
Copyright © 2005 IEEE. Reprinted from IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS).

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Maryland’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

mailto:pubs-permissions@ieee.org

BioBench: A Benchmark Suite of Bioinformatics Applications

Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu†, Manoj Franklin, Bruce Jacob,

Chau-Wen Tseng† and Donald Yeung

Dept. of Electrical & Computer Engineering

University of Maryland, College Park

{kursad,ajaleel,manoj,blj,yeung}@eng.umd.

edu

†Dept. of Computer Science,

University of Maryland, College Park

{wu,tseng}@cs.umd.edu

Abstract

Recent advances in bioinformatics and the

significant increase in computational power

available to researchers have made it possible to

make better use of the vast amounts of genetic data

that has been collected over the last two decades. As

the uses of genetic data expand to include drug

discovery and development of gene-based therapies,

bioinformatics is destined to take its place in the

forefront of scientific computing application

domains. Despite the clear importance of this field,

common bioinformatics applications and their

implication on microarchitectural design have

received scant attention from the computer

architecture community so far.

The availability of a common set of bioinformatics

benchmarks could be the first step to motivate further

research in this crucial area. To this end, this paper

presents BioBench, a benchmark suite that represents

a diverse set of bioinformatics applications. The first

version of BioBench includes applications from

different application domains, with a particular

emphasis on mature genomics applications. The

applications in the benchmark are described briefly,

and basic execution characteristics obtained on a

real processor are presented.

Compared to SPEC INT and SPEC FP

benchmarks, applications in BioBench display a

higher percentage of load/store instructions, almost

negligible floating point operation content, and

higher IPC than either SPEC INT and SPEC FP

applications. Our evaluation suggests that

bioinformatics applications have distinctly different

characteristics from the applications in both of the

mentioned SPEC suites; and our findings indicate

that bioinformatics workloads can benefit from

architectural improvements to memory bandwidth

and techniques that exploit their high levels of ILP.

The entire BioBench suite and accompanying

reference data will be made freely available to

researchers.

1. Introduction

The success of genome sequencing efforts and

developments in bioinformatics resulted in a vast

amount of data over the last two decades. As of early

2004, the number of genetic sequences in the

GenBank gene sequence repository of The National

Center for Biotechnology Information (NCBI) is 30.9

million genetic sequences and increasing rapidly: this

number has increased more than tenfold between

1998 and 2003. Among the many remaining questions

in biotechnology researchers’ minds is the question of

how this mountain of data can be put to use in the

efforts for understanding life and developing new

cures for life threatening health problems.

While the results of these efforts may be some

years away, it is certain that success of future

bioinformatics depends on high-performance

computers to a great extent. As bioinformatics

emerges as an important class of scientific computing

applications, it is becoming more evident that further

advances will render this field even more important

for pharmaceutical research, protein structure

prediction, and development of gene-based therapies.

We expect that the performance of bioinformatics

applications will therefore become an important

factor in defining future high performance computing

systems. While the design and analysis of faster

algorithms for bioinformatics applications is a very

active field of research, very little has been published

in the literature on general performance

characteristics of these applications and the

implications on system or processor design. Most of

the published work in this field seems to have focused

on incremental improvements to bioinformatics

application suites or certain algorithms. One reason

behind the current disconnect between computational

biology and computer architecture communities could

be the lack of a standard benchmark suite of

bioinformatics applications. We see a clear need for

such a set of well-defined benchmark applications

drawn from bioinformatics codes in common use,

which will be an important step towards motivating

further research on the characteristics of such

applications and their implication on computer

systems engineering.

This paper presents BioBench, a set of benchmark

applications chosen to reflect the diversity of

bioinformatics codes in common use. The

applications in BioBench and the reference data sets

were selected with input from the bioinformatics

community, and we expect BioBench to evolve in

response to future developments and comments from

both bioinformatics and computer architecture

communities. While the initial BioBench suite aims to

provide tools to evaluate bioinformatics applications

on uniprocessor systems, a parallel version is also

planned for common multiprocessor architectures.

