery image, respectively.2 This value is 1 when the probe and

correct image’s representations coincide, 0 when the probe and incorrect image’s representations

coincide and 0.5 when the probe’s representation is equidistant from those of the correct and

incorrect image. Figure 5.7 depicts examples of scatterplots comparing model confidence to

human accuracy on each InterRace question.

Figure 5.6 shows the correlation between L2 ratio and human performance for various

2We note that other measures of confidence in a k-nearest neighbors setting, such as those discussed in [Dalitz,
2009], are inappropriate for this application.
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models at each of the training imbalance settings that we have considered in earlier experiments.

We see that the correlation between these values over all questions tends to rise as the proportion

of male training data increases. However, the correlation when separately considering male and

female questions does not rise as monotonically, or as much, from left to right as the overall

correlation does. This suggests that the correlation between human and machine performance

is largely driven by the fact that models and humans both find identifying females more difficult

than identifying males, and that this disparity is exacerbated when the model in question is trained

on male-dominated data. On the other hand, the particular males and females that are easier or

harder to identify appear to differ between models and humans, which suggests the reasons for

bias in humans and machines are different.

5.8 Actionable Insights

We note five actionable insights for machine learning engineers and other researchers from

this work. First, overrepresenting the target demographic group can sometimes hurt that

group. Sometimes having more balanced data is the key. Also, class-balanced sampling might

hurt representation learning when the data is not balanced with respect to the number of images

per identity. Second, gallery set balance is as important as train set balance, contrary to how

face verification class imbalances work. Third, having the same distribution of identities and

average number of images per identity is not an unbiased way to evaluate a model, since

the effects of balance in train and test sets can be amplified (in case of images) or cancel each

other (in case of identities). Fourth, train and test class imbalances are not the only cause of

bias in face identification evaluation since even random models do not perform equally poorly
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on female and male images. Finally, even though both humans and machine find female images

more difficult to recognize, it seems that the reasons for bias are different in people and

models. We know that this work sheds light on common mistakes in bias computations for many

facial recognition tasks and hope that auditors and engineers will incorporate our insights into

their methods.
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5.9 Experimental Details and Additional Results

5.9.1 Results for models trained without class-balanced sampling.

To explore the effect of class-balanced sampling on the results of our experiments, we train

additional models without any oversampling strategies. Figures 5.8 - 5.10 show results of our

experiments for MobileFaceNet and ResNet-152 models trained without oversampling. We find

that most trends are similar to ones observed in the models trained with class-balanced sampling,

however models trained without oversampling are more robust to balance in the number of images

per identity, see Figure 5.8. In particular, the effect of balancing the number of images (dashed

lines) is similar to the effect of balancing the number of identities (solid lines) for all models, but

ResNet-152 trained with ArcFace head. This leads us to a conclusion that using class-balanced

sampling strategy is not beneficial in scenarios of severe imbalance in number of images per

identity in face recognition models.

5.9.2 Additional Plots and Tables

Figure 5.11 shows the results of the train set imbalance experiment when evaluated on the

InterRace test set. Tables 5.2 - 5.7 precisely detail the number of male and female identities

and images used in each experiment, as well as the accuracy on male and female targets and the

female-to-male error ratio.
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Figure 5.7: Scatterplots of model L2 ratio vs. human accuracy on each question in the InterRace
identification dataset. Both models are MobileFaceNets trained with CosFace loss. (Left) a model
trained on exclusively female images. (Right) a model trained on exclusively male images.
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Figure 5.8: Train Set Imbalance. Results of experiments that change the train set gender pre-
sentation balance for MobileFaceNet and ResNet-152 models trained without class-balanced
sampling.
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Figure 5.9: Test Set Imbalance. Results of experiments that change the test set gender pre-
sentation balance for MobileFaceNet and ResNet-152 models trained without class-balanced
sampling.
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Figure 5.10: Train & Test Set Imbalance. Results of experiments that adjust the gender presen-
tation balance in both the train and test set for MobileFaceNet and ResNet-152 models trained
without class-balanced sampling.

0.0 0.2 0.4 0.6 0.8 1.0

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MobileFaceNet CosFace

Male
Female
Identity
Image

0.0 0.2 0.4 0.6 0.8 1.0

ResNet_152 CosFace

0.0 0.2 0.4 0.6 0.8 1.0

MobileFaceNet ArcFace

0.0 0.2 0.4 0.6 0.8 1.0

ResNet_152 ArcFace

Proportion of male identities (solid) or images (dashed) in the train set

Figure 5.11: Train Set Imbalance. Results of experiments testing models trained with different
gender presentation balance on the InterRace dataset. These plots are analogous to the first row
of Figures 5.2.
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Table 5.2: Train Set Id Imbalance. The female and male accuracy computed over the default
balanced test set for models trained on data with various ratios of number of male and female
identities. See details of the experiment in Section 5.4.1

Model Ids Ratio M ids F ids M imgs F imgs M acc F acc Error Ratio

MFN CosFace

0 : 10 0 3967 0 70k 0.918 0.938 0.76
1 : 9 397 3570 7k 63k 0.941 0.939 1.03
2 : 8 793 3174 14k 56k 0.946 0.941 1.09
3 : 7 1190 2777 21k 49k 0.952 0.942 1.21
4 : 6 1587 2380 28k 42k 0.958 0.940 1.43
5 : 5 1984 1984 35k 35k 0.961 0.940 1.54
6 : 4 2380 1587 42k 28k 0.964 0.936 1.78
7 : 3 2777 1190 49k 21k 0.965 0.935 1.86
8 : 2 3174 793 56k 14k 0.964 0.928 2.00
9 : 1 3570 397 63k 7k 0.968 0.924 2.37
10 : 0 3967 0 70k 0 0.968 0.887 3.53

MFN ArcFace

0 : 10 0 3967 0 70k 0.911 0.937 0.71
1 : 9 397 3570 7k 63k 0.937 0.940 0.95
2 : 8 793 3174 14k 56k 0.948 0.939 1.17
3 : 7 1190 2777 21k 49k 0.952 0.939 1.27
4 : 6 1587 2380 28k 42k 0.953 0.941 1.26
5 : 5 1984 1984 35k 35k 0.958 0.937 1.50
6 : 4 2380 1587 42k 28k 0.965 0.937 1.80
7 : 3 2777 1190 49k 21k 0.963 0.934 1.78
8 : 2 3174 793 56k 14k 0.966 0.925 2.21
9 : 1 3570 397 63k 7k 0.966 0.914 2.53
10 : 0 3967 0 70k 0 0.966 0.886 3.35

ResNet-152 CosFace

0 : 10 0 3967 0 70k 0.854 0.887 0.77
1 : 9 397 3570 7k 63k 0.902 0.894 1.08
2 : 8 793 3174 14k 56k 0.918 0.896 1.27
3 : 7 1190 2777 21k 49k 0.927 0.894 1.45
4 : 6 1587 2380 28k 42k 0.931 0.892 1.57
5 : 5 1984 1984 35k 35k 0.936 0.897 1.61
6 : 4 2380 1587 42k 28k 0.944 0.893 1.91
7 : 3 2777 1190 49k 21k 0.949 0.889 2.18
8 : 2 3174 793 56k 14k 0.951 0.886 2.33
9 : 1 3570 397 63k 7k 0.951 0.872 2.61
10 : 0 3967 0 70k 0 0.952 0.822 3.71

ResNet-152 ArcFace

0 : 10 0 3967 0 70k 0.803 0.868 0.67
1 : 9 397 3570 7k 63k 0.856 0.860 0.97
2 : 8 793 3174 14k 56k 0.885 0.866 1.17
3 : 7 1190 2777 21k 49k 0.897 0.859 1.37
4 : 6 1587 2380 28k 42k 0.908 0.857 1.55
5 : 5 1984 1984 35k 35k 0.913 0.863 1.57
6 : 4 2380 1587 42k 28k 0.920 0.850 1.88
7 : 3 2777 1190 49k 21k 0.928 0.853 2.04
8 : 2 3174 793 56k 14k 0.932 0.832 2.47
9 : 1 3570 397 63k 7k 0.931 0.814 2.70
10 : 0 3967 0 70k 0 0.937 0.748 4.00
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Table 5.3: Train Set Img Imbalance. The female and male accuracy computed over the default
balanced test set for models trained on data with various ratios of number of images per male and
female identity. See details of the experiment in Section 5.4.2

Model Img Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

2 : 8 3967 3967 14k 56k 0.932 0.927 1.07
3 : 7 3967 3967 21k 49k 0.949 0.931 1.35
4 : 6 3967 3967 28k 42k 0.955 0.931 1.53
5 : 5 3967 3967 35k 35k 0.956 0.930 1.59
6 : 4 3967 3967 42k 28k 0.959 0.929 1.73
7 : 3 3967 3967 49k 21k 0.957 0.918 1.91
8 : 2 3967 3967 56k 14k 0.957 0.892 2.51

