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ABSTRACT

We develop an algorithm to reconstruct the wavelet coefficients of an image from the Radon trans-
form data. The proposed method uses the properties of wavelets to localize the Radon transform
and can be used to reconstruct a local region of the cross section of a body, using almost completely
local data which significantly reduces the amount of exposure and computations in X-ray tomogra-
phy. This property which distinguishes our algorithm from the previous algorithms is based on the
observation that for some wavelet basis with sufficiently many vanishing moments, the ramp-filtered
version of the scaling function as well as the wavelet function has extremely rapid decay. We show
that the variance of the elements of the null-space is negligible in the locally reconstructed image.
Also we find an upper bound for the reconstruction error in terms of the amount of data used in
the algorithm. To reconstruct a local region 20 pixels in radius in a 256 X 256 image we require
12.5% of full exposure data while the previous methods can reduce the amount of exposure only to
40% for the same case.
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I. Introduction

It is well known that in dimension two and in fact in any even dimension the Radon transform
is not local, that is, the recovery of an image at any fixed point requires the knowledge of all
projections of the image. This means that a patient would have to be exposed to a relatively large
amount of X-rays even if it was desired to view only a small part of the patient’s body. Thus,
searching for a means to reduce exposure, and at the same time to be able to perfectly reconstruct
the region of interest, has been of great interest recently [3], [4], [8], [9].

The use of wavelets to localize the Radon transform was first proposed in [1]. This paper pro-
posed the principle that the Hilbert transform of a function with many vanishing moments should
decay very rapidly. This is related to the notion that certain singular integral operators are almost
diagonalized by wavelets [12]. It was proposed in [1], that high frequency features of an image
can be recovered locally using the wavelet transform. In [8], Olson and DeStefano reconstruct the
local values of f from the one dimensional wavelet transform of Ryf. In [9], Delaney and Bresler
compute the two dimensional separable wavelet transform of the image directly from the projection
data. Both algorithms in 8] and [9] take advantage of the observation, made in [1], that the Hilbert
transform of a function with many vanishing moments has rapid decay. In fact, the Hilbert trans-
form of a compactly supported wavelet with sufficiently many vanishing moments has essentially
the same support as the wavelet itself. Thus, in both algorithms, the high-resolution parts of the
image are obtained locally, and the low-resolution parts are obtained by global measurements of
the full exposure projections at a few angles.

We have made the surprising observation that, in some cases, the Hilbert transform of a compactly
supported scaling function also has essentially the same support as the scaling function itself. This
phenomena is related to the number of vanishing moments of the scaling function of an orthonormal
or biorthonormal wavelet basis. That is, if ¢(¢) is such a scaling function, and if $()(0) = 0 for
j=1,2,...,K, for some large K, then the Hilbert transform of ¢ will have rapid decay. We take
advantage of this observation to reconstruct the low-resolution parts of the image as well as the
high-resolution parts using almost local data plus a small margin for the support of the filters. This
gives substantial savings in exposure and computation over the methods in [8] and [9]. For example

in order to reconstruct a local region 20 pixels in radius in a 256 X 256 image we require 12.5% of



full exposure data while the proposed methods in [8], [9] can reduce the amount of exposure only
to 40% for the same case.

The algorithms in (8], [9] are not strictly local tomography algorithms, since they use measure-
ments far from the region of interest at a sparse set of angles. Our algorithm is close to a true
local tomography algorithm, since we use only essentially local measurements to reconstruct the
local values of f. It can be compared with the technique of A-Tomography, which is used to recon-
struct the function Af — uA~!f rather than the density function f. This reconstruction gives an
edge representation of the original image. Recently it has been shown that the magnitude of jump
discontinuities in an image can be recovered using this technique [3], [4].

It has been noted in a number of places [14], [15], [16], that the recovery of a function f in a local
region from only its projections on lines intersecting that region is not uniquely solvable. In other
words, the interior Radon transform has a non-trivial null-space. It has been observed that there
exist functions which are non-zero in a local region, but whose projections are zero on lines passing
through that region (Fig. 7). It has been shown that the elements of the null-space of the interior
Radon transform do not vary much in the region of interest [14]. In our algorithm this phenomenon
appears as a constant bias in the reconstructed image. Such a bias is commonly observed in the
local reconstruction problem {14}, [16].

In this paper we will present an algorithm to reconstruct the wavelet and scaling coefficients of an
image directly from its projections. This is useful in applications where the wavelet coefficients of
the reconstructed image are used; in that it saves the computations required to obtain the wavelet
coefficients from the reconstructed image. We also show how this reconstruction technique leads
to a local tomography algorithm which uses the projections of the image on lines intersecting the
local region of interest plus a small number of projections, in the immediate vicinity, to obtain a
very good approximation of the image in the region of interest.

The main features of our algorithm are:

o Reduced exposure compared to previous algorithms (cf. [9], [8]). In our algorithm there is no

need to obtain a rough estimate of the global properties of the Radon transform by sparsely
sampled full exposure projections. We just compute a small number of projections on lines

passing close to the region of interest to reconstruct the local values of the image up to a

constant bias.



+ Computationally more efficient than other algorithms, because it uses fewer projections overall
to locally reconstruct the image.

« Uniform exposure at all angles which allows for easier implementation in hardware. (In the
algorithms proposed in [8] and [9], different amount of projections have to be computed with
variable lengths for different angles.)

« Ability to reconstruct off-center or even multiple regions of interest, as well as centered recon-
struction.

« Applicable to the cases where the wavelet basis is not separable and there exists no multires-
olution approach to obtain the wavelet coefficients. (The method proposed in [9] can only be
used for separable wavelet bases.)