 In addition to providing a benchmark for

evaluating the performance of computer systems

running common bioinformatics applications, a

secondary goal of the BioBench suite is to establish

bioinformatics applications as a distinctly different

class of applications than the commonly accepted

framework of scientific applications. In contrast to

these scientific applications which typically are

floating-point intensive, many bioinformatics

applications operate with textual representations of

biological sequence data. The straightforward

encoding of this data can mean that many

bioinformatics codes are primarily fast string search

or pattern matching applications; and we have reason

to expect distinctly different execution behavior for

these benchmarks than traditional scientific

application benchmarks, particularly with respect to

the importance of floating point versus integer

operations and branch behavior.

In the benchmark characterization part of our

work, we obtain basic execution characteristics for

the applications present in the BioBench suite, and

compare these characteristics to those of SPEC 2000

benchmarks to test the validity of our expectations.

The rest of the paper is organized as follows:

Section 2 discusses some previous work done in this

field. Section 3 briefly describes major bioinformatics

application domains represented in BioBench, and

describes the applications. Section 4 describes our

experimental methodology and tools used to obtain

performance data. Section 5 presents this data, and

compares the characteristics of BioBench

applications to those of SPEC 2000 benchmarks.

Finally, we present some concluding remarks in

Section 6.

2. Previous Work

Many examples of application domain-specific

benchmark suites have been proposed and some were

widely accepted, following the example of the SPEC

[13] suite for evaluation of integer and floating-point

performance of computer systems. Among the most

notable are the TPC benchmarks [17] for

database/transaction processing, and more recently

benchmark suites like MediaBench [10] or

CommBench [18].

To the best of our knowledge, a comprehensive set

of bioinformatics benchmarks has not been compiled

and studied prior to our study. In contrast, studies on

performance of individual algorithms or tools are

abundant in literature. Most of the published work on

performance studies of bioinformatics workloads

involves either performance optimization of

established algorithms, or analysis of the performance

of such algorithms on parallel systems. Yap et al. [19]

present a detailed study of parallel sequence

searching. Catalyurek et al. [5] analyze performance

of specific applications on a centralized-server, multi-

client environment.

While we could not find any comprehensive

academic study of multiple bioinformatics workloads,

we noticed at least one publication on the subject

from the industry: The SGI Bioinformatics

Performance Report [1] includes several studies of

uniprocessor and multiprocessor bioinformatics

applications.

3. BioBench Suite Applications

An important goal of the BioBench effort was to

define a representative set of bioinformatics

application domains. We first identified several

important application classes and selected commonly

used applications from these classes. While a diverse

set of benchmark applications was desirable, we

limited the scope of this initial release of BioBench to

Table 1. BioBench benchmarks and instruction counts

Benchmark
 Description
 Instruction Count

blastn
 DNA sequence searching
 215,131,057,029

blastp
 Protein sequence searching
 514,628,929,894

clustalw
 Multiple sequence alignment
 2,150,900,967,391

fasta_dna
 DNA sequence searching
 1,001,512,078,272

fasta_prot
 Protein sequence searching
 1,149,078,024,873

hmmer
 Sequence profile searching
 1,573,753,830,214

mummer
 Genome-level alignment
 106,703,486,044

protpars
 Phylogenetic analysis
 1,730,029,486,107

tigr
 Sequence assembly
 862,484,000,000

relatively mature application classes that found

widespread usage in academia and industry. In

addition to widespread use, another important

criterion in choosing benchmarks was the availability

of source code for use in our studies, and in some

cases a relatively less known application suite had to

be chosen instead of a popular commercial suite.

Equally important was the selection of input data that

is representative of real-world computational biology

problems. Problem sizes were determined in

collaboration with members of the bioinformatics

community, and our execution-based methodology

allowed us to use complete copies of major protein

and DNA databases instead of smaller data sets which

would not be representative of real-world problems

and could have skewed the results. As an example,

the BLAST workload in BioBench was evaluated

using NCBI’s NT database, containing 11GB of data

that represented all DNA sequences discovered to

date.

