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Chapter 1: Introduction

1.1 Motivation

Recent advances in sensing and communication technology have created

an opportunity for the automotive industry to improve driver safety and conve-

nience, with further potential to impact traffic operations and emissions. Radar,

lidar, high quality imaging, and other sensor technologies are already being used

to help identify vehicles and road geometry, automatically manage safe follow-

ing distances, and pro-actively decelerate to avoid collisions (Lari et al., 2015).

Two primary research thrusts - vehicle automation and connected vehicles - have

emerged based on these advances, and are being explored in parallel by private

and public sector entities.

According to the Society of Automotive Engineers (SAE) International Stan-

dard J3016, vehicles can be categorized in one of six automation levels, with level

0 representing existing fully human-driven vehicles, and level 5 describing fully

autonomous vehicles that do not require human input under any conditions. In

between these extremes, level 1 represents driver assist features such as Adaptive

Cruise Control (ACC) or steering assistance that can manage some aspect of driv-

ing automatically (e.g., acceleration/deceleration, lane centering), while level 2
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allows the vehicle to drive itself without help - although the driver is respon-

sible for stepping in at any point if necessary. Levels 3 and 4 represent nearly

and fully-autonomous vehicles, respectively, with the key difference being that

drivers are theoretically required to pay attention and be able to take over if nec-

essary in level 3 (although to a much lesser extent than level 2). Because level 4

does not require driver intervention when operating in autonomous mode, it rep-

resents the level of full automation many automotive manufacturers likely hope

to attain. Finally, level 5 extends level 4 behavior to all conceivable circumstances

(e.g., all terrains, off-road, etc.).

In contrast to approaches that depend on inter-vehicle communication, Au-

tonomous Vehicle (AV) technology is self-contained, meaning it can operate in a

consistent manner regardless of other vehicles’ capabilities. This feature is partic-

ularly important during initial deployment when technology adoption rates are

low and the majority of vehicles on the road are standard, human-driven vehicles

(Mahmassani, 2016). Although some research suggests that AVs may initially en-

ter the market as soon as 2020 with wider market penetration by 2040-2050 (Lari

et al., 2015), there are still many ethical, policy and logistical hurdles that remain

before their implementation is feasible (Goodall 2014; Lari et al. 2015; Fagnant

and Kockelman 2015).

However, by allowing properly-equipped vehicles to communicate with

one another, Connected Vehicle (CV) technology presents an approach that re-

duces the sensing requirements for each individual vehicle, likely lowering costs

and leading to a more rapid deployment (NHTSA, 2011). CV technology is gener-
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ally divided into two categories: Vehicle to Vehicle (V2V) communication, where

vehicles exchange information with one other, and Vehicle to Infrastructure (V2I),

where vehicles exchange information with roadside sensors (Diakaki et al., 2015).

In both cases, vehicles that are equipped with standardized communication equip-

ment - likely using a Dedicated Short Range Communication (DSRC) wireless

network designed especially for this purpose (Lari et al., 2015) - can receive vital

safety and operational information without needing any special sensing equip-

ment (NHTSA, 2011). While this increases the likelihood that existing vehicles

can be retrofitted to accommodate communication equipment, there are still many

questions that remain to be answered, including the extent to which it can be ef-

fective, and the impact on safety and cost (Diakaki et al., 2015).

The United States Department of Transportation (USDOT) has been heavily

involved in CV research, and sponsored a program to investigate many of these

issues, focusing particularly on safety (NHTSA, 2011). While safety is the main

impetus for autonomous and connected vehicle research, it is also important for

planners and policy makers to understand the impact connected vehicles will

have on traffic management and freeway operations, mobility, and the environ-

ment (Diakaki et al., 2015).

Modeling connected and automated vehicle (CAV) behavior is a relatively

new research area, and the literature is not well-developed - primarily because

there are few connected vehicle datasets and many of the implementation de-

tails are unknown. The expectation is that operational performance, safety, and

mobility will improve (e.g., Lari et al. 2015), but results from initial studies are
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subject to limiting assumptions. In particular, initial research tends to focus on

purely microscopic car-following models or throughput (capacity) analysis at a

macroscopic level, neglecting to characterize aggregate traffic behavior across a

wide range of traffic states based on different CAV market penetration rates.

1.2 Contributions

This thesis focuses on modeling macroscopic traffic flow characteristics and

aggregate performance when traffic is composed of a mix of standard and Co-

operative Adaptive Cruise Control (CACC) vehicles, a technology that combines

basic level 1 ACC automation with V2V communication. The main contributions

of this thesis are summarized below.

• It develops a general framework for modeling mixed traffic consisting of

both standard and CACC vehicles using reaction time, aggressiveness, and

minimum separation parameters to quantify how standard and CACC ve-

hicles interact. Based on the underlying car-following dynamics and pos-

sible ways standard and CACC vehicles can follow one another, it devel-

ops aggregate fundamental diagrams whose shapes are parameterized by

CACC market penetration and vehicle arrangement assumptions. Thus,

macroscopic equilibrium relations encapsulate underlying micro-level in-

teractions and market penetration in a simple way, an approach which is

well-suited for use in planning frameworks (e.g., first-order macroscopic

traffic simulation, Dynamic Traffic Assignment).
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• It analyzes how CACC vehicles impact aggregate traffic flow at various

penetration rates. Based on model parameters representing realistic human

driver behavior and reasonable behavioral assumptions about CACC car-

following tactics, it concludes that increases in capacity do not appear until

market penetration is approximately 0.4, with close to about 50% overall

capacity improvement possible at 1.0. Additionally, under the assumption

that CACC vehicles have less aggressive behavioral tendencies (i.e., willing-

ness to tailgate), even a small proportion of CACC vehicles help promote a

smoother transition between congested and uncongested traffic regimes.

• It integrates the heterogeneous modeling framework into a network level

implementation of the Cell Transmission Model, which estimates time-

dependent traffic states in a computationally efficient manner. In doing so,

it connects a widely-used first-order traffic modeling approach to aggregate

traffic flow relations that capture the impact of CACC vehicles. This allows

a simple modeling framework to be used to for large-scale macro-level anal-

ysis without the complexity and computational expense of microscopic or

higher order macroscopic traffic models.

• It presents a macroscopic traffic simulation software implementation in the

Python language which incorporates CACC market penetration and pa-

rameters characterizing driver and CACC vehicle behavior.
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1.3 Scope

The following items describe the scope of this thesis:

• It seeks to characterize traffic behavior at a macroscopic level, assuming that

macroscopic behavior depends on steady state car-following dynamics (i.e.,

it does not consider lane-changing behavior).

• It focuses on two classes of vehicles: standard and CACC vehicles (CACC),

and assumes that standard vehicles are characterized by human driving be-

havior while CACC vehicles are characterized by adaptive cruise control

and sometimes V2V technology (depending on how vehicles are arranged

in the traffic stream). Relative to standard vehicles, it assumes that CACC

vehicles can tolerate smaller separation distance between vehicles, have

lower response times that can be further improved via V2V communication

when a leader-follower pair are both CACC, and exhibit more conservative

car-following behavior.

• When accounting for connected vehicle dynamics, it focuses on V2V rather

than V2I communication. In other words, it is concerned with modeling

how car-following behavior changes when individual vehicles can commu-

nicate, not how traffic flow can be optimized through V2I communication.

• It emphasizes modeling at a high level rather than considering implementa-

tion details. That is, it avoids the electrical/computer engineering perspec-

tive that focuses on vehicle ad hoc networks, communication protocols, and
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transmission details in favor of a perspective that accounts for V2V com-

munication through logical assumptions about parameter values and the

number/type of vehicles that can share information.

1.4 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 provides relevant

background information on traffic modeling and a literature review of research

most closely related to this thesis, including perspectives on integrating driver-

assist features and V2V communication into existing microscopic and macro-

scopic traffic models. Chapter 3 develops a framework for modeling equilibrium

car-following behavior between different combinations of leading and following

vehicle pairs when traffic is composed of a mix of standard and CACC vehicles.

It begins by making assumptions about standard and CACC vehicle behavior,

translates these assumptions into microscopic parameter choices in the micro-

scopic Longitudinal Control Model (LCM), parameterizes fundamental diagram

curves with respect to CACC vehicle penetration rate, and illustrates the pro-

cess through a numerical example. Chapter 4 demonstrates an application of this

framework by integrating the aggregate traffic flow relations into a network-level

Cell Transmission Model, showing how it can be used to efficiently analyze the

operational impact of introducing CACC vehicles onto a network. Software is de-

veloped to perform the simulation and integrate the CACC modeling framework,

and the analysis capabilities are demonstrated on a simple network with time-
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varying demand and temporary capacity reductions. Finally, Chapter 5 draws

conclusions from the thesis and describes future directions for research.
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Chapter 2: Background and Literature Review

2.1 Traffic Flow Modeling Background

Subsequent sections of this thesis draw upon concepts from traffic flow the-

ory, seeking to describe how standard and CACC vehicles interact when sharing

the same road. Specifically, one of the goals is to describe how various pairs of

standard and CACC vehicles follow each other at a microscopic level, and then

consider the resulting steady-state relations from a macroscopic perspective. To

provide proper context, this section briefly describes microscopic car-following

and macroscopic traffic flow relations, and explain how the two are related.

2.1.1 Microscopic Traffic Models

Microscopic models consider each vehicle-driver pair to be an individual

entity that makes driving decisions based on a variety of factors, including the

influence of nearby vehicles and personal driving preferences (Treiber and Kest-

ing, 2013). Microscopic models are often separated into two categories to repre-

sent the primary decisions that impact vehicle behavior: car-following and lane-

changing. Car-following models describe a vehicle’s longitudinal dynamics in
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relation to a preceding vehicle, while lane-changing models quantify a driver’s

choice to leave a particular lane for a better one - perhaps motivated by improved

driving conditions in a nearby lane or knowledge of an upcoming exit. Because

this thesis focuses on steady state behavior, we will avoid further discussion of

lane-changing models. The interested reader is directed to Treiber and Kesting

(2013) and Ni (2015) for relevant chapters on modeling lane-changing behavior.

A variety of microscopic car-following models have been proposed since

the 1950’s, encompassing many modeling philosophies and perspectives. Popu-

lar approaches include single-regime models, which seek to describe car-following

behavior for many different traffic conditions (e.g congestion, start/stop, free

flow) with a single equation, as well ones that use different equations to describe

separate traffic regimes (Ni, 2015). The first car-following models were single-

regime stimulus response models developed by General Motors (Chandler et al.,

1958), which theorized that a driver’s response is a function of external stimuli

and personal preference. These models express vehicle response as a differen-

tial equation that relates a vehicle’s acceleration to its speed (and possibly posi-

tion, depending on the formulation) with a parameter set that describes driver

sensitivity. Other models, including ones proposed by Pipes (1953) and Forbes

(1963), are more pragmatic than theoretical, describing the minimum spacing

and headway required for safe driving, respectively. In the same vein, a more

complex multi-regime model was proposed by Gipps (1981), and theorizes that

drivers choose their speed such that they can stop safely even if a leading vehicle

abruptly slams on its brakes. More recent literature includes the Intelligent Driver
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Model (Treiber et al., 2000), which describes a following vehicle’s acceleration in

terms of speed and spacing, incorporating the idea of desired spacing, which is

a function of driver reaction time, vehicle speed, and speed relative to the lead-

ing vehicle. Another class of car-following models is the Optimal Velocity Model

(OVM), which can take many forms depending on how the optimal velocity func-

tion is specified (e.g., Bando et al. 1994, Bando et al. 1995a, Bando et al. 1995b, and

Sugiyama 1999). Finally, a recent addition to the car-following model landscape

is the Longitudinal Control Model (Ni et al., 2015), which seeks to unify previous

models under a general framework. The LCM is used extensively in this thesis,

and will be described in detail in Chapter 3.