» Reconstruction of the wavelet coefficients of the image with the same complexity as the con-
ventional filtered backprojection method.

This paper is organized as follows: In section II we will briefly introduce the Radon transform,
discuss the non-locality of the Radon transform and the conventional reconstruction technique, i.e.,
the filtered backprojection method. In section III after reviewing the basics of the wavelet transform,
we will introduce a full-data reconstruction technique based on the wavelet transform. We will
discuss the locality property of the proposed algorithm in section IV. Section V then discusses the

implementation of this method and in section VI the simulation results will be presented.

I1I. Preliminaries and notations

In this section, we will briefly introduce the terminology and definitions required in the subsequent
discussions. In this paper we use the following notations: The d dimensional Euclidean space is
denoted by RZ. Given a set S C R? 1g denotes the indicator function of S. We define the
Fourier transform in R% by f(@) = [« f(£)e?>"%d&. The inverse Fourier transform is defined by
FUF(@)(&@) = [pa f(@)e 72" Zdp. The space of infinitely differentiable functions, all of whose
derivatives decay faster than any polynomial is denoted as S(R?). Both continuous and discrete

convolution operators are denoted by *.



A. Radon transform

In Computerized Tomography (CT), a cross section of the human body is scanned by a non-
diffracting thin X-ray beam whose intensity loss is recorded by a set of detectors. The Radon
Transform (RT) is a mathematical tool which is used to describe the recorded intensity losses as
averages of the tissue density function over hyper-planes which, in dimension two, are lines. Given

f € S(R?), restricted to a disc of radius one, we define the Radon transform of f by

Rof(e) = [ f@dz = [ 8+ gy, (1

=

Z-0=s
where § = (cos 6,sin8),0 € [0,27), s € R and 0+ is the subspace perpendicular to .
The interior Radon transform [15] [16] is the Radon transform restricted to lines passing through

the region of interest (ROI) which is a circle of radius r (r < 1) about the origin. It is defined by

Ref(s) — R@f(s) 1[—1",1‘](3)' (2)

The problem of recovery of f from the interior Radon transform is called the interior problem or
region of interest tomography. The interior problem in dimension two is not uniquely solvable,
i.e., there are functions which are not zero in the region of interest but whose projections on lines
intersecting that region are zero. However, these functions do not vary much inside the region of
interest, and in fact a crude approximation to the missing projections suffices to approximate f

well inside the region of interest up to an additive constant [14].

B. Reconstruction

The basic formula for inverting the Radon transform is based on the fact that the Fourier trans-
form of the Radon transform with respect to the variable s is the Fourier transform of the function

f along a line passing through the origin. This property is known as the projection theorem or

Fourier slice theorem:

(Rof)(w) = f(wh), weR (3)

Thus the Fourier transform of the projections at enough angles could in principle be assembled
into a complete description of the two dimensional Fourier transform of the image and then simply

inverted to arrive at the function f. Using the polar Fourier inversion formula and the Fourier slice



theorem, we can reconstruct the function f from the projection data Ryf(s) by

@ = i Z(Ee?)(w)eﬂ”w@'%ldwdo. (4)

The above formula, called the filtered backprojection formula, can be implemented in two steps,

the filtering step, which in the Fourier domain can be written as

Qo(w) = Rof (w)lwl, (5)
and the backprojection step,
£@ = [ Qolz-6)ao. (6)

Because |w| is not bounded and filtering by this filter tends to magnify the high frequency noise, it

is expedient in practice to multiply this operator by a smoothing window W (w) as

Qo(w) = Rof (w)|w|W (). (7)

Therefore the reconstruction will result in an approximation of f rather than f itself. Normally
the approximation has the form e * f, where e is an approximate delta function, called the point

spread function [10]. The point spread function e is related to W{(w) by
W(w) = é(wcos B, wsinh). (8)

C. Non-locality of RT inversion

In (5) the Radon transform data is filtered by |w|. This operation can be formulated in the space

domain as

Qo(t) = H 0 Ryf(t), (9)

where H is the Hilbert transform on R, and 8 is ordinary differentiation. In the above equation

the derivative part is a local operator, but the Hilbert transform

(Fg)(w) = 3 sign()j(w) (10)

introduces a discontinuity in the derivative of the Fourier transform of a function at the origin.

Hence the Hilbert transform of a compactly supported function can never be compactly supported.
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This means that RT inversion based on (4) can not be accomplished locally, that is, in order to
recover f exactly at a point Z, all projections of f are required and not just those on lines passing
near Z. It has been noted that the above mentioned filtering will not increase the essential support
of a function if the function’s Fourier transform vanishes to high order at the origin [1], [8]. Wavelets

which are in general constructed with as many zero moments as possible are good candidates for

these functions.

III. Wavelet Reconstruction

A. Continuous Wavelet Transform

The wavelet transform has been an increasingly popular tool for signal and image processing.
The transform decomposes the signal onto shifts and dilates of a function called the mother wavelet.

