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Chapter 1

Introduction

In continuum physics, material bodies are modeled as continuous media whose

motion and equilibrium are governed by balance laws and constitutive relations. The

list of balance laws identifies the theory, for instance, mechanics, thermomechanics,

thermodynamics, etc., while the constitutive hypotheses describe the material re-

sponse.

The equations describing the evolution of a continuous medium with nonlinear

elastic response and zero body forces in referential description are given by

∂2y

∂t2
= divS(∇y) (1.1)

where y : Ω × [0,∞) → R3 stands for the motion, S for the first Piola-Kirchhoff

stress tensor and the region Ω is the reference configuration of the elastic body.

For hyperelastic materials the Piola-Kirchhoff stress is generated by a stored energy

function,

S(F ) =
∂W

∂F
(F ), (1.2)

an assumption which is motivated by considerations of thermodynamics. The equa-

tions (1.1) are often recast as a system of conservation laws,

∂tvi = divS(F )

∂tFiα = ∂αvi,

(1.3)
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for the velocity v = ∂ty and the deformation gradient F = ∇y. The equivalence of

(1.1) and (1.3) holds for solutions (v, F ) with F a gradient, F = ∇y, a property

equivalent to the set of differential constraints

∂βFiα − ∂αFiβ = 0 (1.4)

The constraints (1.4) are an involution [10]: if they are satisfied at t = 0 then (1.3)2

propagates (1.4) to hold for all times.

To avoid local interpenetration of matter it is natural to require that

det∇y > 0 (1.5)

or that y be locally invertible. To ensure that deformations satisfy (1.5) for a.e.

x ∈ Ω it is often assumed that the stored energy

W (F ) → +∞ as detF → 0+. (1.6)

In addition, the requirement of frame indifference imposes that the stored energy

W (F ) is to be invariant under rotations. This together with (1.6) renders the

assumption of convexity of W too restrictive [31], and convexity has been replaced

by various weaker conditions familiar from the theory of elastostatics, see [3, 5, 6].

A commonly employed assumption is that of polyconvexity, postulating that

W (F ) = G ◦ Ψ(F ), Ψ(F ) := (F, cof F, detF )

with G convex; this encompasses certain physically realistic models [8, Sec 4.9,

4.10]. Starting with the work of Ball [3], substantial progress has been achieved

for handling the lack of convexity of W within the existence theory of elastostatics.
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Nevertheless there are several challenging problems that remain open. For instance,

it has not yet been shown that the minimizer of

J [y] =

∫
Ω

W (∇y) dx

is even a weak solution of the Euler-Lagrange equations (which are equations of

elastostatics) in the case when the stored energy becomes infinite as detF → 0+.

This is a challenging and difficult problem.

For the elastodynamics system local existence of classical solutions has been

established in [12], [11, Thm 5.4.4] for rank-1 convex stored energies, and in [11,

Thm 5.5.3] for polyconvex stored entropies. The existence of global weak solutions

is an open problem, except in one-space dimension, see [17]. Construction of entropic

measure-valued solutions has been achieved in [15] using a variational approxima-

tion method associated to a time-discretized scheme. Various uniqueness results of

smooth solutions in the class of entropy weak and even dissipative measure valued

solutions are available for the elasticity system [10, 11, 15, 21].

There are two interrelated objectives of the present work. The first one is

to show that the approximation scheme proposed by S. Demoulini, D. Stuart and

A. Tzavaras [15] converges to the classical solution of the elastodynamics system

(1.1) before the formation of shocks [23]. Since the scheme in [15] does not take

into an account the constraint of positive determinant necessary to interpret y as a

physically realizable motion, our second objective is to devise a variational scheme

[22] that preserves the positivity of determinants (1.5).

Problem 1. A variational approximation method based on the time-discretization of
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the extended elasticity system and designed to handle (spatially) periodic solutions

to (1.3) (defined on the torus Ω := T3) has been proposed in [15]: Given a time-step

h > 0 and initial data (v0, Ξ0) the scheme provides the sequence of iterates (vj, Ξj),

j > 1, by solving

vji − vj−1
i

h
= ∂α

(
∂G

∂ΞA
(Ξj)

∂ΨA

∂Fiα

(
F j−1

))
(Ξj − Ξj−1)A

h
= ∂α

(
∂ΨA

∂Fiα

(
F j−1

)
vji

) in D′(Ω). (1.7)

Spatial iterates vj, Ξj = (F j, Zj, wj) approximate the velocity v = ∂ty and the

vector of null-Lagrangians Ψ(∇y) = (∇y, cof∇y, det∇y), respectively, at time t =

tj. This problem is solvable using variational methods and the iterates (vj, Ξj) give

rise to a time-continuous approximate solution Θ(h) = (V (h), Ξ(h)). It has been

shown in [15] that the approximate solution generates a measure-valued solution of

the equations of polyconvex elastodynamics.

In this work we consider a smooth solution of the extended elasticity system

Θ̄ = (V̄ , Ξ̄) defined on Ω× [0, T ] and show that the approximate solution Θ(h) con-

structed via the iterates (vj, Ξj) of (1.7) converges to Θ̄ = (V̄ , Ξ̄) at a convergence

rate O(h). The method of proof is based on the relative entropy method developed

for convex entropies in [9, 16] and adapted for the system of polyconvex elasticity

using the embedding of the system (1.1). The difference between Θ(h) and Θ̄ is

controlled by monitoring the evolution of the relative entropy

ηr =
1

2
|V (h) − V̄ |2 +G(Ξ(h))−G(Ξ̄)−∇G(Ξ̄)(Ξ(h) − Ξ̄)
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We establish control of the function

E(t) :=
∫
Ω

(
(1 + |F (h)|p−2 + |F̄ |p−2)|F (h) − F̄ |2 + |Θ(h) − Θ̄|2

)
dx.

and prove the estimation

E(τ) 6 C
(
E(0) + h

)
, τ ∈ [0, T ],

which provides the result. There are two novelties in the present work: (a) Adapting

the relative entropy method to the subject of time-discretized approximations. (b)

Employing the method in an environment where Lp-theory needs to be used for

estimating the relative entropy.

Problem 2. The aforementioned scheme is designed to approximate the map y(x, t)

that solves (1.1) and has (spatially) periodic v = ∂ty and F = ∇y. However, if

the solution y to (1.1) does not satisfy (1.5) then strictly speaking it may not be

interpreted as an elastic motion. One of the shortcoming of the scheme developed

in [15] is that the condition (1.5) does not, in general, holds for the approximants.

To address this issue we consider the equations describing radial motions of

nonlinear, isotropic, elastic materials

wtt =
1

R2

∂

∂R

(
R2 ∂Φ

∂v1

(
wR,

w
R
, w
R

))
− 1

R

3∑
i=2

∂Φ

∂vi

(
wR,

w
R
, w
R

)
. (1.8)

Here, y stands for a radial motion y(x, t) = w(R, t) x
R
, R = |x|, the stored energy (due

to isotropy) is expressed as a function W (F ) = Φ(v1, v2, v3) of principal stretches of

F and (1.8) monitors the evolution of its amplitude w(R, t). In the radial case, a

necessary condition (1.5) for y to represent a physically realizable motion dictates

wR(w/R)
2 > 0, (1.9)
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and is also a sufficient condition for avoiding interpenetration of matter. To incor-

porate (1.9) into the variational scheme we employ a polyconvex stored energy

W (F ) = Φ(v1, v2, v3) =: G(v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3)

:= ϕ(v1) + ϕ(v2) + ϕ(v3) + g(v2v3) + g(v1v3) + g(v1v2) + h(v1v2v3),

where ϕ, g and h are convex functions and h(δ) → +∞ as δ → 0+.

In the present work, we consider the equations (1.8) and devise a variational

approximation scheme that on one hand preserves the positivity of determinants

(1.9) and on the other produces a time-discretized variant of entropy dissipation.

Similar to [15], the scheme employs transport identities for the null-Lagrangians –

potential energies Ψ(v1, v2, v3;R) for which the functional

I[w] =

∫ 1

0

Ψ
((
wR,

w
R
, w
R

)
;R
)
dR

has variational derivative zero. In our case, Ψ ’s are computed to be the functions

v1, v1v2R, v1v3R or v1v2v3R
2. Along solutions of the dynamical problem, each

null-Lagrangian satisfies the transport identity ∂tΨ = ∂R
(
∂Ψ
∂v1

v
)
with Ψ and Ψ,i

evaluated at (wR, w/R,w/R;R). These identities allow to embed system (1.8) into

the symmetrizable first-order evolution system. In addition, we make a change of

variables suggested in Ball [4] (for the equilibrium problem) setting ρ = R3, α = w3,

β = wR/R
2, γ = w2, and v = wt. The essence of the transformation is to consider

the antiderivative of the determinant wR(w/R)
2 = αρ as the prime variable in the

minimization problem, in conjunction with the null-Lagrangian transport identities

when expressed for the new variable. In the end the extended system has four actual

unknowns α, β, γ and v and is the symmetrizable system endowed with the convex
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entropy.

The method we develop is based on the time discretization of the extended

system. In fact, the equations of the time-discretized extended system are the

Euler-Lagrange equations associated with the following variational problem: given

(vj, αj, βj, γj) minimize

I(α, β, γ, v) =

∫ 1

0

1
2
(v − vj)

2 +G(Ξ) dρ, (1.10)

where

Ξ =
(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γρ
2
ρ2/3,

3γρ
2
ρ2/3, αρρ

2/3
)
∈ R7,

over the set of admissible functions

Aλ =
{
(α, β,γ, v) ∈ X : α(0) > 0, α(1) = λ, α′ > 0 a.e.,

I(α, β, γ, v) <∞ and
(β − βj)

h
= 3v′,

(α− αj)

h
= 3αj

2/3v,
(γ − γj)

h
= 2αj

1/3v
}
.

(1.11)

The differential constraints in (1.11) are affine, the condition α(1) = λ corresponds

to the imposed boundary condition w(1, t) = λ, while α′ > 0 ensures the positivity

of determinants (1.9). We prove the existence and uniqueness of a minimizer for

the functional I over Aλ and show that the minimizer is a weak solution to the

corresponding Euler-Lagrange equations. The analysis of the minimization problem

(1.10)-(1.11) uses direct methods of the calculus of variations, in the spirit of [4],

with the novel element of accounting for the evolutionary constraints in (1.11).

Thesis organization. In Chapter 2 we consider Problem 1 and cover convergence of

the three dimensional variational scheme. The chapter is split into two sections.
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Section 2.1 introduces the equations of elasticity along with the basic physical re-

quirements and constitutive hypotheses on the stored energy. It also presents the

variational scheme [15] developed by S. Demoulini, D. Stuart and A. Tzavaras. In

Section 2.2 we introduce the notion of relative entropy, derive a relative entropy

identity and finally prove convergence of the variational scheme.

In Chapter 3 we deal with Problem 2. The chapter is split into three sections.

Section 3.1 introduces the equations of radial elasticity for isotropic materials. Sec-

tion 3.2 introduces null-Lagrangians in the radial case and presents two possible

symmetrizable extensions to radial elastodynamics. Finally, in Section 3.3 we de-

velop a variational scheme that decreases the total mechanical energy and at the

same time leads to physically realizable radial motions that avoid interpenetration

of matter.
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Chapter 2

Convergence of Variational Schemes for Elastodynamics with

Polyconvex Energy

The purpose of this chapter is to present a variational scheme developed in [15]

that approximates the equations of three-dimensional elastodynamics with polycon-

vex stored energy and then establish the convergence of the time-continuous inter-

polates constructed in the scheme to a solution of polyconvex elastodynamics before

shock formation [23].

2.1 Background Information

In this section we present the equations of nonlinear elasticity, introduce the

notion of stored energy and that of entropy-entropy flux pair as well as discuss

physical realizability of elastic motions.

2.1.1 Hyperelastic Elastodynamics

The equations of nonlinear elasticity (with zero body forces) are the system

∂2y

∂t2
= divS(∇y) (2.1)

where y : Ω × [0,∞) → R3 stands for the elastic motion, S for the Piola-Kirchhoff

stress tensor and the region Ω is the reference configuration of the elastic body.
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The equations (2.1) are often recast as a system of conservation laws,

∂tvi = ∂αSiα(F )

∂tFiα = ∂αvi,

(2.2)

for the velocity v = ∂ty and the deformation gradient F = ∇y. The differential

constraints

∂βFiα − ∂αFiβ = 0 (2.3)

are propagated from the kinematic equation (2.2)2 and are an involution [10]: if

they are satisfied for t = 0 then (2.2) propagates (2.3) to satisfy for all times. Thus

the system (2.2) is equivalent to systems (2.1) whenever F (·, 0) is a gradient.

In our work we employ the constitutive theory of hyperelasticity in which case

the first Piola-Kirchhoff stress tensor S is expressed as the gradient,

S(F ) =
∂W

∂F
(F ), (2.4)

of the stored-energy function of the elastic body

W :M3×3 → R3

where M3×3 is the set of real 3× 3 matrices.

Physical realizability of elastic motions. In order for the geometric mapping y(x, t) :

Ω× [0,∞) → R3 to correspond to a physically realizable motion one has to exclude

interpenetration of matter. As a minimum requirement the condition

det∇y > 0 a.e. x ∈ Ω (2.5)

is often imposed which ensures that compression of a finite volume down to a point

would not occur or that the map y be injective.
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In addition, the stored energy function W must satisfy the physical require-

ment of frame-indifference, i.e., for all proper rotations Q ∈ SO(3)

W (F ) =W (FQ), ∀F ∈M3×3. (2.6)

Hyperbolicity. Consider the system of balance laws

∂t U(x, t) + divG(U(x, t), x, t) = Π(U(x, t), x, t) (2.7)

where U(x, t) : X ⊂ Rm × R → O ⊂ Rn and X , O are open sets.

Definition 2.1. The system of balance laws (2.7) is called hyperbolic in the t-

direction if, for any fixed U ∈ O, (x, t) ∈ X and ν ∈ Sm−1, the eigenvalue problem[
m∑

α=1

DGα(U, x, t)− λI

]
R = 0 (2.8)

has real eigenvalues λ1(ν;U, x, t), . . . , λn(ν;U, x, t), called characteristic speeds, and

n linearly independent eigenvectors R1(ν;U, x, t), . . . , Rn(ν;U, x, t).

Remark. In the above definition, D stands for the differential with respect to the

U variable and denotes [∂/∂U1, . . . , ∂/∂Un], regarded as a row operation.

Let F be a smooth m-dimensional manifold, embedded in the open subset

X ⊂ Rm × R, with orientation induced by the unit normal field N . Assume that a

measurable field U is a weak solution of the system of balance laws (2.7) on X , i.e.,

G(U(x, t), x, t) and Π(U(x, t), x, t) are locally integrable and

∫
X
[G(U(x, t), x, t) gradφ(x, t) + φ(x, t)Π(U(x, t), x, t)] d(x, t) = 0 (2.9)
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for any test function φ ∈ C∞
0 (X ). Finally, assume that U is continuously differen-

tiable on X\F̄ , but is allowed to be singular on F . In particular, (2.7) holds for any

(x, t) ∈ X\F̄ .

The manifold F is called a weak front if U is Lipschitz continuous on X and

as one approaches F from either side the gradU attains distinct limits grad− U ,

grad+ U . In this case, gradU has a jump

[[gradU ]] = grad+ U − grad− U

across the manifold F . Since U is continuous, tangential derivatives of U cannot

jump across F and hence [[gradU ]] = [[∂U/∂N ]]⊗N , where [[∂U/∂N ]] denotes the

jump of the normal derivative ∂U/∂N across F . Therefore, taking the jump of (2.7)

across F at any point (x, t) ∈ F we get the following condition on the jump of the

normal derivative [11]:

D [G(U(x, t)N ]

[[
∂U

∂N

]]
= 0 (2.10)

where, as before, D denotes the differential with respect to U variable.

The definition of hyperbolicity maybe naturally interpreted in terms of the

notion of weak fronts. If we renormalize the normal N on F so that N = (ν,−s)

with ν ∈ Sm−1, then the wave will be propagating in the direction ν with speed s.

Thus, comparing (2.8) with (2.10) we conclude that a system of n balance laws is

hyperbolic if and only if n distinct waves can propagate in any spatial direction. The

eigenvalues of (2.8) will determine the speed of propagation of these waves while

the corresponding eigenvectors will specify the direction of their amplitude.

We turn our attention back to elastodynamics for hyperelastic materials. One
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can verify [11, p. 55] that the first-order elasticity system (2.2) is hyperbolic on a

certain region of the state space if for every F lying in the region the stored energy

W satisfies Legendre-Hadamard condition

∂2W (F )

∂Fiα∂Fjβ

νανβξiξj > 0, for all ν and ξ in S2 (2.11)

which means that the stored energy W is rank-one convex in F , i.e., it is convex

along any direction ξ ⊗ ν with rank one.

An alternative way of expressing (2.11) is to state that for any unit vector ν

the acoustic tensor N(ν, F ), defined by

Nij(ν, F ) =
∂2W (F )

∂Fiα∂Fjβ

νανβ, i, j = 1, 2, 3 (2.12)

is positive definite. In fact, for the elasticity system (2.2), the characteristic speeds

are given by

λ1 = · · · = λ6 = 0,

λ7 = · · · = λ12 = ±
√

eigenvalues of the acoustic tensor.

(2.13)

Entropy-entropy flux pairs. In continuum physics, weak solutions of a system of

conservation laws, (2.7) with Π ≡ 0, are required to satisfy entropy inequalities of

the form

∂t η(U(x, t), x, t) + ∂α qα(U(x, t), x, t) ≤ 0 (2.14)

where η, q, called entropy-entropy flux pair, are related by a first-order partial dif-

ferential equation

Dqα(U, x, t) = Dη(U, x, t), DGα(U, x, t), U ∈ O, (x, t) ∈ X , α = 1, . . . ,m.
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Such inequalities are a manifestation of irreversibility and as such originate from the

second law of thermodynamics. For the system of (hyperelastic) elastodynamics an

important entropy-entropy flux pair is

η(v, F ) =
1

2
|v|2 +W (F ) , qα(v, F ) = −Siα(F ) vi , (2.15)

in which case (2.14) becomes

∂t

(
1

2
|v|2 +W (F )

)
− ∂α

(
vi
∂W

∂Fiα

(F )

)
6 0 (2.16)

and expresses the dissipation of mechanical energy η(v, F ) on shocks. Notice that if

(v, F ) is a smooth solution to (2.2), after multiplying (2.2)1 by vi and then summing

up over all indices i = 1, 2, 3, we find that (2.16) becomes equality which means that

the mechanical energy of smooth solutions is conserved.

2.1.2 Polyconvex Stored Energy

Convexity of the stored energy is, in general, not a natural assumption since

it is incompatible with certain physical requirements [2, Section 13.3]. Some of the

reasons for rejecting convexity are presented below:

(i) One of the natural assumptions often imposed on the stored energy is that

W (F ) → ∞ as detF → 0+ so that compression of a finite volume down to a

point would cost infinite energy. Observe that the domain of W in this case

is the open nonconvex set

M3×3
+ :=

{
F ∈M3×3 : detF > 0

}
.
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The above assumption is incompatible with the requirement of convexity for

W since a convex W finite-valued on an open nonconvex set cannot approach

infinity everywhere on the boundary of that set.

(ii) Certain equilibrium problems admit nonunique solutions (e.g. buckled states)

which would be prohibited by assuming strict convexity of the stored energy.

(iii) Finally, strict convexity of the stored energy is, in general, incompatible with

the requirement of frame-indifference. This is demonstrated by the following

example. Suppose that W is smooth, strictly convex and frame-indifferent.

Assume also that the material has a natural state, i.e., S(I) = ∂W
∂F

(I) = 0

which means that the body is free of stresses when in the reference configura-

tion (for instance, W (F ) = |F |2 − tr{F} for which S(F ) = F − I and hence

S(I) = 0). Set F̄ = I and F = Q ∈ SO(3) such that F̄ ̸= F . Then, (2.4) and

the strict convexity of W imply

[
S(F̄ )− S(F )

]
:
[
F̄ − F

]
=

[∫ 1

0

∂2W

∂Fiα∂Fjβ

(F + τ(F̄ − F )) dτ

]
(F̄ − F )iα(F̄ − F )jβ > 0.

On the other hand, by (2.4), (2.6) and the assumption that S(I) = 0 we

deduce

S(F̄ )− S(F ) = S(I)− S(Q) = S(I)−QS(I) = 0

which contradicts to the above inequality.