MFN ArcFace

2 : 8 3967 3967 14k 56k 0.944 0.937 1.13
3 : 7 3967 3967 21k 49k 0.953 0.939 1.30
4 : 6 3967 3967 28k 42k 0.962 0.940 1.58
5 : 5 3967 3967 35k 35k 0.962 0.939 1.61
6 : 4 3967 3967 42k 28k 0.963 0.937 1.70
7 : 3 3967 3967 49k 21k 0.961 0.929 1.82
8 : 2 3967 3967 56k 14k 0.960 0.914 2.15

ResNet-152 CosFace

2 : 8 3967 3967 14k 56k 0.855 0.868 0.91
3 : 7 3967 3967 21k 49k 0.908 0.886 1.24
4 : 6 3967 3967 28k 42k 0.923 0.890 1.43
5 : 5 3967 3967 35k 35k 0.935 0.888 1.72
6 : 4 3967 3967 42k 28k 0.934 0.862 2.09
7 : 3 3967 3967 49k 21k 0.931 0.824 2.55
8 : 2 3967 3967 56k 14k 0.928 0.753 3.43

ResNet-152 ArcFace

2 : 8 3967 3967 14k 56k 0.839 0.851 0.93
3 : 7 3967 3967 21k 49k 0.899 0.873 1.26
4 : 6 3967 3967 28k 42k 0.916 0.881 1.42
5 : 5 3967 3967 35k 35k 0.924 0.873 1.67
6 : 4 3967 3967 42k 28k 0.928 0.856 2.00
7 : 3 3967 3967 49k 21k 0.925 0.823 2.36
8 : 2 3967 3967 56k 14k 0.922 0.748 3.23
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Table 5.4: Test Set Id Imbalance. The female and male accuracy for models trained on default
train set computed on test set with various ratios of number of male and female identities. See
details of experiment in Section 5.5.1.

Model Ids Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

0 : 10 0 406 0 7000 - 0.961 -
1 : 9 41 365 700 6300 0.983 0.961 2.25
2 : 8 81 325 1400 5600 0.981 0.960 2.04
3 : 7 122 284 2100 4900 0.981 0.960 2.09
4 : 6 162 244 2800 4200 0.981 0.962 2.00
5 : 5 203 203 3500 3500 0.980 0.961 1.95
6 : 4 244 162 4200 2800 0.980 0.963 1.83
7 : 3 284 122 4900 2100 0.979 0.964 1.77
8 : 2 325 81 5600 1400 0.979 0.969 1.45
1 : 9 365 41 6300 700 0.978 0.962 1.72
0 : 10 406 0 7000 0 0.978 - -

MFN ArcFace

0 : 10 0 406 0 7000 - 0.959 -
1 : 9 41 365 700 6300 0.980 0.959 2.07
2 : 8 81 325 1400 5600 0.980 0.960 1.98
3 : 7 122 284 2100 4900 0.981 0.958 2.17
4 : 6 162 244 2800 4200 0.981 0.960 2.05
5 : 5 203 203 3500 3500 0.979 0.961 1.89
6 : 4 244 162 4200 2800 0.979 0.963 1.81
7 : 3 284 122 4900 2100 0.979 0.962 1.84
8 : 2 325 81 5600 1400 0.979 0.968 1.50
1 : 9 365 41 6300 700 0.977 0.963 1.58
0 : 10 406 0 7000 0 0.978 - -

ResNet-152 CosFace

0 : 10 0 406 0 7000 - 0.944 -
1 : 9 41 365 700 6300 0.981 0.943 2.94
2 : 8 81 325 1400 5600 0.979 0.945 2.58
3 : 7 122 284 2100 4900 0.977 0.946 2.37
4 : 6 162 244 2800 4200 0.977 0.947 2.28
5 : 5 203 203 3500 3500 0.974 0.947 2.01
6 : 4 244 162 4200 2800 0.974 0.949 1.99
7 : 3 284 122 4900 2100 0.974 0.952 1.87
8 : 2 325 81 5600 1400 0.973 0.957 1.59
1 : 9 365 41 6300 700 0.971 0.958 1.47
0 : 10 406 0 7000 0 0.971 - -

ResNet-152 ArcFace

0 : 10 0 406 0 7000 - 0.920 -
1 : 9 41 365 700 6300 0.974 0.920 3.09
2 : 8 81 325 1400 5600 0.971 0.921 2.72
3 : 7 122 284 2100 4900 0.968 0.922 2.42
4 : 6 162 244 2800 4200 0.966 0.928 2.12
5 : 5 203 203 3500 3500 0.963 0.928 1.96
6 : 4 244 162 4200 2800 0.962 0.933 1.76
7 : 3 284 122 4900 2100 0.961 0.936 1.65
8 : 2 325 81 5600 1400 0.961 0.944 1.43
1 : 9 365 41 6300 700 0.959 0.950 1.20
0 : 10 406 0 7000 0 0.958 - -
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Table 5.5: Test Set Img Imbalance. The female and male accuracy for models trained on default
train set computed on test set with various ratios of number of images per male and female
identities. See details of the experiment in Section 5.5.2

Model Img Ratio # M ids # F ids # M imgs # F imgs M Acc F Acc Error Ratio

MFN CosFace

2 : 8 406 406 1400 5600 0.941 0.957 0.72
3 : 7 406 406 2100 4900 0.959 0.956 1.06
4 : 6 406 406 2800 4200 0.962 0.952 1.27
5 : 5 406 406 3500 3500 0.967 0.946 1.64
6 : 4 406 406 4200 2800 0.970 0.940 2.01
7 : 3 406 406 4900 2100 0.973 0.925 2.75
8 : 2 406 406 5600 1400 0.975 0.894 4.23

MFN ArcFace

2 : 8 406 406 1400 5600 0.939 0.956 0.72
3 : 7 406 406 2100 4900 0.956 0.954 1.03
4 : 6 406 406 2800 4200 0.961 0.951 1.26
5 : 5 406 406 3500 3500 0.966 0.947 1.54
6 : 4 406 406 4200 2800 0.969 0.941 1.91
7 : 3 406 406 4900 2100 0.972 0.928 2.58
8 : 2 406 406 5600 1400 0.974 0.901 3.87

ResNet-152 CosFace

2 : 8 406 406 1400 5600 0.921 0.938 0.78
3 : 7 406 406 2100 4900 0.946 0.934 1.21
4 : 6 406 406 2800 4200 0.952 0.927 1.51
5 : 5 406 406 3500 3500 0.958 0.921 1.89
6 : 4 406 406 4200 2800 0.962 0.912 2.32
7 : 3 406 406 4900 2100 0.965 0.894 3.01
8 : 2 406 406 5600 1400 0.967 0.855 4.37

ResNet-152 ArcFace

2 : 8 406 406 1400 5600 0.888 0.912 0.79
3 : 7 406 406 2100 4900 0.916 0.909 1.09
4 : 6 406 406 2800 4200 0.930 0.901 1.42
5 : 5 406 406 3500 3500 0.940 0.889 1.85
6 : 4 406 406 4200 2800 0.946 0.878 2.27
7 : 3 406 406 4900 2100 0.950 0.853 2.92
8 : 2 406 406 5600 1400 0.954 0.798 4.38
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Table 5.6: Train & Test Set Id Imbalance. The female and male accuracy for models trained
and tested on data with the same ratios of male and female identities. See details of experiment
in Section 5.6.

Model Ids Ratio M Acc F Acc Error Ratio

MFN CosFace

0 : 10 - 0.945 -
1 : 9 0.963 0.943 1.54
2 : 8 0.966 0.947 1.56
3 : 7 0.964 0.943 1.57
4 : 6 0.967 0.945 1.63
5 : 5 0.965 0.943 1.63
6 : 4 0.968 0.947 1.63
7 : 3 0.968 0.946 1.66
8 : 2 0.969 0.946 1.72
1 : 9 0.971 0.951 1.68
0 : 10 0.972 - -

MFN ArcFace

0 : 10 - 0.945 -
1 : 9 0.962 0.946 1.42
2 : 8 0.962 0.947 1.42
3 : 7 0.962 0.943 1.52
4 : 6 0.961 0.945 1.41
5 : 5 0.964 0.944 1.54
6 : 4 0.968 0.944 1.72
7 : 3 0.967 0.946 1.61
8 : 2 0.969 0.947 1.71
1 : 9 0.968 0.949 1.63
0 : 10 0.969 - -

ResNet-152 CosFace

0 : 10 - 0.901 -
1 : 9 0.943 0.906 1.65
2 : 8 0.947 0.907 1.75
3 : 7 0.947 0.902 1.86
4 : 6 0.946 0.907 1.70
5 : 5 0.946 0.912 1.64
6 : 4 0.952 0.916 1.73
7 : 3 0.955 0.919 1.79
8 : 2 0.956 0.925 1.69
1 : 9 0.954 0.931 1.49
0 : 10 0.956 - -

ResNet-152 ArcFace

0 : 10 - 0.880 -
1 : 9 0.925 0.874 1.67
2 : 8 0.924 0.878 1.61
3 : 7 0.926 0.877 1.67
4 : 6 0.925 0.877 1.63
5 : 5 0.928 0.882 1.64
6 : 4 0.930 0.890 1.58
7 : 3 0.938 0.893 1.73
8 : 2 0.937 0.900 1.59
1 : 9 0.936 0.906 1.46
0 : 10 0.942 - -
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Table 5.7: Train & Test Set Img Imbalance. The female and male accuracy for models trained
and tested on data with the same ratios of number of images per male and female identity. See
details of experiment in Section 5.6.