In two dimensions, the wavelet transform is defined as follows. Let g(¢), ¢ € R? satisfy

o0 o0
0 < inf r71§(r cos @, rsin)|?dr < sup r71§(r cos 0,7 sin 6)|2dr < . (11)
6ef0,2m) Jo 6ef0,2m) /0

Let §(f) = g(—%),f € R?, and define the continuous wavelet transform of f, on R2, by
W @) = [ FEug(ed = 9)dE= £ xgulu5), (12)
where u € R\{0} and 7 = [z y] € R?, and g, (%) = ug(u®). In order to reconstruct the function f
from its wavelet transform, we use
@ = [, [ v W (g 0)@uguf - 9)dud (13)
B. Multi-Resolution Wavelet Representation

In practice one prefers to write f as a discrete superposition of wavelets, therefore we define the

discrete wavelet transform by

Wlei @) = [ | £@gn E - 2797)dE, (14)

which is derived from (12) by setting v = 2/ and ¥ = 7, where j € Z and 7 € Z2.
Below we describe a multiresolution analysis approach to recovering f(Z) from its discrete wavelet

transform (precise definitions and further details can be found in [7]). Let A,; be the operator which
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approximates a measurable function f(z) with finite energy (f(z) € L2(R)) at resolution 2/. We
consider the vector space Vo C L2(R) as the set of all possible approximations at the resolution of 27
of functions in L2(R), such that Vj € Z, Vp; C Vyy+1. For each multiresolution approximation V,,,
there exists a unique function ¢(z) € L?(R), called a scaling function such that {¢e; (z —277n)}nez
is an orthonormal basis of Va,, where ¢o; (z) = 27/2¢(27z). Therefore the projection on V;, can be
computed by decomposing the function f(z) on this basis, i.e.,

Ay fz) = Z (f(u), ¢ (u— 277m)) oy (z — 277 ). (15)

n=—00

The coefficients in the above sum are the discrete approximation of f(z) at the resolution 27, defined

by

AL f(n) = (f(u),do(u—2"n)) (16)
= [ f@yilu—2n)du = (F(w) * G (w)(2 )

where $y;(z) = by (~2).

In practice, we assume that the given discrete function f(n) is the approximation of f(x) at
resolution 1. In a multiresolution approximation the discrete approximation at resolution 2/ can
be found from the discrete approximation at resolution 2/+1 by

AgJ Z h k— 277’) 21+1f(k) (17)

k=—o00

where h(n) = (¢g-1(u), ¢(u — n))). The Fourier transform of h(n), denoted by H(w), is defined as

i h(n)e=I™, (18)
The Fourier transform of ¢(z) is given by ~
Hw) = ﬁmzpw), (19)
and
by(w) = q3<w)p1f[1H(2p—1w>. (20)

The difference in information between the approximation of function f(z) at resolution 27*! and

27, called the detail signal at the resolution 27, corresponds to the projection of f on the orthogonal
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complement of V; in V11, denoted by O,;. Define the function %(z), the mother wavelet, by
P(w) = G(w/2)$(w/2), where G(w) = e " H(w + m). The set of functions {277/24y, (£—279n) }nez

is an orthonormal basis of Oy,. It can be easily shown that

WG WG H@ W) i §>1

Yoi(w) = § (21)
$(w)G(w) if j=1
The projection of f(z) on the vector space O,; is given by
Dyif(z) = D (fu)ythos (u—277n))ehyi(z — 27n). (22)
The coefficients in the above formula, called the detail coefficients, are defined as
D, f(n) = (f(w),%p (u—2"Tn)) = (f(u)* o (u))(2 ), (23)

that is, the difference of information between A4, f(n) and A% f(n). The detail coefficients at
resolution 2/ can be obtained from the approximation at resolution 2/+1 by

DLfm) = Y glk - 2m)Ab . f(R), (24)

k=—o00
where g(n) = (g-1(u), (u — n))). The impulse response of the filter g(n) is related to the filter
h(n) by

g(n) = (=1)'"" A1 —n). (25)

Finally, for any J > 0, the original discrete signal A{f(n), measured at resolution 1, can be repre-
sented by (Ag 7f+ D% f)—j<j<—1, which is called the orthogonal wavelet representation of the signal.
The approximation at resolution 2/ ! can be obtained by combining the detail and approximation
at resolution 27, i.e.,

Afnf(n)=2 Y h(n—2k)A5 f(k)+2 > g(n—2k)DE f (k). (26)

k=—00 k=—00
This formula can be used in a pyramidal structure to reconstruct A¢f, the approximation at
resolution 1, from the set (AY, f, DY f)_j<j<-1.
Similar to 1-D functions, we can construct a multiresolution approximation in L2(R?). Letting

®(z,y) = ¢(z)¢(y), where ¢ is the scaling function for a 1-D multiresolution approximation, it can

be shown that

{@2i(z — 2_jna Y- 2_1.7"7')}(71,m)€Z2 (27)
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forms an orthonormal basis for V,;, in a multiresolution approximation in L?(R?), where ®y; (z,y) =

®(272,29y) = ¢y, (T)boi (y). The projection onto Vy, can therefore be computed in this case by

Ay fzy) = ) D (Fu,0), 805 (u— 279n) by (v — 279m)) s (& — 279n) i (y — 277m). (28)

n=—0o00 m=—0co

The discrete approximation at resolution 27 is defined by

A f(n,m) = (f(u,0) * o (u) by (4))(277n, 27T m). (29)

The difference between the approximation Ay, f(x,y) and Ay+1f(z,y), called the detail signal at
resolution 27, corresponds to the projection of f on the orthogonal complement of Vo, in V41,

denoted by O,;. Let U'(z,y) = ¢(z)(y), ¥(z,y) = $(2)¢(y) and U3(z,y) = (z)(y), then the

set of functions
{93 (z— 270,y — 277m), U3, (z — 279n,y — 279m), U3 (z — 279n,y — 279m)} (umye 22y (30)

where W}, (z,y) = 2/0*(2/3,27y), is an orthonormal basis for O,;. The projection of f(z, y) on the
vector space Oy; is given by
D3 1 f(= Z Z £ (u,0), i (u — 279 ) thgs (v — 277m)) by (z — 27 n)hoy (y — 277 m)

n=—oom=—
o0 (o ¢]