In our work, as an alternative to convexity, we exploit the assumption of

polyconvexity introduced by Ball [3]. It postulates that the stored energy W has the
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form

W (F ) = G ◦ Ψ(F ), F ∈M3×3
+ (2.17)

where

G = G(Ξ) = G(F,Z,w) :M3×3
+ ×M3×3 × R ∼= R19 → R

is a convex function and

Ψ(F ) := (F, cof F, detF ). (2.18)

Motivation for polyconvexity. Consider an equilibrium problem for a hyperelastic

material

0 = div

(
∂W

∂F
(∇y)

)
= ∂xα

(
∂W

∂Fiα

(∇y)
)
, α = 1, . . . , 3. (2.19)

The equations (2.19) are the Euler-Lagrange equations associated with the functional

J [y] =

∫
Ω

W (∇y(x)) dx. (2.20)

To guarantee the existence of the minimizers it is essential [3] that the functional

J [·] be sequentially weak∗ lower semicontinuous on W 1,∞(Ω;M3×3) (i.e. yk
∗
⇀ y in

W 1,∞ implies J [y] 6 limk→∞ J [yk]). A suitable condition was introduced by Morrey

[24] who showed that if W is quasiconvex, i.e. satisfies

∫
Ω

W (F +∇φ(x)) dx > W (F )|Ω|, ∀F ∈M3×3, φ ∈ C∞
0 (Ω), (2.21)

and certain growth hypothesis are satisfied, then the functional J [·] is weak∗ lower

semicontinuous in W 1,∞. However, the existence theorems of [24] fail to apply

directly to nonlinear elasticity. The growth conditions used in [24] are too stringent;

in particular, they prohibit the natural condition for W to increase without bound
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as detF → 0+. Ball [3] introduced the notion of polyconvexity (which is a particular

case of quasiconvexity and capable of taking into account the physical requirements

for the stored energy W ) and established the corresponding existence theorem [3,

Theorem 7.2] for the minimizer of (2.20) with polyconvex W . The proof hinges on

the fact that maps y → cof∇y : W 1,p → Lp/2 and y → det∇y : W 1,q → Lq/3 are

sequentially weakly continuous if p > 2 and q > 3 respectively.

Polyconvex elasticity. For polyconvex stored energies (2.17) the system of elastody-

namics (2.1) is expressed by

∂tvi = ∂α

(
∂G

∂ΞA

(Ψ(F ))
∂ΨA

∂Fiα

(F )

)
∂tFiα = ∂αvi

(2.22)

which is equivalent to system (2.1) subject to differential constrains (2.3) that are

an involution [10]. In addition, system (2.22) is endowed with the entropy identity

∂t

(
|v|2

2
+G(Ψ(F ))

)
− ∂α

(
vi

∂G

∂ΞA

(Ψ(F ))
∂ΨA

∂Fiα

(F )

)
= 0. (2.23)

2.1.3 Variational Scheme in Three Dimensions

In this section we present the variational approximation method developed by

Demoulini, Stuart and Tzavaras [15] that produces entropic measure valued solutions

to the system of polyconvex elastodynamics (2.22) defined on the torus T3. This

scheme is the main subject of our investigation: Later in the sequel we will establish

the convergence of the time-continuous interpolates constructed in the scheme to a

solution of polyconvex elastodynamics before shock formation.
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Extension to polyconvex elastodynamics. We first describe a symmetrizable exten-

sion of polyconvex elastodynamics introduced in [15] which is based on certain kine-

matic identities on cof F and detF from [25].

Definition 2.2. A continuous function L(F ) :M3×3 → R is a null-Lagrangian if

∫
Ω

L(∇(u+ φ)(x)) dx =

∫
Ω

L(∇u(x)) dx (2.24)

for every bounded open set Ω ⊂ R3 and for all u ∈ C1(Ω̄;R3), φ ∈ C∞
0 (Ω;R3).

By making a suitable change of variables one can show that if (2.24) holds for

some Ω = Ω0 and for all u, φ then it holds for all Ω, u, φ. Take now arbitrary Ω,

u ∈ C1(Ω̄;R3), φ ∈ C∞
0 (Ω;R3) and assume that L ∈ C1(M3×3). Then

∂

∂s

∫
Ω

L(∇(u+ sφ)) dx =
3∑

i,α=1

∫
Ω

∂L

∂Fiα

(∇(u+ sφ))
∂φi

∂xα
(x) dx

and hence L ∈ C1(M3×3) is a null-Lagrangian if and only if

3∑
i,α=1

∫
Ω

∂L

∂Fiα

(∇u(x)) ∂φ
i

∂xα
(x) dx = 0

for all Ω, u ∈ C1(Ω̄;R3), φ ∈ C∞
0 (Ω;R3), i.e., if and only if the Euler-Lagrange

equations
3∑

i,α=1

∂

∂xα

(
∂L

∂Fiα

(∇u(x))
)

= 0 (2.25)

are identically satisfied in the sense of distributions for all u ∈ C1(Ω;R3).

One can easily verify that the components of Ψ(F ) defined by (2.18) are null-

Lagrangians [5] and hence (using the summation convention over repeated indices)

∂α

(
∂ΨA

∂Fiα

(∇u)
)

= 0, A = 1, . . . , 19 (2.26)
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for any smooth u(x) : R3 → R3 or equivalently

∂α

(
∂ΨA

∂Fiα

(F )

)
= 0 , ∀F with ∂βFiα − ∂αFiβ = 0 .

The kinematic compatibility equation (2.22)2 implies

∂tΨ
A(F ) =

∂ΨA(F )

∂Fiα

∂αvi

= ∂α

(
∂ΨA

∂Fiα

(F )vi

)
− vi∂α

(
∂ΨA

∂Fiα

(F )

)
= ∂α

(
∂ΨA

∂Fiα

(F )vi

)
, ∀F with ∂βFiα − ∂αFiβ = 0 .

(2.27)

This motivates embed (2.22) into the system of conservation laws

∂tvi = ∂α

(
∂G

∂ΞA

(Ξ)
∂ΨA

∂Fiα

(F )

)
∂tΞA = ∂α

(
∂ΨA

∂Fiα

(F )vi

)
.

(2.28)

Note that Ξ = (F,Z,w) takes values in M3×3×M3×3×R ≃ R19 and is treated as a

new dependent variable. Furthermore, observe that the components of F constitute

the first nine components of Ξ and hence the equation (2.22)2 is included as the

first part of (2.28)2.

The extension has the following properties:

(E 1) If F (·, 0) is a gradient then F (·, t) remains a gradient ∀t.

(E 2) If F (·, 0) is a gradient and Ξ(·, 0) = Ψ(F (·, 0)), then F (·, t) remains a gra-

dient and Ξ(·, t) = Ψ(F (·, t)), ∀t. In other words, the system of polyconvex

elastodynamics can be viewed as a constrained evolution of (2.28).

(E 3) The enlarged system admits a convex entropy

η(v, Ξ) = 1
2
|v|2 +G(Ξ), (v, Ξ) ∈ R22 (2.29)

19



and thus is symmetrizable (along the solutions that are gradients).

Assumptions [Demoulini-Stuart-Tzavaras]. In [15] the authors consider polyconvex

stored energy W in the form W (F ) = G(Ψ(F )) and work with periodic boundary

conditions, i.e., the spatial domain Ω is taken to be the three-dimensional torus

T3. The indices i, j, . . . generally run over 1, . . . 3 while A,B, . . . run over 1, . . . , 19.

The following notation is used: Lp = Lp(T3), L∞(Lp) = L∞((0, T );Lp(T3)) and

Q∞ = T3 × [0,∞). In addition, the following convexity and growth assumptions on

G are posed:

(H1*) G ∈ C2(Mat3×3 × Mat3×3 × R; [0,∞)) is a strictly convex function, i.e.,

∃γ > 0 such that D2G ≥ γ > 0.

(H2*) G(F,Z,w) ≥ c1|F |p+c2|Z|q+c3|w|r−c4 where p ∈ (4,∞) and q, r ∈ [2,∞)

are fixed.

(H3*) G(F,Z,w) ≤ c
(
|F |p + |Z|q + |w|r + 1

)
with p, q, r as in (H2*).

(H4*) |∂FG|
p

p−1+|∂ZG|
p

p−2+|∂wG|
p

p−3 ≤ C
(
|F |p+|Z|q+|w|r+1

)
with the exponents

p, q, r as in (H2*).

Variational scheme. The variational approximation method proposed in [15] is based

upon time-discretization of the extended system (2.28): Given initial data

Θ0 := (v0, Ξ0) = (v0, F 0, Z0, w0) ∈ L2 × Lp × Lq × Lr

and fixed h > 0, the scheme constructs the sequence of successive iterates

Θj := (vj, Ξj) = (vj, F j, Zj, wj) ∈ L2 × Lp × Lq × Lr, j > 1
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that solve

vji − vj−1
i

h
= ∂α

(
∂G

∂ΞA

(Ξj)
∂ΨA

∂Fiα

(F j−1)

)
Ξj

A − Ξj−1
A

h
= ∂α

(
∂ΨA

∂Fiα

(F j−1) vji

)
.

in D′(T3) (2.30)

The existence of the iterates (vj, Ξj) satisfying (2.30) is guaranteed by

Lemma 2.1 ([15], p. 333). Given (vj−1, F j−1, Zj−1, wj−1) ∈ L2×Lp×L2×L2 there

exists

(v, Ξ) = (v, F, Z, w) ∈ L2 × Lp × L2 × L2

which minimizes the functional

J (v, F, Z, w) =

∫
T3

1

2
|v − vj−1|2 +G(F,Z,w) dx

on the weakly closed affine subspace

C =

{
(v, Ξ) ∈ L2 × Lp × L2 × L2 : such that ∀φ ∈ C∞(T3)∫

T3

(
ΞA − Ξj−1

A

h

)
φdx = −

∫
T3

(
∂ΨA

∂Fiα

(F j−1)vi

)
∂αφdx

}
The minimizer satisfies the Euler-Lagrange equation (2.30)1 in the sense of distri-

butions, i.e., ∫
φ
1

h
(vi − vj−1

i )dx = −
∫

giα(Ξ,F
j−1)∂αφdx

for all smooth φ. Furthermore the constraints

∂αiZ = 0

∂βFiα − ∂αFiβ = 0

are preserved by the map

Sh : (vj−1, F j−1, Zj−1, wj−1) → (v, F, Z, w),
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the solution operator induced by the lemma. In fact if F j−1 is a gradient then so is

F , and thus we can assert the existence of a W 1,p function y : T3 → R3 such that

∂αyi = Fiα.

In addition the iterates satisfy the following uniform estimate:

Lemma 2.2 ([15], p. 335). Let Θj−1 = (vj−1, F j−1, Zj−1, wj−1) and Θ = (v, F, Z, w)

be as in Lemma 2.1. If G is strictly convex function, i.e., if ∃γ > 0 such that

∇2G > γ, then there exists c > 0 such that∫
Ω

(
η(Θ) + c|Θ−Θj−1|2

)
dx 6

∫
Ω

η(Θj−1) dx.

Corollary 1 ([15], p. 335). The iterates Θj = (vj, F j, Zj, wj), satisfy the energy

dissipation inequality

1

h

(
η(Θj)− η(Θj−1)

)
− ∂α

(
giα(Ξ

j, F j−1)vji
)
6 0 for j > 1

in the sense of distributions. There exists a number E0, determined by the initial

data such that

sup
j> 0

(
∥vj∥2L2

dx
+

∫
T3

G(Ξj) dx
)
+

∞∑
j=1

∥Θj −Θj−1∥2L2
dx

6 E0. (2.31)

Let (vj, Ξj) =
(
vj, F j, Zj, wj), defined on the torus T3, be the iterates con-

structed from the minimization process, j = 0, 1, 2, . . . . The iterates F J are gradi-

ents, so we construct functions yj : T3 → R3 such that ∂αy
j
i = F j

iα. By selecting

the integration constants appropriately (and choosing y−1 by extrapolation), the

iterates yj satisfy the identities

1

h
(yj − yj−1) = vj .
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Following [15] construct the time-continuous, piecewise linear interpolates V (h),

Ξ(h) given by (suppressing the explicit dependence on x of the iterates)

V (h)(t) =
∞∑
j=1

X j(t)
(
vj−1 +

t− h(j − 1)

h
(vj − vj−1)

)
Ξ(h)(t) =

(
F (h), Z(h), w(h)

)
(t)

=
∞∑
j=1

X j(t)
(
Ξj−1 +

t− h(j − 1)

h
(Ξj − Ξj−1)

)
,

(2.32)

and the piecewise constant interpolates v(h), ξ(h) by

v(h)(t) =
∞∑
j=1

X j(t)vj

ξ(h)(t) = (f (h), z(h), ω(h))(t) =
∞∑
j=1

X j(t)Ξj

(2.33)

where X j(t) is the characteristic function of the interval Ij := [(j−1)h, jh). Finally,

construct the piecewise linear approximation of the motion

Y h(t) =
∞∑
j=1

X j(t)
(
yj−1 +

t− h(j − 1)

h
(yj − yj−1)

)
(2.34)

and note the identities

∂tY
h
i = vhi , ∂αY

h
i = F h

iα .

The approximate solutions (2.32), (2.33) and (2.34) give rise to measure valued

solutions of systems (2.28) and (2.1) respectively as h → 0. We first state the

preliminary result on (weak) convergence of the approximates.

Lemma 2.3 ([15], p. 337). The approximate solutions

(V h, F h, Zh,W h) and (vh, fh, zh, wh)
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are uniformly bounded in L∞(L2)⊕L∞(Lp)⊕L∞(Lq)⊕L∞(Lr). Thus, there exists

a subsequence in h and limit points y : Q∞ → R3 and (v, Ξ) : Q∞ → R22 with

y ∈ W 1,∞(L2) ∩ L∞(W 1,p),

(v, Ξ) = (v, F, Z, w) ∈ L∞(L2)⊕ L∞(Lp)⊕ L∞(Lq)⊕ L∞(Lr)

for all T > 0, and such that along the said subsequence

Y h → y strongly in L2
loc(T3) and a.e.

(V h, vh, Ξh, ξh) −⇀ (v, v, Ξ,Ξ)

weak⋆ in L∞
loc

(
R; [L2]2 ⊕ [Lp ⊕ Lq ⊕ Lr]2(T3)

)
, and

vi = ∂tyi , Fiα = ∂αyi.

In conclusion, we state the main result of [15].

Theorem 2.1 ([15], p. 332). The discretization (2.30) can be solved for all h > 0

by a constrained minimization method, and has the property that the energy

E j =

∫
Ω

(
1

2
|vj|2 +G(Ξj)

)
dx.

is decreasing in j. As h→ 0 the approximations generate a measure-valued solution

to (2.28) for which the momentum equation (2.28)1 is satisfied in a measure-valued

sense, but the constraint equation (2.28)2 is satisfied in the classical weak sense. To

be precise, there exists

(v, Ξ) = (v, F, Z, w) ∈ L∞(L2)⊕ L∞(Lp)⊕ L∞(Lq)⊕ L∞(Lr)

and a Young measure (νx,t)x,t∈Q∞ such that for i = 1, . . . 3

−
∫
ϕ(0, x)vi(0, x) dx+

∫
vi∂tϕ dxdt =

∫
⟨ν, giα⟩ ∂αϕ dxdt (2.35)
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and for A = 1, . . . 19

−
∫
ϕ(0, x)ΞA(0, x)dx+

∫
ΞA∂tϕ dx dt =

∫ (
∂ΨA

∂Fiα

(F )vi

)
∂αϕ dx dt (2.36)

for all smooth ϕ, compactly supported in time. Furthermore, there exists a map y,

with space and time derivatives F, v respectively, such that (2.1) is satisfied in the

measure-valued sense.

Remark 2.1. The spatially periodic map y(x, t) : T3 × [0,∞) → R3 introduced in

Lemma 2.3 cannot be interpret as a motion since its invertibility fails. However, one

should view the scheme as a tool which approximates the solution of elastodynamics

y : R3 × [0,∞) → R3 whose gradient F = ∇y and velocity v = ∂ty are periodic

in space. Given spatially periodic v and F the map y is obtained via integration

and, in general, is not periodic (in space). For instance, one can write the motion as

y(x, t) = x+u(x, t) with u denoting the displacement field and search for y for which

u(·, t) is periodic. In this case, y(·, t) itself is not a periodic map but its velocity and

gradient are.

Remark 2.2. One of the shortcomings of the scheme is the fact that it generates

only a measure-valued solution. Nevertheless, the approximating scheme (2.42) has

regular weak solutions that decrease the energy. Also in cases with better compact-

ness properties, such as the equations of nonlinear viscoelasticity, the method of

time-discretization produces classical weak solutions [13].

Another shortcoming is that it is not required that detF > 0, and therefore

strictly speaking the map y(x, t), reconstructed from the periodic (v, F ), may not

be interpreted as an elastic motion.

25



Both of these deficiencies can be overcome in the one-dimensional case: The

application of the method of compensated compactness [30] to the one-dimensional

analogue of the present approximation scheme yields regular weak solutions that

dissipate all convex entropies [14].

2.2 Convergence of the Variational Scheme

The objective of the present work is to show that the approximation scheme

of [15] converges to the classical solution of the elastodynamics system before the

formation of shocks; see [23]. In particulary, we consider a smooth solution Θ̄ =

(V̄ , Ξ̄) of the extended elasticity system (2.28) defined on [0, T ] × T3 and show

that the approximate solution Θ(h) constructed via the iterates (vj, Ξj) of (2.30)

converges to Θ̄ = (V̄ , Ξ̄) at a convergence rate O(h).

2.2.1 Assumptions and Notations.

Due to technical difficulties, we narrow the class of stored energies functions

used in [15] by modifying the hypothesis (H1*) – (H4*).

Assumptions. As in [15], the spatial domain Ω is taken to be the three-dimensional

torus T3. The indices i, α, . . . generally run over 1, . . . , 3 while A,B, . . . run over

1, . . . , 19. Finally, we impose the following convexity and growth assumptions on G:

(H1) G ∈ C3(M3×3 ×M3×3 × R; [0,∞)) is of the form

G(Ξ) = H(F ) +R(Ξ) (2.37)
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with H ∈ C3(M3×3; [0,∞)) and R ∈ C3(M3×3 ×M3×3 × R; [0,∞)) strictly

convex satisfying

κ|F |p−2|z|2 6 zT∇2H(F )z 6 κ′|F |p−2|z|2, ∀z ∈ R9

and γI 6 ∇2R 6 γ′I for some fixed γ, γ′, κ, κ′ > 0 and p ∈ (6,∞).

(H2) G(Ξ) > c1|F |p + c2|Z|2 + c3|w|2 − c4.

(H3) G(Ξ) 6 c5(|F |p + |Z|2 + |w|2 + 1).

(H4) |GF |
p

p−1 + |GZ |
p

p−2 + |Gw|
p

p−3 6 c6 (|F |p + |Z|2 + |w|2 + 1) .

(H5)
∣∣∣ ∂3H
∂Fiα∂Fml∂Frs

∣∣∣ 6 c7|F |p−3 and
∣∣∣ ∂3R
∂ΞA∂ΞB∂ΞD

∣∣∣ 6 c8.

Remark 2.3. The essential difference between hypothesis (H1) – (H5) from (H1*) –

(H5*) is that the function G is split into the sum of two functions, see (H1), one of

which is quadratic in Ξ and the other is a function of F whose growth is of order

p ∈ (6,∞). This imposes the condition r = q = 2. The reason for doing so is the

technical one: The solutions (v̄, Ξ̄) to the equations (2.28) have the property that if

the constraint Ξ̄ = Ψ(F̄ ) holds at t = 0 then it holds for all times. By contrast, the

approximates (V (h), Ξ(h)) do not have this property anymore. This presents various

new technical difficulties which we were not able overcome without narrowing the

class of polyconvex stored energies.

Notations. To simplify notation we denote

Lp = Lp(T3) and W 1,p =W 1,p(T3).
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We also write

G,A (Ξ) =
∂G

∂ΞA

(Ξ), R,A (Ξ) =
∂R

∂ΞA

(Ξ),

H,iα (F ) =
∂H

∂Fiα

(F ), ΨA
,iα (F ) =

∂ΨA

∂Fiα

(F ).

In addition, for each i, α = 1, 2, 3 we set

giα(Ξ,F
∗) =

∂G

∂ΞA

(Ξ)
∂ΨA

∂Fiα

(F ∗), F ∗ ∈ R9, Ξ ∈ R19 (2.38)

(where we use the summation convention over repeated indices) and denote the

corresponding fields gi : R19 × R9 → R3 by

gi(Ξ,F
∗) := (gi1, gi2, gi3)(Ξ,F

∗). (2.39)

Properties of the iterates. Since hypotheses (H1) – (H5) are the restriction of (H1*) –

(H4*), we are able to apply the variational method proposed in [15] in the case of

polyconvex stored energy W (F ) = G(Ψ(F )) with G satisfying (H1) – (H4). Thus,

given initial data

Θ0 := (v0, Ξ0) = (v0, F 0, Z0, w0) ∈ L2 × Lp × L2 × L2 (2.40)

and fixed h > 0, the variational method proposed in [15] provides the sequence of

successive iterates

Θj := (vj, Ξj) = (vj, F j, Zj, wj) ∈ L2 × Lp × L2 × L2, j > 1 (2.41)

with the following properties (see Lemmas 2.1, 2.2 and Corollary 1):

(P 1) The iterate (vj, Ξj) is the unique minimizer of the functional

J (v, Ξ) =

∫
T3

(
1
2
|v − vj−1|2 +G(Ξ)

)
dx
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over the weakly closed affine subspace

C =

{
(v, Ξ) ∈ L2 × Lp × L2 × L2 : such that ∀φ ∈ C∞(T3)∫

T3

(
ΞA − Ξj−1

A

h

)
φdx = −

∫
T3

(
∂ΨA

∂Fiα

(F j−1)vi

)
∂αφdx

}
.