Model Img Ratio M Acc F Acc Error Ratio

MFN CosFace

2 : 8 0.821 0.923 0.43
3 : 7 0.901 0.922 0.78
4 : 6 0.928 0.919 1.12
5 : 5 0.942 0.906 1.62
6 : 4 0.952 0.892 2.24
7 : 3 0.951 0.848 3.12
8 : 2 0.954 0.740 5.70

MFN ArcFace

2 : 8 0.854 0.932 0.46
3 : 7 0.916 0.933 0.79
4 : 6 0.937 0.927 1.16
5 : 5 0.951 0.919 1.64
6 : 4 0.955 0.907 2.09
7 : 3 0.957 0.871 3.01
8 : 2 0.958 0.779 5.31

ResNet-152 CosFace

2 : 8 0.657 0.859 0.41
3 : 7 0.832 0.873 0.76
4 : 6 0.879 0.866 1.11
5 : 5 0.912 0.848 1.74
6 : 4 0.916 0.798 2.41
7 : 3 0.922 0.695 3.90
8 : 2 0.922 0.483 6.66

ResNet-152 ArcFace

2 : 8 0.638 0.840 0.44
3 : 7 0.817 0.859 0.77
4 : 6 0.870 0.855 1.12
5 : 5 0.899 0.832 1.66
6 : 4 0.911 0.792 2.34
7 : 3 0.917 0.708 3.51
8 : 2 0.915 0.488 6.02
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Chapter 6: Technical Challenges for Training Fair Neural Networks

Joint work with Vedant Nanda, Micah Goldblum, John P. Dickerson and Tom Goldstein.

As machine learning algorithms have been widely deployed across applications, many con-

cerns have been raised over the fairness of their predictions, especially in high stakes settings

(such as facial recognition and medical imaging). To respond to these concerns, the community

has proposed and formalized various notions of fairness as well as methods for rectifying unfair

behavior. While fairness constraints have been studied extensively for classical models, the ef-

fectiveness of methods for imposing fairness on deep neural networks is unclear. In this work,

we observe that these large models overfit to fairness objectives, and produce a range of unin-

tended and undesirable consequences. We conduct our experiments on both facial recognition

and automated medical diagnosis datasets using state-of-the-art architectures.

6.1 Introduction

Machine learning systems are increasingly deployed in settings with major economic and

social impacts. In such situations, differences in model behaviors between different social groups

may result in disparities in how these groups are treated [Barocas and Selbst, 2016, Galhotra

et al., 2017]. For this reason, it is crucial to understand the bias of machine learning systems, and
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to develop tools that prevent algorithmic discrimination against protected groups.

Much effort has been devoted to understanding and correcting biases in classical machine

learning models (e.g. SVMs, Logistic Regression etc.). Overfitting is not a pernicious issue for

classical models, and so fairness constraints that are imposed at train time often generalize to (un-

seen) test-time data. For overparameterized neural networks – as is often the case with modern

deep neural networks [Zhang et al., 2017b] – our tools for understanding and controlling model

bias are far less effective, in large part because of the difficulties created by overfitting. At train

time, neural networks interpolate the data and achieve perfect accuracy on all sub-groups, thus

making it impossible to obtain meaningful measures of bias on training data. When constraints

are imposed using a sequestered dataset, the network may still overfit to constraints. Further-

more, the extremely fluid decision boundaries of neural networks open the possibility for complex

forms of fairness gerrymandering [Kearns et al., 2018, Lipton et al., 2018], in which the deci-

sion boundaries of the model are moved to achieve a fairness constraint, while at the same time

creating unintended consequences for important sub-groups that were not explicitly considered

at train time. Since deep neural networks perform so much better than their linear counterparts

on a wide range of tasks, it is important that we better understand the fairness properties of these

complex systems.

This work investigates whether currently available methods for training fair models are

capable of controlling bias in Deep Neural Networks (DNNs). We find that train-time fairness

interventions – including those that have been thoroughly tested for classical ML models – are

not effective for DNNs. We further show that when these fairness interventions do seem to work,

they often result in the undesired phenomenon of fairness gerrymandering. Our contributions are

as follows:
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• We empirically test a range of existing methods for imposing fairness using constraints and

penalties during training of DNNs. While methods of this type have been widely used and

rigorously studied in the under-fitting regime (i.e. SVMs and linear models), we show that

they fail in the overparameterized regime.

• We find that in some cases, fairness surrogates that work well for classical models do not

work well for DNNs. In particular, equality of losses does not necessarily translate to

equality of metrics used to evaluate performance (e.g. area under the curve).

• We also observe that specialized constraints designed for facial recognition often appear

to work on training data, but fail on holdout classes. Facial recognition systems present a

unique case because they operate differently during inference than during training.

• We consider adversarial methods for learning “fair features”. In addition to discussing

theoretical problems with these approaches, we observe that these methods are not effective

at achieving fair outcomes in practice.

• We observe that fairness gerrymandering can be particularly problematic for DNNs

because of their highly flexible decision boundaries. That is, parity along one sensitive

attribute (e.g. sex) comes at the cost of increased disparity along another sensitive attribute

(e.g. age).

We acknowledge that fairness constraints are not a universal solution to fair ML [see, e.g.,

Chapter 3 of Barocas et al., 2019]. Indeed, ML algorithms are only a small part of the bigger

automated decision making system, and making these algorithms “fair” is only solving a small
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Figure 6.1: [Brief Overview of Fairness in ML] For the scope of this work, we consider only
in-processing techniques and apply them to deep neural networks. We show that that over-
parametrized nature of neural networks is one reason why current techniques fail.

part of what is a larger sociotechnical problem. However, it is important to understand the limi-

tations of algorithmic fairness solutions. In our work we focus on analyzing the effectiveness of

bias mitigation strategies in deep neural networks, and discuss the associated pitfalls.

6.2 Related work

There exist well documented cases of unfairness in key ML applications such as targeted

ads [Speicher et al., 2018, Ali et al., 2019, Ribeiro et al., 2019], personalized recommendation

systems [Biega et al., 2018, Singh and Joachims, 2018], credit scoring [Khandani et al., 2010],

recidivism prediction [Chouldechova, 2017], hiring [Schumann et al., 2020], medical diagnosis

[Larrazabal et al., 2020, Seyyed-Kalantari et al., 2020], facial recognition [Buolamwini and Ge-

bru, 2018, Patrick J. Grother, 2010, Ngan and Grother, 2015], and others. This has resulted in

a range of interdisciplinary work on understanding and mitigating bias in automated decision

making systems [Binns, 2017, Leben, 2020, Hashimoto et al., 2018, Martinez et al., 2020, Nanda

et al., 2021, Heidari et al., 2019]. Existing work on mitigating algorithmic unfairness can be
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broadly put into three categories: pre-processing, in-processing and post-processing (see Fig-

ure 6.1). Works on pre-processing mostly focus on removing sensitive information from the data

and building diverse and balanced datasets [Feldman et al., 2015, Ryu et al., 2018, Quadrianto

et al., 2019, Wang and Deng, 2020]. In-processing aims to change the training routine, often via

imposing constraints [Zafar et al., 2017a,b, 2019, Donini et al., 2018, Goel et al., 2018, Padala

and Gujar, 2020, Agarwal et al., 2018, Wang and Deng, 2020] or by changing the optimization

routine [Martinez et al., 2020, Diana et al., 2020, Lahoti et al., 2020]. Another in-processing strat-

egy is to learn fair intermediate representations independent of sensitive attributes which lead to

fairness on any downstream task [Dwork et al., 2012, Zemel et al., 2013, Edwards and Storkey,

2016, Madras et al., 2018, Beutel et al., 2017, Wang et al., 2019]. There isn’t clear consensus on

whether works along the lines of fair representation learning are pre-processing or in-processing

(Zafar et al. [2019] categorize it as both in and pre). However, since most of these works rely

on a learned model to perform the transformation of the dataset into a “fair” representation, for

our purpose we consider these as in-processing. Post-processing techniques aim to change the

inference mechanism to ensure fair outcomes [Hardt et al., 2016, Wang et al., 2020, Savani et al.,

2020]. In this work, we limit our scope to understanding how in-processing techniques work for

DNNs.

Our work is closely inspired by the works of Zafar et al. [2017a] that proposed smooth

surrogates for various statistical notions of fairness which could then be imposed as constraints

on training. However, their proposed method was only evaluated on linear models (such as logis-

tic regression and SVMs) where an optimal solution can be efficiently found using constrained

optimization. Padala and Gujar [2020] extended this line of work and proposed the use of Neural

Networks to empirically estimate measures of fairness by considering class logits to be proxies
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for class probabilities. They then applied these estimates of fairness as constraints to the train-

ing of neural networks using lagrangian multipliers. However, they only performed experiments

on fully connected and shallow neural networks. We use their method of empirically estimating

fairness measures and applying it as regularizers for training deep convolutional neural networks

on image classification tasks. We find that their proposed approach does not give good fairness

generalization in the highly overparametrized regime, such as the one we consider with our setup.

