SRC TR 88-59

Ul

MARYLAND

TECHNICAL
RESEARCH
REPORT

Structure Of A Flexible
Manufacturing Protocol For Design
And Control Of A Vertical
Machining Cell

by
S. Chen

SYSTEMS RESEARCH CENTER
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742

SRC Library
PLEASE DO NOT REMOVE
Thank You

ABSTRACT

Title of Thesis: Structure of a Flexible Manufacturing
Protocol for Design and Control of a
Vertical Machining Cell
Sujen Chen, Master of Science, 1988
Thesis directed by: Dr. D. K. Anand
Professor

Mechanical Engineering

The thesis presented here develops the Flexible
Manufacturing Protocol (FMP) for use in CIM (Computer-
integrated Manufacturing). The philosophy of the FMP is
discussed, as well as the FMP structure. A vertical
machining cell was built for automated machining of
prismatic parts based on FMP concepts. This cell uses two
computers to simulate the responses of cell level
components. The system hierarchy and software structure are
described in detail as well as the operation schemes. The
interfacing / integration problems encountered during the
development of the cell are also discussed. An example of
how the FMP works with the vertical machining cell is
included. The successful demonstration of the FMP-based
system capability further reflects the need for FMP and how

it is going to benefit the CIM industry.

STRUCTURE OF A FLEXIBLE MANUFACTURING PROTOCOL FOR

DESIGN AND CONTROL OF A VERTICAL MACHINING CELL

by

Sujen Chen

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science

1988
Advisory Committee:
Professor Dr. D. K. Anand
Professor Dr. J. A. Kirk

Professor Dr. C. Sayre

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my thesis
advisor Dr. D. K. Anand who presented me with this
interesting and challenging field and helped me to see it
through. Without Dr. Anand’s support, financially and
academically, it would be more difficult to accomplish this
work. The support from the Systems Research Center of

National Science Foundation is also appreciated.

I would like to thank Dr. J. Kirk, whose guidance and
support through out my research were invaluable. 1In
addition, I wish to thank Dr. M. Anjanappa and M. Unger for
their suggestions and comments. I also like to thank Dr. C.

Sayre for serving on my thesis committee.
Finally, I would like to thank my parents, for their

sacrifice and patience during the past years, and my wife

for her support through my Master’s program.

IT

LIST OF TABLES

LIST OF FIGURES

1. INTRODUCTION

TABLE OF CONTENTS

1.1 The History of Automation

1.2 CAD/CAM and CIM

1.3 The Need for FMC and FMS

2. THE FLEXIBLE MANUFACTURING PROTOCOL OF UMCP

2.1 Why Protocol

2.2 The Flexible Manufacturing Protocol

2.

2.

2.

2.

2.

Part Design
Manufacturability
Process Planning
NC Code Generation

Cell Control

2.3 Standardization and Flexibility

2.3.1 IGES File

2.3.2 Feature File

2.3.3 Process Plan File

2.3.4 M & G Code File

2.4 Validation of FMP and Problem Formation

ITI

.....

10

10

12

13

14

14

15

15

17

18

19

19

THE UMCP VERTICAL MACHINING CELL 4. viveennnennn.

3.1 The Cell Concept
3.2 Cell Configuration and System Hierarchy
3.3 Cell Capability and User Environment

3.4 Constraints

CELL CONTROL ittt eneennancnnaccensssseasanaans

4.1 Software Module of The Cell
4.2 Hardware Module of The Cell
4,3 FMP/D - FMP/M Interface

4.4 Control Strategies

SOFTWARE INTERFACES .t etveeevecetoosoccnasnsens

5.1 Module Input/Output

5.2 Input/Output Format

SOFTWARE DEVELOPMENT AND IMPLEMENTATION

6.1 Flowchart of Each Level

6.2 Information Flowchart

6.3 RS—-232C Communication Protocol
6.4 NC Code Download Protocol

6.5 Integration

CELL IMPLEMENTATION AND VERIFICATION

7.1 Cell Implementation

7.2 The Demonstration

Iv

22

25

30

32

34

34

39

39

44

51

51

52

65

65

70

72

77

81

87

87

88

8. CONCLUSIONS AND RECOMMANDATIONS FOR FUTURE WORK ..91

8.1 Conclusions 91

8.2 Suggestions for Future Work 92
REFERENCES ...ttt enerenenenseoncsnas e st s e s e 94
APPENDIX A. vt s eeeeseocsasancsnansasns e s s e s s s es s e esess 102

APPENDIX B e G ceaeenn e s e eeecencaeas e e 117

THE RS-232C INTERFACE FOR ASYNCHRONOUS COMMUNICATION

APPENDIX € i .ttt veeeeonnseeoncssoseoncnencnsssnesnnnns 128

SUMMARY OF HP RS-232C SERIAL STATUS AND CONTROL

REGISTERS

APPENDIX D .+ttt iverecoeansasnscnsasnunonscsncsnossssss 141

REFERENCE FILES FOR DEMONSTRATION PART

APPENDIX E ittt et eeeenesossnenccaacasnsnnsonsns «... 155

PROGRAM LISTINGS

LIST OF TABLES

FMP files

Functions to be accomplished by software
Download procedures

Communication problem description

The RS-232C connector standard

The RS-232C standard signaling sequence

VI

80

84

119

123

LIST OF FIGURES

1.1 Flexible manufacturing cell
1.2 Flexible manufacturing system
1.3 Manufacturing systems
2.1 Flexible Manufacturing Protocol
2.2 FMP/D and FMP/M
3.1 Typical hierarchical control structure
3.2 Cell configuration
3.3 FMP and cell
3.4 FMP system structure
3.5 Three possible ways of access FMP
4.1 FMP software structure
4.2 UIS and FMP
4.3 FMP hardware map
4.4 PP_SCP and PP_CCP
4.5 Work elements
4.6(a) Process plan file structure
4.6(b) Example of a PP_SCP file
5.1 I/0 diagram of FMP software modules
(a) Controllers
(b) ECP
(c) ccp
(d) scp
5.2 FMP software module I/O links

5.3 Fundamental I/O format

VII

11

20

24

26

28

29

31

36

37

40

42

43

45

46

53

53

54

54

55

57

5.4 Request type format, ECP --> controllers 59

5.5 Status type format, controllers --> ECP 60
5.6 Request type format, CCP --> ECP 62
5.7 Status type format, ECP --> CCP 63
5.8(a) Request type format, SCP --> CCP 64
5.8(b) Status type format, CCP --> SCP 64
6.1 User Interface Shell (UIS) 66
6.2 System Control Program (SCP) 67
6.3 Cell Control Program (CCP) 69
6.4 Equipment Control Program (ECP) 71
6.5 CCP information flow 73
6.6 ECP information flow 74

6.7 Null modem that ignores hardware flow control

76
6.8 Types of pin assignments 76
6.9 HP - IBM AT RS-232C connection 78
6.10 Communication cycle
(a) Send-and-receive cycle 79
(b) Typical cell command cycle 79
6.11 Typical time history of a download cycle 82
7.1 (a) Demonstration part 89
(b) Demonstration part 90
B.1 RS-232C with communication equipments 120

B.2 RS-232C, terminal/computer to terminal/computer

126

VIII

CHAPTER 1
INTRODUCTION

1.1 The History of Automation

The term "automation" has many definitions.
Apparently, it was used first in the 1950’s to mean
automatic materials handling, particularly equipment used to
unload and load stamping equipment [41]. It has now become
a general term referring to the technologies concerned with
the application of complex mechanical, electronic, and
computer based systems in the operation and control of

production [37].

Numerical Control (NC) can be considered aé a form of
programming automation. Shortly after the first
demonstration of the NC prototype in 1952, the potential
usefulness of the NC concept was proven. In the early
1960’s, NC machines were installed at various factories to
achieve machining automation. These NC machines accepted
programmed tool paths in the form of punched tapes prepared
on computers, and hence a different part needed only a new

punched tape.

Automation was also introduced for mass production due

to its positive cost performance effect on investment.

After most shops were automated by mid 1960’s, it was
realized that the mass production accounted for only 25% of
the total production in the United States. The other 75% of
production is of the batch type which imposes difficulties
for automation because of lack of flexibility. The need to
automate batch production, however, was essential to

improving the productivity [14].

With the successful development of Direct Numerical
Control (DNC) and Computer Numerical Control (CNC) machines
(later versions of NC), the gap between the inflexible, mass
production type machines and highly flexible, general
purpose machine tools was bridged. It also created entirely
new concepts in manufacturing, such as certain routing
operations that previously were very difficult to
accomplish. Coupled with the introduction of the Automatic
Tool Changing (ATC) mechanism, the Automated Guided Vehicle
(AGV), and robots, the automation of batch type
manufacturing first become feasible. In early 1980’s,
several such systems were installed to machine parts such as

engine blocks, jet engine parts, etc [25].

1.2 CAD/CAM and CIM

CAD/CAM is a term which means Computer-Aided Design and

Computer-Aided Manufacturing. "It is the technology

concerned with the use of digital computers to perform

certain functions in design and production.", according to
Mikell P. Groover, "CAD can be defined asvthe use of
computer systems to assist in the creation, modification,
analysis, or optimization of a design. CAM can be defined as
the use of computer systems to plan, manage, and control the

operations of a manufacturing plant.".

When Computer-Aided Design (CAD) was getting under way
in the mid-1960’s, large mainframes were needed to supply
the computing power that the graphic techniques required.

As minicomputers and microcomputers were introduced in
1970’s, more computing power, lower costs, and smaller sizes
were provided and stand-alone systems became feasible. At
present, mainframe-based systems, stand-alone systems and
various combinations are in use, and CAD/CAM operations are
performed on a batch- basis [1]. Because of the important
role of computers, these developments are often called

Computer Integrated Manufacturing (CIM).

Today, however, CIM includes more than just CAD/CAM
[29]. CIM has becoming much broader in scope, encompassing
virtually everything that goes on in a manufacturing plant,
including NC programming, manufacturing resource planning
(MRP), shop floor communications and robotics,etc. CIM is
also becoming widely recognized as a vital strategy to

staying competitive in the increasing worldwide competition

which requires high quality, economical manufacturing, and

short delivery times [9].
1.3 The Need for FMC and FMS

With CIM as the strategy, the brief cycles of
innovation together with smaller batch sizes have forced the
industries to introduce flexible, computer-aided automation
in manufacturing [11]. The minimum unit capable of
automatic operation having NC machine tools as its core, is
called the Flexible Manufacturing Cell [7]. A Flexible
Manufacturing System (FMS) is a self-contained interlinkage
of cells [12]. Fig. 1.1 and fig. 1.2 show the typical

configuration of a FMC and a FMS, respectively.

An investigation shows that the FMS is ideal for mid-
volume manufacturing of a small number of different parts,
while the FMC is ideal for small volume manufacturing of a

large variety of parts (fig. 1.3) [42].

The first FMC with computer control and a fully
automatic supply of tools was presented in 1983 at the EMO
(European Machine Tools Exihibition) in Paris. More than
one hundred FMS consisting of several NC machine tools, AGVs
for work piece and/or tool transportation, and storage for
workpieces, jigs, pallets and tools have been installed in

Japan to automate batch-type machining operations [6].