(P 2) For each j > 1 the iterates satisfy

vji − vj−1
i

h
= ∂α

(
∂G

∂ΞA

(Ξj)
∂ΨA

∂Fiα

(F j−1)

)
Ξj

A − Ξj−1
A

h
= ∂α

(
∂ΨA

∂Fiα

(F j−1) vji

) in D′(T3). (2.42)

(P 3) If F 0 is a gradient, then so is F j ∀j > 1.

(P 4) Iterates vj, j > 1 have higher regularity: vj ∈ W 1,p(T3), ∀j > 1.

(P 5) There exists E0 > 0 determined by the initial data such that

sup
j> 0

(
∥vj∥2L2

dx
+

∫
T3

G(Ξj) dx
)
+

∞∑
j=1

∥Θj −Θj−1∥2L2
dx

6 E0. (2.43)

Time-continuous iterates. Let (vj, Ξj), j > 0 satisfy (2.40), (2.41). Define the

time-continuous, piecewise linear interpolates Θ(h) := (V (h), Ξ(h)) by

V (h)(t) =
∞∑
j=1

X j(t)
(
vj−1 +

t− h(j − 1)

h
(vj − vj−1)

)
Ξ(h)(t) =

(
F (h), Z(h), w(h)

)
(t)

=
∞∑
j=1

X j(t)
(
Ξj−1 +

t− h(j − 1)

h
(Ξj − Ξj−1)

)
,

(2.44)

and the piecewise constant interpolates θ(h) := (v(h), ξ(h)) and f̃ (h) by

v(h)(t) =
∞∑
j=1

X j(t)vj

ξ(h)(t) = (f (h), z(h), ω(h))(t) =
∞∑
j=1

X j(t)Ξj

f̃ (h)(t) =
∞∑
j=1

X j(t)F j−1

(2.45)
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where X j(t) is the characteristic function of the interval Ij := [(j − 1)h, jh).

Remark 2.4. Notice that f̃ (h) is the time-shifted version of f (h). It is used later in

defining a relative entropy flux, as well as the time-continuous equations (2.56).

2.2.2 Statement of the Main Results

In this section we state the main result on convergence. It asserts that the

interpolates Θ(h) = (V (h), Ξ(h)) obtained via the variational scheme converge to the

solution of extended polyconvex elastodynamics (2.28) as long as the limit solution

Θ̄ = (V̄ , Ξ̄) remains smooth.

Relative entropy method. For the proof of convergence we employ the relative en-

tropy method developed for convex entropies in [9, 16] and adapted for the system

of polyconvex elasticity in [21] using the embedding to the system (2.28). In this

work, the difference between Θ(h) and Θ̄ is controlled by monitoring the evolution

of the relative entropy

ηr(Θ(h), Θ̄) := η(Θ(h))− η(Θ̄)−∇η(Θ̄)(Θ(h) − Θ̄)

= 1
2
|V (h) − V̄ |2 +G(Ξ(h))−G(Ξ̄)−∇G(Ξ̄)(Ξ(h) − Ξ̄)

(2.46)

for which the associated relative flux will turn out to be

qrα(θ
(h), f̃ (h), Θ̄) := (v

(h)
i − V̄i)

(
G,A(ξ

(h))−G,A(Ξ̄)
)
ΨA
,iα(f̃

(h)). (2.47)

First we prove that the entropy pair ηr, qr satisfies the identity (2.51) in the

sense of distributions. Then, we establish control of the function

E(t) :=
∫
Ω

(
(1 + |F (h)|p−2 + |F̄ |p−2)|F (h) − F̄ |2 + |Θ(h) − Θ̄|2

)
dx,
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equivalent to the relative entropy ηr, and prove the estimate

E(τ) 6 C
(
E(0) + h

)
, τ ∈ [0, T ],

which provides the result.

Main Convergence Theorem. LetW be defined by (2.17) with G satisfying (H1) –

(H5). Let Θ(h) = (V (h), Ξ(h)), θ(h) = (v(h), ξ(h)) and f̃ (h) be the interpolates defined

via (2.44), (2.45) and induced by the sequence of spatial iterates

Θj = (vj, Ξj) = (vj, F j, Zj, wj) ∈ L2 × Lp × L2 × L2, j > 0 (2.48)

which satisfy (P1)-(P5). Let Θ̄ = (V̄ , Ξ̄) = (V̄ , F̄ , Z̄, w̄) be a smooth solution of

(2.28) defined on T3 × [0, T ] and emanate from the data Θ̄0 = (V̄ 0, F̄ 0, Z̄0, w̄0).

Assume also that F 0, F̄ 0 are gradients. Then:

(a) The relative entropy ηr = ηr(Θ(h), Θ̄) satisfies (2.51). Furthermore, there exist

constants µ, µ′ > 0 such that

µ E(t) 6
∫
T3

ηr(x, t) dx 6 µ′E(t), t ∈ [0, T ]

where

E(t) :=
∫
T3

(
(1 + |F (h)|p−2 + |F̄ |p−2)|F (h) − F̄ |2 + |Θ(h) − Θ̄|2

)
dx.

(b) There exists ε > 0 and C = C(T, Θ̄, E0, µ, µ
′, ε) > 0 such that ∀h ∈ (0, ε)

E(τ) 6 C
(
E(0) + h

)
, τ ∈ [0, T ] .

Moreover, if the data satisfy E (h)(0) → 0 as h ↓ 0, then

sup
t∈[0,T ]

∫
T3

(
|Θ(h) − Θ̄|2 + |F (h) − F̄ |2(1 + |F (h)|p−2 + |F̄ |p−2)

)
dx→ 0

as h ↓ 0.
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Corollary. Let Θ(h) = (V (h), Ξ(h)) be as in the main theorem. Let (V̄ , F̄ ) be a

smooth solution of (2.22) with F̄ (·, 0) a gradient and Θ̄ = (V̄ , Ψ(F̄ )). Assume that

initial data satisfy Θ(h)(·, 0) = Θ̄(·, 0). Then

sup
t∈[0,T ]

(
∥V − V̄ ∥2L2(T3) + ∥Ξ(h) − Ψ(F̄ )∥2L2(T3) + ∥F (h) − F̄∥pLp(T3)

)
= O(h).

Remark 2.5. The smooth solution Θ̄ = (V̄ , Ξ̄) to the extended system (2.28)

is provided beforehand. A natural question arises whether such a solution exists.

We briefly discuss the existence theory for (2.2) on the torus T3. In [12] energy

methods are used to establish local (in time) existence of smooth solutions to certain

initial-boundary value problem that apply to the system of nonlinear elastodynamics

(2.1) with rank-1 convex stored energy. More precisely, for a bounded domain

Ω ⊂ Rn with the smooth boundary ∂Ω the authors establish ([12, Theorem 5.2])

the existence of a unique displacement field y(·, t) satisfying (2.1) in Ω × [0, T ]

together with boundary conditions y(x, t) = 0 on ∂Ω× [0, T ] and initial conditions

y(·, 0) = y0 and yt(·, 0) = y1 whenever T > 0 is small enough and the initial data lie

in a compact set. One may get a counterpart of this result for solutions on T3 since

the methods in [12] are developed in the abstract framework: a quasi-linear partial

differential equation is viewed as an abstract differential equation with initial value

problem set on an interpolated scale of separable Hilbert spaces {Hγ}γ∈[0,m] with

m > 2. To be precise, the spaces satisfy Hγ = [H0, Hm]γ/m and the desired solution

u(t) of an abstract differential equation is assumed to be taking values in Hm

∩
V ,

where V , a closed subspace of H1, is designated to accommodate the boundary
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conditions (cf. [12, Sec.2]). By choosing appropriate spaces, namely

Hγ =
[
L2(T3),Wm,2(T3)

]
γ/m

and V = H1 = W 1,2(T3),

and requiring strong ellipticity (cf. [12, Sec.5]) for the stored energy one may apply

[12, Thm 4.1] to conclude the local existence of smooth solutions on the torus T3 to

the system of elastodynamics (2.1) and hence to (2.2). Since strong polyconvexity

implies strong ellipticity [3], the same conclusion holds for the case of polyconvex

energy which is used here.

2.2.3 Relative Entropy Identity

The goal of this section is to derive an identity for a relative energy among

the two solutions. For the rest of the chapter, we suppress the dependence on h to

simplify notations and, cf. Main Theorem, assume:

(1) Θ = (V,Ξ), θ = (v, ξ), f̃ are the approximates defined by (2.44) and (2.45).

(2) Θ̄ = (V̄ , Ξ̄) = (V̄ , F̄ , Z̄, w̄) is a smooth solution of (2.28) defined on T3× [0, T ]

where T > 0 is finite.

We now state two elementary lemmas used in our further computations. The

first one extends the null-Lagrangian properties while the second one provides the

rule for the divergence of the product in the nonsmooth case.

Lemma 2.4 (Null-Lagrangian properties). Assume q > 2 and r > q
q−2

. Then,
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if u ∈ W 1,q(T3;R3), z ∈ W 1,r(T3), we have

∂α

(
∂ΨA

∂Fiα

(∇u)
)

= 0

∂α

(
∂ΨA

∂Fiα

(∇u)z
)

=
∂ΨA

∂Fiα

(∇u) ∂αz
in D′(T3) (2.49)

for each i = 1, . . . , 3 and A = 1, . . . , 19.

Proof. Observe that

Ψ,iα(∇u) 6 1 + |∇u|+ |∇u|2 ⇒ ∂ΨA

∂Fiα

(∇u) ∈ Lq/2(T3).

Hence by (2.26) and the density argument we get (2.49)1. Next, notice that

∂ΨA

∂Fiα

(∇u)z, ∂ΨA

∂Fiα

(∇u) ∂αz ∈ L1(T3).

Then taking arbitrary φ ∈ C∞(T3) we obtain∫
T3

(∂ΨA

∂Fiα

(∇u) z
)
∂αφdx

=

∫
T3

(∂ΨA

∂Fiα

(∇u)
)
∂α(z φ) dx−

∫
T3

(∂ΨA

∂Fiα

(∇u) ∂αz
)
φdx = I1 − I2.

Since zφ ∈ W 1,r
0

∩
W 1,q∗ , the property (2.49)1 and the density argument imply

I1 = 0 and hence∫
T3

(∂ΨA

∂Fiα

(∇u) z
)
∂αφdx = −I2 =

∫
T3

(∂ΨA

∂Fiα

(∇u) ∂αz
)
φdx.

Lemma 2.5 (Product rule). Let q ∈ (1,∞) and q′ = q
q−1

. Assume

f ∈ W 1,q(T3), h ∈ Lq′(T3;R3) and z = div h ∈ Lq′(T3).

Then fh ∈ L1(T3;R3), div (fh) ∈ L1(T3) and

div (fh) = fdiv h+∇fh in D′(T3). (2.50)
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Proof. First, observe that

h ∈ Lq′(T3;R3), f ∈ Lq(T3) ⇒ fh ∈ L1(T3;R3).

Then, since f ∈ W 1,q(T3), for each φ ∈ C∞ (T3) we obtain

−
∫
T3

fhα∂αφdx = −
∫
T3

hα∂α(fφ) dx+

∫
T3

(hα∂αf)φdx.

Further, notice that fφ ∈ W 1,q
0 (T3) and hence

−
∫
T3

hα∂α(fφ) dx =

∫
T3

z(fφ) dx

where we used the density argument and the assumption that z = div h ∈ Lq′(T3).

Hence

−
∫
T3

fhα ∂αφdx =

∫
T3

(zf + hα∂αf)φdx

and this proves (2.50). Finally, notice that

zf, hα∂αf ∈ L1(T3) ⇒ div (fh) ∈ L1(T3).

and this finishes the proof.

Lemma 2.6 (Relative entropy identity). For almost all t ∈ [0, T ]

∂tη
r − div qr = Q− 1

h

∞∑
j=1

X j(t)Dj + S in D′(T3) (2.51)

where

Q := ∂α(G,A(Ξ̄))
(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)(
Vi − V̄i

)
+ ∂αV̄i

(
G,A(Ξ)−G,A(Ξ̄)

)(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)

+ ∂αV̄i
(
G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)(Ξ − Ξ̄)B

)
ΨA
,iα(F̄ )

(2.52)
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estimates the difference between the two solutions,

Dj :=
(
∇η(θ)−∇η(Θ)

)
δΘj, (2.53)

where δΘj := Θj −Θj−1, are the dissipative terms, and

S := ∂α(G,A(Ξ̄))
[
ΨA
,iα(F̄ )

(
vi − Vi

)
+
(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)(
vi − Vi

)
+
(
ΨA
,iα(f̃)− ΨA

,iα(F )
)(
vi − Vi

)
+
(
ΨA
,iα(f̃)− ΨA

,iα(F )
)(
Vi − V̄i

)]
+ ∂αV̄i

[(
G,A(ξ)−G,A(Ξ)

)
ΨA
,iα(F̄ )

+
(
G,A(ξ)−G,A(Ξ)

)(
ΨA
,iα(f̃)− ΨA

,iα(F )
)

+
(
G,A(ξ)−G,A(Ξ)

)(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)

+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΨA
,iα(f̃)− ΨA

,iα(F )
)]

(2.54)

is the error term.

Proof. Notice that by (2.44) for almost all t > 0

∂tV (·, t) =
∞∑
j=1

X j(t)
δvj

h
, δvj := vj − vj−1

∂tΞ(·, t) =
∞∑
j=1

X j(t)
δΞj

h
, δΞj := Ξj − Ξj−1.

(2.55)

Hence by (2.38), (2.42) and (2.55) we obtain for almost all t > 0

∂tVi(·, t) = div
(
gi(ξ, f̃)

)
∂tΞA(·, t) = ∂α

(
ΨA
,iα(f̃) vi

) in D′(T3). (2.56)

Since (V̄ , Ξ̄) is the smooth solution of (2.28), using (2.38) we also have

∂tV̄i = div
(
gi(Ξ̄, F̄ )

)
∂tΞ̄A = ∂α

(
ΨA
,iα(F̄ ) V̄i

) in T3 × [0, T ]. (2.57)
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Further in the proof we will perform a series of calculations that hold for

smooth functions. A technical difficulty arises, since the iterates (vj, Ξj), j > 1 sat-

isfying (2.42) are, in general, not smooth. To bypass this we employ Lemmas 2.4 and

2.5 that provide the null-Lagrangian property and product rule in the smoothness

class appropriate for the approximates Θ = (V,Ξ), θ = (v, ξ), f̃ .

By assumption F 0 and F̄ 0 are gradients. Hence using (P 3) we conclude that

F j, j > 1 are gradients. Furthermore, from (E1) it follows that F̄ remains a gradient

∀t. Thus, recalling (2.44)-(2.45), we have

F , f , f̃ and F̄ are gradients ∀t ∈ [0, T ]. (2.58)

We also notice that by (2.18), (2.38), and (H4) we have for all F ∗ ∈ R9, Ξ◦ ∈ R19

∣∣giα(Ξ◦, F ∗)∣∣p′
6 Cg

( ∣∣∣ ∂G
∂Fiα

∣∣∣ p
p−1

+
∣∣F ∗∣∣ p

p−1

∣∣∣ ∂G
∂Zkγ

∣∣∣ p
p−1

+
∣∣F ∗∣∣ 2p

p−1

∣∣∣∂G
∂w

∣∣∣ p
p−1
)

6 C ′
g

(
|F ∗|p +

∣∣∣ ∂G
∂Fiα

∣∣∣ p
p−1

+
∣∣∣ ∂G
∂Zkγ

∣∣∣ p
p−2

+
∣∣∣∂G
∂w

∣∣∣ p
p−3
)

6 C ′′
g

(
|F ∗|p + |F ◦|p + |Z◦|2 + |w◦|2 + 1

)
(2.59)

where p ∈ (6,∞) and p′ = p
p−1

. Hence (H2), (P4)-(P5), (2.45)1 and Lemmas 2.4,2.5

along with (2.56)1 imply

div
(
vigi(ξ, f̃)

)
= vi∂tVi +∇vigi(ξ, f̃)

div
(
V̄igi(ξ, f̃)

)
= V̄i∂tVi +∇V̄igi (ξ, f̃)

div
(
vigi(Ξ̄, f̃)

)
= viΨ

A
,iα(f̃) ∂α(G,A(Ξ̄)) +∇vigi(Ξ̄, f̃)

div
(
V̄igi(Ξ̄, f̃)

)
= V̄iΨ

A
,iα(f̃) ∂α(G,A(Ξ̄)) +∇V̄igi(Ξ̄, f̃).

(2.60)
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Similarly, by (P4), Lemma 2.4, (2.56)2 and (2.58) we have the identity

∂tΞA(t) = ΨA
,iα(f̃) ∂αvi. (2.61)

Thus, using (2.29), (2.60)1 and (2.61), we compute

∂t
(
η(Θ)

)
= Vi∂tVi +G,A(Ξ)∂tΞA

= (Vi − vi)∂tVi + (G,A(Ξ)−G,A(ξ))∂tΞA + div
(
vigi(ξ, f̃)

)
=

1

h

∞∑
j=1

X j(t)
(
∇η(Θ)−∇η(θ)

)
δΘj + div

(
vigi(ξ, f̃)

)
.

Furthermore, by (2.60)2 we have

∂t
(
V̄i(Vi − V̄i)

)
= ∂tV̄i (Vi − V̄i) + V̄i∂tVi − V̄i∂tV̄i

= ∂tV̄i(Vi − V̄i) + div
(
V̄igi(ξ, f̃)

)
−∇V̄igi(ξ, f̃)− 1

2
∂tV̄

2

while using (2.61) we obtain

∂t(G,A(Ξ̄)(Ξ − Ξ̄)A) = ∂t(G,A(Ξ̄))(Ξ − Ξ̄)A +G,A(Ξ̄)∂tΞA − ∂t(G(Ξ̄))

= ∂t(G,A(Ξ̄))(Ξ − Ξ̄)A +∇vigi(Ξ̄, f̃)− ∂t(G(Ξ̄)).

Next, notice that by (2.38) and (2.47) we have

qr = vigi(ξ, f̃)− V̄igi(ξ, f̃)− vigi(Ξ̄, f̃) + V̄igi(Ξ̄, f̃). (2.62)

Hence by (2.29), (2.46), (2.53), (2.60) and the last four identities we obtain

∂ηr − div qr = −1

h

∞∑
j=1

X j(t)Dj + J (2.63)

where

J := −div
(
V̄igi(Ξ̄, f̃)

)
+∇V̄igi(ξ, f̃)

+ div
(
vigi(Ξ̄, f̃)

)
−∇vigi(Ξ̄, f̃)

− ∂tV̄i(Vi − V̄i)− ∂t(G,A(Ξ̄))(Ξ − Ξ̄)A.
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Consider now the term J . From (2.57)-(2.58) and Lemma 2.4 it follows that

∂tV̄i = ΨA
,iα(F̄ )∂α(G,A(Ξ̄))

∂t(G,A(Ξ̄)) = G,AB(Ξ̄)ΨB
,iα(F̄ )∂αV̄i.

Then, (2.60)3,4 along with the last two identities and the fact that G,AB = G,BA

implies

J = ∂αV̄i

(
giα(ξ, f̃)− giα(Ξ̄, f̃)

)
+ ∂α(G,A(Ξ̄))

(
ΨA
,iα(f̃)(vi − V̄i)− ΨA

,iα(F̄ )(Vi − V̄i)
)

−G,AB(Ξ̄)(Ξ − Ξ̄)AΨ
B
,iα(F̄ ) ∂αV̄i

= ∂αV̄i

(
giα(ξ, f̃)− giα(Ξ̄, f̃)− giα(Ξ, F̄ ) + giα(Ξ̄, F̄ )

)
+ ∂α(G,A(Ξ̄))

(
ΨA
,iα(f̃)(vi − V̄i)− ΨA

,iα(F̄ )(Vi − V̄i)
)

+ ∂αV̄i

(
G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)(Ξ − Ξ̄)B

)
ΨA
,iα(F̄ )

=: J1 + J2 + J3.