We recognize that bioinformatics is a very diverse

field, and the initial version of BioBench does not

cover some important application domains like

microarray analysis, protein structure prediction,

protein docking and mass spectrometry analysis. In its

initial version, the choice of BioBench applications

reflects an emphasis on mature genomics tools.

Future versions will address a much wider variety of

bioinformatics application domains. As new

application domains emerge, we plan to update

BioBench with new benchmarks.

The application classes and the individual

BioBench benchmarks selected to represent them are

listed below. The applications are also listed in Table

1.

3.1. Sequence Similarity Searching

Sequence similarity searching applications are

typically used to identify similarities between DNA or

protein sequences, or to search for certain

subsequences in large sequence databases. The

similarity between two sequences (or the lack of it)

can often reveal important clues about structural or

functional relationships between them, and in some

cases can provide important clues about common

evolutionary roots of organisms. BioBench contains

programs from both BLAST [3] and FASTA [12]

suites for sequence similarity searching.

• BLAST: The most commonly used sequence

searching application is represented by two

programs, BLASTN and BLASTP, in the

BioBench suite. These programs are used for

DNA and protein sequence searching,

respectively. We used the freely available

version 1.3 of the BLAST suite. The DNA

and protein databases used were NCBI’s NT

(11GB) and NR (945MB) databases

containing the full set of non-redundant

DNA and protein sequences submitted to

NCBI.

• FASTA: BioBench includes the main search

utility from University of Virginia’s FASTA

suite v3.4t21, the other important sequence

searching suite [12]. To reflect the

difference between protein and nucleotide

(DNA) searches, our test cases use the

FASTA application for searching against a

DNA database and a protein database with

suitable search sequences. The DNA

database used in our study is a daily update

file to the NCBI GenBank data repository

(190MB), and the protein database used is

the entire SwissPROT protein database

(70MB).

3.2. Phylogenetic Analysis

Phylogenetic analysis aims to discover how a

group of related protein sequences were derived from

common origins during the process of evolution. This

information is frequently displayed as a hierarchical

diagram called a phylogenetic tree. The discovery and

visualization of such relationships between proteins

offers important clues on how certain traits were

passed from species to species.

• PHYLIP: To represent phylogenetic

analysis applications, we chose benchmarks

from the PHYLIP suite [8], version 3.5c.

PHYLIP is the most widely used

phylogenetic analysis package, and contains

several programs to conduct different types

of phylogenetic analysis. We chose

PROTPARS, a protein parsimony

computation application.

3.3. Multiple Sequence Alignment

Multiple sequence alignment is the process of

aligning more than two sequences to find regions of

similarity. This kind of analysis is used to have a

deeper understanding of similarity patterns that might

suggest common origins between the proteins they

code.

• CLUSTAL W: For our representative

multiple-alignment benchmark, we chose the

CLUSTAL W multiple sequence alignment

application. CLUSTAL W [16] builds on the

CLUSTAL package described in [9], and is

currently the most commonly used multiple

sequence alignment application.

3.4. Sequence Profile Searching

When an evolutionary diverse set of proteins are

under investigation to find remotely related proteins,

searching a sequence database for the consensus of a

sequence family (a common signature of the family)

can be more effective than searching the same

database for individual sequences. This analysis

approach is called sequence profile searching.

• HMMER: We chose the sequence profile

searching package HMMER [7] to represent

this class of applications in BioBench.

HMMER uses profiles based on hidden

Markov models to conduct searches against

protein databases. We used HMMER v2.3 to

search the SwissPROT protein database

against the consensus of a small selection of

protein sequences.

3.5. Genome-level Alignment

Genome-level alignment algorithms and tools are

used to align complete genomes of related species.

Due to the sheer number of nucleotides in a complete

genome, multi-sequence alignment algorithms and

tools (which are more geared toward aligning single

proteins or simple nucleotide sequences) can not be

used effectively for this task. Genome-level alignment

tools employ algorithms specifically developed for

the purpose of pairwise alignment of very large

nucleotide sequences.

• MUMMER: MUMMER [6] is a genome-

level alignment tool that has been used to

assemble complete genomes. We chose

MUMMER v3.14 for inclusion in BioBench.