~N NN N
N
N N
E -7 T ~ < Reg-
fiiture
N £
N/ >
/ s \\
! // Pallet
: ! |
{ |
lachiné Y ;
Tool \ \ !
\ // N Pallfét
\ / N /
\ / AN /
A \\ ve
\ N ;
-
) O N
N N
Machine <:>
control Robot N
control N
N
N N
N N NN NN NN
Figure 1.1 Flexible manufacturing cell

5

wa)54s JUTINORINUEH I[qIX2]{ g] °Andig

N# DR 1#J KR4

! 1# 1S0H T13D !

J
P ! 3ALNDD
o ! NI
o L "1 \aTIvVa| | logoy | | -NIEOVR| !
P NOILVIS | !

HOAEANOD | | ! | NOILDAASNI | ! _ !

' i \ | |
o | C]
o D o snq w01 |

4ATIONLNOD | : 1 | ¥ITTOINOD | !

R S A S hlwﬁ)lﬁl

Snd J17Tdnd

ISyd vivd
STVHAHd I ¥dd - d310dN0D TVNOIINAANOD | - AYORIN AAVITIXOY

(197794 pue Kouxeay A59}4n0o) swa}sds Juranjoejnuey g eandry

NALSAS ¥Ad SYIHRON LIvd

HOIH KOICHR ROT
owm owﬁ _m m_mc I
/N ANOTY ONVIS | | | | wot
62
T14) JAGHON ALITIEIXI
54K 14vd 44d 1LATdRO)
SRALSAS | NorLndoud s
ONI0LIVAANYR 008 o
TIAIXITd]
RNIQAR ““ 1
T NOILVZI'TY12ddS
KI1SAS 0003 SSA)0Ud
TV1D4dS |
000S1 Ll
HAIH NOLLY2IQAq
NI
ATISNVEL SSH90Ud

Measurable benefits include increased productivity and
decreased work-in-process (WIP), total lead time, and

product costs [5,6,8].

CHAPTER 2
THE FLEXTBLE MANUFACTURING PROTOCOL OF UMCP
2.1 Why Protocol?

The industry today is moving toward computer-aided
production for staying competitive. At present, however,
each computer-aided design or computer-aided manufacturing
system typically deals with one isolated function. The
system is planned and implemented by the management of that
particular function. As the separate systems become more
numerous, users are becoming aware of growing inefficiencies
(1]. It is troublesome to learn the peculiarities of
different systems; it is costly and inefficient to store
often overlapping data for each separate system; it is a
source of error to extract aata from one system and enter it
manually into the next one. Few examples of other types of
inefficiencies are: a design database is created but can not
be understood by another system that does the process
planning; a user designed part is not manufacturable due to
lack of understanding of the plant capabilities or plant
facilities; inefficient design was made due to lack of
manufacturing intuition; etc. These mentioned
inefficiencies point to the fact that the computer-aided
production methods existing today, such as CAD, CAM, CAP,

CAQA, FMC, and FMS, should be unified into a single process

[15]. With this process, the data can be exchanged with
other systems, the database contains varieties of
information required throughout the manufacturing process,
and intuitive processing to improve manufacturability can be
brought into the design stage. The solution of this process
is a protocol built with a well defined software structure
and database management strategies, backboned with the
important strategqgy: standardization, which ensures the

flexibility of the protocol.

2.2 The Flexible Manufacturing Protocol

The study of the protocol was first initiated in 1986
at the Flexible Manufacturing Laboratory of the University
of Maryland, College Park. A Flexible Manufacturing
Protocol (FMP) was developed as the result of this research
[4,14,19,24,42,47]). Shown in fig. 2.1 is a schematic
diagram of the FMP for automated production within a cell.
This includes all processes from design to part production

including AGV and robot control.

2.2.1 Part Design

At the top of the FMP, the user is a designer who
interacts with a CAD system in order to obtain a suitable
design. The designer can design parts by two different

approaches.

10

User

1

Comrercial

C A D Softvare

Feature Based
cAD

= DRAYING FILE

= IGES FILE

USER
[Tal. Matll

@ = FEATURE FILE

{

Intelligent
Fixture
Planning

@ = INTERMEDIATE FILE

Identificetion

Figure

Marufact-
urd:ilitg [——
USER Module
< [Machining '
[le::bza]i *
ntelligen
Prosres Process
PL Planner
® @ = PROCESS PLAN FILE
CAM |
Date Bess|
Benerste EIA RS
244 Standard M
% G Codes
= MM8 CODE FILE
Postprocessor @
(Translate M & B
to ONC W¢ Codes)
(7) = WT CoE FLLE
CELL CELL Accurscy
Enhencenent

{ PAFlT]

2.1

Flexible Manufacturing Protocol

11

The first is by using a commercial CAD system to create
the design and stored the design in Initial Graphics
Exchange Specification (IGES) format. The FMP then takes
the IGES file for that particular part and decomposes it by
a feature extractor into a collection of features such as
grooves, pockets, slots, holes, etc. The user can also
interact with the FMP to add the manufacturing information,
such as tolerances, materials, and surface finish that can
not be described by IGES. This information is stored in a
feature file which consists of the geometry, topology,

features, and manufacturing informations of a part.

The second approach is designing by using a special
feature-based CAD system. The design data is stored in a
feature file as the output of the feature-based design CAD

system for subsequent processing.

2.2.2 Manufacturability

The next step is to evaluate the part and tolerance
data in order to determine if production is compatible with
the cells available to the user. Once the part has been
evaluated as being compatible with an existing cell, the
part is then checked for manufacturability. This includes a
check for tolerances and geometrical machinability. The
manufacturability tests will be conducted by reviewing

individually each feature of the output of the feature

12

extractor. This includes testing for manufacturability of
sharp corners, tolerance, surface finish,.interference
between tool holders and workpiece, and materials
encountered while drilling a hole, etc. If any of the above
tests fail to qualify, the manufacturability module will
then generate a message outlining the reasons for failure.
The user will have to change the design of the part
iteratively until the design passes the manufacturability

tests.
2.2.3 Process Planning

Process planning can be defined as the process of
determining the methods and the sequence of machining a
workpiece to produce a finished part or component to satisfy
the design specifications. Process planning typically

consists of the following activities:

Selection of processes and tools.

- Sequencing the processes.

- Identification of all non-machining elements and
estimating the non-machining times.

- Selection of workpiece holding devices.

- Determination of proper cutting conditions and
cutting times to machine the workpiece to specified
dimensions.

- Determination and sequencing required shop floor

activities for production.

13

In the FMP, there are two parallel paths which can be
followed in producing the process plan. On the left side is
the ordered process plan which uses a well established
approach and is not discussed here. One of the unique
features of FMP is the intelligent process planner based
upon an "expert system approach'". It takes the feature file
as the input and outlines the required machining processes.
The knowledge base for the expert system will include
manufacturability information regarding each machinable
feature and generate a set of processes for machining these

features on an automated machining center.

2.2.4 NC Code Generation

The output of the process planner is processed through
a pre-processor to generate EIA RS 244 standard M & G codes
which are the US standards for cutting codes for NC/CNC
machines. A post-processor then translates the standard M &

G codes into the machine specific codes.

2.2.5 Cell Control

Based on the process plan generated by the process
planner, the cell host will coordinate the activities in the
shop floor to machine the part. Tasks involved during the

manufacturing processes include:

14

- Transport the raw material into the cell via AGV.

- Transfer the material from AGV to the intelligent
fixture on the machining center.

- Unload finished part from the machining center to the
AGV.

- Transfer the finished part out of the cell via the

AGV.

2.3 Standardization and Flexibility

It is clear that for the Flexible Manufacturing
Protocol to operate in an efficient and highly flexible
manner, a high degree of standardization must exist
throughout the system. Notice in fig. 2.1 that there are
primarily seven different types of file outputs from
different modules in the FMP. The most important feature of
the FMP is that the standardization is introduced in four of

these seven file types. They are:

#2 - IGES file

#3 - feature file

#5 - process plan file
#6 - M & G code file

A summary of different file types within the FMP is

shown in table 2.1.

2.3.1 IGES File

15

A Summary of Files within the FMP

There are seven types of files used within the FMP. For some files, the
file format is predecided. For the remaining files, there is some lattitude in the

file format selection.

File description Predecided
Yes No

(1) Drawing files X
Geometry data (binary)

(2) IGES files x
Geometry data (ascii)

(3) Feature files X
Geometry data
Topology data
Feature data
Tolerances

(4) Intermediate files X
All of the above
Fixturing

(5) Process plan files X
All of the above

Process Plans

(6) M&G code files X
M&G codes for file (5)

(7) NC code files X
NC code for file (6)

Table 2.1 FMP files

16

IGES stands for the Initial Graphics Exchange
Specification developed in late 1979 by the National Bureau
of Standards (NBS). IGES is a mature mechanism for the
digital exchange of database information among present day
CAD systems. Engineering drawings, 3-D wireframe and
surface part models, printed wiring product descriptions,
finite element mesh descriptions and process instrumentation
diagrams are addressed by the contents of Version 3.0
{43,44]). The IGES Version 3.0 specifies a file structure
format, a language format, and the representation of
geometric, topological, and non~geometric product definition

data.

2.3.2 Feature File

Whereas IGES has addressed the need for data exchange
where the received product model is interpreted by a human
either as a display or as a generated plot, the Product Data
Exchange Specification (PDES) project, begun in mid-1984 by
the IGES Organization of NBS, is focused on exchanging
product models with sufficient information content. PDES
supports not only the geometry, but also a wide range of
non-geometry data such as manufacturing features, tolerance
specifications, material properties and surface finish
specifications. Solid representations will also be included

in the geometry model of PDES. It is the intent of the PDES

17

to fully support the needs for a complete product model
[43,45]. However, PDES is currently under development with
the first version tentatively set to be released in mid

1988.

Another alternative to standardization is the Part
Model Format (PMF). PMF is the format currently being used
by NBS as the part model to transfer part information. It
carries also the geometric, topological, feature, and
manufacturing information. Unlike PDES, it deals only with
machinable parts, and it supports only boundary
representation solid modeler. At present, there is still
some latitude in choosing the feature file format so that
either PDES or PPF can be selected as the format to be

attached to the FMP in the near future.

2.3.3 Process Plan File

The process plan file describes the manufacturing
activities to be carried out at system level and cell level

to accomplish the manufacturing tasks.

A survey shows that there is no standard in the process
plan file format at present. However, the Process Plan
Format (PPF) used by the AMRF (Automated Manufacturing
Research Facility) of NBS has the potential to become the

standard of tomorrow and is selected to be the process plan

18

file format for the FMP. The process plan file format will

be discussed in depth in later chapters.

2.3.4 M & G Code File

M & G Codes are the standard for cutting codes for all
NC/CNC machines and are specified in EIA RS-274D. The G
codes are known as the preparatory functions and define the
actual machining moves and cutter tool movement. The M
codes are known as miscellaneous function control codes such
as the program stop, spindle ON/OFF, coolant ON/OFF, etc.

