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The human mirror neuron system (MNS) is a fundamental sensorimotor system that plays 

a critical role in action observation and imitation. Despite a large body of experimental 

and theoretical MNS studies, the visuospatial transformation between the observed and 

the imitated actions has received very limited attention. Therefore, this work proposes a 

neurobiologically plausible MNS model, which examines the dynamics between the 

fronto-parietal mirror system and the parietal visuospatial transformation system during 

action observation and imitation. The fronto-parietal network is composed of the inferior 

frontal gyrus (IFG) and the inferior parietal lobule (IPL), which are postulated to generate 

the neural commands and the predictions for its sensorimotor consequences, respectively. 

The parietal regions identified as the superior parietal lobule (SPL) and the intraparietal 

sulcus (IPS) are postulated to encode the visuospatial transformation for enabling view-

independent representations of the observed action. The middle temporal region is 

postulated to provide the view-dependent representations such as direction and velocity 



  

of the observed action. In this study, the SPL/IPS, IFG, and IPL are modeled with 

artificial neural networks to simulate the neural mechanisms underlying action imitation. 

The results reveal that this neural model can replicate relevant behavioral and 

neurophysiological findings obtained from previous action imitation studies. Specifically, 

the imitator can replicate the observed actions independently of the spatial relationships 

with the demonstrator while generating similar synthetic functional magnetic resonance 

imaging blood oxygenation level-dependent responses in the IFG for both action 

observation and execution. Moreover, the SPL/IPS can provide view-independent visual 

representations through mental transformation for which the response time monotonically 

increases as the rotation angle augments. Furthermore, the simulated neural activities 

reveal the emergence of both view-independent and view-dependent neural populations 

in the IFG. As a whole, this work suggests computational mechanisms by which 

visuospatial transformation processes would subserve the MNS for action observation 

and imitation independently of the differences in anthropometry, distance, and viewpoint 

between the demonstrator and the imitator. 
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Chapter 1: Introduction 
 

The human imitation faculty has been generally understood to be a primary means of 

learning complex skills such as facial expressions, manual actions, and language, 

particularly through imitation studies in infancy (Kuhl & Meltzoff, 1996; Meltzoff & 

Moore, 1983, 1977). Moreover, cross-species comparisons between humans and 

nonhuman primates have revealed that humans employ some unique cognitive 

mechanisms such as counterfactual reasoning in imitation learning, which  allows for 

learning from others’ mistakes (Want & Harris, 2001). Such distinctive human ability to 

reproduce the behaviors observed at an earlier time is called deferred imitation (or 

observational learning), and plays a key role in passing learned knowledge onto others 

and even next generations through so-called the diffusion chains (Flynn & Whiten, 2008; 

McDonough, Mandler, McKee, & Squire, 1995). Therefore, it appears that imitation 

through observational learning is a highly complex cognitive process employing various 

cognitive abilities such as visual perception, memory, recall, reproduction, and 

motivation of behaviors (Carroll & Bandura, 1987). Consequently, the study of imitation 

learning has become increasingly popular as it could offer a new route to develop our 

understanding of functional relationships between representations of perception and 

action, efficient motor learning, and modular motor control. 

In 1908, Liepmann initially postulated that humans have particular imitation systems in 

the left parietal region by using the deficit-lesion method, which corresponds to what is 

now called ideomotor apraxia (IMA), where the patients with IMA have difficulty with 
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imitation and performance of meaningful gestures on verbal command (Goldenberg, 

2003). In accordance with this pioneering work, subsequent researches have provided 

supporting evidences that impaired imitation observed in IMA correlates with not only 

the left parietal cortex but also the left premotor cortex, the supplementary motor area, 

and the posterior parietal cortex (PPC) including the superior parietal lobule (SPL) and 

the left inferior parietal lobule (IPL) (Goldenberg, 2009; Imazu, Sugio, Tanaka, & Inui, 

2007; Wheaton, Nolte, Bohlhalter, Fridman, & Hallett, 2005). Later, due to the advent of 

various neurophysiological and brain-imaging technologies, numerous studies have 

indicated the existence of a large temporo-parieto-frontal network, called the mirror 

system or mirror neuron system (MNS) (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 

2003; Giacomo Rizzolatti, Fogassi, & Gallese, 2001). Specifically, many neuroimaging 

studies have revealed that the inferior frontal gyrus (IFG) and the IPL exhibit greater 

activation in the context of MNS, thus these two brain regions are named the frontal and 

parietal MNS, respectively (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Giacomo 

Rizzolatti et al., 2001). In addition, a so-called mirror-like system in the superior 

temporal sulcus (STS) has been often considered in MNS studies, because it provides a 

visual description of the observed action to the parietal MNS (Iacoboni et al., 2001). 

Specifically, the STS responds to the visual representation of body limbs involved in the 

observed action (Iacoboni, 2005), but is not activated when unknown actions are 

perceived (R. Christopher Miall, 2003). In particular, a similar MNS activity during 

action observation and execution clearly suggests that this network is responsible for 
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action understanding and imitation learning, since imitation requires the abilities to 

observe an action, and subsequently, to replicate the observed action (Carr et al., 2003). 

Interestingly, when considering action imitation in an ecologically valid context, naïve 

spectators can easily notice that humans can observe and reproduce other individual’s 

actions independently of various spatial relationships between them (e.g., the differences 

in distance and viewpoint). Remarkably, several sensorimotor studies have investigated 

the neural processes underlying mental transformation of visuospatial information such as 

re-orientation, rotation, and scaling (Buneo & Andersen, 2006; Culham & Kanwisher, 

2001; Grefkes & Fink, 2005; Thiel, Zilles, & Fink, 2004; Wolpert, Goodbody, & Husain, 

1998). These studies have provided converging evidences that the PPC, particularly the 

SPL and intraparietal sulcus (IPS), plays a critical role in visuospatial processing. 

Interestingly, some MNS studies have recently focused on the importance of such 

visuospatial processes in imitation through observational learning. These studies have 

provided indirect as well as direct evidences that the MNS functionalities are mediated by 

view-independent and view-dependent representations of the observed actions (Caggiano 

et al., 2011; Hesse, Sparing, & Fink, 2009; Oosterhof, Tipper, & Downing, 2012). 

Besides such a large body of experimental studies, several conceptual and computational 

modeling approaches have been proposed to understand the neural mechanisms and 

functional roles of the MNS, in particular the IFG and IPL that are two key components 

of it (J. B. Bonaiuto, Rosta, & Arbib, 2007; Iacoboni, 2005; R. Christopher Miall, 2003; 

Oztop, Wolpert, & Kawato, 2005). Specifically, these models commonly emphasized the 

sensorimotor control aspects of the MNS in imitation learning, thus they have adopted the 

theoretical internal model framework to guide such a functional role of the MNS. Within 
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this internal model framework, it has been presumed that the STS-IPL-IFG pathway 

would work as an inverse model by creating the motor representation available for 

imitation from the visual representation of an observed action (Iacoboni et al., 1999). 

Moreover, it has been suggested that the reverse IFG-IPL-STS pathway would serve as a 

forward model by building the specified visual representation for a self-action from the 

corresponding motor representation to be imitated (Iacoboni et al., 1999). Subsequently, 

this theoretical model has been extended by incorporating the cerebellum (CB) to 

implement another pair of inverse and forward models in parallel with the existing 

temporo-parieto-frontal network (R. Christopher Miall, 2003). Interestingly, in the 

Miall’s model, the PPC works as a hub of the model interfacing between the IFG, IPL, 

and STS. Specifically, the PPC interacts with the MNS network to provide trajectory-

invariant visuospatial representations of perception and action (R. Christopher Miall, 

2003). 

Although these modeling approaches are highly informative to examine mechanisms of 

the MNS in imitation learning, several important computational elements have received 

little attention. First, a small minority of studies have focused on adaptive inverse control 

(i.e., visual-to-motor mapping) that is relevant to the frontal MNS. Second, the parieto-

frontal interaction (i.e., forward-inverse coupling between IPL and IFG) has not been 

taken into consideration in the computational models during imitation through 

observational learning. In other words, the two-way process of both visual-to-motor and 

motor-to-visual transformations, which underpins the imitative learning, has not been 

computationally demonstrated. Third, no computational efforts have attempted to 

integrate the PPC as a provider of view-invariant representation into the MNS model. 
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Specifically, for action imitation, the PPC allows the MNS to decode the intentions 

inherent in the perceived actions by processing any difference in anthropometry (e.g., 

upper arm and forearm lengths), distance (e.g., close or far), the functional ranges of 

motion (e.g., shoulder horizontal adduction and elbow horizontal flexion), and more 

importantly viewpoint (e.g., facing each other or in the same direction) between an 

imitator and a demonstrator. Fourth, very few studies have validated their neural network 

models by means of synthetic neuroimaging methods in addition to network and 

behavioral performances that are typically used in most of the existing computational 

MNS models and other sensorimotor models (Michael A. Arbib, Billard, Iacoboni, & 

Oztop, 2000). Namely, a majority of the computational models cannot bridge the growing 

brain-imaging data obtained in many MNS studies with their proposed model 

mechanisms. Therefore, in this work, a novel neural architecture is proposed to address 

these four knowledge gaps one by one with the following four specific aims. 
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1.1 Specific aims (SA) 

1.1.1 Adaptive inverse scheme in IFG 

This first SA proposes to model how the brain learns to control the upper limb through 

inverse computation in the IFG (i.e., frontal MNS) from observed actions. It is predicted 

that this model can learn to imitate by acquiring the relationship between observed 

actions and the resulting motor plans used to reproduce such observed actions. 

1.1.2 Fronto-parietal interaction between IFG and IPL throughout learning 

The second SA addresses how the brain can learn to predict actions through forward 

computation in the IPL (i.e., parietal MNS), and its interaction with the IFG (i.e., frontal 

MNS). Such a predictive mechanism is likely to be related to the developmental aspects 

in the imitation through observational learning. Specifically, the predictions provided by 

the IPL can be imperfect in the early developmental stage, but they would be still useful 

to gradually train the inverse computation in the IFG. It is predicted that this coupling 

between IFG and IPL allows observational learning and reproduction of the observed 

actions by modeling a chain of mirroring function, which is known to have functionally 

and computationally similar properties during action observation and execution of the 

same action. It is also predicted that the formation of the IPL (i.e., forward model) should 

precedes that of the IFG (i.e., inverse model) throughout the learning. 

1.1.3 Visuospatial transformation in SPL and IPS 

The third SA examines the potential role of the SPL and IPS in visuospatial 

transformations from the demonstrator’s allocentric to the imitator’s egocentric space 
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required for observational learning and imitation. It is predicted that such a 

transformation capability allows the imitator to observe the demonstrator’s actions 

without constraints of the frames of reference, viewpoints, and anthropometric data, and 

in turn, to observe even its own actions for visual feedback. Particularly, this visual 

feedback is served to improve the quality of the learned actions in both IFG and IPL. It is 

also expected that the SPL/IPS learns faster than the IFG allowing thus the IFG to 

correctly perform the visual-to-motor mapping.  

1.1.4 Model validation with behavioral and synthetic functional neuroimaging data 

Although the mechanisms and functional roles of each MNS component are carefully 

considered in the development of the MNS model, there still exists the knowledge gap 

between the simulated neural activity from the MNS model and actual functional 

neuroimaging data from the experimental findings. Therefore, to bridge this gap, a 

synthetic functional neuroimaging approach is proposed to generate realistic neural 

activity patterns that simulate functional magnetic resonance imaging (fMRI) data during 

action observation and execution. Then, the cross-validation method between the 

synthetic and actual data under the same condition is employed to assess the validity of 

the proposed MNS model. It is predicted that after learning of the three networks, 

similarly to experimental MNS studies, the activity patterns of the MNS will be similar 

between the observation and execution of the action. Moreover, it is expected that both 

view-independent and view-dependent neural populations should emerge in the IFG after 

learning. 
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Therefore, by proposing a novel neurobiologically plausible MNS architecture, the 

overall goal of this work is to examine the hypotheses that i) the specific parietal regions 

(i.e., SPL/IPS) would be critical to implement visuospatial transformation capability, and 

ii) this transformation system would subserve the MNS (i.e., IFG and IPL) for action 

observation and imitation independently of the differences in anthropometry, distance, 

and viewpoint. This proposed MNS model is validated by employing both behavioral and 

neuroimaging data on the mirror neurons and MNS literatures. 

The remainder of this manuscript is organized as follows. The second chapter reviews 

some representative experimental, theoretical, and computational literatures related to 

both MNS and synthetic neuroimaging techniques, which guide the developments of the 

proposed MNS and the synthetic neuroimaging models, respectively. The third chapter 

presents the methods, which include i) the mechanisms of the proposed conceptual MNS 

model, ii) the network architecture and learning algorithm to implement this MNS model, 

iii) the task conditions to train the model, and finally iv) the computational methods to 

model the corresponding synthetic neuroimaging data to validate the MNS activity. The 

fourth chapter assesses the performance of the proposed MNS model by investigating 

various measurements such as kinematics, response time, and neural population activity. 

Finally, the last chapter provides a summary and a discussion as well as the implications 

of the current results for future directions of this work. 
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Chapter 2: Backgrounds and Literature reviews 

 

2.1 Neurophysiological evidence of mirror neurons and mirror systems 

2.1.1 Mirror neurons in monkeys 

Mirror neurons are specialized neurons originally discovered in macaque monkeys that 

have the functional properties of discharging when the monkey not only observes specific 

goal-directed actions performed by another individual, but also executes the same (i.e., 

strictly congruent neurons) or similar (i.e., broadly congruent neurons) actions (di 

Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992). These neurons were originally 

found in the ventral premotor cortex (area F5) of a macaque monkey (Gallese et al., 

1996; Giacomo Rizzolatti, Fadiga, Gallese, & Fogassi, 1996), and subsequently also 

discovered in the rostral part of the IPL (area PF or Brodmann area 7b) (Giacomo 

Rizzolatti et al., 2001). Although both F5 and PF mirror neurons have aforementioned 

mirror properties, interestingly, they also have their own intrinsic properties. In 

particular, F5 mirror neurons discharge when the monkey sees sufficient partial traces of 

the occurring action to mentally simulate it (Umiltà et al., 2001). Moreover, most of PF 

mirror neurons selectively fire only when a specific action (e.g., grasping) is followed by 

a subsequent specific action (e.g., eating or placing in the context of sequential actions 

with different goals such as grasping for eating or grasping for placing) (Fogassi et al., 

2005). These findings indicate that F5 mirror neurons are particularly involved in the 
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understanding of action, and are postulated to code for motor schemas1 of actions 

manipulating objects (Giacomo Rizzolatti et al., 1996, 2001; Umiltà et al., 2001). On the 

other hand, PF mirror neurons code for the prediction of the next action that is not 

observed yet as well as for kinesthetic components of actions (Chaminade, Meltzoff, & 

Decety, 2005), thus they are presumed to be involved in the understanding of intentions 

inherent in the perceived actions (Carr et al., 2003; Fogassi et al., 2005). 

Further experiments have demonstrated that F5 mirror neurons selectively discharge 

when the monkey observes a biological end-effector (e.g., hand or mouth) interacting 

with an object (e.g., a reaching and grasping action), but do not discharge at all in 

response to the sight of only one of them (e.g., a hand action without an object or the 

simple presentation of an object) (Gallese et al., 1996; Giacomo Rizzolatti et al., 1996). 

Moreover, it has been found that F5 mirror neurons respond when the monkey not only 

performs a visually guided specific hand action (e.g., peanut breaking, paper ripping, 

etc.), but also perceives the corresponding action specific sounds (Kohler et al., 2002). 

Furthermore, recent studies of both ingestive mouth actions (e.g., such as sucking or 

breaking food) and facial communicative actions (e.g., tongue and lip protrusion in infant 

macaque monkeys) have showed that the observation and execution of mouth gestures 

lead to similar responses in the F5 mirror neurons (Pier F. Ferrari et al., 2006; Pier 

Francesco Ferrari, Gallese, Rizzolatti, & Fogassi, 2003). 

 

                                                 
1 A motor schema is an abstract set of rules for determining a movement that is produced by varying the 

parameters, which determine a specific movement (Schmidt, 1975). For instance, people produce a 

movement by manipulating muscle activation with the parameters such as the duration, level, or overall 

time of force. 
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Interestingly, it was found that the responses of F5 mirror neurons are unrelated with the 

identity of the demonstrator, who is a human or a monkey, and are not affected by the 

body size of the demonstrator (Gallese et al., 1996). More importantly, in the same study, 

they showed that F5 mirror neurons congruently response to the grasping action 

regardless of whether this action is performed in the center, on the right side, or on the 

left side of the monkey. Moreover, a recent study revealed that the F5 mirror neurons 

could be classified into two classes, view-dependent and view-independent, with respect 

to the viewpoint from which the actions performed by a demonstrator are observed 

(Caggiano et al., 2011). Specifically, the majority of the F5 mirror neurons (74%) 

selectively responds to the viewpoint (i.e., view-dependent mirror neurons), whereas a 

minority of them (26%) shows response invariance with respect to viewpoints (i.e., view-

independent mirror neurons). The existence of view-independent mirror neurons could 

strengthen the core for a functional role of mirror neurons in action understanding, 

because it dissociates the higher order visuospatial cognitive processes associated with 

mental rotation from the possible functions of the mirror neurons (Oh, Gentili, Reggia, & 

Contreras-Vidal, 2012). In other words, such view-independent mirror neurons match 

visuomotor representations of the observed actions in terms of their goals independently 

of the detailed visual characteristics such as a viewpoint. Although the number of view-

independent mirror neurons is only about one fourth of the whole F5 mirror neurons 

(Caggiano et al., 2011), the existence of such neurons is also consistent with a finding in 

Gallese et al. (1996). 
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2.1.2 Mirror systems in humans 

In humans, direct neurophysiological evidence of mirror properties was originally 

obtained in the left premotor areas by employing transcranial magnetic stimulation 

(TMS) (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995). Subsequent TMS studies have 

revealed that the human MNS holds two unique mirror properties not observed in 

monkeys (Maeda, Kleiner-Fisman, & Pascual-Leone, 2002; Patuzzo, Fiaschi, & 

Manganotti, 2003). One is that meaningless hand gestures as well as goal-directed hand 

actions lead to the activation in the human mirror systems, although the former does not 

activate mirror neurons in monkeys. The other is that the human mirror systems respond 

to both an action (e.g., a reaching and grasping action) and the movements forming it 

(e.g., arm reaching, finger pre-shaping, and finger closing movements), whereas the 

monkey mirror neurons are fired only when observing the whole (i.e., a goal-directed) 

action (Giacomo Rizzolatti & Craighero, 2004). These findings suggest why humans 

have higher imitation faculty than other nonhuman primates (Gangitano, Mottaghy, & 

Pascual-Leone, 2001; Giacomo Rizzolatti & Craighero, 2004). 

Since this first description of substantial evidence for human mirror systems, a large 

number of studies has attempted to identify the human homologue of monkey mirror 

neurons using various different techniques such as positron emission tomography (PET) 

(e.g., Grafton, Arbib, Fadiga, & Rizzolatti, 1996), fMRI (e.g., G. Buccino et al., 2001), 

electroencephalography (EEG) (e.g., Cochin, Barthelemy, Lejeune, Roux, & Martineau, 

1998), and magnetoencephalography (MEG) (e.g., Hari et al., 1998). These studies have 

mainly addressed functional properties of the IFG and IPL, which structurally correspond 

to the F5 and PF mirror neurons in macaque monkeys, during the execution and 
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observation of goal-directed actions. Interestingly, their results have commonly supported 

that each of these two brain areas forms a much wider network than monkey mirror 

neurons, and that their mirror properties are similar to their macaque monkey 

counterparts. Moreover, it has been found that observation of egocentric actions (i.e., 

self-actions) results in a contralateral activation of the IFG and IPL, whereas observation 

of allocentric actions (i.e., others’ actions) generates greater ipsilateral IFG and IPL 

activation (Aziz-Zadeh, Maeda, Zaidel, Mazziotta, & Iacoboni, 2002; Shmuelof & 

Zohary, 2007, 2008). On the other hand, during imitation, it has been found that the 

activity in the IFG and IPL is fairly bilateral, but is stronger in the ipsilateral hemisphere 

(Aziz-Zadeh, Koski, Zaidel, Mazziotta, & Iacoboni, 2006). Therefore, it seems 

reasonable to predict that these two brain regions regardless of functional lateralization 

constitute two cores of the MNS, in which each of them is respectively named the frontal 

MNS and the parietal MNS (Decety et al., 1997; Fadiga et al., 1995). Besides these two 

main components, a third component named mirror-like system has been identified in the 

STS (Iacoboni et al., 2001), which responds to the biological motion of body parts (e.g., 

face and hands), but does not activate during execution of the unseen action (R. 

Christopher Miall, 2003). Although the STS does not have motor properties, it plays a 

crucial role in the action imitation, which are implemented through a temporo-parieto-

frontal network (Giacomo Rizzolatti et al., 2001). Another human mirror-like system 

named the canonical neuron system has been identified in the ventral premotor cortex, 

which has comparable properties to canonical neurons as its macaque monkey 

counterpart (Chao & Martin, 2000). In particular, the canonical neuron system is often 

studied in relationship to the MNS, since it is activated when an individual either 
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executes or observes an action in the presence of objects that can be manipulated, but 

does not respond to the observation of objects alone (Chao & Martin, 2000; R. 

Christopher Miall, 2003). However, the canonical neuron system is not a part of the MNS 

because it is not activated without an object to be manipulated. 

2.1.2.1 Other functional roles of the human mirror systems 

As stated in the previous section, the human MNS is primarily responsible for action 

observation as well as action imitation. In addition to such functional roles, a large 

number of studies has investigated other important functional roles of the MNS. 

2.1.2.1.1 Imitation through observational learning 

An event-related fMRI study investigated the MNS activity in three conditions; i) the 

observation of an action with an explicit instruction to imitate, ii) the observation of an 

action without an explicit instruction to imitate, and iii) the observation of an action with 

an explicit instruction not to imitate (Giovanni Buccino et al., 2004). The results showed 

that the MNS activates in all three conditions, but the strength of the activation is stronger 

in the first condition (i.e., the observation of an action with an explicit instruction to 

imitate) than the other two conditions. Interestingly, the SPL is also activated in this first 

condition, but not in the third condition (i.e., the observation of an action with an explicit 

instruction not to imitate). This suggests that the MNS is involved in the acquisition of 

new action sequences through observational learning, and, with the intention to imitate, 

the SPL interacts closely with the MNS. This result also implies that, in the context of the 

imitation and intention, the SPL may belong to the controlled cognitive processes rather 

than the automatic processes in handling visuospatial representations (Andersen, Snyder, 
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Bradley, & Xing, 1997) and current spatial state of the body (Wolpert, Goodbody, et al., 

1998). 

