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Cyberphysical systems (CPSs) integrate communication, control, and comput-

ing with physical processes. Examples include power systems, water distribution

networks, and on a smaller scale, medical devices and home control systems. Since

these systems are often controlled over a network, the sharing of information among

systems and across geographies makes them vulnerable to attacks carried out (pos-

sibly remotely) by malicious adversaries. An attack could be carried out on the

physical system, on the computer(s) controlling the system, or on the communica-

tion links between the system and the computer. Thus, significant material damage

can be caused by an attacker who is able to gain access to the system, and such

attacks will often have the consequence of causing widespread disruption to every-

day life. Therefore, ensuring the safety of information critical to nominal operation

of the system is of utmost importance. This dissertation addresses two problems in

the broad area of the Control and Security of Cyberphysical Systems.

First, we present a framework for opacity in CPSs modeled as a discrete-time



linear time-invariant (DT-LTI) system. The current state-of-the-art in this field

studies opacity for discrete event systems (DESs) described by regular languages.

However, the states in a DES are discrete; in many practical systems, it is common

for states (and other system variables) to take continuous values. We define a notion

of opacity called k-initial state opacity (k-ISO) for such systems. A set of secret

states is said to be k-ISO with respect to a set of nonsecret states if the outputs at

time k of every trajectory starting from the set of secret states is indistinguishable

from the output at time k of some trajectory starting from the set of nonsecret states.

Necessary and sufficient conditions to achieve k-ISO are presented in terms of sets

of reachable states. Opacity of a given DT-LTI system is shown to be equivalent to

the output controllability of a system obeying the same dynamics, but with different

initial conditions.

We then study the case where there is more than one adversarial observer,

and define several notions of decentralized opacity. These notions of decentralized

opacity will depend on whether there is a centralized coordinator or not, and the

presence or absence of collusion among the adversaries. We establish conditions for

decentralized opacity in terms of sets of reachable states. In the case of colluding

adversaries, we derive a condition for non-opacity in terms of the structure of the

communication graph.

We extend this work to formulate notions of opacity for discrete-time switched

linear systems. A switched system consists of a finite number of subsystems and a

rule that orchestrates switching among them. We distinguish between cases when

the secret is specified as a set of initial modes, a set of initial states, or a combination



of the two. The novelty of our schemes is in the fact that we place restrictions on: i)

the allowed transitions between modes (specified by a directed graph), ii) the number

of allowed changes of modes (specified by lengths of paths in the directed graph), and

iii) the dwell times in each mode. Each notion of opacity is characterized in terms

of allowed switching sequences and sets of reachable states and/ or modes. Finally,

we present algorithmic procedures to verify these notions, and provide bounds on

their computational complexity.

Second, we study the resilience of CPSs to denial-of-service (DoS) and integrity

attacks. The CPS is modeled as a linear structured system, and its resilience to

an attack is interpreted in a graph-theoretic framework. The structural systems

approach presumes knowledge of only the positions of zero and nonzero entries in

the system matrices to infer system properties. This approach is attractive due to the

fact that these properties will hold for almost every admissible numerical realization

of the system. The structural resilience of the system is characterized in terms of

unmatched vertices in maximum matchings of the bipartite graph and connected

components of directed graph representations of the system under attack. Further,

we establish a condition based on the zero structure of an input matrix that will

ensure that the system is structurally resilient to a state feedback integrity attack

if it is also resilient to a DoS attack.

Finally, we formulate an extension to the case of switched linear systems, and

derive conditions for such systems to be structurally resilient to a DoS attack.
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Chapter 1: Introduction

Cyberphysical systems (CPSs) are complex systems in which the functioning

of the physical system is governed by computers that communicate instructions

and operational protocols over a network. The presence of a network, which may

be wired or wireless, is indicative of the fact that computational resources and

bandwidth can also affect the operation of the CPS. CPSs are ubiquitous; examples

include power systems, water distribution networks, and on a smaller scale (but

no less complex), medical devices and home control systems [1]. While computer-

controlled systems are more efficient, the sharing of information among devices and

across geographies makes the system vulnerable to attacks. An attack could be

carried out on the physical system, on the computer(s) controlling the system, or

on the communication links between the system and the computer. Moreover, these

attacks could be carried out remotely. Thus, significant material damage can be

caused by an attacker who is able to gain access to the system remotely, and such

attacks will often have the consequence of causing widespread disruption to everyday

life.

The following two examples serve to illustrate the potential damage and dis-

ruption that can be caused by an attack on a CPS:

1



1. In December 2015, an attack was carried out on the power grid in Ukraine,

where attackers remotely gained access to circuit breakers which brought sev-

eral substations offline. They also remotely disabled backup power supplies,

and flooded call centers with fake calls, to prevent affected customers from

reporting complaints. This left more than 200, 000 people without electricity

for several hours. The possible impact of a similar attack on the United States

power grid is examined in [2].

2. In an experiment reported in [3], the authors carried out an attack on the

Antilock Braking System (ABS) of a vehicle. They developed a spoofer that

would inject a spurious magnetic field in order to tamper with measurements

of speed sensors located on the wheels of the vehicle. The result was that the

ABS did not work as intended because of the incorrect speed reported to it.

Further, this particular attack was completely noninvasive, in the sense that

it did not require tampering with sensors on the original system.

Several other instances of attacks on CPSs have been documented in the lit-

erature [4], [5]. A compilation of potential challenges in securing these systems to

such attacks is tabled in [6].

It is very difficult to ensure that a CPS will be immune to every possible attack.

However, it is important that all stakeholders actively work towards ensuring that

the system is resilient to a large class of attacks, and further, formulate techniques

and develop tools in order to make it difficult for an attacker to carry out an attack.

The requirements of a system to address security concerns can be given by the CIA
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Triad, as enumerated in [7]. We restate them here:

1. Confidentiality is the ability to keep information from falling into the wrong

hands. A lack of confidentiality will result in disclosure of sensitive data.

An example of a system where maintaining confidentiality is of interest is in

smart grids, where individual users supply data about their energy usage to

a utility company, which then decides on the price per unit of electricity and

the amount of electricity to be generated, among other things. However, the

users would want to keep their individual usage hidden from an eavesdropper

who might be able to use this data to determine, for instance, whether the

user is at home or not, based on their electricity consumption patterns.

2. Integrity involves maintaining accuracy and trustworthiness of data. Measures

to ensure integrity include user access controls and file permissions. A lack of

integrity will result in deception. For a CPS, maintaining integrity will enable

it to be resilient to deception attacks carried out on the sensors and actuators.

3. Availability ensures that trusted parties will have access to information on

demand. Some means to ensure availability of data include safeguards against

interruptions when data is being accessed, and backups to ensure redundancy.

A lack of availability will result in denial of service. A denial of service attack

could lead to the blocking of sensing and actuating signals, resulting in a loss

of controllability or stability of the system.

If one chooses to focus on the flow of information from the CPS to the attacker

[8, 9], to gain illicit access to a CPS (or any other system), a prospective attacker
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must be able to extract useful information pertaining to the system, which can then

be used by him or her to subvert the operation of the system. Thus, information

critical to nominal operation should be safeguarded in a well designed system. This

motivation has led researchers to develop approaches for analyzing how opaque the

system behavior is to an adversary. Opacity is a property that captures whether an

intruder, modeled as an adversarial observer, can infer a ‘secret’ of a system based

on its observation of the system behavior. The current state-of-the-art in this area

studies opacity within the framework of discrete event systems (DESs) described by

regular languages [10, 11]. Techniques from supervisory control have been used to

enforce opacity on a system [12, 13] that was not opaque initially. In other words,

it was shown that a controller could be designed to disable actions that would lead

to the leaking of the secret.

Although this theory is quite rich, a shortcoming is that it only studies the case

when the states are discrete (like in a DES). In many practical systems, it is common

for the system variables to take values in a continuous domain. This is indeed the

case in CPSs like power systems and water distribution networks. To address this,

in this dissertation, we model the CPS as a discrete-time linear time-invariant (DT-

LTI) system [14] (thus, while time steps are discrete, the state, control, and output

variables are real valued). We will use tools from control theory to study opacity

for such systems.

A second shortcoming is that a large part of the current literature that studies

the security of CPSs assumes complete knowledge of the system parameters, and

analyzes the consequences of attacks on these systems. Parameters in CPSs with a

4



large number of state and measured variables are prone to variations. Conventional

methods of analysis based on these models for every possible numerical realization of

the system variables might therefore be computationally infeasible. The structural

systems approach, introduced by Lin in [15], offers a way out of this conundrum.

This technique presumes knowledge of just the zero structures (that is, the posi-

tions of zero and nonzero entries) of the system matrices to infer system properties.

This approach is attractive since these properties will hold for almost every valid

numerical realization.

1.1 Related Work

In this section, we summarize prior work in the literature that is relevant to

the two broad topics that is the focus of this dissertation.

1.1.1 Literature Review: Opacity

Opacity was first presented as a tool to study cryptographic protocols in [16].

The intruder was modeled as a passive observer who could read messages exchanged

between two parties, but could not modify, block, or send a message. The aim of the

parties was to exchange secret information without making it obvious to the intruder.

A theory of supervisory control for DESs represented by finite state automata (FSA)

and regular languages was formulated in [17,18]. This framework spawned research

in many areas including fault diagnosis [19], hybrid systems [20], and robotics [21].

DESs were used to study opacity in [10], which assumed multiple intruders
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with different observation maps. Under the assumption that the supervisor could

control all events, it was shown that there existed an optimal control that enforced

opacity. In the DES framework, the secret could have been specified as a subset of

states or a sublanguage of the system. A notion of opacity was formulated for each

instance accordingly. Verification of the opacity of a secret specified as a language

was presented in [12, 22], while [11, 23, 24] studied the same for secrets specified as

states. Language and state based notions of opacity were shown to be equivalent

in [25], where algorithms (that were polynomial in the number of states) to trans-

form one notion of opacity to the other were presented. Opacity was compared with

detectability and diagnosability of DESs, and other privacy properties like secrecy

and anonymity in [26]. A subsequent paper [27] defined opacity for DESs in a decen-

tralized framework with multiple adversaries, each carrying out its own observation

of the system.

The enforcement of opacity using techniques from supervisory control was

studied in [12, 13]. The authors of [28] formulated an alternate method of opacity

enforcement using insertion functions, which are entities that modify the output

behavior of the system in order to maintain a secret. A notion of joint opacity was

also proposed in this paper, in which a system could have been observed by multiple

adversarial observers who share their observations with a coordinator, which then

verifies opacity.
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1.1.2 Literature Review: The Structural Approach

System- and graph-theoretic conditions were formulated and proved in [14,29]

for an attack on a cyberphysical system (modeled as a linear descriptor system sub-

ject to unkown inputs) to be undetectable and unidentifiable by monitors. In [30], for

a wireless control network modeled as a discrete-time linear time-invariant system,

under the assumption that (A,B) was stabilizable and (A,C) was detectable, the

authors presented methods to determine a subset of columns BI ⊂ B, and a subset

of rows, CJ ⊂ C such that (A,BI) was stabilizable and (A,CJ) was detectable1.

The success of different kinds of attacks on linear time-invariant (LTI) systems

in terms of the ability to ensure or disrupt controllability of a suitably modified LTI

system was characterized in [31]. It is this approach that we wish to extend to

structured linear systems. Interpreting security properties within this framework

will allow for a characterization of resilience to attacks for general classes of CPSs.

We note that [31] also modeled classes of attacks using notions from game theory,

but we do not provide an analogue in this work.

The structural design of large scale systems was studied in [32]. The input and

output matrices were designed to select the smallest number of actuated and sensed

variables to ensure structural controllability and observability. The state feedback

matrix was then designed to ensure the minimum number of input-output intercon-

nections and such that the closed loop system had no structural fixed modes2.

1Here, A,B, and C are the system, input, and output matrices of a linear time invariant system:

ẋ + Ax + Bu; y = Cx.
2For the purposes of this dissertation, it is sufficient to understand that the absence of structural
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Control selection problems have attracted a lot of attention of late. For an

LTI system, given the system matrix A, the minimal controllability problem aims

to find the sparsest input matrix B, that will ensure that the system described by

(A,B) is controllable. In the unconstrained case, this problem was shown to be

NP−hard in [33]. Interestingly, the authors of [32] showed that the minimal struc-

tural controllability problem was polynomially solvable. The minimal controllability

problem for single input structural systems was studied in [34], which showed that

this problem was solvable when a rank condition was satisfied; in the case when

no structure was imposed on the system matrix, the problem was solvable with a

single nonzero entry in the input matrix. Further, the authors of [35] showed that

the minimum constrained input selection problem was NP−hard. In this problem,

given the structures of the system and input matrices, the goal was to determine a

minimal set of indices of columns of the input matrix to ensure structural control-

lability. They also showed that if the system matrix had a certain structure, the

minimum dedicated input selection problem was polynomially solvable.

In [36], given the costs of actuating each state, the minimum cost structural

controllability problem was shown to be polynomially solvable. This work was ex-

tended to the constrained case by the authors of [37], and the minimum cost con-

strained structural controllability problem was shown to be NP−hard by deriving

a reduction from the constrained minimum input selection problem. This problem

was polynomially solvable when the system matrix was irreducible or, equivalently,

the directed graph of the system was strongly connected. We note that most of the

fixed modes will allow arbitrary placement of the closed loop poles of the system.
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recent work only deals with determining the smallest subset of the [B] matrix to

ensure controllability of the system. However, the structural controllability of the

system can also be influenced by changing the number of connections from controls

to states.

The structural controllability of switched linear systems was studied in [38],

where the authors used union graphs and colored union graphs to determine condi-

tions that would ensure structural controllability. In particular, a switched system

can be controllable even when each of its individual modes is not controllable. The

problem of determining the smallest subset of actuators needed to ensure structural

controllability of a switched system was studied in [39]. The authors also presented

a polynomial algorithm to determine such a subset of actuators. However, the prob-

lem of selecting a minimum collection of modes from among a sequence of modes

to ensure that the switched system is structurally controllable was shown to be

NP−hard.

In this dissertation, we will formulate conditions to ensure the structural re-

silience of a system to an attack in relation to the structural controllability of the

system after a subset of its inputs are ‘disconnected’.

1.2 Contributions of this Dissertation

1.2.1 Developing a Unified Framework for Opacity in Cyberphysical

Systems

The contributions as a result of this work are listed below:
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1. For CPSs represented as a discrete-time linear time-invariant system with a

single adversarial observer, we define a notion of opacity at a time k called

k-initial state opacity (k-ISO) [40]. A set of secret states is said to be k-ISO

with respect to a set of nonsecret states if the outputs at time k of every

trajectory starting from the set of secret states cannot be distinguished from

the output at time k of some trajectory starting from the set of nonsecret

states. Necessary and sufficient conditions to achieve k-ISO are presented in

terms of sets of reachable states. Opacity of a given DT-LTI system is shown

to be equivalent to the output controllability of a system obeying the same

dynamics, but with different initial conditions.

2. We extend this to the case when there is more than one adversarial ob-

server [41], where we define several notions of decentralized opacity. These

notions of decentralized opacity will depend on whether there is a centralized

coordinator or not, and the presence or absence of collusion among the adver-

saries. Conditions for decentralized opacity will be established in terms of sets

of reachable states. In the case of colluding adversaries, we derive a condition

for nonopacity in terms of the structure of the communication graph.

3. Finally, we formulate notions of opacity for switched linear systems (SLSs) [42].

An SLS consists of a finite number of linear subsystems (called modes) and a

rule that governs the switching among them. Many practical systems can be

modeled as operating in one of several modes, often switching from one mode
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of operation to another3. We will distinguish between the cases when the

secret is specified as an initial mode, an initial state, or a combination of the

two, and whether the adversary will observe a mode, a function of the state,

or a combination of the two. Constraints will be placed on the modes that

the system will be allowed to transition into from a given mode and we will

impose bounds on the dwell times in each mode. Moreover, constraints will

be imposed on the number of changes of modes before the adversary makes its

observation in our definitions of opacity for SLSs. In each case, we will present

conditions that will establish that particular notion of opacity. We will also

enumerate algorithmic procedures that provide conservative upper bounds on

the computational complexity to verify these notions of opacity.

This body of work follows a natural progression, in that we will start by for-

mulating notions of opacity for linear time-invariant systems with a single adversary,

extend this to the case of multiple adversaries, and finally combine the DES frame-

work with ours to establish notions of opacity for switched linear systems [46].

1.2.2 Characterizing the Structural Resilience of Cyberphysical Sys-

tems to Attacks

For the structural resilience problem, the CPS is modeled as a linear struc-

tured system, and structural conditions for an attack to be successful, in terms of

3Further, it has been shown that switching control strategies can achieve better control perfor-

mance than nonswitching strategies. The reader is referred to [43], [44], [45] for an introduction

to the design and control of switched systems.
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disrupting or obtaining controllability of a (modified) linear structured system are

provided. The structural resilience of the system to denial of service (DoS) attacks

and integrity attacks is characterized in terms of the structural controllability of

an associated linear structured system. Specifically, the contribution in this area is

threefold:

1. First, we characterize the structural resilience of the system in terms of un-

matched vertices in maximum matchings of the bipartite graph and connected

components of the directed graph representations of the system under at-

tack [47].