(2.64)

Using (2.38) we rearrange the term J1 as follows:

J1 = ∂αV̄i

[(
G,A(ξ)−G,A(Ξ̄)

)
ΨA
,iα(f̃)−

(
G,A(Ξ)−G,A(Ξ̄)

)
ΨA
,iα(F̄ )

]
= ∂αV̄i

[(
G,A(ξ)−G,A(Ξ)

)(
ΨA
,iα(f̃)− ΨA

,iα(F )
)

+
(
G,A(ξ)−G,A(Ξ)

)(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)

+
(
G,A(ξ)−G,A(Ξ)

)
ΨA
,iα(F̄ )

+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΨA
,iα(f̃)− ΨA

,iα(F )
)

+
(
G,A(Ξ)−G,A(Ξ̄)

)(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)]
.

(2.65)
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We also modify the term J2 writing it in the following way:

J2 = ∂α(G,A(Ξ̄))
[
ΨA
,iα(f̃)(vi − V̄i)− ΨA

,iα(F̄ )(Vi − V̄i)
]

= ∂α(G,A(Ξ̄))
[(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)(
Vi − V̄i

)
+
(
ΨA
,iα(f̃)− ΨA

,iα(F )
)(
Vi − V̄i

)
+
(
ΨA
,iα(f̃)− ΨA

,iα(F )
)(
vi − Vi

)
+
(
ΨA
,iα(F )− ΨA

,iα(F̄ )
)(
vi − Vi

)
+ ΨA

,iα(F̄ )
(
vi − Vi

)]
.

(2.66)

By (2.64)-(2.66) we have J = J1+J2+J3 = Q+S. Hence by (2.63) we get (2.51).

2.2.4 Proof of Main Convergence Theorem

The identity (2.51) is central to our paper. In this section, we estimate each

of its terms and complete the proof via Gronwall’s inequality.

Definition. Let Θ1 = (V1, Ξ1),Θ2 = (V2, Ξ2) ∈ R22. We set

d(Θ1,Θ2) =
(
1 + |F1|p−2 + |F2|p−2

)
|F1 − F2|2 + |Θ1 −Θ2|2 (2.67)

where (F1, Z1, w1) = Ξ1, (F2, Z2, w2) = Ξ2 ∈ R19.

Our first objective is to show that the relative entropy ηr can be equivalently

represented by the function d(·, ·). Before we establish this relation, we prove an

elementary lemma used in our further calculations:

Lemma 2.7. Assume q > 1. Then for all u, v ∈ Rn and β̄ ∈ [0, 1]

∫ β̄

0

∫ 1

0

(1− β) |u+ α(1− β)(v − u)|q dα dβ > c′ β̄
(
|u|q + |v|q

)
(2.68)
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with constant c′ > 0 depending only on q and n.

Proof. Observe first that

∫ 1

0

|u+ α(v − u)| dα > c̄ (|u|+ |v|) , ∀u, v ∈ Rn (2.69)

with c̄ = 1
4
√
n
. Then, applying Jensen’s inequality and using (2.69), we get

∫ β̄

0

∫ 1

0

(1− β)
∣∣u+ α(1− β)(v − u)

∣∣qdα dβ
>
∫ β̄

0

(1− β)

(∫ 1

0

∣∣u+ α
(
(1− β)v + βu− u

)∣∣ dα)q

dβ

> c̄q
∫ β̄

0

(1− β)
(
|u|+ |(1− β)v + βu|

)q
dβ

> c̄q

2

(
|u|q + |v|q

) ∫ β̄

0

(1− β)q+1 dβ.

Since q > 1 and (1− β̄) ∈ [0, 1], we have

∫ β̄

0

(1− β)q+1dβ =
1− (1− β̄)q+2

q + 2
> β̄

q + 2
.

Combining the last two inequalities we obtain (2.68).

Lemma 2.8 (ηr-equivalence). There exist constants µ, µ′ > 0 such that

µ d(Θ1,Θ2) 6 ηr(Θ1,Θ2) 6 µ′d(Θ1,Θ2) (2.70)

for every Θ1 = (V1, Ξ1),Θ2 = (V2, Ξ2) ∈ R22.

Proof. Notice that

ηr(Θ1,Θ2) = η(Θ1)− η(Θ2)−∇η(Θ2)(Θ1 −Θ2)

=

∫ 1

0

∫ 1

0

s(Θ1 −Θ2)
T
(
∇2η(Θ̂)

)
(Θ1 −Θ2) ds dτ.

(2.71)
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where

Θ̂ = (V̂ , Ξ̂) = (V̂ , F̂ , Ẑ, ŵ) := Θ2 + τs(Θ1 −Θ2), τ, s ∈ [0, 1].

Observe next that

∇ΞG =

[
∇FH 0 0

]
+∇ΞR (2.72)

and therefore by (2.29)

(Θ1 −Θ2)
T∇2η(Θ̂)(Θ1 −Θ2)

= |V1 − V2|2 + (Ξ1 − Ξ2)
T∇2R(Ξ̂)(Ξ1 − Ξ2)

+ (F1 − F2)
T∇2H(F̂ )(F1 − F2).

(2.73)

Then (H1), (2.71) and (2.73) imply

1
2
|V1 − V2|2 + γ

2
|Ξ1 − Ξ2|2 + κ |F1 − F2|2

∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ

6 ηr(Θ1,Θ2) 6

1
2
|V1 − V2|2 + γ′

2
|Ξ1 − Ξ2|2 + κ′ |F1 − F2|2

∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ.

(2.74)

We now consider the integral term in (2.74). Recall that F̂ = F2 + τs(F1 − F2).

Then, estimating from above, we get

∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ 6 2p−3
(
|F1|p−2 + |F2|p−2

)
while for the estimate from below we use Lemma 2.7 (with s = 1 − β and β̄ = 1)

and obtain ∫ 1

0

∫ 1

0

s|F̂ |p−2ds dτ > c′
(
|F1|p−2 + |F2|p−2

)
.

Combining (2.74) with the two last inequalities we obtain (2.70).
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Observe that the smoothness of Θ̄ implies that ∃M =M(T ) > 0 such that

M > |Θ̄|+ |∇xΘ̄|+ |∂tΘ̄|, (x, t) ∈ T3 × [0, T ]. (2.75)

Lemma 2.9 (E-equivalence). The relative entropy ηr(Θ, Θ̄) and function d(Θ, Θ̄)

satisfy

ηr(Θ, Θ̄), d(Θ, Θ̄) ∈ L∞ ([0, T ]; L1(T3)
)
.

Moreover,

µ E(t) 6
∫
T3

ηr
(
Θ(x, t), Θ̄(x, t)

)
dx 6 µ′E(t), ∀t ∈ [0, T ]

where

E(t) :=
∫
T3

d
(
Θ(x, t), Θ̄(x, t)

)
dx.

and constants µ, µ′ are those from Lemma 2.8.

Proof. Fix t ∈ [0, T ]. Then ∃j > 1 s.t. t ∈ Ij. Hence (2.44), (2.67), (2.75) and (H2)

imply for p ∈ (6,∞)

d(Θ(·, t), Θ̄(·, t)) 6 C
(
1 + |F |p + |Z|2 + |w|2 + |V |2

)
6 C

(
1 +G(Ξj−1) +G(Ξj) + |vj−1|2 + |vj|2

) (2.76)

with C = C(M) > 0 independent of h, j and t. Hence (2.43) and (2.76) imply

∫
T3

d(Θ(·, t), Θ̄(·, t)) dx 6 C ′(1 + E0), ∀t ∈ [0, T ] (2.77)

for some C ′ = C ′(M) > 0. Then (2.70) and (2.77) imply the lemma.
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Lemma 2.10 (Q bound). There exists λ = λ(M) > 0 such that

|Q(x, t)| 6 λ d(Θ, Θ̄), (x, t) ∈ T3 × [0, T ] (2.78)

where the term Q is defined by (2.52).

Proof. Let C = C(M) > 0 be a generic constant. Notice that ∀F1, F2 ∈M3×3

∣∣ΨA
,iα(F1)− ΨA

,iα(F2)
∣∣ 6



0, A = 1, . . . , 9

|F1 − F2|, A = 10, . . . , 18

3
(
|F1|+ |F2|

)
|F1 − F2|, A = 19

(2.79)

and hence

|ΨA
,iα(F )− ΨA

,iα(F̄ )| 6 C (1 + |F |)
∣∣F − F̄

∣∣ , A = 1 . . . 19. (2.80)

Then, using (2.75) and (2.80) we estimate the first term of Q:∣∣∂α(G,A(Ξ̄))(ΨA
,iα(F )− ΨA

,iα(F̄ ))(Vi − V̄i)
∣∣

6 C
(
(1 + |F |2)|F − F̄ |2 + |V − V̄ |2

)
.

(2.81)

Observe now that (2.72) and (2.79)1 imply for all Ξ1, Ξ2 ∈ R22, F3, F4 ∈ R9

(G,A(Ξ1)−G,A(Ξ2))(Ψ
A
,iα(F3)− ΨA

,iα(F4))

= (R,A(Ξ1)−R,A(Ξ2))(Ψ
A
,iα(F3)− ΨA

,iα(F4)).

(2.82)

Thus, by (H1), (2.80) and (2.82) we obtain the estimate for the second term:∣∣∂αV̄i(G,A(Ξ)−G,A(Ξ̄))(ΨA
,iα(F )− ΨA

,iα(F̄ ))
∣∣

6 C
(
|Ξ − Ξ̄|2 + (1 + |F |2)|F − F̄ |2

)
.

(2.83)

Finally, we define for each A = 1, . . . , 19

JA := G,A(Ξ)−G,A(Ξ̄)−G,AB(Ξ̄)
(
Ξ − Ξ̄

)
B

=

∫ 1

0

∫ 1

0

s(Ξ − Ξ̄)T∇2G,A(Ξ̂)(Ξ − Ξ̄) ds dτ

(2.84)
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where

Ξ̂ = (F̂ , Ẑ, ŵ) := Ξ̄ + τs(Ξ − Ξ̄), τ, s ∈ [0, 1].

By (2.37) and (H5) we have for each A = 1, . . . , 19

∣∣(Ξ − Ξ̄)T∇2G,A(Ξ̂)(Ξ − Ξ̄)
∣∣ 6 C

(
|F − F̄ |2|F̂ |p−3 + |Ξ − Ξ̄|2

)
. (2.85)

Then by (2.75) and (2.84)-(2.85) we obtain the estimate for the third term:

|∂αV̄i ΨA
,iα(F̄ ) JA|

6 C
(
|Ξ − Ξ̄|2 + |F − F̄ |2

∫ 1

0

∫ 1

0

|F̄ + τs(F − F̄ )|p−3ds dτ
)

6 C
(
|Ξ − Ξ̄|2 + |F − F̄ |2(1 + |F |p−3)

)
.

(2.86)

Thus by (2.67), (2.81), (2.83) and (2.86) we conclude for p ∈ (6,∞)

|Q(x, t)| 6 C
(
|Θ− Θ̄|2 + (1 + |F |p−2)|F − F̄ |2

)
6 C d(Θ, Θ̄).

Next, we set

I ′j := Ij
∩

[0, T ] = [(j − 1)h, jh)
∩

[0, T ], j > 1

and prove:

Lemma 2.11 (Dj bound). Let Dj be the term defined by (2.53) and (j−1)h < T .

Then

Dj ∈ L∞(I ′j ;L1(T3)
)

(2.87)

and ∃CD > 0 independent of h, j such that ∀τ ∈ Ī ′j := [(j − 1)h, jh]
∩
[0, T ]∫ τ

(j−1)h

∫
T3

(
1

h
Dj

)
dx dt

> a(τ)CD

∫
T3

|δΘj|2 +
(
|F j−1|p−2 + |F j|p−2

)
|δF j|2 dx > 0

(2.88)
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with

a(τ) :=
τ − h(j − 1)

h
∈ [0, 1], τ ∈ Ī ′j. (2.89)

Proof. By (H1), (2.29) and the definition of Dj we have for t ∈ I ′j

Dj = (v − V ) δvj +
(
∇H(f)−∇H(F )

)
δF j +

(
∇R(ξ)−∇R(Ξ)

)
δΞj. (2.90)

Consider each of the three terms in (2.90). Notice that, by (2.44)-(2.45), we have

v(·, t)− V (·, t) = (1− a(t)) δvj

ξ(·, t)− Ξ(·, t) = (1− a(t)) δΞj.

(2.91)

Using (2.91) we compute

(
v − V

)
δvj = (1− a(t)) |δvj|2

(
∇R(ξ)−∇R(Ξ)

)
δΞj = (1− a(t))

∫ 1

0

(δΞj)T∇2R(Ξ̂) (δΞj) ds

(
∇H(f)−∇H(F )

)
δF j = (1− a(t))

∫ 1

0

(δF j)T∇2H(F̂ ) (δF j) ds

(2.92)

where

Ξ̂ = (F̂ , Ẑ, ŵ) := sξ(·, t) + (1− s)Ξ(·, t), s ∈ [0, 1].

Then (H1), (2.90) and (2.92) together with the fact that (1− a(t)) ∈ [0, 1] imply

∣∣Dj(·, t)
∣∣ 6 (|δvj|2 + γ′|δΞj|2 + κ′|δF j|2

∫ 1

0

|F̂ (s, t)|p−2ds

)
. (2.93)

Consider now the two latter terms in (2.93). Recalling that F̂ = sf − (1− s)F and

using (H2) together with (2.44)-(2.45) we obtain

γ′|δΞj|2 + κ′|δF j|2
∫ 1

0

|F̂ (s, t)|p−2ds

6 C
(
1 + |F j−1|p + |F j|p + |Zj−1|2 + |Zj|2 + |wj−1|2 + |wj|

)
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for some C > 0 independent of h, j and t. Thus, combining the last inequality with

(H2), the growth estimate (2.43) and (2.93), we conclude

∫
T3

∣∣Dj(x, t)
∣∣ dx 6 ν ′

(
1 + E0

)
, ∀t ∈ I ′j (2.94)

for some ν ′ > 0 independent of h, j and t. This proves (2.87).

Let us now estimate Dj from below. By (2.90), (2.92) and (H1) we obtain

Dj(·, t) > ν (1− a(t))
(
|δΘj|2 + |δF j|2

∫ 1

0

|F̂ (s, t)|p−2ds
)
> 0 (2.95)

for ν = min(1, γ, κ) > 0. Notice that

F̂ (s, t) = sf(t) + (1− s)F (t) = F j + (1− s)(1− a(t))(F j−1 − F j).

Then, by making use of Lemma 2.7 we obtain for τ ∈ Ī ′j∫ τ

(j−1)h

(
(1− a(t)) |δF j|2

∫ 1

0

|F̂ (s, t)|p−2ds
)
dt

= h|δF j|2
∫ a(τ)

0

∫ 1

0

(1− β)|F j + α(1− β)(F j−1 − F j)|p−2dα dβ

> h a(τ) c′
(
|F j−1|p−2 + |F j|p−2

)
|δF j|2

where we used the change of variables α = 1− s and β = a(t). Similarly, we get

∫ τ

(j−1)h

(1− a(t)) |δΘj|2 dt = h|δΘj|2
∫ a(τ)

0

(1− β) dβ > ha(τ)

2
|δΘj|2.

Then (2.95) and the last two estimates imply (2.88) for CD = min(ν c′, ν
2
) > 0.

Lemma 2.12 (S bound). Let S be the term defined by (2.54) and (j − 1)h < T .

Then

S ∈ L∞(I ′j ;L1(T3)
)

(2.96)
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and ∃CS > 0 independent of h, j such that for any ε > 0 and all τ ∈ Ī ′j∫ τ

(j−1)h

∫
T3

|S(x, t)| dx dt

6 CS

[
a(τ)(h+ ε)

∫
T3

|δΘj|2 + (|F j−1|p−2 + |F j|p−2)|δF j|2 dx

+
a(τ)h2

ε
(3 + 2E0) +

∫ τ

(j−1)h

∫
T3

d(Θ, Θ̄) dx dt

]
(2.97)

with a(τ) defined by (2.89).

Proof. As before, we let C = C(M) > 0 be a generic constant and remind the reader

that all estimates are done for t ∈ I ′j.

Observe that (2.44)2, (2.45)3 and (2.89) imply

F (·, t)− f̃(·, t) = a(t)δF j.

Hence by (2.44)2, (2.45)3, (2.79), (2.89) and the identity above we get the estimate

∣∣ΨA
,iα(f̃)− ΨA

,iα(F )
∣∣ 6 C

(
1 + |f̃ |+ |F |

)
|F − f̃ |

6 C
(
1 + |F j−1|+ |F j|

)
|δF j|.

(2.98)

Thus (2.80), (2.89), (2.91)1, (2.98) and the Young’s inequality imply

∣∣ΨA
,iα(F̄ )(vi − Vi)

∣∣
+
∣∣(ΨA

,iα(F )− ΨA
,iα(F̄ ))(vi − Vi)

∣∣
+
∣∣(ΨA

,iα(f̃)− ΨA
,iα(F ))(vi − Vi)

∣∣
+
∣∣(ΨA

,iα(f̃)− ΨA
,iα(F ))(Vi − V̄i)

∣∣
6 C

(
|δvj|+ (1 + |F |2)|F − F̄ |2 + |δvj|2

+ (1 + |F j−1|2 + |F j|2)|δF j|2 + |V − V̄ |2
)
.

(2.99)
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We also notice that for all F1, F2 ∈M3×3

H,iα(F1)−H,iα(F2) =

∫ 1

0

∂2H

∂Fiα∂Flm

(
sF1 + (1− s)F2

)
(F1 − F2)lm ds.

Hence (H1), (H5), (2.89), (2.91)2 and the identity above imply∣∣ΨA
,iα(F̄ ) (G,A(ξ)−G,A(Ξ))

∣∣
6 C

(
|∇H(f)−∇H(F )|+ |∇R(ξ)−∇R(Ξ)|

)
6 C

(
|f − F |

∫ 1

0

|sf + (1− s)F |p−2ds+ |ξ − Ξ|
)

6 C
(
(|F j−1|p−2 + |F j|p−2)|δF j|+ |δΞj|

)
.

(2.100)

Next, by (H1), (2.80), (2.82), (2.89), (2.91)2 and (2.98) we obtain∣∣(G,A(ξ)−G,A(Ξ))(ΨA
,iα(f̃)− ΨA

,iα(F ))
∣∣

+
∣∣(G,A(ξ)−G,A(Ξ))(ΨA

,iα(F )− ΨA
,iα(F̄ ))

∣∣
+
∣∣(G,A(Ξ)−G,A(Ξ̄))(ΨA

,iα(f̃)− ΨA
,iα(F ))

∣∣
6 C

(
|δΞj|2 + (1 + |F j−1|2 + |F j|2)|δF j|2

+ (1 + |F |2)|F − F̄ |2 + |Ξ − Ξ̄|2
)
.

(2.101)

Finally, (2.54), (2.75), and the estimates (2.99)-(2.101) imply for p ∈ (6,∞)

|S(·, t)| 6 CS

[
(|F j−1|p−2 + |F j|p−2)|δF j|2 + |δΘj|2

+ (|F j−1|p−2 + |F j|p−2)|δF j|+ |δΘj|+ d(Θ, Θ̄)

] (2.102)

for some CS > 0 independent of h, j and t. Then, by (2.43) and (2.76) we conclude

that the right-hand side of (2.102) is in L∞ (I ′j ;L1(T3)
)
which proves (2.96).

We now pick any ε > 0. Then, employing the Young’s inequality, we obtain

(|F j−1|p−2 + |F j|p−2)|δF j| 6 h

ε

(
|F j−1|p−2 + |F j|p−2

)
+
ε

h

(
|F j−1|p−2 + |F j|p−2

)
|δF j|2
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and, similarly, |δΘj| 6 h
ε
+ ε

h
|δΘj|2. Thus (2.102) and the last two estimates imply

|S(·, t)| 6 CS

[(
1 +

ε

h

)(
|δΘj|2 + (|F j−1|p−2 + |F j|p−2)|δF j|2

)
+
h

ε

(
1 + |F j−1|p−2 + |F j|p−2

)
+ d(Θ, Θ̄)

]
.

(2.103)

To this end, we integrate (2.102) and use (H2) along with (2.43) to get (2.96).

Gronwall’s inequality. We now estimate the left hand side of the relative entropy

identity (2.51):

Lemma 2.13 (LHS estimate). Let ηr, qr be the relative entropy and relative en-

tropy flux, respectively, defined by (2.46) and (2.47). Then

(
∂tη

r − div qr
)
∈ L∞ ([0, T ], L1(T3)

)
(2.104)

and ∃ε̄ > 0 such that for all h ∈ (0, ε̄) and τ ∈ [0, T ]

∫ τ

0

∫
T3

(
∂t η

r − div qr
)
dx dt 6 CI

(
τh+

∫ τ

0

∫
T3

d(Θ, Θ̄) dx dt
)
. (2.105)

for some constant CI = CI(M,E0, ε̄) > 0.

Proof. Lemma 2.8, (2.78), (2.87), and (2.96) imply that the right-hand side of the

relative entropy identity (2.51) is in L∞ ([0, T ];L1(T3)). This proves (2.104).