3.6. Sequence Assembly

Sequence assembly tools are used to generate

sequence data from many small overlapping partial

sequences obtained by DNA sequencing hardware.

Sequence assembly is a crucial step for using shotgun

sequencing to obtain complete sequence data from

physical DNA sequences.

• TIGR: The class of sequence assembly

applications is represented by the TIGR

Assembler [15] suite in BioBench. The

version we used in BioBench was TIGR

Assembler v2.

4. Methodology and Tools

Bioinformatics applications such as sequence

similarity searching and multiple alignment are

typically used in conjunction with very large

databases, resulting in large execution times that are

impractical for a simulator-based study. In order to

meet our goal of collecting data on the entire

execution of bioinformatics applications with

meaningful input sizes, we chose to use the hardware

performance counters built into modern

microprocessors instead of a simulator.

Many modern microprocessors include special-

purpose counters that can be used to count

occurrences of different events and registers to access

these counters. Among the many different events that

can be counted are cache misses, branch

mispredictions, and others that are useful measures of

application performance. A particular drawback of

hardware performance counters is their limited

number: there were only 2 on the Intel Pentium 3

CPU used in our study. One workaround for this

limitation is multiplexing, which uses time-sharing to

use the counters to measure different events at

different time slices, and extrapolates the result. For

long running applications (which is typical for

bioinformatics application workloads), the

multiplexing method yields reasonably accurate

measurements [11]. We used the PAPI hardware

performance counter access library [4] that uses the

perfctr Linux kernel patch for counter multiplexing.

To facilitate data collection and analysis, we used the

PerfSuite [2] utilities.

Using these software to utilize CPU performance

counters, we were able to run unmodified BioBench

applications with large input sizes characteristic of

their typical use. We used a commodity workstation

based on an Intel Pentium 3 CPU running Linux

kernel 2.4.22; and PAPI v3.0. All BioBench

programs were compiled using gcc version 2.95 on

the same computer system used for data collection, at

the -O4 optimization level. To collect some low-level

hardware performance counter data not collected by

PerfSuite/PAPI, we also used the brink/abyss [14]

toolset.

To provide a comparison to the SPEC benchmark

suite, applications from the SPEC 2000 suite were

also compiled using the same compiler and system

using the default parameters. We collected execution

characteristics using complete reference data input

sets from the SPEC distribution, to be used for

comparison against the BioBench benchmark

applications.

Our execution-based methodology allowed us to

collect precise performance characteristics on a real

commodity processor for entire workloads that took

up to 2.1 trillion instructions. The number of

instructions for each benchmark in the BioBench

suite is presented in Table 1. Some pertinent

parameters of the Intel Pentium 3-based system used

for our study are given in Table 2.

Table 2. Parameters of the system used in
the study

Processor
 Intel Pentium III

Clock Speed
 700 MHz

Main Memory
 512MB

L1 data cache
 16KB, 4-way set assoc.

L1 instr. cache
 16KB, 4-way set assoc.

L2 cache
 256KB, 8-way set assoc.

Cache Line Size
 32B

5. Benchmark Characteristics

To characterize the BioBench suite, we collected

data on instruction profiles, basic block lengths, IPC,

L1 and L2 data cache miss rates, and branch

prediction accuracy. The same set of data was

collected for the SPEC 2000 benchmarks for

comparison. In the first phase of the evaluation,

hardware performance counters were used to provide

a count of instructions belonging to different major

instruction classes in the x86 architecture. Instruction

profiles for BioBench applications are given in Figure

1.

b
la

st
n

b
la

st
p

cl
u

st
al

w

fa
st

a_
d

n
a

fa
st

a_
p

ro
t

h
m

m
er

m
u

m
m

er

p
ro

tp
ar

s

ti
g

r

B
IO

_
A

V
G

C
IN

T
_

A
V

G

C
F

P
_

A
V

G

0

20

40

60

80

100

In
st

ru
ct

io
n

 P
ro

fi
le

Integer

FP

Branch

Store

Load

Figure 1. Instruction profiles for all BioBench

benchmarks

For comparison, the average instruction class

percentages for SPEC INT and FP benchmarks are

also shown.