Most work on achieving fairness via in-processing methods in deep learning has been very

tailored to a particular task like facial recognition [Wang and Deng, 2020] or achieves a very

specific kind of fairness, such a removing sensitive attribute information from a representation

[Morales et al., 2020]. In addition to these tailored approaches, we also apply the more general

approach of enforcing various definitions of fairness via regularization during training, which

until now had been primarily tested on either linear models, or very shallow deep neural networks.

Prior work has also suggested that algorithmic solutions for fairness are often hard to com-

prehend [Saha et al., 2020] or put into practice [Beutel et al., 2019]. Additionally, industry prac-

titioners believe that fairness issues in real-world ML systems could be more effectively tackled

by systematically changing the broader system design, rather than solely focusing on algorithmic

“debiasing” [Holstein et al., 2019, Madaio et al., 2020]. Our work aims to show the fragility of

algorithmic fairness interventions for deep models, thus extending the scholarship on challenges

for fairness in ML. We refer readers to Barocas et al. [2019] for a broad and nuanced discussion

of the abilities and limitations of fair machine learning.
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6.3 Experimental setup

In this work, we investigate how different in-processing methods for mitigating algorithmic

unfairness work on two different problems: facial recognition and medical image classification.

We choose these two particular domains to illustrate broadly applicable pitfalls when applying

train-time fairness interventions in deep learning. Moreover, while both facial recognition and

medical image classification have seen unprecedented performance gains due to advances in deep

learning, there have been well documented cases of bias and unfairness in both of these domains

[Patrick J. Grother, 2010, Buolamwini and Gebru, 2018, Seyyed-Kalantari et al., 2020, Larrazabal

et al., 2020]. Additionally, previous works have also outlined ethical and epistemic issues with

facial recognition and algorithmic solutions to fairness in healthcare [McCradden et al., 2020,

Raji et al., 2020, Andrejevic and Selwyn, 2020]. In this section, we describe our experimental

setup which we use throughout the chapter.

6.3.1 Face recognition

State-of-the-art facial recognition (FR) systems contain deep neural networks that extract

facial features from probe images (new photos whose subject is identified by FR) and compare

the resulting features to those corresponding to gallery images (references with known identi-

ties). Probe images are matched to the gallery image whose features lie closest with respect to

the cosine similarity.

We train facial recognition models with ResNet-18 and ResNet-152 backbones using the

popular CosFace head, designed to increase angular margins between identities [Wang et al.,

2018]. All of our models are trained as classifiers using focal loss [Lin et al., 2017]. We split the
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Celeb-A dataset into train (9,177 identities) and test (1,000 identities) sets with non-overlapping

identities. Therefore, at test time, the FR model is evaluated on people whose images it has not

seen during training. We split a validation set from the training data consisting of 3 images from

each identity with more than 6 images.

We measure the performance of FR systems with two methods. On training data we can

use the classification head from training to report multi-label classification accuracy, while for

validation and test sets we rip off the classification head and report rank-1 nearest neighbor (in

feature space) accuracy as is mainstream in the facial recognition literature. We find that standard

facial recognition models exhibit lower testing accuracy for females than for males, see Table 6.3.

This accuracy gap does not result from unbalanced train data; in fact female identities have more

gallery images on average than male identities and 58% of identities in the data are female. Note

that validation accuracy is lower than test accuracy in all of our experiments since the validation

set contains 9 times as many classes and fewer images per class compared to the test set.

6.3.2 Medical image classification

We use CheXpert [Irvin et al., 2019], a widely used and publicly available benchmark

dataset for chest X-ray classification. This dataset consists of 224,316 chest radiographs anno-

tated with a binary label indicating the presence of a given pathology. We consider the following 5

pathologies: Cardiomegaly (CA), Edema (ED), Consolidation (CO), Atelectasis (AT) and Pleural

Effusion (PE). This yields a multi-label classification task, predicting which of the 5 pathologies

are present given a chest x-ray image. We train models using weighted binary cross entropy loss,

and we report performance via area under the curve (AUC) for each of the 5 tasks.
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Our experiments only use images for which sex and age labels are available, yielding a

total of 223,413 images. We randomly split this data in a 80:20 ratio to form the training and val-

idation sets respectively. The dataset provides a test set with 234 images labelled by radiologists.

The training set is primarily composed of males (60%), while validation and test sets are more

balanced (55% males).

We use the highest ranked model on the CheXpert leaderboard1 with a publicly available

implementation.2 We fine-tune a Densenet121 [Huang et al., 2017] pre-trained on ImageNet

[Russakovsky et al., 2015] for this task. Additional details about the model, data preprocessing,

optimizer, and hyperparameters can be found in Section 6.9.

6.4 Fairness notions

We consider the traditional fair machine learning setup consisting of a training dataset

D = {(xi, ai, yi)}Ni=1, where xi are drawn independently from the input distribution X , ai ∈ A

are sensitive features (such as race, gender etc.) and yi ∈ Y are true labels. For simplicity’s

sake, assume that A = {0, 1}. Y is binary in the medical imaging task and multi-class for facial

recognition. We wish to train a model fθ : X → R which can predict an outcome ŷi for a given

xi. Standard training procedures outside of the fair training regime minimize the average loss

over training samples, L̂(fθ). We refer to this as the baseline training scheme in our experiments.

We refer to average loss on data points where ai = 1 as L̂a+(fθ) and points where ai = 0 as

L̂a−(fθ). Below, we recall fairness notions which we use in this work and also describe how we

operationalize them.

1https://stanfordmlgroup.github.io/competitions/chexpert/
2https://github.com/jfhealthcare/Chexpert
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Accuracy equality requires the classification system to have equal misclassification rates

across sensitive groups [Zafar et al., 2017a,b, 2019].

P(ŷ ̸= y|a = 0) ≈ P(ŷ ̸= y|a = 1) (6.1)

Because accuracy is a discontinuous function of the model parameters, we use equal loss as a

surrogate, and solve:

min
θ

[
L̂(fθ) + α

∣∣∣L̂a+(fθ)− L̂a−(fθ)
∣∣∣] (6.2)

Equalized odds aims to equalize the true positive and false positive rates for a classifier

(sometimes also referred to as disparate mistreatment) [Hardt et al., 2016].

P(ŷ = 1|a = 1, y = y) ≈ P(ŷ = 1|a = 0, y = y) (6.3)

The Equalized Odds Penalty [Padala and Gujar, 2020] aims to approximate equalized odds

using logits as measures of probability. Thus, we minimize the following objective:

min
θ

[
L̂(fθ) + α(fpr + fnr)

]
, where (6.4)

fpr =

∣∣∣∣∑i pi(1− yi)ai∑
i ai

−
∑

i pi(1− yi)(1− ai)∑
i(1− ai)

∣∣∣∣ (6.5)

fnr =

∣∣∣∣∑i(1− pi)yiai∑
i ai

−
∑

i(1− pi)yi(1− ai)∑
i(1− ai)

∣∣∣∣ (6.6)

Here, pi denotes a softmax output (binary prediction task).

Disparate impact is a widely adopted notion that requires any decision making process’
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outcomes to be independent of membership in a sensitive group [Calders et al., 2009, Barocas

and Selbst, 2016, Chouldechova, 2017, Feldman et al., 2015]:

P(ŷ = 1|a = 1) ≈ P(ŷ = 1|a = 0) (6.7)

The Disparate Impact Penalty [Padala and Gujar, 2020] aims to approximate disparate impact

through the objective,

min
θ

[
L̂(fθ) + αdi

]
, where (6.8)

di = −min

( ∑
i aipi/

∑
i ai∑

i(1− ai)pi/
∑

i(1− ai)
,∑

i(1− ai)pi/
∑

i(1− ai)∑
i aipi/

∑
i ai

) (6.9)

Max-Min fairness focuses on maximizing the performance for the most discriminated

against group, i.e. the group with lowest utility [Rawls, 1971, Zhang and Shah, 2014, Hashimoto

et al., 2018, Mohri et al., 2019, Martinez et al., 2020, Diana et al., 2020, Lahoti et al., 2020].

maxmin
a∈A

P(ŷ = y|a) (6.10)

To optimize models for Max-Min fairness, we minimize the loss for the sensitive group with

maximum loss at the current iteration. That is, we perform the following optimization at each

iteration:

min
θ

max {L̂a+(fθ), L̂
a−(fθ)} (6.11)

Since both equality of opportunity and disparate impact notions assume existence of a beneficial

outcome, they are most useful for binary classification tasks, and we only use them in the medical
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image classification task.

6.4.1 Training with fairness regularization

One common approach for mitigating unfairness is through imposing fairness constraints

or regularizers on the training objective. In this section, we describe the effectiveness of vari-

ous regularization-based methods at improving the fairness of models trained for medical image

classification and facial recognition.