In both M codes and G codes, there are some codes which are
unassigned and left for the user to assign for special

functions.

In addition to M & G codes, F function defines the feed
rate in X, ¥, Z axes, T function defines the tool and S

function defines the surface speed of cutter.

2.4 Validation of FMP and Problem Formation

By taking a close look at the FMP (fig. 2.1) from the
function’s point of view, we can represent the FMP by two
different blocks (fig. 2.2). The top block represents the
FMP/D (Part Design) that prepares all the required
manufacturing related data, such as feature file, process

plan file, and NC code file for a particular part. The

19

(USER)

FMP/D

(PART DESIGN)

» CAD

« KANUFACTURABILITY
e FIXTURING

¢ PROCESS PLAN

o NC CODE GENERATION

FMP/M

(MANUFACTURING)
¢ CELL CONTROL

(PART)

Figure 2.2 FMP/D and FNP/K

20

lower one 1is FMP/M (Manufacturing) where the manufacturing
processes take place, such as transportation of workpiece,

loading/unloading of the part, and machining.

The philosophies of the FMP/D have been partially
validated by previous works [4,14,19,42,46,47], however, the
link between the FMP/D and FMP/M as well as the inside of
the FMP/M remains unexplored. The objective of this thesis
is to identify the information required for this 1link and
set up a vertical machining cell for automated machining to
validate the FMP concept. Work involved during the
development of the cell includes the identification and
determination of cell environment, cell input/output (I/0),
cell structure, control scheme, and information flow,
development of cell level softwares, interfacing and
implementation of software modules as well as ﬁardware

modules, and validation of cell capability.

21

CHAPTER 3

THE UMCP VERTICAL MACHINING CELL

3.1 The Cell Concept

To adequately meet the wide range of system
applications, manufacturing systems have been divided into
three types; special systems, flexible manufacturing
systems, and flexible manufacturing cells. The degree of
production flexibility is the major difference between the
system types. The flexible manufacturing cells are the most
flexible of the three types and viewed as being effective
when applied to the production of many different workpieces
with each being produced at a comparatively low production

rate.

In order to achieve the high flexibility and make the
implementation of the design of FMC tractable, two
principles were suggested by the Robotics Institute of CMU

[25]:

1. The cell and its component parts and pieces must be
modular.
2. The cell and its components fit in a structured

hierarchy.

22

The modular approach is a well-known principle in the
design and production of various items and equipment. This
idea is also most appropriately applied in the structural
development of the computerized flexible production systems.
This is the main requirement for staying competitive and the
modular approach helps in making use of the advantages of
unification and standardization to the maximum. It allows
the user to distribute the investments over a long period of
time, to gain experience, to refine the software and to

proceed towards complete automation [20].

The hierarchical concept which consists of several
control levels, as shown in fig. 3.1, has been generally
accepted as the control structure of a flexible automation
system [11]. It provides a method for partitioning the
control problem intoc modules so that each module can be
implemented as a finite-state automation [18]. Although
supercomputer control (central control) can improve the
performance of a system by its enhanced computational power
and make some methodologies plausible which were
prohibitively time consuming for a real time application
with the conventional computers, the use of hierarchical
control distributes the intelligence. Control systems based
on distributed intelligence have less difficulty in
responding to the external environment because it ensures
that the size, functionality, and complexity of individual

control modules is limited (24, 27].

23

Figure 3.1 Typical hierarchical control structure

24

Information in the system must be accessible when and
where it is needed. As the system grows, the need for a
general management system and Local-Area Networks (LANs)
become apparent for handling the large amount of
information. LANs provide better communication at the local
level, helping users assimilate vast amount of data from
sensors, digital computers, and microprocessors. It
consists of a number of computers or computer-assisted
devices, electronic hardware interfaces, specialized
software, and a cabling medium for interconnection.
Ethernet is one of the popular medium that serves as a
common cable to which the computers and their network

interfaces connect [23].

3.2 Cell configuration and System Hierarchy

It is the goal of the FMIAB to set up two machining
cells, viz. the vertical machining cell and the turning
cell. Each cell has its own FMP. This thesis addresses the
design and implementation of the vertical machining cell

(cell #1) and its associated FMP.

The cell configuration of FMLAB is defined as shown in
fig. 3.2. The cell consists of a robot for workpiece
transportation inside the cell and a machining center.

Other components include a gripper and vise that work

25

J““'Cell Boundary

=1 PART

ROBOT

HACHINING CENTER

AGV

1
1
|
|
|
|
]
|
t
|
|
|
|
|
|
|
1
|
|
!
|
|
|
-

________________é __________ RESEEEEE | _
5
=
Raw Material In
FMP
i_———_—
USER

Figure 3.2 Cell configuration

26

together with the robot arm and machining center,
respectively. The dashed line represents the cell boundary
with the AGV traveling through the cell boundary and
delivering the workpiece. The user accesses the cell
facility either by the direct link or by using the FMP where
the user can design the part and prepare the manufacturing
related data. In order to view the role of the machining
cell in the FMP, fig. 2.2 is re-emphasized as shown in fig.

3.3.

Based on the concept of hierarchical control and
modular approach, we have defined the system structure as
shown in fig. 3.4. At the top level of the hierarchy is a
system computer that manages the cell level components,
distributes and schedules the production tasks. Under the
system computer level are the cells. An equipment
controller is put between the cell #1 host and the shop
floor components to access the intermediate operation
information of the cell. Notice that the AGV control module
is at the same level as cell host in order to serve as a
material transportation cell delivering parts between cells.
The relationship between parent and child modules is master-
slave relationship. No direct handshaking is allowed
between any two modules at the same level of hierarchy.

Each module in each level responds to its parent module and
child modules only. The relationship between parent and

child modules is master-slave relationship, and the

27

F¥P/D

PART DESIGN

(MANUFACTURING)
CELL CONTROL

Raw Material In

ROBOT

AGV

MACHINING CENTER

AGY

PART

Figure 3.3 FHP and cell

28

SYSTEM

COMPUTER
i
CELL #2 CELL #1 ACY
CELL HOST CELL HOST
]
i
EQUIPMENT
CONTROLLER
CELL

é é COMPONENTS
O O

GRIPPER VUC VISE ROBOT

Figure 3.4 TP system structure

29

information path between modules at the same level is
controlled and handled by parent module or modules at a

higher level.

3.3 Cell Capability and User Environment

The vertical machining cell is designed for automated
machining with the following capabilities:

- The cell will handle prismatic blanks.

- Manufacturing using the FMP.

- Tools limited to the tool magazine.

- The cell will be able to machine without fixture

intercepts.
- Equipment status is always known.

- One part for each AGV run.

The FMP system is designed to be a multi-user system.
There are three possible ways that the user can access the
FMP facilities (fig. 3.5):

1. Access the FMP from the system workstation or

console (system context).

2. Access the FMP from a remote PC as a terminal

(system context).
3. Access the FMP from a remote PC as the computer

(remote computer context).

30

VIS

PC
Terminal

USER

PC
Computer

FUP/D FYP/¥
UIS

FNP/D FUP/ M
UIS

FUP/D FHP/H

USER

Figure 3.5 Three possible ways of access FUP

31

However, method 3 requires dedicated software, which is
machine-dependent, running in the remote computers to
interact with the FMP and also complicated network problems
are involved. It is therefor inappropriate to use method 3

in the present application.

For each level of cell hierarchy, there will be manual
mode, automode, and help mode. With the manual mode, the
user will be able to access the status of components in the
next level of hierarchy as well as control these components.
When in automode, the control is then returned to the upper
hierarchy. These modes will help the user in setting up the
cell, controlling individual component, diagnosing the cell,

and recovery from failures.

3.4 Constraints

Due to the fact that the intelligent vise, gripper, and
AGV are not available at the current stage of development of
the cell, the control of these components is simulated by
several personal computers together with human intervention.
The personal computer takes in the command from the parent
module of the simulated component and shows it on the
screen. The human reads the command from the screen,
executes it, and responds to the PC with the current status

of the component or the status of execution. The PC then

32

converts the status into a specific format and returns the

information to the commanding module.

This simulation strateqgy is very important in that it
provides a dynamic model to simulate all possible
combinations of responses from different controllers. It
assures that the present step-by-step integration of the

cell will lead to a fully automated cell.

33

CHAPTER 4

CELL CONTROL

4.1 Software Module of The Cell

In order to define the software modules that are
needed, a clear understanding of the types of functions that
are to be accomplished is necessary. Table 4.1 briefly

describes the functions to be accomplished by this software.

By mapping table 4.1 onto the proposed system hierarchy
(fig. 3.4), the software structures are defined as shown in
fig. 4.1. Functions performed by each module are described

in the following paragraphs.

User Interface Program (UIP) module - This is the
program through which the user will access the utilities of
the system. More than one user will be allowed to log in
and run this program. UIP provides optional entries in the
FMP/D for the user to select from. It is also the program
through which the user can enter the System Control Program
(SCP) of FMP/M in order to carry out the manufacturing
tasks. Fig. 4.2 shows how the UIP Shell (UIS) encompasses

the FMP/D and FMP/M.

34

- to interface the user and systen.

Systenm - to take in user’s request to produce a part,
Level coordinate and control the activities at systenm
level.

- to simulate AGV systen.

—— . — ———— ——— — - —- it G S S Wi P e D G A S —— — — d—————————————— ————

- to simulate gripper, vise, robot and the
Cell machining center.
Level - to prepare cell level commands.
- to coordinate the activities of cell components.

- to carry out the cell level commands.

Table 4.1 Functions to be accomplished

35

UIP
User

Program

Interface

|

SCP

System
Control
Program

#

System
computer

Cell #2

Ccp

Cell
Control
Program

Cell
host

1

ECP

Control
Program

Equipment

Equi
cont

P

#1

AGY
controller
simulation

pment
roller

T[

)

NN

14

4

Gripper
controller
simulation

Vise
controller
simalation

Robot
controller
simulation

YuC

controller
simulation

!

]

Human

=

vicC

Figure 4.1 FKP software structure

36

USER

UI SHELL

i
FIXTURING
1

CAN

CAD

SCP
CCP

ECP

USER
FMP/D
(PART DESIGN)

FMP/NM

CELL CONTROL

(MANUFACTURING)

PART

PART

Figure 4.2 UIS and FNP

37

System Control Program (SCP) module - This is the
program that manages, controls, and monitors all of the
cells. It will accept system level process plans as input
in the automatic mode. It will also accept system level
work elements (ex. command AGV to go to a target location)

in manual mode. Only one SCP can run at a time.

Cell Control Program (CCP) module - This is the cell
host of the vertical machining cell. It will accept and
execute the cell level process plan. CCP first decomposes
the process plan into a collection of cell level commands,
relay these commands one at a time to the equipment
controller and assures that the status of the command is in
the correct status. It also accepts cell level command in

the manual mode.

Equipment Control Program (ECP) module - Its major
responsibility is to accept cell level commands issued from
cell host and execute those commands on the appropriate

piece of equipment.