2.1.2.1.2 Language acquisition and communication 

In humans, functional brain-imaging studies have revealed that MNS activity for grasping 

is closely located to Broca’s area that appears to be associated with speech production, 

suggesting thus that human language and speech evolution may be related to MNS 

mechanisms (Giacomo Rizzolatti & Arbib, 1998). Interestingly, a recent fMRI study 

focusing gestural communication between a performer and an observer revealed that the 

moment-to-moment MNS activity of the observer resonated with the neural activity 

pattern measured in the MNS of the performer (Schippers, Roebroeck, Renken, Nanetti, 

& Keysers, 2010). This result supports that the information such as motor planning and 

action intentions may flow across brains (i.e., MNSs) during social interactions. 

2.1.2.1.3 Social interaction and communication 

Several studies have focused on the relationship between the MNS and autism spectrum 

disorders (ASD), because the ASD group typically has difficulty in social interactions 

and communication (Dapretto et al., 2006; Hadjikhani, Joseph, Snyder, & Tager-

Flusberg, 2006; Oberman et al., 2005; Williams, Whiten, Suddendorf, & Perrett, 2001). 

Specifically, some positive correlations have been revealed between the MNS and ASD; 

that is, children with ASD have reduced frontal MNS activity (Dapretto et al., 2006), and 

adults with ASD have thinner cortical areas in the MNS (Hadjikhani et al., 2006). These 

findings suggest that MNS dysfunction highly correlates with social and communication 

deficits associated with ASD. Interestingly, some MNS models have implicated a failure 
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in the development of the MNS as one cause of ASD (Hamilton, 2008; Southgate & 

Hamilton, 2008; Williams et al., 2001). 

 

2.2 Neurophysiological evidence of visuospatial transformation system 

A number of fMRI and TMS results has shown that the visual perspective had little effect 

on the activation level of the MNS during action observation, although their activations 

are significantly different in imitation (Aziz-Zadeh et al., 2002; Hétu, Mercier, Eugène, 

Michon, & Jackson, 2011). More recently, it has been found that the frontal MNS is 

activated for the first-person perspective action, but not for the third-person perspective 

action, whereas the parietal MNS is activated regardless of perspective (Oosterhof et al., 

2012). In other words, this suggests that the egocentrically transformed visuomotor 

representations could play a critical role in the frontal MNS, whereas view-independent 

coding could be an essential features of the parietal MNS. Moreover, it has been found 

that the right SPL has an increase of activity during observation of actions from a first 

person perspective, whereas the left SPL has a relatively stronger activation with the third 

person perspective during action observation (Hesse et al., 2009). Taken together, these 

findings suggest that, during action observation, the visuospatial transformation would be 

mainly processed in different brain areas other than the MNS. Interestingly, numerous 

convergent results have suggested that one possible brain region involved in mental 

transformation of visuospatial information would be the PPC, particularly the SPL and 

IPS (Andersen, 1987; Buneo & Andersen, 2006; Culham & Kanwisher, 2001; Gauthier et 

al., 2002; Grefkes & Fink, 2005; Wolpert, Goodbody, et al., 1998). Specifically, the SPL 

and IPS perform complex visuospatial transformations such as rotation and scaling 
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(Andersen, 1987; Buneo & Andersen, 2006; Grefkes & Fink, 2005; G. Rizzolatti, 

Luppino, & Matelli, 1998) by processing the input signals from the visual area V5, also 

called middle temporal2 (MT), which provides selective visual motion information such 

as direction and speed of motion (Adelson & Movshon, 1982; Tootell et al., 1995). 

Moreover, it has been demonstrated that the SPL and IPS are strongly associated with 

spatial re-orientation requiring higher cognitive processes (Corbetta et al., 1998; Thiel et 

al., 2004). 

 

2.3 Internal model framework 

An internal model has been traditionally defined as a postulated neural system that 

simulates the behavior of the sensorimotor system interacting with the external 

environment (Kawato, 1999). It allows the central nervous system (CNS) to determine 

the most appropriate motor commands necessary to achieve desired specific movements 

as well as to predict the consequences of those motor commands (Kawato, 1999). 

Typically, two types of internal models can be considered; one is the forward model and 

the other is the inverse model. 

2.3.1 Forward model 

A forward model describes the causal process that transforms the motor commands into 

the sensory consequences of the corresponding actions given the current state. The notion 

                                                 
2 Considering its functional roles and information flow across brain regions, it seems to be reasonable that 

the view-dependent mirror properties of the IFG are derived from the MT, which projects to the CB (Kujala 

et al., 2007) as well as to the STS, IPL, and IFG (i.e., all MNS components) (Andersen, 1987; Culham & 

Kanwisher, 2001; Grefkes & Fink, 2005; G. Rizzolatti et al., 1998). 
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of forward model could be illustrated in the following example of a reaching and 

grasping task. The CNS incorporating a forward model of the arm receives, as three 

inputs, both the current position and velocity of the arm, and also the ongoing neural 

command to achieve the action. Based on these inputs, the forward model can predict the 

future sensory consequences (e.g., changes in position of the arm) even before the neural 

command reaches the periphery (i.e., arm muscles). Consequently, the forward model can 

accurately mimic the musculoskeletal system of arm, which transforms the motor 

commands into the position and velocity of arm through the biomechanical system of the 

arm. 

2.3.1.1 Neural substrates for forward model 

Many behavioral and neuroimaging studies have suggested that the CB (Brandauer, 

Timmann, Häusler, & Hermsdörfer, 2010; R. C. Miall, Reckess, & Imamizu, 2001; 

Nowak, Topka, Timmann, Boecker, & Hermsdörfer, 2007; Wolpert, Miall, & Kawato, 

1998) and the PPC (Desmurget et al., 1999; Mulliken, Musallam, & Andersen, 2008; 

Sirigu et al., 1996) could be two plausible brain structures that incorporate forward 

model, since both are found to be involved in sensory prediction of motor control. For 

example, it was revealed that patients with degenerative cerebellar damage have 

impairments in predictive mechanisms (i.e., forward model) (Brandauer et al., 2010). 

Another study showed that, by investigating the PPC activity of monkeys during arm 

movement, the neuronal dynamics of the PPC correlate with arm movement in a joint 

angle (Mulliken et al., 2008). Therefore, these results indicate that the CB and the PPC 

could embed forward models for sensorimotor performance such as arm movements. 
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These findings have been applied to various models implementing action execution, in 

which the fronto-parietal pathway as well as the fronto-cerebellar and in turn cerebellar-

parietal pathway commonly serve as the forward model (Iacoboni et al., 1999; R. 

Christopher Miall, 2003). Moreover, it has been suggested that the forward computation 

in the parietal cortex (particularly in the IPL) must be adaptive to permanently update its 

content for unbiased predictions (Tani, Nishimoto, & Paine, 2008; Wolpert, 1997). 

Specifically, the sensory prediction errors result from a mismatch between the actual 

(e.g., actual position of the limb) and the predicted (e.g., predicted position of the limb) 

sensory consequences of the movement. The forward model is then adapted for improved 

future movement performance by the resulting prediction errors (Mazzoni & Krakauer, 

2006; Wolpert, 1997). 

2.3.2 Inverse model 

The causal flow of the motor system associated to the forward model can be inverted 

through an inverse model that provides the motor command to achieve a certain desired 

result such as position and velocity (Wolpert, 1997). Still considering the previous 

reaching and grasping example, when the individual aims to reach the object, the desired 

movements (e.g., position of the object or desired trajectory for the task) are transformed 

into the required neural commands to perform the action. 

2.3.2.1 Neural substrates for inverse model 

It has been suggested that CB could be a possible brain region that is responsible for 

inverse model. This idea has been supported by various experimental studies such as 

behavior tests in cerebellar patients (Maschke, Gomez, Ebner, & Konczak, 2003) and 
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fMRI tests (Diedrichsen, Criscimagna-Hemminger, & Shadmehr, 2007). For example, 

Maschke et al. (2003) have discovered that cerebellar patients fail to adapt their motor 

commands during arm movement that is subjected to an unknown mechanical 

perturbation (i.e., force field). Besides the CB, it has been also demonstrated that the 

premotor cortex plays an important role in the inverse dynamics (Kawato & Gomi, 1992; 

R. Christopher Miall, 2003; Tani et al., 2008) and inverse kinematics (Seitz et al., 1994). 

In particular, Seitz et al. (1994) showed in their PET study that the CB and the premotor 

cortex engage in learning of hand trajectories, which shows that these two structures are 

responsible for the inverse kinematics. Moreover, it was revealed that the CB and the 

premotor cortex increase in neural activity during frequent visual feedback, which 

indicates that these areas form a feedback network (Vaillancourt, Mayka, & Corcos, 

2006). Consequently, this finding indirectly supports that these two areas are potential 

brain areas to incorporate inverse models, because the peripheral feedback signal, which 

is based on the difference between the actual and desired movements, is typically used to 

generate the appropriate motor command by the inverse model (R. J. Gentili et al., 2015; 

Gomi & Kawato, 1992; Guenther & Ghosh, 2003; Imamizu et al., 2000). 

Furthermore, several modeling studies have proposed detailed neural models of the CB 

pathways that, after a learning period, are able to compute the inverse dynamics. This 

suggests that the CB can implement inverse models to control planar arm movements in 

horizontal and vertical workspaces (Ebadzadeh, Tondu, & Darlot, 2005; R. J. Gentili et 

al., 2009; Schweighofer, Arbib, & Kawato, 1998; Spoelstra, Schweighofer, & Arbib, 

2000). Subsequent researches including the premotor and motor cortices have also 

suggested that these neural structures could implement the inverse kinematics (Bullock, 
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Grossberg, & Guenther, 1993; R. J. Gentili et al., 2015; R. J. Gentili, Oh, Molina, & 

Contreras-Vidal, 2011; Guenther & Barreca, 1997; Oh, Gentili, Reggia, & Contreras-

Vidal, 2011; Oh et al., 2012; Schweighofer et al., 1998; Vilaplana & Coronado, 2006). 

Generally, a crucial problem related to the inverse computation lies in the fact that there 

is not a unique solution, thus the same movement can be produced employing an infinite 

number of combinations of parameters (e.g., stiffness, angular configuration). For 

instance, when considering the upper limb, a set of angles determines a unique end-point 

position (i.e., forward computation). On the other hand, when considering a unique end-

point position, the inverse computation can result in various sets of angular 

configurations. However, if the inverse model has been appropriately learned, then the 

actual and desired movements should be same (Wolpert, Miall, et al., 1998). 

2.3.3 Combination of forward and inverse models 

As stated above, the inverse model takes as input the desired position and provides as 

output the corresponding motor command. On the other hand, the forward model takes as 

input the motor command and predicts the future position that will be reached. Therefore, 

it is crucial to note that the output of the inverse model (which is the neural command) 

can be provided as input to the forward model allowing both of them to interact with each 

other. Specifically, it has been suggested that when an inverse model generates the motor 

command to be sent to the musculoskeletal system, a copy of this motor command, called 

efference copy, is also sent to a forward model to predict the corresponding sensory 

consequences (e.g., changes in the position of arm). Still considering the previous 

example, when the individual aims to reach the target object, the sequence of desired 
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movement (e.g., the arm trajectory to perform) will be determined and then sent to the 

inverse model, which will compute the required neural motor commands triggering the 

arm muscles. Simultaneously, an efference copy of this motor command is sent to the 

forward model, which predicts the future position of the arm. Subsequently, the inverse 

model uses these sensory predictions for online movement control guiding the arm and 

hand to the target object (Desmurget et al., 1999). Consequently, the combination of two 

adaptive neural structures can provide a high degree of adaptability and flexibility to the 

brain for movement control allowing thus, adaptive interactions with novel objects and 

environments (Kawato, 1999). Moreover, the simulation theory suggests that the forward 

model is at the core of motor imagery processes for covert action execution, thus the IPL 

allows for mental simulation of the observed action during action observation (R. Gentili, 

Han, Schweighofer, & Papaxanthis, 2010; R. J. Gentili et al., 2015; Jeannerod, 2001). 

 

2.4 Review of existing computational MNS models 

2.4.1 Modular selection and identification for control (MOSAIC) model 

The MOSAIC model was initially introduced in a motor control framework to provide 

mechanisms for decentralized automatic modular selection so as to achieve the best 

control for the current task (Wolpert & Kawato, 1998). The basic principle of this model 

is to incorporate several pairs of inverse and forward models, each of which is selected 

appropriately for a given environment. In this model, the activity of the forward model is 

often considered analogous to MNS activity due to its adaptive property during imitation. 

However, since the MOSAIC was initially designed in the context of pure motor control 
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theory without considering biological relevance, its functional components are generally 

not directly related to any brain structure3 (Oztop, Kawato, & Arbib, 2006; Wolpert & 

Kawato, 1998). Nonetheless, the MOSAIC has been successfully extended to model 

action recognition and imitation processes (Haruno, Wolpert, & Kawato, 2001; Wolpert, 

Doya, & Kawato, 2003). Although its variations can effectively model action recognition 

and imitation, they have not accounted for changes in the frames of reference. In other 

words, the MOSAIC models do not include any relevant functional structure that is 

responsible for the visuospatial transformation. Therefore, the model cannot process the 

arbitrary actions performed in any allocentric frame of reference. 

2.4.2 Demiris model 

The Demiris model is proposed as an imitation architecture of primate imitation 

mechanisms (J. Demiris & Hayes, 2002; Y. Demiris & Johnson, 2003). In particular, the 

model employs a dual-route process observed in the imitation mechanisms, that is, a 

passive and an active architectures. Specifically, the passive process is to acquire any 

demonstrated movement within the capabilities of the imitator, whereas the active 

process is to reproduce the best movement from many possible predictions; the latter is 

conceptually similar to the MOSAIC model. Because the Demiris model is inspired from 

the MOSAIC model (particularly, the distributed forward models that learn 

simultaneously), it has no direct biological relevance with the MNS. Moreover, since the 

authors focused more on the imitation system, they assumed that two different concepts, 

mirror activity and imitation ability, are interchangeable (Oztop et al., 2006). 

                                                 
3 Wolpert & Kawato (1998) described that their MOSAIC model can be located anywhere in the brain, and 

the CB is a promising region for it. 
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Interestingly, the Demiris model includes, only at the conceptual level, the mechanism of 

the PPC that accounts for the transformation of the frame of reference between the 

demonstrator and the imitator. 

2.4.3 Mental state inference (MSI) model 

The MSI model is designed considering both a visual feedback control circuit, which 

involves the parietal and motor cortices, and a forward prediction mechanism assigned to 

the MNS (Oztop et al., 2005). These two systems provide an inference mechanism 

required for understanding other individual’s intentions, thus allowing basic imitation 

abilities. In other words, the MSI model includes biologically plausible MNS components 

as well as motor control components that are employed to perform covert and overt 

actions. However, this model suggests only a simplified parietal model, which can extract 

visual features for the control of a particular action by assuming that the observed action 

is already egocentrically transformed. Namely, this model does not consider the problem 

of visuospatial transformation. Finally, another limitation is that the MSI does not 

explicitly incorporate the inverse computation, which is considered as an important 

characteristic of the MNS in terms of visual-to-motor transformation. 

2.4.4 Lopes model 

The Lopes model proposes a general architecture for action imitation involving the 

viewpoint transformation that performs a rotation to align the demonstrator’s body to that 

of the imitator (Lopes & Santos-Victor, 2005). Although this model is based on the 

biological relevance of the monkey mirror property, it emphasizes only the F5 mirror 

neurons without considering the PF mirror neurons. In other words, Lopes & Santos-
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Victor (2005) pay attention only to a counterpart of the frontal MNS but disregard an 

equivalent part of the parietal MNS in their model. Moreover, this model implements the 

visuospatial transformation without considering any biological relevance of the PPC, and 

furthermore, its visuospatial transformation handles not the whole body but only the arm. 

Indeed the viewpoint transformation is employed with transformation matrix (i.e., a pure 

mathematical method) in the model, resulting thus in the absence of examination of the 

corresponding neural processes related to the PPC. Finally, the Lopes model interestingly 

includes the canonical neurons found in area F5 (see section 2.1.2) to simulate its 

functional feature in the object manipulation during imitation. 

2.4.5 MNS and MNS2 models 

The MNS/MNS2 is a system level model of monkey mirror neurons to address data on 

mirror neurons for grasping (J. Bonaiuto & Arbib, 2010; J. B. Bonaiuto et al., 2007; 

Oztop & Arbib, 2002). These models include both F5 and PF mirror neurons and 

validates their activation at the neurophysiological level (e.g., firing). In particular, these 

models can simulate behavioral data for grasping with audiovisual mirror neurons as well 

as mirror responses to grasp a hidden object, which was formerly visible but is currently 

hidden in the end state. However, the MNS/MNS2 models are designed to address the 

development of mirror neurons as well as neural firing patterns instead of predicting a 

motor control role for mirror neurons (Oztop et al., 2006). Therefore, these models do not 

provide internal model mechanisms to simulate the basic imitation ability nor the 

visuospatial transformation components that would support the mirror neurons. 

Therefore, this model is not able to model the imitation through observational learning. 
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2.4.6 Summary 

In conclusion, all these computational models mentioned above are based on particular 

mechanisms to address behavioral and neurophysiological data on mirror systems during 

specific actions. However, they have not examined the following three notions; first, the 

important functional role of inverse computation in the frontal MNS, which transforms 

visual representations to motor representations; second, how two modular components of 

the mirror system (i.e., the IFG and IPL) response within the parieto-frontal network in 

real-time during observational learning for imitation and reproduction to imitate; and 

third, the visuospatial transformation (i.e., in the SPL/IPS) and the visual motion 

information processing (i.e., in the MT) that respectively provide the view-independent 

and view-dependent representations of the observed actions to the MNS. Particularly, it 

must be noted that although the SPL/IPS is not a part of the MNS per se, it is assumed to 

subserve the MNS to enable action imitation independently of the differences in 

anthropometry, distance, and visual perspective between a demonstrator and an imitator 

(Oh et al., 2012). Therefore, it is important to develop a neurophysiologically plausible 

MNS model that captures fronto-parietal dynamics in conjunction with the visuospatial 

transformation processes to examine the functional relationships between the IFG (for 

inverse computations), IPL (for sensorimotor predictions), MT (for view-dependent 

representation), and SPL/IPS (for view-independent representation). 

 

2.5 Backgrounds of functional neuroimaging modeling 

Prior to the development of functional brain imaging techniques, the neural correlates of 

human cognitive, emotional, and sensorimotor functions were mainly inferred by 
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examining the effects of a selective brain injury or lesion, and by studying the neuronal 

activities from implanted electrodes in particular brain regions (Barry Horwitz, Tagamets, 

& McIntosh, 1999). The revolutionary changes in the understanding of the neural basis 

and functioning of the human brain in response to specific stimuli have been driven by 

the use of various noninvasive neuroimaging techniques such as TMS, computed 

tomography, PET, magnetic resonance imaging (MRI), EEG, or MEG, and near-infrared 

spectroscopy. With these techniques, functional brain activities could be recorded in 

awake human subjects as they perform specific cognitive, emotional, and sensorimotor 

tasks. Consequently, both brain functions and the interactions between brain regions 

associated with specific tasks have been statistically assessed. More specifically, 

traditional neuroimaging studies have primarily focused on localizing neural activities to 

determine brain functions associated with specific tasks (e.g., Cox, 1996; Friston et al., 

1995; Gold et al., 1998). In addition to these studies, recent neuroimaging researches 

have involved functional connectivity analyses, which examine the underlying 

interregional neural interactions during particular tasks or in the resting brain (e.g., 

Bullmore & Sporns, 2009; Greicius, Krasnow, Reiss, & Menon, 2003). 

Although these statistical assessments have been generally applied to functional 

neuroimaging data for decades, novel approaches employing computational neural 

modeling techniques have been recently proposed (e.g., M. A. Arbib, Bischoff, Fagg, & 

Grafton, 1994; Michael A. Arbib, Billard, Iacoboni, & Oztop, 2000; Michael A. Arbib, 

Fagg, & Grafton, 2002; Horwitz et al., 1999; Horwitz & Tagamets, 1999; Horwitz, 2004; 

McIntosh et al., 1994; Nunez, 1989). These innovative neural modeling methods can fall 

into two categories: systems-level neural modeling and large-scale neural modeling 
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(Barry Horwitz et al., 1999). The systems-level neural modeling aims at assessing the 

task-dependent quantitative strengths of interregional brain interactions using covariance 

structural equation modeling (McIntosh et al., 1994). On the other hand, the large-scale 

neural modeling is typically used to relate synthetic neural activity simulated from large-

scale neural models to actual neural activity obtained from functional neuroimaging 

during specific tasks (M. A. Arbib et al., 1994). Therefore, it has been called ‘synthetic 

functional brain imaging’ and is employed in the current study to validate the proposed 

MNS model. Moreover, this is a quantitative way to illustrate the dynamics of specific 

neural systems during particular cognitive or sensorimotor tasks. 

2.5.1 Basic principles of functional neuroimaging techniques 

According to the SA4, the MNS model developed in the present work is validated by 

employing a synthetic functional brain imaging model based on MRI. Therefore, this 

section provides an introductory overview of the principles in this imaging technique for 

facilitating the understanding of the generation of synthetic neuroimaging signals. In 

particular, this section introduces PET prior to fMRI since the underlying principles of 

PET are similar to those of fMRI in terms of indirect measures of cerebral blood flow 

(CBF) changes (B. Horwitz, Friston, & Taylor, 2000). As a natural consequence, a 

synthetic fMRI technique is similar to corresponding a synthetic PET technique, because 

the former is actually an extension of the latter (Michael A. Arbib et al., 2000; Barry 

Horwitz & Tagamets, 1999). 
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2.5.1.1 PET 

PET is a nuclear imaging technique that traces the gamma radioactivity when the labeled 

compound (or radiotracer) accumulates in specific brain regions (Ollinger & Fessler, 

1997). The radiotracers are typically isotopes with short half-lives (e.g., oxygen-15 with 

122.24 s and fluorine-18 with 109.77 min), which are incorporated into a biologically 

active molecule such as fluorodeoxyglucose by chemical synthesis in the cyclotron 

machine. These synthesized radiotracers are injected into the bloodstream and taken up 

by active neurons. As a result, PET measures regional glucose or oxygen metabolic 

changes according to the type of radioisotope that is used, which reflect the amount of 

neuronal activity associated with specific tasks (Nasrallah & Dubroff, 2013). Moreover, 

PET has been used to quantify regional CBF (rCBF) with oxygen-15 labeled water. The 

key hypothesis of this measure is that changes in rCBF are correlated with changes in 

regional neuronal activity in that increases in neuronal activity entail more supplies of 

metabolic fuels and the increased excretion of metabolic byproducts through increased 

rCBF (Crosson et al., 2010). However, recently fMRI has become the preferred method 

because PET has very low temporal and spatial resolution. 