Notice that the constants CD and CS (that appear in Lemmas 2.11 and 2.12,

respectively) are independent of h, j. Then set ε̄ := CD/(2CS). Take now h ∈ (0, ε̄)

and τ ∈ [0, T ]. Using Lemmas 2.10, 2.11 and 2.12 (with ε = ε̄) along with the fact

that −CD + CS(h+ ε̄) 6 0 we get

∫ τ

0

∫
T3

(
−1

h

∞∑
j=1

X j(t)Dj + |S|+ |Q|
)
dx dt 6 CI

(
τh+

∫ τ

0

∫
T3

d(Θ, Θ̄) dx dt
)
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with CI := 3max(CS(1 + E0)/ε̄, CS + λ) > 0. Hence by (2.51) and the estimate

above we obtain (2.105).

Observe that (P4)-(P5), (2.47), (2.55), (2.59)-(2.60) and (2.62) imply

div qr ∈ L∞ ([0, T ];L1(T3)
)

(2.106)

and hence by (2.104)

∂tη
r ∈ L∞ ([0, T ];L1(T3)

)
. (2.107)

Take now arbitrary h ∈ (0, ε̄) and τ ∈ [0, T ]. Due to periodic boundary

conditions (by the density argument) we have
∫
T3

(
div qr(x, s)

)
dx = 0 for a.e. s ∈

[0, T ] and hence ∫ τ

0

∫
T3

div qr dx dt = 0.

Finally, by construction for each fixed x̄ ∈ T3 the function ηr(x̄, t) : [0, T ] → R is

absolutely continuous with the weak derivative ∂tη
r(x̄, t). Then, by (2.107) and the

Fubini’s theorem we have∫ τ

0

∫
T3

∂tη
rdx dt =

∫
T3

[∫ τ

0

∂tη
r(x, t) dτ

]
dx =

∫
T3

(
ηr(x, τ)− ηr(x, 0)

)
dx.

Thus by Lemma 2.9, (2.104)-(2.107) and the two identities above we obtain

E(τ) 6 C̄
(
E(0) +

∫ τ

0

E(t) dt+ h
)

(2.108)

with C̄ := T
µ
max(CI , µ

′) independent of τ , h. Since τ ∈ [0, T ] is arbitrary, by (2.108)

and the Gronwall’s inequality we conclude

E(τ) 6 C̄
(
E(0) + h

)
eC̄T , ∀τ ∈ [0, T ].

In this case, if E (h)(0) → 0 as h ↓ 0, then supτ∈[0,T ]

(
E (h)(τ)

)
→ 0, as h ↓ 0.
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Chapter 3

A variational approximation scheme for radial elasticity that

preserves the positivity of Jacobians

The purpose of this chapter is to present a variational approximation scheme

for the radial elasticity which preserves the positivity of the quantity det∇y, nec-

essary to interpret y as a physically realizable motion.

The major parts of the chapter (besides few elementary lemmas and theorems)

were first published in ”A Variational approximation scheme for radial polyconvex

elasticity that preserves the positivity of Jacobians” in Volume 10, Issue 1 (2012),

published by International Press c⃝.

3.1 Background Information

3.1.1 Radial Isotropic elasticity

We consider the equations of nonlinear elasticity

ytt = divS(∇y) in B × [0,∞) (3.1)

on the unit ball B = {x ∈ Rn : |x| < 1}, subject to uniform stretching at the

boundary

y(x, t) = λx, (x, t) ∈ ∂B × [0,∞) (3.2)
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and initial conditions

y(x, 0) = w0(R)
x

R
, yt(x, 0) = v0(R)

x

R
, x ∈ B\{0} (3.3)

where R := |x| and w0 : [0, 1) → R is nonnegative.

We employ the constitutive theory of hyperelasticity which postulates that the

Piola-Kirchhoff stress tensor S is expressed as the gradient,

S(F ) =
∂W

∂F
(F ), (3.4)

of the stored-energy function W : M3×3
+ → R3 of the elastic body. In addition, we

assume that the elastic material is isotropic, i.e. for all proper rotations Q ∈ SO(3)

W (FQ) = W (F ), ∀F ∈M3×3
+ . (3.5)

We seek for those solutions of (3.1) which correspond to physically realizable

motions. Therefore we assume that the stored energy is frame-indifferent, i.e. for

all proper rotations Q ∈ SO(3)

W (QF ) =W (F ), ∀F ∈M3×3
+ (3.6)

and to exclude interpenetration of matter we require

det∇y > 0 a.e. x ∈ B. (3.7)

Definition. Let F ∈ M3×3
+ . The eigenvalues v1, v2, v3 of the matrix (F TF )1/2 are

called the singular values or principal stretches of F .

Remark 3.1. Notice that F ∈ M3×3
+ implies that the matrix F TF is symmetric

positive definite. Thus (F TF )1/2 in the definition above stands for the principal
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square root of F TF and is (by itself) symmetric positive definite. Thus, the principal

stretches v1, v2, v3 for the matrix F ∈M3×3
+ are always positive.

We next show that the stored energy W , for isotropic hyperelastic materials,

can be expressed as a symmetric function of the principal stretches (see the rep-

resentation theorems for isotropic functions in [2, p. 472] and [31, p. 317] ). That

is

W (F ) = Φ(v1, v2, v3), ∀F ∈Mn×n
+ (3.8)

where v1, . . . , vn are the singular values of F and

Φ(v1, v2, v3) : R3
+ = {v ∈ R3 : vi > 0 i = 1, 2, 3} → R

is a symmetric function. Indeed, by the polar decomposition theorem any matrix

F ∈M3×3
+ is expressed in the form F = RU with R ∈ SO(3) and symmetric positive

definite U = (F TF )1/2. By definition, v1, v2, v3 are eigenvalues of U . Thus

U = Q diag(v1, v2, v3)Q
T

where Q is the orthogonal matrix of eigenvectors. Thus, employing properties of

isotropy (3.5) and frame-indifference (3.6), we have

W (QFQT ) =W (F ), ∀F ∈M3×3
+ , Q ∈ SO(3). (3.9)

and hence

W (F ) = W (RU) =W (diag (v1, v2, v3)) =: Φ (v1, v2, v3) . (3.10)

Furthermore, for each permutation π : {1, 2, 3} → {1, 2, 3} we clearly have

U = Qπ diag(vπ(1), vπ(2), vπ(3))Q
T
π
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where the orthogonal matrix Qπ is obtained via the (corresponding to π) permuta-

tion of the columns of the matrix Q. Hence, using (3.9), we conclude that

Φ (v1, v2, v3) = Φ
(
vπ(1), vπ(2), vπ(3)

)
and this proves that Φ is symmetric.

Observe also that due to the symmetry of Φ we have

∂Φ

∂vi
(v1, v2, v3) =

∂Φ

∂vπ(i)
(vπ(1), vπ(2), vπ(3)), i = 1, 2, 3. (3.11)

Definition. A function f : B\{0} → Rn is called radial if

f(x) = w(R)
x

R
, w : [0,∞) → [0,∞), R := |x|.

Our next goal is to recast the problem (3.1) for radial solutions. Before we

proceed we will prove several lemmas used in our further calculations.

Lemma 3.1. Let A ∈Mn×n be defined by

A = αI + β
z ⊗ z

|z|2
(3.12)

where z ̸= 0 ∈ Rn and α and β are real numbers. Let Q ∈ SO(n) be a proper

rotation satisfying Qe1 = z
|z| . Let qj denote the j-th column of Q for j = 1, . . . , n.

Then vectors {q1, . . . , qn} are eigenvectors of A with the corresponding eigenvalues

λ1 = α+ β and λ2 = · · · = λn = α and hence

A = QDQT with D := diag(α+ β, α, α, . . . , α).

Proof. By assumption Qe1 = z/|z|. Hence q1 = z/|z| and

Aq1 = αq1 + β
< z, q1 > z

|z|2
= αq1 + β

z

|z|
= (α+ β)q1.
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As Q ∈ SO(n), we have QTQ = I and hence < q1, qj >= 0 for j = 2, . . . , n. Thus

(z ⊗ z)qj = < z, qj > z =< q1, qj > z|z| = 0, j = 2, . . . , n

and we conclude that

Aqj = αqj for j = 2, . . . , n.

Finally, Q ∈ SO(n) implies detQ ̸= 0 and Q−1 = QT. Hence

A = QDQT with D = diag(α+ β, α, α, . . . , α).

Lemma 3.2. Let z ̸= 0 ∈ Rn be given. Let γ and δ be some real numbers, Q ∈

SO(n) be a proper rotation satisfying

Qe1 =
z

|z|

and D := diag(γ, δ, δ, . . . , δ). Then

QDQT = δI + (γ − δ)
z ⊗ z

|z|2
.

Proof. Notice that

D = γ [e1 ⊗ e1] + δ [I − e1 ⊗ e1] = δI + (γ − δ) e1 ⊗ e1.

Hence

QDQT = Q [δI + (γ − δ) e1 ⊗ e1]Q
T =

δI + (γ − δ) [(Qe1)⊗ (Qe1)] = δI + (γ − δ)
x⊗ x

|x|2
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Lemma 3.3. Let W̃ : Mn×n
+ → Rn be smooth, isotropic, and frame-indifferent and

Φ̃ : Rn
++ → R be a a symmetric function such that

W̃ (F ) = Φ̃(v1, . . . , vn), ∀F ∈Mn×n
+

where v1, . . . , vn are eigenvalues of (F TF )
1
2 . Assume that

F̄ = diag(v1, . . . , vn) with vi > 0, i = 1, . . . , n.

Then

∂W̃

∂F
(F̄ ) = diag

(
Φ̃,1(V ), . . . , Φ̃,n(V )

)
where

V := (v1, . . . , vn) and Φ̃,i(V ) :=
∂Φ̃

∂vi
(v1, . . . , vn).

Proof. By assumption F̄ ∈Mn×n
+ . Then it is easy to see that for all h ∈ R satisfying

0 < |h| < min
i=1,...,n

(vi)

the matrix
[
F̄ + h ei ⊗ ej

]
∈Mn×n

+ . In this case, for each i = 1, . . . , n we have

W̃
(
F̄ + h ei ⊗ ei

)
= Φ̃(v1, . . . , vi + h, . . . , vn)

and hence

∂W̃

∂Fii

(F̄ ) = lim
h→0

W̃ (F̄ + h ei ⊗ ei)− W̃ (F̄ )

h

= lim
h→0

Φ̃(v1, . . . , vi + h, . . . , vn)− Φ̃(v1, . . . , vn)

h
= Φ̃,i(V ).

Next, observe that for each i, j = 1, . . . , n with i ̸= j

W̃
(
F̄ + h ei ⊗ ej

)
= Φ̃(ṽ1(h), . . . , ṽn(h))

57



where

ṽi(h) =

(
1

2

[
v2i + v2j + h2 +

√
(v2i + v2j + h2)2 − 4v2i v

2
j

])1/2

,

ṽj(h) =

(
1

2

[
v2i + v2j + h2 −

√
(v2i + v2j + h2)2 − 4v2i v

2
j

])1/2

ṽk(h) = vk, k /∈ {i, j}.

Hence, by direct calculation, we obtain

∂W̃

∂Fij

(F̄ ) = 0, i ̸= j

and this finishes the proof.

Lemma 3.4. Let P : Rn\{0} →Mn×n be defined by

P (z) = K(|z|)I +B(|z|)z ⊗ z

|z|2
, z ∈ Rn

where K and B are smooth scalar functions. Then for all z ̸= 0

divP (z) =

(
K ′(|z|) +B′(|z|) + (n− 1)

B(|z|)
|z|

)
z

|z|
.

Proof. For each i ∈ {1, . . . , n} we have

(divP (z))i =
n∑

j=1

∂zj

(
Kδij +B

zizj
|z|2

)

= ∂ziK +
n∑

j=1
j ̸=i

(
∂zjB

zizj
|z|2

+Bzi

(
1

|z|2
−

2z2j
|z|4

))

+

(
∂ziB

zizi
|z|2

+Bzi

[
2

|z|2
− 2z2i

|z|4

])
= ∂ziK +

n∑
j=1

(
∂zjB

zizj
|z|2

)
+ (n− 1)

Bzi
|z|2

=

(
K ′ +B′ + (n− 1)

B(|z|)
|z|

)
zi
|z|
.

58



At this point we are ready to transform equations (3.1) into the equations

that monitor the evolution of the magnitude of the radial solution to (3.1). To

avoid inessential technicalities we will perform a series of calculations for the case

when the solution y is smooth.

Theorem 3.1. Let y be a smooth solution to (3.1) for t ∈ [0, T ]. Assume that y

satisfies (3.2), (3.3) and the constraint (3.7) and the constitutive hypotheses (3.4)-

(3.6) hold. Finally, assume that y is radial and has the form

y(x, t) = w(R, t)
x

R
for x ̸= 0 (3.13)

with w : [0, 1)× [0, T ] → R satisfying w(R, t) > 0. Then ∀x ∈ B\{0} we have:

(R1) The deformation gradient of y is expressed by

∇y =
w

R
I +

(
wR(R, t)−

w

R

) x⊗ x

R2
. (3.14)

(R2) The condition (3.7) expressing the requirement that matter cannot penetrate

itself transforms into

det∇y = wR

(w
R

)2
> 0, R ∈ (0, 1) (3.15)

and dictates wR,
w
R
> 0.

(R3) The principal stretches v1, v2, v3 of the deformation gradient ∇y satisfy

v1 = wR, v2 = v3 =
w

R

in which case the stored energy of the deformation is given by

W (∇y) = Φ(wR,
w
R
, w
R
)
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and the first Piola-Kirchhoff stress by

S(∇y) = ∂Φ

∂v2

(
wR,

w
R
, w
R

)
I

+

[
∂Φ

∂v1

(
wR,

w
R
, w
R

)
− ∂Φ

∂v2

(
wR,

w
R
, w
R

)] x⊗ x

R2
.

(R4) The amplitude w(R, t) = |y(x, t)| satisfies the second order equation

R2∂ttw =
∂

∂R

(
R2 ∂Φ

∂v1
(wR,

w
R
, w
R
)
)
−R

3∑
i=2

∂Φ

∂vi
(wR,

w
R
, w
R
) (3.16)

for R ∈ (0, 1). In addition, boundary and initial conditions (3.2), (3.3) imply

w(1, t) = λ and w(R, 0) = w0(R), wt(R, 0) = v0(R), R ∈ (0, 1), t ∈ [0, T ]

Proof. The property (R1) follows from the direct computations of the gradient for

y = w(R, t) x
R
. Now, observe that by (R1) the gradient ∇y is of the same form as the

matrix A in Lemma 3.1. Then, applying the lemma to the matrix ∇y, we conclude

that for each x ∈ B\{0}

∇y(x, t) = Q̄ diag
(
wR,

w
R
, w
R

)
Q̄T (3.17)

where Q̄ = Q̄(x) ∈ SO(3) is a proper rotation satisfying Q̄(x)e1 = x
R
. Hence by

(3.7) and (3.17) we must have

det∇y = wR

(w
R

)2
> 0, R ∈ (0, 1)

Then wR > 0 for R ∈ (0, 1) and therefore for each t ∈ [0, T ] the function w(R, t) is a

strictly increasing function of R. By assumption w(0, t) > 0 and hence w(R, t) > 0

for all R ∈ (0, 1). This proves (R2).

Next, notice that by (R1), (R2) the matrix ∇y ∈ M3×3
+ is symmetric positive

definite and hence we clearly have

∇y = (∇yT∇y)1/2
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which implies that the singular values and eigenvalues for ∇y coincide. Hence by

(3.17) we conclude that singular values of ∇y are

v1 = wR, v2 = v3 =
w

R
.

Hence by (3.8) the stored energy of the deformation is given by

W (∇y) = Φ(wR,
w
R
, w
R
).

Next, we differentiate the equality (3.9) with respect to F and obtain

S(QFQT ) = QS(F )QT , ∀F ∈M3×3
+ , Q ∈ SO(3). (3.18)

Since ∇y ∈M3×3
+ , relations (3.17) and (3.18) imply

S (∇y(x, t)) = Q̄ S
(
diag(wR,

w
R
, w
R
)
)
Q̄T . (3.19)

Furthermore, using Lemma 3.3 and the fact that wR,
w
R
> 0, we obtain

S
(
diag(wR,

w
R
, w
R
)
)
= diag (Φ,1(V ), Φ,2(V ), Φ,3(V )) (3.20)

where

V := (wR,
w
R
, w
R
) and Φ,i(V ) :=

∂Φ

∂vi
(wR,

w
R
, w
R
). (3.21)

Notice also that the property (3.11) implies

∂Φ

∂v2
(a, b, b) =

∂Φ

∂v3
(a, b, b), ∀a, b ∈ R+. (3.22)

Hence (3.19)-(3.22) and Lemma 3.2 imply

S(∇y) = Φ,2(V )I + [Φ,1(V )− Φ,2(V )]
x⊗ x

R2
(3.23)
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which finishes the proof of (R3).

Next, by (3.21), (3.23) and Lemma 3.4 we have

divS(∇y) =
(
∂

∂R
(Φ,1(v)) + 2

Φ,1(v)− Φ,2(v)

R

)
x

R
. (3.24)

Thus by (3.1), (3.22), (3.24) and the fact that ytt = wtt(R, t)
x
R
we get

R2∂ttw =
∂

∂R

(
R2 ∂Φ

∂v1
(wR,

w
R
, w
R
)
)
−R

3∑
i=2

∂Φ

∂vi
(wR,

w
R
, w
R
).

Finally, notice that |x| = 1 whenever x ∈ ∂B. Hence using (3.2) we get

w(1, t) = λ, t ∈ [0, T ] (3.25)

Also, by (3.3) we have that w(R, 0) x
R
= w0(R)

x
R

and wt(R, 0)
x
R
= v0(R)

x
R

for each

x ∈ B\{0}. Hence

w(R, 0) = w0(R), wt(R, 0) = v0(R), R ∈ (0, 1), t ∈ [0, T ]

and this finishes the proof.

3.1.2 Polyconvexity in the Radial Case

One possible way to accommodate the condition (3.7) is to let the stored energy

W increase without bound as detF → 0+ so that compression of a finite volume

down to a point would cost infinite energy. Such behavior would be inconsistent

with simultaneously requiring convexity and invariance of the stored energy under

rotations. Thus, convexity of W is not a natural assumption. As an alternative, we

assume that the stored energy W is polyconvex, that is

W (F ) = ¯̄G(F, cof F, detF ) (3.26)
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for some convex function ¯̄G :M3×3
+ ×M3×3

+ × R+ → R.

By assumption, the stored energy W satisfies (3.5), (3.6), and (3.26). Thus

there exists convex function Ḡ : R7 → R such that

W (F ) = Ḡ (v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3) , F ∈M3×3
+ (3.27)

where v1, v2, v3 are the singular values of F . Indeed, using the polar decomposition

theorem we write F ∈ M3×3
+ in the form F = RU with R ∈ SO(3) and symmetric

positive definite U = (F TF )1/2. By definition, v1, v2, v3 are eigenvalues of U and so

U = Q diag(v1, v2, v3)Q
T

where Q is the orthogonal matrix of eigenvectors. Then by (3.9) we get

W (F ) = W (RU) =W (diag (v1, v2, v3))

= ¯̄G (diag (v1, v2, v3) , diag (v2v3, v1v3, v1v2) , v1v2v3)

=: Ḡ (v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3) .

Since ¯̄G is convex, we conclude that Ḡ : R7 → R is convex as well.

For now, to avoid technicalities, we assume that

y(x, t) = w(R, t)
x

R
, R ̸= 0,

with w(R, t) > 0, is a smooth radial solution to the system (3.1) that satisfies the

constraint (3.7). Then, by Theorem 3.1, the singular values are v1 = wR, v2 =

v3 = w
R

and, for reasons related to the null-Lagrangian structure of an associated

variational problem (outlined in the following section), the stored energy could be
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expressed in the form

W (∇y) = Φ
(
wR,

w
R
, w
R

)
= Ḡ

(
wR,

w
R
, w
R
,
(
w
R

)2
, wR

(
w
R

)
, wR

(
w
R

)
, wR

(
w
R

)2)
= G

(
Ω
((
wR,

w
R
, w
R

)
;R
)
;R
)

(3.28)

where Ω and G are inhomogeneous functions defined by

Ω(V ;R) :=
(
v1, v2, v3, v2v3R, v1v3R, v1v2R, v1v2v3R

2
)
, (3.29)

G(Ξ;R) := Ḡ
(
ξ1, ξ2, ξ3, ξ4/R, ξ5/R, ξ6/R, ξ7/R

2
)
, (3.30)

V = (vi)i=1...3 ∈ R3 and Ξ = (ξ)i=1...7 ∈ R7. The convexity hypothesis on ¯̄G implies

that G(Ξ;R) is convex as a function of Ξ ∈ R7. In summary,

W (∇y) = Φ
(
wR,

w
R
, w
R

)
= G(Ω(Γ ;R);R), (3.31)

where Γ :=
(
wR,

w
R
, w
R

)
. (3.32)

For simplicity of notation, we henceforth suppress the dependence on R and write

Ω(V ) = Ω(V ;R) and G(Ξ) = G(Ξ;R).

