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Abstract 
 

Recent advances in bioinformatics and the 

significant increase in computational power 

available to researchers have made it possible to 

make better use of the vast amounts of genetic data 

that has been collected over the last two decades. As 

the uses of genetic data expand to include drug 

discovery and development of gene-based therapies, 

bioinformatics is destined to take its place in the 

forefront of scientific computing application 

domains. Despite the clear importance of this field, 

common bioinformatics applications and their 

implication on microarchitectural design have 

received scant attention from the computer 

architecture community so far. 

The availability of a common set of bioinformatics 

benchmarks could be the first step to motivate further 

research in this crucial area. To this end, this paper 

presents BioBench, a benchmark suite that represents 

a diverse set of bioinformatics applications. The first 

version of BioBench includes applications from 

different application domains, with a particular 

emphasis on mature genomics applications. The 

applications in the benchmark are described briefly, 

and basic execution characteristics obtained on a 

real processor are presented.  

Compared to SPEC INT and SPEC FP 

benchmarks, applications in BioBench display a 

higher percentage of load/store instructions, almost 

negligible floating point operation content, and 

higher IPC than either SPEC INT and SPEC FP 

applications. Our evaluation suggests that 

bioinformatics applications have distinctly different 

characteristics from the applications in both of the 

mentioned SPEC suites; and our findings indicate 

that bioinformatics workloads can benefit from 

architectural improvements to memory bandwidth 

and techniques that exploit their high levels of ILP. 

The entire BioBench suite and accompanying 

reference data will be made freely available to 

researchers. 

 

1. Introduction 
 

The success of genome sequencing efforts and 

developments in bioinformatics resulted in a vast 

amount of data over the last two decades. As of early 

2004, the number of genetic sequences in the 

GenBank gene sequence repository of The National 

Center for Biotechnology Information (NCBI) is 30.9 

million genetic sequences and increasing rapidly: this 

number has increased more than tenfold between 

1998 and 2003. Among the many remaining questions 

in biotechnology researchers’ minds is the question of 

how this mountain of data can be put to use in the 

efforts for understanding life and developing new 

cures for life threatening health problems. 

While the results of these efforts may be some 

years away, it is certain that success of future 

bioinformatics depends on high-performance 

computers to a great extent. As bioinformatics 

emerges as an important class of scientific computing 

applications, it is becoming more evident that further 

advances will render this field even more important 

for pharmaceutical research, protein structure 

prediction, and development of gene-based therapies. 

We expect that the performance of bioinformatics 

applications will therefore become an important 

factor in defining future high performance computing 

systems. While the design and analysis of faster 

algorithms for bioinformatics applications is a very 



active field of research, very little has been published 

in the literature on general performance 

characteristics of these applications and the 

implications on system or processor design. Most of 

the published work in this field seems to have focused 

on incremental improvements to bioinformatics 

application suites or certain algorithms. One reason 

behind the current disconnect between computational 

biology and computer architecture communities could 

be the lack of a standard benchmark suite of 

bioinformatics applications. We see a clear need for 

such a set of well-defined benchmark applications 

drawn from bioinformatics codes in common use, 

which will be an important step towards motivating 

further research on the characteristics of such 

applications and their implication on computer 

systems engineering.  

This paper presents BioBench, a set of benchmark 

applications chosen to reflect the diversity of 

bioinformatics codes in common use. The 

applications in BioBench and the reference data sets 

were selected with input from the bioinformatics 

community, and we expect BioBench to evolve in 

response to future developments and comments from 

both bioinformatics and computer architecture 

communities. While the initial BioBench suite aims to 

provide tools to evaluate bioinformatics applications 

on uniprocessor systems, a parallel version is also 

planned for common multiprocessor architectures. 

 In addition to providing a benchmark for 

evaluating the performance of computer systems 

running common bioinformatics applications, a 

secondary goal of the BioBench suite is to establish 

bioinformatics applications as a distinctly different 

class of applications than the commonly accepted 

framework of scientific applications. In contrast to 

these scientific applications which typically are 

floating-point intensive, many bioinformatics 

applications operate with textual representations of 

biological sequence data. The straightforward 

encoding of this data can mean that many 

bioinformatics codes are primarily fast string search 

or pattern matching applications; and we have reason 

to expect distinctly different execution behavior for 

these benchmarks than traditional scientific 

application benchmarks, particularly with respect to 

the importance of floating point versus integer 

operations and branch behavior. 

In the benchmark characterization part of our 

work, we obtain basic execution characteristics for 

the applications present in the BioBench suite, and 

compare these characteristics to those of SPEC 2000 

benchmarks to test the validity of our expectations. 