Cell component simulation programs - it is assumed at
some point that there will be intelligent programs running
on the robot, gripper, vise, and VMC, respectively, which
will have the capability to accept commands from ECP,
execute the command, and return the status. This will be

simulated in the present test by personal computers. These

38

PCs will accept commands, wait for human intervention (ex.
loading part, keyboard input) and then return the status

message based on the input of the user at the keyboard.

All the software modules inside the cell boundary have
been developed and implemented. Interfaces of each module

are under development and are discussed in later chapters.

4.2 Hardware Module of The Cell

The hardware available for the vertical machiniﬁg cell
implementation includes a Matsuura 510 CNC milling center, a
SUN 3/160 workstation with 16 MB of RAM and 280 MB of
secondary memory, a HP 310 bundle system in BASIC Operation
System, and several IBM ATs. Fig. 4.3 shows how these
equipments were mapped into the control hierarchy and
software structure. The gripper and vise perform similar
functions and hence are simulated by the same computer.
Similarly, the robot and VMC perform coordinate positioning
functions and hence their simulation programs reside in the

same computer.

4.3 FMP/D - FMP/M Interface

In this section the software interface between FMP/D
and FMP/M (fig. 4.2) is discussed. The SCP needs a driver
which defines the sequence and procedures to be carried out

to accomplish the manufacturing task. This includes the

39

UIP

User

Program

Interface

|

SCP

System
Control
Program

System
computer

Ce

!

CCP

Cell
Control
Program

11 12

Cell #1
host

_________________ ______k_

ECP

Control
Program

Equi pment

[

AGY

controller
simulation

HP 310 system

Equipment
controller

Gripper
controller
simulation

Vise
controller
simulation

_—— e — - ——

Robot
controller
simulation

VUC
controller
simulation

e = = = ‘ puy

- = = — -1—-__—

A [

I.._._-j— _____

[—F————~-

Y

Human

=

Figure 4.3 FUP hardvare map

40

control of system level components, such as control of AGV
to travel through cell boundary and control of cell
components, such as the vise, gripper, robot, and VMC, which
can not be seen by SCP. The SCP also needs the NC codes for
the specific machining tool to cut the part. The process
plan file in FMP (fig 2.1, table 2.1, fig 2.2) should
provide the former information while the postprocessor
provides the NC code file. The information required for the
SCP is thus defined as the process plan files and the NC

code file.

There are two types of process plan files: the system
level process plan files (PP_SCP), which are used to drive
the SCP, and the cell level process plan files (PP_CCP),
which are used to drive the cell host (CCP). Each
manufacturing task of a particular design consists of a SCP
process plan file and one or more CCP process plan files
generated by the processor planner in FMP/D. The
relationship between PP_SCP and PP_CCP is parent-child

relationship as shown in fig. 4.4.

The work element is defined as the lowest level of
manufacturing commands that are recognized by the process
planner. PP _SCP consists of several work elements and may
also refer to the PP_CCP which consists of only work
elements. Fig. 4.5 shows the work elements currently

available in PP_SCP and PP_CCP.

41

Process Plan for FMP:
. Process plan for SCP level

. Process plan(s) for CCP level

PP_SCP

| York Work PP_CCP Work PP_CCP
[

|
: element element element

—— SCP

- T

|
| Work Work Vork | ! York York
| element element element | , element element
i

* Each work element will be decomposed into a set of cell level

commands by CCP, NC code filename may be passed to CCP by the

work element as an argument.

Figure 4.4 PP_SCP and PP_CCP

42

Work Elements at SCP level :
CINIT
- .CLOSE

. AGV_TRAN
. origin
. destination
. type of contents

.PP_CCP
. host name
.plan ID
. plan version

. plan type
. plan name

Work Elements at CCP level of cell#1 :
.INIT
.CLOSE

.LOAD_PART
. part size

. part type
. part material

. UNLOAD_PART
. part size

. part type
. part material

.MACHINE PART
. NC file name

Figure 4.5 Work elements

43

The general structure of a process plan file consists
of 4 different sections: the header section, the parameters
section, the requirements section, and the procedure
section. The header section defines the general information
about the file such as the plan ID, plan version, plan type,
and plan name. The parameters section declares undefined
parameters which will be defined at run time. The
requirements section declares required child process plan
files and hardware components. The procedure section

describes the procedure for accomplishing the given task.

Shown in fig. 4.6 is an example of the PP_SCP process
plan file called PARTO01_0l1l. The requirements section shows
a child process plan (PARTO01_01_1) that will be executed and
the required facilities for PARTO01l_01l including'CELL_l (cell
#1) and AGV_1l. The procedure section shows the procedure of
the manufacturing events: the AGV transfers a part from LOT
to CELL_1, the cell host of CELL_1l executes process plan
PARTO1 01 1 to machine the part "DEMO_PART" and, after the
part is machined, the AGV comes in CELL_1 and transfer the
machined part to LOT. Appendix A provides additional

details on the PPF format.

4.4 Control Strategies

44

General Structure of a Process Plan File

. HEADER SECTION - general information about the file.

. PARAMETERS SECTION - declares undefined parameters which will be

defined at run time.

. REQUIREMENTS SECTION - declares required child process plan files

and hardware components.

. PROCEDURE SECTION - describes the manufacturing processes in

sequence

Figure 4.6(a) Process plan file structure

45

PP_SCP
-~ PROCESS PLAN --

-— HEADER_SECTION --

PLAN_ ID := PARTO1 01;
PLAN VERSION = 1;

PLAN TYPE := MILLING PART;
PLAN_NAME := DEMO_PART;

—— END_HEADER_SECTION --

-- PARAMETERS_SECTION --

-- END_PARAMETERS SECTION --

REQUIREMENTS SECTION -~

<<1>> PROCESS_PLAN

(PLAN_ID => PARTO1 01 1,

PLAN VERSION => 1,

PLAN TYPE => MILLING PART,

PLAN_NAME => DEMO_PART):;
<<2>> CELL

(CELL_ID => CELL_1);
<<3>> AGV

(AGV_ID => AGV_1);

-- END_REQUIREMENTS_ SECTION --

Figure 4.6(b) Example of a PP__SCP file (PP. 1 of 3)

46

——- PROCEDURE_SECTION --

<<1>> INIT

<<2>> AGV_TRAN

(ORIGIN => LOT ,
DESTINATION => CELL_1,

CONTENTS => PART ,
PREC_STEPS => () ’

TIME => 0000:00:01:00) ;

<<3>> PP_CCP

(HOST_ID => CELL 1 ,
PLAN ID => PARTO1 01 1 ,
PLAN VERSION => 1 ,
PLAN_TYPE => MILLING_ PART ,
PLAN_ NAME => DEMO_PART ,
PREC_STEPS => (2) ,
TIME => 0000:00:10:00);

<<4>> AGV_TRAN

(ORIGIN => CELL_1 ,
DESTINATION => LOT ,
CONTENTS => PART ,
PREC_STEPS => (3) ,

TIME => 0000:00:01:00) ;

Figure 4.6(b) Example of a PP_SCP file (PP. 2 of 3)

47

<<5>> CLOSE

-- END_PROCEDURE_SECTION --

-- END_PROCESS_PLAN --

Figure 4.6(b) Example of a PP_SCP file (PP. 3 of 3)

48

In the previous sections, we have described the
software modules of the control hierarchy, functions to be
performed at each module, and the required information for
the link between FMP/D and FMP/M. In this section, we will

describe how the FMP works with the cell.

Typically the user sits at the top of the control
hierarchy (fig. 4.3). From there he enters the UIP and then
selects to enter the FMP/D to create a design, check the
manufacturability of the design, do the process planning and
generate the process plan files and NC code file. The user
then can exit the FMP/D and, while still in UIP, enter the

SCP of FMP/M to start the manufacturing of the design.

Based on the process plan filename given by the user,
the SCP first executes the PP_SCP process plan and starts
the manufacturing cycle. To explain the idea clearly, we
assume that the PP_SCP process plan filename is PARTO1_01
(fig. 4.6). According to this process plan, the SCP
commands the AGV to deliver the blank into cell #1 and, when
completed successfully, issues the child process plan
filename (PARTO1_01_1) to the cell host of cell #1. The NC
code filename required for machining is also passed to the
cell host implicitly by a parameter of one of the work

elements in the child process plan.

49

The cell host takes in the child process plan
PARTO01_01_1, decomposes the work elements in the procedure
section one-by-one into cell level commands and, eventually,
generates the Cell Command File (CCFILE) which is a
collection of cell level commands. The cell host then
relays these cell level commands, sequentially, to the
equipment controller (ECP) which will execute the received
command on an appropriate component such as vise or gripper.
After the received command is executed, the ECP signals the
cell host (CCP) and waits for the next incoming command from
CCP. Once the last command in CCFILE is executed, the task
of the cell is completed. The cell host reports the status
of execution of child process plan PART01 01 1 to SCP.
According to PARTO1l_01, the SCP then commands the AGV to
deliver the machined part to storage and terminate the

manufacturing cycle.

50

CHAPTER 5
SOFTWARE INTERFACES

5.1 Module Input/Output

Input/Output (I/0) of each module in FMP/M is
classified according to three major types of information:
request type, status type, and data type. The request type
of information can be further decomposed into two sub-types:
service request type and status request type. Service
request type encompasses all the requests that require
services from the hardware component, such as vise, robot,
and gripper. Status request type includes all the requests
for status of a particular hardware component or a group of
hardware components. Status type of informatidn covers all
the status reports as the result of status requests. Data
type includes all the files that are to be used in the
manufacturing processes such as PP_SCP, PP_CCP, CCFILE, and

NC code file.

Request type of information must go down to the module
in the next lower hierarchy or come in from the module in
the next upper hierarchy. Status type of information must
come in from the module in the next lower hierarchy or go
out to the module at the next higher hierarchy. This type

of classification assures that no handshaking will occur

51

between any two neighboring modules at the same level of
hierarchy. With this classification, together with the
information given in chap. 4, we thus can define the
Input/Output of each software module to achieve the required

modularity.

Shown in fig. 5.1 are the Input/Output diagrams of the
software modules in FMP/M. Since the robot, vise, gripper,
and VMC are at the lowest level of the hierarchy, the
input/output of each of these modules must form a closed
loop. The input must be from the equipment controller, and
the output must be fed back to equipment controller.
Similarly, the I/O of the ECP can be connected to CCP, and
so on. Fig 5.2 shows how all the modules are connected
together. Notice that the communication between CCP and SCP
is done through the use of a mailbox. This increases the
flexibility of the cell so that in case the SCP is idle or
down, the cell utility is still available for some other

system.