2] 2f z,Y) Z Z (1, v), 4g5 (u — 27 J”)Cb:u (v—27 Jm))%z (z -2 ]n)¢23 (y—2 Jm)

n=—0o0om=—oo

DY of (z,y) Z Z £ (1, 0), %oy (1 — 279n)hs (v — 277m) Yahys (T — 27n)ehy, (y — 277m). (31)

n=—o00om=—0oo

The detail coefficients are given by

D f(n,m) = (f(z,y) * 279 6 (@) (1)) (27 n, 27 m)
Dg, of(n,m) = (f(z,y) * 2y (€) by (1)) (277, 279m)
DY, 3f(n,m) = (f(z,y) * 274 (@)hai (¥)) (2 9n, 27 m), (32)

where (n,m) € Z?. Fig. 1(a) shows the conventional filter bank which is usually used to obtain
approximation and details of a signal.
The discrete approximation at resolution 2+ can be obtained by combining the detail and

approximation at resolution 27, i.e.,

o0 oo

A f(n,m) = 2 3 3 h(n—2k)h(m — 20) A%, f(k,1)

k=—o0l=—00
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+ 2 f: f: h(n — 2k)g(m — 21) D3, | f(k,1)
k=—o00l=—00
+ 2 fj i g(n — 2k)h(m — 21)DY; , f (k,1)
k=—o0l=—0
+ 2 3 > g(n—2k)g(m —20)D; f (k,1). (33)

k=—o00l=—
Therefore in order to recover the approximation at level j + 1, the approximations at level j are
filtered by h(m)h(n), and the detail coeflicients are filtered by h(n)g(m), g(n)h(m), and g(n)g(m)

respectively. These wavelet reconstruction filters in the Fourier domain are given by

H (w1, wp) = H(w1) H(wy)
HP (w1, w2) = H(w1)G(w2)
HP" (w1,w2) = G(w1) H(w2)
HrDa(wl,wg) = G(w1)G(wa). (34)

In those applications that we are interested in, namely recovering a local region of the image from
the approximate and detail coefficients, we have to calculate these coeflicients for that region plus
a margin for the support of the wavelet reconstruction filters. That margin is equal to half of the
length of the filters h and g. Fig. 1(b) shows the block diagram of the analysis filter bank which
obtains the approximation at level j from the approximations and detail at level j — 1. This block
diagram can be used in a pyramidal structure to reconstruct A¢f, the approximation at resolution
1, from the set (A%, f, DS, f)—s<j<—1.

In order to have fast computation (and also to do effective local reconstruction), the filters
must be short. On the other hand, it is desirable to have linear phase FIR filters which can be
easily cascaded in a pyramidal structure. Unfortunately the only symmetric perfect reconstruction
filters with linear phase are Haar filters [5], so we relax the orthonormality property and we use
a biorthonormal basis. The only difference is that the synthesis filters h, g, are different from the

analysis filters A and § and must satisfy

gn=(-1"h_n-1, gn=(-1)"hn_1, O Anhni2e = k. (35)
n
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C. Wavelet Reconstruction from the Projection Data

In this section we present an algorithm which can be used to obtain the wavelet coefficients of a
function on R? from its Radon transform data. In those applications for which one is interested in
the wavelet coefficients of the function, it involves fewer computations than first reconstructing the
function and then taking its wavelet transform. Also using this method one can obtain locally the
wavelet coefficients of a function, which will allow the local reconstruction of a function and can
be used in local tomography. This property will be explained in section IV. We first introduce the
main formulas for the reconstruction of the continuous wavelet transform directly from the Radon

transform data.
Given a real-valued, square integrable function g on R? which satisfies condition (11), let f be

given on R?, the wavelet transform of function f can be reconstructed from its 1-D projections by
WP @) = f*Gulud)
. T
= ul/z/o (HORyGy * Rof)((uz) cos 6 + (u~'y) sin §)do, (36)
where 7 = [z y] € R%. In the discrete case the above equation becomes:

™ . .
W (g; £)(7) = / (HORgs * Rof)((27n1) cos 0 + (277ny) sin 6)d6, (37)
0
where 7 = [n; ny]. The right-hand-side can be evaluated in two steps, the filtering step,

Qo ,G(t) = (Rof * HORygy )(2_jt)a (38)

and the backprojection step,

W36 £)(7) = [ Qs cos6 -+ nysin6)as. (39)
The filtering step can be implemented in Fourier domain as

Q2,0(w) = Ry f () |wlg2s (w cos 6, wsin H)W (w), (40)

where o, (w1, wa), Qo p(w) and Rof (w) are the Fourier transforms of the functions g,;, Q2 g and
Ry f, respectively, and W (w) is a smoothing window. Therefore (37) can be implemented using
the same algorithm as the conventional filtered backprojection method while the ramp filter |w| is

replaced by the wavelet ramp filter |w|g; (w cos 8, wsin).
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If the wavelet basis is separable, the approximation and detail coefficients are given by (29)

and (32). These coefficients can be obtained from the projection data by (37), replacing g(%)
by ®(z,y) = ¢(z)d(z), T(z,y) = d(e)p(z), V¥(z,y) = ¢(z)$(z), and T¥(z,y) = (z)i(a),

respectively. For example, the approximation coefficients are obtained by
. m ~ . .
AL F(n,m) = WP (; £)(In m]) = 2072 /0 (HORg®y; * Rof)((277n) cos 8 + (2~7m) sin6)d8. (41)