2.5.1.2 Functional MRI 

MRI technology relies on the magnetic moment (i.e., a vector quantity that determines 

the torque) of oxygen, which is carried by the hemoglobin (Hb) molecule in red blood 

cells, to measure hemodynamic responses (HRs) indirectly related to neuronal activity. 

Briefly speaking, the MR scanner uses radiofrequency (RF) pulses to detect the MR 

signals, and three mutually orthogonal magnetic field gradients to localize the MR signals 
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in three spatial dimensions (Ashby, 2015). In addition, typically two types of RF pulse 

sequences adjusted by two variables of interest such as repetition time (TR) and echo 

time (TE) have been used to emphasize contrast between gray and white matter tissues or 

between brain tissue and cerebrospinal fluid (CSF). Specifically, so-called T1-weighting 

with short TR and short TE causes gray matter, white matter, and CSF respectively 

appear dark gray, light gray, and black. On the other hand, T2-weighting with long TR 

and long TE makes them appear light gray, dark gray, and white, respectively. 

Consequently, the scanner can produce detailed images of surface and deep brain 

structures along with the images of CBF as the brain functions (i.e., fMRI signals). 

Although various techniques such as blood oxygenation level-dependent (BOLD), arterial 

spin labeling, and dynamic susceptibility contrast exist to measure fMRI signals, the most 

common method is BOLD contrast. In this work, only BOLD contrast fMRI is described, 

because a BOLD model is applied to generate simulated fMRI responses. 

2.5.1.2.1 BOLD contrast fMRI 

BOLD contrast is a measure of the ratio of oxygenated (oxyhemoglobin, HbO2) to 

deoxygenated hemoglobin (deoxyhemoglobin, HbR). These two hemoglobin molecules 

have different magnetic properties (Ogawa, Lee, R., & W., 1990). Specifically, 

oxyhemoglobin is diamagnetic (i.e., repelled by the applied magnetic field), whereas 

deoxyhemoglobin is paramagnetic (i.e., attracted by the applied magnetic field). The 

change from oxyhemoglobin to deoxyhemoglobin leads to change in MR signal, so it 

reflects an active group of neurons at a time. Specifically, the theory is that, when a short 

stimulus (i.e., a stick function) is provided, an active brain area consumes more oxygen as 
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a result of increased oxygen metabolism (i.e., cerebral metabolic rate of oxygen, 

CMRO2). It triggers an increase in rCBF to deliver more oxyhemoglobin. This change 

causes the oxyhemoglobin-to-deoxyhemoglobin ratio (i.e., BOLD contrast) to rise above 

baseline to peak at approximately 5 s after stimulation that elicited these responses 

(Crosson et al., 2010). By the way, a momentary decrease in the BOLD response known 

as an ‘initial dip’ could be observed immediately after stimulation in a high-magnetic 

fMRI scanner. Following this ‘peak’, the BOLD signal gradually decays and decreases 

below prestimulation baseline, and reaches an ‘undershoot’ (i.e., a minimum BOLD 

signal intensity) around at 16 s after the end of stimulation (R. Henson & Friston, 2007). 

Finally, it returns to baseline over a period of 30-32 s (See Figure 1). 
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Figure 1. Typical BOLD impulse response to a stick-function shaped stimulus and its power 

spectrum. A typical BOLD impulse response to a stimulus presented at time 0 is expressed via a 

typical HRF (black solid line) generated using a linear combination of three gamma functions (i.e., 

the first-order Volterra kernel): the canonical HRF (blue dotted line) with its temporal (red dotted 

line) and dispersion (green dotted line) derivatives. Inset: Power spectral density of the typical HRF 

function. HRF: hemodynamic response function. 
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Therefore, the dynamic BOLD response depends on the changes in CBF and CMRO2 as 

well as venous cerebral blood volume (CBV), which are illustrated in Figure 2. 

 

Figure 2. Schematic diagram from a stimulus to the measured BOLD response. A stimulus triggers a 

neuronal activity, which drives changes in neurovascular coupling (i.e., CMRO2, CBF, and CBV). 

These changes in neurovascular coupling lead to changes in hemodynamic response (i.e., HbO2 and 

HbR), resulting in the BOLD response. CMRO2: cerebral metabolic rate of oxygen; CBF: cerebral 

blood flow; CBV: cerebral blood volume; HbO2: oxyhemoglobin; HbR: deoxyhemoglobin. 

 

2.5.2 Literature reviews of synthetic functional neuroimaging models 

In this section, various computational models that can generate PET and fMRI data, are 

reviewed to reveal the relation of neural activity, CBF, and metabolism to functional 

neuroimaging data. The PET and fMRI based synthetic functional neuroimaging models 

are commonly based on complex regulatory mechanisms with numerous factors between 

neural activity, CBF, and metabolism. Therefore, these computational approaches allow 
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any neural model to effectively generate neurophysiologically plausible functional 

neuroimaging data under certain conditions. 

2.5.2.1 PET simulation model 

2.5.2.1.1 Synthetic PET model 

Synthetic PET imaging was developed to use large-scale neural network models based on 

primate neurophysiology to predict and analyze human PET data scanned during a 

variety of behaviors (M. A. Arbib et al., 1994; Tagamets & Horwitz, 1998). Because both 

studies share the fundamental idea in terms of PET simulation, the description of the 

former should provide enough understanding about generation of synthetic PET. Arbib et 

al. (1994) used their neural network model of saccade generation (Dominey & Arbib, 

1992) to simulate PET data, in which the model is composed of several brain regions as 

well as network connections between these structures. Particularly, in this synthetic PET 

study, the authors proposed the following three key hypotheses. First, each neural 

structure modeling the monkey brain is homologous to a region in the human brain such 

that their functions are same within the tasks under consideration. Second, rCBF 

correlates with integrated local synaptic activity in a region, and this in turn correlates 

with the numbers (i.e., raw PET activity) acquired in synthetic PET scans. Third, regional 

PET activation is computed by 

𝒓𝑷𝑬𝑻𝑨 = ∫ ∑ 𝒘𝑩→𝑨(𝒕)𝑩 𝒅𝒕
𝒕𝟏

𝒕𝟎
       (1) 

where A is the region of interest, the sum is over all regions B that projects to A, 

𝒘𝑩→𝑨(𝒕) is the synaptic activity considering both firing rates of presynaptic neurons and 
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absolute values of both excitatory and inhibitory synapses during a time period that 

corresponds to the PET scan while the model performs a specific task (i.e., 

𝒇𝒊𝒓𝒊𝒏𝒈 𝒓𝒂𝒕𝒆 × |𝒔𝒚𝒏𝒂𝒑𝒕𝒊𝒄 𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉|). For the comparative analysis, the subtraction 

paradigm is simulated, which is typically used in PET studies (B. Horwitz et al., 2000). 

More specifically, the change in relative synaptic activity 𝑷𝑬𝑻𝑨(𝟏 𝟐⁄ ) for region A from 

task 1 to task 2 is given by 

𝑷𝑬𝑻𝑨(𝟏 𝟐⁄ ) =
|𝒓𝑷𝑬𝑻𝑨(𝟏)−𝒓𝑷𝑬𝑻𝑨(𝟐)|

𝒓𝑷𝑬𝑻𝑨(𝟐)
     (2) 

where 𝒓𝑷𝑬𝑻𝑨(𝒌) is obtained in Equation 1 under a task k. Arbib et al. (1994) assessed 

the differences in PET activity in all neural structures between two conditions using 

Equation 2, and showed how synthetic PET results are informative to predict human 

brain activity. 

2.5.2.2 fMRI simulation model 

As stated in section 2.5.1.2, only computational BOLD models are reviewed in this paper. 

The measureable BOLD fMRI signals are generated through neurovascular coupling 

induced by neuronal activity, and in turn through hemodynamic responses (see Figure 2). 

It must be noted that although the Balloon model (Appendix A) can simulate better the 

BOLD responses because this model emphasizes the neurovascular coupling and 

hemodynamic responses, it is difficult to employ this model for a general purpose large-

scale neural network model such as the current MNS model in this work. In other words, 
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the Balloon model has potential limitations on the extensibility and flexibility of the 

model, therefore this approach is not considered for the current study. 

 

2.5.2.2.1 General linear model and Convolution model 

In the convolution model (R. Henson & Friston, 2007), the BOLD signal is modeled by 

neuronal causes that are expressed with a hemodynamic response function (HRF). The 

convolution model is actually an extension (i.e., with nonlinear capability) of the general 

linear model (GLM; Equation 3), which aims to quantify the variation of each dependent 

variable in terms of a linear combination of several basis functions (K. J. Friston et al., 

1995). In the fMRI literatures, the dependent variable corresponds to the observed fMRI 

time series of each voxel, and the basis function that is also called the predictor, 

explanatory variable, or regressor corresponds to time course of expected BOLD 

response for different task conditions. 

y(𝒕) = X(𝒕)β+ ε(𝒕),  ε(𝒕) ~ 𝑵(𝟎, 𝝈𝟐Σ)    (3) 

where the dependent variable y(𝒕) is the observed BOLD time series, the explanatory 

variable X(𝒕) represents the expected BOLD time course arising from neural activity, β is 

time-invariant scaling parameter, ε(𝒕) is the Gaussian white noise with its standard 

deviation 𝝈 and the noise autocorrelation Σ. The neural activity is the mean synaptic 

activity of a group of neurons that is caused by a sequence of experimental 

manipulations. However, for simplicity, most fMRI studies employ a linear time-

invariant (LTI) system to model the BOLD response, in which the neural activity is 

typically specified as just a stimulus function (R. Henson & Friston, 2007). Under a LTI 
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system, a set of specified explanatory variables needed to generate the BOLD time course 

forms a matrix known as the design matrix, in which each column corresponds to the 

stimulus presented. Then, the expected BOLD response X(𝒕) in Equation 3 is computed 

as a linear convolution of two functions, a HRF and a stimulus pattern: 

X(𝒕) = (𝒉 ∗ u)(𝒕) = ∫ h(𝝉)u(𝒕 − 𝝉)
𝑻

𝟎
𝒅𝝉    (4) 

where the impulse response 𝒉(𝒕) is a HRF that is usually represented with the canonical 

HRF, the input signal u(𝒕) is the stimulus function that is usually a stick or boxcar 

function encoding the occurrence of an event, and 𝝉 indexes the peri-stimulus time over 

which the BOLD impulse response is expressed. As an example of this process shown in 

Equation 4, the result of hemodynamic convolution with random events is shown in 

Figure 3. 

 

Figure 3. LTI convolution model. The BOLD signal is predicted by a linear convolution of four 

randomly presented events (with different colors) with a canonical HRF. Each BOLD response to 
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successive stimuli is linearly superposed, and the predicted BOLD response is represented with black 

solid line. 

 

 

Recently, some studies use not only the canonical HRF, but also its temporal and 

dispersion derivatives for better prediction of BOLD responses. With two derivatives, the 

model can fit responses that are shifted in time or have extended activation durations, 

respectively (R. Henson & Friston, 2007). Moreover, numerous studies have assessed 

different types of temporal basis functions to accommodate the variability in HRF shape 

over brain regions as well as over individuals; for example, other popular basis functions 

are the finite impulse response (FIR), gamma functions, and even nonlinear convolution 

model using Volterra series. (K. J. Friston, Mechelli, Turner, & Price, 2000; Karl J. 

Friston, Josephs, Rees, & Turner, 1998; R. Henson & Friston, 2007). Specifically, two 

representative linear convolution models have particular properties such that FIR is a 

flexible basis allowing the least assumptions about the shape of HRF (Glover, 1999), 

whereas a set of gamma functions is the simplest basis set by sacrificing the model’s 

degrees of freedom (R. Henson & Friston, 2007). On the other hand, the nonlinear 

Volterra kernels (See Appendix B) estimated from the Volterra series, which can be 

regarded as a Taylor series with memory capacity for dynamic systems such that the 

output depends on the current and past inputs, are complicated but the most powerful sets 

that can simulate the HR to any temporal pattern of stimuli presentations (Karl J. Friston 

et al., 1998). However, it was tested that the canonical HRF with its two partial 

derivatives, which is equivalent to the first-order Volterra kernel, are sufficient to capture 
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the majority of regional and experimental variabilities (Richard Henson, Rugg, & Friston, 

2001). 

 

 

2.5.2.2.2 Synthetic fMRI model 

Two synthetic fMRI models (Michael A. Arbib et al., 2000; Barry Horwitz & Tagamets, 

1999) are proposed as an extension of their synthetic PET models (M. A. Arbib et al., 

1994; Tagamets & Horwitz, 1998). Particularly, Horwitz & Tagamets (1999) simulated a 

delayed match-to-sample task in this study with the following main hypotheses. First, 

BOLD signal is correlated with changes in CBF and CBV, but other minor factors are 

negligible. Second, BOLD signal is proportional to changes in the local field potential 

(LFP), which represent neural network activity at population level. Third, CBV does not 

alter the relation between BOLD signal and regional neural activity. Lastly, inhibitory 

synaptic activity, which can lead to decreased neuronal spiking and LFP, results in 

increased BOLD activity. 

Considering the slice acquisition time for fMRI scanners, Horwitz & Tagamets (1999) 

reduced the integration time period represented in Equation 1 to 50 ms (when the model 

time step is 5 ms) instead of integrating the synaptic activity over the entire task 

condition. The resulting time series for each region (i.e., rCBF) is then convolved with 

the HRF, which is represented with a Poisson function, and noise is not added. 
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Specifically, the HR delay (about 5-8 s) is characterized by a Poisson function with the 

parameter λ in Equation 5: 

𝒑(𝒙; 𝝀) =
𝒆−𝝀𝝀𝒙

𝒙!
, for 𝒙 = 𝟎, 𝟏, 𝟐,⋯,     (5) 

where 𝝀 is defined as 2×T (T is the stimulus duration in seconds). The fMRI data is then 

obtained by sampling the hemodynamically convolved time series every TR (i.e., 

repetition time). This study focused on examining an event-related fMRI design, which is 

generally used for simple sensory or motor tasks. It must be noted that, in higher 

cognitive tasks, the event-related fMRI designs often cause more noisy fMRI signals, 

because there can be extensive task-unrelated neural activity in multiple brain regions. 
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Chapter 3: Methods 

 

3.1 Mechanism of conceptual MNS model 

In the present research, a new MNS model is developed by extending the conceptual 

MNS model that was previously designed by employing the internal model frameworks 

(Iacoboni et al., 1999; R. Christopher Miall, 2003). Specifically, the Miall model has 

been expanded by including the rostral part of the prefrontal cortex (rPFC) to trigger the 

intentions to imitate (Burgess, Dumontheil, & Gilbert, 2007; Dove, Pollmann, Schubert, 

Wiggins, & von Cramon, 2000; Meyer et al., 1997; Rogers et al., 1998) and more 

importantly by including the SPL and the IPS (Andersen, 1987; Buneo & Andersen, 

2006; Grefkes & Fink, 2005; G. Rizzolatti et al., 1998) to implement the visuospatial 

transformation mechanism that provides the MNS the view-independent sensorimotor 

information (Figure 4). Simultaneously, the model can also process the view-dependent 

visual motion information through the MT (Adelson & Movshon, 1982; Tootell et al., 

1995). Thus, the novelty of the proposed model is to investigate the dynamics between 

the frontal (i.e., adaptive inverse model) and parietal (i.e., adaptive forward scheme) 

MNSs as well as the view-independent and view-dependent sensorimotor processes 

during observational learning and imitation (Oh et al., 2011, 2012; Tani et al., 2008). 
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Figure 4. Conceptual MNS model overview. The model is based on the internal model framework 

incorporating the MT and SPL/IPS. For the sake of clarity, all the connections with the MNS (i.e., 

IFG, IPL, and STS) are shown with a single arrow from and to the gray shadow MNS group. For 

example, both the SPL/IPS and MT are actually connected with all the MNS components. The 

imitator either observes or executes an action based on a specific goal or intention, which is provided 

by the rPFC. Although it is not depicted, the MT and SPL/IPS accepts information from the visual 

cortex V1 to V4. The MT selectively processes the view-dependent visual motion information (dotted 

arrow), and provides this information to the MNS as well as the SPL/IPS. At the same time, the 

SPL/IPS provides the view-independent visuospatial representation (double-line arrows) to the MNS 

by the combination of rotation, scaling, and translation transformation. The MNS performs the 

inverse computation (red arrows) through the STS-IPL-IFG pathway as well as the forward 

computation (blue arrows) through the reverse pathway as proposed by Iacoboni et al. (1999). 

Moreover, another inverse and forward computations as suggested by Miall (2003) are performed 

through STS-IPL-CB-IFG connections with feedback signals from the MT and SPL/IPS. The 

SPL/IPS, IFG, and IPL are currently implemented using artificial neural networks, and the rPFC, 

STS, and MT is implemented in a basic level. 
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Imitation in this new MNS model can be accomplished through a two-phase learning 

process combining learning by observation and learning by execution, where the latter is 

voluntarily triggered by the rPFC as stated above. In the sections below these two phases 

are described in more details for a simple reaching and grasping task. 

3.1.1 Learning by observation phase (or observational learning for imitation) 

During the learning by observation phase, the imitator observes the reaching and grasping 

action performed by the demonstrator in the allocentric frame of reference. The visual 

representation encoding the observed action is sent to the MT, which is responsible for 

processing the selective visual motion information such as motion direction and velocity 

from the perceived action. When considering the vector properties of these 

representations, it is obvious that the visual motion information must be the view-

dependent. Such a view-dependent information is relayed directly to the MNS network 

(i.e., IFG, IPL, and STS) and also to the SPL/IPS for further complex visuospatial 

processing. In particular, the SPL/IPS transforms the view-dependent visual motion 

information (from the visual cortex V1 to V4 as well as the MT) into the view-

independent visuospatial information, which is represented in the imitator’s own 

egocentric frame of reference. 

Within the MNS network, each component employs both view-independent and view-

dependent representation of the action for further processing. First, the STS examines if 

the observed action is already in the repertoire or unknown action, where the STS 

responds only to the familiar motion of specific body parts (e.g., arms or hands, but those 

are somewhat independent of specific states such as right arm or index finger). In 
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particular, the observational learning process is triggered for unseen action, otherwise the 

imitation process is triggered for known action, which is explained in the next section. 

For unseen action, the IFG is trained by mapping from the visual to motor representations 

(i.e., inverse computation), which is then employed to imitate the observed action. 

Although no movement is performed during observation, an efference copy of the motor 

plan is still available and is sent to the IPL that would generates the predicted sensory 

consequences of the corresponding action (i.e., forward computation). Meanwhile, the 

CB also provides the prediction error for the IFG and the IPL to adjust their internal 

models. At this stage, the STS inspects an exact match for the expected sensory 

consequences of the action and the corresponding observed action (Iacoboni, 2005). If the 

match fails due to a large error, the representation of the imitated action is corrected until 

the error decreases below a certain threshold; in other words, the observational learning is 

continued. Finally, the learned action can be initiated for imitation with a reasonable 

chance of success when the match is successful (see section 3.2.4, Figure 7-Learning by 

Observation panel). 

3.1.2 Learning by execution phase (or imitation learning of observed action) 

The observational learning described in the previous section is followed by the learning 

by execution, during which the rPFC triggers the regions required to imitate the action 

previously observed when the intention to imitate is present (Decety et al., 1997). 

Namely, after the learning by observation phase, the ensuing learning by execution phase 

is typically performed. During learning by execution, the overall processes related to the 

IFG, IPL, STS, CB, SPL/IPS and MT are equivalent to those previously described in the 

observational learning phase. The only difference is that, in parallel with the IFG to the 
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IPL pathway, neural drive is sent to the musculoskeletal system through the primary 

motor cortex to perform the actual self-action. Afterwards, the imitator egocentrically 

observes its own action so that the imitator can take the visual and somatosensory 

feedbacks (here, only the visual feedback is considered). The coincident feedback is 

applied by the identity transformation, and then it is employed to the MNS components to 

update the network components by means of the error between the sensory consequences 

of the self-action and the prior observed action. Consequently, the imitator can improve 

its action by adjusting the output with the error (see section 3.2.4, Figure 7-Learning by 

Execution panel). 

 

3.2 Implementation of the computational MNS model 

Based on the proposed conceptual model described above, a computational MNS model 

is implemented. For simplicity, the rPFC, CB, MT, and STS are implemented by simple 

numerical and conditional expressions and statements, thus have no adaptive capabilities. 

On the other hand, each of the other three components (i.e., SPL/IPS, IFG, and IPL) is 

implemented through the same artificial neural network architectures that learn their 

respective functional mappings. Specifically, the SPL/IPS learns to perform the 

visuospatial transformation including the rotation, scaling, and the translation. In 

addition, the IFG and IPL are trained to serve as the inverse and forward models, 

respectively. Moreover, imitation of an action through the observational learning is 

performed in each neural network by using a continuously repeating two-phase learning 

approach, that is, a repeat of learning by action observation, and in turn, learning by 
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action execution. This learning strategy is behaviorally more realistic in an ecologically 

valid context, because continuous repetitions of these two processes generally constitutes 

imitation. 

