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Chapter 1

Introduction

Several decades of experimental and theoretical research in the field of elemen-
tary particle physics lead to the formulation of the Standard Model, a theoretical
framework representing our current understanding of elementary particles and their
interactions. One of the cornerstones of the Standard Model is the hypothesized
Higgs boson particle, responsible for the electroweak symmetry breaking and gener-
ation of particle masses. The Higgs boson in the only remaining particle predicted
by the Standard Model which has yet to be observed.

Just outside Geneva, Switzerland, some 100 m underground, one of the great-
est scientific endeavors is taking place. It is the Large Hadron Collider (LHC), a
machine which accelerates proton beams to the highest energies ever achieved in a
laboratory, and collides them inside several detectors located along the LHC ring. It
is the hope of thousands of physicists, gathered in large international collaborations,
that studying these collisions will improve our understanding of the basic building
blocks of the Universe and help us unravel some its mysteries. The quest for an
understanding what the Universe is made of and how it all works started with the
ancient Greeks and has continued to this day, with the LHC being the latest and
the biggest scientific effort towards that goal. One of the main objectives of the

LHC physics program is to discover the Standard Model Higgs boson, or any new



physics Beyond the Standard Model (BSM) that could serve as a substitute for the
Standard Model Higgs boson. Apart from the purely scientific goal of expanding the
boundaries of human knowledge, this type of fundamental research can also lead to
practical benefits for society at large. The most prominent example is the invention
of the World Wide Web, without which it would be hard to imagine modern society.

Paradoxical as it may seem, some of the largest pieces of scientific instrumen-
tation are needed to study the smallest building blocks of the Universe. The reason
for this is two-fold. First, to study the Universe at very short length scales, it is
necessary to accelerate particles to very high energies. However, while being acceler-
ated, particles can receive only a limited amount of energy over a given acceleration
distance, and thus a long accelerator complex is needed. In addition, to reduce the
amount of synchrotron radiation, which leads to energy loss and deceleration, pro-
duced by particles experiencing radial acceleration in a circular accelerator, such as
the LHC, a large ring radius is needed. Secondly, since the colliding particles have
high energy, the collision debris will also have high energy. To fully contain these
particles inside the detector (except for muons and neutrinos), a large detector is
needed. Since energy can be converted into mass (according to the famous formula
E = mc?), new heavy particle, that have not been around since the Big Bang, could
be produced in collisions. Leptoquarks, the main subject of this dissertation, are just
one type of hypothesized heavy particles that could be produced in proton-proton
collisions at the LHC.

The detectors built around collision points can be viewed as giant digital cam-

eras taking snapshots of the collision debris. By analyzing these snapshots, physicists



can reconstruct the type and energy of stable (over a time scale of a few ns) particles
produced in the collision, and based on this information, decide if a given collision
is interesting enough to be stored for a more detailed analysis. What constitutes
an interesting collision depends on the type of analysis being performed. Typically,
interesting collisions are those in which new heavy particles are potentially pro-
duced. It is important to realize that most hypothesized heavy particles have a very
short lifetime; immediately after their production they decay to well-known stable
particles. Other types of new particles are expected to interact weakly with the
detector and have a lifetime long enough to escape undetected; a typical signature
of the production of such particles is the momentum imbalance of the collision de-
bris. Therefore, based on the detection of well-known stable particles, possibly in
configurations that apparently violate the momentum conservation, it is possible to
infer a production of new particles. Due to the nature of proton-proton collisions,

only a small fraction of all collisions is interesting enough to be permanently stored.

1.1 Brief Overview of the Standard Model

The Standard Model (SM) is a theoretical framework describing all known
elementary particles and their interactions in the context of relativistic quantum
field theory. In this section, only a brief overview of the most important aspects
of the Standard Model is given. For a more detailed description of the Standard
Model, including a historical overview, the reader is referred to [IH3].

In the Standard Model, particles of matter are represented as spin-1/2 fermions,



which respect the Fermi-Dirac statistics, whereas spin-1 bosons, which respect the
Bose-FEinstein statistics, serve as force carrier particles mediating interactions be-
tween the particles. Three of the four known force are described within the SM
framework: the strong force, which holds together protons and neutrons inside
atomic nucleus; the weak force, which is responsible for the radioactive decay; and
the electromagnetic force, which holds atoms and molecules together. The fourth
know force, gravitational, is not part of the SM framework. All known subatomic
particles are either directly contained in the Standard Model or are bound states of
the Standard Model particles.