These coefficients can be calculated using the standard filtered backprojection method, while the

filtering part in the Fourier domain is given by
Qua pw) = Rgf(w)|w|<i>2, (wcosh,wsin YW (w), (42)
21’

where &>2,~ (wcosf,wsinf) = %21' (wcos 0);52j (wsinB). The detail coefficients can be found in a

similar way as
D of =W (Vs f)([nml) fori=1,2,3, (43)
To get the detail coeflicients, the filtering step is modified as

Ob,  4(w) = Rof (w)|w| T (wcos 8, wsinO)W (w) for i =1,2,3. (44)

27

This means that the wavelet and scaling coefficients of the image can be obtained by filtered

backprojection method while the ramp filter is replaced by

HY = |w|<i>;J (wcosf,wsing) = |w|g?>2j (w cos 9);521 (wsin @)
HQDI = |<u|\i1;J (wcosB,wsinf) = |w|<;~52, (wcos 9)1,712, (wsin )
H(?l = |w|\ilz, (wcosf,wsinf) = |UJ|’(Z2J‘ (wcos 0);52, (wsin )
Hé)l = |w|\i/; (wecosB,wsinh) = lW|'lZ‘2] (w cos 0)12@ (wsin), (45)

which are called the scaling and wavelet ramp filters. In order to obtain pyramidal wavelet coeffi-
cients, the Ag,f and ng’if, 1=1,2,3, —J < j < —1 are found using (43) and (41). To reconstruct
the image from these coefficients, we use the multiresolution reconstruction formulas (33). Fig. 2
shows the block diagram of the multiresolution reconstruction system. The reconstruction part
uses the conventional multiresolution reconstruction filter bank (cf. Fig. 1), which appear as black

boxes in the block diagram.
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IV. Local Reconstruction

It has been noted (8] that if a function has a large number of vanishing moments (or, equivalently,
if its Fourier transform vanishes to high order at the origin), then its Hilbert transform will decay
very rapidly at infinity. If a compactly supported function has this property, then the essential
support of its Hilbert transform should not be large. This phenomenon is in part a manifestation
of the observation made in [12] that an integral operator with singular kernel of Calderon-Zygmund
type is almost diagonalized in a wavelet basis.

More specifically, we can say that if a sufficiently smooth compactly supported function, f, has
N vanishing moments, then Hf(t) = O(|t|~™~!). To see why this is true, observe that if f has N
777 w) = o)
if w> 0, and —f(w) if w < 0. Since f is analytic, fU) is continuous for all w, and if § < N, then

vanishing moments, then H f has N continuous derivatives. That is, for any j, H f

lim P w) = tim FF9(w) = 0.

w—0+ wao—

Therefore, I;/I\f 2 is continuous. If j = N + 1, then fI? @ is no longer continuous at w = 0 but is

still bounded since

lim Hf () = f90), tm HFY () = —f90).

w—0+ w—0—
Therefore, if f is sufficiently smooth that [ |f(j)| <ooforj=0,...,N +1, then

1
2eN+1

<

1 = (N+1) 2
sup tN+1Hf(t)|SW/‘Hf f(N+1)‘<oo.

teR

That is, for some number C > 0, depending on f,
[Hf(®)] < C+Je)N

Therefore, if the function Rpg(t) is compactly supported and has a large number of vanishing
moments for each 8, then HORyg should have very rapid decay. If g is a compactly supported
wavelet basis function from (30) with sufficiently many vanishing moments, HORyg has essentially
the same support as Ryg for each 6. The significance of this observation is that by (36) the discrete
wavelet coefficients (43) can be computed locally using essentially local projections.

We have observed that even if g is replaced by scaling function given by (27), HORyg has essen-

tially the same support as Ryg for each 8. Fig. 3 shows the Daubechies’ biorthogonal wavelet and
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scaling function (table III of [5]) as well as the ramp filtered version of these functions. Observe
that the ramp-filtered scaling functions has almost the same essential support as the scaling func-
tion itself. ! We have also observed that the angle dependent filters given by (45) have essentially
the same support as the wavelet and scaling function for this wavelet basis. Therefore, in order to
reconstruct the wavelet and scaling coefficients for some wavelet basis, we only need the projections
passing through the region of interest plus a margin for the support of the wavelet and scaling
ramp filters. Moreover, in order to reconstruct the image from the wavelet and scaling coefficients,
we have to calculate these coefficients in the region of interest plus a margin for the support of
the wavelet reconstruction filters (34). Since wavelet and scaling ramp filters and also the wavelet
reconstruction filters get wider in lower scales, we need to increase the exposure to reconstruct
the low resolution coefficients in the region of interest. In our algorithm we can reconstruct the
scaling coefficients locally, henceforth we use only one level of wavelet filter bank. Thus we take
full advantage of locality of wavelet and scaling function at high resolutions.

In order to quantify this locality phenomenon, we define the spread of a function f with respect
to an interval I under ramp-filtering to be the normalized energy of the function (|w|f(w))"(t)

outside I, i.e., with T denoting the complement of I,

S ifenord ) [ 1F el ) d.