By Theorem 3.1, the magnitude w = |y| satisfies the equation (3.16). Thus,

taking into account polyconvexity ofW , the equation (3.16) can be expressed in the

form of the second-order system

R2∂tv =
∂

∂R

(
R2Φ,1

(
wR,

w
R
, w
R

))
−R (Φ,2 + Φ,3)

(
wR,

w
R
, w
R

)
∂tw = v

(3.33)

where we use the notation

Φ,i(v1, v2, v3) :=
∂Φ

∂vi
(v1, v2, v3). (3.34)
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The equation (3.33) formally satisfies the conservation of mechanical energy identity

∂t

(
R2
(
v2

2
+ Φ

(
wR,

w
R
, w
R

) ))
= ∂R

(
R2v Φ,1

(
wR,

w
R
, w
R

))
. (3.35)

The mechanical energy and the associated energy flux provide an entropy-entropy

flux pair for (3.33) but the entropy is not in general convex. In view of (3.31)–(3.32),

Φ,j, j = 1, . . . , 3 are expressed as

Φ,j(v1, v2, v3) =
∂G

∂vj
(Ω(V )) =

∂G

∂ξi
(Ω(V ))

∂Ωi

∂vj
(V ),

and (3.33) is written as

R2 ∂tv = ∂R

(
R2∂G

∂ξi
(Ω(Γ ))

∂Ωi

∂v1
(Γ )

)
−R

∂G

∂ξi
(Ω(Γ ))

(
∂Ωi

∂v2
(Γ ) +

∂Ωi

∂v3
(Γ )

)
∂tw = v.

(3.36)

3.2 Null-Lagrangians and Extensions of Polyconvex Radial Elasticity

3.2.1 Null-Lagrangians in the Radial Case

An alternative approach to derive (3.35) proceeds by considering the extrema

of the action functional

J [y] =

∫ T

0

∫ 1

0

(
1
2
w2

t − Φ
(
wR,

w
R
, w
R

))
R2 dRdt

and deriving (3.16) as the associated Euler-Lagrange equations. This provides a

connection with the calculus of variations.

Consider the functional associated to the equilibrium problem

I[w] =

1∫
0

Ψ
(
wR,

w
R
, w
R
;R
)
dR.
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We ask for which integrands Ψ (v1, v2, v3;R) : R4 → R the functional I admits zero

variational derivatives, δI
δw

= 0; such integrands are called null Lagrangians and they

satisfy the Euler-Lagrange equation

−∂R (Ψ,1) +R−1 (Ψ,2 + Ψ,3) = 0 for all functions w(R) . (3.37)

If w = w(R, t) also depends on time, the evolution of a null Lagrangian Ψ is described

by

∂tΨ = ∂R (Ψ,1 ∂tw) (3.38)

where Ψ and Ψ,i are evaluated at
(
wR,

w
R
, w
R
, R
)
.

It is easily verified that Ψ(v1, v2, v3;R) selected by

v1, v1v2R, v1v3R, or v1v2v3R
2

are null-Lagrangians. Applying (3.37) to Ωi, i = 1, 5, 6, 7, defined by (3.29) we get

−∂R
(
Ωi

,1(Γ )
)
+R−1

(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
= 0, i = 1, 5, 6, 7, (3.39)

with Γ = (wR,
w
R
, w
R
) defined by (3.32).

3.2.2 A Symmetrizable Extension

The null-Lagrangian structure is used in [15] to embed the equations of three-

dimensional elastodynamics to a hyperbolic system endowed with a convex entropy,

and to construct a variational approximation scheme for the problem. We follow

this procedure in order to achieve an augmented system for radial elastodynamics.
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The evolution in time of

Ω(Γ ) =
(
wR,

w
R
, w
R
, w

2

R
, wRw,wRw,wRw

2
)

(3.40)

gives

∂tΩ
1(Γ ) = ∂t (wR) = ∂Rv = ∂R

(
Ω1

,1(Γ )v
)

∂tΩ
i(Γ ) = ∂t

(
w
R

)
= v/R = R−1

(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
v for i = 2, 3

∂tΩ
4(Γ ) = ∂t

(
w2

R

)
= 2(w

R
)v = R−1

(
Ω4

,2(Γ ) +Ω4
,3(Γ )

)
v

∂tΩ
i(Γ ) = ∂t (wRw) = ∂R(wv) = ∂R

(
Ωi

,1(Γ )v
)

for i = 5, 6

∂tΩ
7(Γ ) = ∂t

(
wRw

2
)
= ∂R(w

2v) = ∂R
(
Ω7

,1(Γ )v
)
.

(3.41)

Note that (3.41)1,5,6,7 are precisely the equations (3.38) describing the evolution of

null Lagrangians. By contrast, (3.41)2,3,4 describe the evolution of lower-order terms

and do not have the structure of (3.38).

Equations (3.41) and (3.36) motivate an extension of radial elasticity:

R2∂tv = ∂R

(
R2∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(Γ )

)
−R

∂G

∂ξi
(Ξ)

(
∂Ωi

∂v2
(Γ ) +

∂Ωi

∂v3
(ξ)

)
∂tw = v

∂tξi = ∂R
(
Ωi

,1(Γ )v
)
, i = 1, 5, 6, 7

∂tξi = R−1
(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
v, i = 2, 3, 4

where Γ = (wR,
w
R
, w
R
), subject to the constraints

ξ2, ξ3 > 0, ξ7 > 0, (R, t) ∈ (0, 1)× [0,∞), (3.42)

and the boundary conditions w(1, t) = ξ2(1, t) = ξ3(1, t) = λ. System (3.2.2)

describes the evolution of the vector (v, w,Ξ), and is provided with initial data

(v0, w0, Ξ0).

67



The extension has the following properties:

(a) If Ξ(·, 0) = Ω(Γ 0) where Γ 0 = (w′
0,

w0

R
, w0

R
), then Ξ(R, t) = Ω(Γ (R, t)), where

Γ = (wR,
w
R
, w
R
). In other words, radial elasticity (3.33) can be viewed as a

constrained evolution of (3.2.2).

(b) The enlarged system admits an entropy pair

∂t

(
R2

(
v2

2
+G(Ξ)

))
− ∂R

(
R2 ∂G

∂ξi
(Ξ)

∂Ωi

∂v1
(Z) v

)
= 0 , (3.43)

with strictly convex entropy

η(v, Ξ) =
v2

2
+G(Ξ). (3.44)

The identity (3.43) holds for general solutions (v, w,Ξ) of (3.2.2) and is derived

upon using the property (3.39) for the null Lagrangians (3.29).

3.2.3 An Alternative Extension with a Convex Entropy

System (3.2.2) provides an extension of radial elasticity that is endowed with a

convex entropy. Concerning the objective of achieving a variational approximation,

it has the drawback that the constraint (3.42) of positivity for the variables ξ2, ξ3

and ξ7 is not preserved at the level of time-step approximations. Although one can

control the positivity of ξ7 (the augmented variable standing for the determinant),

it is not possible to control the positivity of ξ2,ξ3. There are also difficulties in

proving that minimizers satisfy the corresponding Euler-Lagrange equations, the

time-discretized system associated to (3.2.2).
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For this reason, we develop an alternative extension by combining the evolution

of null-Lagrangians with a change of variables used in Ball [3] for the equilibrium

problem. This extension induces a variational approximation scheme that preserves

the positivity of determinants.

The stored energy Φ is expressed in the form

Φ (v1, v2, v3) = Ḡ (v1, v2, v3, v2v3, v1v3, v1v2, v1v2v3)

= G(Ω(V ; ρ) ; ρ)

(3.45)

where Ω and G are nonhomogeneous functions of ρ that are redefined so that

Ω(V ; ρ) :=
(
v1, v

3
2, v

3
3, v2v3ρ

1/3, v1v3ρ
1/3, v1v2ρ

1/3, v1v2v3ρ
2/3
)

(3.46)

G(Ξ; ρ) := Ḡ
(
ξ1, ξ

1/3
2 , ξ

1/3
3 , ξ4/ρ

1/3, ξ5/ρ
1/3, ξ6/ρ

1/3, ξ7/ρ
2/3
)
. (3.47)

It is now assumed that G(Ξ; ρ) is a convex function of Ξ; this is a somewhat stronger

hypothesis than polyconvexity (which is convexity of Ḡ) because of the definition

of Ωi(V ; ρ), i = 2, 3, in (3.46). In the sequel any explicit ρ-dependence will be

suppressed.

A change of variables. Following [3] we perform the change of variables

ρ = R3 and α = w3. (3.48)

Then Γ = (wR,
w
R
, w
R
) is expressed as

Γ = (αρ(ρ/α)
2/3, (α/ρ)1/3, (α/ρ)1/3) (3.49)

and the stored energy reads

W (∇y) = Φ
(
αρ(ρ/α)

2/3, (α/ρ)1/3, (α/ρ)1/3
)

= G(Ω(Γ ; ρ) ; ρ)

(3.50)
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where Ω and G are defined in (3.46), (3.47), and G(·; ρ) is convex.

The system (3.33) takes the form

∂tv = ∂ρ

(
3ρ2/3

∂G

∂ξi
(Ω(Γ ))

∂Ωi

∂v1
(Γ )

)
− ρ−1/3 ∂G

∂ξi
(Ω(Γ ))

(
∂Ωi

∂v2
(Γ ) +

∂Ωi

∂v3
(Γ )

)
∂t(α

1/3) = v

α(1) = λ, α > 0, αρ > 0, (R, t) ∈ (0, 1)× [0,∞).

(3.51)

with the last inequalities encoding the constraints for solutions to represent elastic

motions. In the new variables, by (3.46),

Ω(Γ ) =

(
αρ

α2/3
ρ2/3,

α

ρ
,
α

ρ
,
α2/3

ρ1/3
,
αρ

α1/3
ρ2/3,

αρ

α1/3
ρ2/3, αρρ

2/3

)
(3.52)

and, using (3.51)2, we compute

∂tΩ
1(Γ ) = ∂t

(
3ρ2/3∂ρ(α

1/3)
)
= 3ρ2/3∂ρv

∂tΩ
i(Γ ) = ∂t (α/ρ) = 3α2/3v/ρ i = 2, 3

∂tΩ
4(Γ ) = ∂t

(
α2/3/ρ1/3

)
= 2α1/3v/ρ1/3

∂tΩ
i(Γ ) = ∂t

(
(3/2)ρ2/3∂ρ(α

2/3)
)
= 3ρ2/3∂ρ

(
α1/3v

)
i = 5, 6

∂tΩ
7(Γ ) = ∂t

(
αρρ

2/3
)
= 3ρ2/3∂ρ(α

2/3v) .

(3.53)

These identities are summarized in two groups

∂tΩ
i(Γ ) = 3ρ2/3∂ρ(Ω

i
,1(Γ )v), i = 1, 5, 6, 7 ,

∂tΩ
i(Γ ) = ρ−1/3(Ωi

,2(Γ ) +Ωi
,3(Γ ))v , i = 2, 3, 4 ,

(3.54)

the former representing the evolution of null-Lagrangians and the latter the evolution

of lower order terms. The identities (3.39) satisfied by null-Lagrangians become

−3ρ2/3∂ρ
(
Ωi

,1(Γ )
)
+ ρ−1/3

(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
= 0, i = 1, 5, 6, 7. (3.55)
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The augmented system. Next, consider the augmented system

∂tv = ∂ρ
(
3ρ2/3G,i(Ξ)Ωi

,1(Γ )
)
− ρ−1/3G,i(Ξ)

(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
∂tα

1/3 = v

∂tξi = 3ρ2/3∂ρ
(
Ωi

,1(Γ )v
)
, i = 1, 5, 6, 7

∂tξi = ρ−1/3
(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
v, i = 2, 3, 4

(3.56)

where Γ is given by (3.49), subject to the boundary conditions and constraints,

respectively,

α(1) = λ, α > 0, αρ > 0, (ρ, t) ∈ (0, 1)× [0,∞). (3.57)

The system (3.56)1-(3.56)4 is a second-order system describing the evolution of the

vector (v, α,Ξ) and is assigned initial data (v0, α0, Ξ0). It has the following proper-

ties:

(a) If Ξ(·, 0) = Ω(Γ 0) with Γ 0 = (α′
0(ρ/α0)

2/3, (α0/ρ)
1/3, (α0/ρ)

1/3), then Ξ =

Ω(Γ ) for all times. In other words, radial elasticity (3.33) can be viewed as a

constrained evolution of (3.56).

(b) The enlarged system admits an entropy pair

∂t

(
v2

2
+G(Ξ)

)
− ∂ρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ ) v
)
= 0 (3.58)

with (for convex G) strictly convex entropy η(v, Ξ) = v2

2
+G(Ξ).

At this point we set

β = αρ/α
2/3 , γ = α2/3 ,

Ξ =

(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γρ
2
ρ2/3,

3γρ
2
ρ2/3, αρρ

2/3

)
, (3.59)
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and proceed to simplify the extended system working with α, β, γ, v as the indepen-

dent variables.

Taking a closer look at the extended system we see that ξ2 = ξ3 by construction

and hence equations (3.56)2, i = 2, 3 are identical. Moreover,

∂tξ2 = 3α2/3v/ρ ⇒ ∂tξ7 = ρ2/3∂ρ(ρ ∂tξ2),

∂tξ4 = 2α1/3v/ρ1/3 ⇒ ∂tξ5 = ∂tξ6 =
3

2
ρ2/3∂ρ

(
ρ1/3∂tξ4

)
.

(3.60)

Hence (3.56) is overdetermined and extra equations (3.56)3 for i = 5, 6, 7 and (3.56)3

for i = 3 can be excluded. In explicit form the extension (3.56) is written as

∂t v = ∂ρ
(
3ρ2/3G,i(Ξ)Ωi

,1(Γ )
)
− ρ−1/3G,i(Ξ)

(
Ωi

,2(Γ ) +Ωi
,3(Γ )

)
∂tβ = ∂ρ(3v)

∂tα = 3α2/3v

∂tγ = 2α1/3v

α(1) = λ, α > 0, αρ > 0, (ρ, t) ∈ (0, 1)× [0,∞),

(3.61)

where from (3.61)3 and (3.61)4 we can derive the excluded equations

∂tαρ = ∂ρ(3α
2/3v)

∂tγρ = ∂ρ(2α
1/3v).

(3.62)

3.3 Variational Approximation Scheme

The purpose of this section is to introduce a variational approximation scheme

for the radial equation of elastodynamics with polyconvex and isotropic stored en-

ergy. The method we present here is inspired by the variational approximation
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scheme for three dimensional elastodynamics proposed in [15] and described in

Chapter 2. However, there are very important differences between the two schemes.

The results of [15] do not take into account the constraint of positive determinant,

det∇y > 0, necessary to interpret y as a physically realizable motion. In this work,

we consider the equations of radial elasticity (3.16) and proceed to devise a varia-

tional scheme that on one hand preserves the positivity of determinants expressed

by (3.15) and on the other produces a time-discretized variant of entropy dissipa-

tion. Due to the lack of convexity of the stored energyW , similar to [15], we develop

method based on the time-discretization of the extended system (3.56), which in the

explicit form expressed by (3.61), and equipped with the convex entropy (3.58).

3.3.1 Time-discretized System

The general approach is to discretize the extended system (3.56) by use of

implicit-explicit scheme. Successive iterates are constructed by discretizing (3.56)

as follows: Given the (j − 1)th iterate (α0, β0, γ0, v0) with α0(ρ) > 0 and α′
0(ρ) > 0,

ρ ∈ (0, 1), we define Ξ0 = (ξ0i )
7
i=1 by

Ξ0(ρ) =

(
β0ρ

2/3,
α0

ρ
,
α0

ρ
,
γ0
ρ1/3

,
3γ′0
2
ρ2/3,

3γ′0
2
ρ2/3, α′

0ρ
2/3

)
(3.63)

and construct the jth iterate (α, β, γ, v), with corresponding Ξ = (ξi)
7
i=1 defined by

Ξ(ρ) =

(
βρ2/3,

α

ρ
,
α

ρ
,
γ

ρ1/3
,
3γ′

2
ρ2/3,

3γ′

2
ρ2/3, α′ρ2/3

)
, (3.64)
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by solving 

(v − v0)/h =
d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)
)

− ρ−1/3G,i(Ξ)
(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)

(ξi − ξ0i )/h = 3ρ2/3
d

dρ

(
Ωi

,1(Γ
0)v
)
, i = 1, 5, 6, 7

(ξi − ξ0i )/h = ρ−1/3
(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)
v, i = 2, 3, 4

ξ2(1) = ξ3(1) = λ, ξ2, ξ3 > 0, ξ7 > 0, ρ ∈ (0, 1),

(3.65)

where

Γ = (α′(ρ/α)2/3, (α/ρ)1/3, (α/ρ)1/3) , (3.66)

Γ 0 = (α′
0(ρ/α0)

2/3, (α0/ρ)
1/3, (α0/ρ)

1/3). (3.67)

As in the continuous case the discrete system (3.65) is overdetermined with

extra equations (
αρ − α0ρ

)
/h =

d

dρ

(
3α0

2/3v
)
,

(
γρ − γ0ρ

)
/h =

d

dρ

(
2α0

1/3v
)
,

(3.68)

corresponding to (3.65)2, i = 5, 6, 7. Excluding them from the system above we get

(v − v0) /h =
d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)
)

− ρ−1/3G,i(Ξ)
(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)

(β − β0) /h =
d

dρ
(3v)

(α− α0) /h = 3α0
2/3v

(γ − γ0) /h = 2α0
1/3v

α(1) = λ, α > 0, α′ > 0, ρ ∈ (0, 1) .

(3.69)

Note that equations (3.68) can be derived from (3.69)3,4.
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3.3.2 Discrete Entropy Inequality

Time-step approximations capture a subtle form of dissipation associated with

the underlying variational structure and the convexity of the entropy, [14, 15]. In-

deed, solutions of (3.69) satisfy a discrete entropy inequality: To see that, consider

a smooth solution (Ξ, v) to (3.65) associated to smooth initial data (Ξ0, v0) given

by (3.63). Multiplying (3.65)1 by v we get

v(v − v0)

h
+G,i(Ξ)

(
3ρ2/3Ωi

,1(Γ
0)
dv

dρ
+ ρ−1/3

(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)
v

)
=

d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)v
)
.

(3.70)

Then denoting

Ai = 3ρ2/3Ωi
,1(Γ

0)
dv

dρ
+ ρ−1/3

(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)
v, i = 1, . . . , 7 (3.71)

we claim

Ai =
ξi − ξ0i
h

. (3.72)

Indeed, for i = 2, 3, 4 we have Ωi
,1 = 0 and hence (3.65)3 and (3.71) imply (3.72).

For i = 1, 5, 6, 7 by the properties (3.55) of null Lagrangians and (3.65)2 we get

Ai = v

(
−3ρ2/3

d

dρ

(
Ωi

,1(Γ
0)
)
+ ρ−1/3

(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
))

+ 3ρ2/3
d

dρ

(
Ωi

,1(Γ
0)v
)
=
(
ξi − ξ0i

)
/h, i = 1, 5, 6, 7.

(3.73)

Thus (3.70) and (3.72) imply

1

h

(
v(v − v0) +G,i(Ξ)

(
ξi − ξ0i

))
=

d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)v
)
.

Now, we denote Θ = (v, Ξ) and Θ0 = (v0, Ξ
0). Then η = 1/2v2 +G(Ξ) satisfies

1

h
Dη ·

(
Θ−Θ0

)
− d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)v
)
= 0.

75



For G convex the following identity holds

η(Θ)− η(Θ0)

h
− d

dρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ
0)v
)
6 0. (3.74)

Remark 3.2. To obtain the inequality (3.74) we assumed that both the initial data

(v0, Ξ
0) and solution (v, Ξ) to (3.65) are smooth. Later in the sequel (Section 3.3.5)

it will be shown that the actual iterates produced by the scheme via minimization

satisfy (3.65) a.e. ρ ∈ (0, 1) and hence one can deduce the inequality (3.74) for a.e.

ρ ∈ (0, 1) following the above calculations.

Remark 3.3. We have not studied in this work the convergence as the time-step

h→ 0. For the three-dimensional elasticity equations this process produces measure-

valued solutions [15] while for one-dimensional elasticity it gives entropy weak so-

lutions [14]. In the present case we would expect to obtain weak solutions, but the

compactness properties of (3.33) are not at present sufficiently understood. There

are two differences of (3.33) relative to the well understood compactness theory of

one-dimensional elasticity: the dependence of the stress on lower order terms, and

the singularity at R = 0. Nevertheless, if the iterates uh, vh converge strongly,

the discrete entropy inequality (3.74) gives a weak solution (v, Ξ) dissipating the

mechanical energy, i.e.