Photons are electrically neutral spin-1 bosons that mediate the electromagnetic
interaction between electrically charged particles, and the theory of electromagnetic
interaction is called Quantum Electrodynamics (QED). Since photons are massless,
the range of the electromagnetic force is infinite. The weak force is mediated when
the W+, W, and Z spin-1 gauge bosons are exchanged between particles carrying
weak isospin, which includes the gauge bosons themselves. Since the gauge bosons
are massive (~ 100 GeV), the weak force is short ranged (R ~ 107!® m). The
W* bosons only interact with fermions of left-handed chirality and antifermions
of right-handed chirality, whereas the neutral Z boson interacts with both chirali-
ties of fermions and antifermions. The eight gluons mediate the strong interaction
between color-charged particles, and the theory of strong interaction is called Quan-
tum Chromodynamics (QCD). Gluons are massless electrically neutral spin-1 bosons
that carry the color charge, and because of this, they can interact with one another.

Contrary to what would be naively expected based on the gluon mass, the nature
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of the strong interaction is such that the resulting range of the strong force is short
(R~ 107" m).

The Standard Model fermions are grouped according to the charges they carry,
and include six flavors of leptons and six flavors of quarks. Each fermion has a
corresponding antiparticle. The six leptons are electron (e), electron neutrino (),
muon (/), muon neutrino (v,), tau (7), and tau neutrino (v,). Electrons, muons, and
taus carry one unit of electric charge, and thus interact electromagnetically, whereas
all neutrinos are electrically neutral. However, all leptons carry weak isospin and
therefore interact via weak force. The second group of fermions, quarks, are called
up (u), down (d), charm (c), strange (s), top (¢), and bottom (b). All quarks carry
weak isospin, fractional electric, and color charge, and therefore interact via all
three forces described by the Standard Model. Due to the nature of the strong
force, gluons contribute more energy to the gluon field as the interaction distance
increases. It is therefore energetically favorable to create a quark-antiquark pair
from the vacuum than to have isolated quarks interact over long distances. Due to
this phenomenon, called confinement, quarks are never observed as free particles;
they are bound into mesons, color-neutral bound states of a quark and antiquark,
and baryons, color-neutral bound states of three quarks. The proton and the neutron
are the two most well-known baryons. Mesons and baryons are collectively called
hadrons. Another interesting property of the strong force is the phenomenon called
asymptotic freedom. It is the property of the strong interaction that it becomes
weaker as the amount of energy exchanged between the two interacting particles

increases, or, equivalently, as they get closer to each other. All SM fermions can



be grouped into three families or generations. Each generation consist of a pair of
leptons, one charged lepton and one neutrino, and a pair of quarks. Corresponding
particles from different generations have the same quantum numbers except for
flavor, and by convention particles from higher generations have greater mass than
their lower generation counterparts. Fermionic states of the Standard Model and
their quantum numbers are shown in Table Table can be viewed as a sort
of “periodic table” for the Standard Model fermions. All stable matter is made of

the first-generation charged fermions, since all other charged fermions have a finite
lifetime.

Table 1.1: Fermionic states of the Standard Model and their quantum numbers.
T, Ts, Y, and @ denote the weak isospin, the third component of the weak isospin,
the weak hypercharge, and the electric charge, respectively.

Generation
T T3 Y Q 1st 2nd 3rd
% % 1 0 Ve Uy Vs
Leptons —1 -1 ¢ ), w), r ),
0 0 —2 -1 eR UR TR
(A )G ) )
2 1 3 1
Quarks 2 3 d L /L b L
0 0 % % UR CR tr
0 —% —% dR SR bR