The rapid decay of the ramp-filtered scaling functions is related to the number of vanishing
moments of the scaling function. Orthonormal wavelets corresponding to scaling functions with
vanishing moments have been called “coiflets” by Daubechies in [6, section 8.2]. For coiflets with
1, and 3 vanishing moments, supported on the intervals [0, 5], and [0,11], respectively, we have
measured spreads with respect to these intervals of .030 and .013 respectively. These scaling
functions correspond to scaling filters with 6 and 12 taps respectively. Daubechies has also observed
in [6, section 8.3.5] that the symmetric biorthogonal bases constructed in [5] are numerically very
close to coiflets. For the biorthogonal “near-coiflet” scaling functions supported on the intervals
(0,4], [0,8], and [0,12], we have measured spreads with respect to these intervals of .029, .016,

and .0092 respectively. These scaling functions correspond to scaling filters with 5, 9, and 13 taps

!This is not the case in general, for example in Fig. 4 we have plotted another wavelet and scaling functions (table
6.2 of [6]) and their ramp-filtered versions, for comparison. The scaling function in this basis does spread significantly
after ramp filtering.
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respectively. For the purposes of this paper, it is most desirable to minimize both the spread of
the scaling function and the number of taps in the corresponding filter. Under these criteria, the
near-coiflet filter with 5 taps is near optimal (see Fig. 3(a) and (c), and Fig. 6(a)) and is therefore
used in our simulations.

We assume that for each angle 6 € [0,27), the projection data Ryf(s) is sampled with a radial
sampling interval of T,, and the support of f is a disk of radius R centered at the origin. The
region of interest, a disc of radius r; pixels centered at the origin, will be denoted by ROI, and
the region of exposure, a disc of radius r. pixels centered at the origin, will be denoted by ROE.
Let the essential support of the discrete scaling and wavelet ramp filters, the sampled versions of
the continuous functions (45) with sampling interval T, be 2r,, samples and the support of the
wavelet reconstruction filters (34) be 2r, samples. Therefore the radius of the region of exposure is
Te = Ty + 'y + 7 pixels. The amount of exposure in our algorithm normalized to the full exposure

is given by
Tr + Tm + r;

R

In the Delaney and Bresler’s algorithm [9] the exposure is given by

L .
b4 Y gy m T %” 8L}

g=1
where L is the number of levels in the wavelet filter bank. Similar exposure is required in DeStefano
and Olson’s algorithm [8]. Fig. 5 shows the relative amount of exposure versus the size of the region
of interest in a 256 x 256 image for r, = r, = 6. The exposure in Delaney and Bresler’s algorithm

is also plotted for comparison.

A. Error Analysis

It is mentioned in [14] that the error in the interior Radon transform is not negligible because
the derivative Hilbert transform (the impulse response of the filter |w|) is not local in space. This
means that in order to reconstruct even a small local region of interest we have to consider some
data outside the region of interest to get negligible reconstruction error. We will find an upper
bound for the reconstruction error, in terms of the amount of non-local data that we consider in
the reconstruction. We will also compare the upper bound of the error in a locally reconstructed

image using our algorithm to the upper bound of the error when we use the standard filtered
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backprojection method with local data. For simplicity of notation, we assume the ROI and ROE
are centered at the center of the image. Consider the filtered backprojection formula (4), while the

ramp filter |w| is replaced by a generally angle dependent filter hy(s)
fr(z,y) = / (ho(s) *x Rgf(s))(xz cosf + ysinh)ds. (46)
0

If ho(s) is chosen to be the impulse response of the ramp filter (5), the reconstructed function
fr(z,y) is an approximation of the function f; and if it is the impulse response of the wavelet
and scaling ramp filters (45), the reconstructed function f,(z,y) will be the approximation of the
wavelet and scaling coefficients. The discrete version of (46) is given by

nY) = & Z Z Py, (n)hg, (m — n)), (47)

o Bk

where m = LE%MJ € ROE, K is the total number of evenly spaced angles at which the
projections are measured, Py, (n) is the projection Ry, f(7), and 8 = k%. We can divide the

inner summation into two parts, corresponding to the ROE and its complement ROE:

fr(zy) = Z(_ Z Py, (n)hg, (m — n)) (48)
|n|<re
T x Z WE;T Py, (n)hg, (m — n)).

Thus the magnitude of error using only ROE is given by

To get an upper bound for the error we use the Cauchy-Schwartz inequality as

le(a,y)| = %2: > P (n)hg, (m ~n))| (50)
k=1 |n|>re
T K

< EZ Z |P0k )ho, (m —n))
k=1 |n|>7'e
K

S FL (X PRS-
k=1 |n|>re [n]>re

If we assume that the support of f(z,y) is in the disc of radius 1, then |Py, (n)] < 2max|f(z,y)|.

Hence

K
Z S |k, (m — )2, (51)

=1 |n|>re

4in
@y < max|f@y)l
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We define the relative error as |e,q(z,y)| = Ea%%%ngﬂ’ then

4T R — K 211/2
|erel( ay)l = K R Z( z |h9k(m—n)| ) : (52)

k=1 |n|>re

In the worst case the region of interest is a single point. Thus we may bound (52) by

K
SEFEESCST e P (53

k=1 |"|2Te—7”1

Ierel(
We define hj , the truncated filter, as

hg (n) = he,(n) |n| <re—r; . (54)
¢ 0 otherwise

Therefore

4 R — 71, K R
% 2 (2 lha,(n) = hg ()2, (55)

k=1 n=—-R

|erel($7 y)l <

The inner sum can be written in frequency domain, thus

47rR
K

lerel(z,y)| < — Hjj (m)|%)'/2, (56)