2. Next, we present conditions under which a system that is already structurally

resilient to a DoS attack will also be structurally resilient to a type of integrity

attack called a state feedback integrity attack.

3. Finally, we provide extensions to the case of switched linear systems. Switched

linear systems are systems that can operate in one of several modes, each

of which is a linear system, and can switch from one mode of operation to

another [48]. We derive graph-theoretic conditions for the structural resilience

of such systems to DoS attacks.

1.3 Outline of Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2 gives a review of the notions of opacity studied for discrete event

systems, and an introduction to structured linear systems and graph theory. We
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will define several terms that will be needed to understand the results presented in

subsequent chapters.

Notions of opacity for continuous state systems is the subject of Chapters 3,

4, and 5, where we focus on linear time-invariant systems with a single adversar-

ial observer, linear time-invariant systems with multiple adversarial observers, and

switched linear systems respectively. The various notions of opacity are character-

ized in terms of sets of reachable states.

Chapter 6 presents a characterization of the resilience of a cyberphysical sys-

tem (CPS) modeled as a linear structured system to denial-of-service (DoS) attacks.

The resilience of the system to an attack is interpreted in terms of unmatched vertices

in maximum matchings of bipartite graph, and connected components of directed

graph representations of the system under attack.

We conclude this dissertation by presenting future directions of research in

Chapter 7.
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Chapter 2: Preliminaries

This chapter presents a review of the notions of opacity studied for discrete

event systems, and an introduction to structured linear systems and graph theory,

and defines several terms that will be needed to understand the results in this

dissertation.

Notions of opacity for discrete event systems are presented in Section 2.1.

A DES is typically modeled as a finite state automaton, and the secret can be

specified as a subset of states or a sublanguage of this automaton. The reader is

referred to [11, 25, 26] for a more detailed exposition on opacity for discrete event

systems.

Section 2.2 provides an introduction to structured linear systems. The struc-

tural approach presumes knowledge of only the zero structures of the matrices in a

linear time-invariant model of the CPS under consideration. This characterization

can be thought of as a representation of how the variables (state, input, and output

variables, as the case may be) of the system influence one another. Furthermore,

this approach naturally lends itself to representations of the system as directed and

bipartite graphs. Section 2.3 is a primer on graph theory. The interested reader is

referred to the survey paper [49] for a more detailed exposition and references to
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prior work in this area.

2.1 Opacity for Discrete Event Systems

2.1.1 Languages and Automata

Let Σ be an alphabet, and let Σ∗ be the set of all strings of elements from

Σ of finite length, including the empty string ε. A language L is a subset of the

strings of finite length in Σ∗. Let G = (X,Σ, f,X0) be an finite state automaton,

where X is a nonempty set of states, X0 ⊆ X is a nonempty set of initial states,

and Σ represents the set of events. f : X × Σ→ X is the (partial) state transition

function: given x, y ∈ X and σ ∈ Σ, f(x, σ) = y if the execution of σ from x takes

the system to y. We write f(x, σ)! if f(x, σ) is a valid transition. The transition

function is extended to f : X × Σ∗ → X in the usual recursive way:

f(x, ε) := x

f(x, se) := f(f(x, s), e) for s ∈ Σ∗, e ∈ Σ.

The language generated by G is L(G) := {s ∈ Σ∗ : f(x, s)!}, and describes all

possible trajectories of the system. Let K1 and K2 be sublanguages of L(G).

Let P : Σ∗ → Σ∗ be a projection map. Then, if a string of events s occurs in

the system, an external agent would see P (s). P can be extended from strings to

languages as follows: for languages L, J ⊆ Σ∗, define

P (L) = {t ∈ Σ∗ : (∃s ∈ L)t = P (s)}

P−1(J) = {t ∈ Σ∗ : P (t) ∈ J}
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2.1.2 Notions of Opacity

A secret specification (states, or language) will be opaque with respect to a

nonsecret specification if every secret execution (will be made clear subsequently) is

indistinguishable from a nonsecret execution. The notion of opacity under consid-

eration will depend on how the secret is specified (sublanguage, set of initial states,

or set of current states).

Definition 2.1. K1 is strongly language based opaque (LBO) with respect to K2

and P if for every trajectory in K1, there exists a trajectory in K2 that ‘looks’ the

same under P , i.e. K1 ⊆ P−1(P (K2)).

Definition 2.2. K1 is weakly LBO with respect to K2 and P if there exists a

trajectory in K1 that is confused with some trajectory in K2, under P , i.e. K1 ∩

P−1(P (K2)) 6= φ.

Definition 2.3. Given G with Xs, Xns ⊆ X0, and P , Xs is initial state opaque

(ISO) with respect to Xns and P if for every i ∈ Xs and every t ∈ L(G, i) such that

f(i, t) is defined, there exists j ∈ Xns and t′ ∈ L(G, j) such that f(j, t′) is defined

and P (t) = P (t′).

Definition 2.4. Given G with Xs, Xns ⊆ X, and P , Xs is current state opaque

(CSO) w.r.t. Xns and P if for every i ∈ X0 and t ∈ L(G) such that f(i, t) ∈ Xs,

there exists j ∈ X0 and t′ ∈ L(G) such that f(j, t′) ∈ Xns and P (t) = P (t′).

These state-based and language-based definitions are essentially equivalent,

since it has been shown that there exist algorithms polynomial in the number of
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states that relate any pair of the notions of opacity [25].

2.1.3 Examples

Example 2.5. [25] Consider the FSA G shown in Figure (2.1). Let the set of

observable events be given by Σo = {a, b, c}. It is language based opaque when Ls =

{abd} and Lns = {abcc∗d, adb} because whenever the intruder sees P (Ls) = {ab}, it

is not sure whether the string abd or the string adb has been executed. Notice that

this system is not LBO if Ls = {abcd} and Lns = {adb}. No string in Lns appears

the same as the secret string abcd.

Figure 2.1: Language Based Opacity

Example 2.6. [23]

Consider the FSA G in Figure (2.2), with Σo = {a, b}, Xs = {x3} and Xns =

X \ Xs. Xs is intial state opaque with respect to Xns because for every string s

starting from x3, there is another string εs starting from x1, that looks the same.

However, ISO does not hold if Xs = {x1}. In this case, whenever the intruder sees

the string aa, it is sure that the system started from Xs (i.e., no other initial state
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Figure 2.2: Initial State Opacity

can generate a string that appears the same as aa).

2.2 Structured Linear Systems

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t) (2.1)

where x(t) ∈ Rn, u(t) ∈ Rp, A ∈ Rn×n and B ∈ Rn×p.

Definition 2.7. The system in Equation (2.1) is said to be controllable if for every

initial state x(0) = x0 and final state x(tf ) = xf , there exists an input u(·) on [0, tf ]

that transfers the system from x0 to xf .

Verifying the controllability of an LTI system of the form in Equation (2.1)

where the states and inputs are defined on finite dimensional vector spaces is equiv-

alent to checking a matrix rank condition, as stated in the following result.
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Theorem 2.8. [50] The system in Equation (2.1) is controllable if and only if

rank(
(
B AB . . . An−1B

)
) = n.

The notions of structured linear systems and structural controllability were

introduced by Lin in [15]. This framework assumes knowledge of only the zero

stuctures, [A] ∈ {0, ∗}n×n and [B] ∈ {0, ∗}n×p, of A and B respectively. That is,

every entry in [A] and [B] is either a fixed zero or a free parameter. [A] and [B] are

called structured matrices.

The rows and columns of [A] indicate how the states of the system influence

one another. A nonzero entry aij ∈ [A] indicates that the jth component of the state

vector, xj, influences changes in the ith component, xi (the jth and ith entries in the

state vector of dimension n). The rows and columns of [B] indicate how inputs to

the system influence the states. In this case, a nonzero entry bij ∈ [B] indicates

that a change in xi is influenced by the input uj (the jth entry in the input vector of

dimension p). A zero entry in either case would imply the lack of an interconnection

between corresponding state and/ or input variables.

The reader is encouraged to think of the structured representation of a system

in the following way:

Example 2.9. Consider a symmetric structured matrix [H] ∈ {0, ∗}n×n that is rep-

resentative of a power system. The dimension of [H], n, is indicative of the number

of components in the system (generators, transformers, loads). A free parameter

hij = ∗ signifies that there is a wire connecting components i and j, with the di-

rection of current through the wire from j to i. Likewise, a fixed zero entry in [H]
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corresponds to the absence of a wire between the respective components. hij = ∗ is

an indicator of the fact that changes in the numerical value of a parameter asso-

ciated with component j influences changes in the numerical value of a parameter

associated with component i. This parameter could be the current flowing through

the component, or the voltage drop across the component, and is not precluded from

being set to (the numerical value) zero. For example, when two purely resistive loads

are connected to each other, hij = hji = ∗; this free parameter can be assumed to

take the numerical value 0 when both these loads are isolated from a source.

Remark 2.10. In the sequel, the components of the state (input) vectors will cor-

respond to state (input) vertices in a directed graph. As we will describe in the next

part of this section, the edges in this graph will be determined by the [A] and [B]

matrices.

A matrix H ∈ Rm×n with the same zero structure as the structured matrix

[H] ∈ {0, ∗}m×n is called an admissible numerical realization of [H].

Definition 2.11. ([A], [B]) is structurally controllable if there exists an admissible

numerical realization (A,B) that is controllable.

Remark 2.12. If ([A], [B]) is structurally controllable, then almost every admissible

numerical realization will be controllable1.

1Some authors refer to such a system as generically controllable [49]
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2.3 Graph Theory

Directed graphs (digraphs) provide an elegant means to represent linear struc-

tured systems [32]. Properties of the system such as controllability and observability

can be inferred from a digraph associated with the system, and independently of

numerical values of parameters. This makes it an attractive tool to study large

scale, complex systems, on which performing computations using numerical values

of variables will invariably be costly. Consider the linear structured system

ẋ(t) = [A]x(t) + [B]u(t) (2.2)

where, x(t) ∈ Rn, u(t) ∈ Rp, [A] ∈ {0, ∗}n×n and [B] ∈ {0, ∗}n×p.

The directed graph of the structured system is D = (V , E), where:

• V = {u1, . . . , um, x1, . . . , xn} := {U ,X};

• E = EA ∪ EB, where EA = {(xj, xi)|[A]ij 6= 0}, EB = {(uj, xi)|[B]ij 6= 0}.

A sequence of directed edges {(v1, v2), (v2, v3), . . . , (vk−1, vk)} is a simple path

from v1 to vk if the vertices v1, . . . , vk are all distinct. The simple path described

above, with an additional edge, (vk, v1), or a vertex with a self loop, is called a cycle.

A vertex w2 is reachable from another vertex w1 if there exists a simple path from

w1 to w2. Let V1,V2 ⊆ V . Two paths from V1 to V2 are disjoint if they consist of

disjoint sets of vertices. A set of v mutually disjoint and simple paths from V1 to

V2 is a linking of size v from V1 to V2. A cycle family is a set of mutually disjoint

cycles. A U−rooted path is a simple path with source vertex in U . A U−rooted path

family is a set of mutually disjoint U−rooted paths.
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A digraph Ds = (Vs, Es) is a subgraph of D if Vs ⊆ V and Es ⊆ E . If Vs = V ,

then Ds is said to span D. A subgraph Ds satisfying a property P is maximal if

there is no other subgraph Ds′ such that Ds is a strict subgraph2 of Ds′ and property

P holds for Ds′ .

D is strongly connected if there is a simple path from each vertex to every

other vertex in the graph. A strongly connected component (SCC) is a maximal

subgraph DS, of D, such that DS is strongly connected. With SCCs as supernodes

(an agglomeration of vertices of the graph), one can generate a directed acyclic graph

(DAG) in which each supernode corresponds to an SCC, and there exists a directed

edge between two SCCs if and only if there exists a directed edge connecting vertices

in the SCCs in the original digraph. An SCC is linked if it has at least one incoming

(outgoing) edge to (from) its vertices from (to) vertices of another SCC. An SCC is

non top (bottom) linked if it has no incoming (outgoing) edges to (from) its vertices

from (to) vertices of another SCC3.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets

V1 and V2 such that every edge in the graph is from a vertex in V1 to a vertex in V2, or

from a vertex in V2 to a vertex in V1. The bipartite graph is denoted B(V1,V2, EV1,V2).

In this dissertation, we will restrict our discussion to bipartite graphs in which all

edges are directed from V1 to V2, that is, EV1,V2 ⊂ {(v1, v2)|v1 ∈ V1, v2 ∈ V2}.

B(V1,V2, EV1,V2) can also be associated with a matrix H with |V1| columns and |V2|
2A subgraph is strict if it is the case that at least one of Vs ⊂ V or Es ⊂ E holds.
3Non top (bottom) linked SCCs are called source (sink) SCCs in the graph theory literature.

In this document, however, we will use the terminology from [32].
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rows, with EV1,V2 = {(v1j , v2i) : [H]ij 6= 0}. Given B(V1,V2, EV1,V2), a matching is a

subset of edges that do not share vertices. A maximum matching is a matching that

has the largest number of edges. Vertices not belonging to a maximum matching are

called unmatched. An unmatched vertex v2 ∈ V2 (respectively, v1 ∈ V1) is called a

right unmatched vertex (left unmatched vertex ). A perfect matching is a maximum

matching with no unmatched vertices.

The bipartite graph associated with a directed graph D(V , E) is constructed in

the following way [51]: to each vi ∈ V , we associate two vertices ui and wi. There is

a directed edge from ui to wj in the new graph if and only if there is an edge from

vi to vj in D(V , E). We abuse notation by using B(V ,V , E) to denote the bipartite

graph associated with D(V , E).

The following example will help in making the preceding discussion clear.

Example 2.13. Figure (2.3) shows the directed graph and bipartite graph represen-

tations corresponding to the system matrix [A] given below:

[A] =



0 0 ∗ 0 0 0 0

∗ 0 0 0 0 0 0

0 ∗ 0 0 0 0 0

0 ∗ 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ∗ 0 0 ∗

0 0 0 0 ∗ ∗ 0



The strongly connected components of the directed graph, D([A]), are the ver-
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Figure 2.3: Structured system of Example 2.13 as a graph

tices within each dotted box. The dotted boxes in green (comprising the vertex (v5)

and the vertices (v1, v2, v3)) represent the non top-linked SCCs. The bipartite graph

representation, B([A]) is got by duplicating each vertex of the directed graph, and

the edges are determined by the edges in D([A]). The edges of B([A]) in blue form a

maximum matching. Removing the vertices that are incident on edges in the max-

imum matching, we see that w3 and w5 are right unmatched vertices. Notice that

this maximum matching is not unique. Another maximum matching could be got by

removing the edge (u2 → w4) from the previous maximum matching and adding the

edge (u2 → w3). The right unmatched vertices of this maximum matching will be w4

and w5.
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2.4 Scope of this Dissertation

This chapter was a means to bring the reader up to speed on the background

material relevant to the susbequent chapters. It is evident that the treatment of

opacity in the literature only considers a very restricted class of systems, namely,

discrete event systems. One of the goals of this dissertation is to define and analyze

notions of opacity that might be applicable to larger classes of systems that might

comprise general cyberphysical systems. The second goal is to leverage the tools and

techniques of the structural approach to characterize the resilience of a cyberphysical

system to denial-of-service attacks. We will then extend these results to other types

of attacks, and more general structured systems.
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Chapter 3: Opacity for Linear Systems: The Single Adversary Case

Although the presentation of opacity for discrete event systems is well-motivated

and elegant, a shortcoming of the framework is that it only addresses the case when

the states of the system are discrete. The states in CPSs like power systems and

water networks are typically real valued. It is this gap that we seek to bridge in this

dissertation, by formulating notions of opacity for continuous state systems. The

system is modeled as a discrete-time linear time-invariant system. Therefore, while

the time steps are discrete, the state, input and output variables are real valued.

We use tools from control theory to study opacity for such systems.

We define a notion of opacity at a time k called k-initial state opacity (k-ISO)

in Section 3.1. A set of secret states is said to be k-ISO with respect to a set of

nonsecret states if the outputs at time k of every trajectory starting from the set of

secret states can not be distinguished from the output at time k of some trajectory

starting from the set of nonsecret states. Necessary and sufficient conditions to

achieve k-ISO are presented in terms of sets of reachable states in Section 3.2.

Section 3.3 studies k-ISO under unions and intersections of sets of states. Opacity

of a given DT-LTI system is shown to be equivalent to the output controllability of

a system obeying the same dynamics, but with different initial conditions in Section
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3.4. Finally, the necessity of indistinguishability of outputs in the definition of k-ISO

is relaxed, and we define a notion of ε-opacity in Section 3.5.

3.1 Opacity for LTI Systems

Consider the system:

x(t+ 1) = Ax(t) +Bu(t)

x(0) = x0 ∈ X0

y(t) = Cx(t) (3.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and A,B,C are matrices of appropriate dimensions

containing real entries.