2.1.2 First-order Macroscopic Traffic Model

In contrast to micro-level models that consider the interactions of individual

vehicles, macroscopic models view traffic analogously to a fluid, characterizing

it in terms of aggregate traffic states that change over time based on conservation

of vehicles (similar to conservation of mass in hydrodynamics). The continuity

equation is derived from vehicle conservation and describes the evolution of traf-

fic density based on spatial flow gradients:

∂k(x, t)

∂t
+
∂q(x, t)

∂x
= 0 (2.1)

where q is the hourly vehicle flow, k is the vehicle density, and x and t repre-

sent position and time, respectively. This equation is analogous to conservation
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of mass, and states that vehicles are conserved along a section of road over time,

meaning that vehicles do not enter or exit the system except at system boundaries.

While this continuity equation holds for all macroscopic models, the model must

be closed by also specifying the flow or local speed (Treiber and Kesting, 2013).

First and second-order models differ in this specification; first-order models as-

sume a static relation between actual traffic density and the flow (or local speed),

while second-order models introduce a second PDE to describe velocity dynam-

ics.

The first-order continuum traffic flow model was first proposed by Lighthill

and Whitham (1955) and Richards (1956), and is often referred to as the LWR

model. It states that traffic flow is always in equilibrium with the actual density,

given by:

q(x, t) = qe(k(x, t)) (2.2)

This static relation between traffic flow and density is often referred to as the

fundamental diagram of traffic engineering, and is used to characterize aggregate

driver behavior. Many different forms of the so called fundamental diagram have

been proposed in literature based on theory and empirical observation.

For example, one overly simplistic, but often-used model for illustrative

purposes is Greenshields’ model (based on Greenshields et al. 1934). This model

shows that at zero density (i.e. no cars on the road) traffic speeds are at the maxi-

mum free flow speed vf , but as additional vehicles enter the road and density in-

creases, the speed decreases linearly until it reaches the maximum density, kjam.
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This linear speed-density relationship implies a parabolic flow-density relation-

ship, which is shown below.

v(k) = vf (1−
k

kjam
) (2.3)

q(k) = k ˙v(k) = vfk −
k2

kjam
(2.4)

Other popular models include Greenberg, Underwood, Drake, Drew, Pipes and

Munjal, a discontinuous triangular model, and the Van Aerde model, which are

further discussed in references such as Treiber and Kesting (2013) and Ni (2015).

2.1.3 Connection between Micro and Macro Models

Microscopic vehicle behavior can be aggregated to the macroscopic level by

considering how individual vehicles behave under steady-state conditions. This

equilibrium behavior implies that vehicles are not accelerating, so acceleration

terms from the microscopic representation can be set to zero. Additionally, the

density of a section of road is simply the inverse of the average distance head-

way, flow is the inverse of the average time headway, the average vehicle speed

becomes the space mean speed, and macroscopic flows, density and space mean

speed are related by Equation 2.2 (Treiber and Kesting, 2013).

Note that although microscopic car-following models can be transformed

into steady state macroscopic equivalents, some macroscopic models do not re-

duce to microscopic models. That is, some macroscopic models were devel-

oped to fit empirical observations, and do not claim to be based underlying car-
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following theory (e.g. Van Aerde model).

2.2 Literature Review

Existing connected and automated vehicle (CAV) research encompasses a

vast array of vehicle technologies and research scopes. Vehicle technology in-

cludes AVs ranging from basic level 1 driver-assist features such as ACC (e.g.,

Labuhn and Chundrlik Jr 1995; Vahidi and Eskandarian 2003) and lane departure

assistance (e.g., Pilutti and Ulsoy 1999; Risack et al. 2000), to fully autonomous

level 4 or level 5 vehicles (e.g., Montemerlo et al. 2008; Kammel et al. 2008,

Buehler et al. 2009), CVs employing V2V and/or V2I communication (e.g., Tali-

wal et al. 2004; Jerbi et al. 2007; Ye et al. 2008), and those which combine aspects

of both automation and communication (e.g., Van Arem et al. 2006; Hu et al.

2012; Shladover et al. 2012). This paper focuses on CACC vehicles, which are

human-driven ACC vehicles that leverage V2V communication. Accordingly, we

primarily focus on literature pertaining to basic driver assist rather than higher

levels of automation, and communication between vehicles rather than with in-

frastructure.

The scope of CAV research often falls into one of three categories: policy,

technology, or traffic modeling. Policy-focused research helps illuminate practi-

cal, legal, and ethical issues that need to be addressed in light of CAV technology,

examples of which include Goodall (2014), Fagnant and Kockelman (2015), and

Kumfer and Burgess (2015). A separate body of literature focuses on the technol-
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ogy itself, exploring machine vision (Pomerleau and Jochem, 1996; Subramanian

et al., 2006), data assimilation algorithms to merge sensor information (Mitchell

et al. 1987; Becker and Simon 2000; Hall and Llinas 2001), and connected vehi-

cle transmission protocols (Xu et al. 2004; Jiang et al. 2006; Cheng et al. 2007).

Both of these perspective are important for advancing the field, but this paper

takes a traffic modeling perspective, seeking to describe how CACC vehicles im-

pact aggregate traffic flow dynamics. Although the goal is to model steady state

macroscopic behavior, there is an intrinsic connection between microscopic car-

following dynamics and macroscopic aggregate behavior. Accordingly, we sur-

vey literature from both perspectives, and investigate frameworks that have been

proposed to integrate mixed traffic with both standard and connected vehicles.

2.2.1 Microscopic Perspective

The microscopic modeling perspective seeks to incorporate notions of ba-

sic automation and V2V communication in mathematical expressions of vehicle-

level interactions. With the goal of characterizing this technology’s impact on

traffic flow and stability, these micro-level characterizations are often used in mi-

crosimulation frameworks, which are particularly well-suited for modeling het-

erogeneous traffic consisting of multiple vehicle types (Kesting et al., 2008).

Adaptive Cruise Control (ACC) is perhaps the first driver assist feature that

has the potential to significantly impact traffic flow dynamics (VanderWerf et al.,

2001). While the technology is increasingly being introduced on production ve-
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hicles, the market penetration is still extremely small, making it hard to directly

measure the impact on traffic. Furthermore, the current implementation is pri-

marily geared for driver comfort rather than traffic performance (Kesting et al.,

2008), which creates a discrepancy between the technology’s current behavior

and its potential capabilities.

Initial analysis of ACC technology suggested that ACC vehicles may help

improve stability and dissipate shockwaves, but did not draw clear conclusions

about the impact on capacity and performance (Van Arem et al. 1996; Zwaneveld

and Van Arem 1997; Yokota 1998). For example, Van Arem et al. (1996) developed

a simple acceleration control strategy that incorporated both speed and distance

controllers, which they used in a microsimulation framework to evaluate the im-

pact of varying ACC market penetration. Interestingly, they found that while the

presence of ACC vehicles increased stability and did not have an appreciable af-

fect on capacity, average traffic speeds decreased at higher demand levels. More

recent ACC modeling research takes a similar methodological approach; they use

existing car-following models, and capture the difference between ACC and stan-

dard vehicle behavior by choosing model parameters that reflect assumptions

about time and distance headways. A car-following model widely-used for this

purpose is the Intelligent Driver Model, which is a highly-detailed and realistic

model that parameterizes vehicles’ acceleration responses in terms of maximum

allowable acceleration and deceleration levels, time delay, and minimum spacing

(Treiber and Kesting, 2013). Examples of ACC analyses using the IDM include

Kesting et al. (2007), Kesting and Treiber (2008), Schakel et al. (2010), Horiguchi
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and Oguchi (2014), and Ntousakis et al. (2015), while other car-following models

such as the Optimal Velocity Model (e.g., Liang and Peng 1999; Davis 2004; Davis

2007) are also employed. Interestingly, the literature is divided when it comes to

the overall impact of ACC vehicles in mixed traffic; some studies suggest posi-

tive improvements in capacity or stability (e.g., Treiber and Helbing 2001; Davis

2004), while others are less optimistic (e.g., Marsden et al. 2001). Thus, as Kesting

et al. (2008) point out, the results depend significantly on the assumptions made.

From a V2V communication perspective, models capture the fact that properly-

equipped CVs can exchange relevant information with other nearby CVs and use

the information to inform their driving behavior. While typical car-following

models express a vehicle’s acceleration response in terms of variables that can be

judged by a human driver (e.g., vehicle’s own speed, leading vehicle’s speed, sep-

aration between vehicles), models that incorporate V2V communication either

explicitly or implicitly utilize information that would otherwise be unavailable

in the decision-making framework.

In some cases, this involves incorporating additional information from the

leading vehicle that could not otherwise be ascertained by a human driver (e.g.,

Li et al. (2016) propose a model which incorporates the leading vehicle’s throttle

position in the decision framework). In others, it simply means representing V2V

communication with a deterministic rather than stochastic model. For example,

Talebpour et al. (2016) model standard vehicle behavior probabilistically using

prospect theory, but argue that CVs employing V2V communication are able to

accurately ascertain the leading vehicle’s behavior, and thus use the determin-
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istic IDM to model vehicles with V2V communication. Another approach is to

add extra terms to a car-following model to capture the fact that the accelera-

tion response depends on the position/speed/acceleration of multiple vehicles.

Models considering multiple forward vehicles (i.e., multi-anticipative models)

include Chen et al. (2009), Chen et al. (2016) as well as Lenz et al. (1999), and

Farhi (2012), which extend the Intelligent Driver Model (IDM), Optimal Veloc-

ity Model (OVM), and Linear Piecewise Model, respectively. Models which also

incorporate multiple following vehicles include ones proposed by Zheng et al.

(2011) and Jin et al. (2013). In both forward and rearward looking models, the

literature suggests that knowledge of multiple vehicles’ behavior improves local

and asymptotic (string) stability as well as traffic flow capacity.

Finally, existing research has also considered both ACC and CV technology

together, seeking to model the impact of both driver assist automation and V2V

communication at a microscopic level. The primary example of this is Cooper-

ative Adaptive Cruise Control (CACC), where ACC vehicles have the ability to

communicate with one another via V2V communication. Accordingly, model-

ing efforts incorporate combinations of the ideas described above for ACC and

V2V communication, respectively. Research in this area includes Van Arem et al.