5.2 Input/Output Format

Notice that although the PP_SCP is the driver of SCP,
it is the service request from the user that activates the
SCP to execute the PP_SCP. Similarly, although the PP_CCP
is the driver of CCP, the service request from SCP

activates the PP_CCP process. Thus, all software modules

52

REQUEST
STATUS
DATA

SO[NPOW JIEK}JOS N4 JO swesderp g/ (q)®) J°C 3indiy

(9)

114 4000 ON

SAIVIS YATIOALNOD

SHLVIS 40

TSANDTY ADIAYAS

ISANDAY SOLVLS

dA

LSANDAY SALVIS

LSANDAY AD1A¥AS

L5304 SDIVLS dod

JT14 3003 N

(¢)

SHLVIS

NOILVIRIS
JATTO4INOD

SALYLS YATIOULNOD

LSanbay A01A¥AS

(NVRQH)

LSANdAL SOLVIS

b

53

REQUEST
STATUS

DATA

e b

REQUEST
STATUS
DATA

so[npow ales)jos JNf JO SWeIFeIp /[(PX2) |-G 2andiy

(P)
- dds dd
LSANDAY A01A4TS d2D
48 LSA0bad A01AHAS
- SALVIS d2D
1SANDAY ADIAUAS ADY
SOLVLS ADY
(9)
11400 111400
4114 2000 DN SALYLS HTTTOUINOD
SOLVIS 114D BHA SOLVLS d0X

1520033 SOLVLS dod

TSIN03d SAIVLS

1SINdTY AD1AAS

dT14 302 N

LS3ndAY A01A¥AS

d)J dd

bt

L]

REQUEST
STATUS
DATA

54

. User :
PP_SCP SCP
PP_CCP
¥
0 :

Others Service request MaiLbox NC code
Sz file
=l =

Status buffer 23
Cell #1 |J
status - -
AGY — CCP =1 CCFILE
=1 AGY status
Cell #2 dal 1 latls
status SRl (2 RS
= —_] =
s> =it s |7
ZBRREE B2
[<==]
NC code
ECP
A 2| =) 2| 3]
oo o I . I &
zl2 s A B Rl s LRy -
=B = El= I = = E=
AalRA A SRR A RlARA
Yise Gripper Rabat ViC
controller controller controller controller
simulation simulation simulation simulation
s | I
" Human [—

N - e e e . — — — = —— —

Figure 5.2 FNP software module links

55

are activated by such request type of information. Because
this is a closed loop system, every request type of I/0 will
be associated with a status type of I/0. To simplify the
complexity and increase the flexibility of the system, the
I/0 format is unified except for data type of information.
Each data type of information has its own natural format
that can not be changed. The unified I/0 format will cover
the request type (service request and status request) and
the status type of I/0, cover all kinds of objects from the
SCP to vise, and most importantly, allow the user to add
parameters into the current format to increase the amount of
information it carries. This I/0 format will allow the

system to adapt to changes in environment.

The fundamental I/O format consists of 64 characters
(fig. 5.3) 1in one string. The first three digits (digit 0
to 2) 1is the field of information type such as status
request type (STA), service request type (COM), or status
type (STA) of information. Digit 4 to 11 (8 digits) 1is the
target field, such as VMC, VISE, GRIPPER, ECP, SCP, etc.
Digit 12 to 17 (6 digits) is the status field, such as
READY, DOWN, BUSY, OFF, etc. Digit 18 to 62 (45 digits) is
open field for parameters to be transferred. Digit 63 (the
64th digit) is the last digit and always contains "%" to

indicate the end-of-message.

56

62 63

17 18

11 12

23 ¢

19)3vJRYD (NQH) 24essaw Jo puy

P[o1} Slajamele]

PIT) snivls

PIa1) j9drey

aoedg

od£y woryemroyug

Figure 5.3 Fundamental 170 format

57

Based on this fundamental format, we first define the
cell level command format. Recall that the cell level
commands are generated by decomposing the work elements in
PP CCP (fig. 4.4). Every work element in PP_CCP is a task
to be completed by one or more cell components. This
implies that the target field can be filled in with one of
the four components: VISE, GRIPPER, ROBOT, and VMC. The
parameter field is divided into 3 sub-fields with 15 digits
for each sub-field (fig. 5.4). The parameter can be the
contents of the command, numerical values that shows the
target point to be reached, or just blanks. Fig. 5.4 shows
the cell command (request type of information) format for

different objects.

Another type of information that needs to be formated
in the lowest level of hierarchy is the status type.
Similarly, the format described previously for cell level
commands can be applied to the status type of information.
It has 3 parameters’ sub-field, a target field, status
field, and an information type (STA) field. Status field is
one of the following: READY, BUSY, DOWN, and OFF. The sub-
field reveals more information about the current status of
the target. Fig. 5.5 shows the format of status type

information in the cell level.

For the link between CCP and ECP, the format for

request type and status type are exactly the same as those

58

SIA[[0IMU00 ——)7 ‘yeudo] addy psonbay

$°G anaTy

7 7 Z 7 7 L 7 7 104
IR
;= Do 2 408
F IR
- LB
~Aum | _unm
s Loz [408
_m | | =
| = =
2% |2ge2s 3| =
Tl R T mges =225 | 0418
= | g | meaxEl gl a 0= | &2 3=
SNLVLS
10404 RA 4410 | 3SIA L0d0Y ORA LAdd1E ASIA | 1199Vl
qdAL
V1S R0) NOTLVRA0NI
AdAL
2 4ans 1 4ns 0 408 SOLYLS 1AV *0dNI

A

|

59

SUB 2

SUB 1

STATUS SUB

TARGET

INFO.
TYPE

READY
% gg% Num. valug Num. value{Num. valuese
(==
OFF
READY PRE_SET
o | BUSY EXECUTR | | 9
= | MO L oW [File name|
- OF Num. value Num. valueNum. value
E—
i e READY
& | BOSY OPEN g
= | DN CLOSE
= | OFF
READY
e3 | BUSY OPEN)
= | DOWK CLOSE -
OFF
SEE B - = = =
=

60

Figure 5.5 Status type format, controllers —e ECP

at the lowest level, respectively, except there is one more
target (ECP) for both. Fig. 5.6 and fig. 5.7 shows the
format for both types of information running between cCP and

ECP.

The format for the link between SCP and CCP is also
similar to that discussed previously and is shown in fig.
5.8. From fig. 5.4 through fig. 5.8 we can find many open
sub-fields in the request type command format. These blanks
provide space for additional more information. Also, the
parameter field can be rearranged to carry a maximum amount

of information for some particular applications.

Fig. 5.8 shows that the SCP sends only manufacturing
request to CCP rather than requests for service from a
vparticular cell component. This is to ensure éafety since
most of the time a user working on SCP is actually "blind"

to the conditions on the shop floor.

61

SUB 2

TARGET STATUS SUB 0 SUB 1

INFO.

TYPE

ROBOT

=
&
= | &
7
=
2
— INITIAL
=2 N MR R R
= Num. value Num. value/Num. valug
INITIAL
PRE_SET
= | EXECUTE | | __ I
 DOWNLOAD | |]
Num. value Num. value Num. value
= INITIAL
= | & OPEN
= | 25 CLOSE
INITIAL
Z) OPEN
= CLOSE
§ INITIAL
S e 27) o - o~ =
EEg E g 8 g °
2

62

Figure 5.6 Request type format, CCP —= ECP

STATUS SUB 0 SUB 1 SUB 2

TARGET

INFO.

TYPE

B READY)
= pomy a
READY
= BUSY Numerical| Numerical| Numerical|
S | DN value value valie [T
OFF
READY | PRE_SET
=|g | WY |mom | I g
T T B DO File nane} |
OF Num. value/Num. value Num. valud
.| READY
B | BUSY OPEN .
E DOTN CLOSE ~
s OFF
READY
B BUSY OPEN)
= | DO CLOSE o
OFF
s25 g = = = B
SE g = &2 = =
="
=
=

63

Figure 5.7 Status type information, ECP — CCP

45 =— d0) “yemoy adky sujers (q)
d)) ~— 95 “remsoj adky ysenbay (e) g-¢ eamdyy

(1) (t)
z 1 N0
|
! 2 1S
|
|
”
|
| I a0
s £ o &
<5 m.m 0 4ns
SRl e
1
SILLVIS
i 400 LA0v1
RAL
VS 10 NOTLYRAOANT
2 108 I s 0 40 SALVLS LATL

ddAl
“0dNT

64

CHAPTER 6

SOFTWARE DEVELOPMENT AND IMPLEMENTATION

6.1 Flowchart of Each Level

In this section the functional flowcharts at each level
of hierarchy are presented in order to show the sequence of
functional operations and the environment that the system

provides to users.

Shown in fig. 6.1 is the UIP flowchart which provides
the user with the UIS (User Interface Shell). In this
shell, the user will be able to access the UIS utilities
such as file management, time sheets, and on-line help. For
example, the user can manage the FMP-related files such as
the design files, process plan files, etc. It is also the
program through which the user is able to select the entry
point of FMP. The user can select to either enter the FMP/D

directly or go to the FMP/M by entering the SCP.

Fig. 6.2 shows how SCP works for the user. It first
looks at the process plan files and NC code file to check
whether the information required to produce the particular
design specified by the user is correctly prepared. If all
the data is prepared, it then checks the status of all the

components mentioned in the requirements section of the

65

(SIN) [129S @dejIajuf Ias) |9 aindig

66

Juruuejd [_
$59001¢ *
cHl| T #
1020 || t1an| | A 1119 39978 UOT}eW | ygowadeusy
-eInjoejnuef ° om —IojJur 211
L _ 1L dof QX
dJutanyxyy -
dds
avd -
N/dNd (/dRd} s3I

19s))

1

User
request

{

Get PP_SCP

Check
requirements
status

Start

Engage with
required
components

procedure |~
section

Execute .
work element

Command CCP to
execute PP_CCP

Completed
successfully

Pause for
warning and
checking

Figure 6.2 System Control Program {(SCP)

67

PP_SCP process plan file. This check will assure that all
the FMP/M components required for this manufacturing task
are available. It also shows that even if a certain
component in the system is down, the system is still
operable as long as it is not required by the current
manufacturing task. When the SCP enters the procedure
section of PP_SCP, it carries out the procedures mentioned
in this section one by one. This procedure may be a
executable work element or to execute a child process plan.
For the latter, it sends the name of the child process plan
(PP_CCP) file to the corresponding cell to execute it and
wait for the response from that cell. Once this is
complete, the SCP then fetches the next procedure and
carries it out in a similar fashion until it exhausts the

procedure section.

The CCP flowchart is shown in fig. 6.3. In the manual
mode, the user can select the target component in order to
either command it for services or ask for the status. This
is the required function to help the user initializing the
cell before entering the auto mode as well as recovering
from failure. When in the auto mode, it serves for the SCP
to carry out the PP_CCP file as long as the SCP provides the
PP_CCP file name. When CCP starts to execute cell level
commands in CCFILE, it checks whether the incoming task is
to download NC code file into the VMC. The CCP separates

this NC code file downlocad function from other cell level

68

(User)

Manual mode [~

Help

Target Target |
gelection selection
Output command pa{iﬁzter
and

receive response

!

Output command
and
receive response

Auto | mode

Check ECP|N

status

5

Cell
initialization

%

Receive system
level command

L

CCFILE
formation

!

Output command
and
Teceive echo

l

Download
XC code
ECP

!

Receive
echo

Figure 6.3 Cell Contrel Pregram (CCP)

69

Get a command
from CCFILE

Download
NC coede ?