3.2.1 Type and architecture of artificial neural network 

In the current study, a radial basis function (RBF) network is used, which uses RBF for 

the transfer function in the hidden units (Broomhead & Lowe, 1988a, 1988b). The RBF 

network consists of three layers: an input layer, a hidden layer with a set of nonlinear 

RBF transfer functions, and an output layer that linearly summates the outputs of the 

hidden layer. The network measures the response of the 𝒊th Gaussian RBF, 𝝓𝒊, where 𝒏 

(𝟏 ≤ 𝒊 ≤ 𝒏) is the number of RBFs (currently at most 50 RBFs per each output 

dimension), to an input v by the distance between the input and the 𝒊th RBF center 𝒄𝒊 as 

well as by the scaling factor of the 𝒊th RBF width 𝝈𝒊, and performs a simple mapping, 

𝒇:ℝ𝑵 → ℝ𝟐, where 𝑵 is the dimension of the input space, which is currently defined as 2 

for the SPL/IPS and 4 for the IFG and IPL: 

{
𝒇(v) = ∑ 𝝎𝒊𝝓𝒊(‖v− 𝒄𝒊‖)

𝒏
𝒊=𝟏

𝝓𝒊(𝒖) = 𝒆(−𝟎.𝟓𝒖
𝟐 𝝈𝒊

𝟐⁄ )
     (6) 

where v is the input vector, 𝒇 is the output, ‖∙‖ denotes the 𝑳𝟐-norm, 𝝎𝒊 is the 𝒊th weight 

vector, which are fully connected as Equation 6 indicates. In particular, these 50 RBFs 

are equidistantly distributed to cover the whole space, which is normally scaled to be 

defined as [−𝟏, 𝟏] × [−𝟏, 𝟏], but their radii are optimally chosen by means of the 

following learning algorithm. 
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3.2.2 Learning algorithm 

In a general RBF network, there are three parameters that can be optimally selected: the 

weights, RBF widths, and RBF centers. It is very important to optimally determine the 

RBFs along with their centers and widths, because too many RBFs (i.e., the large number 

of free parameters) can cause one of the most critical problems, overfitting, that occurs 

during network training. There are typically two main ways to avoid overfitting; the first 

is to explicitly limit the complexity of the network with a limited number of RBFs, and 

the second is to reduce the number of good parameter measurements by adding a 

regularization parameter. 

In the current study, the RBF network is trained with supervised learning technique 

proposed by Orr (Orr, 1998). In particular, forward subset selection (Miller, 1984) using 

orthogonal least square (OLS) (Chen, Cowan, & Grant, 1991) is employed to determine 

an optimal subset of the available centers one by one. Moreover, generalized cross-

validation (GCV) is used to define model selection criterion with additional parameters, 

which determine a moment of halting the selection process so that the criterion can 

estimate how the trained network can perform well on future for unknown inputs (Golub, 

Heath, & Wahba, 1979). Therefore, the actual learning is a repeat of forward subset 

selection using OLS on training set and GCV on validation set. More specifically, this 

learning procedure is initially performed on the coarsely spaced RBFs (i.e., a wider RBF 



 

48 

 

width range), and once it finds the best width range, it narrows down this value (i.e., fine 

RBF widths) to find the best RBF width. 

3.2.2.1 Forward subset selection using OLS 

In Equation 6, for the input vector v = [v𝟏, v𝟐, ⋯ , v𝒎] of length 𝒎, the solution of the 

RBF network can be represented as the following matrix form with the error signals 𝜺: 

𝑭 = 𝜱𝑾+ 𝜠        (7) 

Then, each term of Equation 7 is defined as following: 

{
 
 
 

 
 
 
𝑭(v) = [𝒇𝒅(v𝟏),⋯ , 𝒇𝒅(v𝒎)]

𝑻

𝜱(v) = [𝝓𝟏(v),⋯ ,𝝓𝒏(v)]

 𝝓𝒊(v) = [𝝓𝒊
𝟏(v𝟏),⋯ , 𝝓𝒊

𝒎(v𝒎)]
𝑻
, (𝟏 ≤ 𝒊 ≤ 𝒏)

 𝝓𝒊
𝒍(𝒗𝒍) = 𝝓𝒊(‖𝒗𝒍 − 𝒄𝒊‖), (𝟏 ≤ 𝒍 ≤ 𝒎)

𝑾 = [𝝎𝟏, ⋯ ,𝝎𝒏]
𝑻

𝑬(v) = [𝜺(𝒗𝟏),⋯ , 𝜺(𝒗𝒎)]
𝑻

  (8) 

where 𝒇𝒅 is the desired output. The OLS algorithm transforms 𝜱 into a set of orthogonal 

basis vectors through the QR decomposition so that it could measure the contribution of 

the individual RBF centers to the desired output energy from each basis vector (Chen et 

al., 1991): 

𝜱 = 𝑸𝑹        (9) 

where 𝑸 is an 𝒎×𝒎 orthogonal matrix, and 𝑹 is an 𝒎× 𝒏 upper triangular matrix. 

Assuming that 𝜱 has full column rank (i.e., 𝒎 ≥ 𝒏), the last 𝒎− 𝒏 rows of 𝑹 are 
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entirely zero, which can be represented as the reduced QR decomposition, that is, a more 

compact form of Equation 9: 

𝜱 = 𝑸𝑹 = [𝑸𝟏 𝑸𝟐] [
𝑹𝟏
𝑶
] = 𝑸𝟏𝑹𝟏     (10) 

where 𝑸𝟏 is an 𝒎× 𝒏 matrix having orthogonal columns 𝒒𝒊 (𝟏 ≤ 𝒊 ≤ 𝒏), and 𝑹𝟏 is an 

𝒏 × 𝒏 upper triangular matrix. Since the space spanned by 𝒒𝒊 is identical to the space 

spanned by 𝝓𝒊, Equation 7 can be rewritten in the following way: 

𝑭 = 𝑸𝟏𝑮 + 𝑬        (11) 

where 𝑮 = 𝑹𝟏𝑾 = [𝒈𝟏, ⋯ , 𝒈𝒏]
𝑻. Then, 𝑮 can be solved by the OLS algorithm as 

𝑮 = [𝑸𝟏
𝑻𝑸𝟏]

−𝟏𝑸𝟏
𝑻𝑭       (12) 

or 

𝒈𝒊 = 𝒒𝒊
𝑻𝒇𝒅 (𝒒𝒊

𝑻𝒒𝒊)⁄ , (𝟏 ≤ 𝒊 ≤ 𝒏)     (13) 

Such an orthogonal decomposition is iteratively processed using the classical Gram-

Schmidt method, and updates 𝑸𝟏 and 𝑹𝟏 as 

{
𝒓𝒊𝒋 = 𝒒𝒊

𝑻𝝓𝒋 (𝒒𝒊
𝑻𝒒𝒊)⁄

𝒒𝒋 = 𝝓𝒋 − ∑ 𝒒𝒊𝒓𝒊𝒋
𝒋−𝟏
𝒊=𝟏

, (𝟐 ≤ 𝒋 ≤ 𝒏; 𝟏 ≤ 𝒊 < 𝒋)  (14) 

where 𝒓𝒊𝒋 is an (𝒊, 𝒋) element of 𝑹𝟏, and 𝒒𝟏 = 𝝓𝟏. 
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Assuming that 𝑬 is uncorrelated with 𝜱, thus with 𝑸𝟏 as well, Equation 11 can be 

rewritten as 

𝟏

𝒎
𝑭𝑻𝑭 =

𝟏

𝒎
∑ 𝒈𝒊

𝟐𝒒𝒊
𝑻𝒒𝒊

𝒏
𝒊=𝟏 +

𝟏

𝒎
𝑬𝑻𝑬     (15) 

where 
𝟏

𝒎
𝒈𝒊
𝟐𝒒𝒊

𝑻𝒒𝒊 is the increment to the desired output, and an error reduction ratio can 

be defined as 

𝝆𝒊 = 𝒈𝒊
𝟐𝒒𝒊

𝑻𝒒𝒊 (𝒇𝒅
𝑻𝒇𝒅)⁄        (16) 

Based on Equation 16, the optimal RBFs are selected by the vectors 𝒒𝒊 with larger 𝝆𝒊. By 

dividing Equation 15 by 𝑭𝑻𝑭, the OLS learning procedure is terminated at the 𝒌th step 

when 

𝟏 − ∑ 𝝆𝒍
𝒌
𝒍=𝟏 < 𝝉       (17) 

where 𝟎 < 𝝉 < 𝟏 is an error tolerance or the mean squared error (MSE). Then, the model 

finally contains 𝒌 (≤ 𝒏) RBFs. 

3.2.2.2 GCV 

In general, obtaining the minimum MSE of the training set is unlikely to make good 

estimates on unknown data, because some peculiarities (e.g., trends and noise) of the 

training set have biased the model towards the set. Therefore, in the present study, GCV 

is employed to estimate the potential MSE on unseen validation set and to optimize the 
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model by modifying the sum of squared errors (SSE) of the training set (Golub et al., 

1979), which is typically defined in the following way using Equation 11: 

𝑺𝑺𝑬 = E𝑻E

 = (𝑭 − 𝑸𝟏𝑮)
𝑻(𝑭 − 𝑸𝟏𝑮)

     (18) 

In this case, the solution of the weights 𝑮 is determined as Equation 12. However, in the 

GCV, this SSE is modified by adding a weight-decay (or ridge regression) term such that: 

{

𝑺𝑺𝑬𝑮𝑪𝑽 = 𝑺𝑺𝑬 + 𝝀G
𝑻
G

 = (𝑭 − 𝑸𝟏𝑮)
𝑻(𝑭 − 𝑸𝟏𝑮) + 𝝀G

𝑻
G

𝑴𝑺𝑬𝑮𝑪𝑽 =
𝟏

𝒎
𝑺𝑺𝑬𝑮𝑪𝑽

   (19) 

where 𝝀 is the regularization parameter that controls the strength of the penalty. Through 

an effort to find the solution that minimizes the MSE, the regularized weight is obtained 

as: 

𝑮 = [𝑸𝟏
𝑻𝑸𝟏 + 𝝀I𝒏]

−𝟏𝑸𝟏
𝑻𝑭

 = A
−𝟏𝑸𝟏

𝑻𝑭
      (20) 

where I𝒏 is the 𝒏 × 𝒏 identity matrix, and A=𝑸𝟏
𝑻𝑸𝟏 + 𝝀I𝒏. Moreover, the regularization 

parameter 𝝀 and other relevant parameters are also derived from the GCV procedure as: 

{
 
 

 
 𝝀 =

𝜼

𝒑−𝜸
(E𝑻E) (G𝑻

A
−𝟏

G)⁄

𝜼 = 𝒕𝒓 (A
−𝟏 − 𝝀(A−𝟏)

𝟐
)

𝜸 = 𝒎− 𝝀 ∙ 𝒕𝒓(A−𝟏)

     (21) 
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where 𝜼 is a scaling factor, 𝒑 is the number of validation set, and 𝜼 is the effective 

number of free parameters (i.e., RBFs). Then, the GCV modifying the SSE (or MSE) of 

the training set can be simply represented as (Golub et al., 1979; Orr, 1998): 

𝑮𝑪𝑽 =
𝒑

(𝒑−𝜸)𝟐
𝑺𝑺𝑬𝑮𝑪𝑽 =

𝒎𝒑

(𝒑−𝜸)𝟐
𝑴𝑺𝑬𝑮𝑪𝑽    (22) 

Specifically, the learning algorithm stops adding further RBFs to the network when the 

decreasing ratio of the GCV is less than 𝟏. 𝟎 × 𝟏𝟎−𝟒 for at least 2 iterations. Finally, the 

algorithm uses backward elimination to selectively remove less significant RBFs that can 

be added to the network at the last two iterations when the OLS is employed, only if these 

last RBF bases are not the minimum values so far. 

3.2.3 Computation in each component 

3.2.3.1 rPFC 

The rPFC is implemented as a simple conditional statement that switches between 

observational learning and imitation. 

3.2.3.2 MT 

The MT extracts the direction of the action, which is represented with two dimensional 

vectors. The first dimension is the distance 𝒓 between the imitator’s center point and the 

demonstrator’s workspace where the demonstrator’s end-effector is placed at each time 𝒕 

(Figure 5). Similarly, the second dimension is the relative angle 𝝋 from the imitator’s 
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viewpoint to the demonstrator’s workspace where the demonstrator’s end-effector is 

placed at time 𝒕 (Figure 5). 

 

Figure 5. The relative visual motion representation of the action in the MT. (A) An imitator observes 

its self-action from an initial position with a yellow circle to a target magenta star. The imitator 

extracts the visual motion representation of the action, which is represented by a two-dimensional 

vector (𝒓 and 𝝋) at each time. In particular, the vector components are roughly represented by the 

representative points in the left side (magenta circles), center (cyan circles), and right side (white 

circles) of the imitator with respect to the imitator’s viewpoint. (B) At this time, the imitator (lower 

left side with blue workspace) observes an action (from an initial position with a yellow circle to a 

target with a yellow star) performed by a demonstrator (upper right side with green workspace). The 

visual motion representation of the action is also described by a two-dimensional vector at each time, 

which is roughly represented by the representative points placed relatively in the left side (white 

circles), center (cyan circles), and right side (magenta circles) of the demonstrator from the 

imitator’s viewpoint. 
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However, this two dimensional direction of the action does not need to be precise. In 

practice, this vector point is approximated by the representative points relatively in the 

center (cyan circles), left side (white circles), and right side (magenta circles) of the 

imitator: 

𝒂(𝒕; 𝟎 ≤ 𝒕 ≤ 𝒏) = {(𝒓𝟎, 𝝋𝟎),⋯ , (𝒓𝒕, 𝝋𝒕),⋯ (𝒓𝒏, 𝝋𝒏)}   (23) 

where 𝒂 is an observed action from time 𝟎 to time 𝒏. Therefore, the MT can provide the 

MNS as well as the SPL/IPS with the view-dependent directional representation of the 

observed action. 

3.2.3.3 SPL/IPS 

Three visuospatial transformation rules (i.e., rotation, translation, and scaling) are trained 

in the SPL/IPS using the visual motion information provided by the MT as well as 

visuospatial information provided by the V1 to V4. The SPL/IPS aims to help the 

imitator to solve and generalize the mapping 𝒇𝑽𝑺𝑻: ℝ𝑷
𝟐 → ℝ𝑰

𝟐, where ℝ𝑷
𝟐  and ℝ𝑰

𝟐 are two-

dimensional workspaces respectively in the performer-centered (𝑷) and the imitator’s 

egocentric (𝑰) frame of reference. The performer can be either a demonstrator (𝑫) or the 

imitator according to the condition; that is, the performer is a demonstrator during 

observational learning, and the performer is the imitator during imitation execution. In 

other words, the domain ℝ𝑷
𝟐  in the mapping rule can be either ℝ𝑰

𝟐 or ℝ𝑫
𝟐 , in which the 

latter is the demonstrator-centered (𝑫) frame of reference. 
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In general, the mapping includes various combinations of translation, rotation, scaling, 

and reflection where each of them can be specifically described as (Frank, 1998; Lopes & 

Santos-Victor, 2005): 

i) Translation: A mechanism for the imitator to refer to the demonstrator’s actions 

in the same position by shifting the origin of the imitator’s frame of reference, 

ii) Rotation: Allowing the imitator facing the same direction with the demonstrator 

by rotating the orientation of the axial frame of the imitator, 

iii) Scaling and Reflection: So-called personalization methods for the imitator to 

understand the observed actions by changing the ratio and shape of the body (i.e., 

scaling) or the handedness (i.e., reflection). 

In the current study, the reflection transformation is not considered, thus the visuospatial 

transformation process in the SPL/IPS is to approximate the composition of three affine 

transformation functions, which can be formulated in the following mathematical forms: 

{
 
 
 
 
 

 
 
 
 
 

𝒇𝑽𝑺𝑻 = 𝑻𝑺(𝑨𝑰, 𝑨𝑷) ∘ 𝑻𝑹𝒛(𝜽𝑰, 𝜽𝑷) ∘ 𝑻𝑻(𝑶𝑰, 𝑶𝑷)

𝑻𝑺(𝒖, 𝒗) = (
𝒖𝒙 𝒗𝒙⁄ 𝟎 𝟎

𝟎 𝒖𝒚 𝒗𝒚⁄ 𝟎

𝟎 𝟎 𝟏

)

𝑻𝑹𝒛(𝒖, 𝒗) = (
𝒄𝒐𝒔(𝒖 − 𝒗) −𝒔𝒊𝒏(𝒖 − 𝒗) 𝟎
𝒔𝒊𝒏(𝒖 − 𝒗) 𝒄𝒐𝒔(𝒖 − 𝒗) 𝟎

𝟎 𝟎 𝟏

)

𝑻𝑻(𝒖, 𝒗) = (
𝟏 𝟎 𝒖𝒙 − 𝒗𝒙
𝟎 𝟏 𝒖𝒚 − 𝒗𝒚
𝟎 𝟎 𝟏

)

  (24) 

where 𝒖 and 𝒗 indicate input variables, 𝑨𝑰 and 𝑨𝑷 are the anthropometric data, 𝜽𝑰 and 𝜽𝑷 

are the viewpoint angles, 𝑶𝑰 and 𝑶𝑷 are the position vectors, 𝑻𝑺 is the scaling matrix, 𝑻𝑹𝒛 
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rotates around the 𝒛 axis, 𝑻𝑻 is the translation matrix, and finally 𝒙 and 𝒚 denote the X 

and Y components in the Cartesian coordinates. It must be noted that the performer (𝑷) 

becomes either the demonstrator (𝑫) or the imitator (𝑰) according to the condition, 

observational learning and action execution, respectively. In particular, the rotation angle 

around the 𝒛 axis 𝜽𝒛 is the angular displacement for the mental rotation from the 

performer to the imitator’s viewpoint (Figure 6): 

𝜽𝒛 = 𝜽𝑰 − 𝜽𝑷         (25) 

where the rotation is counterclockwise (CCW) if 𝟎° < 𝜽𝒛 ≤ 𝟏𝟖𝟎°, and clockwise (CW) 

if −𝟏𝟖𝟎° < 𝜽𝒛 < 𝟎°, respectively. Therefore, the neural network representing the 

rotation transformation is actually composed of two subnetworks: one for the CW 

network, and the other for CCW network. The consideration of these dual subnetworks is 

guided by neurophysiological evidence found in humans (Cohen et al., 1996). 
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Figure 6. The visuospatial transformation in the SPL/IPS. Two agents have their own frame of 

reference represented by their current positions (i.e., 𝑶𝑰 and 𝑶𝑫) and viewpoints (i.e., yellow lines of 

sight). The imitator (blue) observes reaching for a yellow star-shaped object performed by the 

demonstrator (gray). X and Y represent the coordinate axes of the two-dimensional global (or 

absolute) coordinate system. 𝜽𝑰 and 𝜽𝑫: angles towards an imitator (𝑰) or a demonstrator’s (𝑫) line 

of sight from the X-axis; 𝜽𝒛: the rotation angle from the demonstrator to the imitator’s viewpoint; 𝑨𝑰 

and 𝑨𝑫: the anthropometric data (e.g., the length of forearm). 

 

Each of the four subnetworks (i.e., scaling, translation, CW, and CCW) is separately 

trained by using at most 100 RBFs (again, up to 50 RBFs per each output dimension) in 

the normalized workspace, {(𝒙, 𝒚)|𝒙, 𝒚 ∈ [−𝟏,+𝟏]}. Once these primitive transformation 

networks are trained, a composite network directly representing SPL/IPS response is 



 

58 

 

trained in real time for any configuration of the positions, frames of reference, and 

viewpoints between the demonstrator and the imitator. In general, two composite 

networks can be considered; one is a composite of scaling, translation, and CW networks, 

whereas the other is a composite of scaling, translation, and CCW networks. In practice, 

totally 2 (in 𝒙 dimension) + 2 (in 𝒚 dimension) RBFs are added for both scaling and 

translation networks, and 6 (in 𝒙 dimension) + 14 (in 𝒚 dimension) RBFs are included for 

both CW and CCW networks. In addition, totally 23 (in 𝒙 dimension) + 24 (in 𝒚 

dimension) RBFs are used to represent a composite of all the subnetworks. In this case, 

the mean RBF width is 0.2098 and the RBF centers are uniformly distributed in each 

dimension when the whole workspace is normalized to a range of [-1, 1] as stated above. 

3.2.3.4 STS 

The STS is implemented as a simple associative memory for the template of the body 

parts that are associated with the observed action. For example, if an observed action 

(e.g., reaching) exists in the STS, the rPFC triggers the imitation execution condition to 

actually perform the corresponding observed action (e.g., reaching). Otherwise, the rPFC 

triggers the observational learning condition, in which, for the observed reaching task, a 

set of template information such as the end-effector part (i.e., arm), current action type 

(i.e., reaching), and the associated action (i.e., a directional vector from an initial point to 

a target point) are stored in the STS. Thus, this indicates that the observed action is now 

in the imitator’s repertoire. 
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3.2.3.5 CB 

The CB is implemented as a simple expression calculating two errors; one is between the 

observed actions and desired actions to update the frontal MNS (i.e., inverse model) 

during observational learning, and the other is between the actual actions perceived 

through sensory feedbacks and the predicted actions to update the parietal MNS (i.e., 

forward model) during action execution. 

3.2.3.6 IFG 

The IFG represents an adaptive inverse model that can be described by the mapping 

𝒇𝑰𝑵𝑽: ℝ𝑽
𝟒 → ℝ𝑴

𝟐 , where ℝ𝑽
𝟒  specifies the observed action in the visual (𝑽) domain with 

two-dimensional view-independent visuospatial representation from the SPL/IPS and 

another two-dimensional view-dependent visual motor representation from the MT, and 

ℝ𝑴
𝟐  is the two-dimensional motor plan in the motor (𝑴) domain. 