∂t

(
v2

2
+G(Ξ)

)
− ∂ρ

(
3ρ2/3G,i(Ξ)Ωi

,1(Γ ) v
)
6 0. (3.75)
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3.3.3 Assumptions on the Stored-Energy Function

Henceforth, we consider stored-energy functions (3.45) of the form

Φ(v1, v2, v3) = Ḡ(v1, v2, v3,2 v3, v1v3, v1v2, v1v2v3)

= φ(v1) + φ(v2) + φ(v3) + g(v2v3) + g(v1v3) + g(v1v2) + h(v1v2v3).

(3.76)

Then, the function G defined in (3.47) reads

G(Ξ; ρ) = φ(ξ1) + φ
(
ξ
1/3
2

)
+ φ

(
ξ
1/3
3

)
+ g

(
ξ4ρ

1/3
)
+ g

(
ξ5ρ

1/3
)
+ g

(
ξ6ρ

1/3
)
+ h(ξ7ρ

2/3).

(3.77)

Now, define ψ(x) = φ(x1/3). Then, with Ξ defined in (3.64), the above is expressed

by

G(Ξ) = φ(βρ2/3) + 2ψ (α/ρ) + g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
+ h(α′). (3.78)

We place the following assumptions on the functions φ, ψ, g, h appearing

above:

(A1) limδ→0+ h(δ) = limδ→+∞ h(δ)/δ = +∞;

(A2) φ, ψ, g ∈ C2(R) and h ∈ C2(R+) satisfy

φ, ψ, g, h, φ′′, ψ′′, g′′ > 0 and h′′ > 0; (3.79)

(A3) For 1 < p, q <∞ and some constants c1, c2 > 0

lim
x→∞

φ(x)

|x|3p
= lim

x→∞

ψ(x)

|x|p
= c1 , lim

x→∞

g(x)

|x|q
= c2; (3.80)

(A4) For 1 < p, q <∞ as in (A3) and C1, C2, C3 > 0

lim sup
x→∞

|φ′(x)|
|x|3p−1

≤ C1 lim sup
x→∞

|ψ′(x)|
|x|p−1

≤ C2 , lim sup
x→∞

|g′(x)|
|x|q

≤ C3; (3.81)
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In particular, G is convex.

Finally, we define spaces of functions on the interval ρ ∈ (0, 1)

X1 =
{
f(ρ) ∈ W 1,1(0, 1) : f/ρ ∈ Lp(0, 1)

}
,

X2 =
{
f(ρ) ∈ L1

loc(0, 1) : fρ2/3 ∈ L3p(0, 1)
}
,

X3 =
{
f(ρ) ∈ W 1,1

loc (0, 1) : f/ρ2/3 ∈ Lq, f ′ρ1/3 ∈ Lq(0, 1)
}
,

Y =
{
f(ρ) ∈ W 1,1

loc (0, 1) : f ∈ L2, f ′ρ2/3 ∈ L3p(0, 1)
}
,

and

X = X1 ⊗X2 ⊗X3 ⊗ Y.

3.3.4 Minimization Problem

We fix a parameter λ > 0 and for the initial data (α0, β0, γ0, v0) ∈ X require
α0(1) = λ , α0 > 0 , α′

0 > 0 , a.e. ρ ∈ (0, 1) ,

1∫
0

1

2
v0

2 +G(Ξ0) dρ < ∞ .

(3.82)

Consider the problem of minimizing the functional

I(α, β, γ, v) =

1∫
0

1

2
(v − v0)

2 +G(Ξ) dρ

=

1∫
0

1

2
(v − v0)

2 + φ(βρ2/3) + 2ψ (α/ρ)

+ g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
+ h(α′) dρ

(3.83)
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over the admissible set

Aλ = {(α, β, γ, v) ∈ X :α(0) > 0, α(1) = λ, α′ > 0 a.e. and

I(α, β, γ, v) <∞,
(β − β0)

h
= 3v′,

(α− α0)

h
= 3α0

2/3v,
(γ − γ0)

h
= 2α0

1/3v}.

(3.84)

Remark 3.4. The differential constraints in (3.84) are affine, the condition α(1) = λ

corresponds to the imposed boundary condition y(x, t) = λx, x ∈ ∂B, while α′ > 0

secures the positivity of determinants (3.15). We note also that I is well-defined for

(α, β, γ, v) ∈ X with α′ > 0 a.e. ρ ∈ (0, 1), though it might be equal to ∞.

Lemma 3.5. The admissible set Aλ is nonempty.

Proof. Take (α, β, γ, v) = (α0, β0, γ0, 0) ∈ X. Then (3.82) implies α(0) > 0, α(1) =

λ, α′ > 0 a.e. and

I(α, β, γ, v) =

1∫
0

1

2
v0

2 +G(Ξ0) dρ < ∞.

Moreover the following holds: (β − β0)/h = 0 = 3v′, (α− α0)/h = 0 = 3α0
2/3v, and

(γ − γ0)/h = 0 = 2α0
1/3v. Hence (α, β, γ, v) ∈ Aλ.

Lemma 3.6 (I-bounded sequences). Let {(αn, βn, γn, vn)}n∈N ⊂ Aλ and

M = sup
n∈N

I(αn, βn, γn, vn) < ∞. (3.85)
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Then ∃ (α, β, γ, v) ∈ X and a subsequence {(αµ, βµ, γµ, vµ)} s.t.

αµ ⇀ α in W 1,1, αµ/ρ ⇀ α/ρ in Lp,

γµ/ρ
2/3 ⇀ γ/ρ2/3 in Lq, γ′µρ

1/3 ⇀ γ′ρ1/3 in Lq,

vµ ⇀ v in L2, v′µρ
2/3 ⇀ v′ρ2/3 in L3p,

βµρ
2/3 ⇀ βρ2/3 in L3p.

(3.86)

Proof. First, αn > 0, α′
n > 0 a.e. and αn(1) = λ imply that |αn| 6 λ. Second, from

(3.85) it follows
∫ 1

0
h(α′

n) dρ < M, ∀n. By the de la Vallée Poussin criterion there

exists α ∈ W 1,1 and a subsequence {αs} such that αs ⇀ α weakly in W 1,1.

By (A3) there exist constants C1, C2 s.t. φ(x) > C1|x|3p−C2, ψ(x) > C1|x|p−

C2 and g(x) > C1|x|q − C2, and thus

M > I(αs, βs, γs, vs) >
1∫

0

1

2
(vs − v0)

2 dρ

+ C1

1∫
0

|βsρ2/3|3p + 2|αs/ρ|p + |γs/ρ2/3|q +
3

2
|γ′sρ1/3|q dρ− 4C2

(3.87)

This implies for 1 < p, q < ∞ that α/ρ ∈ Lp and there exist β ∈ X2, γ ∈ X3, and

v ∈ L2 and a subsequence {αµ, βµ, γµ, vµ} of {αs, βs, γs, vs} such that (3.86)2,3,4,5,6

hold.

Finally, as (αµ, βµ, γµ, vµ) ∈ Aλ we have 3v′µρ
2/3 = (βµ − β0)ρ

2/3/h. Then by

(3.86)3 we get 3v
′
µρ

2/3 ⇀ (β−β0)ρ2/3/h in L3p. Then by (3.86)6 for each f ∈ C∞
0 (0, 1)∫ 1

0

vf ′ dρ = lim
µ→∞

∫ 1

0

vµf
′ dρ

= − lim
µ→∞

∫ 1

0

v′µf dρ = −
∫ 1

0

1

3h
(β − β0)f dρ

(3.88)

and hence v′ = (β − β0)/3h. Therefore v ∈ Y and v′µρ
2/3 ⇀ v′ρ2/3.
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Theorem 3.2 (Lower semi-continuity). Let {(αn, βn, γn, vn)}n∈N ⊂ Aλ, (α, β, γ, v) ∈

X satisfy (3.85) and (3.86). Then (α, β, γ, v) ∈ Aλ and

I(α, β, γ, v) 6 lim inf
n→∞

I(αn, βn, γn, vn) = s <∞. (3.89)

Proof. By hypothesis 0 6 In = I(αn, βn, γn, vn) 6 M , ∀n ∈ N and thus s < ∞.

Recall that αn ⇀ α weakly in W 1,1 and (along a subsequence) uniformly on C[0, 1].

Since αn(1) = λ we obtain α(1) = λ. Moreover,

lim
n→∞

∫ 1

0

α′
nχ{α′<0} dρ =

∫ 1

0

α′χ{α′<0} dρ. (3.90)

Since α′
n > 0 a.e. we obtain

∫ 1

0
α′χ{α′<0} dρ > 0, and thus m {α′ < 0} = 0.

Now, denote A = {ρ ∈ (0, 1) : α′ = 0} and show that m(A) = 0. We will

argue by contradiction. Assume that m(A) = ε > 0. Then (3.86) implies

lim
n→∞

∫ 1

0

α′
nχA dρ =

∫ 1

0

α′χA dρ = 0. (3.91)

Then, as α′
n > 0 a.e., limn→∞

∫ 1

0
|α′

nχA| dρ = 0. Hence α′
nχA → 0 in L1. We extract

a subsequence
{
α′
nk

}
such that α′

nk
χA → 0 a.e. ρ ∈ (0, 1). Now, by Egoroff’s

theorem there exists a measurable set B ⊂ A such that m (B) > ε/2 and α′
nk

→ 0

uniformly on B. Next, observe that

∫ 1

0

h(α′
nk
)dρ ≥

∫
B

h(α′
nk
)dρ ≥ m(B)

(
inf
ρ∈B

h(α′
nk
)

)
=: m(B)µnk

Since µnk
→ ∞ this contradicts (3.85). We conclude that m(A) = 0.

Next we prove α > 0 a.e. ρ ∈ (0, 1). Again (3.86)1 implies

lim
n→∞

∫ 1

0

αnχ{α<0} dρ =

∫ 1

0

αχ{α<0} dρ ≥ 0 , (3.92)
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and thus m {α < 0} = 0. This concludes that α satisfies all restrictions of member-

ship in Aλ.

Next, by (A2) we get

φ(βnρ
2/3) > φ(βρ2/3) + φ′(βρ2/3)(βn − β)ρ2/3,

ψ (αn/ρ) > ψ (α/ρ) + ψ′ (α/ρ) (αn − α)/ρ,

g
(
γn/ρ

2/3
)
> g

(
γ/ρ2/3

)
+ g′

(
γ/ρ2/3

)
(γn − γ)/ρ2/3,

g
(
3γ′nρ

1/3/2
)
> g

(
3γ′ρ1/3/2

)
+ g′

(
3γ′ρ1/3/2

)
(γ′n − γ)3ρ1/3/2

(3.93)

a.e. ρ ∈ (0, 1). As (α, β, γ, v), (αn, βn, γn, vn) ∈ X, from (A3) it follows that the

right-hand side of each of the inequalities in (3.93) are integrable and

φ′(βρ2/3) ∈ L
3p

3p−1 , ψ′ (α/ρ) ∈ L
p

p−1 ,

and g′
(
γ/ρ2/3

)
, g′
(
3γ′nρ

1/3/2
)
∈ L

q
q−1 .

(3.94)

Take an arbitrary 0 < δ < 1 and set Aδ = {ρ ∈ (0, 1) : δ 6 α′ 6 1/δ}. Then

by (A2)

h(α′
n) > h(α′)χAδ

+ h′(α′)(α′
n − α′)χAδ

a.e. ρ ∈ (0, 1). (3.95)

Moreover, (A1) and (A2) together imply

0 6 h(α′)χAδ
+ |h′(α′)|χAδ

6 2max(h(δ), h(1/δ), |h′(δ)|, |h′(1/δ)|).

Hence

h(α′)χAδ
, h′(α′)χAδ

∈ L∞ , (3.96)

and we conclude that the right-hand side of (3.95) is integrable.
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Finally,

(vn − v0)
2 > (v − v0)

2 + 2(v − v0)(vn − v) a.e. ρ ∈ (0, 1), (3.97)

where the right-hand side is integrable as v, vn, v0 ∈ L2.

Following the discussion above, (3.93)-(3.97) imply

In >
∫ 1

0

1

2
(v − v0)

2 + φ(βρ2/3) + 2ψ (α/ρ)

+ g
(
γ/ρ2/3

)
+ 2g

(
3γ′ρ1/3/2

)
dρ+

∫ 1

0

h(α′)χAδ
dρ

+

∫ 1

0

(v − v0)(vn − v) + φ′(βρ2/3)(βn − β)ρ2/3

+ 2ψ′ (α/ρ) (αn − α)/ρ+ g′
(
γ/ρ2/3

)
(γn − γ)/ρ2/3

+ g′
(
3γ′ρ1/3/2

)
(γ′n − γ)3ρ1/3 + h′(α′)χAδ

(α′
n − α′) dρ

= J + Jδ + Jn.

Then, letting n→ ∞, we obtain

∞ > s = lim inf
n→∞

In > J + Jδ + lim inf
n→∞

Jn.

Now from (3.86), (3.94), (3.96), and v − v0 ∈ L2 it follows that limn→∞ Jn = 0 and

hence

∞ > s = lim inf
n→∞

In > J +

∫ 1

0

h(α′)χAδ
dρ. (3.98)

Now, as α′ > 0 a.e. ρ ∈ (0, 1) and α′ ∈ L1, the set {α′ = 0}
∪

{α′ = ∞} is of

measure zero and hence

lim
δ→0+

h(α′)χAδ
= h(α′)χ{0<α′<∞} = h(α′) a.e. ρ ∈ (0, 1). (3.99)
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Finally, let δ → 0+. Then from (3.98), (3.99) and Monotone Convergence Theorem

it follows

∞ > s = lim inf
n→∞

In > J +

∫ 1

0

h(α′) dρ = I(α, β, γ, v)

and hence (3.89) holds. Since (αn, βn, γn, vn) ∈ Aλ, and the other constraints are

linear, one easily checks that the limiting (α, β, γ, v) ∈ Aλ.

Theorem 3.3 (Existence). There exists (α, β, γ, v) ∈ Aλ satisfying

I(α, β, γ, v) = inf
Aλ

I(ᾱ, β̄, γ̄, v̄). (3.100)

Proof. As Aλ is nonempty, we can set s = infAλ
I(ᾱ, β̄, γ̄, v̄). Then by definition of

Aλ we have I(ᾱ, β̄, γ̄, v̄) <∞ for each (ᾱ, β̄, γ̄, v̄) ∈ Aλ. This implies that s is finite.

Next, by definition of s there exists {(αn, βn, γn, vn)}n∈N ∈ Aλ such that

limn→∞ In = s with In = I(αn, βn, γn, vn). Then, as {In}n∈N is bounded, lemma 3.6

and Theorem 3.2 imply that ∃(α, β, γ, v) ∈ Aλ satisfying I(α, β, γ, v) 6 lim infn→∞ In =

s. In this case the definition of s implies I(α, β, γ, v) = s.

Theorem 3.4 (Uniqueness). The minimizer (α, β, γ, v) ∈ Aλ of I over Aλ is

unique.

Proof. We will argue by contradiction. Assume (α, β, γ, v), (ᾱ, β̄, γ̄, v̄) ∈ Aλ are two

distinct minimizers. Then we consider (α+ᾱ
2
, β+β̄

2
, γ+γ̄

2
, v+v̄

2
) and notice that it also

belongs to Aλ.

Define A = {ρ ∈ (0, 1) : α′ ̸= ᾱ′}. Then mA > 0. Indeed, if α′ = ᾱ′ a.e., then

α(1) = ᾱ(1) = λ implies α = ᾱ. In turn, this implies v = v̄′, β = β̄ and γ = γ̄,

which contradicts to the assumption that (α, β, γ, v) and (ᾱ, β̄, γ̄, v̄) are distinct.
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Now, as h′′ > 0, we have

h(α′) + h(ᾱ′)

2
> h

(
α′ + ᾱ′

2

)
, ρ ∈ A ,

and thus, as mA is positive,∫ 1

0

h(α′) + h(ᾱ′)

2
dρ >

∫ 1

0

h

(
α′ + ᾱ′

2

)
dρ .

Let s = infAλ
I(α̃, β̃, γ̃, ṽ). Then by the inequality above and convexity of φ, ψ

and g we obtain

s =
I(α, β, γ, v) + I(ᾱ, β̄, γ̄, v̄)

2
> I

(
α+ ᾱ

2
,
β + β̄

2
,
γ + γ̄

2
,
v + v̄

2

)
, (3.101)

which, since
(

α+ᾱ
2
, β+β̄

2
, γ+γ̄

2
, v+v̄

2

)
∈ Aλ, contradicts the definition of s. Hence

(α, β, γ, v) = (ᾱ, β̄, γ̄, v̄).

3.3.5 Euler-Lagrange Equations

Next, we show that the minimizer of I satisfies the system (3.65) a.e. ρ ∈ (0, 1).

To this end, in addition to (3.82), we assume that the initial iterate (α0, β0, γ0, v0)

satisfies for each δ ∈ (0, 1)

α′
0 ∈ L3p(δ, 1)

∩
Lq(δ, 1). (3.102)

Theorem 3.5 (Weak Form). Let (α, β, γ, v) ∈ Aλ be the minimizer of I over Aλ

and the initial iterate (α0, β0, γ0, v0) satisfy (3.82) and (3.102). Let also

G1(ρ) = G,i(Ξ)Ωi
,1(Γ

0) (3.103)

and

G2(ρ) = G,i(Ξ)
(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)

(3.104)
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Then, for each δ ∈ (0, 1),

ρ2/3G1(ρ) ∈ W 1,1(δ, 1) , ρ−1/3G2(ρ) ∈ L1(δ, 1) ,

and for a.e. ρ ∈ (0, 1)

3ρ2/3G1(ρ) =

∫ ρ

1

(
s−1/3G2(s) +

v(s)− v0(s)

h

)
ds+ const. (3.105)

Moreover, for each δ ∈ (0, 1),

α′ ∈ L3p(δ, 1)
∩

Lq(δ, 1). (3.106)

Proof. Fix k ∈ N and define Sk = {ρ ∈ [1/k, 1) : 1/k < α′ < k}. Let f ∈ L∞ with∫
Sk
f dρ = 0. We denote by χk = χ

Sk
, lk = α0(1/k) and set

µ(ρ) =

∫ ρ

0

χk(s)f(s) ds. (3.107)

Before proceeding further we make the following remark. Let t ∈ R and

F (x) = xt, x ∈ R+. Take δ ∈ (0, 1). Then, as α0 ∈ W 1,1, α0 > 0 and α′
0 > 0

a.e. ρ ∈ (0, 1) we must have 0 < α0(δ) 6 α0 6 λ for all ρ ∈ (δ, 1). Hence

|F ′(α0)| 6 t (α0(δ) + λ)t−1 for all ρ ∈ (δ, 1). Therefore we conclude that for each

t ∈ R and δ ∈ (0, 1)

α0
t ∈ W 1,1(δ, 1) with

d

dρ

(
α0

t
)
= tα0

t−1α′
0. (3.108)

(i) Step 1. Definition of the variation.
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For |ε| < 1
6k(∥f∥∞+1)

we define (αε, βε, γε, vε) by

vε = v + ε
µ

hα0
2/3

αε = α0 + h
(
3vεα0

2/3
)
= α+ 3εµ

βε = β0 + h (3v′ε) = β + 3ε

(
µ

α0
2/3

)′

γε = γ0 + h
(
2vεα0

1/3
)
= γ + 2ε

µ

α0
1/3
.

(3.109)

Due to (3.108), (αε, βε, γε, vε) is well-defined. We next prove:

Lemma 3.7. The variation (αε, βε, γε, vε) ∈ Aλ.

Proof. First, we notice that

(αε, βε, γε, vε) = (α, β, γ, v) if ρ ∈ (0, 1/k). (3.110)

Then we check that

αε(1) = α(1) + 3ε

∫
Sk

f(s) ds = λ.

Next, we see that α′
ε = α′ + 3εχkf and therefore

α′
ε = α′, ρ /∈ Sk,

1

2k
6 α′

ε 6 k + 1, ρ ∈ Sk.

(3.111)

This implies that αε > 0 a.e. ρ ∈ (0, 1) and hence (3.110) implies αε > 0.

Now we make the following estimates. First, we see that

|µ′|+
∣∣∣∣µρ
∣∣∣∣+ ∣∣∣∣ µ

ρ2/3α0
1/3

∣∣∣∣+ ∣∣∣∣ µ

hα0
2/3

∣∣∣∣ 6 ∥f∥∞

(
1 + k +

k2/3

l
1/3
k

+
1

hl
2/3
k

)

and for j = 1, 2 ∣∣∣∣( µ

α0
j/3

)′∣∣∣∣ 6 ∥f∥∞
(
l
−j/3
k + l

−(1+j/3)
k |α′

0|
)
.
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Thus we conclude that there exists C such that ∀ρ ∈ (1/k, 1)

|α′
ε − α′|+ |αε/ρ− α/ρ|+ |γε/ρ2/3 − γ/ρ2/3|+ |v − vε| 6 εC (3.112)

and

|βερ2/3 − βρ2/3|+ |γ′ερ1/3 − γ′ρ1/3| 6 εC (1 + |α′
0|) . (3.113)

As (α, β, γ, v) ∈ X, the last two inequalities imply (αε, βε, γε, vε) ∈ X.