Let K be a set of positive integers, corresponding to the instants of time at

which the adversary makes an observation of the system. The subscript s (ns),

when appended to the states, inputs, and outputs, will correspond to trajectories

that start from the set of initial secret (nonsecret) states. The adversary is assumed

to have knowledge of the initial sets of secret and nonsecret states, Xs and Xns,

the system model (A,B), and its own observation map C. Further, we assume

that it has unlimited computing power, in that it will be able to compute the sets

of reachable states at time k. Its goal is to deduce, on the basis of observing the

system at times k ∈ K, whether the system started from a state in Xs or not.

Definition 3.1. For the system (3.1), given Xs, Xns ⊂ X0 and k ∈ K, Xs is

strongly k-initial state opaque (k-ISO) with respect to Xns if for every xs(0) ∈ Xs
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and for every sequence of admissible controls us(0), . . . , us(k − 1), there exist an

xns(0) ∈ Xns and a sequence of admissible controls uns(0), . . . , uns(k − 1) such that

ys(k) = yns(k).

Xs is strongly K-ISO with respect to Xns if Xs is strongly k-ISO with respect

to Xns for all k ∈ K.

This means that starting from any secret state and applying any sequence of

k admissible controls (corresponding to the instants the adversary makes an obser-

vation), the system will reach a state whose observation to the adversary will be

indistinguishable from the observation of a state that can be reached by the appli-

cation of an admissible control sequence of length k, starting from some nonsecret

state. While this notion calls for every state in the set of initial secret states to be

indistinguishable (after some time k) from some state in the initial set of nonsecret

states, the following definition relaxes this requirement.

Definition 3.2. For the system (3.1), given Xs, Xns ⊂ X0 and k ∈ K, Xs is weakly

k-ISO with respect to Xns if for some xs(0) ∈ Xs and for some sequence of admissible

controls us(0), . . . , us(k−1), there exist an xns(0) ∈ Xns and a sequence of admissible

controls uns(0), . . . , uns(k − 1) such that ys(k) = yns(k).

Xs is weakly K-ISO with respect to Xns if Xs is weakly k-ISO with respect to

Xns for all k ∈ K.

These definitions of opacity for LTI systems is different from familiar defini-

tions of observability. The observability problem aims to determine the initial state

x(0), given the entire output and control histories. Here, however, the adversary
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aims to determine x(0) via access to only snapshots of the output and the set of

possible controls. The small number of observations of the system is motivated by

the following:

1. the adversary might not want to reveal its presence.

2. the adversary might not have the resources to continuously monitor the system.

Throughout this document, the set K is arbitrary.

Our formulation is also different from definitions of opacity in the DES litera-

ture. In those cases, the observation of the entire secret trajectory had to coincide

with that of a nonsecret trajectory. We only need that the secret and nonsecret

outputs at time k coincide. k-ISO also differs from the notion of k-step opacity pro-

posed in [52]. In their formulation, k-step opacity was achieved when the adversary

did not know if the system entered a secret state in k previous steps. We require

that the ambiguity exist only at time k. It will subsequently become evident that an

additional requirement to our conditions for k-ISO will also establish k-step opacity.

Finally, k-ISO is also different from the notion of simulation relations between

dynamical systems [53]. Simulation relations typically verify the ‘equality’ of two

systems governed by different dynamics. In our framework, however, we try to

identify equivalence classes of outputs at time k. Opacity is deemed to have been

achieved if the system starting from two disjoint sets of states at time 0 reaches the

same equivalence class of outputs at time k.

Example 3.3. The illustration in Figure (3.1) will be useful to motivate k-ISO.

Consider the problem of a bank needing to transfer money from its offices to an
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Figure 3.1: k-ISO Motivation: ATM Money Transfer

ATM machine.

One way for the bank to do this in a ‘secure’ manner would be to equip the

truck with the best defenses that money can buy. However, this might not be a

cost-effective solution, since customizations might be very expensive, and need to be

continuously updated to stay ahead of potential attackers. An alternative approach

would be for the bank to deploy several identical trucks, only some of which carry

money. This is a reasonable strategy for the bank to adopt, under the assumption

that the cost of carrying out an attack on a truck is very high. The motion of a

truck can be represented as a state space equation with the position and velocity of

the truck as the states, and acceleration as the input. Then, assuming unit mass,
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and unit sampling interval, a discrete-time representation of the system is:p(k + 1)

v(k + 1)

 =

1 1

0 1


p(k)

v(k)

+

0.5

1

 a(k)

y(k) =

[
1 0

]p(k)

v(k)


The position of the truck at a time k is given by:

p(k) = p(0) + kv(0) +
k−1∑
i=0

(k − i− 0.5)a(i)

Let the locations at which the money is loaded (represented by $$$) comprise

the set of secret states (Xs), and the initial locations of the other trucks (represented

by XXX) comprise the set of nonsecret states (Xns). Then, if an adversary observes

p(k) at some time k, Xs will be k-ISO with respect to Xns if it cannot determine

whether the truck started from a location from where money was loaded into it.

That is, for every possible location (at time 0) at which money was loaded, there is

a corresponding location (at time 0) where there was no money loaded such that the

positions of the trucks which start from these locations are the same at time k.

3.2 Opacity and Reachable Sets of States

The adversary has complete knowledge of the system model, and the sets of

initial secret and nonsecret states. However, it does not know the exact control

sequence applied in the time interval [0, k]; it only has knowledge of the sets of

allowed inputs that can be applied. In this light, a possible means of checking that

opacity holds is by relating it to reachability. In this section, we present necessary
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and sufficient conditions to establish k-ISO in terms of sets of reachable states of

the system.

Let Uk
s := {us(0), . . . , us(k − 1)} and Uk

ns := {uns(0), . . . , uns(k − 1)}. Let

Xs(k) and Xns(k) denote the sets of states reachable in k steps, starting at time 0

from nonempty sets Xs and Xns respectively. That is,

Xs(k) =
⋃

x0∈Xs

⋃
Uks

{x : x(i+ 1) = Ax(i) +Bu(i),∀i < k} (3.2)

Xns(k) =
⋃

x0∈Xns

⋃
Ukns

{x : x(i+ 1) = Ax(i) +Bu(i),∀i < k} (3.3)

Theorem 3.4. The following hold:

1. Xs is strongly k-ISO with respect to Xns if and only if CXs(k) ⊆ CXns(k).

2. Xs is strongly K-ISO with respect to Xns if and only if CXs(k) ⊆ CXns(k) for

all k ∈ K.

Proof. First, let strong k-ISO hold. Then, for all xs(0) ∈ Xs, and all {us(·)}k−1
0 ,

there exist xns(0) ∈ Xns and {uns(·)}k−1
0 such that ys(k) = yns(k). Now, starting

from Xs (respectively Xns), and applying k admissible controls, one reaches a state

in Xs(k) (Xns(k)). Therefore, k-ISO ensures that for every xs(k) ∈ Xs(k), there

exists xns(k) ∈ Xns(k), such that ys(k) = yns(k). This gives CXs(k) ⊆ CXns(k).

Next, let CXs(k) ⊆ CXns(k). This means for every xs(k) ∈ Xs(k), there

exists xns(k) ∈ Xns(k), such that ys(k) = yns(k). Since Xs(k) and Xns(k) are the

sets of reachable states starting from Xs and Xns respectively, the previous sentence

translates to: for every xs(0) ∈ Xs and every {us(·)}k−1
0 , there exist xns(0) ∈ Xns

and {uns(·)}k−1
0 such that ys(k) = yns(k). This, by definition, is strong k-ISO.
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The second statement of the theorem easily follows by extending the previous

argument to all k ∈ K.

Remark 3.5. This result can be easily extended to verify k-step opacity if CXs(k) ⊆

CXns(k) for all k ∈ K := {m,m− 1, . . . ,m− k + 1} for some positive integer m.

Remark 3.6. Xs(k) ⊆ Xns(k) is only a sufficient condition for Xs to be strongly

k-ISO with respect to Xns. To see that this condition is not necessary, let C =(
1 1 1

)
, and Xs(k) =

(
1 0 0

)T
and Xns(k) =

(
0 1 0

)T
. Then, CXs(k) = CXns(k),

establishing k-ISO, even though Xs(k) 6⊆ Xns(k).

Similar results hold for weak k-ISO. The proofs follow identically.

Theorem 3.7. The following hold:

1. Xs is weakly k-ISO with respect to Xns if and only if CXs(k) ∩CXns(k) 6= φ.

2. Xs is weakly K-ISO with respect to Xns if and only if CXs(k) ∩ CXns(k) 6= φ

for all k ∈ K.

Remark 3.8. Xs(k)∩Xns(k) 6= φ is a sufficient condition for Xs to be weakly k-ISO

with respect to Xns.

Figures 3.2a, 3.2b, and 3.2c respectively show the representations of strong

k-ISO, weak k-ISO, and non-opacity in terms of sets of reachable states at time k.

3.3 k-ISO Under Set Operations

Properties of k-ISO are studied under unions and intersections. The properties

verified will be for strong k-ISO, unless otherwise mentioned. Let X denote the set
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(b)

(c)

Figure 3.2: Representations of strong, weak, and non-opacity in terms of sets of

reachable states
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of initial states, and X(k) be the set of states reachable in k steps, starting from X

at time 0.

We first study the effect of the set union operation on k-ISO. Lemmas 3.9 and

3.10 establish basic results on sets of reachable states and outputs under set union.

Lemma 3.9. Given sets of initial states X1, X2, · · · ⊆ X, the reachable set in k

steps of their union is equal to the union of the reachable sets in k steps of each set

of initial states. That is, (
⋃
iXi)(k) =

⋃
iXi(k).

Proof.

x ∈ (
⋃
i

Xi)(k)

⇔∃x0 ∈ (
⋃
i

Xi),∃{u(·)}, (3.1) holds ∀i < k, x(k) = x

⇔[(∃x0 ∈ X1 ∧ ∃{u(·)}) s.t. (x ∈ X1(k))]∨

[(∃x0 ∈ X2 ∧ ∃{u(·)}) s.t. (x ∈ X2(k))] ∨ . . .

⇔x ∈
⋃
i

Xi(k)

Lemma 3.10. Given X1, X2, · · · ⊆ X and C : Rn → Rm, C(
⋃
iXi)(k) =

⋃
iCXi(k).
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Proof.

y ∈ C(
⋃
i

Xi)(k)

⇔∃x ∈ (
⋃
i

Xi)(k) such that y = Cx

⇔∃x ∈
⋃
i

Xi(k) such that y = Cx

⇔(y = Cx ∧ x ∈ X1(k)) ∨ (y = Cx ∧ x ∈ X2(k)) ∨ . . .

⇔(y ∈ CX1(k)) ∨ (y ∈ CX2(k)) ∨ . . .

⇔y ∈
⋃
i

CXi(k)

Lemmas 3.9 and 3.10 are used to study k-ISO under set union, as stated in

Theorems 3.11 and 3.12.

Theorem 3.11. If Xsi is k-ISO with respect to Xns for each i, then
⋃
iXsi is k-ISO

with respect to Xns.

Proof.

Xsi k − ISO w.r.t. Xns∀i

⇔CXsi(k) ⊆ CXns(k)∀i

⇔
⋃
i

CXsi(k) ⊆ CXns(k)

⇔C(
⋃
i

Xsi(k)) ⊆ CXns(k)

⇔
⋃
i

Xsi is k − ISO w.r.t. Xns
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Theorem 3.12. If Xs is k-ISO w.r.t. Xnsi for each i, then Xs is k-ISO w.r.t.⋃
iXnsi

Proof.

Xs k − ISO w.r.t. Xnsi∀i

⇔CXs(k) ⊆ CXnsi(k)∀i

⇔CXs(k) ⊆
⋃
i

CXnsi(k)

⇔CXs(k) ⊆ C(
⋃
i

Xnsi(k))

⇔Xs k − ISO w.r.t.
⋃
i

Xnsi

We now turn our attention to k-ISO under set intersection. Lemmas 3.13

and 3.14 establish basic results on sets of reachable states and outputs under set

intersection. These results will be useful while studying k-ISO under set intersection,

as we will show in Theorems 3.16 and 3.17.

Lemma 3.13. Given sets of initial states X1, X2, · · · ⊆ X, the reachable set in k

steps of the intersection of the sets of initial states is contained in the intersection

of the reachable sets in k steps of each set of initial states. That is, (
⋂
iXi)(k) ⊆⋂

iXi(k).
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Proof.

x ∈ (
⋂
i

Xi)(k)

⇒∃x0 ∈ (
⋂
i

Xi),∃{u(·)}, (3.1) holds ∀i < k, x(k) = x

⇒[(∃x0 ∈ X1 ∧ ∃{u(·)}) s.t. (x ∈ X1(k))]∧

[(∃x0 ∈ X2 ∧ ∃{u(·)}) s.t. (x ∈ X2(k))] ∧ . . .

⇔x ∈
⋂
i

Xi(k)

Lemma 3.14. Given X1, X2, · · · ⊆ X and C : Rn → Rm, C(
⋂
iXi)(k) ⊆

⋂
iCXi(k).

Proof.

y ∈ C(
⋂
i

Xi)(k)

⇔∃x ∈ (
⋂
i

Xi)(k) such that y = Cx

⇒∃x ∈
⋂
i

Xi(k) such that y = Cx

⇔(y = Cx ∧ x ∈ X1(k)) ∧ (y = Cx ∧ x ∈ X2(k)) ∧ . . .

⇔(y ∈ CX1(k)) ∧ (y ∈ CX2(k)) ∧ . . .

⇔y ∈
⋂
i

CXi(k)

Remark 3.15. The reverse inclusions need not hold in Lemmas 3.13 and 3.14. Let

C = I, X1 = Xs and X2 = Xns. X1 ∩ X2 = ∅, but X1(k) ∩ X2(k) need not be
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empty1.

Theorem 3.16. If Xsi is k-ISO with respect to Xns for each i, then
⋂
iXsi is k-ISO

with respect to Xns.

Proof.

Xsi k − ISO w.r.t. Xns∀i

⇔CXsi(k) ⊆ CXns(k)∀i

⇒
⋂
i

CXsi(k) ⊆ CXns(k)

⇒C(
⋂
i

Xsi(k)) ⊆ CXns(k)

⇔
⋂
i

Xsi is k − ISO w.r.t. Xns

Theorem 3.17. If Xs is k-ISO with respect to Xnsi for each i, then CXs(k) ⊆⋂
iCXnsi(k). However, in general, Xs is not k-ISO with respect to

⋂
iXnsi.

Proof.

Xs k − ISO w.r.t. Xnsi∀i

⇔CXs(k) ⊆ CXnsi(k)∀i

⇒CXs(k) ⊆
⋂
i

CXnsi(k)

However, we can have
⋂
iXnsi = ∅, which means C(

⋂
iXnsi)(k) is undefined.

1Recall that the definition of the reachable set in k steps assumes a nonempty initial set of

states.
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Theorem 3.18 and Remark 3.19 are similar results for weak opacity.

Theorem 3.18. If Xsi is weakly k-ISO with respect to Xns for each i, then
⋃
iXsi

is weakly k-ISO with respect to Xns.

Proof.

Xsi weakly k − ISO w.r.t. Xns∀i

⇔CXsi(k)
⋂

CXns(k) 6= ∅∀i

⇒
⋃
i

CXsi(k)
⋂

CXns(k) 6= ∅

⇒C(
⋃
i

Xsi(k))
⋂

CXns(k) 6= ∅

⇔
⋃
i

Xsi is weakly k − ISO w.r.t. Xns

Remark 3.19. If Xsi is weakly k-ISO with respect to Xns for each i, then
⋂
iXsi

need not be weakly k-ISO with respect to Xns. That is, given CXsi(k)
⋂
CXnsi(k) 6=

∅∀i, if
⋂
iXsi = ∅, then C(

⋂
iXsi)(k)

⋂
CXns(k) will not be defined.

3.4 Opacity and Output Controllability

A state of the system is said to be controllable if we can find an input that

transfers the state to the origin in finite time. While there are several interesting

results in the literature that relate controllability of a dynamical system to other

properties of interest, the notion of output controllability has been largely over-

looked. Output controllability is the ability of transferring the state of the system
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such that the output corresponding to the state at some finite time is zero. It is

easy to see that while controllability implies output controllability, the reverse need

not necessarily hold. In fact, output controllability will imply controllability if the

matrix C has full rank. This section establishes an equivalence between k-ISO and

output controllability.

Definition 3.20. A state x of (3.1) is controllable on [0, kf ] if there exists a control

sequence {u(·)} that transfers the state of the system from x(0) = x to x(kf ) = 0.

The output of (3.1) at time k is given by:

y(k) = CAkx(0) +
k−1∑
j=0

CAk−j−1Bu(j)

Definition 3.21. A state x of (3.1) is output controllable on [0, kf ] if there exists a

control sequence {u(·)} that transfers the system from x(0) = x to x(kf ), such that

y(kf ) = 0.