CheXpert We implement three types of regularizers: equal loss, disparate impact, and equality

of opportunity penalties, with the aim to achieve parity in performance (i.e. AUC scores) for

both males and females. In all previous works that apply such constraints, the experiments are

either performed on linear models (e.g. SVM in [Donini et al., 2018]) or on small neural net-

works (e.g. 2-layer network in [Padala and Gujar, 2020]). Under such settings, it is reasonable to

assume that one can reliably measure fairness notions on the train set and expect such fairness to

generalize to an unseen test set. However, as we see in our experiments, this is seldom the case

with DNNs, which are highly overparametrized and can easily fit the train data [Zhang et al.,

2017b]. Hence, in theory, these regularizers will be ineffective since the regularizer’s value will

be extremely low on the train set purely as a result of overfitting.

We observe a similar trend in our empirical results reported in Table 6.13. The model

performs very well on the train set and thus appears to be fair, where fairness is measured by the

difference in AUC value of males and females. However, when evaluated on the test set, models

trained with the regularizers can be even less fair than a baseline model. There is one noticeable

exception in Table 6.1; the equal loss regularizer is able to achieve better parity between AUC

3Our full slate of results can be found in Section 6.10.
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Table 6.1: [CheXpert - training with fairness penalties] Results for all 5 CheXpert tasks:
Cardiomegaly (CA), Edema (ED), Consolidation (CO), Atelectasis (AT) and Pleural Effusion
(PE). The regularizer is optimized on the training data, and α here denotes the coefficient of the
regularizer.

Scheme Task Train Test
M F Gap Penalty M F Gap Penalty

Baseline

CD 0.905 0.902 0.004 0.006 0.712 0.691 0.046 0.016
ED 0.857 0.844 0.013 0.015 0.905 0.849 0.057 0.022
CO 0.832 0.834 0.004 0.004 0.824 0.760 0.069 0.163
AT 0.716 0.709 0.008 0.002 0.804 0.756 0.065 0.004
PE 0.873 0.880 0.007 0.013 0.851 0.923 0.072 0.433
Avg 0.837 0.834 0.007 0.008 0.819 0.796 0.062 0.127

Eq. Loss
Train

α = 100

CD 0.934 0.932 0.002 0.005 0.764 0.758 0.005 0.001
ED 0.879 0.872 0.007 0.016 0.914 0.875 0.039 0.019
CO 0.888 0.888 0.003 0.003 0.840 0.849 0.026 0.136
AT 0.732 0.727 0.005 0.002 0.825 0.772 0.053 0.003
PE 0.882 0.886 0.004 0.005 0.861 0.897 0.036 0.387
Avg 0.863 0.861 0.004 0.006 0.841 0.830 0.032 0.109

Eq. Loss
Train

α = 1000

CD 0.820 0.814 0.007 0.001 0.805 0.770 0.035 0.002
ED 0.816 0.799 0.018 0.004 0.888 0.811 0.077 0.010
CO 0.680 0.686 0.006 0.000 0.909 0.800 0.109 0.010
AT 0.625 0.613 0.012 0.002 0.740 0.719 0.021 0.001
PE 0.843 0.851 0.009 0.002 0.834 0.924 0.090 0.248
Avg 0.757 0.753 0.010 0.002 0.835 0.805 0.066 0.054

Disp. Impact
Penalty
α = 100

CD 0.925 0.921 0.005 −0.211 0.759 0.743 0.028 −0.206
ED 0.882 0.872 0.010 −0.316 0.921 0.843 0.077 −0.305
CO 0.865 0.867 0.003 −0.181 0.799 0.730 0.074 −0.161
AT 0.753 0.744 0.011 −0.526 0.766 0.690 0.076 −0.510
PE 0.891 0.898 0.006 −0.839 0.878 0.907 0.030 −0.781
Avg 0.863 0.860 0.007 -0.415 0.825 0.783 0.057 -0.393

Disp. Impact
Penalty
α = 1000

CD 0.922 0.919 0.004 −0.196 0.795 0.725 0.070 −0.184
ED 0.877 0.864 0.013 −0.381 0.901 0.848 0.053 −0.367
CO 0.834 0.837 0.003 −0.213 0.705 0.673 0.040 −0.206
AT 0.744 0.733 0.012 −0.532 0.818 0.734 0.085 −0.532
PE 0.885 0.889 0.005 −0.834 0.846 0.903 0.057 −0.806
Avg 0.852 0.848 0.007 -0.431 0.813 0.777 0.061 -0.419

Eq. Odds
Penalty
α = 100

CD 0.934 0.932 0.004 0.009 0.743 0.745 0.002 0.005
ED 0.889 0.880 0.008 0.024 0.883 0.836 0.047 0.019
CO 0.879 0.884 0.004 0.002 0.776 0.790 0.045 0.083
AT 0.771 0.768 0.008 0.005 0.769 0.699 0.070 0.010
PE 0.895 0.900 0.005 0.005 0.840 0.893 0.053 0.185
Avg 0.874 0.873 0.006 0.009 0.802 0.792 0.043 0.060

Eq. Odds
Penalty
α = 1000

CD 0.929 0.924 0.005 0.006 0.774 0.768 0.021 0.004
ED 0.896 0.894 0.005 0.022 0.893 0.872 0.022 0.023
CO 0.866 0.867 0.003 0.003 0.777 0.742 0.035 0.088
AT 0.760 0.757 0.003 0.003 0.754 0.761 0.038 0.013
PE 0.895 0.901 0.006 0.006 0.870 0.940 0.070 0.175
Avg 0.869 0.869 0.005 0.008 0.814 0.817 0.037 0.061
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of males and females on the test set. However, we observe that this parity comes at the cost of

increased disparity amongst age groups. This phenomenon is called fairness gerrymandering,

which we discuss in detail in Section 6.7. All our models are trained using standard techniques

to avoid overfitting (dropout and weight decay, more details in Section 6.9).

Thus, we conclude that achieving fairness via imposing constraints on the training set is

challenging for DNNs. Their overparametrized nature leads to overfitting on training data and

thus preventing any generalization of fairness on the test set. Moreover, overparametrization

leads to a fluid decision boundary, which is prone to fairness gerrymandering.

Face recognition We find that applying an equal loss penalty on the difference in losses, even

with a small coefficient, leads to improved fairness on the train set, although with a large accuracy

trade-off. In many cases, training accuracy on females even becomes higher than training accu-

racy on males. At the same time, the validation and test accuracy do not decrease significantly,

and the accuracy gap remains close to the gap of the baseline model. Increasing the penalty size

leads to a higher accuracy trade-off, yet this still does not nearly eliminate the bias on the vali-

dation and test sets. One possible explanation for such behavior is that the model overfits on the

fairness objective to its training data. Additionally, since the validation and testing behavior of

FR systems involves discarding the classification head and only using the feature extractor, one

might guess that fairness on training data was embedded in the classification head but not the fea-

ture extractor. Thus, equality of losses might be a good proxy for equality of accuracies computed

using the classification head but not for accuracies computed using k-nearest neighbors in feature

space on validation and test data. To test this hypothesis, we additionally compute classification

accuracy on the validation set and find that fairness is not appreciably improved even in this case,

so we conclude that the problem is of the overfitting nature. The detailed results can be found in
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Table 6.2: [Face Recognition ResNet-18] Performance of models trained with different training
schemes designed for mitigating disparity in misclassification rates between males and females.
All models have ResNet-18 backbone and CosFace head. The first column refers to the training
scheme used, penalty indicates the size penalty coefficient. The train accuracy is computed in a
classification manner, while validation and test accuracies are computed in the 1-nearest neigh-
bors sense. The gap subcolumn refers to the difference between male and female accuracies.

Scheme Penalty Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Eq. Loss
Train

baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
α = 0.5 72.7 75.1 -2.4 79.3 73.4 5.9 95 93.5 1.5
α = 1 28.2 29.5 -1.3 67.8 62 5.8 93 91.5 1.5
α = 2 0 0.1 -0.1 27 18.8 8.2 70.9 64.2 6.7

Eq. Loss
Holdout

baseline 84 79.6 4.4 78.6 70.8 7.8 94.2 92.3 2.0
α = 0.5 59.3 46.9 12.4 75.2 66.5 8.7 94.5 92.5 2.0
α = 1 20.6 13 7.5 57.6 47.3 10.3 89.8 85.9 3.9

Min-Max baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
fair 74.3 75.9 -1.7 79.4 73.4 6 95.5 93.4 2.1

Random
Labels

Flipping

baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
p = 0.1 92.4 91.8 0.6 81.3 75 6.3 95.4 93.2 2.1
p = 0.3 68.2 86.6 -18.4 75.5 74.9 0.6 94.6 93.5 1.1
p = 0.5 21.6 86 -64.4 67.3 73.3 -6 92.2 93 -0.7

Table 6.2 and in Section 6.10.

6.4.2 Imposing fairness constraints on a holdout set

If the only reason that fairness constraints on the training set are ineffective were that train-

ing accuracy is so high that models appear fair regardless of their test-time behavior, then one

might be able to bypass this problem by imposing the fairness penalty on a holdout set instead.