(2006), Nowakowski et al. (2010), Schakel et al. (2010), Shladover et al. (2012),

Milanés and Shladover (2014) and Askari et al. (2016), with the majority uti-

lizing microsimulation frameworks to draw conclusions about traffic flow. For

example, Van Arem et al. (2006) model the impact of CACC vehicles by using

the same MIXIC microsimulation model that was previously described for ACC
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and assuming that V2V communication allows closer following distances be-

tween CACC-equipped vehicles. They focus on a lane-reduction scenario and

conclude that CACC vehicles improve traffic stability and to a lesser extent ef-

ficiency. However, they also point out that the performance greatly depends on

CACC vehicle penetration rate, and note that it degrades when less than 40% of

the vehicle mix are CACC vehicles. Shladover et al. (2012) model a heterogeneous

mixture of standard, ACC, and CACC vehicles by using a variant of Newell’s lin-

ear car-following model to represent standard vehicles, and a constant time gap

control policy to model ACC and CACC vehicles in a microsimulation frame-

work. One of the main contributions they claim is obtaining realistic time-gap

values for modeling CACC traffic based on field experiments. Their results in-

dicate that ACC vehicles are unlikely to impact capacity without V2V commu-

nication, but the presence of CACC vehicles at mid to high market penetration

rates produces significant improvements. From a different perspective, Milanés

and Shladover (2014) use experimental results from existing ACC, CACC, and

IDM controllers on production vehicles to develop a simple car-following model

that selects an appropriate following-vehicle speed based on the goal of minimiz-

ing gap error. Finally, Askari et al. (2016) compare CACC traffic dynamics using

three different car-following models (Gipps, Improved IDM (IIDM), and Helly),

and quantify how maximum vehicle acceleration and market penetration impact

maximum throughput at intersections. They conclude that the IDM is best suited

for modeling CACC/ACC vehicle dynamics.
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2.2.2 Macroscopic Perspective

Analysis of ACC and V2V technology from a macroscopic approach is more

limited in the literature, and generally takes one of two perspectives. The first in-

volves finding an equilibrium flow-density relation (i.e., fundamental diagram)

that captures the impact of ACC and/or V2V behavior, which can then be used

in the LWR model. Analytical solutions for fundamental diagrams can be ob-

tained by transforming car-following models to their macroscopic counterparts

under steady-state conditions, but these fundamental diagrams represent steady-

state car-following behavior for homogeneous, not heterogeneous traffic. A small

body of literature seeks to address this by proposing multi-class kinematic wave

models that consider how different classes interact with one another (e.g., Wong

and Wong 2002; Logghe and Immers 2008; Qian et al. 2017), but these approaches

do not focus on ACC or V2V technology. While they may be applicable to the

CAV domain, it is unclear whether they can capture the effects of V2V commu-

nication, where a vehicle’s car-following behavior depends not only on its class,

but how the vehicles are arranged. A handful of studies have analytically de-

rived steady-state relations for heterogeneous CAV traffic, including Bose and

Ioannou (2003), Levin and Boyles (2016), and Hussain et al. (2016). Bose and

Ioannou (2003) start with a simple car-following relation and model mixed traffic

consisting of standard and ACC vehicles by producing fundamental diagrams

for 100% manual and 100% semi-automated traffic, after which they combine the

two curves to form an aggregate one. From a different perspective, Hussain et al.
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(2016) consider constant car-following headways at capacity conditions for dif-

ferent classes of CAVs, taking a probability-weighted average of these headways

based on the CAV market penetration. Focusing on higher levels of automation,

Levin and Boyles (2016) characterize AV behavior through improvements in re-

action time in a collision-avoidance car-following model (Kometani and Sasaki,

1959), and derive a triangular fundamental diagram whose shape is parameter-

ized by reaction time. However, rather than representing mixed traffic in a sin-

gle fundamental diagram, they propose a multi-class Cell Transmission Model,

which solves the LWR model numerically for multiple vehicle classes.

The second approach uses second-order models, which retain the continu-

ity equation from Equation 4.1, but add a second PDE to describe speed dynamics

as a function of density, local speed, speed changes, and non-local effects (Treiber

and Kesting, 2013). A number of models have been proposed for representing

ACC, including Darbha and Rajagopal (1999), Wang and Rajamani (2004), Yi and

Horowitz (2006), Ngoduy (2012), and Nikolos et al. (2015). For example, Yi and

Horowitz (2006) derive a second-order traffic model for ACC traffic based on the

continuity equation and velocity dynamics that depend on a traffic concentration

policy. However, this approach assumes that traffic is composed of 100% ACC

vehicles, and thus does not consider mixed traffic. Wilson et al. (2004), Zheng

et al. (2015), and Ngoduy and Jia (2016) present similar approaches, but focus in

particular on modeling V2V communication with multiple leading or following

vehicles. Ngoduy (2012) derives a multi-class macroscopic model for standard

and ACC vehicles using the gas-kinetic-based traffic (GKT) model and adds an
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acceleration term to represent ACC behavior. He finds that the presence of ACC

vehicles leads to increased upstream wave speed, but that ACC vehicles help sta-

bilize traffic and improve flows leaving a bottleneck. Building off this approach,

he extends the model to also incorporate V2V communication by considering

multi-anticipative effects, finding that CACC vehicles help stabilize traffic and

improve equilibrium capacity relative to ACC vehicles (Ngoduy, 2013). Simi-

larly, Nikolos et al. (2015) use the GKT model to characterize ACC and CACC

traffic, but diverge from how Ngoduy models CACC vehicles by modifying the

relaxation rather than convective term, and also postulating that CACC vehicles

are capable of following one another at shorter time gaps. However, the model

assumes that the vehicles are all ACC or CACC, without modeling heterogeneous

mixtures of vehicle class. To address this, Delis et al. (2016) incorporate a pene-

tration rate term into the formulation and perform a case study on a ring road

and highway with a merge ramp, concluding that increasing CACC penetration

improves both stability and capacity. However, it is unclear whether the model

properly accounts for how multi-anticipative relaxation times change at low pen-

etration rates, and further explanation would be useful to justify the penetration

rate assumptions.

2.2.3 Discussion

Since connected and automated vehicles will likely share the road with stan-

dard vehicles during a phase-in period, it is important for any modeling frame-
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work to be able to handle heterogeneous traffic conditions. While the hetero-

geneous framework can be developed with a microsimulation approach (e.g.,

Van Arem et al. 2006; Shladover et al. 2012), this thesis is interested in capturing

the aggregate equilibrium impact of heterogeneous traffic for a large-scale plan-

ning perspective, for which the macroscopic approach is most suitable. From a

macroscopic perspective, there are few existing options for modeling heteroge-

neous traffic flow consisting of arbitrary mixes of CACC vehicles. While a few

second-order continuum models are capable of modeling CACC traffic well (e.g.,

Ngoduy 2013; Delis et al. 2016) and are useful for cases in which dynamic speed

information is necessary (e.g., speed-harmonization), they currently have limited

ability to account for heterogeneous traffic. Even as these techniques continue

to mature, the second-order modeling approach characterizes vehicle dynamics

at a high level of detail (i.e., incorporating anticipation, speed adaptation time,

speed/density gradients, non-local effects), which requires numerical solutions

that are harder to implement and calibrate relative to simpler models. Much like

with microscopic approaches, this thesis is more interested in the high-level plan-

ning perspective, and seeks to quantify heterogeneous traffic in terms of steady

state aggregate characteristics. From the first-order perspective, existing research

either does not consider V2V communication (e.g., Bose and Ioannou 2003; Levin

and Boyles 2016), or focuses only on capacity without characterizing the entire

range of aggregate traffic states (e.g., Hussain et al. 2016).

Accordingly, this thesis seeks to fill the gap in the literature by proposing a

methodology to model steady state, macroscopic traffic flow relations as a func-
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tion of CACC market penetration. Beginning with microscopic car-following the-

ory and physically meaningful parameters, this approach analytically develops a

simple macro-level representation of these heterogeneous dynamics suitable for

first-order macroscopic models without requiring microsimulation techniques or

detailed second-order continuum models. Thus, it distills the complexities of

CACC car-following dynamics into aggregate steady state curves, which are suit-

able for first-order traffic models.
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Chapter 3: Modeling Equilibrium Behavior of Heterogeneous Traf-

fic with CACC Vehicles

3.1 Overview

The goal of this section is to develop a macroscopic framework for model-

ing heterogeneous traffic consisting of both standard, human-driven vehicles and

Cooperative Automatic Cruise Control (CACC) vehicles - which are equipped

with ACC and have the ability to communicate with one another via V2V com-

munication. We begin by qualitatively discussing their behavioral characteristics,

and state assumptions that will guide the modeling process. Next, we provide an

overview of the Longitudinal Control Model (LCM), which is the traffic model

that will be used to represent standard and CACC driving dynamics. Employing

the assumptions developed earlier, we model interactions between standard and

CACC vehicles at a microscopic, individual-vehicle level and choose LCM model

parameters to represent these dynamics. We then aggregate over space and time

to obtain steady state macroscopic equivalent representations of these different

car-following combinations (i.e., standard following standard, standard follow-

ing CACC, CACC following standard, and CACC following CACC). Finally, we
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discuss how to combine these relationships together to characterize overall traf-

fic performance as a function of CACC vehicle proportion on a lane, concluding

with a numerical example to illustrate the process and investigate the sensitivity

of capacity to parameter choice.

3.2 Vehicle Classes and Behavioral Assumptions

The two vehicle classes considered in this study are standard vehicles (de-

noted S) and CACC vehicles (denoted C). S vehicles are ordinary, human-driven

vehicles without adaptive cruise control or the ability to communicate with other

vehicles. In contrast, C vehicles have adaptive cruise control and use sensors

(e.g., radar or lidar) to measure the distance to the leading vehicle, recognize

how this distance changes over time, and actuate the accelerator or brake to re-

spond appropriately. Furthermore, this vehicle class is equipped with V2V com-

munication, meaning that they can obtain position/speed/acceleration from the

leading vehicle via DSRC (or similar communication protocol) if both the leader

and follower are C vehicles. Based on these vehicle classes and the possible car-

following arrangements, heterogeneous traffic consists of three types of equilib-

rium car-following behavior: (1) when a S vehicle follows any vehicle (S), (2)

when a C vehicle follows a S Vehicle (C-S), and (3) when a C vehicle follows

another C vehicle (C-C). We begin by qualitatively discussing their behavioral

characteristics, and state assumptions that guide the modeling process.

• S: Regardless of the preceding vehicle type, S car-following behavior is char-
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acterized by human factors such as perception and reaction time, following

distance preference, and level of aggressiveness.

• C-S: When a C vehicle follows an S vehicle its acceleration response is gov-

erned by adaptive cruise control, and it cannot make use of V2V commu-

nication. Based on ACC sensor technology, we assume that the vehicle’s

response time (consisting of measurement, planning, and execution time) is

faster than the human perception and reaction process. However, existing

research suggests that ACC tends to be comfort-oriented and risk-averse,

with many researchers concluding that ACC vehicles yield negligable im-

pact on capacity in a traffic stream (e.g., Van Arem et al. 1996; Shladover

et al. 2012). Thus, we describe C-S behavior as being more responsive (i.e.,

reacting more rapidly to stimuli), but also more conservative (i.e., less will-

ing to follow at unsafe distances).

• C-C: When a C vehicle follows another C vehicle its acceleration response is

still governed by ACC, but now we assume that the follower can anticipate

the leader’s behavior more rapidly due to V2V communication; when the

leading C vehicle’s estimation algorithm determines that it needs to deceler-

ate, it communicates its intentions to the following vehicle, which allows the

following vehicle to recognize that it needs to decelerate before arriving at

that conclusion based on successive distance measurements. Accordingly,

we assume that C-C average response time is faster than C-S.
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3.3 Longitudinal Control Model (LCM)

In order to model this behavior, we turn to a recently proposed traffic model

called the Longitudinal Control Model (LCM), which seeks to merge physical

constraints and human behavior in a flexible, efficient way (Ni et al., 2015). On

a microscopic level, the LCM is intended to be a general framework that speci-

fies the functional form of vehicular acceleration while allowing different safety

following rules - a consequence of which is that it can produce many existing

car-following models. Furthermore, in steady-state conditions the model can be

used to represent aggregate traffic flow relations as a function of meaningful pa-

rameters.