Theorem 3.22 indicates that Xs being k-ISO with respect to Xns ensures that

there exists a state that is output controllable. Theorem 3.23 establishes the converse

result, under an additional assumption.

Theorem 3.22. Let Xs be (strongly or weakly) k-ISO with respect to Xns. Then

there exists a state of (3.1) that is output controllable on [0, k]. Further, if k-ISO is

established for the pair (xs(0), xns(0)) ∈ Xs×Xns (and appropriate control sequences

{us(·)} and {uns(·)}), then the control sequence u(i) = us(i)−uns(i), i = 0, 1, . . . , k−

1, will achieve output controllability for the initial state x(0) = xs(0)− xns(0).

41



Proof. k-ISO implies ys(k) = yns(k) for appropriate xs(0), {us(·)}, xns(0) and {uns(·)}.

Setting x(0) = xs(0) − xns(0) and u(i) = us(i) − uns(i), i = 0, 1, . . . , k − 1 in the

dynamics of (3.1) ensures y(k) = 0, thus achieving output controllability of the state

x(0) = xs(0)− xns(0).

Theorem 3.23. Let (3.1) be output controllable in k steps for a set of states Xoc(0)\

{0} and controls {U(·)}. Let X1 and X2 be sets such that every x1 ∈ X1 can be

written as x+ x2, where x ∈ Xoc(0) \ {0} and x2 ∈ X2. Then, X1 is strongly k-ISO

with respect to X2.

Proof. Output controllability ensures that:

y(k) = CAkx(0) +
k−1∑
j=0

CAk−j−1BU(j) = 0 (3.4)

For any control sequence {u1(·)}, the output at time k, starting from any x1(0) ∈ X1

is:

y1(k) = CAkx1(0) +
k−1∑
j=0

CAk−j−1Bu1(j)

The output at time k starting from x2(0) ∈ X2 with the control sequence {u1(·) −

U(·)} is:

y2(k) = CAkx2(0) +
k−1∑
j=0

CAk−j−1B[u1(j)− U(j)]

Using the assumption that every x1 ∈ X1 can be written as x + x2, where x ∈

Xoc(0) \ {0}, x2 ∈ X2, and Equation (3.4), we get y1(k) = y2(k).

Thus, for any x1 ∈ X1 and any control sequence starting from x1, there exist

x2 ∈ X2 and another control sequence such that the outputs after k steps are the

same. This is strong k-ISO with Xs = X1 and Xns = X2.
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3.5 ε-Opacity

The condition that the output at times k ∈ K starting from every state in Xs

be equal to the output obtained by starting from some state in Xns is quite strong.

In this section, we postulate that (a form of) opacity will still hold if the outputs

differ by a predefined amount. We only consider the single adversary case; the

material can be easily extended to the decentralized notions of opacity in Sections

4.2 and 4.4. Defining ε−opacity for the case in Section 4.3 will require more careful

consideration.

Definition 3.24. For system (3.1), given Xs, Xns ⊆ X0, k ∈ K, and ε ≥ 0, Xs is

strongly ε−k-ISO with respect to Xns if for all xs(0) ∈ Xs and for every sequence of

admissible controls us(0), . . . , us(k− 1), there exist an xns(0) ∈ Xns, and a sequence

of admissible controls uns(0), . . . , uns(k − 1) such that ‖ys(k)− yns(k)‖2 ≤ ε.

Xs is strongly ε−K-ISO with respect to Xns if it is strongly ε− k-ISO for all

k ∈ K.

A couple of remarks are in order before we present the main result of this

section. Notice that ε = 0 corresponds to the definition of strong k-ISO seen earlier.

Moreover, we can derive conditions that establish ε−opacity in terms of sets of

reachable states.

Let z be a point, and S be a set. Then, the distance of z from S is defined as

dist(z, S) := inf{dist(z, s)|s ∈ S}.

Theorem 3.25. The following hold:
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Figure 3.3: Representation of ε− k-ISO

1. Xs is strongly ε− k-ISO with respect to Xns if and only if :

max
z∈CXs(k)

dist(z, CXns(k)) ≤ ε (3.5)

That is, the farthest a point in CXs(k) can be from CXns(k) is ε.

2. Xs is strongly ε−K-ISO with respect to Xns if and only if (3.5) holds for all

k ∈ K.

Proof. The proof of this result follows from the definition of ε−k-ISO and Theorem

3.4.
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Chapter 4: Opacity for Linear Systems: The Multiple Adversaries

Case

In this chapter, we extend the framework for opacity presented in the previous

chapter to the case when there is more than one adversarial observer, and define

several notions of decentralized opacity. These notions of decentralized opacity will

depend on whether there is a centralized coordinator or not, and the presence or

absence of collusion among the adversaries. We establish conditions for decentralized

opacity in terms of sets of reachable states. In the case of colluding adversaries, we

derive a condition for nonopacity in terms of the structure of the communication

graph.

Section 4.1 presents the system model. Sections 4.2, 4.3, and 4.4 defines and

characterizes the three notions of decentralized opacity.

4.1 System Model

The system model is identical to that considered in the previous chapter,

except that there are multiple adversaries, each seeing an output corresponding to

its observation map Ci. As in the single adversary case, every adversary is assumed

to have knowledge of the initial sets of secret and nonsecret states, Xs and Xns,
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the system model (A,B), and its own observation map Ci, and is assumed to have

unlimited computing power.

x(t+ 1) = Ax(t) +Bu(t)

x(0) = x0 ∈ X0

yi(t) = Cix(t); i = 1, 2, . . . , l (4.1)

where x ∈ Rn, u ∈ Rm, yi ∈ Rpi , and A,B,Ci are matrices of appropriate dimensions

containing real entries. In the sequel, we will assume that all of the adversaries

observe the system at the same time instants in the set K.

The presence or absence of coordination among the adversaries, and the pres-

ence or absence of a coordinator that aggregates information based on the adver-

saries’ observations, is the distinguishing feature, and a definition of decentralized

opacity is proposed in each case.

4.2 No Coordinator, No Coordination

The agents are assumed to not communicate with each other, and there is no

centralized coordinator. Opacity of the secret will be achieved when it is simulta-

neously opaque with respect to every adversary.

Definition 4.1. For system (4.1), given Xs, Xns ⊆ X0 and k ∈ K, Xs is strongly

decentralized k−ISO with respect to Xns if for all xs(0) ∈ Xs and for every sequence

of admissible controls us(0), . . . , us(k − 1), there exist an xns(0) ∈ Xns, and a se-
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quence of admissible controls uns(0), . . . , uns(k− 1) such that ysi(k) = ynsi(k) for all

i ∈ {1, 2, . . . , l}.

Xs is strongly decentralized K−ISO with respect to Xns if it is strongly decen-

tralized k−ISO for all k ∈ K.

As in the single adversary case, we have a necesary and sufficient condition for

for decentralized opacity in terms of sets of reachable states in k steps.

Theorem 4.2. The following hold:

1. Xs is strongly decentralized k−ISO with respect to Xns if and only if CiXs(k) ⊆

CiXns(k) for all i ∈ {1, 2, . . . , l}.

2. Xs is strongly decentralized K−ISO with respect to Xns if and only if CiXs(k) ⊆

CiXns(k) for all k ∈ K, and for all i ∈ {1, 2, . . . , l}.

Proof. The proof of this result follows by applying Theorem 3.4 to every adversary

i = {1, 2, . . . , l}.

The following result explores the relationship between decentralized k−ISO for

a set of adversaries and k−ISO for a single adversary with an aggregated observation

map.

Proposition 4.3. Xs is strongly decentralized k−ISO with respect to Xns and adver-

saries with observation maps C1, . . . , Cl if Xs is strongly k−ISO with respect to Xns

for the single adversary with the aggregated observation map C̄ :=

(
CT

1 CT
2 . . . CT

l

)T
.

Proof. Xs strongly k−ISO with respect to Xns is equivalent to C̄Xs(k) ⊆ C̄Xns(k).

This means that for every xs(k) ∈ Xs(k), there exists an xns(k) ∈ Xns(k) such that
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C1xs(k) = C1xns(k), . . . , Clxs(k) = Clxns(k). Thus, we have CiXs(k) ⊆ CiXns(k)

for all i ∈ {1, . . . , l}, which is equivalent to Xs being strongly decentralized k−ISO

with respect to Xns.

It is to be noted that strong decentralized k−ISO need not necessarily ensure

strong k−ISO with respect to an adversary with the aggregated observation map

since, the nonsecret states in Xns(k) and the corresponding control sequences for

each adversary might be different.

4.3 With Coordinator, No Coordination

Here, we assume that there is a coordinator, whose role is to poll the obser-

vations of each adversary, and decide on co-opacity according to some (predefined)

rule. The coordinator does not have knowledge of the system model or the adver-

saries’ observation maps. In fact, our model is such that the coordinator cannot do

any better even if it knows the system model or the observation maps. It can be

viewed as an agent whose role is to ensure that the whole is greater than the sum

of its parts.

Formally, the coordinator communicates to the adversaries the time instants

K, at which the system needs to be observed. At each k ∈ K, agent i observes

yi(k) = Cix(k). The agents communicate φi(yi(k)) to the coordinator, where φi :

Rpi → 2Rn×Rn is defined as:

φi(yi(k)) := {(x1, x2) ∈ Xs(k)×Xns(k) : Cix
1 = Cix

2 = yi(k)}
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System

Coordinator

Figure 4.1: Coordinated Decentralized Opacity

Thus, φi(·) returns secret-nonsecret state pairs that give the same output yi(k)

at time k.

The coordinator then computes a function Ψ(k) := Ψ(φ1(y1(k)), . . . , φl(yl(k))),

where Ψ : (2Rn×Rn)l → 2Rn×Rn . Thus, the coordinator plays the role of gathering the

outputs of the observations of each adversary, and composing them to then decide

on opacity. An example of a valid coordinator function is Ψ(k) =
⋃
i(φi(Cix(k))).

The scheme is shown in Figure (4.1) for the case of four adversaries.

Definition 4.4. For system (4.1), given Xs, Xns ⊆ X0 and k ∈ K, Xs is strongly

co-k−ISO with respect to Xns and Ψ if for all xs(0) ∈ Xs and for every sequence of

admissible controls us(0), . . . , us(k− 1), there exist an xns(0) ∈ Xns, and a sequence

of admissible controls uns(0), . . . , uns(k − 1) such that Ψ(k) is nonempty.

Xs is strongly co-K−ISO with respect to Xns and Ψ if it is strongly co-k−ISO

for all k ∈ K.

Before presenting the main result of this section, we provide an alternative
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characterization of strong k−ISO in terms of the map φ (the subscript on φi is

dropped since we consider only a single adversary in this case). Further, it is im-

portant to note that the functions φi and Ψ return a set of pairs of states at time

k. This information will need to be used to determine opacity of the initial set of

secret states with respect to the initial set of nonsecret states.

We extend the definition of φ to sets of outputs at time k. Let φ(CX(k)) :=⋃
{φ(y(k)) : [y(k) = Cx(k)] ∧ [x(k) ∈ X(k)]}. For (x1

i , x
2
j) ∈ Xs(k) × Xns(k), in

a slight abuse of notation, we treat each x1
i and x2

j as a set. This will allow us to

define
⋃
i,j(x

1
i , x

2
j) := (

⋃
i x

1
i ,
⋃
j x

2
j), where

⋃
i x

1
i ⊆ Xs(k), and

⋃
j x

2
j ⊆ Xns(k).

Proposition 4.5. Xs is strongly k−ISO with respect to Xns if and only if φ(CXs(k)) =

(Xs(k), X ′ns(k)), where X ′ns(k) := {x ∈ Xns(k) : Cx ∈ CXs(k)}.

Proof. Let strong k−ISO hold. Then, CXs(k) ⊆ CXns(k) (Theorem 3.4), and

φ(CXs(k)) = (Xs(k), X ′ns(k)), where X ′ns(k) is as defined above.

If φ(CXs(k)) = (Xs(k), X ′ns(k)), then ∀x1 ∈ Xs(k), ∃x2 ∈ X ′ns(k) ⊆ Xns(k)

such that Cx1(k) = Cx2(k). This gives CXs(k) ⊆ CXns(k), which implies strong

k−ISO (Theorem 3.4).

The above result says that strong k−ISO holds if and only if the first compo-

nent of φ(·) when acting on the set of secret outputs at time k is the entire set of

reachable states at time k, starting from Xs. Further, it also determines the states

in Xns(k) that ensure strong k−ISO.

Theorem 4.6. Xs is strongly co-k−ISO with respect to Xns and Ψ if and only if

Ψ(φ1(C1Xs(k)), . . . , φl(ClXs(k))) = (Xs(k), X ′ns(k)), where X ′ns(k) ⊆ Xns(k).
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Proof. The proof of this result follows from the previous result, and the definition

of co−k−ISO. The major difference is that in this case, the first component of

φi(CiXs(k)) can be a subset of Xs(k). However, the coordinator function Ψ must

be such that its first component is Xs(k).

Thus, Xs can be strongly co−k−ISO with respect to Xns though strong k−ISO

might not hold for any single adversary.

4.4 No Coordinator, With Coordination

In this case, there is no coordinator, but the adversaries are assumed to com-

municate among themselves. The communication structure is represented by a di-

rected graph G, whose vertices are the adversaries, and G has an edge directed from

i to j if adversary j can receive information from adversary i. The goal of the ad-

versaries is to ensure, using the coordination structure, that Xs is not k−ISO with

respect to Xns for each of them. To this end, we introduce the following definitions:

Definition 4.7. For the system (4.1), given Xs, Xns ⊆ X0 and k ∈ K, Xs is

strongly not k−ISO with respect to Xns if Xs is not strongly k−ISO with respect to

Xns for every adversary.

Definition 4.8. Given a graph G = (V , E), where V are the vertices of the graph

and E ⊂ V × V are edges, D ⊂ V is a dominating set if every vertex not in D has

a neighbor in D.

Given a directed graph G = (V , E), D ⊂ V is a directed dominating set(red

vertices in figure (4.2)) if every vertex not in D has an incoming edge from some
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Figure 4.2: Vertices in red form a directed dominating set

vertex in D, that is, [∀u ∈ V \D, ∃v ∈ D such that (v → u) ∈ E ].

At each k ∈ K, each adversary observes y(k), determines if k−ISO holds or

not, and communicates (Ci, < k−ISO status>i) to its neighbors in G. If < k−ISO

status>i= 0, i.e. k−ISO does not hold for adversary i, then a neighbor j of i in

G adopts Ci as its observation map if < k−ISO status>j 6= 0. This scheme can be

interpreted as a dynamic version of k−ISO, in which the adversaries change their

observation maps at times k ∈ K depending on the k−ISO status of their neigh-

bors in G. A key assumption here is that the time required for the adversaries to

communicate amongst themselves is much less than the time scale of the system.

The following result provides a means to achieve strong non-opacity without requir-

ing non-opacity with respect to every adversary using the communication scheme

described above.

Theorem 4.9. For the system (4.1), Xs is strongly not k−ISO with respect to Xns

if the set of adversaries for which Xs is not strongly k−ISO with respect to Xns is

a directed dominating set of G.
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Proof. Each adversary communicates (Ci, < k−ISO status>i) to its neighbors in

G. Thus, if k−ISO does not hold for some adversary i, then its neighbors will also

adopt the same Ci matrix at time k. The result then follows from the definition of

a directed dominating set.
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Chapter 5: Opacity for Switched Linear Systems

In this chapter, we formulate notions of opacity for CPSs modeled as discrete-

time switched linear systems (DT-SLSs). An SLS consists of a finite number of lin-

ear subsystems (called modes) and a rule that governs the switching among them.

Many practical systems can be modeled as operating in one of several modes, often

switching from one mode of operation to another. Further, it has been shown that

switching control strategies can achieve better control performance than nonswitch-

ing strategies. The reader is referred to [43], [44], [45] for an introduction to the

design and control of switched systems. We will assume that each subsystem is

governed by linear, time-invariant dynamics.

We present the model of the system that will be studied in this chapter and

underlying assumptions in Section 5.1. Sections 5.2, 5.3, and 5.4 present the main

results of the chapter, wherein we formulate several notions of opacity for SLSs.

We distinguish between the cases when the secret is specified as an initial mode,

an initial state, or a combination of the two, and whether the adversary observes

a mode, a function of the state, or a combination of the two. In each case, we

present conditions that will establish that notion of opacity. We place constraints

on the modes that the system will be allowed to transition into from a given mode
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and impose bounds on the dwell times in each mode. Moreover, we constrain the

number of changes of modes before the adversary can make its observation in our

definitions of opacity for SLSs. Algorithmic procedures to verify these notions of

opacity are given in Section 5.5, where we also provide conservative upper bounds

on their computational complexity. Illustrative examples are presented in Section

5.6.

5.1 System Model and Assumptions

Consider a DT-SLS is of the form:

x(t+ 1) = A(Mt)x(t) +B(Mt)u(t) (5.1)

x(0) = x0 ∈ X0

y(t) = Cx(t) (5.2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and A(·), B(·), C are matrices of appropriate

dimensions containing real entries. Mt ∈ {1, 2, . . . , z} denotes the mode active at

time t. The solution to the state Equation (5.1) is given by Equation (5.3) (in

Section 5.3). The system switches from a mode M′ to M′′ at a time t = ts, which

is called a switching time. That is, A(Mts−1) = A(M′), while A(Mts) = A(M′′).