We observed that the floating point operation

content of almost all BioBench applications are

negligible. This finding reflects the intuition that

bioinformatics applications are inherently different

from mainstream scientific codes due to the

representation of data they operate on. None of the

BioBench workloads contained a floating point

instruction content of more than 0.09 % of all

instructions executed. While operating on primarily

string data, most of the benchmarks do rely on some

floating point computation for calculating statistics

and likelihood values as part of their main algorithms,

but this does not seem to constitute a significant part

of the overall instruction count.

The average share of load instructions in

BioBench applications has a marked difference from

that of SPEC integer benchmarks, and these

instructions constitute a larger portion of the

instructions in BioBench than both classes of SPEC

benchmarks. This implies that the amount of

computation per datum is relatively small, a typical

characteristic of search algorithms. Many of the

BioBench components search through large input

files and databases. The BioBench component with

the lowest share of loads, protpars, was also the one

benchmark with the smallest input file size in the

benchmarks. (It is the second longest-running

workload in BioBench, however.) Protpars

essentially is less of a database search application

than many of the BioBench components are, since its

main function computes a tree-like hierarchy for

related species using relatively shorter sections of

sequences. This benchmark also differed from the rest

of BioBench components with its larger share of

integer ALU instructions, these instructions

accounting for more than half of the instruction count.

Similarly high share of load instructions was

observed in one other non-search component, namely

mummer which was found to be highly memory-

bound with its dependence on very large suffix-tree

data structures created in memory. The higher share

of load/store operations in BioBench suggests that

bioinformatics applications are likely to benefit from

future architectures with higher memory bandwidth

and prefetching.

b
la

st
n

b
la

st
p

cl
u
st

al
w

fa
st

a_
d
n
a

fa
st

a_
p
ro

t

h
m

m
er

m
u
m

m
er

p
ro

tp
ar

s

ti
g
r

B
IO

_
A

V
G

C
IN

T
_
A

V
G

C
F

P
_
A

V
G

0

0.5

1

1.5

2

In
st

ru
ct

io
n
s

p
er

 c
y
cl

e

Figure 2. IPC values for all BioBench

benchmarks

Figure 2 shows the IPC numbers for the

applications in the BioBench suite. The significantly

higher average IPC of the BioBench benchmarks

hints at higher levels of ILP (instruction level

parallelism) in the BioBench applications than the

SPEC INT and FP benchmarks. This finding is

encouraging, and along with our earlier finding of

almost negligible floating point content in BioBench

suggests that bioinformatics applications will benefit

greatly from wider superscalars of the future with

highly optimized fast integer cores. While we

anticipated high levels of ILP in bioinformatics codes

due to the often mentioned “embarrassingly parallel”

nature of these programs, we did not expect to see

this level of difference between BioBench and SPEC

suite. We noticed considerable variation in the IPC

values for the individual applications in BioBench,

and our future work on BioBench will include a

detailed analysis of performance differences between

applications that are very similar in function and

usage, a clear example being blastn and fasta_dna

which execute essentially the same kind of search

using two different algorithms.

The basic block length for BioBench applications

is shown in Figure 3.

b
la

st
n

b
la

st
p

cl
u
st

al
w

fa
st

a_
d
n
a

fa
st

a_
p
ro

t

h
m

m
er

m
u
m

m
er

p
ro

tp
ar

s

ti
g
r

B
IO

_
A

V
G

C
IN

T
_
A

V
G

C
F

P
_
A

V
G

0

5

10

15

B
as

ic
 b

lo
ck

 l
en

g
th

Figure 3. Basic block lengths for all

BioBench benchmarks

On average, BioBench applications have a basic

block length that lies roughly between those of the

SPEC INT and SPEC FP averages; all individual

BioBench benchmarks having higher basic block

lengths than the SPEC INT average. The higher basic

block length for applications in BioBench

characterize bioinformatics applications as being

closer to scientific workloads than in terms of the

distribution of control transfer instructions.