Output command
and
receive response

1
Check

execution

status
Y

CCFILE
completed
?

commands in that it utilizes different protocols to
communicate with the top-down modules. When executing other
cell level commands, the communication protocol is simply
send-and-receive type of communication. However, when
dealing with NC code downloading, different protocol is used
to assure proper file transfer. This protocol will be
discussed in the later part of this chapter. Notice that
once the system is in the auto mode, it will continue to be
in that mode serving for SCP until the system goes wrong and
goes back to the root with error messages. Of course,
another way to jump out of the auto mode is to reset the

CCP.

The ECP flowchart is shown in detail in fig. 6.4. It
shows clearly in the auto mode that there are three main
branches: COM type of command, STA type of command, and
download procedures. This download procedure reveals the
downloading protocol in the ECP’s part. The ECP uses a
memory buffer of size 50K bytes to serve as a virtual disk.
The fast fetch/put speed of the virtual disk helps in
" synchronizing the communication during the NC code

downloading procedure.

6.2 Information Flowchart

While starting the development of software for a system

with complex functions and structures, a clear idea of how

70

4

Output command
and
receive response

Pause for
checking

?

STA ECP
command

?

Tar;et
recognition

4

Yanual § mode Auto ¥ mode '
Check Check
component component
status status
Component Component
Availability Availability
e
Target Receive command
gselection from CCP
Parameter STA Download
input command NC code

File relay

Qutput command
and
receivr response

Check all
component
status

le
y

Response
to CCP

i

Output command Receive
and relay
receive response status
¥ -
y
Regponse
to CCP

Figure 6.4 Equipment Control Program (ECP)

71

information flows will be very helpful in keeping the
software organized and systematic. Unfortunately, the
functional flowchart provides only the sequence of the
events occurring during a process but no clue on how the
information flows. This is, however, provided by the

information flowchart.

Shown in fig. 6.5 and fig. 6.6 are the information
flowcharts of CCP and ECP, respectively. These charts show
the path of information and also the rules of data
processing. In fig. 6.6, for example, the VISCOM
(communication subprogram to communicate with vise
controller) can only be called by the main program, and it
uses BUFR$(2) as the mailbox for incoming and outgoing
messages. It also shows that communication subprograms
cannot read or write the status buffers. These types of
rules are used for structural clarity and for debugging the

systems

6.3 RS-232C Communication Protocol

The RS-232C is a widely used standard of the Electronic
Industries Association (EIA). It was originally developed
to foster data communication on public telephone networks.
The interface to a telephone network is normally made
through a device known as a modem. In the 1980s, with the

proliferation of microcomputers, terminals are usually

72

SCp NC code file
A
CCP status i~ Tser K {CFILE
1 TEMPFILE PP_(CP
1
{cp
y
Outgoing |« -
command SCPCOK SCP mailbox
Incoming i ECP mailbos
command] F
| A—
Status buffer
CCP status ™
ECP status =
VUC status [
Vise status [© | §
: 17|
Gripper |<
status Download
status
{
(ttyb}

ECP

Figure 6.5 CCP information flow

73

< User) Ccp
4 T ECP
SUNBOX
| f rf
Coomand — ECPSTA FILE_RELA
register
Nailbox oo NCFILE
R1314]1 o T3]
Status
213141
§
11 1 | [y
VISCOM GRPCON RBTCOM YNCCO
x I—]
‘ (17) y (17 1 (18) (9)
Vise Gripper VUC/Robot
controller controller controller
sinulaLion sinulqtion simulation

Figure 6.6 ECP information flow

74

Vi€

connected directly to computers through RS-232C ports, and
do not use modems except for truly remote connections.
Since all the computer hardware in FMP is equipped with RS-

232C interface, it is the communication interface of choice.

Appendix B shows how the RS-232C connects computers (or
terminal) directly or through the use of modem. In the FMP
application, however, the receiver is always waiting while
the sender sends messages and therefore the hardware flow
control of RS-232C is not necessary. To avoid the hardware
flow control, the null modem concept is used. Fig. 6.7
shows how this concept is applied in data communication.
Null modem connections are used in both ends of each
communication link. DTR (Data Terminal Ready) is wired to
CD (Carrier Detect) and DSR (Data Set Ready) to provide fake
signals to CD and DSR and thus bring the computér to
request-and-send procedures. By connecting RTS (Request To
Send) and CTS (Clear To Send), the request-and-send
procedure is also avoided and the flow of data becomes

transparent.

Shown in fig. 6.8 are several types of pin assignments
that are used in the FMP. With the null modem pin
arrangement, as shown in fig. 6.7 which ignores hardware
flow control, we can figure out how different types of pin

assignments are linked together to transfer data. Shown in

75

- Chassis ground -

TxD o s TxD
Rx) - = - ReD

RS RTS

(TS ~~=——— & — = (TS

MR - ——e I

N = Signal - GND
ground

C [] B e s , —— o CD

MR — -t DTR

Figure 6.7 Null modem that ignores hardware flow control

HP IBM AT HP, SUN, WMC
959 93°; % 91,92 93 %4 5 °13%12°1°10%9 ©8 ©7 %6 %5 %4 93 92 °
ol o o7 o b o7 a8 o9 0508086262 6N06196180176166 15, 14
Female Hale Female
(1) DTR (1) CD (20) DTR
(2) TxD (2) RxD (2) TxD
(3) RxD (3) TxD (3) RxD
(4) RTS (4) DTR (4) RIS
(5) CTS (5) GND (5) CTS
(6) DSR (6) DSR (6) DSR
(7) GND (7) RTS (7) GND
(8) CD (8) CTS (8) CD
(9) RI (9) RI (22) RI

Figure 6.8 Types of pin assignments

76

fig. 6.9 is an example of how the IBM AT is linked with the

HP computer.

6.4 NC Code Download Protocol

There are two types of protocols used in this system to
transfer messages. One is simply a send-and-receive type as
shown in fig. 6.10(a). A and B in each square denote the
destination or the origin of the message. In this kind of
protocol the receiver is always waiting while the sender
sends the message. Once the sender sends out the message,
it opens the input port immediately and waits for the
incoming message. A typical communication history of
completing a cell level command by robot is shown in fig.

6.10(b) .

A different type of protocol is used to transfer the NC
code files. Since the CCP has the access to NC code file
and VMC is the destination, the objects involved in this
protocol includes CCP, ECP, and VMC. This download protocol
is shown in table 6.1. The protocol was started when the
CCP recognized this download command in CCFILE and sent the
"DOWNLOAD" message to ECP through channel 19 of HP. The ECP
then clears the virtual disk (memory buffer of size 50K) and
the previous NC code file in the 3.5"diskette. The ECP then
echoes back to the CCP through channel 19 to indicate the

YREADY" status of ECP.
77

Pin no. Pin no.

1 —e 1
2 - 2
3 d

6 -~y — 8

7 - - 7

8 - I 8

9 - - 9

P IBN AT

standard RS-232C RS-232C

9-pin type null modem 9-pin type null moden

Figure 6.9 HEP - IBK AT BS-232C conmection

78

— 1 Cycle

Send |

1 Cycle

[

Time

Receive |

Send |

Time

Receive

{2) Send-and-receive

— Cycle

|
Send_1_

CCP

ECP

ECP

Time

Receive |

Send_{

ECP

ECP

Rabot

CCP |

Robot

Time

Receive

CCP

Send_|

Robat

Robet

ECP

CCP

Receive

ECP

Figure 6.10(a), (b) Communication Cycle

ECP

(a) Typical cell commcand cycle

§IRPIIOI] PRO[UAO [°9 2[qC]

AATd0) | ————

QYO TNAOC 8
AT | — o~ ,
CYOTNAOD
= | 501 N 9
0RO
—_— TYOTNEOO g
IYOTNOA T — *
0YOTNAO
(vs) || @0 | ¢
o | — o .
(VOTNAO
-~ | oo |,
! QYO TNAOA
DA 40 49 dals

80

After the CCP receives this message, it starts
downloading the NC code file line by line until it reaches
the EOF (end of file) of NC code file. The NC code picked
up by ECP is saved in the virtual disk and, when the ECP
detects the end of receiving, it is dumped into the 3.5"
diskette of HP for recording. The ECP then sends the
"DOWNLOAD" message to VMC through channel 18 of HP to check
whether the VMC is ready to receive the NC code. As soon as
the ECP receives the echo from VMC, it starts the
downloading process by retrieving the NC code from virtual
disk and sending it to VMC through channel 9. At the end cof
this data transfer, the VMC signals the ECP to indicate the
successful transferring. The ECP then sends this message
back to CCP and completes the download cycle. The typical
communication time history to complete a download cycle is

shown in fig. 6.11.

6.5 Integration

Since the FMP system utilizes several kinds of
computers and each computer has its own way of packaging a
string of characters as well as interpreting them, the
integration of the system encounters several communication

problens.

81

a1o£o peojuaop v jo Lioysty awry feordd] yy-g aamdyy

e agady peoyuaoqg | -
|
! 6 g1 |
i IAT3I9Y
| dod dJd '
1
1
MW, “ " w JNA
" ') !
I 1T ua
L o ps
I T v 8l | 61 61
A JNA dd) dd)
ami, ! : | 4
61 6 | gl ! 61 !
@3 M 0 om ! T R
[| i ; i ! I I
v 6h I I | !]! '
v r T T lTﬂ»wuoom
muﬂ ! ! : dJd
! l i i
a0 “ ! " 4%
po | " 61 | 61
| I I U3
o ™ R am | T
| | | | | | | \
SRR REREIEEE R S
2 A T S R R T AR “oy dots
! !

82

Table 6.2 shows one of the main problems. On the left
is the bi-directional communication and on the right is the
one-way communication. The table shows that the SUN has no
problems communicating with HP only during a one-way
communication. For bi-directional communication, the HP
system dies at the 3rd step. Further investigation reveals
that the problem occurs at the beginning of the 3rd step
when the ECP (HP) starts enabling the wait-and-receive

command "ENTER" for incoming message from SUN.

By tracking the HP I/O status registers 0 to 14
(Appendix C), it is seen that contents of register 6, 10,
and 11 are changed at the end of the second step. The
content of register 10 indicates that the serial I/0 buffer
was full. At the beginning of the third step, the HP starts
executing the wait-and-receive statement "ENTER" and an
error occurs. The reason that causes the error is not
clearly understood yet. However, at the end of the second
step, the SUN executes a file close statement "close" to
close from the reading mode. A possible guess is that a
control character is issued before the ttyb (one of the
serial I/O ports on the SUN) is actually closed. This
issued control character is probably the ’\n’ character,
enters the HP I/0 buffer at the beginning of the third step.
When the HP executes the "ENTER" command, it reads in the

’\n’ character into the memory. Unfortunately, it is

83

SUN

4

— B SUN
it | \o| — R
NG |EOL R
iS¢ | \o| — E
-] (-]

-] -]

-] -]

srp | SN —=—=— P | SIN —= HP

i 0K O

2 0K 0K

3 DIE 0K

4 N/A 0K

WA 0K

Table 6.2 Communication error description

84

characteristic with HP computers to interpret this character
as indicating that the sending procedures of SUN have been
completed. The buffer pointer of HP then tries to locate
and search for characters. Eventually, when the end of the
buffer is reached and nothing is found, an error message is

given.