The B(·) matrix switches similarly. A switching sequence of length N is a collection

of N (possibly nonconsecutive) switching times ts1 < ts2 < · · · < tsN . Let K be a

set of positive integers corresponding to the instants of time the adversary makes

an observation of the system. The subscript s (ns), when appended to the states,

inputs, and outputs, will correspond to trajectories that start from the set of initial
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secret (nonsecret) states.

The following assumptions will be needed to formalize notions of opacity for

SLSs in this chapter.

Assumption 5.1. The allowed transitions between modes is specified by a directed

graph G = (V , E) whose vertices are the modes {1, . . . , z} and edges are the possible

transitions between modes.

Assumption 5.2. The mode changes at every switching time ts.

Assumption 5.3. The switching sequence does not depend on initial states and

controls1.

Assumption 5.4. ( Nonblocking Property) It is possible for the system to switch

to at least one other mode from every mode.

Assumption 5.5. ( Dwell constraints) The system is allowed to remain in a mode

a for a duration of time τad ∈ [τadmin , τ
a
dmin

+ 1, . . . , τadmax ]. Further, τadmin ≥ 1∀a.

Assumption 5.6. The adversary has knowledge of the initial secret and nonsecret

specifications – sets of states and/ or modes, as the case may be – the A(·), B(·)

matrices, the observation map C, the graph G, and the minimum and maximum

dwell times in each mode.

A path in G is an alternating sequence of vertices and edges of G, v0e1v1e2 . . . .

A path will always begin and end in a vertex of G. Further, if the sequence vi−1eivi

1A standard assumption in the SLS literature is that there is only a finite number of switches

in any finite time interval. This is needed to rule out the Zeno phenomenon in continuous time

systems. It will not be needed here since we are dealing with discrete time systems.
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appears in a path, then vi−1 and vi are respectively the source and target vertices of

edge ei in G. The length of a path is defined to be the number of vertices in the path.

Let Θ[N ] be the set of paths of length N + 1 in G. This corresponds to N changes

of modes. Knowledge of G will help eliminate transitions that are impossible. An

element θ ∈ Θ[N ] can be written as v0e1v1e2 . . . eNvN , with vi 6= vi+1 (Assumption

5.2). We will represent θ ∈ Θ[N ] as a sequence of vertices v0v1 . . . vN when the edges

representing transitions between vertices are obvious.

Assumption 5.7. At a time k ∈ K, the number of switches of modes, q, is strictly

less than k.

Assumption 5.8. For given q and k, tsq < k. That is, the q mode changes occur

before time k. Further, if k is a possible ((q + 1)st) switching time, and if the

adversary is observing the mode of the system, its observation will be Mk−, that is,

the mode the system is in just before the switching at time k2.

The notions of opacity developed in this chapter will be defined in terms of q

and k. Informally, for a given number of mode changes q, the secret is said to be

opaque at a time k if for every ‘allowed’ switching sequence of length q starting from

the secret modes and/ or states, there is an ‘allowed’ switching sequence of length

q starting from a nonsecret mode and/ or state, such that the observation at time

k will be indistinguishable to the adversary. The ‘allowed’ switching sequences will

be those that respect the dwell time constraints in the modes along paths of length

2This assumption is needed because the state, and consequently, the output of the system at a

time t depends only on the modes of the system upto time t− 1.
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q+ 1. Throughout this paper, a switching sequence of length q will correspond to a

path of length q + 1 in G.

5.2 Initial Mode Opacity

In this case, the secret is specified as a set of modes. LetMs ⊂ {1, . . . , z} and

Mns ⊂ {1, . . . , z} be the sets of initial secret and nonsecret modes, withMs∩Mns =

∅. The mode at time t, starting from a mode inMs (Mns) at time 0 will be denoted

Ms
t (Mns

t ). The adversary observes the mode of the system at a time k ∈ K. Its goal

is to use this observation and other information that it has access to (Assumption

5.6) to deduce if the system started from a secret mode.

Definition 5.9. Given Ms,Mns, k ∈ K, and q < k, Ms is (k, q)-initial mode

opaque ((k, q)-IMO) with respect to Mns if for all θ = v0 . . . vq ∈ Θ[q] satisfying

v0 ∈ Ms and
∑

θ τd = k, there exists θ′ = v′0 . . . v
′
q ∈ Θ[q] that satisfies v′0 ∈ Mns

and
∑

θ′ τd = k, such that Ms
k =Mns

k .

The term
∑

θ τd = k means that there exists a sequence of q + 1 dwell times

{τ vjd ∈ [τ
vj
dmin

, τ
vj
dmax

]}, j = 0, . . . , (q − 1), and 1 ≤ τ
vq
d ≤ τ

vq
dmax

along the path θ =

v0 . . . vq, such that
∑q−1

j=0 τ
vj
d + τ

vq
d = k. Thus, we only consider paths of length q+ 1

in G for which the dwell times in modes along the path are ‘sufficiently long’.

Theorem 5.10. Ms is (k, q)-IMO with respect to Mns iff

⋃
θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Ms

Ms
k ⊆

⋃
θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Mns

Mns
k .
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Proof. ⇒: Follows from Definition 5.9.

⇐: Every mode the system can reach at time k starting from a secret mode

at time 0 after q mode changes and respecting dwell time constraints along the path

can also be reached by starting from a nonsecret mode at time 0, and an allowed

switching sequence of length q. This establishes Definition 5.9.

It is important that the system dwell in a mode for sufficiently long in order

to meaningfully establish initial mode opacity.

Proposition 5.11. If τadmax = 1 for every mode a ∈ {1, . . . , z}, then for any choice

of Ms and Mns, and for every q < k − 1, Ms will not be (k, q)-IMO w.r.t. Mns.

The main result of this section provides guarantees on (k′, q′)-IMO for k′ >

k, q′ > q if it has been established that (k, q)-IMO holds. In the sequel, we will

write
∑

q τd to denote the sum of the dwell times in the modes along a path of length

q + 1 in the directed graph.

Theorem 5.12. If Ms is (k, q)-IMO with respect to Mns, then for every Q > 0,

Ms is (k +K, q +Q)-IMO w.r.t. Mns for all K ∈ [
∑

q τd − k +
∑

Q τdmin ,
∑

q τd −

k +
∑

Q τdmax ].

Proof. Let Θ[q,Q] denote the set of valid extensions of length Q to a switching se-

quence of length q. Then, every θ′′ ∈ Θ[q+Q] can be written as θ.θe, where θ ∈ Θ[q]

and θe ∈ Θ[q,Q], and . denotes the concatenation of the paths. (k, q)-IMO ensures

that for every θ ∈ Θ[q] starting from a secret mode and satisfying the dwell time

constraints along the path, there exists θ′ ∈ Θ[q] starting from a nonsecret mode
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and satisfying the dwell time constraints along θ′, such that Ms
k = Mns

k . Using

Assumption 5.4, any extension of θ (θ′) of length Q can be written as α = θ.θe

(α′ = θ′.θe), where θe ∈ Θ[q,Q]. This shows that (k +K, q +Q)-IMO holds for some

K ≥ Q.

The lower and upper bounds on K are obtained by considering the minimum

and maximum dwell times along the extension of length Q to a path of length q,

and noting that τadmin ≥ 1 for every mode (Assumption 5.5). Two cases need to be

considered:

Case I : k − (
∑q−1

j=0 τ
vj
d ) ≥ τ

vq
dmin

. In this case, the term
∑

q τd − k = 0, and K ∈

[
∑

Q τdmin ,
∑

Q τdmax ].

Case II : k − (
∑q−1

j=0 τ
vj
d ) < τ

vq
dmin

. Here, the (q + 1)st change of mode can occur only

after a time
∑q−1

j=0 τ
vj
d + τ

vq
dmin

. Thus, we have K ∈ [
∑

q τd − k +
∑

Q τdmin ,
∑

q τd −

k +
∑

Q τdmax ]

This formulation of (k, q)-IMO is reminiscent of ‘state-based’ notions of DES

opacity [23]. However, unlike in the DES case, we do not insist that the entire

secret trace be indistinguishable from the entire nonsecret trace; we require indis-

tinguishability only at time k, with the caveat that there be only q changes of modes.

(k, q)-IMO does not depend on the dynamics within each mode.

5.3 Initial Mode and State Opacity

In this case, the adversary observes y(k) and Mk at a time k ∈ K. This

formulation is similar in flavor to pathwise observability (PWO) in [54]. However,
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x(t+1) = A(Mt) . . . A(M0)x(0)+
t−1∑
j=0

(A(Mt) . . . A(Mj+1))B(Mj)u(j)+B(Mt)u(t)

(5.3)

Xs(k, q) =
⋃

x0∈Xs

⋃
Uks

⋃
θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Ms

{x : x(i+ 1) = A(Mi)x(i) +B(Mi)u(i),∀i < k}

(5.4)

Xns(k, q) =
⋃

x0∈Xns

⋃
Ukns

⋃
θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Mns

{x : x(i+1) = A(Mi)x(i)+B(Mi)u(i),∀i < k}

(5.5)

in their framework, the entire mode sequence and the output up to time k are

available. Here, we only have snapshots of the output-mode pair at a time k ∈ K.

The secret in this case is specified as a state-mode pair.

Definition 5.13. For the system 5.2, given k ∈ K, q < k, X̄s := (Xs;Ms), and

X̄ns := (Xns;Mns), with Xs, Xns ⊂ X0, X̄s is (k, q)-initial mode and state

opaque ((k, q)-IMSO) with respect to X̄ns if for every xs(0) ∈ Xs, every sequence

of admissible controls Uk
s , and every θ = v0 . . . vq ∈ Θ[q] satisfying v0 ∈ Ms and∑

θ τd = k, there exist an xns(0) ∈ Xns, a sequence of admissible controls Uk
ns, and

θ′ = v′0 . . . v
′
q ∈ Θ[q], satisfying v′0 ∈ Mns and

∑
θ′ τd = k such that: i)Ms

k = Mns
k ,

and ii)ys(k) = yns(k).

That is, corresponding to every allowed switching sequence of length q starting

from a secret mode and every valid control sequence of length k starting from a secret

state, there is an allowed switching sequence of length q starting from a nonsecret

mode, and a valid control sequence of length k starting from a nonsecret mode, such
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that the mode and the output at time k will be indistinguishable to the adversary.

The set of reachable states at time k with q mode changes, starting from X̄s

(X̄ns), and applying k admissible controls and respecting the dwell constraints of

the modes is given by Equation (5.4) (Equation (5.5)).

Theorem 5.14. X̄s is (k, q)-IMSO with respect to X̄ns iff:

i)
⋃

θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Ms

Ms
k ⊆

⋃
θ=v0...vq∈Θ[q]:∑
θ τd=k∧v0∈Mns

Mns
k , and

ii) CXs(k, q) ⊆ CXns(k, q).

Proof. ⇒: From the definition of (k, q)-IMSO, i) holds. Xs(k, q) (Xns(k, q)) is the

set of states reachable at time k starting from states in Xs (Xns) and modes in

Ms (Mns), performing q changes of modes along the way, while respecting dwell

constraints of each mode. Therefore, for each x′ ∈ Xs(k, q), there exists x′′ ∈

Xns(k, q) such that ys(k) = Cx′ = Cx′′ = yns(k). This gives ii).

⇐: i) ensures that for every allowed switching sequence of length q starting

from Ms, there exists an allowed switching sequence starting from Mns such that

the mode at time k is indistinguishable. ii) ensures that for every x′ ∈ Xs(k, q), there

exists an x′′ ∈ Xns(k, q) such that ys(k) = Cx′ = Cx′′ = yns(k). From Equation

(5.4) ((5.5)), x′ (x′′) is a state got by starting from an initial secret state and secret

mode (nonsecret initial state and nonsecret mode), while satisfying dwell constraints

and number of allowed changes of mode. This proves (k, q)-IMSO.
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5.4 Opacity for Unobserved Modes

In this case, the adversary observes the output y(k) at a time k ∈ K, and using

only this information, it needs to determine if the system started from a secret state

or mode. We consider two possible scenarios: when the secret is specified as a set

of initial modes, and when the secret is specified as a set of initial states. This

is like the unobservable mode case considered in [54], where they separately study

the possibilities of recovering only the mode or only the state, after observing (at

each time instant) the output. These notions are more general than (k, q)-IMSO in

the sense that there is no constraint that the system start from a particular mode

(Section 5.4.1) or a particular state (Section 5.4.2). Moreover, the modes at time

k corresponding to the secret and nonsecret trajectories need not be the same. The

subscript M will serve to indicate that the modes remain unobserved.

5.4.1 Initial Mode Opacity

The secret is specified as a set of modes, and the adversary has to deduce if

the system started from a secret mode based on observing y(k) at a time k ∈ K.

Definition 5.15. For system 5.2, given X0,Ms,Mns, k ∈ K, and q < k, Ms is

(k, q)M-initial mode opaque ((k, q)M-IMO) with respect to Mns if for every

initial state, every sequence of admissible controls, and every θ = v0 . . . vq ∈ Θ[q]

satisfying v0 ∈Ms and
∑

θ τd = k, there exist an initial state, a sequence of admis-

sible controls, and a θ′ = v′0 . . . v
′
q ∈ Θ[q] that satisfies v′0 ∈ Mns and

∑
θ′ τd = k,
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such that ys(k) = yns(k).

Let X ′s(k, q) (X ′ns(k, q)) denote the set of states reachable at time k after q

changes of modes starting from a secret mode (nonsecret mode) at time 0. That is,

the condition x0 ∈ Xs (x0 ∈ Xns) in Equation (5.4) ((5.5)) is replaced by x0 ∈ X0,

and the subscript on Uk
s (Uk

ns) is dropped.

Theorem 5.16. Ms is (k, q)M-IMO with respect toMns if and only if CX ′s(k, q) ⊆

CX ′ns(k, q).

Proof. ⇒: X ′s(k, q) (X ′ns(k, q)) is the set of states reachable at time k starting

from modes in Ms (Mns), performing q changes of modes along the way, while

respecting dwell constraints of each mode. Therefore, for each x′ ∈ X ′s(k, q), there

exists x′′ ∈ X ′ns(k, q) such that ys(k) = Cx′ = Cx′′ = yns(k). This gives CX ′s(k, q) ⊆

CX ′ns(k, q).

⇐: Corresponding to every x′ ∈ X ′s(k, q), there exists an x′′ ∈ X ′ns(k, q) such

that ys(k) = Cx′ = Cx′′ = yns(k). x′ (x′′), by definition, is a state that is got by

starting from a secret mode (nonsecret mode), while satisfying dwell constraints and

number of allowed changes of modes. Therefore, for every initial state starting from

a secret mode and every allowed switching sequence of length q, there is an initial

state starting from a nonsecret mode and a switching sequence of length q such that

the outputs at time k are indistinguishable. This gives (k, q)M-IMO.
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5.4.2 Initial State Opacity

The adversary has to determine if the system started from a secret state, based

on its observation y(k) at time k ∈ K. The underlying idea behind this notion is

similar to k-ISO (Definition 3.1), with the difference that the system switches among

several modes.

Definition 5.17. For the system 5.2, given Xs, Xns ⊂ X0, k ∈ K, and q < k, Xs

is (k, q)M-initial state opaque ((k, q)M-ISO) with respect to Xns if for every

xs(0) ∈ Xs, every sequence of admissible controls Uk
s , and every θ ∈ Θ[q] satisfying∑

θ τd = k, there exist an xns(0) ∈ Xns, a sequence of admissible controls Uk
ns, and

a θ′ ∈ Θ[q], satisfying
∑

θ′ τd = k such that ys(k) = yns(k).

Let X ′′s (k, q) (X ′′ns(k, q)) denote the set of states reachable at time k after q

changes of modes starting from Xs (Xns) at time 0, without restrictions on the initial

modes. That is, the condition v0 ∈Ms (v0 ∈Mns) is removed from Equation (5.4)

(Equation (5.5)).

Theorem 5.18. Xs is (k, q)M-ISO with respect to Xns if and only if CX ′′s (k, q) ⊆

CX ′′ns(k, q).

The proof of this result is similar to Theorems 5.14 and 5.16, and is omitted.

5.5 Computational Complexity

This section presents procedures to verify (k, q)-IMO and (k, q)-IMSO. Algo-

rithm 1 depends on determining paths of length q+ 1 in G, and determining a set of
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q+ 1 numbers that sum to k. Algorithm 2 depends on determining sets of reachable

states, and Algorithm 1.

The SUBSETSUM problem asks the following question: given a set of non-

negative integers S and a target number t, is there a subset of S whose elements

sum to t? This problem is known to be NP-Complete [55]3. The rSUM problem

asks: given a set of nonnegative integers S and numbers r and t, is there is a subset

of S of size r whose elements sum to t? The brute-force algorithm for rSUM runs

in time O(|S|r). More recent results have significantly lowered this bound [56].