b
la

st
n

b
la

st
p

cl
u
st

al
w

fa
st

a_
d
n
a

fa
st

a_
p
ro

t

h
m

m
er

m
u
m

m
er

p
ro

tp
ar

s

ti
g
r

B
IO

_
A

V
G

C
IN

T
_
A

V
G

C
F

P
_
A

V
G

0.8

0.85

0.9

0.95

1

B
ra

n
ch

 p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Figure 4. Branch prediction accuracy for all

BioBench benchmarks

Figure 4 shows the branch prediction accuracy for

the benchmarks. While the branch prediction

accuracy for BioBench benchmarks is somewhat

lower than that for SPEC benchmarks, the difference

is not significant considering the very high prediction

accuracy available with modern branch predictors.

L1 and L2 data cache miss rates are shown in

Figures 5 and 6, respectively, and highlight

differences in memory usage patterns of different

BioBench components. The genome level alignment

program mummer and the sequence assembly

program tigr have higher L1 data cache miss rates

than the rest of the applications in BioBench, a

characteristic mirrored by their L2 data cache miss

behaviors. These two applications had very high

levels of memory utilization that eventually led us to

scale the problem size for mummer down to be able

to run it to completion on our test system with

512MB of main memory. In contrast, the multiple

alignment component clustalw displayed very low L1

and L2 data cache miss rates. The component with

largest duration of execution in our studies, clustalw

displayed high IPC and fairly high average basic

block length in addition to its low memory footprint.

To our knowledge clustalw is one of the few

commonly-used computational biology applications

that had not been implemented in hardware before,

and we believe its characteristics warrant a closer

look at this benchmark as part of our future work.

b
la

st
n

b
la

st
p

cl
u

st
al

w

fa
st

a_
d

n
a

fa
st

a_
p

ro
t

h
m

m
er

m
u

m
m

er

p
ro

tp
ar

s

ti
g

r

B
IO

_
A

V
G

C
IN

T
_

A
V

G

C
F

P
_

A
V

G

0

2

4

6

8

10

12

L
1

 D
-c

ac
h

e
m

is
s

ra
te

(%
)

Figure 5. L1 data cache miss rate for all

BioBench benchmarks

6. Concluding Remarks

In this paper, we identified and described

important computational biology application

categories and proposed BioBench, a benchmark of

bioinformatics applications that represents relatively

mature application classes with reference data that

closely parallels real usage. BioBench applications

and reference input data will be made available to

researchers to allow them to evaluate their

architectures using bioinformatics applications. We

believe BioBench fills an imminent need for a well-

defined set of benchmarks covering an important

emerging class of applications.

b
la

st
n

b
la

st
p

cl
u
st

al
w

fa
st

a_
d
n
a

fa
st

a_
p
ro

t

h
m

m
er

m
u
m

m
er

p
ro

tp
ar

s

ti
g
r

B
IO

_
A

V
G

C
IN

T
_
A

V
G

C
F

P
_
A

V
G

0

10

20

30

40

50

60

70

80

90

100

L
2
 D

-c
ac

h
e

m
is

s
ra

te
(%

)

Figure 6. L2 data cache miss rate for all

BioBench benchmarks

Our evaluation of BioBench components validated

our intuition that bioinformatics applications have

characteristics that distinguish them from traditional

scientific computing applications characterized by

SPEC FP benchmarks. Bioinformatics applications

evaluated in this study displayed almost no significant

floating point instructions and higher ILP while

having basic block lengths closer to SPEC FP

benchmarks than SPEC INT, implying similar

regularity in distribution of branches. These findings

indicate that bioinformatics applications stand to

benefit from future architectural features such as

increased memory bandwidth, memory prefetching

and wider superscalars to exploit their high ILP.

Looking ahead, we plan to expand BioBench with

benchmarks from several other emerging

bioinformatics application domains in its next

revision. Considering the parallelism available in

bioinformatics workloads, a parallel version of

BioBench would be a very valuable tool for studying

the characteristics of these codes on multiprocessor

systems and clusters, and such a version of BioBench

is among our plans for future work in this field. In

addition, we will be conducting studies on different

levels of parallelism available in bioinformatics

applications by studying BioBench components in

detail to evaluate how such applications can be

accelerated using thread-level parallelism techniques.