The rest of the paper is organized as follows: 

Section 2 discusses some previous work done in this 

field. Section 3 briefly describes major bioinformatics 

application domains represented in BioBench, and 

describes the applications. Section 4 describes our 

experimental methodology and tools used to obtain 

performance data. Section 5 presents this data, and 

compares the characteristics of BioBench 

applications to those of SPEC 2000 benchmarks. 

Finally, we present some concluding remarks in 

Section 6. 

 

2. Previous Work 
 

Many examples of application domain-specific 

benchmark suites have been proposed and some were 

widely accepted, following the example of the SPEC 

[13] suite for evaluation of integer and floating-point 

performance of computer systems. Among the most 

notable are the TPC benchmarks [17] for 

database/transaction processing, and more recently 

benchmark suites like MediaBench [10] or 

CommBench [18].  

To the best of our knowledge, a comprehensive set 

of bioinformatics benchmarks has not been compiled 

and studied prior to our study. In contrast, studies on 

performance of individual algorithms or tools are 

abundant in literature. Most of the published work on 

performance studies of bioinformatics workloads 

involves either performance optimization of 

established algorithms, or analysis of the performance 

of such algorithms on parallel systems. Yap et al. [19] 

present a detailed study of parallel sequence 

searching. Catalyurek et al. [5] analyze performance 

of specific applications on a centralized-server, multi-

client environment.  

While we could not find any comprehensive 

academic study of multiple bioinformatics workloads, 

we noticed at least one publication on the subject 

from the industry: The SGI Bioinformatics 

Performance Report [1] includes several studies of 

uniprocessor and multiprocessor bioinformatics 

applications. 

 

3. BioBench Suite Applications 
 

An important goal of the BioBench effort was to 

define a representative set of bioinformatics 

application domains. We first identified several 

important application classes and selected commonly 

used applications from these classes. While a diverse 

set of benchmark applications was desirable, we 

limited the scope of this initial release of BioBench to 



Table 1. BioBench benchmarks and instruction counts

Benchmark
 Description
 Instruction Count


blastn
 DNA sequence searching
 215,131,057,029


blastp
 Protein sequence searching
 514,628,929,894


clustalw
 Multiple sequence alignment
 2,150,900,967,391


fasta_dna
 DNA sequence searching
 1,001,512,078,272


fasta_prot
 Protein sequence searching
 1,149,078,024,873


hmmer
 Sequence profile searching
 1,573,753,830,214


mummer
 Genome-level alignment
 106,703,486,044


protpars
 Phylogenetic analysis
 1,730,029,486,107


tigr
 Sequence assembly
 862,484,000,000

 

 

relatively mature application classes that found 

widespread usage in academia and industry. In 

addition to widespread use, another important 

criterion in choosing benchmarks was the availability 

of source code for use in our studies, and in some 

cases a relatively less known application suite had to 

be chosen instead of a popular commercial suite. 

Equally important was the selection of input data that 

is representative of real-world computational biology 

problems. Problem sizes were determined in 

collaboration with members of the bioinformatics 

community, and our execution-based methodology 

allowed us to use complete copies of major protein 

and DNA databases instead of smaller data sets which 

would not be representative of real-world problems 

and could have skewed the results. As an example, 

the BLAST workload in BioBench was evaluated 

using NCBI’s NT database, containing 11GB of data 

that represented all DNA sequences discovered to 

date. 

We recognize that bioinformatics is a very diverse 

field, and the initial version of BioBench does not 

cover some important application domains like 

microarray analysis, protein structure prediction, 

protein docking and mass spectrometry analysis. In its 

initial version, the choice of BioBench applications 

reflects an emphasis on mature genomics tools. 

Future versions will address a much wider variety of 

bioinformatics application domains. As new 

application domains emerge, we plan to update 

BioBench with new benchmarks. 

The application classes and the individual 

BioBench benchmarks selected to represent them are 

listed below. The applications are also listed in Table 

1. 

 

3.1. Sequence Similarity Searching 
 

Sequence similarity searching applications are 

typically used to identify similarities between DNA or 

protein sequences, or to search for certain 

subsequences in large sequence databases. The 

similarity between two sequences (or the lack of it) 

can often reveal important clues about structural or 

functional relationships between them, and in some 

cases can provide important clues about common 

evolutionary roots of organisms. BioBench contains 

programs from both BLAST [3] and FASTA [12] 

suites for sequence similarity searching. 