In our setting, given a set of q + 1 lists Li := [τ idmin , τ
i
dmin

+ 1, . . . , τ idmax ], i ∈

{1, 2, . . . , q + 1}, we ask if there is an assignment of nonzero numbers τ1, . . . , τq+1,

with τi ∈ Li such that
∑

i τi = k. This is equivalent to the rSUM problem, with

r = q+ 14. Let Csum denote the number of operations needed to solve this problem.

Given the adjacency matrix A of G 5, the ij entry of Aq gives the number of

paths in Θ[q] with v0 = i and vq = j. Let Cpow denote the complexity of computing

Aq. This typically takes O(zωlog q) operations, where z is the number of vertices of

G (modes of the system), and zω (ω < 3) is the complexity of matrix multiplication.

Let Cpath be the maximum number of operations needed to determine a path of

length q in G. This problem is trivially solvable in O(zq), but can be more efficient,

3A decision problem is in class NP if all instances of the problem to which the answer is ‘yes’

can be efficiently verified by a deterministic Turing machine. It is NP-complete if, additionally, it

is as hard as any problem in NP.
4An additional requirement is that the lists be of equal sizes. This can be achieved by padding

them with zeros.
5Aij = 1 if there is an edge in G from vi to vj , and Aij = 0 otherwise.
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depending on the structure G. Let bi :=
∑

j[Aq]ij denote the total number of paths

in Θ[q] from vertex i. Then, the number of operations to determine all θ ∈ Θ[q]

such that v0 = i is at most biCpath. Let b :=
∑

i bi; i ∈ (Ms
⋃
Mns). Algorithm

2 invokes Algorithm 1, and further, computes sets of states that are reachable at

time k after q mode changes. Let Creach denote the complexity of computing the

sets of reachable states. Under reasonable assumptions on the structures of the

sets of controls and initial states, approximations of sets of reachable states can

be calculated with arbitrary precision using procedures that are linear in the time

horizon(k) and polynomial in the dimension of the state space(n) ( [57], [58], [59]).

Let Cmult denote the complexity of the matrix-vector multiplication Cx, x ∈ X(·, ·).

This typically takes O(pn) operations.

Proposition 5.19. 1. Calg1 ≤ k1bCpath + k2Csum + k3Cpow;

2. Calg2 ≤ k′1Calg1 + k′2Creach + k′3Cmult for constants k1, k2, k3, k
′
1, k
′
2, k
′
3 > 0.

5.6 Examples

Example 5.20. Figure 5.1 shows the allowed mode transitions in a switched system

with five modes and the minimum and maximum dwell times in each mode. Notice

that the system is nonblocking. Let Ms = {1} and Mns = {3, 5}. Let q = 2. Then,

Θ[2] ⊃ {(1, 2, 3), (1, 2, 4), (1, 5, 2), (3, 5, 2), (5, 2, 3), (5, 2, 4)} (only considering paths

starting from Ms or Mns). For k = 6, Ms is (6, 2)-IMO w.r.t. Mns, since for

all paths in Figure 5.1 of length q + 1 = 3 starting from mode 1 such that the dwell

times in the modes along the path sum to 6, there is a corresponding path of length
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Algorithm 1 Verifying (k, q)-IMO

Input: Ms,Mns, k, q, [τadmin , τ
a
dmax

] for each mode a, G = (V , E) specifying allowed

mode transitions.

Output: YES, if Ms is (k, q)-IMO w.r.t. Mns; NO, if not.

1: Ms
k =Mns

k = ∅

2: ΘM
s

[q] := {v0e1 . . . vq ∈ G: v0 ∈Ms}

3: ΘM
ns

[q] := {v0e1 . . . vq ∈ G: v0 ∈Mns}

4: for each θ ∈ ΘM
s

[q] do

5: if (
∑

θ τd = k) then

6: Ms
k =Ms

k

⋃
vq

7: end if

8: end for

9: for each θ′ ∈ ΘM
ns

[q] do

10: if (
∑′

θ τd = k) then

11: Mns
k =Mns

k

⋃
v′q

12: end if

13: end for

14: if Ms
k ⊆Mns

k then . Theorem 5.10

15: return YES

16: else

17: return NO

18: end if
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Algorithm 2 Verifying (k, q)-IMSO

Input: X̄s = (Xs,Ms), X̄ns = (Xns,Mns), k, q,G = (V , E), [τadmin , τ
a
dmax

] for each

mode a.

Output: YES, if X̄s is (k, q)-IMSO w.r.t. X̄ns; NO, if not.

1: ANS ← Result of Algorithm 1

2: if ANS == Y ES then

3: Compute Xs(k, q) using Equation (5.4)

4: Compute Xns(k, q) using Equation (5.5)

5: if CXs(k, q) ⊆ CXns(k, q) then

6: return YES . Theorem 5.14

7: else

8: return NO

9: end if

10: else

11: return NO

12: end if
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Figure 5.1: Switched system considered in Example 5.20

3 starting from modes 3 or 5 also satisfying the dwell constraints along the path,

such that Ms
6 = Mns

6 . However, Ms is not (3, 2)-IMO w.r.t. Mns. Consider the

path (1, 2, 3) starting from Ms with τ 1
d = 1, τ 2

d = 1, τ 3
d = 1. There does not exist a

corresponding path starting from Mns such that Mns
3 = 3.

Example 5.21. Consider the system in Figure 5.1, with the following additional

specifications:

A(1) = A(3) = A(5) =


1 0 0

0 1 0

0 0 1

 ; A(2) = A(4) =


0 1 0

0 0 1

1 0 0


B(1) = B(2) = B(3) =

(
1 1 0

)ᵀ

; B(4) = B(5) =

(
0 1 1

)ᵀ
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Table 5.1: Example 5.21: (4, 1)-IMSO

Θ[1] (τ ′d, τ
′′
d ) : τ ′d + τ ′′d = 4 M0M1M2M3

1 2 2, 2 1 1 2 2

1 2 3, 1 1 1 1 2

5 2 2, 2 5 5 2 2

1 5 2, 2 1 1 5 5

1 5 3, 1 1 1 1 5

3 5 2, 2 1 1 5 5

3 5 3, 1 3 3 3 5

Let X̄s = (Xs;Ms) :=
((

1 0 0

)ᵀ

,

(
0 0 1

)ᵀ

; 1
)
, X̄ns = (Xns;Mns) :=

(
R3 \

Xs; 3, 5
)
, and C =

(
1 1 1

)
. For q = 1 and k = 4, the set of switching sequences

of length 1 starting from Ms or Mns, the dwell times along the path that sum to

k, and the modes of the system is given in table 5.1. The output at time 4 for an

initial state x(0) and controls u(0), u(1), u(2), u(3) for each of the mode sequences

in table 5.1 is of the form:

y(4) =

(
1 1 1

)
x(0) + 2u(0) + 2u(1) + 2u(2) + 2u(3)

From Table 5.1, it is evident that for every initial secret mode, there is an initial

nonsecret mode such that Ms
4 = Mns

4 . Further, in the cases when k = 4 hap-

pens to be a switching time, under Assumption 5.8, the adversary observes Mk−.

Consider x′(0) =

(
0 1 0

)ᵀ

∈ Xns. Then, for ys(4) = yns(4), the following con-

dition will have to be satisfied: for every us(0), us(1), us(2), us(3), there must exist
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uns(0), uns(1), uns(2), uns(3), such that:

3∑
j=0

us(j) =
3∑
j=0

uns(j)

If the controls are allowed to take arbitrary values in R, then X̄s will be (4, 1)-IMSO

with respect to X̄ns. However, if Xns := {
(
x1 x2 x3

)ᵀ

: xi ∈ {0, 1}, i = 1, 2, 3}

and 0 ≤ us(j) ≤ p1, 0 ≤ uns(j) ≤ p2 for j = 0, 1, 2, 3, and p1 > p2, then X̄s will not

be (4, 1)-IMSO w.r.t. X̄ns.

Example 5.22. Consider the system in Figure 5.1, with the following additional

specifications [60]:

A(1) = A(2) =

18 −4

25 −10

 ; A(3) = A(4) = A(5) =

−2 4

7 −6


B(1) = B(2) =

(
16 24

)ᵀ

; B(3) = B(4) = B(5) =

(
8 12

)ᵀ

Let X̄s = (Xs;Ms) :=
((

0 1

)ᵀ

∪{
(
x1 x2

)ᵀ

: x1 = −1}; 1
)
, X̄ns = (Xns;Mns) :=(

R3 \Xs; 3, 5
)
, and C = I2×2. For q = 1 and k = 3, the set of switching sequences of

length 1 starting fromMs orMns, the dwell times along the path that sum to k, and

the modes of the system is given in Table 5.2. If the controls are restricted in the

following way: (2us(0), us(1), us(2)) = (uns(0), uns(1), uns(2)) = (u0, u1, u2), where

u0, u1, u2 ∈ R, then for x(0) =

(
0 1

)ᵀ

∈ Xs, the state which ensures ys(3) = yns(3)

is x′(0) =

(
−1 0.23

)ᵀ

. However, x′(0) /∈ Xns (in fact, x′(0) ∈ Xs), which means

that X̄s is not (3, 1)-IMSO w.r.t. X̄ns.

Example 5.23. Consider the system in Figure 5.1 with A(·), B(·), C matrices as

considered in example 5.21. Let Xs =
((

1 0 0

)ᵀ

,

(
0 0 1

)ᵀ)
and Xns = R3 \
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Table 5.2: Example 5.22: (3, 1)-IMSO

Θ[1] (τ ′d, τ
′′
d ) : τ ′d + τ ′′d = 3 M0M1M2M3

1 2 (1, 2) 1 2 2 3

1 2 (2, 1) 1 1 2 3

1 2 (2, 1) 1 1 2 2

5 2 (2, 1) 5 5 2 3

5 2 (2, 1) 5 5 2 2

1 5 (1, 2) 1 5 5 2

1 5 (2, 1) 1 1 5 5

3 5 (2, 1) 3 3 5 5

Xs. The output at time 4 for any allowed switching sequence of length 1 has the

same form as in example 5.21. If the control can take any value in R, Xs will be

(4, 1)M-ISO with respect to Xns.
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Chapter 6: A Structured Systems Approach to Resilience to Denial-

of-Service Attacks

This chapter presents a characterization of the resilience of a cyberphysical

system (CPS) modeled as a linear structured system to denial-of-service (DoS) at-

tacks. The resilience of the system to an attack is interpreted in terms of unmatched

vertices in maximum matchings of bipartie graph, and connected components of

directed graph representations of the system under attack. We further go on to

establish conditions under which a system will be structurally resilient to a state

feedback integrity attack if it is already structurally resilient to a DoS attack. We

conclude the chapter by proposing a characterization of structural resilience for

switched structured systems.

The problem to be solved is stated in Section 6.1, and Section 6.2 summarizes

some of the results on structural controllability from the literature. The main results

of the chapter are presented in Sections 6.3 and 6.4. The computational complexity

of the results presented in this chapter only rely on determining maximum matchings

in bipartite graphs and strongly connected components of directed graphs. Section

6.5 makes a note of this. Section 6.6 presents several examples to illustrate our

results. We extend our work to characterize the structural resilience of switched
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linear systems to DoS attacks in Section 6.7.

6.1 Problem Formulation

Consider the linear structured system

ẋ(t) = [A]x(t) + [B]u(t) (6.1)

where, x(t) ∈ Rn, u(t) ∈ Rp, [A] ∈ {0, ∗}n×n and [B] ∈ {0, ∗}n×p.

Removing the explicit dependence on t, and rewriting u(t) in Equation (6.1)

as u =
(
u1 . . . ud ud+1 . . . up

)T
, we will use udef ∈ Rd and uatt ∈ Ra (with

a := p−d) to collectively denote the elements
(
u1 . . . ud

)T
and

(
ud+1 . . . up

)T
respectively. The sets udef and uatt represent the input vertices accessible to the

system (defender) and attacker respectively. The structural resilience of the system

to the different types of attacks discussed in this chapter will depend, to a large

extent, on the cardinality of the vertex sets udef and uatt (that is, on d and a)

vis-à-vis the number of unmatched state vertices.

The system model is now:

ẋ(t) = [A]x(t) + [Bdef ]udef (t) + [Batt]uatt(t) (6.2)

Assumption 6.1. The sets of state vertices that can be directly connected to inputs

controlled by the defender and attacker are disjoint. Let Xdef and Xatt denote these

sets. That is, the inputs in udef can only be connected to state vertices in Xdef and

inputs in uatt can only be connected to state vertices in Xatt.

This is a reasonable assumption in that it means that the defender (system)
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will have limited or restricted access to only a subset of the state vertices which it

can ‘directly’ control (Xdef ) in order to be resilient to an attack. Further, once the

attacker has gained access to the system by manipulating a subset of the inputs,

thereby influencing a set of states (Xatt), it can be assumed that it retains access

to these states while the defender tries to ensure that the system is resilient to the

attack by appropriately controlling the other states (Xdef ).

In the structural setting, this would imply that [Bdef ] will have fixed zeros in

rows corresponding to Xatt, and [Batt] will have fixed zeros in rows corresponding to

Xdef .

The resilience of the CPS will be characterized in terms of the structural

controllability of the system in the face of an attack. This will subsequently be

shown to be equivalent to formulating conditions on the non-attacked nodes in the

graph of the structured system. We shall assume that the sets Xdef and Xatt remain

unchanged with time. The system will be structurally resilient to an attack if it is

structurally controllable when it has ‘access’ to only some components of the state

vector, while the remaining components of the state vector (those under ‘attack’)

cannot be directly accessed by it.

We study the structural resilience of the system to two kinds of attacks:

1. During a denial-of-service attack, access to the inputs in uatt is blocked by

the attacker. Our goal will be to formulate conditions for structural resilience

assuming that only inputs in udef are available.

2. An integrity attack corresponds to the situation when a state feedback strategy
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(explained in greater detail in Section 6.4) is not implemented appropriately.

That is, only some components of the input are faithfully reproduced, while

the remaining are arbitrary.

At this point, we would like to point out two different ways of viewing a denial-

of-service attack. In the computer science and cybersecurity literature, a denial-of-

service attack typically occurs when an adversary ‘floods’ the system with spurious

inputs or requests, thereby ensuring that the system cannot address ‘genuine’ service

requests. In our framework, however, we view a denial-of-service attack in terms of

ensuring the structural resilience of the system when certain inputs (corresponding

to the attacker) are disregarded. A spurious input in our framework is assumed to

not be of use, and is therefore set to zero. We then want to see if the system can

satisfy certain properties in order to be structurally resilient to this attack in the

absence of these inputs.

Problem 6.2. Given the system (6.2) with ([A], [B]) structurally controllable be-

fore an attack, characterize its structural resilience to denial-of-service (DoS) and

integrity attacks.

This problem for a given numerical realization, (A,B) was solved in [31] for

several attack scenarios, and is stated below.

Problem 6.3. Given a particular numerical realization of the structured system,

(6.2), characterize its resilience to DoS and integrity attacks.

Structural controllability of the system before the attack ensures that the

cardinality of the input set is greater than the minimum number of inputs needed to
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ensure structural controllability [61]. This will play an important role in determining

the structural resilience of the system subsequent to an attack.

6.2 Structural Controllability

Before stating and proving our main results, we take a detour to present some

intermediate results that will be needed in subsequent sections.

Definition 6.4. Given the digraph representation of the system in (6.2), we define

the following terms [32, 49]:

• State stem: simple path comprising only state vertices, or an isolated state

vertex.

• Input stem: an input vertex linked to the root of a state stem.

• A chain is a single cycle or a group of disjoint cycles (composed of state ver-

tices) connected to each other in a sequence.

• A top assignable SCC of D([A]) = (X , EA) is a non-top-linked SCC which

contains at least one right unmatched vertex in a maximum matching. Since

a maximum matching is not unique, whether an SCC is top assignable will

depend on the maximum matching under consideration.

• The maximum top assignability index of D([A]) is the maximum number of

top assignable SCCs among the maximum matchings associated with B([A]).

• A dedicated input is an input that is connected to exactly one state. This

corresponds to a column of [B] having only one nonzero entry.
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The next three results present conditions for structural controllability, and

lower bounds on the number of control inputs and the links from these inputs to

unmatched state vertices and top assignable SCCs in order to ensure structural

controllability. The reader is directed to the references cited for proofs of these

results.

Theorem 6.5. [32, 49] The following are equivalent:

1. ([A], [B]) is structurally controllable.

2. Every state vertex is the end of a U−rooted path and there exists a union of a

U−rooted path family and a cycle family containing all vertices in X .

3. Every right unmatched vertex of a maximum matching of B([A], [B]) is con-

nected to a distinct input, and one state vertex from each non-top-linked SCC

of D([A]) is connected to some input.

Theorem 6.6. [61] Let m be the number of right unmatched vertices in a maxi-

mum matching of B([A]). Then, the minimum number of inputs needed to ensure

structural controllability is one, if m = 0, and m, otherwise.