At the heart of the Standard Model is the concept of local gauge invariance,
where all interactions between fermions appear as a natural consequence of a re-
quirement that the Standard Model Lagrangian has to be invariant under local
gauge transformations of fermionic and bosonic fields. Fermionic and bosonic fields

can transform under different symmetry groups, leading to different types of in-



teractions, i.e., different forces are associated with different symmetry groups and
different particles belong to different representations of these symmetry group. The
strong force is associated with the SU(3) group, while the electromagnetic and weak
force are together associated with the direct product of SU(2) and U(1) groups.
Therefore, the combined symmetry group of the Standard Model is the direct prod-
uct of these three symmetry groups, i.e., SU(3)cxSU(2),xU(1)y, where C, L, and
Y denote color, left-handed chirality, and weak hypercharge, respectively. There is
one problem, however; local gauge invariance requires all fermions and gauge bosons
to be massless, which clearly does not agree with experimental observations. For
example, if fermions were massless, no atoms would be formed. To overcome this
problem, a fundamental spin-0 (scalar) field, which permeates all of space, is intro-
duced. This field is called the Higgs field, and a quantum of this field is the Higgs
boson. The Higgs field interacts with SM fermions and electroweak gauge bosons
associated with the SU(2),xU(1)y symmetry. However, by acquiring a vacuum ex-
pectation value, the Higgs field spontaneously breaks the SU(2),xU(1)y electroweak
symmetry group to the U(1)ey, of the electromagnetic interaction, and provides mass
to the W¥ and Z gauge bosons and charged fermions, and leaves the photon and

neutrinos massless. The Higgs boson is therefore an essential building block of the

Standard Model.



1.1.1 Limitations of the Standard Model

The Standard Model is certainly one of the most successful scientific theories
in the history of physics. It has been tested to an extreme level of precision, and its
predictions are in excellent agreement with most experimental data [4]. Neverthe-
less, the Standard Model has its own problems and limitations.

One obvious limitation of the Standard Model is the absence of the gravitation
force from the description of elementary particle interactions. At an esthetic level,
the Standard Model has about 20 free parameters that have to determined from
experimental data, rather than being fixed by some underlying principle. It is also a
mystery why there are three generations of fermions, and what is the reason for an
apparent symmetry between quarks and leptons. This symmetry between the SM
quarks and leptons is the prime motivation for a search for leptoquarks presented
in this dissertation.

There are other problems with the Standard Model of a more technical nature.
It is widely believed that the three fundamental forces described by the Standard
Model are just different manifestations of a single underlying force, and their wildly
differing strengths at the electroweak scale (~ 250 GeV) would eventually unify
to a common value at some higher energy scale. However, it is known that this
unification does not occur within the Standard Model itself. Another technical
problem is known as the hierarchy problem, and refers to the large gap between the
electroweak scale and the Planck scale (~ 10" GeV), which is the scale at which

the effects of quantum gravity become important. The hierarchy problem is closely



related to the problem related to the Higgs boson mass, known as the fine-tuning
problem. The Higgs boson mass is one of the free parameters of the Standard Model
and has to be determined from experimental data. For the Standard Model theory to
be consistent, the mass of the Higgs boson has to be of the order of the electroweak
scale. At the same time, it is known that the radiative corrections from fermion loops
to the Higgs mass are negative and quadratically divergent in energy. Since there is
no symmetry within the Standard Model that would protect the Higgs boson mass
from uncontrollably runningﬂ with energy, then if there is no new physics between
the electroweak scale and the Planck scale, quantum corrections to the Higgs boson
mass will be of the order of the Planck scale. Therefore, the bare Higgs boson mass
also has to be of the order of the Planck scale, and an extraordinary level of fine-
tuning (1 part in ~ 10') is needed for the bare mass and quantum correction to
add up to the expected physical mass of the Higgs boson.

Although in excellent agreement with most experimental data, there are a
few noticeable examples of SM predictions disagreeing with experimental observa-
tions. In its basic form, the Standard Model predicts massless neutrinos. However,
the experimental observation of neutrino oscillations confirms that neutrinos have
a small but non-zero mass. Another problem for the Standard Model is the experi-
mental observation that about one quarter of the energy density of the Universe is
accounted for by an invisible dark matter, and almost three quarter by dark energy,

both revealing their presence through large-scale gravitational effects. The Stan-

1Since it can be shown that the values of measurable parameters, such as couplings and masses,
depend on the amount of energy exchanged between the interacting particles, these parameters
are often said to “run” with energy.



dard Model does not contain any viable dark matter particle candidates, and at
the same time gives contributions to the dark energy that are far too large. The
experimentally observed matter/antimatter asymmetry in the Universe presents yet
another problem for the Standard Model, since the amount of CP violation present
in the Standard Model is far too small to explain the observed asymmetry.
Because of the above-mentioned problems and limitations of the Standard
Model, it