Assuming the analytical forward model is formulated as the following (see Table 1 in 

section 3.4): 

{
𝒙 = 𝒍𝟏 𝒄𝒐𝒔𝜽𝟏 + 𝒍𝟐 𝒄𝒐𝒔(𝜽𝟏 + 𝜽𝟐)
𝒚 = 𝒍𝟏 𝒔𝒊𝒏𝜽𝟏 + 𝒍𝟐 𝒔𝒊𝒏(𝜽𝟏 + 𝜽𝟐)

     (26) 

where 𝒙 and 𝒚 are the predicted end-effector position of the performer (i.e., either the 

demonstrator or the imitator) relative to the imitator that determines the physically 

reachable horizontal planar workspace, 𝒍𝟏 and 𝒍𝟐 are the length of each link (i.e., upper 

arm, and forearm) composing the right upper limb, and finally 𝜽𝟏 and 𝜽𝟐 are the joint 
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angle of these two links, respectively. In that case, the analytical solution of the inverse 

model for this forward model can be represented as following: 

{
 
 
 
 

 
 
 
 

𝜽𝟏 = 𝒕𝒂𝒏−𝟏(
𝒚

𝒙
) − 𝒕𝒂𝒏−𝟏(

√𝟒𝒍𝟏
𝟐𝒍𝟐
𝟐−(𝒙𝟐+𝒚𝟐−𝒍𝟏

𝟐−𝒍𝟐
𝟐)𝟐

𝒙𝟐+𝒚𝟐+𝒍𝟏
𝟐−𝒍𝟐

𝟐 )

𝜽𝟐 = 𝒕𝒂𝒏−𝟏(√(
𝟐𝒍𝟏𝒍𝟐

𝒙𝟐+𝒚𝟐−𝒍𝟏
𝟐−𝒍𝟐

𝟐)
𝟐 − 𝟏)

𝝋̇𝒕 =
𝟏

𝒓𝒕
‖v⊥(𝒙̇, 𝒚̇)‖ 𝒔𝒊𝒏𝝋𝒕

v⊥(𝒙̇, 𝒚̇) = (
𝒄𝒐𝒔𝜽𝑰 𝒔𝒊𝒏𝜽𝑰
−𝒔𝒊𝒏𝜽𝑰 𝒄𝒐𝒔𝜽𝑰

) (
𝝏𝒙 𝝏𝜽𝟏⁄ 𝝏𝒙 𝝏𝜽𝟐⁄

𝝏𝒚 𝝏𝜽𝟏⁄ 𝝏𝒚 𝝏𝜽𝟐⁄
) (
𝒙̇
𝒚̇
)

 (27) 

where the first two equations are for inverse kinematics, and the other two are for angular 

velocity of the end-effector with respect to the imitator’s viewpoint 𝜽𝑰, which is 

internally used in the IFG to represent the view-dependent visual motion information. 

Moreover, 𝝋𝒕 is the relative angle from the imitator’s viewpoint to the demonstrator’s 

workspace where the demonstrator’s end-effector is placed in the at time 𝒕, 𝒓𝒕 is the 

distance to this point from the imitator’s center point at this moment (see Equation 23), 

v⊥ is the perpendicular component of the motion (or angular velocity) with respect to 𝝋𝒕, 

and ‖∙‖ denotes the 𝑳𝟐-norm. Therefore, the adaptive inverse model is to approximate 

this Equation 27; however, detailed operations are slightly different in the observation 

and the execution phases. For example, the predicted sensory consequences of the 

corresponding desired action have more important role in the learning of the adaptive 

inverse model during observational learning because the imitator mentally simulates the 

observed action during this phase. On the other hand, the observed self-performed action 
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exerts more significant influence on training of the adaptive inverse model during actual 

action execution. These operations can be represented with the following expressions: 

(𝜽𝟏, 𝜽𝟐) = 𝒇𝑰𝑵𝑽(𝒙̌, 𝒚̌, 𝒓𝒕, 𝝋𝒕)

 (𝒙̌, 𝒚̌) = {
(𝟏 − 𝜹)(𝒙, 𝒚) + 𝜹(𝒙̂, 𝒚̂), in observational learning

𝜹(𝒙, 𝒚) + (𝟏 − 𝜹)(𝒙̂, 𝒚̂), in action execution

 (28) 

where the input vector (𝒙, 𝒚̌) is the weighted end-effector position, another input vector 

(𝒓𝒕, 𝝋𝒕) is the visual motion representation of the action provided by the MT. 

Particularly, the weighted end-effector position is calculated from the view-independent 

performer’s end-effector position (𝒙, 𝒚) through the SPL/IPS and the predicted end-

effector position (𝒙̂, 𝒚̂) through the IPL by a weighting factor 𝜹 (𝟎. 𝟓 ≤ 𝜹 ≤ 𝟏), 

respectively. Generally, this weighting factor is initially set as a higher value (e.g., 0.9), 

but gradually decreases during learning, thus it can be simulated using a prediction error 

scaled between 0.5 and 1. 

After training, a total of 46 (in 𝜽𝟏 dimension) and 48 (in 𝜽𝟐 dimension) RBFs are able to 

implement the inverse model, and the mean RBF width is 0.3420 and the RBF centers are 

uniformly distributed in the normalized space of [-1, 1]. 

3.2.3.7 IPL 

The IPL represents an adaptive forward model that can be described by the mapping 

𝒇𝑭𝑾𝑫: ℝ𝑴
𝟒 → ℝ𝑽

𝟐 , where ℝ𝑴
𝟒  is the efference copy of the motor plan in the motor (𝑴) 

domain including two-dimensional joint angles for each link composing the right upper 

limb (i.e., upper arm and forearm) provided by the IFG and additional two-dimensional 

view-dependent visual motor representation provided by the MT, and ℝ𝑽
𝟐  is the two-
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dimensional predicted end-effector position in the visual (𝑽) domain. In practice, the 

adaptive forward model is to estimate the Equation 26 and the relative angular velocity 

formulated in the last two equations of Equation 27, which is also internally used in the 

IPL to represent the view-dependent visual motor representation. The IPL is trained 

during the actual reproduction of the action for imitation. After learning, the mean RBF 

width becomes 0.5590, and the RBF centers (totally 27 in 𝒙 dimension plus 26 in 𝒚 

dimension) are uniformly distributed in the whole workspace scaled between -1 and 1. 

3.2.4 Online and batch learning procedure 

For network training, the imitator either observes the demonstrator’s action to learn it or 

executes the observed action. Particularly, two different network update methods are 

employed for the three neural networks (i.e., SPL/IPS, IFG, and IPL): batch and online 

update methods. In the batch method, each network is trained separately by observing the 

demonstrator’s action. On the other hand, in the online method, all the neural weights are 

updated sequentially (i.e., the SPL/IPS followed by the IFG, and again followed by the 

IPL) by the corresponding errors computed for each step, and this is repeated until all 

three networks are completely trained based on the learning rules (see 3.2.2; Figure 7). 

Although the batch update method provides accurate and robust results and is easier to 

implement when multiple neural networks are involved, it is less feasible in simulating 

the interaction between the co-working neural networks. Therefore, in the current study, 

the online update method is emphasized to train the IFG and IPL as well as the SPL/IPS 

as stated in section 3.2.4. 
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Figure 7. Overall learning procedure employing online update method. At first, four visuospatial 

transformation primitives of the SPL/IPS are trained in advance (k = 0). For a body babbling, the 

forward model of the IPL is trained for one step at k = 1. Next, the two-phase learning strategy is 

implemented by continuous repetitions of learning by observation and learning by execution until all 

three neural networks are fully trained (k = 2 to m). Particularly, in learning by observation phase, 

the SPL/IPS and the IFG are trained using the first equation in Equation 24 and the corresponding 

rule in Equation 28, respectively. During learning by execution, the IFG are updated with the 

corresponding rule in Equation 28 and the IPL is trained using Equation 26 and the last two 

equations (i.e., angular velocity of the end-effector) in Equation 27. 
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It must be noted that, as described in 3.2.3.3 the four primitives of the SPL/IPS (i.e., 

scaling, translation, CW, and CCW) are already trained (Figure 7; 𝒌 = 𝟎). However, for 

the SPL/IPS, a composite function of these primitives is trained in the online training 

method (Figure 7; 𝒌 = 𝟐. .𝒎). Moreover, for the online training method. a so-called 

‘body babbling’ is implemented, in which infants practice their movements through self-

generated activity (Meltzoff & Moore, 1997). In other words, there is a pre-training 

session of the IPL only for a step corresponding to the body babbling, which results in 

gaining one RBF in the IPL that produces inaccurate self-generated movements at this 

moment (Figure 7; 𝒌 = 𝟏). 

The subsequent learning is performed by using a continuous cycle of a two-phase 

learning process, that is, a repeat of learning through action observation followed by 

learning through action execution (Figure 7; 𝒌 = 𝟐. .𝒎), where 𝒎 is the number of 

iterations or added RBFs. This learning strategy is behaviorally more realistic in an 

ecologically valid condition, because the action must be observed (i.e., learning by 

observation) prior to it being actually performed (i.e., learning by action execution). 

Generally, the same process needs to be repeated several times for complete acquisition 

of the skilled action. Specifically, the SPL/IPS and IFG are trained during learning by 

observation phase, where the IFG and IPL are trained during learning by action 

execution; here, the action is already in the imitator’s own frame of reference, so the 

SPL/IPS works as an identity transformation. 
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3.3 Implementation of the synthetic neuroimaging model 

3.3.1 BOLD fMRI simulation 

As stated in section 2.5.2.2.1, the relationship between the stimulus and task-evoked 

BOLD response is generally modeled using a LTI system, where the BOLD response 

depends on both the input signal and the corresponding HRF (see Equation 4). In this 

section, detailed modeling methods are described for both HRF and BOLD response, 

which are used to generate the BOLD fMRI signals for the proposed MNS model (see 

Figure 8). 
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Figure 8. The synthetic BOLD fMRI generation process. Top-left panel is the membrane potential 

during a reach to grasp action for 1.5 s, where the four lines indicate the activity of four input vector 

in the neural network. Top-center panel is the average postsynaptic membrane potential derived 

from Equation 35. Top-right panel is the mean instantaneous population firing rate (i.e., population 

coding) by Equation 34. Bottom-right panel is the synaptic strength to the group of output neural 

population obtained through the neural network. Middle-right panel is the mean synaptic activity of 

a subpopulation neuron in Equation 34. Middle-center panel is the predicted BOLD response of all 

voxels in Equation 33. Middle-left panel is the two-dimensional representation of the FWHM filtered 

BOLD responses. FWHM: full width at half maximum. 
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3.3.2 HRF modeling 

A single gamma function 𝒈 has been proved to provide a good approximation to the 

BOLD impulse response (Boynton, Engel, Glover, & Heeger, 1996): 

𝒈(𝒕) =
𝟏

𝝉(𝒏−𝟏)!
(𝒕 𝝉⁄ )𝒏−𝟏𝒆−(𝒕 𝝉⁄ )     (29) 

where 𝒕 is time, 𝝉 is the time scaling, and 𝒏 is a phase delay. However, due to its lack of 

details (e.g., undershoot and dispersion) observed in the BOLD impulse response, a set of 

gamma functions has been recently used (Figure 1). This can be mathematically 

represented by a Taylor expansion of the real BOLD impulse response 𝒓 by a convolution 

of an expected HRF 𝒉 and the Dirac delta function 𝜹: 

𝒓(𝒕) = 𝜸 ∙ (𝒉 ∗ 𝜹)(𝒕)       (30) 

where 𝜸 is the strength scaling. In practice, 𝒉 can be approximated to 𝒉̂ with a gamma 

function 𝒈 that is shifted by a small amount 𝝉 in time. Therefore, the Equation 30 can be 

approximated as the estimated BOLD impulse response 𝒓̂: 

{
 
 
 

 
 
 
𝒓̂(𝒕) = 𝜸 ∙ (𝒉̂ ∗ 𝜹)(𝒕) + 𝜺(𝒕)

 = 𝜸 ∙ 𝒉̂(𝒕) + 𝜺(𝒕)

 = 𝜸 ∙ 𝒈(𝒕 + 𝝉) + 𝜺(𝒕)

 = 𝜸 ∙ (𝒈(𝒕) + 𝝉𝒈′(𝒕) +
𝟏

𝟐!
𝝉𝟐𝒈′′(𝒕) + 𝑹𝟐) + 𝜺(𝒕)

𝜺(𝒕) ~𝑵(𝟎, 𝝈𝒈
𝟐)

𝑹𝟐 =
𝟏

𝟑!
𝝉𝟑𝒈(𝟑)(𝒕∗)

  (31) 

 

where 𝜺 is the approximation error in normal distribution with the standard deviation 𝝈𝒈, 

the three functions, 𝒈, 𝒈′, and 𝒈′′, are respectively the zeroth to second derivatives of the 
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gamma function, and 𝑹𝟐 is the Lagrange remainder for some 𝒕∗ ∈ [𝒕, 𝒕 + 𝝉]. Therefore, 𝒉̂ 

is obtained as: 

𝒉̂(𝒕) = 𝑹𝟐 + 𝒈(𝒕) + 𝝉𝒈
′(𝒕) +

𝟏

𝟐!
𝝉𝟐𝒈′′(𝒕)

 = 𝜷 ∙ 𝟏(𝒕) 
𝟎 + 𝜷 

𝟏
𝟏 ∙ 𝒈(𝒕) + 𝜷 

𝟏
𝟐 ∙ 𝒈

′(𝒕) + 𝜷 
𝟏

𝟑 ∙ 𝒈
′′(𝒕)

  (32) 

where 𝜷 
𝟎  and 𝜷 

𝟏
𝒌 are the coefficients in a zeroth- and first-order Volterra kernel (see 

Appendix B). In this study, the Statistical Parametric Mapping (SPM) software (SPM12, 

Wellcome Trust Centre for Neuroimaging, University College London, London, UK) is 

used to estimate Equation 31 and 32 with 𝝉 = 𝟏, 𝒏 = 𝟔, and 𝒕 ∈ [𝟎, 𝟑𝟐] for 𝒈(𝒕). 

3.3.3 BOLD response modeling 

The BOLD response is typically modeled using a convolution model; in particular, a 

GLM with a LTI system. However, the LTI system oversimplified the process by 

replacing the mean synaptic activity with the brief stimulation function (Equation 4). As a 

result, the output of this system becomes also simpler (i.e., the BOLD impulse response) 

than its original form, the BOLD response. In the present study, for more accurate BOLD 

response simulation, the predicted BOLD response is calculated from a convolution of 

the mean synaptic activity of an ensemble of neurons with the expected HRF. For this 

computation, the mean-field approximation is assumed in such a way that, in the artificial 

neural networks, each hidden unit reflects a subpopulation of neurons rather than a single 

neuron in each brain region so that the network weight from the unit correspond to the 
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regional mean neural population activity (i.e., LFP). This model can be expressed as 

similar as Equation 31: 

𝒚̂𝒗(𝒕) = 𝜸 ∙ (𝒉̂𝒗 ∗ 𝒘𝒗)(𝒕) + 𝜺𝒗(𝒕)     (33) 

where 𝒗 is a subpopulation of neurons (or a voxel), 𝒚̂𝒗 is the predicted BOLD response of 

𝒗, 𝒘𝒗 is the mean synaptic activity of 𝒗, 𝒉̂𝒗 is the estimated HRF of 𝒗, and 𝜺𝒗 is the 

Gaussian white noise of 𝒗 (Figure 8-Middle center panel). In this study, 𝜸 is 1 and 𝜺𝒗 is 

randomly generated for the signal-to-noise ratio (SNR) to be 65, which is the average 

temporal SNR measurement with 3×3×3 mm3 resolution at 3 tesla (T) (Triantafyllou et 

al., 2005). This allows that each hidden unit can be mapped onto each voxel of 55 mm3 

(i.e., ~ 3.8×3.8×3.8 mm3) that is composed of about 5.5 million neurons (Logothetis, 

2008), and that the RBF radius can represent the voxel size. Moreover, the total number 

of hidden units over all dimensions is bound to a specific value (e.g., 100), which is 

designed to reflect the finding that the maximum number of voxels in any cortical region 

is about 100 in terms of classification accuracy (D. D. Cox & Savoy, 2003). 
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The mean synaptic activity of a subpopulation neuron 𝒘𝒗 in Equation 33 is obtained 

through the digitization (Figure 8-Middle right panel):  

{
  
 

  
 𝒘𝒗(𝒕) = ∑ ∫ 𝒇𝒗(𝒕) ∙ |𝝎𝒐𝒗|𝒅𝒕

𝒕𝒌
𝒕𝒌−𝟏

𝑵
𝒌=𝟏 , 𝒕𝒌−𝟏 ≤ 𝒕 < 𝒕𝒌

𝒇𝒗(𝒕) = 𝒔(𝒎𝒗(𝒕))  

𝒔(𝒕) = (𝟏 + 𝒆−𝒕)−𝟏  

𝒎𝒗(𝒕) = ∑ 𝝎𝒗𝒊𝒙𝒊(𝒕)∑ 𝜶(𝒕 − 𝝉𝒊
𝒋
)∞

𝒋=𝟏
𝒏
𝒊=𝟏  

𝜶(𝒕) = 𝜜(𝒕 𝝉⁄ )𝒆−(𝒕 𝝉⁄ )  

 (34) 

where 𝑵 is the number of samples, each of which is digitized in the time interval from 

𝒕𝒌−𝟏 to 𝒕𝒌 (in particular, 𝒕𝟎 is 0 and 𝒕𝑵 corresponds to the duration of the scan), 𝒇𝒗 is the 

mean firing rate of 𝒗 (Figure 8-Top right panel), and 𝝎𝒐𝒗 is the synaptic strength from 𝒗 

to the group of output neurons 𝒐 (Figure 8-Bottom right panel). More importantly, it is 

assumed that 𝒇𝒗 is computed not by the emission of single spikes but by the average rate 

of action potentials fired by the neighboring population as the Jansen-Rit neural mass 

model (Jansen & Rit, 1995). In other words, 𝒇𝒗 actually reflects the mean instantaneous 

population firing rate (i.e., population coding) that is approximated by a sigmoid transfer 

function 𝒔 of the mean membrane potential of 𝒗 (i.e., 𝒎𝒗). The average postsynaptic 

membrane potential 𝒎𝒗 is calculated from all 𝒏 incoming synapses from the input 𝒊 to 𝒗 

(i.e., presynapses 𝝎𝒗𝒊), the incoming stimuli 𝒙𝒊 of 𝒊, and a synaptic transient function 

called the alpha function 𝜶 (Figure 8-Top left panel), where 𝝉𝒊
𝒋
 represents the time of the 

𝒋th instantaneous fire (David & Friston, 2003; Jansen & Rit, 1995). The alpha function 

has two constants representing the maximum amplitude of the postsynaptic membrane 
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potential 𝜜 and a time constant 𝝉. In practice, 𝒎𝒗 (Figure 8-Top center panel) can be 

simply computed by a convolution of 𝝎𝒗𝒊 and 𝜶 (David & Friston, 2003): 

𝒎𝒗(𝒕) = ∑ (𝝎𝒗𝒊𝒙𝒊 ∗ 𝜶)(𝒕)
𝒏
𝒊=𝟏

 = (∑ 𝝎𝒗𝒊𝒙𝒊
𝒏
𝒊=𝟏 ∗ 𝜶)(𝒕)

     (35) 

Specifically, the integration time interval (i.e., 𝒕𝒌 − 𝒕𝒌−𝟏 in Equation 34) is set to 62.5 

ms, which corresponds to the acquisition time of 32 slices when TR/TE is 2000/30 ms in 

the typical BOLD fMRI protocol at 3T; for example, the number of slices and the voxel 

size can be 33 and 3.3×3.3×3.3 mm3 when a 2-s TR, 30-ms TE, 78° flip angle, and 211-

mm field of view with 64×64 matrix size in a gradient echo based echo planar imaging 

sequence on a 3T system such as MAGNETOM® Trio, A Tim System (Siemens Medical 

Solutions USA, Inc., Malvern, PA, USA) (Monaco et al., 2011). In addition, 𝒏, 𝜜, and 𝝉 

are taken to be 4, 1 mV and 10 ms for the sake of simplicity of the current computational 

model (Equation 34 and 35). The incoming stimuli 𝒙𝒊 correspond to various internal 

representations of the reaching and grasping action (duration: 1.5 s) for each brain region 

(e.g., spatial kinematic trajectories in SPL/IPS and IFG, angular trajectories in IPL, etc.). 

It must be noted that the SPM approximates 𝒉̂𝒗 at a higher temporal resolution of 62.5 ms 

(i.e., 16 Hz), which is ∆𝒕 = 𝑻𝑹 𝑵𝒕⁄ = 𝟐 𝟑𝟐⁄  with the number of time-bins per scan 𝑵𝒕, to 

capture more information in the predicted BOLD signals (i.e., 𝒚̂𝒗 in Equation 33). 

Therefore, 𝒚̂𝒗 is decimated (i.e., downsampling) to produce the BOLD fMRI images once 

every 2-s TR with respect to the first data acquisition time point 𝒕𝟎
𝑩𝑶𝑳𝑫, that is, 1 s. 

Moreover, a spatial low-pass filter is applied to all the BOLD images (i.e., IFG, IPL, and 

SPL/IPS) with full width at half maximum (FWHM) of 4×4 pixels (or mm2) (Figure 8-
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Middle left panel). Furthermore, to examine a specific voxel activation, the upper 70 % 

of the entire voxel that is transformed into the z-space is included; in other words, the 

lower 30 % of the voxels is considered as no-responsive voxels. It is performed to 

eliminate the effects of the white noise added in generating the BOLD fMRI signals with 

the SNR of 65. 

 

3.4 Task conditions 

In the current study, a simple geometrical model of the right upper limb having 2 degrees 

of freedom is used to perform horizontal reaching to grasp task in a two-dimensional 

plane (Table 1). 

Table 1. Anthropometric data and functional range of motion 

Dimension name Demonstrator Imitator 

Right upper arm length 0.33 m 0.16 m 

Right forearm length 0.27 m 0.12 m 

Shoulder horizontal adduction (𝜽𝟏)† 0° to 120° 0° to 120° 

Elbow horizontal flexion (𝜽𝟐)† 0° to 120° 0° to 120° 

Viewpoint‡ -180° to 180° 0° to 180° 

†The 0° start position for establishing the degrees of each motion is 90° shoulder abduction and 90° elbow 

extension, respectively. 

‡The viewpoint angle is measured from the Cartesian positive X-axis so that the positive and the negative 

Y-axis have +90° and -90°, respectively. 

 

The task is performed one by one under 9 conditions that are described by a combination 

of three 𝒚-directional distances (i.e., near, middle, and far) and three 𝒙-directional 
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position (i.e., left, center, and right), which represents the demonstrator’s relative position 

with respect to the position and viewpoint of the imitator (Figure 9A). 