Theorem 6.7. [32] Let β be the number of non-top-linked SCCs and α the maxi-

mum top assignability index in D([A]). Then, the minimum number of input-state

links needed to ensure structural controllability is m+ β − α.

The following example shows why the cardinality of the input set and the

number of links from the inputs to the states is important in ensuring structural

controllability.
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x1 x2 x3 x4 x5

u

Figure 6.1: x5 is unmatched. Each xi is an SCC

Example 6.8. Let A = diag{∗, ∗, ∗, ∗, 0}, as shown in Figure (6.1). Then, B(A)

has one right unmatched vertex, x5, giving m = 1. Therefore, one input connected

to x5 is required. However, the system has five strongly connected components,

giving β = 5. α = 1 since only one of the SCCs is top assignable. Therefore, the

minimum number of links from inputs to states to ensure structural controllability

is 1 + 5−1 = 5. Indeed, the input must be connected to all the states (to ensure that

no state is unreachable).

Example 6.9. Let us turn our attention to the first maximum matching (that is,

the edges in blue in Figure 2.3) of B([A]) in Example 2.13. We see that w3 and w5

in B([A]) correspond to v3 and v5 in D([A]), which both belong to non-top linked

SCCs, which makes these SCCs top-assignable.

From the preceding discussion, it is evident that one way to reduce the number

of input to state links needed to ensure structural controllability is to determine

a maximum matching of B([A]) in a way that as many right unmatched vertices

belong to non-top linked SCCs. This will ensure that β − α is ‘close’ to zero, and
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the minimum number of input to state links needed is ‘close’ to m, the number of

right unmatched vertices.

We conclude this section by defining what it means for an attack to be struc-

turally successful. The system post-attack is defined to be the configuration for

which structural controllability has to be ensured when only vertices in Xdef can be

connected to inputs.

Definition 6.10. An attack on the system is said to be structurally successful if

the system post-attack is not structurally controllable.

The system is structurally resilient to the attack if the system post-attack is

structurally controllable.

6.3 Structural Resilience to DoS Attacks

During a DoS attack, the attacker blocks access to inputs in uatt. The system

still has access to inputs in udef . Structurally, this corresponds to designing [Bdef ],

with [Batt] = 0, to ensure structural resilience. The system model is:

ẋ(t) = [A]x(t) + [Bdef ]udef (t) (6.3)

We assume that the number of right unmatched vertices, m, in a maximum

matching of B([A]) is nonzero. Let mdef and matt be the number of right unmatched

vertices in B([A]) corresponding to Xdef and Xatt (thus, mdef + matt = m). Let

l(P → Q) denote the set of links from P to Q. Lemma 6.11 provides a sufficient

condition for a DoS attack to be successful.
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Lemma 6.11. A DoS attack on the system in (6.2) is structurally successful if:

1. p ≥ m+ β − α OR

2. p ≥ m and |l(u→ X )| ≥ m+ β − α

and d < mdef , where p and d respectively denote the dimensions of u and udef .

Proof. ([A], [B]) is assumed to be structurally controllable before an attack occurs.

This means that there are at least m vertices in u and m+β−α links from u to X ,

which gives the inequalities in 1) and 2). The last inequality is obtained from the

fact that if, after an attack, the number of available inputs is less than the number

of right unmatched vertices in B([A]) corresponding to Xdef , then ([A], [Bdef ]) will

not be structurally controllable. Thus, the system will not be able to mitigate the

effect of the attack.

The conditions of Lemma 6.11 are not necessary, for an attack could be suc-

cessful even in the case when p ≥ m + β − α and d ≥ mdef . Though the minimum

input requirement is satisfied, the conditions to ensure structural controllability

must be carefully checked.

Lemma 6.12. If d ≥ mdef , a DoS attack is structurally successful if:

1. There exists an unreachable state from the vertices of udef . OR

2. There does not exist a disjoint union of udef rooted path families and cycle

families covering all the states. OR

3. |l(udef → X )| < mdef + β − α. OR
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4. Every maximum matching of B([A]) has a right unmatched vertex in Xatt. OR

5. There is a non-top-linked SCC in D([A]) comprising only vertices from Xatt.

Proof. The first three conditions follow from Theorem 6.5 and Theorem 6.7. The

last two follow from the fact that inputs from udef cannot be assigned to vertices in

Xatt.

Gathering the results in Lemmas 6.11 and 6.12, we have the following result:

Theorem 6.13. Given [A] and the indices of [B] corresponding to [Bdef ], the sys-

tem in (6.3) is structurally resilient to a DoS attack if and only if ([A], [Bdef ]) is

structurally controllable and:

1. there exists a maximum matching of B([A]) that does not contain a right un-

matched vertex in Xatt;

2. D([A]) does not have a non-top linked SCC comprising vertices from only Xatt.

Proof. If ([A], [Bdef ]) is not structurally controllable, then at least one of the first

two conditions of Lemma 6.12 will not be satisfied, and the system will not be

structurally resilient to a DoS attack.

Now, let ([A], [Bdef ]) be structurally controllable. Any right unmatched vertex

in Xatt or a non-top-linked SCC consisting of only vertices in Xatt will have to be

assigned to a control in udef . This would violate the assumption that udef can only

be connected to states in Xdef . This means that the system will not be structurally

resilient to a DoS attack. If ([A], [Bdef ]) is structurally controllable, the absence of

right unmatched vertices or non-top-linked SCCs comprised exclusively of vertices
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from Xatt corresponds to the existence of a control configuration such that d ≥ mdef

and |l(udef → Xdef )| ≥ mdef + β − α, which ensures structural resilience to a DoS

attack.

Remark 6.14. This is different from the minimal controllability problem, where,

given [A], we need to find the sparsest [B] such that ([A], [B]) is structurally con-

trollable. In our framework, if the number of columns of [Bdef ] exceeds a certain

threshold (m), then the only remaining task is to fill in the ‘missing links’ to ensure

structural controllability. Conversely, structural controllability cannot be achieved if

the number of columns of [Bdef ] is below this threshold.

6.4 Structural Resilience to Integrity Attacks

State feedback is a popular control strategy in which the closed-loop poles of

a system can be appropriately placed in order to control the characteristics of the

response of the system. The control u(t) is a linear function of the state x(t), that

is, u(t) = Kx(t), and state feedback corresponds to placing the eigenvalues of the

modified system matrix (A + BK) in order to achieve a desired response. If the

system is controllable, these closed-loop poles can be arbitrarily placed.

During an integrity attack, only the control signals corresponding to the sys-

tem maintain their integrity, while those of the attacker are arbitrary. That is,

only the part of the input corresponding to udef is faithfully reproduced, while the

part corresponding to uatt is arbitrary. The attacker is successful if the system is

structurally controllable without needing to connect inputs to Xdef .
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Remark 6.15. Notice that in contrast to Definition 6.10, this notion of resilience

depends on the ability to connect inputs to Xatt, and not Xdef .

With [Adef ] := ([A] + [Bdef ][Kdef ]), the system model is:

ẋ(t) = [Adef ]x(t) + [Batt]uatt(t) (6.4)

The following result presents conditions for the system to be structurally re-

silient in the face of an integrity attack.

Theorem 6.16. The system in (6.4) is structurally resilient to an integrity attack

if and only if there is a right unmatched vertex in Xdef in every maximum matching

of B([Adef ]) or there exists a non-top-linked SCC of D([Adef ]) comprising exclusively

vertices in Xdef .

Proof. This follows from Assumption 6.1. The attacker will not be able to ensure

structural controllability of (6.4) if some vertex in Xdef has to be assigned to a

control in uatt.

Alternatively, through a measurement or other means (eg. changing a con-

troller parameter), an attacker might gain access to a state. We label this scenario a

state feedback integrity attack. In this case, uatt(t) = Kattx(t), while udef is arbitrary.

For structural systems, this corresponds to designing [Bdef ] to ensure structural con-

trollability. With [Aatt] := ([A] + [Batt][Katt]), we have:

ẋ(t) = [Aatt]x(t) + [Bdef ]udef (t) (6.5)

Let mA and mAatt denote the number of right unmatched vertices in a max-

imum matching of B([A)] and B([Aatt]). Let Z(H) denote the zero structure of a
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structured matrix H. A zero structure is therefore a particular configuration of

0s and ∗s. For structured matrices H and H ′ of the same dimension, we write

Z(H ′) ⊆ Z(H) whenever h′ij = 0 in [H ′] implies hij = 0 in [H].

The main result of this section provides certain guarantees on the structural

resilience of the system to a state feedback integrity attack depending on its resilience

to a DoS attack.

Theorem 6.17. If the system in (6.2) is structurally resilient to a DoS attack for

some [Bdef ] with zero structure Z(Bdef ), then there exists a [B′def ] which satisfies

Z(B′def ) ⊆ Z(Bdef ) for which it will also be structurally resilient to a state feedback

integrity attack. Moreover, if

mAatt + βAatt − αAatt ≤ mA + βA − αA (6.6)

for some [Bdef ] corresponding to the DoS case, then the same [Bdef ] will ensure

structural resilience to a state feedback integrity attack (here, m,β, and α are as in

Theorem (6.7)).

Proof. Addition of edges corresponding to [Batt][Katt] to [A] will ensure that the

number of right unmatched vertices in a maximum matching of [Aatt] can only be

as many as the number of right unmatched vertices in a maximum matching of [A].

Therefore, mAatt ≤ mA. From Theorem 6.6 and Equation (6.3), structural resilience

to a DoS attack implies d ≥ mA holds. This gives d ≥ mAatt .

If the inequality (6.6) holds, then |l(udef → X )| ≥ mAatt +βAatt−αAatt , and no

additional links between inputs and states will have to be added to ensure structural

controllability, and [B′def ] = [Bdef ]. Additional links will have to be added if (6.6)
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does not hold. This corresponds to adding free parameters to [Bdef ], giving [B′def ],

which satisfies Z(B′def ) ⊆ Z(Bdef ).

If the system is structurally resilient to DoS attacks and (6.6) holds, the same

configuration, i.e. [Bdef ], will automatically make it structurally resilient to state

feedback integrity attacks. However, there might be a cost involved in ‘turning

on’ controls to ensure structural controllability, and the system might want to be

resilient with the lowest cost. This would entail choosing a subset of the columns

of [Bdef ], indexed by I, to maintain structural controllability of ([Aatt], [Bdef (I)]),

while minimizing the cost of the control action.

It is important to note that structural resilience to DoS attacks guarantees

structural resilience only to state feedback integrity attacks. It does not, in general,

ensure structural resilience to arbitrary integrity attacks.

6.5 Computational Complexity

The computational complexity of determining the structural resilience of the

system under both denial-of-service and integrity attacks depends on two factors:

1. the complexity of determining strongly connected components in a directed

graph; and,

2. the complexity of determining a maximum matching in a bipartite graph.

Strongly connected components in a directed graph can be computed using

Tarjan’s algorithm [62]. This procedure uses depth-first search to push nodes onto
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a stack, and a bookkeeping procedure to ensure that nodes are visited exactly once.

The complexity of this procedure in the worst-case is linear in the cardinality of the

vertices and edges of the directed graph, that is O(|V|+ |E|).

A maximum matching of a bipartite graph can be determined by the Hopcraft-

Karp algorithm [63]. Each phase of this algorithm comprises one breadth-first search

and one depth-first search. Every phase increases the size of a partial matching by

determining augmented paths, which are paths of the graph that start and end in

vertices that do not belong to the matching, and in which the edges alternate be-

tween belonging to the matching and not belonging to it. The procedure terminates

when the graph has no augmenting paths. The complexity of this procedure in the

worst-case is O(
√
|V||E|). An extension for determining maximum matchings in

more general graphs with the same computational complexity was presented in [64].

6.6 Examples

In this section, we present illustrative examples to illustrate the results in

Sections 6.3 and 6.4. In all the examples, we will assume that x1, . . . , x6 ∈ Xdef and

x7, . . . , x10 ∈ Xatt.

Example 6.18. (DoS Attack Resilience) Figure (6.2a) shows the directed graph

representation of a system, D([A]). The SCCs are (x1, x2, x3), (x8), (x4, x5, x6, x7),

and (x9, x10). Inputs need to be asssigned to the first two SCCs, since they are

not top linked. Every maximum matching of D([A]) will have x8 ∈ Xatt as a right

unmatched vertex. Thus, the system is not structurally resilient to a DoS attack.
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(c)

Figure 6.2: Structural Resilience to DoS Attack
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Now, add the edge x7 → x8 to the digraph as shown in Figure (6.2b). The

SCCs are (x1, x2, x3), (x4, x5, x6, x7, x8), and (x9, x10). Only the first SCC is not top

linked, and there is only one right unmatched vertex in every maximum matching,

and for some such matching, it is not in Xatt. Therefore, this system is structurally

resilient to a DoS attack.

If the edge, x6 → x7 is removed as shown in Figure (6.2c), then (x7, x8)

becomes a non-top-linked SCC, which necessitates the assignment of a control to it,

making the system vulnerable to a DoS attack.

Example 6.19. (State Feedback Integrity Attack Resilience) In Figure (6.2a),

if a state feedback adds edges x7 → x8, x9 → x8, or x10 → x8, then there exists a

maximum matching of D([Aatt]) with no right unmatched vertices or non-top-linked

SCCs in Xatt, ensuring structural resilience to a state feedback attack.

For the system in Figure (6.2b), any state feedback [Katt]x will add edges to the

set {x7, x8, x9, x10}. We know that this graph does not have right unmatched vertices

in Xatt. This ensures structural resilience with the same [Bdef ] as in the DoS case.

It will be helpful to think of determining resilience to a state feedback integrity

attck in the context of a power system. The term [Katt]x can be thought of as ‘adding

wires’ to the system between nodes in the system (generators, loads, etc.) in order

to create redundancies. The addition of these wires will serve to reduce (or at least,

not increase) the number of right unmatched vertices in a maximum matching of

a bipartite graph representation of the system, which, as we have seen determines

the resilience of the system to an attack. While it is difficult to ensure resilience to
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Figure 6.3: Structural Resilience to Integrity Attack

such attacks at run-time, it is also the case that such systems are subject to regular

inspections. Such vulnerabilities that might become evident during an inspection

might be fixed during a maintenance period.

Example 6.20. (Integrity Attack Resilience) For [Adef ] given by Figures (6.2a,

6.2b, 6.2c), there is a non-top-linked SCC with vertices only in Xdef . Since controls

in uatt cannot be assigned to vertices in Xdef , the systems are structurally resilient

to an integrity attack.

However, if [Adef ] is as in Figure (6.3), all maximum matchings will have x8

as a right unmatched vertex, and x8 will be the only non-top-linked SCC. An attacker

can ensure structural controllability of the system by supplying an input to x8, and

the system will not be structurally resilient to an integrity attack.
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6.7 Extension to Switched Systems

The material in the previous sections can be extended to the case of switched

linear systems. In particular, it is important to note that a switched system can

be controllable even when each of its individual modes is not controllable. In this

section, we adopt the structured systems approach to study the resilience of switched

linear systems to denial-of-service attacks. Structural controllability of switched

linear systems was studied in [38], wherein the authors presented necessary and

sufficient conditions for structural controllability of a switched linear system in terms

of union graphs and colored union graphs. The problem of determining the smallest

subset of actuators needed to ensure controllability of the switched system was

studied in [39]. We leverage these results along with our results presented in Section

6.3 to establish conditions for a structured switched linear system to be resilient to

DoS attacks.

6.7.1 Switched Linear Systems

A switched system is composed of a family of subsystems and a rule that

governs switching among them. Consider the system:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) (6.7)

where x(t) ∈ Rn and u(t) ∈ Rp. σ : [0,∞)→ M := {1, . . . , z} is a switching signal.

M are the modes of the system, and σ(t) = i implies that the ith subsystem is active

at time t. In this section, each subsystem will be an LTI system.
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We will need several assumptions in the sequel.

Assumption 6.21. The switching signal σ(t) does not depend on initial states and

controls.

Assumption 6.22. There is only a finite number of changes of mode in every finite

time interval. This assumption is needed to rule out the Zeno phenomenon.

Assumption 6.23. All pairs of mode transitions are allowed. Further, there are no

constraints on the duration of time the system must spend in each mode.

The switched system is said to be controllable if for any initial state x(0) = x0

and final state x(tf ) = xf , there exists a switching signal σ : [0, tf ) → M and an

input u : [0, tf ) → Rp that transfers the system from x0 to xf . Similar to the

LTI case, a necessary and sufficient condition for the switched linear system to be

controllable is given by a rank condition.

Theorem 6.24. [43] The switched linear system in Equation (6.7) is controllable

if and only if the matrix

[B1, B2, . . . Bz, A1B1, . . . , AzB1, A1B2, . . . , AzB2, . . . ,

A1Bz, . . . , AzBz, A
2
1B1, A2A1B1, . . . , AzA1B1, A1A2B1,

A2
2B1, . . . , AzA2B1, . . . , A1AzBz, A2AzBz, . . . , A

2
zBz, . . . ,

An−1
1 B1, A2A

n−2
1 B1, . . . , AzA

n−2
1 B1, A− 1A2A

n−3
1 B1,

A2
2A

n−3
1 B1, . . . , A

n−3
1 B1, . . . , A1A

n−2
z Bz, . . . A

n−1
z Bz]

has full row rank n.