1 m——
where Hp, and Hg; are the Fourier transform of hg, and h;;’;, respectively. The upper bound
of the error in standard filtered backprojection method can be calculated by replacing hg, (m) in
(56) by the ramp filter (5). The upper bound for the error in wavelet and scaling reconstruction
can be obtained by replacing Hy, in (56) with (45). In our algorithm, the scaling and wavelet
coefficients at resolution 27! are reconstructed directly from the projection data. The recovered
coefficients are then filtered by the reconstruction filters (34) to obtain the original image. These
filters will filter out some parts of error energy introduced by (56). To consider the effect of the

wavelet reconstruction filter bank in the error upper bound, we moved these filters to the projection

domain, hence

47rR K R
leral@,v)l < TS IBAmPR (S 1B m)
k=1 m=—R m=—R
R R
+ (S B mP2+ (Y B mP)2, (1)
m=—R m=—R
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where

Ep(m) = (Hj — HAT)H/A(mcos 6, msin6y)

EP'(m) = (HP' — HP'")HP' (mcos Oy, msiny)

E(,Dkz(m) = (Hézz-HQD;T)HPZ(mcosOk,msinGk)

EP(m) = (HP® — HP*")HP" (mcos by, msinby), (58)

with Hé‘i ’HHDk "H ngz and H£ * being the ramped scaling and wavelet filters (45) and Hé‘}c T,H oDk IT, 9Dk 2T
and H(,D:T being the truncated version of these filters. HA, HP' HDP® and HP® are the wavelet
reconstruction filters (34). Fig. 6(a) compares the upper bound of the relative error in the recon-
structed image, versus the amount of non-local data (re — ;). This bound is given by (56) and (57)
for the standard filtered backprojection method and our algorithm, respectively. When we use the
biorthogonal wavelet of Fig. 3, our algorithm has much less error, than the standard filtered back-
projection method, but for the orthogonal basis of Fig. 4, the reconstruction error is larger (Fig.
6(b)). Therefore we choose the biorthogonal wavelet of Fig. 3 in our algorithm. The horizontal
axis in Fig. 6(a) shows the amount of non-local data that is collected in order to reconstruct the
region of interest. It shows that if we expose a margin of 6 pixels outside the region of interest, the

upper bound for the relative error would be as small as .004. Therefore we can assume that the

essential supports of the wavelet and scaling ramp filters are 6 pixels.

B. Interior Problem

The interior problem in even dimensions is not uniquely solvable, since there are non-zero func-
tions which have zero projections on the ROE. Clearly, our algorithm will be unable to reconstruct
such a function. It has been noted that these functions, which are in the null-space of the interior
problem, do not vary much well inside the ROE [14]. Since in our algorithm the ROE is larger
than the ROI by a fixed margin, it is observed that the null-space elements described above are
essentially constant on the ROI.

To illustrate this, we will reconstruct an element of the null-space and measure the variance of
this element on the ROI. We assume that the ROI is the interior 32 pixels of the image and ROE
is the ROI plus a margin of 12 pixels in each side. This margin shows the amount of nonlocal data

used in the reconstruction scheme. Fig. 7(b) shows a slice of a circularly symmetric element of the
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null-space. The projection of this element for each angle is shown in Fig. 7(a) . The projections are
zero inside the ROE, which is the interior 56 pixel of the projections, and one in 16 pixels at each
side of the ROE. The measured variance of the null-space on the ROI is less than 1 percent. The
variance of the null-space element on the ROI versus the amount of nonlocal data (the difference

of the radius of the ROE and ROI) is shown in Fig. 8.

V. Implementation

A. Practical Considerations

In local reconstruction, artifacts are common close to the boundary of the region of exposure.
To illustrate this, we consider the Shepp-Logan head phantom and an ROE of diameter 32 pixels
at the center of the image. We set the projections outside the ROE to zero (Fig. 9(c)) and apply
the filtering part of the filter backprojection formula (5). Fig. 9(d) shows the artifacts that appear
at the borders of the region of exposure. When the standard filtered backprojection algorithm is
applied to the projections, these artifacts cause large errors at the borders of the region of exposure
in the reconstructed image.

In order to avoid the artifacts, we have extrapolated the projections continuously to be constant
on the missing projections. The extrapolation scheme is the same even when the region of exposure
is not centered. Let the region of exposure, which is the subset of projections on which Ryf is

given, be a circle of radius r, whose center is located at polar coordinates (r,6y), i.e,
ROE: {s:s€[r cos(@—6y) —re, 7 cos(6 —6) +1¢] }. (59)
We use the constant extrapolation

Ry(s) if s € ROE
(R6)iocat(8) = § Rg(r cos(d —6p) +1e) ifs€[r cos(@ —bp) +re, +00) - (60)
Rg(r cos(0 —6y) —re) ifs € (— o0, r cos(d — ) —re]
Fig. 9(e) and 9(f) show an extrapolated projection and its ramp-filtered version (5), respectively.
When we apply the ramp filter to the extrapolated projection, there is no spike at the edge of

the region of exposure. The comparison with the ramp-filtered version of the projection using

global data (Fig. 9(b)) shows that the filtered projection has a constant bias difference compared
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to the one using global data. This is natural in local tomography and, after backprojection of all
projections, appears as a constant bias in the locally reconstructed image ([14],[16]).
In [14] it is suggested to extrapolate the data outside the region of interest using a minimum

norm approach which has the same effect on the artifacts (cf. Fig. VL8 in [14]).

B. Algorithm

We have noted that the approximation can be reconstructed locally using local data. Therefore
in our algorithm we reconstruct the wavelet and scaling coefficients at resolution 2~! and then we
reconstruct the image from these coefficients. Our algorithm consists of the following steps:

1. Extrapolate the locally collected projections using (60) to avoid the boundary artifacts.

2. Filter the extrapolated projections by modified ramp filters (45).

3. Backproject the filtered projections to every other point, using (39), to obtain the approxima-

tion (41) and detail (43) coefficients at resolution 271.
4. Upsample the reconstructed coefficients by 2 and filter them by the reconstruction filters (33)

to obtain the image at resolution 1.