3.3.1 Microscopic Representation

The LCM describes a vehicle’s car-following behavior in terms of the forces

which act upon it. Thus, when vehicle i is following vehicle j, vehicle i’s driving

behavior is characterized by the overall balance in forces:

∑
Fi = Gi −Ri − Fij (3.1)

where

G = driving force

R = road resistance

F = interaction force with preceding vehicle
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The terms in the force balance equation are general descriptions of the dif-

ferent forces, but can take on various forms based on assumptions and modeling

techniques. Ni presents one form of this force balance, which appears to be moti-

vated by empirical evidence and the goal of developing an overarching unifying

theory that can generalize other existing models:

Gi = Ai (3.2)

Ri = Ai

(
ẋ(t)

vi

)
(3.3)

Fij = Ai

(
e
1−

Sij(t)

S∗
ij

(t)

)
(3.4)

yielding

ẍ(t+ τ) = Ai

(
1−

(
ẋ(t)

vi

)
− e

1−
Sij(t)

S∗
ij

(t)

)
(3.5)

where

xi = vehicle i’s position [ft]

ẋi = vehicle i’s speed [ft/s]

ẍi = vehicle i’s acceleration [ft/s2]

vi = vehicle i’s desired speed [ft/s]

Ai = vehicle i’s maximum acceleration [ft/s2]

τ = time delay [sec]

Sij = actual spacing between following vehicle i and leading vehicle j [ft]

S∗
ij = spacing that vehicle i desires between itself and leading vehicle j [ft]
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One of the reasons why this model is so flexible is that the desired spacing rule

S∗
ij can take on many different forms depending on the aspects of car-following

that the modeler wants to emphasize. Ni proposes a spacing rule that allows a

following vehicle to stop before hitting its predecessor given an effective vehicle

length lej , response time τ and deceleration rate that is dependent on the follow-

ing driver’s maximum deceleration bi and the assumed maximum deceleration

of the leading vehicle Bj . This is a slightly modified version of Gipps’ model,

where the vehicle of interest and its predecessor are allowed to have different de-

celeration values (i.e., b and B) and the velocity is assumed constant during the

perception reaction time. In other words,

S∗
ij = lej + ẋiτ +

ẋ2i (t)

2bi
−
ẋ2j(t)

2Bj

(3.6)

where Sij >= lej . To understand this spacing rule, consider a leader-follower

pair for which the leading vehicle may decelerate quickly at any point in time.

How far should the following vehicle position itself behind the leading vehicle

such that it can safely stop without causing an accident? Regardless of the speed

at which the vehicles are traveling, the spacing must always be greater than the

length of the preceding vehicle lj to prevent an accident (since spacing is mea-

sured from front bumper to front bumper). Adding a small buffer (where the

value depends on the comfort level of the individual driver) to the length of the

leading vehicle yields the base following distance irrespective of speed: lej . Addi-

tionally, when the leading vehicle decelerates quickly, some reaction perception

time passes before the following vehicle’s driver notices the tail lights, processes
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the information, and presses the brake pedal. During this time, the vehicle tra-

verses a distance of ẋiτ , which is the second term in the equation. The final aspect

to consider is the braking distance, which may be different for the leading and fol-

lowing vehicle depending on how fast they are going and the rate at which they

are willing to decelerate. Thus, the last two terms capture the fact that the follow-

ing vehicle estimates how much braking distance it needs relative to the leading

vehicle, and (subconsciously) adds or subtracts distance to account for this. This

adds behavioral realism to the model, since often times drivers do not follow at

an appropriate "safe" distance such that they could stop soon enough to avoid a

collision. In steady state conditions we assume both vehicles are traveling at the

same speed, which implies that this safe spacing rule can be rewritten as:

S∗
ij = lej + ẋiτ +

(
1

2bi
− 1

2Bj

)
ẋ2i (t) (3.7)

= lej + ẋiτ + γẋ2i (t) (3.8)

where γ captures the degree to which the trailing vehicle estimates they can de-

celerate relative to the leading vehicle. In some sense, γ captures the notion of

aggressiveness, and can be used to make this safe spacing model more realis-

tic. For example, negative values of γ imply more aggressive driver populations,

which are often observed when calibrating the model based on real-world data.

In summary, the LCM microscopic formulation captures car-following be-

havior with the following parameters: {vf , τi, Ai, bi, Bj, lej }. Of particular interest

is the fact that the model incorporates notions of minimum following distance,
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reaction time and levels of aggressiveness, which are important concepts to con-

sider when modeling the distinction between S and C vehicles.

3.3.2 Macroscopic Representation

Microscopic vehicle behavior can be aggregated to the macroscopic level by

considering the steady-state average behavior of the vehicles. Starting with the

microscopic representation, we set the acceleration equal to zero and solve for

the space mean speed, noting that the spacing terms Sij and S∗
ij become average

densities k and k∗ without subscripts because they represent average behavior.

ẍ(t+ τ) = Ai

(
1−

(
ẋ(t)

vi

)
− e

1−
Sij(t)

S∗
ij

(t)

)
(3.9)

0 =

(
1−

(
v

vf

)
− e1−

k∗
k

)
(3.10)

v = vf
(
1− e1−

k∗
k

)
(3.11)

The steady state ideal spacing can be found by starting with the initial formula-

tion. After dropping the subscripts and changing individual speeds to average

speeds we have:

S∗
ij =

ẋ2i (t)

2bi
−
ẋ2j(t)

2Bj

+ ẋτ + lej (3.12)

S∗ =
v2

2b
− v2

2B
+ τv + le (3.13)

= γv2 + vτ + le (3.14)
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Note that S∗ is a function of speed v, and represents the spacing between a ve-

hicle and its leader that an average driver would be comfortable tolerating at a

given speed. We can equivalently express this in terms of density rather than

spacing:

k∗ =
1

S∗ =
1

γv2 + τv + le
(3.15)

Putting it all together, we can express the relationship between speed and traffic

density as:

v = vf
(
1− e1−

1
kγv2+τv+le

)
) (3.16)

k =
1

(γv2 + τv + le)
(
1− ln

(
1− v

vf

)) (3.17)

Finally, we express flow in terms of speed:

q = kv =
v

(γv2 + τv + le)
(
1− ln

(
1− v

vf

)) (3.18)

Thus, macroscopic equilibrium traffic flow can be characterized with the follow-

ing parameter set: {vf , τ, γ, le}

3.4 Characterizing S and C Behavior with the LCM

Each of the three equilibrium car-following behaviors (S, C-S, and C-C) can

be described by its own LCM parameter set and Equations 3.17 and 3.18. Table

3.1 expresses these parameters in terms of the following variables:
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Variable S C-S C-C Comments

Response time τ [s] Ts Tc Tc − Ta 0 < Tc < Ts
Aggressiveness γ [ft2/s] γs γc γc
Minimum following separation s0 [ft] s0s s0c s0c s0c <= s0s
Effective vehicle length le [ft] l + s0s l + s0c l + s0c
Free flow speed v0 [mph] v0 v0 v0

Table 3.1: Parameter values representing car-following configurations.

Ts = human perception-reaction time [s]

Tc = C measurement, estimation and response time [s]

Ta = anticipative response time savings from V2V communication [s]

γs = human driver aggressiveness [s2/ft]

γc = C aggressiveness [s2/ft]

s0s = minimum allowable separation for S vehicles [ft]

s0c = minimum allowable separation for C vehicles [ft]

l = average vehicle length (any type) [ft]

3.5 Modeling Heterogeneous Traffic

Having developed a methodology for representing the possible S and C

car-following relationships through the LCM, we now quantify the aggregate

macroscopic traffic flow implications when both classes of vehicle are combined

together on a single traffic lane. In particular, we are interested in how the steady

state performance changes as demand and market penetration of C vehicles vary.
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3.5.1 Probabilities of Car-following Behaviors

In order to describe aggregate steady-state traffic dynamics, we need to

quantify the percentage of traffic that falls into each of the three possible equilib-

rium car-following categories: S, C-S, and C-C. This depends both on the overall

proportion of C vehicles, as well as how C vehicles are arranged within the lane,

where vehicle arrangement ranges between two extremes: randomly dispersed

(i.e., representing random arrivals), and fully separated (i.e., long platoons of

each vehicle type).

To do so, consider a single lane of a fixed distance that contains an arbitrary

mix of S and C vehicle flows represented by qs and qc respectively. Define the

proportion of each type of vehicle as ps and pc, with

ps =
qs

qs + qc
(3.19)

pc =
qc

qs + qc
(3.20)

First assume that C vehicles are randomly mixed with S vehicles (ie., vehicles

arrive randomly). In this case the probabilities for each of the car-following con-

figurations are given by:

P (S) ≈ ps(ps) + ps(pc) = ps(ps + pc) = ps = (1.0− pc) (3.21)

P (C-S) ≈ pc(ps) = pc(ps) = pc(1.0− pc) (3.22)

P (C-C) ≈ pc(pc) = p2c (3.23)

Next, consider how these probabilities change when the vehicle classes are di-
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vided into separate platoons (which likely would require a control strategy to

achieve). In this case P(S) does not change (because this configuration does not

depend on the type of the leading vehicle), but the C-C configurations disappear

and all become C-C (with a single possible CV-SV configuration at the platoon

boundary, whose impact is negligible for large demands). Thus, the probabilities

are given by:

P (S) ≈ (1.0− pc) (3.24)

P (C-S) ≈ 0 (3.25)

P (C-C) ≈ pc (3.26)

More realistically, the vehicle arrangement will fall somewhere between

these two extremes. It is unlikely that perfect separation is achievable on a sin-

gle lane (at least for reasonable mixtures of S and C vehicles), even with control

measures in place. Likewise, a random arrangement is somewhat unrealistic, as

human drivers will likely have preferences and biases that determine who they

choose to follow. Accordingly we parameterize the C-S and C-C probabilities to

allow them to vary linearly between their minimum and maximum values. To

do so, we introduce vehicle arrangement parameter A, where 0.0 ≤ A ≤ 1.0.

When A = 0.0, the probabilities of C-S and C-C represent randomly arranged

C vehicles, while A = 1.0 yields probabilities representing maximum separation

between classes. Using A, we rewrite the probabilities of the car-following con-
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figurations as:

P (S) ≈ (1.0− pc) (3.27)

P (C-S) ≈ pc(1.0− pc)(1.0− A) (3.28)

P (C-C) ≈ p2c + pc(1.0− pc)A (3.29)

Figure 3.1 plots the probabilities for each of the three configurations against C

proportion, repeated for different vehicle distributions (i.e., A values). As we

reasoned earlier, the probability of S is independent of A, while the probability of

C-S and C-C depends on how the vehicles are arranged.

3.5.2 Aggregate Performance

The aggregate behavior of traffic in a lane depends upon the weighted con-

tribution of behavior from each of the three car-following configurations. We

have already defined the probability of each car-following configuration as a
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Figure 3.1: Probabilities of S, C-S, and C-C car-following configurations.
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function of overall lane C proportion and a parameter that captures how the vehi-

cles are arranged. Thus, we use these probabilities in conjunction with the LCM

macroscopic relations of Equations 3.17 and 3.18 to form probability-weighted

aggregate fundamental diagrams.

These equations express density and flow as a function of velocity, so ev-

ery valid speed (i.e., less than or equal to free flow speed) maps to unique den-

sity and flow values (which are different for S, C-S, and C-C because they each

use different parameters). To see how aggregate traffic behaves at a particular

speed, a weighted average of the corresponding densities and flows of each car-

following configuration are taken, with weights based on the probability of their

occurrence.