However, as we see in our results in Tables 6.1, 6.2 and Section 6.10, this approach also

fails. For both medical image classification and facial recognition tasks, in all of the cases where

fairness is imposed on a holdout set, the downstream fairness on the test set deteriorates. We

posit that the model overfits the penalty on the validation set, which ultimately harms fairness on

the test set.
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6.4.3 Max-Min training

Face recognition For FR models, Min-Max training results in similar behavior as applying the

equality of losses penalty with a small coefficient. In particular, the training losses across genders

indeed converge to similar values, and the model becomes more accurate on female identities at

train time, but this result does not transfer to test data. In fact, the disparity in misclassifica-

tion rates on the validation set improves marginally, while the test set accuracy gap deteriorates.

Therefore, we again encounter an overfitting problem with fairness being achieved on the train

set but not on unseen data.

CheXpert Table 6.1 displays the results for Max-Min training. We observe that such a training

procedure does not improve fairness on the test set.

6.4.4 Adjusted angular margins for face recognition

As we mention in 6.3.1, facial recognition systems are trained using heads which increase

the angular separation between classes. One way to improve fairness of the model with respect

to gender is by using different angular margins during training and therefore promoting better

feature discrimination for the minority class. Wang and Deng [2020] applied this idea to learn

a strategy for finding the optimal margins during training for coping with racial bias in face

verification.

To test this approach we train models with increased angular margin for females. To eval-

uate effectiveness of this method we follow Wang and Deng [2020] and measure mean intra- and

inter-class angles in addition to accuracies. The intra-class angle refers to the mean angle be-

tween the average feature vector of an identity and feature vectors of images of the same person.
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Table 6.3: [Face recognition] Accuracy and intra- and inter-class angles measured for male and
female images for ResNet-152 model trained with adjusted angle margins. The numbers are
measured on validation and test sets. It can be seen that ’fair’ models (trained with increased
angle margin for females) improve fairness on validation set, but increase the accuracy gap on
test set.

Penalty Acc M Acc F Acc Gap Intra M Intra F Inter M Inter F

Validation baseline 88.1 81.4 6.8 33.9 36.2 68.5 68.2
fair 85.7 85.2 0.5 34.6 28.5 68.2 70.8

Test baseline 96.6 94.5 2.1 43.7 47.5 70.5 70.1
fair 95.9 91 4.9 44.7 49.1 69.6 68.4

Inter-class angle refers to the minimal angle between the average feature vector of an identity and

average feature vectors of other identities. Intuitively, we would expect that increasing angular

margin for females would decrease the intra-class angle and increase the inter-class angle for

female identities.

Our results show that a model trained with increased angular margin for females achieves

better validation accuracy, and intra- and inter-class separation for females. In fact, the accuracy

gap on validation data drops from 6.8% to 0.5% for ResNet-152 model. However, these results

do not transfer to test data which consists of photos of new identities. Ultimately, the accuracy

and angle metrics worsen for female groups leading to increased misclassification rates across

genders, see Table 6.3. These results indicate that adjusting angular margins for mitigating un-

fairness leads to an overfitting problem since fairness improves only on identities that appear in

the training set.

6.5 Fair feature representations do not yield fair model behavior

Another strategy for mitigating unfairness is through learning fair representations that are

not correlated with sensitive attributes in the hope that a classifier built on top of ‘fair features’
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will yield fair predictions. A recent paper introduces SensitiveNets, a sensitive information re-

moval network trained on top of a pre-trained feature extractor with an adversarial sensitive regu-

larizer [Morales et al., 2020]. Intuitively, the method learns a projection of embeddings φ(x) that

minimizes the performance of a sensitive attribute classifier while maximizing the performance

of a face recognition system.

We apply this adversarial approach by training a sensitive information removal network

for minimizing the facial recognition loss while simultaneously maximizing the probability of

predicting a fixed gender class for all images. At the same time, the discriminator is trained for

predicting the gender from φ(x). Therefore, this can be formulated as a two-players game where

the discriminator aims to predict the gender from features φ(x), while the sensitive information

removal network aims to output gender-independent features φ(x) and confuse the discrimina-

tor. We find that when a network is trained without adversarial regularization, the discriminator

predicts gender with 97% accuracy on the test set. Adversarial regularization with a sufficient

penalty decreases the performance of a gender predictor to random, meaning that the resulting

features φ(x) are gender-independent.

The results show that when fair features φ(x) are obtained through manipulating male

images, e.g. when the adversarial regularizer forces the discriminator to label all images as

females, the accuracy gap reduces at the expense of male accuracy. At the same time, when the

adversarial regularizer manipulate female images, the model’s accuracy gap only increases due

to a drop in female accuracy. All results can be found in Table 6.4 and Section 6.10. Thus, we

conclude that adversarial training decreases accuracy of the FR system on images whose feature

vectors were used in the regularizer, damaging performance on all other classes.

There are principled mathematical reasons why “fair features” are problematic. When the
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Table 6.4: [Face recognition] Facial recognition and gender classification test accuracy for
ResNet-152 model trained with a sensitive information removal network on top. Here, α de-
notes the magnitude of adversarial penalty and for sufficiently large α, the discriminator predicts
a fixed gender for all images (in bold). Gender in the first column is the gender of images penal-
ized during training.

α Male Female Gap Sens Acc

Penalize
Females

α = 0 95.9 93.3 2.6 97.0
α = 1 95.7 92.5 3.1 78.2
α = 2 95.1 91.0 4.1 38.7
α = 3 94.2 88.7 5.5 38.7

Penalize
Males

α = 0 95.9 93.3 2.6 97.0
α = 1 95.4 93.2 2.2 90.5
α = 2 92.8 91.9 0.9 61.3
α = 3 90.2 90.1 0.1 61.3

dataset is imbalanced, like Celeb-A which is majority women, the equilibrium strategy of a dis-

criminator with no useful information is to always predict “female.” In this case, the feature

extractor, which has the goal of fooling the discriminator, can only do so by distorting the fea-

tures of men to appear female – a strategy that disproportionately hurts accuracy of the male

group. Furthermore, in the hypothetical scenario where groups are balanced and the training pro-

cess succeeds in creating features with no gender information, it becomes impossible to create

a downstream classifier that assigns any label to men at a different rate than women. This is

true because if such a classifier existed, it could be used to create a better-than-random gender

classifier. In cases where the distribution of labels is different for men and women, this means

that false positive and false negative rates must differ across genders.

6.6 A simple baseline for fairness: label flipping

Many of the methods for fairness that we test above sacrifice accuracy without any gains in

fairness on the testing data. Sometimes, they sacrifice both fairness and accuracy. Label flipping
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is one way to navigate the trade-off by adjusting the accuracy of individual groups [Chang et al.,

2020]. This is done by randomly flipping labels in the training data of the subgroup with superior

accuracy. One might suppose that flipping labels will simply hurt performance, however we find

that on facial recognition, this simple method can actually remedy unfairness without harming

performance.

Face recognition For the facial recognition task, our models achieve higher accuracy on male

images than on female images. Therefore, to decrease the accuracy gap, we randomly flip labels

of a portion of male images during training. We do this by swapping male identities only with

other random male identities so that female accuracy is largely preserved. We try different pro-

portions of flipped labels: p = 0.1, 0.3, 0.5. Surprisingly, flipping 30% of male labels increases

female test accuracy by 0.6% thereby decreasing the gender gap from 2.1% to 1.6% for ResNet-

152 model. Also, flipping half of the male labels only drops male test accuracy from 96.6% to

95.2% and results in a 0.3% accuracy gap on test data, see results in Section 6.10.

CheXpert For CheXpert, we randomly flip the true label for p = 0.01, 0.05, and 0.1 of samples

from a particular sensitive group in each iteration. In general, we observe very unstable trends

in AUC scores and disparities when using label flipping. For example, we observe that flipping

1% of male samples during training results in a major drop in AUC for males, averaged over

all tasks (0.816 to 0.746) and a minor increase in AUC for females (0.781 to 0.784) resulting in

increased disparity. However, with 5% flipped samples, we see that male AUC drops to a similar

value (0.816 to 0.716) as the female AUC (0.781 to 0.705), thus leading to reduced disparity. A

similar trend is seen when male samples are flipped. AUC values of models trained on randomly

flipped data are consistently lesser than the baseline model. We thus conclude that random flip-

ping might not be the best solution to achieving fairness in this setting, since it yields unreliable
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Figure 6.2: An illustration of gerrymandering; color denotes label, shape and outline are sensitive
attributes. Model on the right is more fair to shape but less fair to outline.
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Figure 6.3: Gerrymandering behavior on CheXpert. The equal loss regularizer (in orange)
achieves better parity along one demographic (sex, see Table 6.1 by making predictions more
disparate along another demographic (age). For a model to be fair across age groups, the bars
should all be of the same height.

trends in fairness and reliably performs worse than the baseline model. Results can be found in

Section 6.10.