VI. Simulation Results

We have obtained the wavelet and scaling coefficients of the 256 x 256 pixel image of the Shepp-
Logan head phantom using global data (Fig. 11). In this decomposition we used the Daubechies’
biorthogonal basis (table III of {5]). The quality of the reconstructed image is the same as with
the filtered backprojection method (cf. Fig. 10). Fig. 12 and 13 show two examples in which two
regions of interest are reconstructed using the local reconstruction method proposed in this paper.
In Fig. 12, the ROI is a centered disk of radius 32 pixels. Fig. 12(c) and 12(d) show the blow up of
the ROI using both local reconstruction and standard filtered backprojection using global data for
comparison. We have also reconstructed the off-center disk of radius 32 pixels located 80 pixels from
the center of the image. The reconstructed image and the blow up of the ROI are shown in Fig.
13. In both of these examples the projections are collected from a disk of radius 44 pixels, therefore
the amount of exposure is 17% of the conventional filtered backprojection method. In both cases
we have a constant bias in the reconstructed image which is natural in the interior reconstruction

problem [14] [16]. In these examples the mean square error between the original image and the
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locally reconstructed image after removing bias is computed over the region of interest. 2 The
error energy in the reconstructed image in both cases is the same as filtered backprojection method
using full exposure data.

This method is applied to a CT scan image of a liver. The reconstructed image has the same
quality as the filtered backprojection method (Fig. 14). Using our algorithm, a local off-centered
region of radius 32 pixels of the liver CT scan has been reconstructed by using just 17% of exposure
(Fig. 15). The reconstruction in the region of interest is as good as what can be obtained using

the filtered backprojection method which involves global data and 100% exposure.

VII. Conclusion

We have developed an algorithm to reconstruct the wavelet and scaling coefficients of a function
from its Radon transform. Based on the observation that for some wavelet bases with sufficiently
many zero moments, the scaling and wavelet functions have essentially the same support after ramp
filtering, we have developed a local reconstruction scheme to reconstruct a local region of a cross
section of a body with essentially local data. An upper bound for the local reconstruction error
is obtained in terms of the amount of non-local data which is used in the reconstruction scheme.
Non-uniqueness of the interior problem appears as a constant bias in the reconstructed image. The
measured error between the original image and the reconstructed image after removing this bias is
negligible. This fact shows that if we use a sufficient amount of non-local data in the reconstruction,

this bias is reasonably constant on the region of interest.
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Fig. 1. (a) Wavelet synthesis filter bank; (b) wavelet analysis filter bank.
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Fig. 2: Wavelet reconstruction from the projection data; the multiresolution reconstruction filter
bank (MRFB) is the wavelet synthesis filter bank (Fig. 1).
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Fig. 3. The wavelet with less dissimilar lengths, [ = k = k = 4; (a) the scaling function; (b) the wavelet

basis; (c) the rampfiltered version of the scaling function; (d) the ramp-filtered version of the wavelet
basis.
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Fig. 4. The wavelet with extremal phase and highest number of vanishing moments with length 4; (a)

the scaling function; (b) the wavelet basis; (c) the ramp-filtered version of the scaling function; (d) the
ramp-filtered version of the wavelet basis.
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Relative exposure in a 256x256 pixels image
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Fig. 5. The exposure percentage versus the size of the region of interest.
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Fig. 6: The error (57) versus the number of remaining coefficients; (a) in the biorthogonal wavelet

with less dissimilar lengths (table III of [5]); (b) in the orthogonal wavelet with extremal phase and
highest number of vanishing moments with length 4 (table 6.2 of [6]).
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Fig. 7. (a) The projection of a null-space element; (b) the reconstruction of the null-space element. (The
marked area is the region of exposure.)
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Fig. 8. The error versus the amount of non-local data used in the reconstruction scheme.
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Fig. 9. (a) A sample projection of the Shepp-Logan head phantom; (b) the projection filtered by |w|; (c)
the projection with non-local data set to zero; (d) the filtered projection; (e) the projection extrapolated
outside the region of interest; (f) the ramp—filtered extended projection. (The marked area is the region
of exposure.)

(a) (b)

Fig. 10. (a) The Shepp-Logan head phantom; (b) the reconstruction using conventional filtered backprojec-
tion method.
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(a) (b)

Fig. 11. (a) Wavelet reconstruction; (b) the reconstruction from the wavelet coeflicients.

(c) (d)

Fig. 12. Local centered wavelet reconstruction; (a) wavelet reconstruction; (b) the reconstruction from the
wavelet coefficients; blowup of the centered region of interest; (c) reconstruction using wavelet method
using local data; (d) reconstruction using standard filtered backprojection method using global data.
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(c) (d)

Fig. 13. Local off center wavelet reconstruction; (a) wavelet reconstruction; (b) the reconstruction from the
wavelet coefficients; blowup of the off-center region of interest; (c) reconstruction using wavelet method
using local data; (d) reconstruction using standard filtered backprojection method using global data.

(a) ()

Fig. 14. (a) Wavelet coefficients using wavelet-Radon reconstruction; (b) the reconstructed image.
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(©)

Fig. 15. Local off center wavelet reconstruction; (a) wavelet reconstruction; (b) the reconstruction from the
wavelet coefficients; blowup of the off-center region of interest; (c) reconstruction using wavelet method
using local data; (d) reconstruction using standard filtered backprojection method using global data.
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