Thus, the aggregate density and flow at a given speed and proportion of C

vehicles are expressed as:

kagg(v) = P (S) · kS(v) + P (C-S) · kC-S(v) + P (C-S) · kC-C(v) (3.30)

qagg(v) = P (S) · qS(v) + P (C-S) · qC-S(v) + P (C-S) · qC-C(v) (3.31)

Performing these calculations across speeds on the interval [0, vf ] yields aggre-

gate flow-density, speed-density, and speed-flow curves, which capture hetero-

geneous dynamics in a single curve.
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3.6 Numerical Example

Consider a road with a speed limit of 60 mph, and demand consisting of

both S and C vehicles. Assuming that all vehicles have the same free flow speed

and vehicle length, we choose the following parameters to characterize S, C-

S, and C-C car-following behavior in terms of the Longitudinal Control Model:

{vf , τ, γ, le}S = {60 mph, 1.2 s,−.012 s2/ft, 25 ft}, {vf , τ, γ, le}CS = {60 mph, 0.45 s,

0 s2/ft, 23 ft}, and {vf , τ, γ, le}CC = {60 mph, 0.2 s, 0 s2/ft, 23 ft}, which are sum-

marized in Table 3.2. While these values are primarily selected to illustrate the

methodology presented, their justification is based on the behavioral assump-

tions made earlier. That is, the parameters for S are first selected to characterize

realistic human driver behavior (i.e., reasonable human response times, physi-

cally meaningful deceleration rates implied by the aggressiveness parameter, and

resulting capacity similar to Highway Capacity Manual estimates for a 60 mph

speed limit), after which C-S is chosen to represent a more responsive yet less ag-

gressive approach that has a negligible impact on capacity. Finally, C-C captures

anticipative response time savings from V2V communication by reducing the re-

sponse time parameter relative to C-S. Thus, the goal of this numerical example is

Variable S C-S C-C

Response time τ [s] 1.2 0.45 0.2

Aggressiveness γ [ft2/s] −.0125 0.0 0.0
Minimum following separation s0 [ft] 10 8 8
Effective vehicle length le [ft] 25 23 23
Free flow speed v0 [mph] 60 60 60

Table 3.2: Parameter values used for numerical example.
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to provide general insight into how C market penetration affects the shape of the

aggregate fundamental diagram under behavioral assumptions. Additionally,

we briefly perform a sensitivity analysis to quantify how using slightly differ-

ent parameter choices to differentiate ACC and V2V communication relative to S

vehicles would affect capacity.

Figure 3.2 plots the following steady-state relations for each of the three

car-following configurations based on the parameter sets: (a) spacing-speed, (b)

speed-density, (c) flow-density, and (d) speed-flow. Plot (c) indicates that S and

C-S have similar lane capacities (around 2100-2200 vph), but achieve maximum

throughput at different densities. The S curve - which is characterized by hu-

man reaction times and higher levels of aggressiveness - reaches capacity at a

relatively low density and has a small range of densities at which it can sup-

port near-capacity conditions, whereas the C-S curve - which is characterized

by automated response and a more conservative approach - achieves capacity at

higher densities and has a wider range of density at which throughput is near

capacity. Furthermore, although both have similar capacities, plot (d) indicates

that S achieves capacity at a higher speed than C-S. Plot (b) shows that as traf-

fic density approaches capacity in the uncongested regime the C-S speed barely

decreases (which is due to the spacing-speed relation in plot (a)), while the S

speed decreases more gradually. Thus, the C-S curve achieves capacity at a lower

speed, which reflects the more conservative assumption. However, when traffic

density exceeds that of capacity (i.e., enters the congested regime), the perfor-

mance degrades much more rapidly for S than C-S. In contrast, the C-C curve
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Figure 3.2: Steady-state traffic flow relations for S, C-S, and C-C car-following
configurations.

has a much larger capacity (around 3000 vph), but its aggregate relations have a

similar shape to C-S, reflecting fast response time and conservative tendencies.

These three curves suggest that all else held constant, lower response times lead

to decreased spacing for a given speed, and result in higher capacities. Likewise,

increasing aggressiveness/risk tolerance can increase capacity, but also results in

more rapid decrease in traffic at densities (i.e., average spacings) beyond the crit-

ical density. These results are intuitive; despite faster response times C-S does

not significantly improve capacity because human drivers compensate by driv-

ing aggressively and maintaining unsafe following distances at higher speeds.

Figure 3.3 plots the following aggregate traffic flow relations for C propor-

tions from 0.0 to 1.0 assuming a random arrival pattern: (a) flow-density, (b)

speed-density, and (c) speed-flow. Note that the curves for pc = 0.0 represent
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Figure 3.3: Aggregate traffic flow relations for varying proportions of CACC ve-
hicles.

the equilibrium relations for S from Figure 3.2, while the pc = 1.0 curves repre-

sent the C-C relations. In between these extremes, the shape of the curves change

based on the weighted contribution of the S, C-S and C-C curves. Plots (a) and

(c) highlight an interesting result: as C vehicles are introduced to a lane with all

S vehicles, the capacity initially decreases before eventually increasing at high

market penetration. This occurs because although S and C-S curves have similar

capacities, they achieve this capacity at different speeds (as shown in the speed-

flow diagram of Figure 3.2). At pc = 0.0 the maximum throughput is achieved at

about 52 mph because human-driven vehicles often follow closely at high speeds

(i.e., exemplifying risky following behavior). As a small fraction of C vehicles

are introduced to the lane, the C-S car-following behavior reduces the capacity
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because despite their better reaction time, they are unwilling to follow as closely

at 52 mph (since they were modeled as risk averse with γ = 0). Although C-S

actually has a slightly higher capacity, it does so around 30 mph, and with only

a small fraction of C vehicles on the lane their contribution is not enough to ap-

preciably change where capacity occurs. As the C fraction continues to increase,

the probability of C-C configurations increases nonlinearly, thus pulling up the

overall capacity. This result is intuitive because at low C fractions there are not

enough C vehicles for many C-C car-following configurations (which greatly im-

prove performance), and the more conservative C-S driving style interferes with

the aggressive manner in which standard vehicles maximize throughput.

To understand how these aggregate traffic flow relations depend on how C

vehicles are arranged throughout the lane, we generate results for fixed C pen-

etration while allowing A to range from 0.0 (random) to 1.0 (fully separated).

Figure 3.4 plots the aggregate relations for multiple A values when pc = 0.4: (a)

flow-density, (b) speed-density, and (c) speed-flow. The plots indicate that higher

values of A (i.e., increased separation of vehicle classes) correspond to greater

maximum throughput and similarly-shaped fundamental diagrams.

Figure 3.5 considers the relation between overall lane capacity and C pen-

etration for a range of C distribution assumptions. As we noted in Figure 3.3,

when C vehicles are randomly distributed amongst traffic, the overall capacity

initially decreases at low C penetration before increasing at mid to high pene-

tration. Given a random arrangement of C vehicles in the lane, aggregate traffic

relations are primarily affected by a combination of S and C-S curves at low C
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Figure 3.4: Aggregate traffic flow relations for varying vehicle arrangement as-
sumptions.

penetrations, which explains this result. However, as C vehicles are increasingly

grouped together (i.e., A increases), the aggregate composition is primarily S and

C-C, which helps alleviate the initial capacity decrease for low C penetration.

While this example only considers a single lane, the results suggest that it may be

advantageous to separate traffic classes on multi-lane roads so that C vehicle can

take advantage of V2V communication.

Finally, we consider how slightly different choices of response time and

minimum separation parameters would affect capacity. Figure 3.6 plots the per-

lane capacity against C proportion for (a) varying C-C response times while hold-

ing the C-S response time constant (i.e., changing anticipative time savings from

V2V communication), (b) varying C-S response time while holding the antici-
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Figure 3.5: Capacity as a function of CACC proportion for varying vehicle ar-
rangement assumptions.

pative response time savings constant (i.e., changing the impact of ACC while

keeping the V2V impact constant), and (c) varying the minimum allowable sep-

aration for C vehicles. The baseline condition is indicated with a solid line in

each of the plots, and perturbations about the current parameter value are con-

sidered in each direction. Plots (a) and (b) indicate that in the vicinity of the

current parameter values, increasing/decreasing C-C or C-S response times by

0.1 second yields approximately 500 vph decreases/increases in capacity at 100%

C market penetration, with less drastic changes at lower proportions of C ve-

hicles. Increasing the size of the response time perturbation to 0.2 yields more

drastic increases in capacity when it is lowered, and less drastic decreases when

it is raised. Plot (c) suggests that the impact of minimum separation on capacity

is not appreciable until market penetration reaches 50% or 60%. At 100% its effect

is most pronounced, with every 1 foot increase/decrease in minimum separation
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Figure 3.6: Capacity sensitivity to C-C response time, C-S response time, and
minimum separation parameters.

corresponding to a 100 vph decrease/increase in capacity.

3.7 Summary

The framework proposed in this chapter allows us to model aggregate be-

havior of heterogeneous traffic consisting of S and C vehicles, which can be fur-

ther used for analysis. Applications involve quantifying lane capacity under dif-

ferent C proportion and vehicle distribution assumptions, modeling operational

performance on a network using the Cell Transmission Model, and evaluating

policy decisions (e.g., assessing the value of implementing dedicated or man-

aged C lanes). The numerical example in this chapter demonstrated the ability

to generate equilibrium traffic flow curves and quantify lane capacity as a func-
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tion of C proportion and vehicle arrangement, while the next chapter applies this

framework to a multi-lane corridor.
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Chapter 4: Application to Macroscopic Network Modeling

An important application of the previously-developed framework is eval-

uating heterogeneous traffic on a network with realistic traffic conditions. The

aggregate relations developed in Chapter 3 serve as the theoretical underpin-

ning for how heterogeneous traffic behaves, but this chapter integrates them into

a larger framework that allows modeling a full range of traffic states, conges-

tion effects, and time-varying demand. We begin by discussing the first order

continuum traffic model and its numerical solution, extensions to network level-

problems, and how to integrate the heterogeneous fundamental diagram in this

framework. Next, we demonstrate the modeling capability by analyzing a small

section of a freeway network with entrance and exit ramps, time-varying de-

mand, and incidents that cause shockwaves to propagate along the corridor. We

repeat this procedure while varying the market penetration of cooperative adap-

tive cruise control (C) vehicles, and draw conclusions about the impact of market

penetration on overall operational performance.

48



4.1 First-Order Continuum Traffic Model

As described in Chapter 2, the LWR model is given by the continuity equa-

tion coupled with the assumption that traffic flow is in equilibrium with actual

traffic density, given by:

∂k(x, t)

∂t
+
∂q(x, t)

∂x
= 0 (4.1)

q(x, t) = qe(k(x, t)) (4.2)

where q is the hourly vehicle flow, k is the vehicle density, and x and t represent

position and time, respectively.

4.1.1 Numerical Solution: Cell Transmission Model

The LWR model is often solved numerically with a finite difference method

called the Cell Transmission Model (Daganzo, 1994). To illustrate this approach,

consider the road shown in Figure 4.1, which is spatially discretized into a num-

ber of smaller segments, referred to as cells. Using density as the state variable,

Equation 4.1 can be discretized in space and time, yielding the following density

update equation for cell i:

L L L

i - 1 i i + 1            ...           ...

Figure 4.1: Spatial discretization for CTM
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kit+1 = kit +
T

L

[
Qup

t −Qdown
t

]
(4.3)

where:

kt = traffic density on the cell at time t [veh/mi/lane]

T = constant time step between iterations [s]

L = cell length [mi]

Qup
t = Qt(k

i−1
t , kit) = flow rate at the upstream cell boundary at time t [veh/hr]

Qdown
t = Qt(k

i
t, k

i+1
t ) = flow rate at the downstream cell boundary at time t [veh/hr]

The flux equation Q(a, b) is used to calculate the flow rate between adjacent cells

based on the following supply/demand rules for upstream cell with density a

and downstream cell with density b.

Qt(a, b) = min{Dt(a), St(b)} (4.4)

where Dt(a) is the flow demanded by the upstream cell at time t, and St(b) is the

flow supplied by the downstream cell at time t. These supply/demand functions

are defined by:
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Dt(a) =


q(a) a ≤ kcrit

q(kcrit) a > kcrit

(4.5)

St(b) =


q(kcrit) b ≤ kcrit

q(b) b > kcrit

(4.6)

These rules show that the flux function depends on both the equilibrium flow-

density relation of both upstream and downstream cells.