Let [Ak] and [Bk], k ∈ {1, . . . , z} correspond to the structural realization of

matrices Ak and Bk respectively. Therefore, [Ak] ∈ {0, ∗}n×n and [Bk] ∈ {0, ∗}n×p.
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We can associate a directed graph to each mode of the system. Let Dk = (Vk, Ek),

where Vk = Uk ∪ Xk and Ek = EAk ∪ EBk , where EAk = {(xj, xi)|[Ak]ij 6= 0},

EBk = {(uj, xi)|[Bk]ij 6= 0}, k = {1, . . . , z}.

Definition 6.25. The union graph of a collection of digraphs

Dk := D([Ak], [Bk]) = (Vk, Ek), k = {1, . . . , z}

is given by

D := (V1 ∪ · · · ∪ Vz, E1 ∪ · · · ∪ Ez)

Remark 6.26. Structurally, an edge eij in the union graph corresponds to a non

zero entry in the (j, i) position in at least one of the [Ak] (or [Bk]) matrices. The

absence of an edge eij from vertex i to vertex j in the union graph corresponds to the

case that the (j, i) entry in each of the [Ak] and [Bk] matrices is zero. Equivalently,

the union graph is a representation of the structured system defined by

([A1] + · · ·+ [Az], [B1] + · · ·+ [Bz]).

We will denote the union graph of structured matrices [M1] and [M2] by

D([M1] + [M2]). Following the notation used in [39], [ [M1], [M2] ] will denote the

concatenation of the matrices [M1] and [M2].

The following is a necessary and sufficient condition for structural controlla-

bility of the switched linear system.

Theorem 6.27. [39] A switched linear continuous time system is structurally con-

trollable if and only if the following two conditions hold:
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1. there exists an edge from an input in D([A1] + · · ·+ [Az], [B1] + · · ·+ [Bz]) to

a state vertex in every non top linked SCC of D([A1] + · · ·+ [Az]).

2. B([ [A1], . . . , [Az], [B1], . . . , [Bz] ]) has a maximum matching of size n.

6.7.2 Structural Resilience

As in the single mode case, we assume that the input in Equation (6.7) is

partitioned as

u =
(
u1 . . . ud ud+1 . . . up

)T
We shall use udef ∈ Rd and uatt ∈ Ra (with a := p− d) to collectively denote

the elements
(
u1 . . . ud

)T
and(

ud+1 . . . up
)T

respectively.

Then, the structural equivalent of Equation (6.7) can be written as:

ẋ(t) = [Aσ(t)]x(t) + [Bσ(t)def ]udef (t) + [Bσ(t)att ]uatt(t) (6.8)

Like in the single mode case, if Xdef and Xatt denote the (disjoint) sets of state

vertices that are accessible to the defender and attacker inputs respectively, then

[Bkdef ] will have fixed zeros in the rows corresponding to Xatt and [Bkatt ] will have

fixed zeros in the rows corresponding to Xdef .

During a DoS attack, the system is denied access to certain inputs, effectively

setting them to zero. In our model, this corresponds to the inputs in uatt. Struc-

turally, this corresponds to setting every entry of [Bkatt ] to zero for every mode

k.
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Assumption 6.28. The state vertices that the defender and attacker have accesss

to remains the same irrespective of the mode of the system. That is, the column

indices corresponding to [Bkatt ] is the same for every mode.

We pose the following problem:

Problem 6.29. Given that the system in Equation (6.8) is structurally controllable

before an attack, characterize its structural resilience to a denial-of-service attack.

As we will see, the solution to this problem will involve determining conditions

for ([A1], [B1def ], . . . , [Az], [Bzdef ]) to be structurally controllable. Let mdef and matt

denote the number of right unmatched vertices in B([ [A1], . . . , [Az] ]) corresponding

to Xdef and Xatt respectively.

Theorem 6.30. The switched system is structurally resilient to a denial-of-service

attack if and only if d ≥ mdef and:

1. D([A1]+· · ·+[Az]) has no non-top linked SCC comprised exclusively of vertices

from Xatt.

2. there exists a maximum matching of B([[A1], . . . , [Az]]) containing every vertex

in Xatt, that is, matt = 0 for some maximum matching.

3. every right unmatched vertex of B([ [A1], . . . , [Az] ]) in the maximum matching

above is connected to a unique input in udef .

4. every non-top linked SCC of D([A1]+ · · ·+[Az]) contains a vertex in Xdef that

is connected to some input in udef .
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Proof. If d < mdef , then there is some vertex in Xdef that does not have a ‘dedicated

input’ needed to ensure structural controllability (Theorem 6.6).

Now consider the case when d ≥ mdef , but D([A1]+ · · ·+[Az]) contains a non-

top linked SCC comprised exclusively of vertices from Xatt or if every maximum

matching of B([ [A1], . . . , [Az] ]) contains some vertex in Xatt. This would mean that

vertices in Xatt would have to be connected to a control in udef , which violates our

assumption that controls in udef can only be connected to states in Xdef .

The last two conditions are needed to ensure structural controllability of

([A1], [B1def ], . . . , [Az], [Bzdef ]).

Therefore, if any of the conditions are violated, the system will not be struc-

turally resilient to a DoS attack. This proves necessity.

For sufficiency, it is clear that if all the conditions are met, there exists a

control configuration which ensures structural controllability even when the system

(defender) can control only a subset of the states (i.e., those in Xdef ), and other

states (i.e., those in Xatt) cannot be directly accessed.
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Chapter 7: Conclusion

This dissertation has addressed two problems in the broad area of the control

and security of cyberphysical systems.

We proposed a new framework for opacity for systems in which the state

and input variables take values from a continuous domain. Prior work in this field

studied notions of opacity only for systems in which the states were discrete. The

framework was built from the bottom-up in a natural way:

1. We started by formulating a notion of opacity for single-adversary LTI systems

called k-initial state opacity (k-ISO) in Chapter 3. A set of secret states was

defined to be k-ISO with respect to a set of nonsecret states if the outputs at

time k of every trajectory starting from the set of secret states could not be

distinguished from the output at time k of some trajectory starting from the

set of nonsecret states. Necessary and sufficient conditions to achieve k-ISO

were presented in terms of sets of reachable states. Opacity of a given DT-LTI

system was shown to be equivalent to the output controllability of a system

obeying the same dynamics, but with different initial conditions.

2. This was extended to the case when there was more than one adversarial ob-

server in Chapter 4, where we defined several notions of decentralized opacity.
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These notions of decentralized opacity depended on whether there was a cen-

tralized coordinator or not, and the presence or absence of collusion among

the adversaries. We established conditions for decentralized opacity in terms

of sets of reachable states. In the case of colluding adversaries, we derived

a condition for nonopacity in terms of the structure of the communication

graph.

3. Finally, in Chapter 5, we formulated notions of opacity for switched linear sys-

tems (SLSs). We distinguished between the cases when the secret was specified

as an initial mode, an initial state, or a combination of the two, and whether

the adversary observed a mode, a function of the state, or a combination of

the two. Constraints were placed on the modes that the system was allowed

to transition into from a given mode and we imposed bounds on the dwell

times in each mode. Moreover, constraints were imposed on the number of

changes of modes before the adversary made its observation in our definitions

of opacity for SLSs. In each case, we presented conditions that established that

particular notion of opacity. We also presented algorithmic procedures that

gave conservative upper bounds on the computational complexity to verify

these notions of opacity.

We then presented a characterization of the structural resilience of

cyber physical systems to denial of service and integrity attacks using

tools from linear structured systems and graph theory in Chapter 6. Conditions

for the system to be resilient were established in terms of unmatched vertices of
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bipartite graph and connected components of directed graph representations of the

structured system. An extension to the linear structured switched systems case was

studied and similar conditions needed to establish the resilience to denial of service

attacks were presented.

7.1 Future Directions

This section presents a (non-exhaustive) summary of the directions in which

the work presented in this dissertation can be extended. Specifically, we propose

developing notions of opacity for nonlinear systems, means of computing approxima-

tions of reachable sets, quantifying opacity, and several extensions to the structural

resilience problem.

7.1.1 Opacity for Nonlinear Systems

The nominal operation of many real-world systems relies on switching among

a set of modes whose dynamics are nonlinear. Consider the discrete-time nonlinear

system (DTNLS):

x(t+ 1) = f(x(t), u(t))

x(0) = x0 ∈ X0

y(t) = h(x(t)) (7.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and f(·, ·) and h(·) are sufficiently smooth functions

with h(0n) = 0p, where 0∗ is the 1× ∗ vector of zeroes.
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In a series of papers, the authors of [65], [66], and [67] derived conditions

under which a DTNLS could be transformed into a discrete-time linear system via

feedback. A geometric analysis of controllability of DTNLSs in terms of Lie algebras

of vector fields was presented in [68]. A linear algebraic framework for the analysis

of synthesis problems in DTNLSs was proposed in [69], where the notion of the rank

of an analytic discrete time system was developed. In a more recent work [70], the

authors studied input-to-state stability properties of DTNLSs, using well established

notions of input-to-state stability from the continuous time version.

Remark 7.1. [69] The analysis of continuous time nonlinear systems is largely

focused on that class of systems that is affine in the input (that is, of the form

ẋ(t) = f(x(t))+g(x(t))u(t)). The advantages that such a model offers are twofold: i)

the derivatives of the output depend polynomially on the inputs and their derivatives,

and ii) the vector fields involved have a nice structure (a drift term and m control

vector fields). Moreover, this class of systems is general enough to model many

practical nonlinear systems. However, the class of discrete time nonlinear systems

can also potentially include versions of continuous time systems that are sampled

in time, which necessitates considering the more general form of the DTNLS in

Equation (7.1).

Formulating notions of opacity for such systems will contribute to the develop-

ment of a comprehensive framework for opacity for general cyberphysical systems.
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7.1.2 Opacity and Reachable Sets of States

Recall that our definitions of opacity were different from well known definitions

of state observability and initial state estimation. Standard definitions of observ-

ability assume that the entire input and output sequences are known, and uses these

to verify if an initial state can be uniquely determined. In our framework, however,

we only have snapshots of the system output, and further, we do not exactly know

the inputs; we only have knowledge of the set of potential inputs. This necessi-

tated determining a reachable set of states at the time(s) the adversary made an

observation, in order to conclude opacity.

Exactly computing the set of reachable states for a dynamical system is not

easy. One method of exactly determining the set of reachable states at a time k

is from the Minkowski sum 1 of the reachable states at time k − 1 and the set of

states at time k (obtained from the system dynamics). However, the size of the

representation grows at each step, and the problem becomes intractable for large

time horizons. This necessitates the use of approximate techniques to compute

reachable sets.

Various techniques have been developed to compute over and under approx-

imations of sets of reachable states depending on how the initial set of states is

specified, including using support functions [71], zonotopes [58], and ellipsoids [57].

We present a brief survey of some of these techniques. Specifically, we are

interested in the following: the use of support functions in determining over ap-

1The Minkowski sum of sets S1, S2 ⊆ Rd is S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
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proximations of reachable sets for arbitrary compact convex sets of initial states,

and under approximations of the reachable set in the case when the initial set is

represented as a zonotope. These approximations are tight in the sense that the

approximate reachable set will touch the original reachable set at the points where

inequalities defining the approximate sets (to be made clear subsequently) attain

equality. The reader is referred to [72] for a succinct presentation of the techniques

used in computing reachable sets.

Let Ω ⊆ Rd be a compact convex set.

Definition 7.2. [71] The support function of Ω, denoted ρΩ : Rd → R, is defined

as ρΩ(`) = max
x∈Ω

`Tx.

A support vector of Ω in the direction ` ∈ Rd is a vector (need not be unique)

vΩ,` ∈ Rd such that vΩ,` ∈ Ω and `TvΩ,` = ρΩ(`).

The support function gives the distance of the supporting hyperplanes of Ω

from the origin. A compact convex set is uniquely determined by its support func-

tion, since Ω =
⋃
`∈Rd
{x ∈ Rd : `Tx ≤ ρΩ(`)}. Thus, the support function repre-

sentation is (essentially) dual of the intersection of hyperplanes representation of a

convex set.

A tight polyhedral overapproximation Ω̃ of an arbitrary compact convex set

can be got by ‘sampling’ its support function. The set Ω touches the faces of Ω̃ at

the points defined by the support vectors.

Proposition 7.3. [71] For all matrices A, all compact convex sets S1, S2 ⊆ Rp,

and all nonzero vectors ` ∈ Rd, with hull(S1, S2) denoting the convex hull of S1 and
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S2, the following properties hold:

ρhull(S1,S2)(`) = max(ρS1(`), ρS2(`))

ρS1⊕S2(`) = ρS1(`) + ρS2(`)

ρAS1(`) = ρS1(A
T `)

For a DT-LTI system, x(t + 1) = Ax(t) + Bu(t), x0 ∈ X0, u(t) ∈ U , where

X0 ⊆ Rn and U ⊆ Rm are compact convex sets, the set of reachable states at time

k is given by Ωk = AΩk−1 ⊕ BU, Ω0 = X0. Given r arbitrarily chosen directions,

`1, . . . , `r, a tight polyhedral overapproximation of Ωk, Ω̃k can be computed as the

intersection of halfspaces given by Hk,i = {x : `Ti x ≤ ρΩk(`i)}, i = 1, . . . , r. Thus,

computing the overapproximation is equivalent to evaluating the support function

along r directions. The complexity of an algorithm to compute the support function

presented in [71] is linear in the time horizon and polynomial in the dimension of

the state space.

Over- and under-approximations of the reachable set of states can also be

computed using zonotopes.

Definition 7.4. [58] A zonotope is a subset of Rn represented by its center u ∈ Rn

and its generators v1, . . . , vm ∈ Rn as:

(u,< v1, . . . , vm >) := {u+ Σm
j=1αjvj : αj ∈ [−1, 1], j = 1, 2, . . . ,m}

A zonotope with m generators is said to have order m
n

.

The attraction in this case is the fact that the Minkowski sum of zonotopes

can be computed in O(n), independently of the order of the operands. The authors
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of [58] present an application of using polytopic under-approximations of zonotopes

in control synthesis.

Depending on how the initial set of states is specified, one can choose an

appropriate method to determine approximations of the set of reachable states at a

future time k.

An interesting problem is to extend this to computations of approximations

of the sets CXs(k) and CXns(k) to verify if k-ISO holds. The question to be

answered is how do set operations (susbet and intersection for strong and weak

k-ISO respectively) affect the accuracy of the approximation.

7.1.3 Output Controllability and Opacity

An equivalence between k-ISO and output controllability was established in

[40]. A notion of output controllability of a DT-SLS from a particular initial mode

has been defined in [60]. Establishing a similar equivalence for switched systems

under additional constraints on number of mode transitions and dwell times is more

subtle. The possibility of different switches of modes yielding the same output at

time k makes the analysis of comparing opacity with output controllability nontriv-

ial. It remains an interesting problem to study, nonetheless.

7.1.4 Quantitative Approaches to Opacity

Another interesting problem is to model the scenario when the adversary incurs

a cost to make an observation and has to decide on opacity by incurring as low a
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cost as possible. The results in this dissertation have been qualitative in nature.

An interesting topic to pursue is methods of quantifying opacity, and investigate its

relation to the notion of differential privacy [73].

7.1.5 Structural Resilience

For the structural resilience problem, throughout this dissertation, we have

assumed that the system and the attacker have access to disjoint sets of nodes. One

direction of future research is to study structural resilience when there is a set of

nodes accessible to both defender and attacker.

In the switched systems case, we assumed that the sets of states accessible

to the defender and attacker remain the same for every mode. Future work will

investigate the case when the states accessible to each is possibly different for each

mode. Further, there were no restrictions on the allowed mode transitions or on

the duration of time the system could spend in each mode. Extending our work to

incorporate these restrictions is another area of interest. Alternatively, one could

associate probabilities with the transitions from one mode to another, and use this

to develop a notion of probabilistic structural resilience for switched systems.

Assuming that activating or disrupting an input-state link incurs a cost, there

are two scenarios that can be envisaged. First, when the system successfully thwarts

an attack, the attacker might want to ensure that the system incurs a high cost in

maintaining resilience, while keeping its own cost of carrying out the attack low. A

second problem of interest is to quantify the robustness of the system to the worst
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possible attack. It would be interesting to see if these situations can be cast as

optimization problems.
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systems with static and dynamic masks. Formal Methods in System Design,
40(1):88–115, 2012.

[23] Anooshiravan Saboori and Christoforos N. Hadjicostis. Verification of initial-
state opacity in security applications of DES. In 9th International Workshop
on Discrete Event Systems, pages 328–333. IEEE, 2008.

[24] Anooshiravan Saboori and Christoforos N. Hadjicostis. Verification of infinite-
step opacity and complexity considerations. IEEE Transactions on Automatic
Control, 57(5):1265–1269, 2012.
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