6.7 Fairness gerrymandering

Another unintended consequence of fairness interventions is fairness gerrymandering in

which a model becomes more fair for one group but less fair to others [Kearns et al., 2018,
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Table 6.5: [Fairness gerrymandering on BUPT dataset] The first row shows accuracies ob-
tained with baseline model. The second, third, and fourth blocks reflect performance of models
trained with equal loss penalty, adjusted angle margin for females, and randomly flipped labels
for males respectively. For the models trained for “gender-fairness”, we report differences from
baseline.

Model African Asian Caucasian Indian
Baseline 92.8 90.4 93.7 94.5
Eq Loss 90.9 89.4 91.5 93.6

Diff 1.9 1.0 0.1 0.9
Margins 89.1 85.7 90.7 91.9

Diff 3.7 4.7 3 3.5
Flip 93.7 91.5 94 94.9
Diff -0.9 -1.1 -0.3 -0.4

Lipton et al., 2018]. Similar/related images tend to clump together in feature space. For this

reason, group-based fairness constraints that change the decision boundary are likely to induce

label flips for entire groups of images with common features such as skin tone or age. Figure 6.3

(left) illustrates this phenomenon.

CheXpert In Table 6.1, we observed better parity for models trained with an equal loss penalty

than baseline training. In this section, we take a closer look at how this affected disparities across

another sensitive feature, age. Consolidation (CO) is the task for which disparity in AUC across

males and females reduced the most. Figure 6.3 (right) shows that this reduction in disparity

across males and females induced greater disparities across age groups, which is indicated by

larger differences between subsequent age groups for the “fair” model. We see that fairness

regularization with respect to gender leads to increased unfairness with respect to age.

Face recognition We investigate if face recognition models trained to be gender-fair suffer from

gerrymandering. In particular, we consider models trained with the equal loss penalty, adjusted

angle margins, and random label flipping. We evaluate our models on the race-labeled BUPT-

Balancedface dataset [Wang and Deng, 2020] and find that models’ performance changes dispro-
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portionately with respect to race when trained for “gender fairness”. For example, the FR model

trained to have equal loss across genders is significantly less accurate on people of African origin

than the baseline model, while the accuracy on Caucasian faces remains almost the same. The

system trained with adjusted angle margins becomes even less fair to Asians, the group most

discriminated against by the baseline model, with the accuracy gap between that on images of

Asian and Indian people being increased by 1.2%, see Table 6.5). We then compare these results

to a model trained with random label flipping. Surprisingly, the model trained on corrupted data

improves accuracy for all four races, but the biggest improvement occurs on images of Asian

individuals.

6.8 Discussion

We empirically demonstrate the challenges of applying current train time algorithmic fair-

ness interventions to DNNs. Due to overparameterization, DNNs can easily overfit the training

data and thus give a false sense of fairness during training which does not generalize to the test

set. In fact, we observe that adding fairness constraints via existing methods can even exacer-

bate unfairness on the test set. In cases where train-time fairness interventions are effective on

the test set, we observe fairness gerrymandering. We posit that overparameterization makes the

decision boundary of the learned neural network extremely fluid, and changing it to conform to

fairness along a certain attribute can hurt fairness along another sensitive attribute. Addition-

ally, we observe that using a holdout set to optimize fairness measures also does not yield fair

outcomes on the test set, due to both overfitting and bad approximation by fairness surrogates.

Our results outline some of the limitations of current train time interventions for fairness in deep
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learning. Evaluating other kinds of existing fairness interventions, such as pre-processing and

post-processing for overparameterized models, as well as building better train time interventions

are interesting avenues for future work.
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6.9 Experimental Details and Additional Results

6.9.1 Medical Image Classification - CheXpert

Data Pre-Processing

CheXpert contains chest x-ray images of different patients from different angles and thus

does not have a fixed resolution. We resize each image to 256x256. We use the same pre-

processing pipeline found in https://github.com/jfhealthcare/Chexpert. We

add a Gaussian blur with σ = 3 and mean normalize each image with a mean of 128.0 and

standard deviation of 64.0.

Data Augmentation

We augment data by duplicating each image with a random affine transformation with rota-

tions between −15 and 15 degrees, a vertical and horizontal translation of 0.05, scaling between

0.95 and 1.05. We fill the areas outside the transformed region with gray color (128 RGB value).

Pre-processing steps are applied to each augmented image.

Training Details

We use a batch size of 56 for all our experiments. For some of the label flip experiments, we

needed to increase the batch size to 200 so as to find a non-zero number of samples to flip. Each

model was trained for 20 epochs. We used the Adam optimizer with a learning rate of 0.0001

and learning rate drops by a factor of 0.1 every epoch. This is the same as done by the authors

of https://github.com/jfhealthcare/Chexpert. For the experiments where we

added a fairness regularizer (Eq 6.2, 6.4, 6.8), we need to choose an additional hyperparameter

α. We try a range of reasonable values and report results for the best α. We also show results
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for other α values in Section 6.10, however we observe that higher values can interfere with the

usual training objective.

6.9.2 Face Recognition

Training routine

We train facial recognition systems with ResNet-18 and ResNet-152 backbones and Cos-

Face head using Focal Loss for 120 epochs with a batch size of 512. We utilize the SGD optimizer

with a momentum of 0.9, weight decay of 5e-4 and learning rate of 0.1, and we drop the learning

rate by a factor of 10 at epochs 35, 65 and 95. All images used for training contain aligned faces

re-scaled to 112× 112. During training we use random horizontal flip data augmentation.

For training routines, we modify the code from publicly available github repository

face.evoLVe.PyTorch 4.

Training with fairness constraints

For facial recognition, we only apply an equal loss penalty, that is the absolute value of

the difference between focal losses computed on male and female images in a batch. When

regularization is imposed on training data, the same images are used to compute the classification

loss and fairness penalty. When regularization is imposed on a holdout set, 10% of training

images are kept for enforcing the fairness penalty and are not used in the recognition objective.

Adjusted Angular Margins

Below, we provide the loss for CosFace:

LC =
1

N

N∑
i=1

− log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑n

i=1,i ̸=y e
s cos(θj,i)

,

4https://github.com/ZhaoJ9014/face.evoLVe.PyTorch
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where xi is the feature vector from the i-th sample from class y(i). W denotes the weight matrix

of the last layer. Then, Wj is the j-th column of W and θij denotes the angle between Wi and xj .

A fixed parameter m ≥ 0 controls the magnitude of the cosine margin.

When trained regularly, m = 0.35 is used for both female and male images. When angular

margin is adjusted for females, m = 0.75 is used for females and m = 0.35 for males.

Sensitive Information Removal Network

We denote the parameters of the sensitive information removal network (SIRN) as w and

parameters of the sensitive classifier on top of it as ws. SIRN takes as an input pre-trained

embedding xi of an image i from identity yi and sensitive group si (gender) and outputs its

projection φ(x). The modified embedding is then fed into the CosFace head which outputs the

logits for identities and into the sensitive head that outputs logits for genders. SIRN consist of 4

linear layers with ReLU-nonlinearities and sensitive head consists of 3 linear layers with ReLU-

nonlinearities. Let LFR denote the focal loss for the facial recognition task and LS denote the

cross-entropy loss for the sensitive attribute classification task.

Then, the optimization objective for the problem is

min
w

1

N

∑
i

LFR(φ(xi), yi) + α log(1 + |0.9− Ps(s|φ(xi))|)

min
ws

1

N

∑
i

LS(φ(xi), si),

where s is a fixed sensitive group (fixed gender), and α is the magnitude of the adversar-

ial regularization term. Ps(s|φ(xi) denotes the sensitive head logit corresponding to gender s.

Therefore, the first objective minimizes the facial recognition loss while simultaneously maxi-
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mizing the probability of predicting a fixed gender class for all images. At the same time, the

second objective minimizes the classification loss of the sensitive attribute classifier.

6.10 Additional Results

Face Recognition Tables 6.6 and 6.7 show results for Face Recognition tasks. We also report

results for additional hyperparameter values here.

CheXpert Tables 6.8, 6.9, and 6.10 show results for all CheXpert tasks. We also report results

for additional hyperparameter values here.
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Table 6.6: [Face Recognition ResNet-18] Performance of models trained with different training
schemes designed for mitigating disparity in misclassification rates between males and females.
All models have ResNet-18 backbone and CosFace head. The first column refers to the training
scheme used, penalty indicates the size penalty coefficient. The train accuracy is computed in a
classification manner, while validation and test accuracies are computed in the 1-nearest neigh-
bors sense. The gap subcolumn refers to the difference between male and female accuracies. For
the Fair Features training scheme, “gender” refers to the subgroup of images used in adversarial
regularization during training.