Additionally, note that the choice of L and T must satisfy the CFL condition

(Courant et al., 1967) to maintain numerical stability:

T · vf
L
≤ 1.0 (4.7)

This numerical stability condition ensures that vehicles traveling at speeds up to

and including vf cannot pass through an entire cell in a single iteration.

To summarize the CTM: at discrete time intervals, each cell is updated to re-

flect the new traffic state that is a result of the previous state and any changes that

occurred during the most recent time step, with flux rules at the cell boundaries

controlling the number of vehicles that can pass between cells.

4.1.2 Network Extension

The LWR model and CTM numerical solution can be extended to more com-

plex networks with merging/diverging behavior, but the flux rules that govern

the amount of flow that may pass through cell boundaries are more complicated
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because they have to account for the various possible geometries. Thus, the CTM

update equation, Eq. 4.3, remains the same, but Qup
t and Qdown

t are dependent on

the network structure.

A modeling perspective described by Papageorgiou et al. (2010) uses a di-

rected weighted-graph structure to represent the road network, with nodes repre-

senting sources, sinks, and points of discontinuity, and links connecting the nodes

in the direction of travel, representing road segments and entrance/exit ramps.

Since links can be arbitrarily long depending on the road geometry, they are often

broken into smaller, equal sized segments called cells. These cells form the spatial

structure for macroscopic traffic modeling, and are characterized by temporally

varying traffic density as defined by the CTM. Note that a common simplification

is to assume that only two links may enter or exit any given node, which reduces

the complexity of the flux rule logic that governs the CTM solution.

4.1.3 Modeling Heterogeneous Traffic with C Vehicles

The first order macroscopic traffic model admits a generic equilibrium q-k

relation, which is subsequently used in the Cell Transmission Model flux equa-

tion. Thus, C traffic can be incorporated into this framework by using an aggre-

gate q-k curve developed from the methodology presented in Chapter 3.
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4.2 Case Study: Freeway Corridor

In order to illustrate the fact that this framework can be used to analyze

complex traffic conditions, this case study models a simple network with merg-

ing/diverging behavior, time-varying demand at the entrances and multiple inci-

dents. In addition to demonstrating the modeling capability, the goal is to quan-

tify the network operational performance by varying C vehicle market penetra-

tion between 0.0 and 1.0.

The road network is represented by a directed graph, where the links are

spatially discretized into cells that are approximately 0.25 miles long. Based on

10 second update time steps, the Cell Transmission Model (Eq 4.3) is used to char-

acterize the traffic state evolution over the course of a two hour simulation time

period based on an exogenously specified market penetration rate of C vehicles.

4.2.1 Network

The simple network used for this case study is shown in Figure 4.2, and con-

sists of a six mile corridor with four lanes in each direction, and has two origins,

and two destinations. The network is divided into seven corridor links, each of

which is discretized further into approximately .25 mile cells that provide a fine

level of spatial resolution.
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4.2.2 Inputs

The model inputs include time-invariant fundamental diagrams (and corre-

sponding link parameters), and time-varying demand, split ratios, and incident

occurrences.

4.2.2.1 Time-Invariant Parameters

The parameters summarized in Table 4.1 are used to describe human and C

car-following behavior along the network. As described in Chapter 3, these pa-

rameters form the basis for developing the aggregate fundamental diagram as a

function of C market penetration. Once the fundamental diagram is constructed,

it can be used to obtain macroscopic parameters that are utilized in the simula-

tion: capacity, critical density, and jam density.

Theoretically these fundamental diagrams could vary across the network

(i.e., each link’s fundamental diagram may be obtained from different underly-

ing parameters) but we assume that this network is characterized by constant

geometry and driver behavior. Thus, we assume that each link uses the same

fundamental diagram, which is shown in Figure 4.3 for five different C market

N2N1 N3 N4 N5 N6 N7 N8ON1

ON2DN1

DN2

L1 L2 L3 L4 L5 L6 L7

Figure 4.2: Network used for case study.
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Figure 4.3: Fundamental diagram used for case study.

penetration rates. Note that these fundamental diagrams are based on the as-

sumption that vehicle traffic is nearly randomly distributed in each lane. To ac-

count for slight driver biases we use A = 0.1 (where A ranges from 0.0 to 1.0, with

0.0 representing a random arrangement and 1.0 representing maximum separa-

tion between vehicle classes).

Variable S C-S C-C

Response time τ [s] 1.2 0.45 0.2

Aggressiveness γ [ft2/s] −.0125 0.0 0.0
Minimum following separation s0 [ft] 10 8 8
Effective vehicle length le [ft] 25 23 23
Free flow speed v0 [mph] 60 60 60

Table 4.1: Parameter values used in macrosimulation case study.
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4.2.2.2 Time-Varying Parameters

Demand

Vehicle demand originates from two origin nodes: ON1 and ON2, which are

connected to the corridor through origin links (ON1, N1) and (ON2, N5). The

two hour simulation is divided into 8 fifteen minute time periods, during which

demand at ON1 and ON2 can take on different values. In order to account for

times at which demand exceeds capacity, we model the origin links as having

infinite storage capacity, and use a simple queueing model to keep track of time

spent waiting to enter the network.

Split ratios

Like demand, the split ratios (i.e., the ratio of vehicles taking each possible path at

a diverging node) can vary over the course of the simulation. Here the only split

ratio of interest occurs at node N3, where a percentage of vehicle demand exits

to destination node DN1 and the rest continues along the corridor. For the sake

of simplicity we assume that this value remains constant over the course of the
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Figure 4.4: Demand patterns at origin nodes.
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Figure 4.5: Temporary capacity reductions representing incidents.

simulation, with 10% of traffic demand exiting at N3. Thus, although we assume

constant split ratios, we categorize split ratios as time-varying because in general

they will likely change over the course of a day.

Incidents

In order to create interesting congestion patterns, we introduce two incidents

over the course of the simulation time period. To do so, we reduce link capacity

of two cells at different points during the simulation. These capacity reductions

are illustrated in Figure 4.5, which shows capacity reductions of 30% and 35% for

300 and 1000 seconds at cells on links 2 and 6, respectively.

4.2.3 Software Implementation

The simulation logic described above was implemented in Python as a stan-

dalone program. The design approach was to develop a modular, object-oriented

software library capable of performing analysis on arbitrary networks using any

fundamental diagram, user-defined demand patterns, etc.

The basic usage involves providing inputs via appropriately-formatted csv
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and json files detailing network geometry, demand, split ratios, incidents, funda-

mental diagram parameters, and various user options to control simulation time,

time step size, output options, etc. This usage allows the user to run a simulation

based on pre-specified inputs without interacting with the results until it is done.

The second, more advanced mode involves interacting with the simulation

programmatically. This approach allows the user more control over simulation

inputs, and is designed with real-time estimation applications in mind. For ex-

ample, rather than providing the simulation with a description of how demand

changes over an extended period of time based on historical data, the user can

estimate traffic states for a single timestep (representing the immediate future),

and use the results in a data assimilation framework.

On a high level, the program works by building a directed graph to manage

the relationships between the nodes (origins, destinations, points of discontinu-

ity, etc.) and links (road segments that are further divided into equal-length cells),

and then iterating through all of the cells in the network and updating the traf-

fic states based on the CTM update equation. The update equation depends on

the cell’s fundamental diagram, demand levels, split ratios, incidents, and the

road geometry - which characterizes how the flux rules are applied (i.e., whether

to consider merging/diverging junctions). To do so, it relies on the following

classes, which are briefly summarized here:

• InputManager: Manages the configuration options (e.g., simulation dura-

tion, iteration time step, fundamental diagram type), reads configuration
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files if necessary, creates input data structures, and provides basic error-

checking.

• FundamentalDiagram: Constructs aggregate traffic flow relations based on

input parameters and the fundamental diagram type, and provides meth-

ods to return speed and flow as a function of traffic density.

• Network: Models the road network as a directed graph, and provides meth-

ods to answer relevant queries about nearby road segments (e.g., is a par-

ticular link the only one entering the downstream node from the same di-

rection, or is there also another merging link?). Internally this class uses the

Python graph theory library, iGraph.

• Simulation Runs the simulation for the specified time period using the con-

figuration dictated by InputManager. This class does not perform the traffic

state updates, but accesses the results at each iteration and keeps track of

them for later analysis.

• Macroscopic Traffic Model This class is responsible for performing the traffic

state update for all cells on the network. It makes use of generic classes to

avoid overly-specific implementation details (e.g., it uses the Fundamental-

Diagram class to map density values to speeds or flows without worrying

about whether the underlying fundamental diagram is Greenshields, Tri-

angular, LCM, etc) and implements the core logic. As each cell is updated,

it uses the Network class to figure out whether the upstream and down-
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stream cell boundaries involve merging/diverging links, and accounts for

this when implementing the flux rules.

• Results Organizes and formats the simulation results so that they can be

printed to the console or written to csv files.

• Analysis Provides methods to answer questions about the results. For ex-

ample, using trajectory reconstruction, it can calculate the time-dependent

travel time along different paths.

4.2.4 Results and Discussion

Figure 4.6 plots Vehicle Hours Traveled (VHT) against C market penetra-

tion, showing how total time in the system responds to incremental changes in

the mix of standard and C vehicles as the demand patterns and other inputs re-

main unchanged. Figure 4.6 shows two measures of vehicle-hours: one on the
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Figure 4.6: VHT at varying CACC market penetration
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corridor itself, and the other accounting for time spent waiting to enter the facil-

ity. The curves indicate that VHT increases as C vehicles are initially introduced

on the network, and continues to rise until C market penetration reaches about

0.2, after which it decreases the rest of the way, reaching the baseline VHT level

between 0.3 and 0.4. To explain these plots, it helps to recognize the total number

of vehicles entering the system is constant across all scenarios (because the input

demand is the same for all market penetrations of C vehicles), so the shape of

the VHT curves depends only on how long vehicles spend in this system. Conse-

quently, there are two reasons why the average time spent in the system changes

as C market penetration increases. First, recall from Figure 3.3 that capacity ini-

tially decreases as C vehicles are introduced at low penetration rates; capacity

drops from 8318 vph at pc = 0.0 to 8151 vph at pc = 0.2 for a loss of 167 vph. The

demand levels for most of the simulation are 8000 vph or less, but there are two

15 minute time periods during which demand reaches 8500 vph, which exceeds

capacity for low market penetration levels. During these 30 minutes, the vehicles

that are unable to enter the facility form a queue at the system entrance, which

grows faster for the case when market penetration is around 0.1-0.3 because de-

mand exceeds capacity by a larger margin than the baseline condition. Thus, the

VHT curve can be partially explained by capacity initially decreasing as C vehi-

cles are introduced. The second contributing factor is that standard vehicles (i.e.,

pc = 0.0) achieve maximum throughput at a higher speed than when C vehicles

are introduced (reflecting assumptions about human driver aggressiveness). For

market penetrations where 0.0 ≤ pc ≤ 0.33 the capacity is slightly larger than
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8000 vph, which means the system operates just below capacity for much of the

simulation (based on the specified demand levels). Under these conditions, the

standard vehicle-only traffic is able to pass through the system at a higher speed

than when a low percentage of C vehicles with less aggressive tendencies are

mixed into the traffic stream. As market penetration increases beyond pc = 0.33,

the capacity increases, which both reduces queuing delay at the entrance and also

means traffic operates farther away from capacity, thus increasing the speed and

reducing VHT.

Based on this explanation, we would expect queues to form at the system

entrance (i.e., demand originating from node ON1 at origin link OL1) during

the two 15 time periods when demand exceed capacity, with the queue length

greatest when capacity is the lowest: pc = 0.2. Note that demand is much lower

at the entrance ramp (i.e., demand originating from node ON2 at origin link OL2)

and is aways accommodated on the network, meaning that queues never form

there. Figure 4.7 plots the queues at the system entrance only for low C market-

penetration rates, because no queues form once pc exceeds 0.4.