• BLAST: The most commonly used sequence 

searching application is represented by two 

programs, BLASTN and BLASTP, in the 

BioBench suite. These programs are used for 

DNA and protein sequence searching, 

respectively. We used the freely available 

version 1.3 of the BLAST suite. The DNA 

and protein databases used were NCBI’s NT 

(11GB) and NR (945MB) databases 

containing the full set of non-redundant 

DNA and protein sequences submitted to 

NCBI. 

• FASTA: BioBench includes the main search 

utility from University of Virginia’s FASTA 

suite v3.4t21, the other important sequence 

searching suite [12]. To reflect the 

difference between protein and nucleotide 

(DNA) searches, our test cases use the 

FASTA application for searching against a 

DNA database and a protein database with 

suitable search sequences. The DNA 

database used in our study is a daily update 

file to the NCBI GenBank data repository 

(190MB), and the protein database used is 

the entire SwissPROT protein database 

(70MB). 

 

3.2. Phylogenetic Analysis 
 

Phylogenetic analysis aims to discover how a 

group of related protein sequences were derived from 

common origins during the process of evolution. This 

information is frequently displayed as a hierarchical 



diagram called a phylogenetic tree. The discovery and 

visualization of such relationships between proteins 

offers important clues on how certain traits were 

passed from species to species. 

• PHYLIP: To represent phylogenetic 

analysis applications, we chose benchmarks 

from the PHYLIP suite [8], version 3.5c. 

PHYLIP is the most widely used 

phylogenetic analysis package, and contains 

several programs to conduct different types 

of phylogenetic analysis. We chose 

PROTPARS, a protein parsimony 

computation application. 

 

3.3. Multiple Sequence Alignment 
 

Multiple sequence alignment is the process of 

aligning more than two sequences to find regions of 

similarity. This kind of analysis is used to have a 

deeper understanding of similarity patterns that might 

suggest common origins between the proteins they 

code. 

• CLUSTAL W: For our representative 

multiple-alignment benchmark, we chose the 

CLUSTAL W multiple sequence alignment 

application. CLUSTAL W [16] builds on the 

CLUSTAL package described in [9], and is 

currently the most commonly used multiple 

sequence alignment application. 

 

3.4. Sequence Profile Searching 
 

When an evolutionary diverse set of proteins are 

under investigation to find remotely related proteins,  

searching a sequence database for the consensus of a 

sequence family (a common signature of the family) 

can be more effective than searching the same 

database for individual sequences. This analysis 

approach is called sequence profile searching. 

• HMMER: We chose the sequence profile 

searching package HMMER [7] to represent 

this class of applications in BioBench. 

HMMER uses profiles based on hidden 

Markov models to conduct searches against 

protein databases. We used HMMER v2.3 to 

search the SwissPROT protein database 

against the consensus of a small selection of 

protein sequences. 

 

3.5. Genome-level Alignment 
 

Genome-level alignment algorithms and tools are 

used to align complete genomes of related species. 

Due to the sheer number of nucleotides in a complete 

genome, multi-sequence alignment algorithms and 

tools (which are more geared toward aligning single 

proteins or simple nucleotide sequences) can not be 

used effectively for this task. Genome-level alignment 

tools employ algorithms specifically developed for 

the purpose of pairwise alignment of very large 

nucleotide sequences. 

• MUMMER: MUMMER [6] is a genome-

level alignment tool that has been used to 

assemble complete genomes. We chose 

MUMMER v3.14 for inclusion in BioBench. 

 

3.6. Sequence Assembly 
 

Sequence assembly tools are used to generate 

sequence data from many small overlapping partial 

sequences obtained by DNA sequencing hardware. 

Sequence assembly is a crucial step for using shotgun 

sequencing to obtain complete sequence data from 

physical DNA sequences. 

• TIGR: The class of sequence assembly 

applications is represented by the TIGR 

Assembler [15] suite in BioBench. The 

version we used in BioBench was TIGR 

Assembler v2. 

 

4. Methodology and Tools 
 

Bioinformatics applications such as sequence 

similarity searching and multiple alignment are 

typically used in conjunction with very large 

databases, resulting in large execution times that are 

impractical for a simulator-based study. In order to 

meet our goal of collecting data on the entire 

execution of bioinformatics applications with 

meaningful input sizes, we chose to use the hardware 

performance counters built into modern 

microprocessors instead of a simulator. 