This explanation is consistent with the fact that this
control character ’\n’ is not from the first message sent
out by SUN (at step 1). It enters the HP buffer shortly
after the 2nd step was executed, which is the time that SUN
receives the message and is about to close the ttyb from

reading mode.

One way to avoid the problem is to use the "RESET"
command of HP to clear up all the data in HP’s feceiver
buffer before it executes the 3rd step, the "ENTER"
statement. It is also important to make sure that the
"RESET" statement is executed by HP after the ‘\n’ character

arrives the buffer.

Another major cause of communication problems is the
speeds of different computers. Different computers have
different speeds and data collisions may occur very easily.
To avoid this type of problems, effort has to be put on the
investigation of communication time history. The sleep-type

statement is used occasionally in software to make the

85

computer sleep in order to achieve asynchronous

communication.

86

CHAPTER 7

CELL IMPLLEMENTATION AND VERIFICATION

7.1 Cell Implementation

The software modules and hardware modules of the
vertical machining cell have been developed and integrated.
However, SCP and UIP are currently not available. In order
to link the cell with the FMP/D and make the cell work
without changing the communication scheme and information
flow, we need a methodology to substitute the SCP to provide

the child process plan PP_CCP file name to CCP.

By reviewing the information flow of CCP (fig. 6.5 and
fig. 5.2), it is found that the SCPCOM (a communication
subprogram in CCP to communicate with SCP) communicates with
SCP through the use of a file called "TEMPFILE". 1In this
way, the user can prepare the PP_CCP filename in "TEMPFILE"
according to the format mentioned in chapter 5. When the
user turns the control of CCP to auto mode, the cell will
first check out the cell status and, if the cell is in the
"READY" status, it will receive this prepared command from
"TEMPFILE" and starts executing the PP_CCP. This also shows
the advantage of the software modularity that only the
SCPCOM needs to be changed slightly without having to

disturb other software modules inside CCP.

87

7.2 Demonstration

In order to verify the capability of the cell and the
FMP automation concept, a prismatic part was designed and
then manufactured. Fig. 7.1 shows the demonstration part to
be manufactured by the vertical machining cell. This part
is designed on the SUN workstation. The list of the PP_CCP
process plan file "PP_CCP_TEST" and the NC code file
"chendemo nc" of the demonstration part, are shown in
Appendix D. The "VMC_SETUP" file which serves as a library
of the vise setup at the machine table is used to help the
CCP decide the loading target point of the part in a world
coordinates. This is shown in Appendix D as is the CCFILE

created by CCP during the manufacturing process.

During the manufacturing process, the computers
interact with each other based on the control hierarchy and
the cell level commands in the CCFILE. The whole process
took about twenty minutes and the part was successfully
manufactured. This demonstration shows that the
manufacturing information prepared in the FMP/D flows
smoothly to the FMP/M and activates the cell to work
successfully. It also shows that the process plan files
(PP_SCP, PP_CCP) and NC code files carry sufficient
information to control and drive the FMP/M components and

produce a part.

88

e

10ed uoryeaysUOWA (®)[-7 2dndiy

[1 T 1
[T 1 L O T T Y O T T T T T IT 11

(OJ) &
[evg)

89

11ed norjRIySUOWIE (q)]-L adnfiy

90

CHAPTER 8

CONCLUSIONS AND RECOMMANDATIONS FOR FUTURE WORK

8.1 Conclusions

The Flexible Manufacturing Protocol (FMP) is intended
to automate the manufacturing process, which includes
design, fixturing considerations, manufacturability checks,
process planning, and cell control. It also proposes a way
to make efficient use of information resources for computer-
integrated production method. Types of files used in the
FMP are discussed and identified as drawing file (machine
dependent), IGES file, feature file (in Part Model format),
intermediate file, process plan file (in Process Plan Format
(PPF) of NBS), M & G code file, and NC code file. The use
of a User Interface Shell (UIS) 1is proposed. Software
structure for cell control is defined and functions to be
achieved by each software module are discussed. A vertical
machining cell is built for prismatic part machining using
 the FMP. The information required by the cell from FMP is

identified as process plan files and NC code file.

The successful demonstration of the cell operation
verifies the information flow and control scheme inside the
cell control module of FMP. The activities between cell

components are coordinated properly by the cell host and the

91

part is produced accordingly. The cell is flexible in that
it can be linked to another system that provides process
plan files and NC code file. Together with the previous
work [4, 14, 19, 24, 42, 47], it shows that the development
of FMP requires the integration of many finite-state
automations which is very important to small-mid size
manufacturing systems in helping them move toward production

automation in a step-by-step manner.

8.2 Suggestions for Future Work

To fully complete the integration of this cell as well

as the FMP, several suggestions are made for future work:

1. Installation and integration of robot and gripper
into the cell to replace the robot/gripper controller

simulation program.

2. Hardwire the VMC controller and installation of
automatic vise to replace the VMC/vise controller simulation
program. This can be done by using single computer

(controller) to control array actuators.

3. Integration of Data Acquisition System (DAS) into

the cell to collect required informations for the above

controllers.

92

4. Development and installation of the feature-based

design system for part design.

5. Development of a turning cell for turning part

machining.

6. Development of an intelligent process planner, which
is capable of doing process plan for turning part and
prismatic part, and a System Control Program (SCP) to

control the turning cell and vertical machining cell.

7. Integration of an AGV into SCP for material
transferring between vertical machining cell, turning cell,

and buffer storage.

8. Development and integration of a User Interface

Program (UIP) to guide the user in access the FMP.

93

References

Ware Myers, "CAD/CAM: The need for a broader focus",

Computer, PP. 105-117, January 1982.

Cita M. Furlani, "The Automated Manufacturing Research
Facility of National Bureau of Standards'", Computer
Simulation Conference, July 1983, Vancouver, BC, Canada,
(with Ernest W. Kent, Howard M. Bloom and Charles R.

McLean) .

Thomas H. Drake, "Integration of CAD/CAM with Flexible
Manufacturing System", 1984, Napier College, Edinburgh,

United Kingdom, (With Alex. R. Young).

D.K. Anand, "Protocol for Flexible Manufactﬁring
Automation with Heuristics and Intelligence",
Manufacturing International, April 1988, Atlanta,
Georgia, (With J.A. Kirk, E. Magrab, M. Anjanappa and D.

Nau) .
Joseph C Quinlan, "Computer-Integrated Manufacturing

Today, and A Look Ahead", Tooling & Production, PP. 27-

36, January 1987.

94

10.

11.

12.

Toshio Sata, "Recent Developments in Computer-Integrated
Manufacturing in Japan", Robotics & Computer-Integrated

Manufacturing, Vol. 3, No. 4, PP. 373-380, 1987.

Y. Ono, "Cell Control Systems", Robotics & Computer-
Integrated Manufacturing, Vol. 3, No. 4, PP. 389-393,

1987.

Joseph C Quinlan, "Two Robotics Turning Centers riduce
WIP by 40 Percent", Tooling & Production, PP. 35-37, May

1987.

Robert B. Mills, "CIM Comes of Age", Computer Aided

Engineering, PP. 58-62, December 1987.

H. -J. Warnecke, "Some Thoughts on Integration in CIM
systems", Robotics & Computer-Integrated Manufacturing,

Vol. 3, No. 1, PP. 89-95, 1987, (With W. Dangelmaier).

M. Weck, "Applicability of Expert Systems to Flexible
Manufacturing", Robotics & Computer-Integrated
Manufacturing, Vol. 3, No. 1, PP. 97-103, 1987, (With

G.Kiratli).

H. Hammer, "Flexible Manufacturing Cells and Systems

with Computer Intelligience", Robotics and Computer-

95

13.

14.

15.

16.

17.

18.

Integrated Manufacturing, Vol. 3, No. 1, PP. 39-54,

1987.

D. Reisch, "Total CAM Concept Embracing Logistics",
Robotics & Computer-Integrated Manufacturing, Vol. 3,

No. 1, PP. 105-122, 1987.

Rajiv Uppal, "Flexible Manufacturing Protocol Driver for

a Vertical CNC Machining Center", M.S. Thesis,
Mechanical Engineering, College Park, University of

Maryland, December 1986.

W. Gutschke, "CIM: Competitive Edge in Manufacturing",
Robotics & Computer-Integrated Manufacturing, Vol. 3,

No. 1, PP. 77-87, 1987, (With K. Mertins).

Steven R. Ray, "A Knowledge Representation Scheme for
Processes in an Automated Manufacturing Environment",
Center for Manufacturing Engineering, 1987, National

Bureau of Standards, Gaithersburg, MD.

D. K. Anand, "Research in the Flexible Manufacturing
Laboratory", The Systems Research Center, SRC-TR-86-61,

1986, College Park, University of Maryland.

James S. Albus, "Programming a Hierarchical Robot

Control System", 12th International Symposium on

96

19.

20.

21.

22.

23.

24.

Industrial Robots, June 1982, Paris, France, (With

Anthony J. Harbera and M.L. Fitzgerald).

B. Kumar, "Integration and Testing of a Intelligent
Feature Extractor within a Flexible Manufacturing
Protocol", Proceedings of the 16th NAMRC, May 1988,

Urbanan, IL, (With D.K. Anand and J.A. Kirk).

Vitan, "A Modular Approach to Flexible Automation",

Manufacturing Engineering, M. Sc., ITCR, Bulgaria

Toshio Sata, "Functions Required for Advanced Flexible
Manufacturing Systems", Robotics & Computer-Integrated
Manufacturing, Vol. 3, No. 4, PP. 417-421, 1987, (With

H. Hiraoka and M. Miki).

Pual C Miller, "Automatic Setup for Machining Centers",

Tooling & Productions, PP. 68-70, May 1987.

Robert K. Southard, "LANs - Nervous System for Your

Factory", Tooling & Production, PP. 26-32, December 1987

D.K. Anand, "Super Computer and Hierarchical Control: A
System Point of View", Proceeedings, NSF Conference on
Supercomputers in Mechanical Systems Research, 1984,
Lawrenec, Livermore National Laboratory, CA., (With J.A.

Kirk, M. Anjanappa and M. Pecht).

97

25.

26.

27.

28.

29.

30.

Mark R. Cutkosky,"Precision Flexible Manufacturing Cells
within a Manufacturing System", Technical Report,
Carnegie-Mellon University, 1983, Pittsburgh, PA., (With

Paul S. Fussell and Robert Milligan, Jr.).

G. Spur, "Cell Concepts for Flexible Automated
Manufacturing", Journal of Manufacturing Systems, Vol.
5, No. 3, PP. 171-179, 1987, (With G. Seliger and B.

Viehweger) .

Albert T. Jones, "A Proposed Hierarchical Control Model
for Automated Manufacturing System", Journal of
Manufacturing Systems, Vol. 5, No. 1, PP. 15-25, 1986,

(With Charles R. McLean).