7. Acknowledgements

The authors would like to thank Charles F.

Delwiche for his help during the early stages of this

work. Manoj Franklin and Kursad Albayraktaroglu

were supported in part by a Faculty Award from IBM

Corporation. Donald Yeung was supported in part by

NSF CAREER Award CCR-0000988.

10. References

[1] SGI Bioinformatics Performance Report.

http://www.sgi.com/industries/sciences/chembio/pdf/bioper

f01.pdf

[2] http://perfsuite.ncsa.uiuc.edu

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Meyers, and

D. J. Lipman. “Basic local alignment search tool”, Journal

of Molecular Biology, vol. 215, no.3, pp.403-410, October

1990.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P.

Mucci. “A scalable cross-platform infrastructure for

application performance tuning using hardware counters”

in Proceedings of the 2000 ACM/IEEE Conference on

Supercomputing, page 42, 2000.

[5] U. Catalyurek, E. Stahlberg, R. Ferreira, T. Kurc, and

Joel Saltz, “Improving performance of multiple sequence

alignment analysis in multi-client environments” in Online

Proceedings of the 1st International Workshop on High

Performance Computational Biology (HICOMB 2002).

[6] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson,

O. White, and S.L. Salzberg, “Alignment of whole

genomes”, Nucleic Acids Research, vol. 27, no. 11, pp.

2369-2376, 1999.

[7] S. R. Eddy, “Profile hidden markov models”,

Bioinformatics, vol. 14, no. 9, pp. 755-763, 1998.

[8] J. Felsenstein, “PHYLIP-phylogeny inference package

(version 3.2)”, Cladistics, vol. 5, pp.164-166, 1989.

[9] D. G. Higgins and P. M. Sharp, “CLUSTAL:a package

for performing multiple sequence alignment on a

microcomputer”, Gene, vol.73, pp. 237-244,1988.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,

“Mediabench: A tool for evaluating and synthesizing

multimedia and communicatons systems”, in International

Symposium on Microarchitecture (MICRO), pp. 330-335,

1997.

[11] J. M. May, “MPX: Software for multiplexing

hardware performance counters in multithreaded programs”

in Proceedings of the 15th International Parallel &

Distributed Processing Systems Symposium (IPDPS),

2001.

[12] W. R. Pearson and D. J. Lipman. Improved tools for

biological sequence comparison. Proc. Natl. Acad. Sci.

USA, (8):2444?2448, April 1988.

[13] SPEC. SPEC Benchmark Suite Release 1.0. SPEC,

1989.

[14] B. Sprunt, “Managing the complexity of performance

monitoring hardware: The brink and abyss approach”,

http://www.eg.bucknell.edu/~bsprunt/emon/brink_abyss/bri

nk_abyss.shtm

[15] G. G. Sutton, O. White, M.D. Adams, and A.R.

Kerlavage, “TIGR assembler: A new tool for assembling

large shotgun sequencing projects”, Genome Science and

Technology, vol. 1, no. 2, pp. 9-19, 1995.

[16] J. D. Thompson, D. G. Higgins, and T.J. Gibson,

“CLUSTAL W: improving the sensitivity of progressive

multiple-sequence alignment through sequence weighting

positions-specific gap penalties and weight matrix choice”,

Nucleic Acids Research, vol. 22, pp. 4673-4680, June

1994.

[17] TPC. TPC Benchmark A. Itom International Co.,

1989.

[18] T. Wolf and M. Franklin, “Commbench - a

telecommunications benchmark for network processors” in

Proceedings of IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS),

pp. 154-162, 2000.

[19] T. K. Yap, O. Frieder, and R. L. Martino, “Parallel

computation in biological sequence analysis”, IEEE

Transactions on Parallel and Distributed Systems, vol. 9,

no. 3, pp. 283-294, 1998.

	biobench.pdf
	ispass2005.pdf