Many modern microprocessors include special-

purpose counters that can be used to count 

occurrences of different events and registers to access 

these counters. Among the many different events that 

can be counted are cache misses, branch 

mispredictions, and others that are useful measures of 

application performance. A particular drawback of 

hardware performance counters is their limited 

number: there were only 2 on the Intel Pentium 3 

CPU used in our study. One workaround for this 

limitation is multiplexing, which uses time-sharing to 

use the counters to measure different events at 

different time slices, and extrapolates the result. For 

long running applications (which is typical for 



bioinformatics application workloads), the 

multiplexing method yields reasonably accurate 

measurements [11]. We used the PAPI hardware 

performance counter access library [4] that uses the 

perfctr Linux kernel patch for counter multiplexing. 

To facilitate data collection and analysis, we used the 

PerfSuite [2] utilities. 

Using these software to utilize CPU performance 

counters, we were able to run unmodified BioBench 

applications with large input sizes characteristic of 

their typical use. We used a commodity workstation 

based on an Intel Pentium 3 CPU running Linux 

kernel 2.4.22; and PAPI v3.0. All BioBench 

programs were compiled using gcc version 2.95 on 

the same computer system used for data collection, at 

the -O4 optimization level. To collect some low-level 

hardware performance counter data not collected by 

PerfSuite/PAPI, we also used the brink/abyss [14] 

toolset.  

To provide a comparison to the SPEC benchmark 

suite, applications from the SPEC 2000 suite were 

also compiled using the same compiler and system 

using the default parameters. We collected execution 

characteristics using complete reference data input 

sets from the SPEC distribution, to be used for 

comparison against the BioBench benchmark 

applications. 

Our execution-based methodology allowed us to 

collect precise performance characteristics on a real 

commodity processor for entire workloads that took 

up to 2.1 trillion instructions. The number of 

instructions for each benchmark in the BioBench 

suite is presented in Table 1. Some pertinent 

parameters of the Intel Pentium 3-based system used 

for our study are given in Table 2. 

 

Table 2. Parameters of the system used in 
the study 

Processor
 Intel Pentium III


Clock Speed
 700 MHz


Main Memory
 512MB


L1 data cache
 16KB, 4-way set assoc.


L1 instr. cache
 16KB, 4-way set assoc.


L2 cache
 256KB, 8-way set assoc.


Cache Line Size
 32B

 

 

5. Benchmark Characteristics 
 

To characterize the BioBench suite, we collected 

data on instruction profiles, basic block lengths, IPC, 

L1 and L2 data cache miss rates, and branch 

prediction accuracy. The same set of data was 

collected for the SPEC 2000 benchmarks for 

comparison. In the first phase of the evaluation, 

hardware performance counters were used to provide 

a count of instructions belonging to different major 

instruction classes in the x86 architecture. Instruction 

profiles for BioBench applications are given in Figure 

1.  
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Figure 1. Instruction profiles for all BioBench 

benchmarks 
 

For comparison, the average instruction class 

percentages for SPEC INT and FP benchmarks are 

also shown. 

We observed that the floating point operation 

content of almost all BioBench applications are 

negligible. This finding reflects the intuition that 

bioinformatics applications are inherently different 

from mainstream scientific codes due to the 

representation of data they operate on. None of the 

BioBench workloads contained a floating point 

instruction content of more than 0.09 % of all 

instructions executed. While operating on primarily 

string data, most of the benchmarks do rely on some 

floating point computation for calculating statistics 

and likelihood values as part of their main algorithms, 

but this does not seem to constitute a significant part 

of the overall instruction count. 

The average share of load instructions in 

BioBench applications has a marked difference from 

that of SPEC integer benchmarks, and these 

instructions constitute a larger portion of the 

instructions in BioBench than both classes of SPEC 

benchmarks. This implies that the amount of 

computation per datum is relatively small, a typical 

characteristic of search algorithms. Many of the 

BioBench components search through large input 

files and databases. The BioBench component with 

the lowest share of loads, protpars, was also the one 

benchmark with the smallest input file size in the 



benchmarks. (It is the second longest-running 

workload in BioBench, however.) Protpars 

essentially is less of a database search application 

than many of the BioBench components are, since its 

main function computes a tree-like hierarchy for 

related species using relatively shorter sections of 

sequences. This benchmark also differed from the rest 

of BioBench components with its larger share of 

integer ALU instructions, these instructions 

accounting for more than half of the instruction count. 