Having investigated the aggregate network performance, we now turn our

attention to Figure 4.8, which shows the time-varying space-mean speed at ev-

ery cell along the main corridor for the baseline scenario in which pc = 0.0. The

y-axis represents the distance along the main corridor, with each cell equaling

approximately a quarter mile, while the x-axis represents time at 10 second time

intervals. This level of granularity helps visually highlight how speed changes

propagate through the corridor, which is particularly useful when investigating
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the impact of incidents. First, notice that vehicles travel through the system be-

ginning at the origin, with trajectories moving up and to the right (i.e., through

space and time) at a slope given by the speed.

Ignoring the two congestion patterns for now, note that changes in input

demand at the system entrance can be seen by the diagonal bands of equal color

(i.e., equal speeds) that extend the length of the corridor and change every 15-30

minutes (matching the times at which the input demand curve steps to a new

value). The bands are diagonal because it takes time for changes in demand at

the system entrance to travel the length of the corridor and impact average speed

downstream. Another feature that stands out is the horizontal band that encom-

passes the cells on links 3 and 4, and generally indicates higher speeds than up

or downstream. This is due to the fact that there is an exit ramp immediately

before the first cell on link 3, and 10% of traffic diverges, with only 90% contin-
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Figure 4.7: Queues at system entrance.
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Figure 4.8: Network speeds under baseline conditions.

uing on the main corridor, thus increasing the speed in this section. Similarly,

there is an entrance ramp directly after link 4, which means that any flow on sub-

sequent links has to come from a combination of link 4 and the entrance ramp

OL2. If traffic is not congested on links 4 and 5, the speed on link 4 will be greater

than link 5 because it has less vehicles traveling on it (due to the merging link),

which explains the change in speed seen at the boundaries between links 4 and

5. However, if link 4 enters a congested state, the merge link entering the same

downstream node may hamper its ability to send the maximum flow to try to

dissipate the congestion.

Now consider the congestion patterns, focusing in particular on the inci-

dent taking place on cell 3 of link 6 between t = 3000 and 4000 sec, characterized
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by a 35% capacity reduction during this time period. At t = 3000 sec the flow on

link 6 is 8090 vph, which represents a traffic state near capacity. When capacity

is reduced from 8318 vph to 5406 vph at L6C3, the upstream cell’s density (i.e.,

L6C2) quickly enters a congested state because its outflow is limited to 5406 vph,

while flow continues to enter at 8090 vph. As L6C2 becomes increasingly con-

gested it starts to restrict the flow that can be sent in from its upstream cell, L6C1.

In this manner the congestion jam front propagates backward along the corri-

dor, which can be seen visually from the heatmap. The heatmap shows that the

congestion moves down and to the right, with the vertical distance representing

how far along the corridor the shockwave travels before being dissipated, and

the horizontal distance indicating how long it takes to do so. Notice that the rate

at which the wave moves backwards slows down when the demand decreases,

because less flow entering a cell means that the density grows less rapidly and

takes longer to affect the upstream cell.

To visually compare the network speeds, we generate heatmaps under vary-

ing C market penetration rates. Figure 4.9 summarizes these results, where plots

(a)-(f) correspond to pc = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively. In general, we

see that the congestion caused by the temporary capacity reduction on L6C3 de-

creases with higher market penetration. These results are intuitive; the capacity

increases at high penetration rates, which means that a temporary capacity re-

duction has less impact on traffic flow. However, the more interesting case is the

transition from pc = 0.0 (plot a) to pc = 0.2 (plot b), as this represents the ini-

tial introduction of C vehicles during which capacity decreases. Thinking about
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Figure 4.9: Network speeds under varying C market penetration rates.
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congestion purely from a capacity perspective, it may seem logical that the con-

gestion pattern should become more pronounced and take longer to dissipate in

this transition. However, this interpretation does not consider the shape of the

fundamental diagram and how it impacts traffic stability in the vicinity of capac-

ity. In chapter 3 we commented that despite the capacity drop, introducing C

vehicles smooths the transition between the uncongested and congested traffic

regimes, creating a less dramatic drop in flow and speed relative to the baseline

condition with no C vehicles. Judging by the heatmap in subplot (b), we see that

this appears to be the case. The backward-moving wave moves upstream more

slowly than under the baseline conditions, and dissipates earlier than when there

are no C vehicles on the road.

Figure 4.10 shows the fundamental diagrams for pc = 0.0 and pc = 0.2,

with dotted lines indicating the abrupt transition between pre and post-incident

traffic states. Prior to the incident both traffic states are almost at capacity, and

afterwards they drop by 35%. Based on the shape of the curves, it is evident

that the slope is more negative for the baseline scenario, which explains why the

heat map shows congestion moving upstream more rapidly for pc = 0.0 than for

pc = 0.2. These wave speeds are -12.22 mph and -8.87 mph, respectively, and rep-

resent the initial backward wave speed (which eventually changes during prop-

agation due to time-varying demand at the system entrance). Notice that in the

congested state the density is higher for pc = 0.2 (about 111.5 veh/mi/lane versus

90 veh/mi/lane). This indicates that even with a lower capacity, the curve repre-

senting 20% C vehicles is able to accommodate an additional 21.5 veh/mi/lane
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Figure 4.10: Shock wave formation due to incident.

while maintaining the same flow level. The result of this is that each cell can ac-

cept more incoming traffic flow before affecting the upstream cell, which slows

the backward propagation of the shockwave. When the incident is cleared at t =

4000 on L6C3, another shock wave is sent upstream and overtakes the first wave.

Due to the fact that the initial jam front moves backward at a slower speed when

pc = 0.2, the second wave is able to overtake it and dissipate the wave farther

downstream (i.e., closer to the incident).

In summary, this simulation highlights two factors that impact traffic flow:

capacity and the shape of the fundamental diagram. The impact of capacity is

straightforward; higher capacity corresponds to higher theoretical throughput

and lower volume to capacity ratio for a fixed volume - both of which decrease a

system’s VHT. However, the shape of the fundamental diagram is also important.

A flow-density diagram that peaks sharply at low densities achieves maximum

throughput at high speeds, but breaks down quickly when experiencing conges-
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tion. This corresponds to decreased VHT when the system is uncongested, but

can cause the system to be unstable near capacity when traffic flow enters the con-

gested regime. In contrast, smoother flow-density diagrams correspond to traffic

flow dynamics which are less volatile; they have a wider range of traffic densities

in which they can sustain volumes near capacity, and do not break down rapidly

upon entering a congested regime. Putting these concepts in the context of C

market penetration, we see that at penetration rates below 0.4 there is a trade off

between capacity and stability. For example, at pc = 0.2, capacity is lower than

when pc = 0.0, but the fundamental diagram is smoother and is better able to

handle congestion. For penetration rates higher than pc = 0.4 there is no longer

a trade off; capacity increases while the fundamental diagram becomes increas-

ingly smooth (i.e., less volatile and subject to quick transitions when exceeding

the critical density).
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Chapter 5: Conclusions

In response to rapidly advancing automated and connected vehicle tech-

nology, this paper presents a framework for describing the equilibrium impact of

cooperative adaptive cruise control (C) vehicles on traffic flow. In particular, it fo-

cuses on the phase-in period when traffic is composed of both standard (S) and C

vehicles, describing how C market penetration affects capacity and traffic perfor-

mance in a single lane, and extending the modeling framework for network-level

analysis under varying demand levels and market penetration rates. Relative

to previous work that tends to focus on capacity analysis or use microsimula-

tion to generate aggregate results, this macroscopic modeling framework ana-

lytically considers how market penetration and distribution assumptions impact

aggregate fundamental traffic relations. Thus, it captures heterogeneous micro-

scopic car-following behavior at a macroscopic level under steady state condi-

tions, which is much more tractable for large-scale analysis and planning appli-

cations.

The experimental results suggest that C vehicles may initially cause the

overall lane capacity to decrease as they are introduced to a homogeneous traffic

stream of standard vehicles, but eventually improve significantly at high market
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penetration. Furthermore, even at low market penetration, C vehicles may help

stabilize traffic by slowing congestion propagation due to the shape of the fun-

damental diagram. Although these results show that the critical point at which

capacity begins improving is around 40% C vehicles, this point depends on the

specific implementation of ACC and V2V technology and the existing driver pop-

ulation.

5.1 Extensions and Future Work

The line of research proposed in this thesis can be extended in a number

of different directions, either by expanding the scope or addressing assumptions

made in the paper. A few particularly interesting extensions include:

1. Dedicated Lanes Given the ability to quantify aggregate traffic characteristics

for arbitrary mixes of standard and connected vehicles, a natural question

that arises is whether it is advantageous to restrict access on some lanes to

only C vehicles. Assuming there is no dynamic control strategy to opti-

mize the vehicle allocation and that C vehicles can choose between general

purpose lanes or dedicated C lanes depending on system performance, C

vehicles will likely distribute themselves between both facilities in a User

Equilibrium manner (i.e., where either all C vehicles travel on the C-only

lane if it has better performance, or both the general purpose and C-only

lanes have the same experienced travel time). In light of this, it would be

interesting to analyze how the presence of dedicated lanes might impact
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the total system cost. That is, given that all drivers behave according to UE

driving strategies, does simply limiting access to certain lanes improve the

overall system performance? If so, how many lanes should be allocated to

C vehicles, and under what demand and market penetration rates does this

hold?

2. Managed Lanes Rather than imposing access restrictions on particular lanes,

it would be interesting to explore the extent to which system performance

could be improved through dynamic lane management strategies. To as-

sess the value of this, we could model a setup similar to the one described

for dedicated lanes, but relax the UE assumption. Instead of assuming that

C vehicles allocate themselves such that no driver can improve their travel

time, we could solve an optimization problem to determine the system op-

timal allocation. If there is significant value to trying to shift the allocation

from UE to System Optimal Equilibrium (SOE), a dynamic control strategy

(e.g., dynamic pricing) could be employed to try to encourage the optimal

number of C vehicles on the managed lane. Further research could explore

whether it is ever worth giving standard vehicles an opportunity to pay

for improved performance and join a lane typically reserved for C vehicles

(analogous to High Occupancy Toll lanes).

3. Network Development This modeling approach can be utilized in a network-

level optimization framework to determine where and when to best intro-

duce C vehicles (or managed/dedicated lane infrastructure) onto a road
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network. Specifically, the first order macroscopic model can be used to

quantify traffic conditions and thus compute performance metrics that are

used in the objective function.

4. Impact of Platoons This thesis captures the arrangement of C vehicles on a

lane through parameter A, which describes whether vehicle classes are ran-

domly mixed or completely separated. The analysis showed that perfor-

mance improves when vehicle classes are separated, so it may be advan-

tageous to impose some type of control measures to form platoons of con-

nected vehicles, and treat them as a group instead of individual vehicles.

For example, if C vehicles were able to platoon in all lanes, the optimal lane

allocation problem considered in this paper would likely involve deciding

how to allocate groups of standard and connected vehicles amongst lanes.

5. Microsimulation modeling framework Although this thesis focused on the macro-

scopic aspects of mixed standard and connected vehicle traffic, the LCM

framework may be used to investigate microscopic car-following proper-

ties. In particular, it would be beneficial to compare the steady state curves

derived analytically in this paper to ones obtained through microsimula-

tion using the same LCM car-following model and assumptions. Modeling

at the microscopic level would also allow for additional analyses, including

investigation of local and string stability, and vehicle-level control applica-

tions.
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While these extensions provide rich opportunities to further extend the lit-

erature, this thesis provides an important foundation for such research. By propos-

ing a cooperative adaptive cruise control vehicle modeling framework, analyzing

traffic flow impact on single and multiple lane roads, and quantifying optimal

lane allocation strategies at the link level under varying demand and C market

penetration, this thesis takes an important initial step in quantifying the impact

of a potentially disruptive technology.
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Traffic and Granular FlowâĂŹ05, pages 633–643. Springer.