 

 

Figure 9. Task condition for a reaching and grasping task. (A) The demonstrator performs the action 

in each spot represented by a combination of three y-directional (i.e., near, middle, and far) and 

three x-directional distances (i.e., left, center, and right). The demonstrator always faces toward the 

negative y-direction, and the imitator faces toward the demonstrator in the origin (0,0). For depth 

perception, the imitator perceives the demonstrator according to the given perceived size. (B) The 

imitator turns its body toward the demonstrator by the given angle from 7 to 17 degrees with respect 

to the positive y-direction. 
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In particular, each 𝒚-directional distance is defined as 150 (near), 250 (middle), and 350 

cm (far), and each 𝒙-directional position is set as -45 (left), 0 (center), and 45 cm (right), 

respectively. Moreover, for more realistic test condition, depth perception is implemented 

for the imitator to perceive a smaller size of the demonstrator when the demonstrator is 

further away; specifically, the imitator’s depth perception ratios are 97, 95, and 93% of 

the demonstrator’s original body size in near, middle, and far conditions, respectively. In 

all these conditions, it is assumed that the demonstrator performs the reaching to grasp 

action while setting its face toward -𝒚 direction, whereas the imitator turns its body 

toward the demonstrator. In this case, the body turn angles are ±7, ±10, and ±17 degrees 

when the demonstrator is respectively in far, middle, and near position (Figure 9B). For a 

given condition, two tests are performed; one is an action observation, where the imitator 

simply observes the demonstrator’s action, and the other is an action execution, in which 

the imitator actually performs the observed action. Finally, the trajectories of each action 

is generated by a vector-integration-to-endpoint model (Bullock, Bongers, Lankhorst, & 

Beek, 1999; Bullock & Grossberg, 1988), the duration of which is 1.5 s, and sampled at 

128 Hz. 

 

3.5 Assessment criteria for the model performance 

After training of all three neural networks, the performance of the proposed MNS model 

is assessed with respect to the following three criteria: i) learning curves produced by 

each network, synaptic weights, and the associated magnitude of errors, ii) the kinematic 
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outputs of the end-effector and its joints, and lastly iii) the response patterns in synthetic 

BOLD fMRI signals. 

3.5.1 Learning curves and associated errors in the neural networks 

First of all, for a given condition, the performance of the neural networks modeling 

functional roles of the SPL/IPS, IFG, and IPL is assessed by means of learning curves 

produced by the neural networks. Specifically, according to the learning algorithm 

described in the section 3.2.2, two MSE functions (i.e., from both OLS and GCV 

methods) are produced by the neural networks for each condition. In particular, it is 

expected that, when the networks are trained well enough, the MSE of OLS eventually 

becomes smaller than the MSE of GCV for more than at least two consecutive iterations. 

Next, the network weights between the hidden-to-output units are assessed. The network 

weights represent the local mean synaptic activity of a group of neurons in each brain 

region. Therefore, the positive and negative weights correspond to the excitatory and 

inhibitory synaptic activity, respectively. 

In addition, the networks are assessed in terms of their prediction quality. Particularly, the 

root-mean-square (RMS) of the predicted outputs with respect to the expected outputs is 

employed to measure the error. Therefore, the root-mean-square error (RMSE) is 

computed for the entire workspace of the demonstrator, which is observed and 

transformed by the imitator, and in turn, compared with its own workspace in the 

egocentric frame of reference. It is predicted that the RMSE surface is bounded by a 
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certain error threshold value (e.g., 0.1 mm), which is considered to be small enough to 

produce accurate imitation through the SPL/IPS and the MNS. 

3.5.2 Behavioral measures (kinematics and mental transformation) of the neural 

networks 

The model performance is also assessed in terms of the quality of imitated action by 

measuring the horizontal planar movements of the right arm composed of two joints (i.e., 

shoulder and elbow). Specifically, for kinematic analysis, the spatial trajectory and 

velocity of the end-effector (i.e., right hand) are examined. In addition, the angular 

position and velocity of each joint angle are also measured. 

Another approach to assess the performance of the proposed MNS model is through the 

mental rotation, which is examined by the measuring the relationship between the 

rotation angle and the response time (Bock & Dalecki, 2015; Dalecki, Hoffmann, & 

Bock, 2012). Particularly, this concept is expanded to include all the visuospatial 

transformation capabilities of the current SPL/IPS network; namely, the clockwise and 

counterclockwise rotation as well as the scaling and the translation, although the last two 

transformations are not explicitly described in the test. Consequently, the response time is 

defined as the processing time of the SPL/IPS network to successfully transform the 

observed action from the allocentric to the imitator’s egocentric frame of reference. For 

this analysis, it is assumed that the imitator can see the demonstrator’s action through its 

body. 
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3.5.3 Simulated BOLD fMRI responses 

Finally, the model is assessed by measuring the simulated BOLD fMRI responses for 

specific given conditions. The simulated BOLD fMRI signals are compared with actual 

responses reported in other relevant literatures to validate the activation patterns induced 

by the observation and execution of actions. Moreover, in the simulated BOLD fMRI 

signals, both view-independent and view-dependent activation patterns are investigated. 

Particularly, for the analysis, the distance measures as well as the masking paradigm is 

used to examine the similar (i.e., view-independent MNS) or different (i.e., view-

dependent MNS) activation patterns that are engaged in different conditional stimuli. To 

examine the similarity of two BOLD images in two-dimensional matrix forms, the 

covariance matrix distance (CMD; 𝒅𝑪𝑶𝑽) is devised based on the idea of correlation 

matrix distance (𝒅𝒄𝒐𝒓) (Herdin, Czink, Ozcelik, & Bonek, 2005). Although 𝒅𝒄𝒐𝒓 is 

informative, it produces a not-a-number when any input vector (i.e., A or B) is stationary; 

in other words, when any standard deviation (i.e., 𝝈A or 𝝈B) is zero because the 

correlation matrix of these two vectors 𝒄𝒐𝒓(A,B) is defined as 𝒄𝒐𝒓(A,B) =

𝒄𝒐𝒗(A,B) (𝝈A𝝈B)⁄ . Therefore, 𝒅𝑪𝑶𝑽 is defined as: 

𝒅𝒄𝒐𝒗(X,Y) = 𝟏 − 𝒕𝒓(XY) (‖X‖𝑭‖Y‖𝑭)⁄     (36) 

where X and Y are the covariance matrices between two BOLD responses in each 

condition of a given task, 𝒕𝒓(∙) is the matrix trace, and ‖∙‖𝑭 is the Frobenius norm. The 

CMD becomes 0 if the matrices are similar (i.e., their eigenvalues are same; see 

Appendix C), whereas it is 1 if they differ to a maximum extent. 
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Chapter 4: Results 

 

In this chapter, the simulated MNS model is assessed by examining the performance of 

the computational processes in the SPL/IPS, IFG, and IPL, which are implemented with 

RBF networks and the learning algorithms based on the OLS and GCV. Specifically, the 

assessment is conducted at the network, behavioral, and neurophysiological levels 

according to the criteria for the model performance as described in the section 3.5. 

Overall, the simulation results based on both batch and online learning methods reveal 

that each of the computational components modeled the SPL/IPS, IFG and IPL can 

successfully learn the visuospatial transformation, inverse model, and the forward model, 

respectively. In particular, after the networks are trained, the results show that i) the 

imitator can successfully imitate the arm kinematics performed by the demonstrator in a 

similar way to those observed in humans; ii) the visuospatial transformation allowing for 

observing the actions in a egocentrically transformed manner leads to functionally similar 

patterns to those observed during mental transformation of human body as well as mental 

rotation of objects under various viewpoints, and iii) in agreement with 

neurophysiological studies, the simulated neural activities during both action observation 

and imitation are comparable, and more importantly, reveal two types of neural 

populations encoding view-independent and view-dependent representations of the 

observed action, respectively. It is critical to note that for the sake of clarity, only three 

key conditions (i.e., left-middle, center-middle, and right-middle) are depicted in the 
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results below, however very similar findings are obtained for the other six conditions 

both in terms of the prescribed three assessment criteria (see the section 3.5). 

 

4.1 Learning of transformation primitives 

As illustrated in Figure 7, the four transformation primitives (i.e., clockwise and 

counterclockwise rotations as well as translation and scaling transformations) are first 

trained with the batch update method. 

 

Figure 10. Learning curves of the four transformation primitives in each dimension of the two-

dimensional Cartesian coordinates. The scaling and translation networks have similar learning curve 

slopes. Similarly, the counterclockwise (CCW) and clockwise (CW) rotation networks are similar in 

their slopes. The dashed lines indicate the MSE in the OLS, whereas the solid lines correspond to the 

MSE in the GCV. 
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After training, the results reveal that all the learning curves (i.e., MSEs in both OLS and 

GCV) commonly converge on a very small number (≤ 𝟕. 𝟐𝟖 × 𝟏𝟎−𝟖; Table 2; Figure 10) 

with up to 16 RBFs per each dimension of the two-dimensional Cartesian coordinates 

(Figure 10). Interestingly, the MSE curves for the scaling and translation transformations 

are very similar to each other in both OLS and GCV, and those curves for the 

counterclockwise (CCW) and clockwise (CW) rotations are also very similar to each 

other (Figure 10). Specifically, the scaling and translation networks achieve the similar 

MSEs (MSE-OLS: 𝟑. 𝟎𝟎 × 𝟏𝟎−𝟏𝟏 and MSE-GCV: 𝟕. 𝟐𝟖 × 𝟏𝟎−𝟖) with only 4 RBFs per 

each dimension, while the CCW (MSE-OLS: 𝟏. 𝟐𝟐 × 𝟏𝟎−𝟏𝟎 and MSE-GCV: 𝟑. 𝟗𝟐 ×

𝟏𝟎−𝟗) and the CW (MSE-OLS: 𝟏. 𝟎𝟐 × 𝟏𝟎−𝟏𝟎 and MSE-GCV: 𝟑. 𝟗𝟐 × 𝟏𝟎−𝟗) networks 

also reach similar MSEs with 16 RBFs per each dimension, respectively (Table 2). 

Across the conditions, the standard deviations of both MSE-OLS and MSE-GCV are 

commonly less than or equal to 𝟏. 𝟒𝟒 × 𝟏𝟎−𝟏𝟒. Moreover, for each transformation 

network, the RBFs with optimal radii are evenly distributed in [−𝟏, 𝟏] × [−𝟏, 𝟏] as 

explained in the section 3.2.1. For example, for each scaling and translation network, the 

selected 4 RBFs are placed on each point of {(𝟏, 𝟎), (𝟎,−𝟏), (𝟎, 𝟏), (𝟎, −𝟏)} and their 

radii are 2. Similarly, each of the clockwise and counterclockwise rotations is represented 

with evenly distributed 16 RBFs with the radius of 2. 

Table 2. Mean last MSEs of the transformation primitives in the batch update method 

MSE Scaling Translation CCW CW 

MSE-OLS 𝟑. 𝟎𝟎 × 𝟏𝟎−𝟏𝟏 𝟑. 𝟎𝟎 × 𝟏𝟎−𝟏𝟏 𝟏. 𝟐𝟐 × 𝟏𝟎−𝟏𝟎 𝟏. 𝟎𝟐 × 𝟏𝟎−𝟏𝟎 

MSE-GCV 𝟕. 𝟐𝟖 × 𝟏𝟎−𝟖 𝟕. 𝟐𝟖 × 𝟏𝟎−𝟖 𝟑. 𝟗𝟐 × 𝟏𝟎−𝟗 𝟑. 𝟗𝟐 × 𝟏𝟎−𝟗 
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Moreover, since the transformation primitives are independent of the relative spatial 

relationships between the demonstrator and the imitator, those four primitive networks 

should produce very similar output results regardless of the testing conditions. 

Specifically, it could be demonstrated by the average RMSE values for the 

aforementioned nine conditions: the scaling (𝟗. 𝟏𝟎 × 𝟏𝟎−𝟔 m), translation (𝟗. 𝟏𝟎 × 𝟏𝟎−𝟔 

m), CCW (𝟏. 𝟒𝟎 × 𝟏𝟎−𝟔 m), and CW (𝟏. 𝟒𝟑 × 𝟏𝟎−𝟔 m), respectively (Figure 11). 

 

Figure 11 Average root mean square error of four transformation primitives. The average RMSE of 

these transformation networks is less than 1.0×10-5 m or 0.01 mm. 
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As a result, the average RMSE is less than 𝟏. 𝟎 × 𝟏𝟎−𝟓 m (or 0.01 mm) in all 

transformation primitives (Figure 11). Therefore, these four accurate transformation 

primitive networks can result in good performance for the SPL/IPS network (i.e., a 

combination network of these four subnetworks) after the learning of the SPL/IPS is 

completed. 

 

4.2 Learning curves and associated errors in the neural networks 

4.2.1 Batch and online update methods 

As stated in section 3.2.4, the performances of the proposed MNS model that is based on 

both batch and online update methods are examined under same conditions. It must be 

noted that although the MSE curves in both OLS and GCV are actually used for the 

training of the neural networks as explained in section 3.2.2, the average of these two 

MSE curves having overall similar trends is depicted for the sake of simplicity (Figure 

12). 
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Figure 12. Mean learning curves of the three neural networks using the batch (left column) and 

online (right column) update methods. The demonstrator performs an action in the left-middle (first 

row), center-middle (second row), and right-middle (third row) conditions. The blue, green, and red 

lines represent the mean learning curves for the SPL/IPS, IFG, and IPL, respectively. 
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First, the batch update method results in very similar patterns particularly for the SPL/IPS 

and the IPL across conditions, albeit some minor differences for the IFG (Figure 12-Left 

column). Although the details of the learning curves are different across conditions, the 

overall results reveal that i) all three neural networks are successfully trained with pretty 

low MSE values, ii) the SPL/IPS tends to learn faster than the IPL, and the IPL tends to 

learn faster than the IFG, and iii) the IFG requires a larger number of RBFs (49 RBFs per 

dimension) to model the inverse model compared to the IPL (29 RBFs per dimension) for 

the forward model and the SPL/IPS (26 RBFs per dimension) for the visuospatial 

transformation. Particularly, after training is completed, the last MSE values (i.e., MSE-

OLS and MSE-GCV) of the SPL/IPS are slightly different across conditions, whereas 

those of the IFG and IPL are same (Table 3). This result reveals that all neural networks 

commonly converge on a small MSE (≤ 𝟑. 𝟖𝟑 × 𝟏𝟎−𝟒) regardless of the testing 

conditions and the MSE types. 

Table 3. Last MSEs of the neural networks that are trained with the batch update method 

Network MSE Left-middle Center-middle Right-middle 

SPL/IPS 
MSE-OLS 𝟏. 𝟕𝟓 × 𝟏𝟎−𝟏𝟐 𝟐. 𝟕𝟏 × 𝟏𝟎−𝟏𝟑 𝟒. 𝟑𝟏 × 𝟏𝟎−𝟏𝟒 

MSE-GCV 𝟒. 𝟕𝟑 × 𝟏𝟎−𝟏𝟎 𝟔. 𝟑𝟕 × 𝟏𝟎−𝟏𝟏 𝟖. 𝟎𝟑 × 𝟏𝟎−𝟏𝟏 

IFG 
MSE-OLS 𝟏. 𝟐𝟒 × 𝟏𝟎−𝟔 𝟏. 𝟐𝟒 × 𝟏𝟎−𝟔 𝟏. 𝟐𝟒 × 𝟏𝟎−𝟔 

MSE-GCV 𝟑. 𝟖𝟑 × 𝟏𝟎−𝟒 𝟑. 𝟖𝟑 × 𝟏𝟎−𝟒 𝟑. 𝟖𝟑 × 𝟏𝟎−𝟒 

IPL 
MSE-OLS 𝟐. 𝟑𝟗 × 𝟏𝟎−𝟏𝟎 𝟐. 𝟑𝟗 × 𝟏𝟎−𝟏𝟎 𝟐. 𝟑𝟗 × 𝟏𝟎−𝟏𝟎 

MSE-GCV 𝟏. 𝟐𝟔 × 𝟏𝟎−𝟖 𝟏. 𝟐𝟔 × 𝟏𝟎−𝟖 𝟏. 𝟐𝟔 × 𝟏𝟎−𝟖 

 

Although less pronounced than for the batch method, the online update method results in 

a similar trend regarding the speed of the SPL/IPS, IPL, and IFG (Figure 12-Right 

column). Namely, the SPL/IPS tends to be slightly faster than the IPL, and the IPL tends 
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to be must faster than the IFG independently of the testing conditions. Moreover, 

although the IPL reveals a similar learning slope across conditions, the learning curves of 

the SPL/IPS and IFG are different. Furthermore, although the MSEs are remarkably 

larger compared to the batch update method (Table 3 and 4), the MSEs in the online 

update method are still small (≤ 𝟏. 𝟔𝟑 × 𝟏𝟎−𝟐) across conditions (Table 4). This is not 

surprising considering the learning procedure, in which all three neural networks are 

interacting each other, thus the accuracy of a certain network is also affected by the errors 

from the other two networks. 

Table 4. Last MSEs of the neural networks that are trained with the online update method 

Network MSE Left-middle Center-middle Right-middle 

SPL/IPS 
MSE-OLS 𝟔. 𝟏𝟓 × 𝟏𝟎−𝟔 𝟑. 𝟓𝟕 × 𝟏𝟎−𝟓 𝟔. 𝟏𝟓 × 𝟏𝟎−𝟔 

MSE-GCV 𝟏. 𝟒𝟔 × 𝟏𝟎−𝟓 𝟑. 𝟏𝟖 × 𝟏𝟎−𝟒 𝟏. 𝟒𝟔 × 𝟏𝟎−𝟓 

IFG 
MSE-OLS 𝟏. 𝟎𝟔 × 𝟏𝟎−𝟐 𝟏. 𝟑𝟎 × 𝟏𝟎−𝟑 𝟏. 𝟖𝟎 × 𝟏𝟎−𝟑 

MSE-GCV 𝟏. 𝟔𝟑 × 𝟏𝟎−𝟐 𝟏. 𝟒𝟎 × 𝟏𝟎−𝟑 𝟏. 𝟔𝟎 × 𝟏𝟎−𝟑 

IPL 
MSE-OLS 𝟑. 𝟐𝟕 × 𝟏𝟎−𝟔 𝟑. 𝟐𝟕 × 𝟏𝟎−𝟔 𝟑. 𝟐𝟕 × 𝟏𝟎−𝟔 

MSE-GCV 𝟖. 𝟑𝟐 × 𝟏𝟎−𝟔 𝟖. 𝟑𝟐 × 𝟏𝟎−𝟔 𝟖. 𝟑𝟐 × 𝟏𝟎−𝟔 

 

In addition to the comparison of the learning curves between the batch and online update 

methods, the RMSE surfaces and their mean values (including standard deviations) are 

compared for a more direct assessment (Figure 13).
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Figure 13. RMSE surfaces and mean RMSE in batch (first row) and online (second row) update methods under the left-middle (first column), 

center-middle (second column), and right-middle (third column) conditions. The RMSE surfaces are ranged from 0 (blue) to 8 mm (yellow). 

The mean RMSE (third row) is depicted with the mean and standard deviation.
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For both batch and online methods, the RMSE surfaces have minimum values near the 

lower center (or origin) point where the imitator is placed, and maximum values around 

the outermost corner where the imitator can reach by stretching its arm (Figure 13, first 

two rows). More importantly, the mean RMSE values are similar between the batch and 

online update methods (Figure 13, third row). Particularly, it shows that the mean RMSE 

values are less than 8 mm regardless of the testing conditions. Moreover, in the left-

middle condition, even online update method results in lower mean RMSE value than the 

batch update method (Figure 13; Table 5). As a result, this demonstrates that the accuracy 

of the online update method is comparable to the one obtained with the batch method 

(Table 5) while the former allows three neural networks to interact during learning. 

Table 5. Mean RMSE in the batch and online update methods (mean ± standard deviation) 

Method Left-Middle Center-Middle Right-Middle 

Batch 
(𝟐. 𝟒𝟎 ± 𝟏. 𝟏𝟎)

× 𝟏𝟎−𝟑 

(𝟐. 𝟐𝟎 ± 𝟏. 𝟏𝟎)
× 𝟏𝟎−𝟑 

(𝟐. 𝟒𝟎 ± 𝟏. 𝟏𝟎)
× 𝟏𝟎−𝟑 

Online 
(𝟏. 𝟓𝟎 ± 𝟎. 𝟖𝟎)

× 𝟏𝟎−𝟑 

(𝟒. 𝟖𝟎 ± 𝟎. 𝟖𝟎)
× 𝟏𝟎−𝟑 

(𝟓. 𝟏𝟎 ± 𝟏. 𝟎𝟎)
× 𝟏𝟎−𝟑 

 

The mean RMSE of the online method is about twice its counterpart of the batch method 

(Table 5), but it is still small because the mean RMSE is less than or equal to 5.10 mm 

regardless of the testing conditions (Table 5). Moreover, the standard deviations of the 

mean RMSEs are very similar to each other in both batch and online methods across 

conditions. 
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4.2.2 Network weights 

In this section, the neural weights of the RBF networks are examined for both action 

observation and execution. 

 

Figure 14. Neural weights of all three networks in action observation (left panel) and execution (right 

panel) under the left-middle, center-middle, and right-middle conditions. For visualization purpose, 

the weights are depicted in two dimensional space of 50×50 RBFs, each of which can represent X and 

Y dimension in the Cartesian coordinates. The weights are normalized to be scaled from -1 (blue) to 

1 (yellow). 

 

As expected, the neural weights are similar for both observation and execution regardless 

of the testing conditions (Figure 14). Specifically, the results reveal that the activity 

patterns of both excitatory and inhibitory synapses are very similar for both action 

observation and execution (Figure 14). Moreover, the synaptic patterns of the IPL are 

same independently of the testing conditions, whereas the SPL/IPS and IFG have slightly 

different synaptic patterns in each condition. 

 



 

89 

 

 

Figure 15. Mean dissimilarity of the synaptic weights of each region in action observation and 

execution. The dissimilarity measure based on the covariance matrix distance (CMD) quantifies the 

dissimilarity between 0 (identical) and 1 (different). 

 

Furthermore, the dissimilarity of the mean synaptic activities between action observation 

and execution is quantitatively observed by the CMD. The results reveal that the average 

synaptic weights of each neural network are almost same across conditions during action 

observation and execution (Figure 15). Although the IFG reveals a slight difference in the 

mean synaptic weights, such a discrepancy is still very small (≤ 𝟐. 𝟏𝟗 × 𝟏𝟎−𝟏𝟕). As a 

result, all the results indicate that all three brain regions would similarly activate during 

action observation and execution. 
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4.2.3 RMSE of the network outputs 

For action observation and execution, the RMSE surfaces and their mean values 

(including standard deviations) are also obtained in the left-middle, center-middle, and 

right-middle conditions (Figure 16). 
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Figure 16. RMSE surfaces and mean RMSE in action observation (first row) and execution (second row) under the left-middle (first column), 

center-middle (second column), and right-middle (third column) conditions. The RMSE surfaces are ranged from 0 (blue) to 8 mm (yellow). 