Scheme Penalty Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Eq. Loss
penalty on

train set

baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
α = 0.5 72.7 75.1 -2.4 79.3 73.4 5.9 95 93.5 1.5
α = 1 28.2 29.5 -1.3 67.8 62 5.8 93 91.5 1.5
α = 2 0 0.1 -0.1 27 18.8 8.2 70.9 64.2 6.7

Eq. Loss
penalty on
holdout set

baseline 84 79.6 4.4 78.6 70.8 7.8 94.2 92.3 2.0
α = 0.5 59.3 46.9 12.4 75.2 66.5 8.7 94.5 92.5 2.0
α = 1 20.6 13 7.5 57.6 47.3 10.3 89.8 85.9 3.9

Random
Labels

Flipping

baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
p = 0.1 92.4 91.8 0.6 81.3 75 6.3 95.4 93.2 2.1
p = 0.3 68.2 86.6 -18.4 75.5 74.9 0.6 94.6 93.5 1.1
p = 0.5 21.6 86 -64.4 67.3 73.3 -6 92.2 93 -0.7

Adjusted
Margins

baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
fair 94.2 90.2 3.9 81 77.6 3.3 94.4 91.9 2.6

Min-Max baseline 97.6 94.4 3.2 82.4 74.6 7.9 94.8 92.9 1.9
fair 74.3 75.9 -1.7 79.4 73.4 6 95.5 93.4 2.1

Fair
Features

(Females)

baseline 98.8 97 1.8 81.5 74.5 7 93.7 91.2 2.6
α = 1 98.6 96.8 1.9 81.4 73.9 7.5 93.7 90.9 2.8
α = 2 98.4 96.3 2.1 81.2 72.9 8.3 93.7 90.6 3.1
α = 3 96.2 93.2 3 79.9 70.5 9.4 93.3 88.9 4.4

Fair
Features
(Males)

baseline 98.8 97 1.8 81.5 74.5 7 93.7 91.2 2.6
α = 1 98.7 96.8 1.9 81.1 74.2 6.9 93.6 91.2 2.4
α = 2 98.7 96.8 1.9 81.1 74.2 6.9 93.6 91.2 2.4
α = 3 90.3 86.6 3.7 75.3 71.9 3.4 89.5 89.9 -0.3
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Table 6.7: [Face Recognition ResNet-152] Performance of models trained with different training
schemes designed for mitigating disparity in misclassification rates between males and females.
All models have ResNet-152 backbone and CosFace head.

Scheme Penalty Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Eq. Loss
penalty on

train set

baseline 99.6 99 0.6 88.1 81.4 6.8 96.6 94.5 2.1
α = 0.5 84.7 87.4 -2.7 86.4 80.9 5.5 97.2 95.3 1.9
α = 1 38.8 40.6 -1.8 76.4 70.4 6 95.4 94.2 1.2
α = 2 0 0 0 24.8 17.4 7.4 69.1 61.3 7.8

Random
Labels Flip

baseline 99.6 99 0.6 88.1 81.4 6.8 96.6 94.5 2.1
p = 0.3 80.9 94.9 -13.9 83.8 81.3 2.4 96.8 95.1 1.6
p = 0.5 31.5 93.2 -61.7 77.8 80.8 -3 95.2 94.9 0.3

Adjusted
Margins

baseline 99.6 99 0.6 88.1 81.4 6.8 96.6 94.5 2.1
fair 99.1 98.4 0.7 85.7 85.2 0.5 95.9 91 4.9

Fair
Features

(Females)

baseline 99.8 99.6 0.2 87.3 80.6 6.7 95.9 93.3 2.6
α = 1 99.7 99.5 0.2 86.9 79.5 7.4 95.7 92.5 3.1
α = 2 99.4 98.9 0.5 86 77.1 8.9 95.1 91 4.1
α = 3 96.8 96 0.8 85.2 74.1 11.1 94.2 88.7 5.5

Fair
Features
(Males)

baseline 99.8 99.6 0.2 87.3 80.6 6.7 95.9 93.3 2.6
α = 1 99.7 99.5 0.2 86.3 80.2 6.1 95.4 93.2 2.2
α = 2 97.8 97.3 0.6 82.5 78.4 4 92.8 91.9 0.9
α = 3 91.9 90.1 1.8 79.4 75.7 3.7 90.2 90.1 0.1
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Table 6.8: [CheXpert - fairness penalties on the validation set] Results for all 5 CheXpert
tasks: Cardiomegaly (CA), Edema (ED), Consolidation (CO), Atelectasis (AT) and Pleural Effu-
sion (PE).

Scheme Task Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Baseline

CD .988 .990 .002 .826 .818 .007 .766 .739 .027
ED .953 .952 .000 .780 .777 .002 .885 .862 .024
CO .996 .996 .000 .681 .687 .006 .896 .808 .088
AT .879 .883 .004 .637 .631 .007 .637 .570 .068
PE .936 .942 .006 .841 .854 .013 .895 .925 .030
Avg .950 .953 .002 .753 .753 .007 .816 .781 .047

Eq. Loss
Val

CD .985 .987 .002 .827 .824 .002 .745 .669 .076
ED .931 .930 .001 .746 .735 .011 .885 .877 .008
CO .979 .984 .005 .663 .682 .019 .865 .680 .185
AT .863 .868 .005 .626 .629 .002 .759 .763 .004
PE .926 .932 .006 .839 .856 .017 .897 .933 .036
Avg .937 .940 .004 .740 .745 .010 .830 .784 .062

Eq. Odds
Val

CD .994 .996 .002 .776 .774 .002 .637 .715 .078
ED .936 .934 .003 .729 .721 .009 .858 .699 .159
CO .995 .995 .000 .670 .678 .008 .797 .705 .093
AT .867 .867 .001 .608 .595 .013 .671 .565 .106
PE .945 .953 .008 .830 .845 .015 .896 .917 .021
Avg .947 .949 .003 .723 .722 .009 .772 .720 .091

Disp. Impact
Val

CD .997 .997 .000 .795 .788 .007 .691 .708 .018
ED .972 .973 .001 .768 .760 .008 .853 .891 .038
CO .995 .996 .000 .641 .635 .006 .712 .640 .072
AT .874 .879 .005 .633 .626 .007 .786 .668 .118
PE .945 .951 .006 .830 .843 .013 .897 .921 .024
Avg .957 .959 .003 .733 .730 .008 .788 .765 .054

Table 6.9: [CheXpert - minmax training] Results for all 5 CheXpert tasks: Cardiomegaly (CA),
Edema (ED), Consolidation (CO), Atelectasis (AT) and Pleural Effusion (PE).

Scheme Task Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Baseline

CD .988 .990 .002 .826 .818 .007 .766 .739 .027
ED .953 .952 .000 .780 .777 .002 .885 .862 .024
CO .996 .996 .000 .681 .687 .006 .896 .808 .088
AT .879 .883 .004 .637 .631 .007 .637 .570 .068
PE .936 .942 .006 .841 .854 .013 .895 .925 .030
Avg .950 .953 .002 .753 .753 .007 .816 .781 .047

Min-Max
Loss

CD .992 .981 .011 .824 .820 .004 .771 .789 .018
ED .963 .904 .058 .774 .774 .000 .895 .838 .057
CO .988 .976 .012 .694 .713 .019 .886 .821 .065
AT .901 .771 .130 .657 .652 .004 .758 .826 .068
PE .946 .896 .050 .842 .852 .010 .891 .927 .036
Avg .958 .906 .052 .758 .762 .008 .840 .840 .049
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Table 6.10: [CheXpert - random label flipping] Results for all 5 CheXpert tasks: Cardiomegaly
(CA), Edema (ED), Consolidation (CO), Atelectasis (AT) and Pleural Effusion (PE).

Scheme Task Train Validation Test
Male Female Gap Male Female Gap Male Female Gap

Baseline

CD .988 .990 .002 .826 .818 .007 .766 .739 .027
ED .953 .952 .000 .780 .777 .002 .885 .862 .024
CO .996 .996 .000 .681 .687 .006 .896 .808 .088
AT .879 .883 .004 .637 .631 .007 .637 .570 .068
PE .936 .942 .006 .841 .854 .013 .895 .925 .030
Avg .950 .953 .002 .753 .753 .007 .816 .781 .047

Random Flip
p = 0.1

CD .980 .943 .037 .814 .794 .020 .743 .790 .047
ED .930 .882 .048 .756 .750 .006 .892 .774 .118
CO .967 .897 .070 .656 .636 .020 .600 .667 .067
AT .853 .797 .056 .622 .594 .028 .668 .612 .056
PE .925 .914 .011 .841 .850 .009 .832 .916 .084
Avg .931 .887 .044 .738 .725 .017 .747 .752 .074

Random Flip
p = 0.05

CD .989 .961 .028 .790 .762 .028 .716 .634 .082
ED .950 .921 .030 .757 .744 .013 .889 .742 .147
CO .971 .941 .030 .684 .681 .003 .876 .758 .118
AT .854 .827 .027 .652 .632 .020 .689 .675 .014
PE .917 .910 .007 .829 .841 .013 .842 .906 .063
Avg .936 .912 .024 .742 .732 .015 .802 .743 .085

Random Flip
p = 0.01

CD .984 .981 .003 .786 .776 .010 .782 .683 .099
ED .949 .941 .008 .765 .756 .009 .856 .779 .076
CO .974 .972 .002 .647 .643 .003 .792 .794 .002
AT .821 .814 .007 .621 .608 .013 .770 .770 .000
PE .915 .917 .002 .817 .820 .003 .834 .916 .082
Avg .929 .925 .004 .727 .720 .008 .807 .788 .052
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