Similarly high share of load instructions was 

observed in one other non-search component, namely 

mummer which was found to be highly memory-

bound with its dependence on very large suffix-tree 

data structures created in memory. The higher share 

of load/store operations in BioBench suggests that 

bioinformatics applications are likely to benefit from 

future architectures with higher memory bandwidth 

and prefetching. 
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Figure 2. IPC values for all BioBench 

benchmarks 
 

Figure 2 shows the IPC numbers for the 

applications in the BioBench suite. The significantly 

higher average IPC of the BioBench benchmarks 

hints at higher levels of ILP (instruction level 

parallelism) in the BioBench applications than the 

SPEC INT and FP benchmarks. This finding is 

encouraging, and along with our earlier finding of 

almost negligible floating point content in BioBench 

suggests that bioinformatics applications will benefit 

greatly from wider superscalars of the future with 

highly optimized fast integer cores. While we 

anticipated high levels of ILP in bioinformatics codes 

due to the often mentioned “embarrassingly parallel” 

nature of these programs, we did not expect to see 

this level of difference between BioBench and SPEC 

suite. We noticed considerable variation in the IPC 

values for the individual applications in BioBench, 

and our future work on BioBench will include a 

detailed analysis of performance differences between 

applications that are very similar in function and 

usage, a clear example being blastn and fasta_dna 

which execute essentially the same kind of search 

using two different algorithms. 

The basic block length for BioBench applications 

is shown in Figure 3.  
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Figure 3. Basic block lengths for all 

BioBench benchmarks 
 

On average, BioBench applications have a basic 

block length that lies roughly between those of the 

SPEC INT and SPEC FP averages; all individual 

BioBench benchmarks having higher basic block 

lengths than the SPEC INT average. The higher basic 

block length for applications in BioBench 

characterize bioinformatics applications as being 

closer to scientific workloads than in terms of the 

distribution of control transfer instructions. 
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Figure 4. Branch prediction accuracy for all 

BioBench benchmarks 
 



Figure 4 shows the branch prediction accuracy for 

the benchmarks. While the branch prediction 

accuracy for BioBench benchmarks is somewhat 

lower than that for SPEC benchmarks, the difference 

is not significant considering the very high prediction 

accuracy available with modern branch predictors. 

L1 and L2 data cache miss rates are shown in 

Figures 5 and 6, respectively, and highlight 

differences in memory usage patterns of different 

BioBench components. The genome level alignment 

program mummer and the sequence assembly 

program tigr have higher L1 data cache miss rates 

than the rest of the applications in BioBench, a 

characteristic mirrored by their L2 data cache miss 

behaviors. These two applications had very high 

levels of memory utilization that eventually led us to 

scale the problem size for mummer down to be able 

to run it to completion on our test system with 

512MB of main memory. In contrast, the multiple 

alignment component clustalw displayed very low L1 

and L2 data cache miss rates. The component with 

largest duration of execution in our studies, clustalw 

displayed high IPC and fairly high average basic 

block length in addition to its low memory footprint.  

To our knowledge clustalw is one of the few 

commonly-used computational biology applications 

that had not been implemented in hardware before, 

and we believe its characteristics warrant a closer 

look at this benchmark as part of our future work. 
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Figure 5. L1 data cache miss rate for all 

BioBench benchmarks 
 

6. Concluding Remarks 
 

In this paper, we identified and described 

important computational biology application 

categories and proposed BioBench, a benchmark of 

bioinformatics applications that represents relatively 

mature application classes with reference data that 

closely parallels real usage. BioBench applications 

and reference input data will be made available to 

researchers to allow them to evaluate their 

architectures using bioinformatics applications. We 

believe BioBench fills an imminent need for a well-

defined set of benchmarks covering an important 

emerging class of applications. 
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Figure 6. L2 data cache miss rate for all 

BioBench benchmarks 
 

Our evaluation of BioBench components validated 

our intuition that bioinformatics applications have 

characteristics that distinguish them from traditional  

scientific computing applications characterized by 

SPEC FP benchmarks. Bioinformatics applications 

evaluated in this study displayed almost no significant 

floating point instructions and higher ILP while 

having basic block lengths closer to SPEC FP 

benchmarks than SPEC INT, implying similar 

regularity in distribution of branches. These findings 

indicate that bioinformatics applications stand to 

benefit from future architectural features such as 

increased memory bandwidth, memory prefetching 

and wider superscalars to exploit their high ILP. 

Looking ahead, we plan to expand BioBench with 

benchmarks from several other emerging 

bioinformatics application domains in its next 

revision. Considering the parallelism available in 

bioinformatics workloads, a parallel version of 

BioBench would be a very valuable tool for studying 

the characteristics of these codes on multiprocessor 

systems and clusters, and such a version of BioBench 

is among our plans for future work in this field. In 

addition, we will be conducting studies on different 

levels of parallelism available in bioinformatics 

applications by studying BioBench components in 

detail to evaluate how such applications can be 

accelerated using thread-level parallelism techniques. 
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