Further, by (A3), (3.112) and (3.113) we conclude that there exists C such

that for all ρ ∈ (1/k, 1)

ψ(αε/ρ) 6 C (|α/ρ|p + 1)

φ(βερ
2/3) 6 C

(
|βρ2/3|3p + |α′

0|3p + 1
)

g(γε/ρ
2/3) 6 C

(
|γ/ρ2/3|q + 1

)
g(3γ′ερ

1/3/2) 6 C
(
|γ′ρ1/3|q + |α′

0|q + 1
)
.

By (3.111) we also have

h(α′
ε) = h(α′), ρ /∈ Sk,

h(α′
ε) 6 max

1
2k

6δ6k
|h(δ)| =Mk, ρ ∈ Sk

(3.114)

and hence

h(α′
ε) 6 h(α′) +Mk, ρ ∈ (0, 1). (3.115)

Now, similarly to (3.64), set

Ξε =

(
βερ

2/3,
αε

ρ
,
αε

ρ
,
γε
ρ1/3

,
3γ′ε
2
ρ2/3,

3γ′ε
2
ρ2/3, α′

ερ
2/3

)
. (3.116)

Then, by the discussion above, it follows that

G(Ξε) +
(vε − v0)

2

2
= G(Ξ) +

(v − v0)
2

2
, ρ ∈ (0, 1/k) , (3.117)
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and there exists C such that for ρ ∈ (1/k, 1)

G(Ξε) +
(vε − v0)

2

2
6 C

(
1 + |βρ2/3|3p + |α′

0|3p + |α/ρ|p + |γ/ρ2/3|q

+|γ′ρ1/3|q + |α′
0|q + |v|2 + |v0|2 + h(α′)

)
.

(3.118)

As I(α, β, γ, v) < ∞, (3.117) and (3.118) imply I(αε, βε, γε, vε) < ∞ and hence by

construction and the above discussion we get (αε, βε, γε, vε) ∈ Aλ.

Step 2. The next objective is to validate the formal identity

d

dε
I(αε, βε, γε, vε)

∣∣∣∣
ε=0

=

∫ 1

0

d

dε

(
(vε − v0)

2

2
+G(Ξε)

)∣∣∣∣
ε=0

dρ = 0. (3.119)

This will require several detailed estimations presented below.

At this point, let us make estimates of the following difference quotients on

the interval ρ ∈ (1/k, 1). First, by (3.112) we get

1

ε
|(vε − v0)

2 − (v − v0)
2| =1

ε
|vε − v||vε + v − 2v0|

6 C (|v|+ |v0|+ 1) .

(3.120)

Further, by the Mean Value Theorem

1

ε
|φ(βερ2/3)− φ(βρ2/3)| = 1

ε
|φ′(τε)||βερ2/3 − βρ2/3|,

where min(β, βε)ρ
2/3 6 τε 6 max(β, βε)ρ

2/3. Hence from (3.113) it follows |τε| 6

|βρ2/3|+ εC(|α′
0|+ 1) and therefore (A4) implies

|φ′(τε)| 6 C
(
|βρ2/3|3p−1 + |α′

0|3p−1 + 1
)
.

Thus
1

ε
|φ(βερ2/3)−φ(βρ2/3)|

6 C
(
|βρ2/3|3p−1 + |α′

0|3p−1 + 1
)
(|α′

0|+ 1) .

(3.121)
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Similarly,

1

ε
|ψ(αε/ρ)− ψ(α/ρ)| = 1

ε
|ψ′(τε)||αε/ρ− α/ρ|,

where min(αε, α)/ρ 6 τε 6 max(αε, α)/ρ. Hence |τε| 6 |α/ρ|+ εC and (A4) implies

|ψ′(τε)| 6 C
(
(|α/ρ|+ 1)p−1 + 1

)
and hence

1

ε
|ψ(αε/ρ)− ψ(α/ρ)| 6 C

(
(|α/ρ|+ 1)p−1 + 1

)
. (3.122)

Next,

1

ε
|g(γε/ρ2/3)− g(γ/ρ2/3)| = 1

ε
|g′(τε)||γε/ρ2/3 − γ/ρ2/3|,

where min(γε, γ)/ρ
2/3 6 |τε| 6 max(γε, γ)/ρ

2/3 and hence |τε| 6 |γ/ρ2/3|+εC. Then

by (A4)

|g′(τε)| 6 C
(
(|γ/ρ2/3|+ 1)q−1 + 1

)
and hence

1

ε
|g(γε/ρ2/3)− g(γ/ρ2/3)| 6 C

(
(|γ/ρ2/3|+ 1)q−1 + 1

)
. (3.123)

Further,

1

ε
|g(3γ′ερ1/3/2)− g(3γ′ρ1/3/2)| = 3

2ε
|g′(τε)||γ′ερ1/3 − γ′ρ1/3|,

where 3
2
min(γ′ε, γ

′)ρ1/3 6 |τε| 6 3
2
max(γ′ε, γ

′)ρ1/3. Hence we must have |τε| 6

3
2

(
|γ′ρ1/3|+ εC(|α′

0|+ 1)
)
. Then (A4) implies

|g′(τε)| 6 C
(
(|γ′ρ1/3|+ |α′

0|+ 1)q−1 + 1
)

and hence

1

ε
|g(3γ′ερ1/3/2)−g(3γ′ρ1/3/2)|

6 C
(
(|γ′ρ1/3|+ |α′

0|+ 1)q−1 + 1
)
(|α′

0|+ 1) .

(3.124)
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Finally, if ρ /∈ Sk, then
1
ε
|h(α′

ε)− h(α′)| = 0 and if ρ ∈ Sk, we get

1

ε
|h(α′

ε)− h(α′)| = 1

ε
|h′(τε)||α′

ε − α′|,

where min(α′
ε, α

′) 6 τε 6 max(α′
ε, α). Then by (3.111)2 we get 1

2k
6 τε 6 k + 1 and

hence

|h′(τε)| 6 max
1
2k

6δ6k+1
|h′(δ)|.

Thus by (3.112) we conclude that for ρ ∈ (1/k, 1)

1

ε
|h(α′

ε)− h(α′)| 6 C. (3.125)

Thus (3.117),(3.120)-(3.125) and the assumptions on the initial iterate (3.82)

and (3.102) imply that

1

ε

∣∣∣∣G(Ξε) +
(vε − v0)

2

2
−G(Ξ)− (v − v0)

2

2

∣∣∣∣
is bounded on (0, 1) by an integrable function. Letting ε → 0, and using the

Dominated Convergence theorem, (A2) and the fact that (α, β, γ, v) is the minimizer,

we obtain the identity (3.119).

Step 3. Conclusion of the computation. The last step is to compute the right-hand

side of (3.119). Note first that

dΞ1
ε

dε
=

d

dε
βερ

2/3 = 3

(
µ

α0
2/3

)′

ρ2/3

dΞ2
ε

dε
=
dΞ3

ε

dε
=

d

dε

(
αε

ρ

)
=

3µ

ρ

dΞ4
ε

dε
=

d

dε

(
γε
ρ1/3

)
=

2µ

α0
1/3ρ1/3

dΞ5
ε

dε
=
dΞ6

ε

dε
=

d

dε

(
3

2
γ′ερ

2/3

)
= 3

(
µ

α0
1/3

)′

ρ2/3

dΞ7
ε

dε
=

d

dε

(
α′
ερ

2/3
)
= 3µ′ρ2/3
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and

dvε
dε

=
µ

hα0
2/3
.

Then the integrand in (3.119) is expressed by

(v − v0)
dvε
dε

∣∣∣∣
ε=0

+G,i(Ξ)
dΞ i

ε

dε

∣∣∣∣
ε=0

= aµ+ bµ′,

where

a(ρ) = −G,1(Ξ)
2α′

0

α0
5/3
ρ2/3 +G,2(Ξ)

3

ρ
+G,3(Ξ)

3

ρ

+G,4(Ξ)
2

α0
1/3ρ1/3

− (G,5(Ξ) +G,6(Ξ))
α′
0

α0
4/3
ρ2/3 +

(v − v0)

hα0
2/3

(3.126)

and

b(ρ) =
3ρ2/3

α0
2/3

(
G,1(Ξ) +G,5(Ξ)α0

1/3 +G,6(Ξ)α0
1/3 +G,7(Ξ)α0

2/3
)
. (3.127)

Thus by (3.119) we have (aµ+ bµ′) ∈ L1 and

∫ 1

1/k

(aµ+ bµ′) dρ = 0. (3.128)

Now, we claim a ∈ L1(1/k, 1). By (A3) and definition (3.77) of G it follows

that for ρ ∈ (1/k, 1)

∣∣∣∣G,1(Ξ)
α′
0

α0
5/3
ρ2/3

∣∣∣∣ 6
∣∣∣∣∣φ′(βρ2/3)α0

′

l
5/3
k

∣∣∣∣∣ 6 C
(
|βρ2/3|3p−1 + 1

)
|α′

0|,

1

ρ
|G,2(Ξ) +G,3(Ξ)| 6 2k |ψ′(α/ρ)| 6 C

(
|α/ρ|p−1 + 1

)
,

and ∣∣∣∣G,4(Ξ)
1

α0
1/3ρ1/3

∣∣∣∣ 6 k1/3

l
1/3
k

∣∣g′(γ/ρ2/3)∣∣ 6 C
(
|γ/ρ2/3|q−1 + 1

)
.
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As the right-hand sides of the inequalities above are integrable on (1/k, 1) we have

a ∈ L1(1/k, 1) and this, in turn, implies b µ′ ∈ L1(1/k, 1). Now, we set z(ρ) =∫ ρ

1
a(s) ds for ρ ∈ (1/k, 1). Then z is absolutely continuous and so is µz. Since

(µz)|ρ=1/k = (µz)|ρ=1 = 0 we get

0 =

∫ 1

1/k

(µz)′ dρ =

∫ 1

1/k

(
µ′
∫ ρ

1

a(s) ds+ µa

)
dρ.

Then (3.128) becomes

∫
Sk

(
−
∫ ρ

1

a(s) ds+ b

)
f dρ = 0. (3.129)

By the properties of f we obtain that there is ck such that

b−
∫ ρ

1

a(s) ds = ck a.e. ρ ∈ Sk.

Since k is arbitrary, the above equality is valid for all k ∈ N. In this case Sk ⊂

Sk+1 implies that ck = ck+1. As
∪

k Sk = {ρ ∈ (0, 1) : 0 < α′ < ∞} and

m ((0, 1)\
∪

k Sk) = 0, we conclude

b−
∫ ρ

1

a(s) ds = const. a.e. ρ ∈ (0, 1). (3.130)

Now, let us fix δ ∈ (0, 1). By the above argument a ∈ L1(δ, 1) and (3.130) implies

b ∈ W 1,1(δ, 1) with the weak derivative b′ = a. Moreover, by (3.108) we have

α0
2/3 ∈ W 1,1(δ, 1) and hence bα0

2/3 ∈ W 1,1(δ, 1). At this point, we compute

DΩ(Γ 0) =


1 0 0 0 α0

1/3 α0
1/3 α0

2/3

0 3
(

α0

ρ

)2/3
0 α0

1/3 0
α′
0ρ

α0
2/3

α′
0ρ

α0
1/3

0 0 3
(

α0

ρ

)2/3
α0

1/3 α′
0ρ

α0
2/3 0

α′
0ρ

α0
1/3


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and notice that definitions (3.126) and (3.127) of a and b imply

bα0
2/3 = 3ρ2/3G,i(Ξ)Ωi

,1(Γ
0) = 3ρ2/3G1(ρ)

while its weak derivative is expressed as

d

dρ
bα0

2/3 = aα0
2/3 + b

2α′
0

3α0
1/3

=

= ρ−1/3G,i(Ξ)
(
Ωi

,2(Γ
0) +Ωi

,3(Γ
0)
)
+
v − v0
h

= ρ−1/3G2(ρ) +
v − v0
h

.

We conclude that, for δ ∈ (0, 1),

ρ2/3G1(ρ) ∈ W 1,1(δ, 1) , ρ−1/3G2(ρ) ∈ L1(δ, 1) , (3.131)

and for almost every ρ ∈ (0, 1)

3ρ2/3G1(ρ) =

∫ ρ

1

(
s−1/3G2(s) +

v(s)− v0(s)

h

)
ds+ const. (3.132)

Finally, to prove (3.106), we compute

(α− α0)
′ = h

(
3α0

2/3v
)′
= h

(
2α′

0

α0
1/3
v + 3α0

2/3v′
)

= (α− α0)
2α′

0

3α0

+ (β − β0)α0
2/3

and hence

α′ =
α′
0

3

(
1 +

2α

α0

)
+ (β − β0)α0

2/3. (3.133)

Similarly,

(γ − γ0)
′ = h

(
2α0

1/3v
)′
=

2

3

(
α− α0

α0
1/3

)′

=
2

3α0
1/3

(
α′ − α′

0

3

(
2 +

α

α0

))
and hence

α′ =
α′
0

3

(
2 +

α

α0

)
+

3

2
(γ′ − γ0

′)α0
1/3. (3.134)
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Now, take δ ∈ (0, 1). Then from (3.133) and (3.134) it follows that for all ρ ∈ (δ, 1)

|α′| 6 |α′
0|
3

(
1 +

2λ

α0(δ)

)
+ |β − β0|λ2/3 (3.135)

and

|α′| 6 |α′
0|
3

(
2 +

λ

α0(δ)

)
+

3

2
|γ′ − γ0

′|λ1/3. (3.136)

Since δ is arbitrary and β−β0 ∈ L3p(δ, 1), γ′−γ′0 ∈ Lq(δ, 1), the assumption (3.102)

and last two inequalities imply that for each δ ∈ (0, 1)

α′ ∈ L3p(δ, 1)
∩

Lq(δ, 1). (3.137)

This completes the proof.

3.3.6 Regularity

First, we claim that for each representative of the minimizer (α, β, γ, v) ∈ Aλ

in the theorem (3.5) we can alter α′ on a set of measure zero such that functions G1

and G2 defined in (3.103) and (3.104) satisfy

3ρ2/3G1(ρ) =

∫ ρ

1

s−1/3G2(s) +
v(s)− v0(s)

h
ds+ C0, for all ρ ∈ (0, 1].

Indeed, let us fix representatives (α, β, γ, v) and (α0, β0, γ0, v0). Define

z(ρ) =
1

3ρ2/3

∫ ρ

1

s−1/3G2(s) +
v(s)− v0(s)

h
ds+ C0 (3.138)

and let A = {ρ ∈ (0, 1] : G1(ρ) ̸= z(ρ)}. Take any ρ0 ∈ A and define

y0 =
(
z(ρ)− φ′(βρ2/3)− 2g′(3γ′ρ1/3)(α0/ρ)

1/3
)∣∣

ρ=ρ0
.
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Then by (A1) and (A2) it follows that there exists a unique x0 such that h′(x0) =

y0 (ρ0/α0(ρ0))
2/3. Now, by definition of G1 we have for all ρ ∈ (0, 1]

G1(ρ) = φ′(βρ2/3) + 2g′(3γ′ρ1/3/2)(α0/ρ)
1/3 + h′(α′)(α0/ρ)

2/3. (3.139)

Thus assigning α′(ρ0) = x0 we get G1(ρ0) = z(ρ0). In the end, after altering this

way α′ on the set A, we get that G1(ρ) = z(ρ) for all ρ ∈ (0, 1]. Moreover by (3.105)

we have mA = 0 and this finishes the proof.

The following regularity lemma requires a smoother initial iterate than before.

In particular we prove:

Lemma 3.8 (Regularity). Let (α, β, γ, v) ∈ Aλ be the minimizer of I over Aλ.

Assume that the initial iterate (α0, β0, γ0, v0) satisfies (3.82),

α0, γ0 ∈ C1(0, 1] and β0 ∈ C(0, 1]. (3.140)

Then

α, γ, v ∈ C1(0, 1] and β ∈ C(0, 1]. (3.141)

Proof. Clearly, we can pick a representative (α, β, γ, v) such that α, γ, v ∈ C(0, 1].

Proceeding as in (3.133) and (3.134), the constraints α−α0

h
= 3α0

2/3v, γ−γ0
h

= 2α0
1/3v

and β−β0

h
= 3v′ imply for a.e. ρ ∈ (0, 1)

βρ2/3 = α′(ρ/α0)
2/3 + f1(ρ) (3.142)

and

3

2
γ′ρ1/3 = α′(ρ/α0)

1/3 + f2(ρ), (3.143)
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where

f1(ρ) = β0ρ
2/3 − α′

0ρ
2/3

3α0
2/3

(
1 +

2α

α0

)
f2(ρ) =

3

2
γ′0ρ

1/3 − ρ1/3

α
1/3
0

(
2 +

α

α0

)
.

We note that (3.140) implies that f1 and f2 are continuous on (0, 1] functions.

First, we alter β and γ′ so that equality in (3.142) and (3.143) holds for all

ρ ∈ (0, 1). Hence by (3.139) we have for all ρ ∈ (0, 1]

G1(ρ) = φ′ (α′(ρ/α0)
2/3 + f2(ρ)

)
+ 2g′

(
α′(ρ/α0)

1/3 + f1(ρ)
)
(α0/ρ)

1/3

+ h′(α′)(α0/ρ)
2/3.

(3.144)

and this suggests to define f : R+ × (0, 1] → R by

f(x, ρ) = φ′ (x(ρ/α0)
2/3 + f2(ρ)

)
+ 2g′

(
x(ρ/α0)

1/3 + f1(ρ)
)
(α0/ρ)

1/3

+ h′(x)(α0/ρ)
2/3.

(3.145)

Now, define A = {ρ ∈ (0, 1] : G1(ρ) ̸= z(ρ)}. Clearly, mA = 0 and note that from

(3.144) it follows

G1(ρ) = f(α′, ρ) = z(ρ), ρ /∈ A. (3.146)

Take ρ0 ∈ A. Then, as ρ0 > 0 and α0(ρ0) > 0, properties (A1)-(A3) imply that

fx(x, ρ0) > 0 for all x ∈ R+; moreover, limx→0+ f(x, ρ0) = −∞ and limx→+∞ f(x, ρ0) =

+∞. Hence there exists unique x0 ∈ R+ such that f(x0, ρ0) = z(ρ0).

At this point we are ready to assign new values for α′, β and γ′. Define

α′(ρ0) = x0, β(ρ0) =
x0

α0(ρ0)
2/3

+
f1(ρ0)

ρ
2/3
0
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and

γ′(ρ0) =
2

3

(
x0

α0(ρ0)
1/3

+
f2(ρ0)

ρ
1/3
0

)
.

This implies that (3.142) and (3.143) hold at ρ = ρ0 and hence by (3.139)

G1(ρ0) = f(x0, ρ0) = f(α′(ρ0), ρ0) = z(ρ0). (3.147)

As ρ0 ∈ A was arbitrary (3.146) and (3.147) imply

G1(ρ) = f(α′, ρ) = z(ρ), ρ ∈ (0, 1]. (3.148)

Hence G1 is continuous on (0, 1] and therefore α′ > 0 for all ρ ∈ (0, 1].

Now, let us assume ρk → ρ0 and α
′(ρk) → l ∈ [0,∞] with ρk, ρ0 ∈ (0, 1], k ∈ N.

First, we claim that l ∈ (0,∞). Indeed, assume that l = 0 or l = +∞. Then

by continuity of α0 we have α0(ρk) → α0(ρ0) > 0 and hence properties (A1)-(A3),

together with continuity of f1 and f2, imply limk→∞ f(α′(ρk), ρk) = ∓∞ respectively.

Thus by continuity of G1 and (3.148) we have

G1(ρ0) = lim
k→∞

G1(ρk) = lim
k→∞

f(α′(ρk), ρk) = ∓∞ (3.149)

which is a contradiction. Therefore we assume l ∈ (0,∞). As f1, f2 are continuous

on (0, 1], we must have limk→∞ f(α′(ρk), ρk) = f(l, ρ0) and therefore by (3.148) we

get

f(α′(ρ0), ρ0) = G1(ρ0) = lim
k→∞

G1(ρk)

= lim
k→∞

f(α′(ρk), ρk) = f(l, ρ0).

(3.150)

By the strict monotonicity of f(·, ρ0) we get α0(ρ0) = l and conclude that α′ is

continuous on (0, 1].
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Finally, from the discussion above it follows that equalities (3.142) and (3.143)

hold for all ρ ∈ (0, 1]. The continuity of f1, f2 and α
′ imply β, γ′ ∈ C(0, 1].Moreover,

as α−α0

h
= 3α0

2/3v for all ρ ∈ (0, 1], we obtain v ∈ C1(0, 1]. This finishes the

proof.
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