The mean RMSE (third row) is depicted with the mean and standard deviation.
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These RMSE surfaces also have minimum values near the lower center (or origin) point 

where the imitator is placed, and maximum values around the outermost corner where the 

imitator can reach by stretching its arm (Figure 16, first two rows). Although the RMSE 

surfaces are different between action observation and execution in the left-middle 

condition, the discrepancy is still very small (≤ 𝟑.𝟐𝟎 mm; Table 6). Therefore, it reveals 

that the RMSE surfaces are very similar in action observation and execution regardless of 

the testing condition (Figure 16). 

Table 6. Mean RMSE in action observation and execution (mean ± standard deviation) 

Condition Left-Middle Center-Middle Right-Middle 

Observation 
(𝟏. 𝟓𝟎 ± 𝟎. 𝟖𝟓)
× 𝟏𝟎−𝟑 

(𝟒. 𝟖𝟎 ± 𝟎. 𝟖𝟑)
× 𝟏𝟎−𝟑 

(𝟓. 𝟏𝟎 ± 𝟏. 𝟎𝟎)
× 𝟏𝟎−𝟑 

Execution 
(𝟒. 𝟕𝟎 ± 𝟎. 𝟗𝟒)
× 𝟏𝟎−𝟑 

(𝟒. 𝟖𝟎 ± 𝟎. 𝟖𝟑)
× 𝟏𝟎−𝟑 

(𝟓. 𝟏𝟎 ± 𝟏. 𝟎𝟎)
× 𝟏𝟎−𝟑 

 

The mean RMSE values are less than or equal to 5.10 mm regardless of the testing 

conditions, and the corresponding standard deviations are also very small (≤ 𝟏. 𝟎𝟎 ×

𝟏𝟎−𝟑; Table 6). 
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4.3 Behavioral measures of the neural networks 

4.3.1 Kinematics of the end-effector and joints 

The inverse and forward kinematics respectively in the IFG and IPL are investigated in 

this section during action observation and execution in the left-middle, center-middle, 

and right-middle conditions. 

A) 

 
 



 

 

94 

 

B) 

 
C) 
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Figure 17. Kinematics of the end-effector and its joint angles under (A) the left-middle, (B) center-

middle, and (C) right-middle conditions. In each figure, the left and right panels depict positions vs. 

time and joint angles vs. time, respectively. Each row corresponds to the position (or angle), its first 

derivative (i.e., velocity), and its mean RMSE curves, respectively. The dark blue (X-axis) and light 

blue (Y-axis) lines are for the action observation, whereas the dark red (shoulder horizontal 

adduction) and light red (elbow horizontal flexion) lines are for the action execution. 

 

Overall, the observed and imitated trajectories are similar while the simulated kinematics 

generated by the model are similar to those observed in humans (i.e., sigmoid-shape 

displacement as well as bell-shaped and single-peaked velocity profiles). It must be noted 

that as the action is executed the imitated action becomes closer to the observed action. 

This suggests that the imitator will correct its trajectory error during action as shown in 

the RMSE curves, thus resulting in the presence of a second peak in the velocity profiles 

(Figure 17). 

 

Table 7. Mean RMSE of the stabilized kinematics between the observed and executed actions (mean 

± standard deviation) 

Kinematics Left-Middle Center-Middle Right-Middle 

Position (m) 
𝟖. 𝟏𝟓 × 𝟏𝟎−𝟒 

±𝟏.𝟕𝟔 × 𝟏𝟎−𝟖 

𝟐. 𝟒𝟑 × 𝟏𝟎−𝟒 

±𝟔.𝟑𝟏 × 𝟏𝟎−𝟖 

𝟓. 𝟑𝟓 × 𝟏𝟎−𝟒 

±𝟏. 𝟐𝟗 × 𝟏𝟎−𝟕 

Joint angle (°) 
𝟒. 𝟒𝟑 × 𝟏𝟎−𝟏 

±𝟏.𝟔𝟎 × 𝟏𝟎−𝟕 

𝟎. 𝟗𝟐 × 𝟏𝟎−𝟏 

±𝟏.𝟓𝟐 × 𝟏𝟎−𝟖 

𝟏. 𝟓𝟑 × 𝟏𝟎−𝟏 

±𝟐. 𝟗𝟖 × 𝟏𝟎−𝟕 
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As shown in Figure 17, the imitated action becomes stabilized after 1 second regardless 

of the testing condition. Therefore, the mean RMSE of the kinematics between the 

observed and executed actions are quantified from 1.0 to 1.5 seconds (Table 7). The 

results reveal that the imitator can accurately reproduce the observed action with very 

small mean RMSE values in terms of the position of the end-effector (≤ 𝟎. 𝟖𝟏𝟓 mm) and 

its joint angles (≤ 𝟎. 𝟒𝟒𝟑°) independently of the testing conditions. 

4.3.2 Mental transformation 

The performance of the SPL/IPS is measured by considering the response time during 

mental rotation as stated in 3.5.2. 

 

Figure 18. Normalized response time during mental rotation. The mental rotation is performed in 

clockwise (red) and counterclockwise (blue) directions for a given angle between 30 to 150 degrees. 

The mean and the standard deviation are calculated on 20 trials for each case. The outliers are 

marked with a plus sign (+). 
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The findings reveal that the normalized response time required to transform the observed 

action monotonically increases with respect to the amount of rotation angle. It must be 

noted that this transformation includes rotation, translation, and scaling, therefore, the 

response time actually reflects the processing time in the SPL/IPS. Therefore, for the 

special case of 0 degree, the SPL/IPS performs only the translation and scaling, and for 

the other special case of 180 degree, the SPL/IPS employs the counterclockwise 

subnetwork for the mental rotation (Figure 18). 

 

4.4 Simulated BOLD fMRI responses 

4.4.1 BOLD fMRI responses during action observation and execution 

While the previous sections focus on the validation of the proposed neural model at the 

neural network and behavioral levels, this section focuses on neurophysiological 

assessments by employing the synthetic BOLD fMRI responses generated by the three 

main neural networks (i.e., SPL/IPS, IFG, and IPL). 

As expected, the results reveal that during action observation and execution the simulated 

BOLD fMRI responses from three neural networks are similar (Figure 19). More 

specifically, the SPL/IPS network generates different BOLD pattern across condition, 

however for a given condition its patterns are very similar for both action observation and 

execution. On the other hand, the BOLD fMRI patterns produced by the IPL are same 
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independently of the testing conditions as well as during action observation and 

execution. 

A) 

 
B) 

 

Figure 19. Simulated BOLD fMRI response during action observation and execution. (A) The raw 

simulated BOLD fMRI responses of three neural networks during action observation (left panels) 

and execution (right panels) in three middle condition. (B) The difference of BOLD responses during 

action observation and execution. The BOLD response is scaled between 0 and 1. The horizontal and 

vertical axes correspond to the first and second dimensional voxels, respectively. 
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Interestingly, although the synthetic BOLD responses generated by the IFG are relatively 

different between testing conditions (the details will be discussed in the next section), the 

overall activities of the virtual voxels reveal fairly similar patterns between action 

observation and execution, in spite of somewhat different magnitudes. This is confirmed 

quantitatively with the dissimilarity measurement, which reveals that the mean BOLD 

fMRI responses simulated during action observation and execution are very similar 

(Figure 20). 

 

Figure 20. Dissimilarity measures of the simulated BOLD fMRI response during action observation 

and execution. The covariance matrix distance is employed to measure the dissimilarity. Two BOLD 

responses are similar when the value is closer to 0, whereas they are different when the value is closer 

to 1. 
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4.4.2 View-independent vs. view-dependent MNS activity 

One important element in the validation of this work is to assess the emergence of the 

view-independent and view-dependent MNS activities. When examining the activation of 

all the voxels under various testing conditions, it appears that some voxels are activated 

independently of the condition, whereas others are activated only in a specific condition, 

although their strengths are different (Figure 21). 
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A) 

 

B) 

 

Figure 21. The view-independent and view-dependent BOLD fMRI responses during action 

observation and execution. (A) The view-independent BOLD fMRI responses during action 

observation (left panels) and execution (right panels) in three middle conditions. (B) The view-

dependent BOLD fMRI responses also during action observation (left panels) and execution (right 

panels) in three middle conditions. The BOLD responses are scaled between 0 and 1, and the gray 

color describes a mask to emphasize the corresponding voxels. The horizontal and vertical axes 

correspond to the first and second dimensional voxels, respectively. 
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Specifically, the findings reveal that the neural networks modeling the SPL/IPS and IFG 

are able to generate synthetic fMRI activities that would correspond to view-independent 

and view-dependent neural populations (see Figure 19A, first two rows). Conversely, the 

IPL network is able to produce synthetic fMRI activities that correspond only to the 

view-independent neural population (see Figure 19A, third row). 

Table 8. The mean ratio for the view-independent and view-dependent voxels in action observation 

and execution 

Region Voxel Type Observation Execution Mean 

SPL/IPS 
View-independent voxels 𝟒. 𝟑𝟔% 𝟒. 𝟑𝟔% 𝟒. 𝟑𝟔% 

View-dependent voxels 𝟗𝟓. 𝟔𝟒% 𝟗𝟓. 𝟔𝟒% 𝟗𝟓. 𝟔𝟒% 

IFG 
View-independent voxels 𝟐𝟎. 𝟏𝟔% 𝟑𝟔. 𝟐𝟒% 𝟐𝟖. 𝟐% 

View-dependent voxels 𝟕𝟗. 𝟖𝟒% 𝟔𝟑. 𝟕𝟔% 𝟕𝟏. 𝟖% 

IPL 
View-independent voxels 𝟏𝟎𝟎. 𝟎𝟎% 𝟏𝟎𝟎. 𝟎𝟎% 𝟏𝟎𝟎. 𝟎𝟎% 

View-dependent voxels 𝟎. 𝟎𝟎% 𝟎. 𝟎𝟎% 𝟎. 𝟎𝟎% 

 

Interestingly, when the threshold based denoising method is applied, the findings reveal 

that the mean ratio for the view-independent and view-dependent voxels at the IFG is 

28.2% and 71.8%, respectively (Table 8). Moreover, a small number of view-independent 

voxels (4.36%) and a majority of view-dependent voxels (95.64%) are observed in the 

SPL/IPS, although this ratio is smaller than the one is observed in the IFG. On the other 

hand, it is resulted that the IPL is composed of the view-independent voxels only. 
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Figure 22. The view-independent and view-dependent BOLD fMRI responses during action 

observation and execution. The BOLD responses are normalized between 0 and 1. 

 

Finally, the average normalized BOLD fMRI responses of the view-independent and 

view-dependent voxels are measured (Figure 22). The result reveals that the activities of 

the view-independent voxels tend to be stronger (from at least 2.12 times in the SPL/IPS 

up to 13.73 times in the IFG) with larger variance (from at least 1.20 times in the 

SPL/IPS up to 1.89 times in the IFG) compared to those of the view-dependent voxels, 

which have weaker responses with smaller variance. 
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Chapter 5:  Summary 

 

Overall, this study proposes a novel neural model that includes a fronto-parietal network 

to simulate the neural mechanisms underlying the imitation through observational 

learning by examining its neural dynamics with a parietal visuospatial transformation 

system during action imitation. Specifically, the fronto-parietal circuit is composed of the 

IFG (i.e., frontal MNS) and the IPL (i.e., parietal MNS), which are responsible for the 

visual-to-motor transformation and the sensorimotor predictions, respectively. Moreover, 

the SPL/IPS is hypothesized to play a critical role in the visuospatial transformations 

such as re-orientation, rotation, and scaling of the visuospatial representation of the 

observed actions. As a result, the SPL/IPS can provide the view-independent visuospatial 

representation to the MNS, which may contribute to coding the intentions inherent in the 

observed actions (Carr et al., 2003; Fogassi et al., 2005). At the same time, the MT is 

assumed to provide the view-dependent visual motion representation such as direction 

and velocity of the action to the MNS (Adelson & Movshon, 1982; Tootell et al., 1995), 

which may tune the neural activity of the MNS with the view-specific motion 

information in the observed actions. 

The training of these three neural networks (i.e., SPL/IPS, IFG, and IPL) relies on a novel 

imitation learning strategy that is used to mimic more realistic human behavior in an 

ecologically valid learning context. First, the neural networks are trained through a 

continuous cycle of learning by action observation and learning by action execution, 

which generally constitutes imitation learning. Second, the IFG and the IPL as well as the 
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SPL/IPS are simultaneously trained using the online update method, where, for the sake 

of simplicity, the four transformation primitives of the SPL/IPS (i.e., clockwise and 

counterclockwise rotations as well as translation and scaling) are separately trained in a 

previous session. Third, the IPL is pre-trained only for a step to simulate the body-

babbling, which allows infants to practice their movements through self-generated 

activity (Meltzoff & Moore, 1997). Interestingly, this learning procedure reveals that the 

IPL (i.e., sensorimotor predictions) precedes the IFG (i.e., sensorimotor control), which is 

in agreement with previous findings suggesting the neural processes underlying 

prediction (i.e., forward computation) and motor control (i.e., inverse computation) 

during motor learning (Flanagan, Vetter, Johansson, & Wolpert, 2003). This is also 

consistent with the idea that even an imperfect forward model of the IPL could still be 

used to train the inverse model of the IFG through fronto-parietal interactions (Jordan & 

Rumelhart, 1992). As a whole, this newly proposed learning scheme contributes to 

enhancing the ecological validity of the MNS model during imitation through 

observational learning. 

After learning, this model is assessed under various conditions, where the relative spatial 

relationships between a demonstrator and an imitator are manipulated. In particular, the 

conditions are determined by a combination of two explicit variables of y-directional 

distance (i.e., near, middle, and far) and x-directional distance (i.e., left, center, and right) 

between these two agents, and two implicit variables of view-angle and anthropometry of 

them. The results reveal that the proposed model is capable of learning the observed 

action and reproducing it independently of the differences in anthropometry, distance, 

viewpoint, and frame of reference between the demonstrator and imitator. Taken as a 
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whole, through the interaction between the SPL/IPS, IFG, and IPL, this model can 

reproduce some behavioral and neurophysiological findings from previous mental 

rotation as well as action imitation studies. Specifically, the model can correctly imitate 

the observed action regardless of conditions, and the response time for mental 

transformation monotonically increases with respect to the view angle. Moreover, the 

BOLD fMRI responses are very similar between action observation and execution. 

Furthermore, particularly in the simulated BOLD fMRI signal of the IFG, the ratio of 

view-independent and view-dependent voxels is close to 1:3 as shown in the monkey 

mirror study (Caggiano et al., 2011), although the nature of the neural signals are 

different; one is a simulated voxel, and the other is a single neuron recording. 

Although the current neural model can imitate through observational learning of actions 

under various conditions between the demonstrator and the imitator, it has several 

limitations that are planned to be addressed in future works. In particular, the following 

three important limitations will be addressed in the near future; i) an incomplete temporo-

parieto-frontal circuit due to the simplified STS implementation, ii) the lack of codes of 

goals in the action, and iii) a more explicit hand modeling for grasping. To overcome 

these limitations, additional brain regions such as the rPFC, STS, and canonical neuron 

system in the IFG will be modeled using neural networks, which allow for matching and 

processing of goals inherent in the grasping action. In conclusion, this novel neural model 

offers a first step in developing a future computational platform that will allows to further 

examine the neural mechanisms underlying action observation and imitation by 

incorporating the MNS, SPL/IPS, and MT. Also, from a practical standpoint, this neural 

model can contribute to the development of adaptive neuromimetic controllers for 
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autonomous humanoid robots with potential applications for human-robot interactions, 

where the robot learns from humans (or from other robots) allowing thus robust and 

flexible motor performance in ecologically valid situations. 
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Chapter 6:  Discussion 
 

6.1 Mirror system and its view-independent as well as view-dependent activities 

This neural model can perform imitation through observational learning independently of 

the differences in viewpoint between the demonstrator and the imitator, thus resulting in 

similar imitated kinematics as well as comparable neural activities in the frontal MNS. 

This is consistent with the studies in nonhuman primates, which have reported that the 

responses in F5 mirror neurons are similar regardless of the demonstrator’s position 

(Craighero, Metta, Sandini, & Fadiga, 2007; Gallese et al., 1996). This is also in 

agreement with more recent findings of view-independent and view-dependent F5 mirror 

neurons, in which the minority (26%) of the F5 mirror neurons are view-independent 

(Caggiano et al., 2011). 

In addition to such monkey studies, some human MNS studies have demonstrated that the 

frontal MNS (or IFG) is more sensitive to the viewpoint, whereas the parietal MNS (or 

IPL) is responsive independently of the viewpoint (Aziz-Zadeh et al., 2002; Hétu et al., 

2011; Oosterhof et al., 2012). Specifically, the activity of the frontal MNS strongly 

correlates with the first-person perspective action (i.e., egocentrically transformed 

representation) rather than the third-person perspective action, whereas the activity of 

parietal MNS is similar regardless of the differences in viewpoint. 

In the current study, the view-independent visual representation of the action is assumed 

to be provided by the SPL/IPS considering various empirical studies (Andersen, 1987; 

Buneo & Andersen, 2006; Grefkes & Fink, 2005; Hesse et al., 2009; Oosterhof et al., 
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2012; G. Rizzolatti et al., 1998). Particularly, it is hypothesized that the SPL/IPS 

performs an allocentric-to-egocentric transformation for the observed action, and sends 

this egocentrically represented action to the frontal MNS to plan the neural commands 

(i.e., visual-to-motor transformation). Interestingly, this mechanism can effectively 

address the findings that) the activity of the frontal MNS strongly correlates with the 

egocentrically transformed representation of action (Oosterhof et al., 2012), and ii) the 

frontal MNS responds similarly regardless of various spatial relationships between the 

demonstrator and the imitator (Caggiano et al., 2011; Craighero et al., 2007; Gallese et 

al., 1996). Under such a mechanism, it is supposed that the view-independent MNS may 

encode the goals or intentions in the observed actions independently of the details of the 

visual inputs such as differences in anthropometry, distance, frame of reference, and 

viewpoint (Caggiano et al., 2011). However, it must be noted that the current model has a 

limitation in representing the higher level coding of actions since it incorporates the 

lowest level of coding (i.e., action specific motor states such as kinematics) as well as the 

low level of coding (i.e., independent of specific action trajectories or states) of actions. 

In general, it is hypothesized that the STS is required to encode higher level of 

representation of action; for instance, the STS allows the action to be represented 

independent of specific end-effectors so that it can code for an action with either hand 

(Iacoboni, 2005). Moreover, the rPFC needs to be involved to code the highest level of 

coding for goals in actions, which is also somewhat abstract level that is independent of 

end-effectors or actions; for instance a reach action to an apple is performed to satisfy 

hunger (Decety et al., 1997). Although the proposed neural model does not cover these 

higher and highest levels of coding of intentions in actions, it is still important to examine 
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the lowest and lower levels of coding in actions to model various experimental evidences 

in action imitation (Oztop, Kawato, & Arbib, 2013). Furthermore, another recent 

modeling effort based on this architecture suggests that this approach can be successfully 

employed to process higher levels of goals (R. J. Gentili et al., 2015). 

 Besides the view-independent F5 mirror neurons, the view-dependent F5 mirror 

neurons (74%) are also found in monkeys, where the ratio of view-independent and view-

dependent neurons is about 1:3 (Caggiano et al., 2011). Interestingly, in the simulation 

results of the SPL/IPS and IFG, although the view-dependent voxels are in the majority, 

the assessment results reveal that their activities are weaker and less variable than the 

activities of the view-independent voxels. This may indicate that the small portion of the 

view-independent voxels can have a stronger effect on the imitation in the MNS while 

they respond to a variety of visual inputs, which lead to higher variance. On the other 

hand, since the view-dependent voxels are a specialized voxel to a specific visual input, 

their variance may be small. However they may contribute to the imitation in the MNS 

due to a large number of neural populations. Beyond the proportion of view-independent 

neurons to view-dependent neurons, it has been suggested that the view-dependent mirror 

neurons play two critical roles i) in the formation of view-independent action goals by 

modulating their associated visual aspects (Caggiano et al., 2011; Logothetis & 

Sheinberg, 1996; Tanaka, 1996), and ii) in tuning the viewpoint transformation 

processing by providing feedback signals to the SPL/IPS (Andersen et al., 1997; Wolpert, 

Goodbody, et al., 1998). In the current model, such a view-dependent MNS is 

implemented by employing the visual motion representation of the observed action 

through the MT. Interestingly, the view-dependent representations to the MNS allows the 
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model to mimic the empirical findings that i) the ratio of the view-independent and view-

dependent voxels in the IFG is 1:3 as shown in the monkey study (Caggiano et al., 2011), 

and ii) the IPL is still similarly responsive to the observed action independently of the 

condition between the demonstrator and the imitator (Oosterhof et al., 2012). However, it 

is critical to note that the current neural architecture is not designed to model the neuronal 

activity of the MNS but rather developed to model the functional roles of the MNS at a 

neural population level. Therefore, it is important to keep in mind that the results should 

be carefully investigated and interpreted because the simulated data are assumed to model 

human mirror system, whereas most of the empirical data are obtained from the mirror 

neurons of the nonhuman primates. 

 

6.2 Mental transformation and mirror system 

It has been suggested that the PPC interacts with the inverse and forward models during 

action imitation (Andersen et al., 1997; Wolpert, Goodbody, et al., 1998). Specifically, 

the PPC converts the visuospatial locations of goals inherent in actions into the 

corresponding motor coordinates, which are subsequently sent to the inverse model 

(Andersen et al., 1997). Then, the PPC simultaneously updates estimates of the current 

spatial state of the body by combining sensory feedbacks with the predictive motor 

commands that are the consequences of the forward process (Wolpert, Goodbody, et al., 

1998). Therefore, this suggests that the PPC (particularly SPL/IPS) can provide a useful 
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framework for gaining new insights into the functional roles of the SPL/IPS in 

accordance with the MNS requirements during imitation learning. 

As such, the visuospatial transformation system of the SPL/IPS could play a critical role 

in action observation and execution, since it allows the MNS to process both other’s 

actions and self-actions in a single mechanism. In particular, the SPL/IPS is composed of 

at least four subnetworks performing clockwise and counterclockwise rotations as well as 

translation and scaling transformation (Burton, Wagner, Lim, & Levy, 1992). 