77



Kometani, E. and Sasaki, T. (1959). Dynamic behaviour of traffic with a non-linear
spacing-speed relationship.

Kumfer, W. and Burgess, R. (2015). Investigation into the role of rational ethics
in crashes of automated vehicles. Transportation Research Record: Journal of the
Transportation Research Board, (2489):130–136.

Labuhn, P. I. and Chundrlik Jr, W. J. (1995). Adaptive cruise control. US Patent
5,454,442.

Lari, A., Douma, F., and Onyiah, I. (2015). Self-driving vehicles and policy im-
plications: Current status of autonomous vehicle development and minnesota
policy implications. Minn. JL Sci. & Tech., 16:735.

Lenz, H., Wagner, C., and Sollacher, R. (1999). Multi-anticipative car-following
model. The European Physical Journal B-Condensed Matter and Complex Systems,
7(2):331–335.

Levin, M. W. and Boyles, S. D. (2016). A multiclass cell transmission model for
shared human and autonomous vehicle roads. Transportation Research Part C:
Emerging Technologies, 62:103–116.

Li, Y., Zhang, L., Peeta, S., He, X., Zheng, T., and Li, Y. (2016). A car-following
model considering the effect of electronic throttle opening angle under con-
nected environment. Nonlinear Dynamics, 85(4):2115–2125.

Liang, C.-Y. and Peng, H. (1999). Optimal adaptive cruise control with guaran-
teed string stability. Vehicle system dynamics, 32(4-5):313–330.

Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves. II. A theory of
traffic flow on long crowded roads. In Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, volume 229, pages 317–345.
The Royal Society.

Logghe, S. and Immers, L. H. (2008). Multi-class kinematic wave theory of traffic
flow. Transportation Research Part B: Methodological, 42(6):523–541.

Mahmassani, H. S. (2016). 50th anniversary invited article - Autonomous vehicles
and connected vehicle systems: Flow and operations considerations. Trans-
portation Science, 50(4):1140–1162.

Marsden, G., McDonald, M., and Brackstone, M. (2001). Towards an understand-
ing of adaptive cruise control. Transportation Research Part C: Emerging Technolo-
gies, 9(1):33–51.

Milanés, V. and Shladover, S. E. (2014). Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental data. Trans-
portation Research Part C: Emerging Technologies, 48:285–300.

78



Mitchell, J. S., Payton, D. W., and Keirsey, D. M. (1987). Planning and reason-
ing for autonomous vehicle control. International Journal of Intelligent Systems,
2(2):129–198.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,
Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., et al. (2008). Junior: The
Stanford entry in the urban challenge. Journal of field Robotics, 25(9):569–597.

Ngoduy, D. (2012). Application of gas-kinetic theory to modelling mixed traffic
of manual and ACC vehicles. Transportmetrica, 8(1):43–60.

Ngoduy, D. (2013). Instability of cooperative adaptive cruise control traffic flow:
A macroscopic approach. Communications in Nonlinear Science and Numerical
Simulation, 18(10):2838–2851.

Ngoduy, D. and Jia, D. (2016). Multi anticipative bidirectional macroscopic traffic
model considering cooperative driving strategy. Transportmetrica B: Transport
Dynamics, pages 1–15.

NHTSA (2011). USDOT connected vehicle research program: Vehicle-to-vehicle
safety application research plan. Technical report.

Ni, D. (2015). Traffic flow theory: Characteristics, experimental methods, and numerical
techniques. Butterworth-Heinemann.

Ni, D., Leonard, J. D., Jia, C., and Wang, J. (2015). Vehicle longitudinal control
and traffic stream modeling. Transportation Science, 50(3):1016–1031.

Nikolos, I. K., Delis, A. I., and Papageorgiou, M. (2015). Macroscopic mod-
elling and simulation of acc and cacc traffic. In Intelligent Transportation Systems
(ITSC), 2015 IEEE 18th International Conference on, pages 2129–2134. IEEE.

Nowakowski, C., O’Connell, J., Shladover, S. E., and Cody, D. (2010). Coopera-
tive adaptive cruise control: Driver acceptance of following gap settings less
than one second. In Proceedings of the Human Factors and Ergonomics Society An-
nual Meeting, volume 54, pages 2033–2037. SAGE Publications Sage CA: Los
Angeles, CA.

Ntousakis, I. A., Nikolos, I. K., and Papageorgiou, M. (2015). On microscopic
modelling of adaptive cruise control systems. Transportation Research Procedia,
6:111–127.

Papageorgiou, M., Papamichail, I., Messmer, A., and Wang, Y. (2010). Traffic
simulation with metanet. In Fundamentals of traffic simulation, pages 399–430.
Springer.

Pilutti, T. and Ulsoy, A. G. (1999). Identification of driver state for lane-keeping
tasks. IEEE transactions on systems, man, and cybernetics-Part A: Systems and hu-
mans, 29(5):486–502.

79



Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of applied
physics, 24(3):274–281.

Pomerleau, D. and Jochem, T. (1996). Rapidly adapting machine vision for auto-
mated vehicle steering. IEEE expert, 11(2):19–27.

Qian, Z. S., Li, J., Li, X., Zhang, M., and Wang, H. (2017). Modeling heterogeneous
traffic flow: A pragmatic approach. Transportation Research Part B: Methodologi-
cal, 99:183–204.

Richards, P. I. (1956). Shock waves on the highway. Operations research, 4(1):42–51.

Risack, R., Mohler, N., and Enkelmann, W. (2000). A video-based lane keeping
assistant. In Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE,
pages 356–361. IEEE.

Schakel, W. J., Van Arem, B., and Netten, B. D. (2010). Effects of cooperative adap-
tive cruise control on traffic flow stability. In Intelligent Transportation Systems
(ITSC), 2010 13th International IEEE Conference on, pages 759–764. IEEE.

Shladover, S., Su, D., and Lu, X.-Y. (2012). Impacts of cooperative adaptive cruise
control on freeway traffic flow. Transportation Research Record: Journal of the
Transportation Research Board, (2324):63–70.

Subramanian, V., Burks, T. F., and Arroyo, A. (2006). Development of machine
vision and laser radar based autonomous vehicle guidance systems for citrus
grove navigation. Computers and electronics in agriculture, 53(2):130–143.

Sugiyama, Y. (1999). Optimal velocity model for traffic flow. Computer Physics
Communications, 121:399–401.

Talebpour, A., Mahmassani, H. S., and Bustamante, F. E. (2016). Modeling driver
behavior in a connected environment: Integrated microscopic simulation of
traffic and mobile wireless telecommunication systems. Transportation Research
Record: Journal of the Transportation Research Board, (2560):75–86.

Taliwal, V., Jiang, D., Mangold, H., Chen, C., and Sengupta, R. (2004). Empirical
determination of channel characteristics for DSRC vehicle-to-vehicle commu-
nication. In Proceedings of the 1st ACM international workshop on Vehicular ad hoc
networks, pages 88–88. ACM.

Treiber, M. and Helbing, D. (2001). Microsimulations of freeway traffic including
control measures. Automatisierungstechnik. Vol. 49, no. 11.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested traffic states in em-
pirical observations and microscopic simulations. Physical review E, 62(2):1805.

Treiber, M. and Kesting, A. (2013). Traffic Flow Dynamics: Data, Models and Simu-
lation.

80



Vahidi, A. and Eskandarian, A. (2003). Research advances in intelligent collision
avoidance and adaptive cruise control. IEEE transactions on intelligent trans-
portation systems, 4(3):143–153.

Van Arem, B., Hogema, J., Vanderschuren, M., and Verheul, C. (1996). An assess-
ment of the impact of autonomous intelligent cruise control.

Van Arem, B., Van Driel, C. J., and Visser, R. (2006). The impact of cooperative
adaptive cruise control on traffic-flow characteristics. IEEE Transactions on In-
telligent Transportation Systems, 7(4):429–436.

VanderWerf, J., Shladover, S., Kourjanskaia, N., Miller, M., and Krishnan, H.
(2001). Modeling effects of driver control assistance systems on traffic. Trans-
portation Research Record: Journal of the Transportation Research Board, (1748):167–
174.

Wang, J. and Rajamani, R. (2004). Should adaptive cruise-control systems be de-
signed to maintain a constant time gap between vehicles? IEEE Transactions on
Vehicular Technology, 53(5):1480–1490.

Wilson, R., Berg, P., Hooper, S., and Lunt, G. (2004). Many-neighbour interaction
and non-locality in traffic models. The European Physical Journal B-Condensed
Matter and Complex Systems, 39(3):397–408.

Wong, G. and Wong, S. (2002). A multi-class traffic flow model - an extension of
LWR model with heterogeneous drivers. Transportation Research Part A: Policy
and Practice, 36(9):827–841.

Xu, Q., Mak, T., Ko, J., and Sengupta, R. (2004). Vehicle-to-vehicle safety messag-
ing in DSRC. In Proceedings of the 1st ACM international workshop on Vehicular ad
hoc networks, pages 19–28. ACM.

Ye, F., Adams, M., and Roy, S. (2008). V2V wireless communication protocol for
rear-end collision avoidance on highways. In Communications Workshops, 2008.
ICC Workshops’ 08. IEEE International Conference on, pages 375–379. IEEE.

Yi, J. and Horowitz, R. (2006). Macroscopic traffic flow propagation stability for
adaptive cruise controlled vehicles. Transportation Research Part C: Emerging
Technologies, 14(2):81–95.

Yokota, T. K. (1998). A study of AHS effects on traffic flow at bottlenecks. In
Towards the new horizon together. Proceedings of the 5th world congress on intelligent
transport systems, held 12-16 October 1998, Seoul, Korea, paper no. 3200.

Zheng, L., Jin, P. J., and Huang, H. (2015). An anisotropic continuum model
considering bi-directional information impact. Transportation Research Part B:
Methodological, 75:36–57.

81



Zheng, L., Ma, S., and Zhong, S. (2011). Analysis of honk effect on the traffic flow
in a cellular automaton model. Physica A: Statistical Mechanics and its Applica-
tions, 390(6):1072–1084.

Zwaneveld, P. J. and Van Arem, B. (1997). Traffic effects of automated vehicle
guidance systems: a literature survey.

82


	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Scope
	Thesis Overview

	Background and Literature Review
	Traffic Flow Modeling Background
	Microscopic Traffic Models
	First-order Macroscopic Traffic Model
	Connection between Micro and Macro Models

	Literature Review
	Microscopic Perspective
	Macroscopic Perspective
	Discussion


	Modeling Equilibrium Behavior of Heterogeneous Traffic with CACC Vehicles
	Overview
	Vehicle Classes and Behavioral Assumptions
	Longitudinal Control Model (LCM)
	Microscopic Representation
	Macroscopic Representation

	Characterizing S and C Behavior with the LCM
	Modeling Heterogeneous Traffic
	Probabilities of Car-following Behaviors
	Aggregate Performance

	Numerical Example
	Summary

	Application to Macroscopic Network Modeling
	First-Order Continuum Traffic Model
	Numerical Solution: Cell Transmission Model
	Network Extension
	Modeling Heterogeneous Traffic with C Vehicles

	Case Study: Freeway Corridor
	Network
	Inputs
	Software Implementation
	Results and Discussion


	Conclusions
	Extensions and Future Work