Interestingly, the neural processing of the SPL/IPS can reproduce various important 

neurobehavioral results. Specifically, consistent with other experimental studies, this 

network can generate a similar linear pattern in neural processing time correlated with 

response time with respect to the magnitude of the rotation angle but independently of the 

rotation direction (Bock & Dalecki, 2015; Dalecki et al., 2012). It must be noted that 

those experimental results are typically obtained during mental rotations of human body 

parts, complex scene, or objects, which are not directly related with action observation 

and imitation. Recently, Schwabe et al. (2009) showed an interesting result that the 

activation timing of the MNS strongly correlates with the reaction time required to 

perform the mental rotation of human body under various viewpoints (Schwabe, 

Lenggenhager, & Blanke, 2009). This result implicates that complex mental rotation 

requires more processing time upstream prior to reaching the MNS, which is consistent 

with the current results in that the processing time of the SPL/IPS increases linearly with 

respect to the view angle. As such, by examining the functional relationship of the 

SPL/IPS and the MNS in action observation and imitation, the proposed neural model can 
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contribute to the reinforcement of the perception-action coupling in the general 

framework of the neural simulation of action theory (Jeannerod, 2001). 

 

6.3 Comparison with other MNS models 

Besides a novel learning strategy and neurophysiological assessment through a synthetic 

BOLD fMRI generation model, the main difference between this model and other MNS 

models is the modeling of a visuospatial transformation system. Particularly, this 

transformation system is hypothesized to be embedded in the SPL/IPS, and subserves the 

MNS by providing the view-independent representations of the observed action to the 

fronto-parietal network. As such, the present work complements previously proposed 

MNS models, which have not taken into account a neural component that learns various 

visuospatial transformations between the demonstrator and the imitator (J. Bonaiuto & 

Arbib, 2010; J. B. Bonaiuto et al., 2007; J. Demiris & Hayes, 2002; Y. Demiris & 

Johnson, 2003; Oztop & Arbib, 2002; Oztop et al., 2005). In addition, the current neural 

model shares some common features such as the use of internal model framework with 

other MNS modeling efforts, even though the network structures and their functional 

roles are different. Particularly, Demiris and colleagues (J. Demiris & Hayes, 2002; Y. 

Demiris & Johnson, 2003) as well as Tani and colleagues (Tani, Ito, & Sugita, 2004) 

proposed a similar approach to the one used in the current study by combining inverse 

and forward models. However, although an inverse-forward coupling is employed, their 

studies focus on learning new behaviors to classify observed actions, whereas this study 

examines the functional role of visuospatial transformation system in imitation through 
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observational learning. Another difference is that the forward model was not trained 

through peripheral (e.g., visual) feedback in Demiris’s models (2002; 2003). In addition, 

the self-organization map is employed to encode the distributed representation of actions 

in Tani’s model (2004), whereas the RBF network is used in the current study for the 

regional representation of actions. Moreover, it must be noted that the current neural 

model is trained with the supervised learning method, which has a limited ecological 

validity compared to the unsupervised learning. 

Other interesting MNS models have been developed to emphasize the grasp-related 

mirror activity (Oztop & Arbib, 2002) and to infer the mental states of the demonstrators 

during action observation (Oztop et al., 2005). Particularly, Oztop & Arbib (2002) 

focused on the functional roles of the F5 mirror neurons and the F5 canonical neurons in 

a reaching and grasping action, whereas the current study does not include the canonical 

neuron system. On the other hand, Oztop and colleagues (2005) strongly emphasized the 

functional role of the PFC in inferring others’ mental states (or intentions) when they 

perform an action, whereas the current study simply uses the rPFC for a trigger system. It 

must be noted that the proposed neural model in this study can be complementary to the 

MSI model, because the intention or goal in actions is assumed to be represented in a 

view-invariant way, which is provided by the SPL/IPS to the MNS (Carr et al., 2003; 

Fogassi et al., 2005). At this moment, only few computational MNS studies have 

accounted, to a limited extent, such a view-invariant representation of the observed 

action. For instance, Lopes and colleagues (2005) proposed a computational model 

combining the visuomotor map (i.e., F5 mirror neurons) and the viewpoint transformation 

for learning by imitation. However, their viewpoint transformation model has no 
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biological relevance and is rather implemented by a pure transformation matrix. More 

recently, Arie and colleagues (Arie, Arakaki, Sugano, & Tani, 2012) showed that their 

MNS model could successfully imitate a novel action albeit the discrepancies in 

trajectory (up to ±15°) between the observed and executed actions. However, by 

incorporating the SPL/IPS, the MNS model in this study can process any angular 

variation. Therefore, the proposed neural architecture allows the MNS components to 

successfully learn to imitate the observed action with less spatial regulations. 

 

6.4 Synthetic functional neuroimaging data 

The generation of the simulated BOLD fMRI data provides a very useful tool to validate 

the neural activities of the computational model beyond the traditional behavioral 

assessment by contrasting the simulated and actual brain activities. Specifically, the 

simulated BOLD fMRI responses from the proposed model are consistent with the 

findings from other relevant literatures, which have revealed that the IFG responses are 

similar between action observation and execution. These synthetic BOLD fMRI data 

reveal the emergence of neural populations that are consistent with the view-independent 

and view-dependent mirror neurons, which are important features of the mirror neurons. 

It must be noted that only few modeling studies have employed synthetic brain imaging 

techniques to help elucidate the relation between simulated neural activity and actual 

functional brain imaging data (particularly the fMRI data). However, because the 

hemodynamic measurements reflect synaptic activity rather than neuronal activity, it is 

likely that inhibitory synaptic activity leads to increased hemodynamic measurements, 
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even though it actually results in decreased neuronal spiking. Therefore, 

electrophysiological approaches such as the electrocorticography can be useful to 

elucidate the knowledge gaps between neuronal activity and the associated changes in 

CMRO2, CBF, and CBV (Barry Horwitz, 2004). Moreover, due to the limitations of low 

temporal resolution in fMRI, the simulated functional neuroimaging data in this study 

cannot reflect the neural dynamics associated with imitation learning. Therefore, a 

simulation through EEG or MEG technologies, which have higher temporal resolution, 

could provide a framework for temporal information on imitation tasks. In addition, EEG 

or MEG data provided by the model could be validated through experiments employing 

the same type of techniques in a context of ecologically valid cognitive motor 

performance tasks. 

Finally, to validate the predictions made by the current neural model, the following 

experimental design for the actual fMRI studies is proposed below. Although both block 

and event-related designs (see Appendix D) can be employed, a mixed design combining 

these two methods may be appropriate for the validation test (Amaro & Barker, 2006; 

Chawla, Rees, & Friston, 1999; Petersen & Dubis, 2012). Chawla et al. (1999) initially 

proposed the mixed designs to examine the effects of selective attention (block factor) 

that modulates neural activity evoked by two transient stimuli (motion and color stimuli; 

event-related factor). In accordance with this idea, the proposed validation test can 

investigate the modulation of evoked responses in frontal and parietal MNS as well as the 

SPL/IPS by attention to view-angle or distance. Specifically, in some blocks, the stimuli 

with the view-angle attribute (i.e., left, center, and right) can be are presented, in other 

blocks, the distance-variant stimuli (i.e., near, middle, and far) can be presented to the 
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imitator. The stimulus events can last for 1 s and the interstimulus interval (ISI) can be 

randomly selected from a uniform distribution that ranged from 1 to 15 seconds. Each 

task block can include 6 trials of stimuli (i.e., 2 repetition of 3 conditions) in random 

order followed by null stimulus events (i.e., resting condition) for 20 s. These test 

sequences can be replicated 20 times (i.e., randomly ordered 10 view-angle blocks and 10 

distance blocks) to acquire 20 scans per each condition. 

 

6.5 Limitations of the model and future work 

Although the current neural model contributes to understanding the underlying 

mechanisms of the dynamics between the visuospatial transformation and the MNS 

during action observation and imitation, it also has several limitations that could be 

addressed in the future. First, from a computational point of view, it is challenging to 

train three neural networks to imitate the observed actions within the large workspace 

considered in this study (see section 3.4). Therefore, the entire workspace is currently 

subdivided into nine smaller local spatial areas (within which the demonstrator is 

located), where the neural networks are separately trained to bring more efficiency in the 

computation. However, a single neural network for each of the SPL/IPS, IFG, and IPL 

could clearly learn the entire workspace if more computational resources are available in 

the future. Second, the current neural model can perform only two-dimensional planar 

actions in the horizontal surface. Therefore, future works will focus on achieving a three-

dimensional motor control capability to process any action performed in a three-

dimensional workspace. Third, the implementations of the rPFC and STS are very 
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simplified in the current study. A possible solution would be to model these structures by 

employing neural networks to further explore the coding of the intention that underlies 

observed actions. Specifically, the PFC could incorporate, but not limited to, inhibitory 

and working memory mechanisms. Moreover, it must be noted that since the STS has 

also view-independent (3%) and view-dependent neurons (97%) (Oram & Perrett, 1996), 

a neural model of this region should contribute to understanding the functional roles of 

these two types of neurons in the temporo-parieto-frontal network. Such a temporo-

parieto-frontal network could be extended by modeling two hemispheres linked by a 

corpus callosum to examine the relationship between MNS and language as well as MNS 

and handedness during observation and imitation. Furthermore, other brain regions not 

currently modeled such as canonical neuron system in the IFG could also be included to 

allow the imitator to manipulate the target objects (e.g., grasping objects) during action 

execution (Grèzes, Armony, Rowe, & Passingham, 2003). 

Finally, in the future, this work could be extended in two possible ways; i) the first one 

would be to predict specific dysfunctions observed in neural disorders such as ASD that 

are assumed to be caused by a failure in the development of the MNS, and ii) the second 

is to assess this neural model with an actual humanoid robots platform such as Baxter™ 

(Rethink Robotics, Inc., Boston, MA, USA) to assess specific neural mechanisms 

underlying action observation and imitation as well as develop applications relevant to 

human-robot interactions in a real-world environment. 
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Appendices 
 

Appendix A. Balloon model 

The balloon model is a biomechanical model that produces transient dynamics of CBV 

and HbR to examine their influences on BOLD response (Buxton, Wong, & Frank, 1998; 

K. J. Friston et al., 2000). Although the model has been refined and extended, its 

fundamental idea can be expressed as (Buxton et al., 1998): 

{
 
 

 
 

𝒅𝒒

𝒅𝒕
=

𝟏

𝝉𝟎
(𝒇𝒊𝒏(𝒕)

𝑬(𝒕)

𝑬𝟎
− 𝒇𝒐𝒖𝒕(𝒗)

𝒒(𝒕)

𝒗(𝒕)
)

𝒅𝒗

𝒅𝒕
=

𝟏

𝝉𝟎
(𝒇𝒊𝒏(𝒕) − 𝒇𝒐𝒖𝒕(𝒗))

𝑬(𝒇) = 𝟏 − (𝟏 − 𝑬𝟎)
𝟏

𝒇

    (A1) 

where 𝒒 is the total HbR, 𝒗 is the volume of the balloon (i.e., CBV), 𝝉𝟎 is the mean 

transit time through the venous compartment at rest, 𝒇𝒊𝒏 is the CBF, 𝒇𝒐𝒖𝒕 is an increasing 

function of the balloon volume, 𝑬 is the net extraction fraction of oxygen, and 𝑬𝟎 is the 

resting value of 𝑬. In Euqation A1, the quantity 𝒇𝒊𝒏𝑬 𝑬𝟎⁄  indicates the CMRO2 

normalized to its value at rest. Therefore, it implies that the balloon model can account 

for nonlinear neurovascular coupling and the BOLD signal depends on a nonlinear 

combination of changes in CBF, CBV, and CMRO2 (Buxton, Uludaǧ, Dubowitz, & Liu, 

2004). It must be emphasized that the model can deal with the link between CBF and 

BOLD signal, that is, the correlates that are not measured with BOLD fMRI (K. J. Friston 

et al., 2000). In summary, the balloon model is a very powerful tool that can simulate 

both neurovascular coupling and hemodynamic responses, which in turn lead to the 

changes in BOLD responses (see Figure 2). 
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Appendix B. Volterra kernels 

A continuous time-invariant system can be expanded in Volterra series as 

𝒚(𝒕) = 𝒉𝟎 + ∑ ∫ ⋯∫ 𝒉𝒏(𝝉𝟏, ⋯ , 𝝉𝒏)∏ 𝒖(𝒕 − 𝝉𝒌)
𝒏
𝒌=𝟏 𝒅𝝉𝒌

∞

−∞

∞

−∞
∞
𝒏=𝟏  (B1) 

where 𝒚(𝒕) and 𝒖(𝒕) are respectively the output and input of the system, and 

𝒉𝒏(𝝉𝟏, ⋯ , 𝝉𝒏) is the n-th-order Volterra kernel. It is clear that the output depends not 

only on the current input at time 𝝉𝒏, but also the past input at time 𝝉𝟏, ⋯ , 𝝉𝒏−𝟏. In other 

words, the Volterra series can represent dynamic systems with memory. In the context of 

nonlinear hemodynamic convolution model, the expansion (Equation B1) can be 

approximated with the first- and second-order Volterra kernels over a finite time constant 

T representing memory capacity: 

𝒚(𝒕) ≈ 𝒉𝟎 +

 ∫ 𝒉𝟏(𝝉𝟏)𝒖(𝒕 − 𝝉𝟏)𝒅𝝉𝟏
𝑻

𝟎
+

 ∫ ∫ 𝒉𝟐(𝝉𝟏, 𝝉𝟐)𝒖(𝒕 − 𝝉𝟏)𝒖(𝒕 − 𝝉𝟐)𝒅𝝉𝟏𝒅𝝉𝟐
𝑻

𝟎

𝑻

𝟎

  (B2) 

where the integrals start at zero, which reflects that neuronal changes precede 

hemodynamic responses (Karl J. Friston et al., 1998). 
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In practical signal processing, the Volterra kernels can be estimated using a relatively 

small number of temporal basis functions in the discretized time form as: 

𝒉𝟎 = 𝜷 
𝟎

𝒉𝟏(𝝉𝟏) = ∑ 𝜷 
𝟏

𝒊𝒙𝒊(𝝉𝟏)
𝑷
𝒊=𝟏

𝒉𝟐(𝝉𝟏, 𝝉𝟐) = ∑ ∑ 𝜷 
𝟐

𝒊𝒋𝒙𝒊(𝝉𝟏)𝒙𝒋(𝝉𝟐)
𝑷
𝒋=𝟏

𝑷
𝒊=𝟏

    (B3) 

where all 𝜷 are scaling factors, all 𝒙𝒊(𝝉) are temporal basis functions, and 𝑷 is a small 

finite number of temporal basis functions. Then, the approximated Volterra expansion 

(Equation B2) can be expressed with these discretized Volterra kernels (Equation B3) and 

continuous time convolution formula (See Equation 4). For example, the first-order term 

of Equation B2 is 

∫ 𝒉𝟏(𝝉𝟏)𝒖(𝒕 − 𝝉𝟏)𝒅𝝉𝟏
𝑻

𝟎
= ∫ ∑ 𝜷 

𝟏
𝒊𝒙𝒊(𝝉𝟏)

𝑷
𝒊=𝟏 𝒖(𝒕 − 𝝉𝟏)𝒅𝝉𝟏

𝑻

𝟎

 = ∑ 𝜷 
𝟏

𝒊 ∫ 𝒙𝒊(𝝉𝟏)𝒖(𝒕 − 𝝉𝟏)𝒅𝝉𝟏
𝑻

𝟎
𝑷
𝒊=𝟏

 
= ∑ 𝜷 

𝟏
𝒊 ∙ (𝒖(𝒕) ∗ 𝒙𝒊(𝝉𝟏))

𝑷
𝒊=𝟏

= ∑ 𝜷 
𝟏

𝒊𝑿𝒊(𝒕)
𝑷
𝒊=𝟏

 (B4) 

where 𝑿𝒊(𝒕) is a set of i-th response function. Therefore, using a similar approach in 

Equation B4, the Volterra expansion can be expressed within GLM (Karl J. Friston et al., 

1998): 

𝒚(𝒕) = 𝜷 
𝟎 + ∑ 𝜷 

𝟏
𝒊𝑿𝒊(𝒕)

𝑷
𝒊=𝟏 + ∑ ∑ 𝜷 

𝟐
𝒊𝒋𝑿𝒊(𝒕)𝑿𝒋(𝒕) + 𝜺(𝒕)

𝑷
𝒋=𝟏

𝑷
𝒊=𝟏  (B5) 

where 𝜺(𝒕) is an error term. Then, three explanatory variables, 1, 𝑿𝒊(𝒕), and 𝑿𝒊(𝒕)𝑿𝒋(𝒕), 

constitute the columns of the design matrix. 
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Appendix C. Matrix Similarity 

Two 𝒏 × 𝒏 square matrices X and Y are said to be similar if there exists a nonsingular (or 

invertible) 𝒏 × 𝒏 square matrix P such that 

Y = P−𝟏XP        (C1) 

where the transformation X ↦ P−𝟏XP is called as a similarity transformation or 

conjugation of the matrix X. Particularly, similar matrices have a critical property in the 

theorem that if two square matrices X and Y are similar, then they have the same 

characteristic polynomial and thus the same eigenvalues. This can be proved using 

Equation C1 such that 

𝒅𝒆𝒕(Y− 𝝀I) = 𝒅𝒆𝒕(P−𝟏XP− 𝝀I)

 = 𝒅𝒆𝒕(P−𝟏(X− 𝝀I)P)

 = 𝒅𝒆𝒕(P−𝟏)𝒅𝒆𝒕(X− 𝝀I)𝒅𝒆𝒕(P)

 = 𝒅𝒆𝒕(X− 𝝀I)

   (C2) 

Moreover, the determinant function is used to find a matrix’s eigenvalues. For a general 

𝒏 × 𝒏 matrix A, the characteristic polynomial of the matrix A is defined by 

𝒑A(𝝀) = 𝒅𝒆𝒕(𝝀I − A)       (C3) 

where the roots of this equation are the eigenvalues of its associated matrix A if and only 

if there is an eigenvector v ≠ 0 such that Av = 𝝀v or (𝝀I− A)v = 0. Therefore, there 

exists up to 𝒏 distinct orthonormal eigenvalues 𝝀𝒊 (1≤ 𝒊 ≤ 𝒏). 
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Appendix D. Experimental designs in neuroimaging studies 

The time between the onset of successive trials (or stimuli), which is often referred to as 

the stimulus onset asynchrony (SOA) or intertrial interval (ITI), correlates with the 

scaling and the shape of the BOLD responses (Figure D1). 

 

Figure D1. HR with respect to stimulus duration. All signals are presented at time 0 with discrete 

durations (from 0.1 to 16.0 s, depicted with different colors). For the relatively short stimuli (< 4.0 s), 

the differences are observed in the scaling of the predicted BOLD responses with little influence on 

their shapes. The prolonged stimuli (> 8.0 s) cause the major differences in the shape of the BOLD 

responses rather than in the scaling of them. These differences lead to the different BOLD response 

patterns observed in the block designs and in the event-related designs. 
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Specifically, relatively shorter trials (i.e., 4-s or less, but usually with zero duration) have 

influence on the scaling of the BOLD responses rather than their shape (R. Henson, 

2007). This phenomenon is effectively modeled in the event-related designs, in which 

discrete multiple trials with short duration are randomly presented one at a time so that 

they can cause brief bursts of neural activity. On the other hand, for relatively longer 

trials, the BOLD responses have a plateau, which is related to the shape of the BOLD 

responses (R. Henson, 2007). Such a pattern in BOLD responses is better reflected with 

the block designs, in which a series of same conditional stimuli is consecutively 

presented over a period of time so that it can bring sustained neural activity. Interestingly, 

in most brain imaging studies, these two types of experimental designs have been mainly 

adopted. As noted, they are clearly distinguished by the stimulus presentation scheme, 

and each has its strong and weak points. Regardless of the experimental designs, the 

BOLD signals measured during one condition are then compared with other BOLD 

signals of different task conditions. 

D.1 Block design 

In block designs, a test consists of a series of blocks lasting for a specific time (e.g., 30 

s/block). In each block, participants repeatedly perform the same tasks while the same 

stimuli are subsequently presented to the subjects in accordance with the stimulus 

duration (e.g., 4 s) and the interstimulus interval (ISI4; e.g., 10 s). Generally, two types of 

blocks are used in such a way that the task blocks, where the subject performs a particular 

task, alternate with the resting blocks, in which the subjects simply rest. A majority of 

                                                 
4 Generally, for block designs, SOA = ISI + stimulus duration, whereas for event-related designs, SOA = 

ISI. 
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studies has measured neuroimaging data using block designs particularly for higher SNR, 

straightforward statistical analysis, and greater likelihood of detecting a neural response 

to the stimuli (Amaro & Barker, 2006). However, the subjects are more likely to show 

anticipatory responses to the stimuli. 

D.2 Event-related design 

In event-related designs, a test is composed of several discrete trials. Each trial is 

repeated a specific number of times (e.g., 20 times/trial) in such a way that it is presented 

in random order over the entire test. This design has been typically employed to capture 

dynamic neural activity with relatively high temporal resolution during simple cognitive, 

sensory, or motor tasks. However, there is a potential issue in complex tasks, in which 

much of the task-unrelated neural activity tends to be indirectly induced under the same 

experimental control. Therefore, this can often lead to incorrect results related to different 

internal processing. 

Incidentally, two types of event-related designs have been mainly proposed considering 

ISI, that is, slow and rapid event-related designs (Amaro & Barker, 2006). Specifically, 

the slow type uses relatively long ISIs (e.g., 15 s with random delays or jittering) between 

successive trials, while the rapid type includes relatively short ISIs (e.g., 3 s with 

jittering). Although the short ISIs result in overlapped BOLD responses that need to be 

separated in analysis, recent studies mostly use the rapid designs due to two weaknesses 

in the slow designs (Amaro & Barker, 2006; Ashby, 2015). First, some task-unrelated 

cognitive processes, which emerge during these long ISIs, are likely to contaminate the 

induced BOLD responses. Second, assuming a fixed-duration test, the long ISIs reduce 
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the number of trials in the test, thus it decreases the statistical power in analysis. 

Regardless of the types, the event-related designs are suitable for behaviorally more 

realistic tasks with various experiment conditions, post-hoc analysis, and examining 

BOLD responses to individual trials (Amaro & Barker, 2006). 
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