Paul Prickett, "An Approach to CADCAM implementation",
Computer-Integrated Manufacturing Journal, PP. 245-249,

December 1987.
Don Ralston, "Computer Integrated Manufacturing",
Computer-Aided Engineering Journal, PP. 167-175, August

1987, (With Tony Munton).

Edward B. Magrab, "Vertical Machining Workstation of the

AMRF: Equipment Integration", Center for Manufacturing

98

31.

32.

33.

34.

35.

36.

37.

Engineering, National Bureau of Standards, 1986,

Gaithersburg, MD.

Charles R. McLean, "The Vertical Workstation of the
AMRF: Software Integration'", ASME Symposium on
Intelligent and Integrated Manufacturing, September,

1986, Chicago, Illinois.

Kaare Christian, "The Unix Operating System", ISBN 0-

471-87542~2, John Wiley & Sons, Inc., 1983.

Marc J. Rochkind, "Advanced Unix Programming", ISBN 0-

13-0118184, Prentice-Hall, Inc., 1985.

V. Carl Hamacher, "Computer Organization", ISBN 0-07-
025683-7, McGraw-Hill, Inc., 1984, (With Zvonko G.

Vranesic and Sofwat G. Zaky).

Harold S. Stone, "Microcomputer Interfacing", ISBN 0-

201-07403-6, Addison-Wesley Publishing, Inc., 1982.

M. Morris Mano, "Computer System Architecture", 2nd

Edition, ISBN 0-13-166611-8, Prentice-Hall, Inc., 1982.

Mikell P. Groover, "CAD/CAM Computer-Aided Design and
Manufacturing®, ISBN 0-13-110130-7, Prentice-Hall, Inc.,

1984, (With Emory W. Zimmers, Jr.).

99

38.

39.

40.

41.

42.

43.

Edward J. Preston, "CAD/CAM Systems", ISBN 0-8247-7257-
1, Marcel Dekker, Inc., 1984, (With George W. Grawford

and Mark E. Coticchia).

Al Kelley, "A Book on C", ISBN 0-8053-6860-4,
Benjamin/Cummings Publishing, Inc., 1984, (With Ira

Phol) .

Brian W. Kernighan, "The C Programming Language", ISBN
0-13-110163-3, Prentice-Hall, Inc., 1978, (With Dennis

M. Ritchie).

E. Paul DeGarmo, "Materials and Processes in
Manufacturing", 6th Edition, ISBN 0-02-328620-2,
Macmillan, Inc., 1984, (With J. Temple Black and Ronald

A. Kohsor).

J.A. Kirk, "Implementation of a Flexible Manufacturing
Protocol", Proceedings of the IASTED Applied Control and
Identification Conference, December 1986, Los Angeles,

CA., (With D.K. Anand, M. Anjanappa, and R. Uppal).

"Long Range Plan for the IGES Organization", Release 1,

National Bureau of Standards, March 1986, Gaithersburg,

MDI

100

44.

45,

46.

47.

Bradford Smith, "Initial Graphics Exchange Specification
- The IGES Projest -~ A Status Report", National Bureau

of Standards, December 1985, Gaithersburg, MD.

Bradford M. Smith, "Product Data Exchange Specification
- The PDES Project - Objectives, Plans and Schedules”,
National Bureau of Standards, June 1986, Gaithersburg,

MD.

Walter Kellner Rickert, Jr., "The Use of IGES in
Automated CNC Machining", M.S. Thesis, Mechanical
Engineering, College Park, University of Maryland,

Feburary 1987.

B. Kumar, "An Intelligent Feature Extractor for
Automated Machining", Proceedings of the 5th
International Conference on System Engineering,
September 1987, Dayton, Ohio, (With D.K. Anand and J.A.

Kirk).

101

APPENDIX A

A BRIEF OVERVIEW OF THE NBS PROCESS PLAN FILE FORMAT

102

APPENDIX A

A BRIEF OVERVIEW OF THE NBS PROCESS PLAN FILE FORMAT

The NBS Process Plan File (PPF) format is described in
Backus-Naur (BNF) notation. To understand the PPF format,
it is necessary to first introduce the BNF notation. A
brief description of the BNF notation is shown in the

following

1. <xx> Denotes a non-terminal symbol whose name is xx. A
"non-terminal" is a symbol of the BNF notation which can be
further decomposed into a set of non-terminals and/or
terminals. Eventually, all symbols are decomposed into
terminals. A "terminal" is a symbol or character of the
object language. The "object language" consists of all

symbols and characters that will appear in the actual file.

2. ::= The non-terminal to the left of this symbol is
composed of all those elements that are to the right of this

symbol (expresses decomposition).

3. <xx> <yy> This expresses concatenation of two non-
terminals ("and"). The concatenation applies to whatever

these non-terminals decompose to as well.

4. | This means "or" (any one of the specified elements may

be chosen to place in this position).

103

5. { } Means zero or more occurrences of. For example,
{<header_line>) means the same as <header_line> ...

<header_line>.

6. [] Means optional.
7. XX .. YY This notation is for numerical or alphabetic
ranges.

8. <???> Means as yet undefined.

A simple example of BNF is given:

<a> ::= <c> |
 ::= hi
<c> ::= there

means <a> is equal to "hi there !".

104

Comments:

1. Keywords, values, and parameters are to be 19 characters

or less.

2. All letters are uppercase.

3. Any terminal (punctuation_mark, integer) may be preceded

and followed by whitespace unless otherwise specified.

4. The notation xxH in the following BNF represents the
hexadecimal number specifying an ascii character. For

instance, 2H means space (chr$(32)).
5. Any element may be omitted by delineating with the proper

punctuation. For instance, in order to specify no

precedence steps, two consecutive semi-colons may be used.

105

THE PROCESS PLAN SPECIFICATION IN BNF

<pp_file> ::= --PROCESS_PLAN--
<header_section>
<parameters_section>
<rgmts_1list>
<procedure_specification>

--END_PROCESS_PLAN--

<header_section> ::= --HEADER_SECTION--
{<header_line>)

~=-END_HEADER_SECTION--

<header_line> ::= <header_elem_name> = <value>
<header_elem_name> ::= <keyword>
<parameters_section> ::= --PARAMETERS_SECTION--

{<parm_line>)

-—-END_PARAMETERS_SECTION--

<parm_line> ::= <parm_name> ; <parm_type> ;
<parm_range> ; <parm_default>

<parm_name> ::= $$<keyword>

<parm_type> ::= <???>
<parm_range> ::= <value> , <value>
<parm_default> ::= <??2?>

106

<rgmts list> ::= --REQUIREMENTS_SECTION--
{<rgmt_line>)

~=END_REQUIREMENTS_ SECTION--

<rgmt_line> ::= <rgmt_number> ; <rgmt_identifier> ;
<rgmt_type> ; <rgmt_description> ;
<rgmt_quantity> ; <parent rqmts>

<rgmt_number> ::= <integer>

<rgmt_identifier> ::= <keyword>

<rgmt_type> ::= <keyword>

<rgmt_description> ::= <??27?>

<rgmt_quantity> ::= <integer>

<parent_rgmts> ::= <rgmt_line num list>

<rgmt_line num_list> ::= {<keyword> ,} <keyword>

<procedure_specification> ::= —--PROCEDURE SECTION--
{<procs_line>}

——END_PROCEDURE_SECTION--

<procs_line> ::= <step_number> ; <work_descr> ;
<prec_steps> ; <duration>

<step number> ::= <integer>

<work_descr> ::= <work_element_name>

{, <keyword> = <value>)

<work_element_name> ::= <keyword>
<prec_steps> ::= (<integer> ,} <integer>
<duration> ::= " <days> : <hrs> : <min> : <sec> "

107

(No whitespace allowed between characters)
<days> ::= <digit> <digit> <digit> <digit>

(No whitespace allowed between digits)

<hrs> ::= 00 .. 23
<min> ::= 00 .. 59
<sec> ::= 00 .. 59
<keyword> ::= <keyword_ prefix> (<uppercase_letter> | <digit>
s # 1 _ 1 -13%l&]|+]] @] *

(No whitespace allowed between characters)

<keyword_prefix> ::= <uppercase_letter> | $ | # | @
<value> ::= <number> | <keyword> | <string>

<string> ::= " (<ascii_printable_char>} "
<whitespace> ::= { CR | LF | SPACE | TAB | FORMFEED)
<upper_case_letter> ::= A .. Z (41H .. 5AH)

<digit> ::= 0 ..9 (30H .. 39H)

<integer> ::= <digit> | <digit> <digit>

(No whitespace allowed between digits>
<ascii_printable_char> ::= SPACE .. ~ | TAB | FORMFEED | CR
| VT | LINEFEED (20H .. 7EH | 12H
| 10H | 9H | OBH | OAH)

(" or 22H must be preceded by \, or 5CH and also

\, or 5CH)
<file_keyword> ::= --PROCESS_PLAN-- | --END_PROCESS_PLAN--
<section_keyword> ::= —-PARAMETERS_SECTION-- |

--END_PARAMETERS_SECTION-- |

--HEADER_SECTION-- |

108

--END_HEADER_SECTION-- |
--REQUIREMENTS_ SECTION-- |
-~END_REQUIREMENTS_SECTION-- |
-=-PROCEDURE_SECTION-- I
~—-END_PROCEDURE_SECTION--
<punctuation_mark> ::= ; | = | . | : | ,
(3BH | 3DH | 2EH | 3AH | 2CH)
<number> ::= <integer> | <integer>.<integer> |
<integer>[.<integer>]E<exponent>
(No whitespace allowed between characters)
<exponent> ::= [+]<integer> | -<integer>

(No whitespace allowed between characters)

109

Example Process Plan:

--PROCESS_PLAN--

--HEADER_SECTION--

PLAN ID := PP~-CELL-1;
PLAN_VERSION 1= 1;
PLAN TYPE := ROUTING~SLIP;
PLAN_NAME := "FILTER-HOUSING";
PROCESS-ENGINEER = "peter"
PART-NUMBER 1= 31;
ENG-DRAW-# :=123987;
--END_HEADER_SECTION--
--PARAMETERS SECTION--
$STRAY001 : PART-TRAY
$$TRAY002 : TOOL~TRAY
$$LOT001 : LOT;
$$TOOL-SET001 : TOOL~SET;
--END_PARAMETERS_SECTION--
--REQUIREMENTS_SECTION--
<<1>> PROCESS-PLAN
(PLAN-ID => PP-MHS-1 ,
PLAN-VERSION => 1 ,
PLAN-TYPE => OPERATION-SHEET |,

PLAN-NAME => VWFILTER-HOUSING");

110

<<2>> PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<3>> PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<4>> PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<5>> PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
- <<6>> PROCESS-PLAN
(PLAN-ID
PLAN-VERSION
PLAN-TYPE
PLAN-NAME
<<7>> PROCESS-PLAN

(PLAN-ID

=>

=>

=>

=>

PP-MHS-2
1
OPERATION_SHEET

YFILTER-HOUSING"

PP-MHS-3
1
OPERATION-SHEET

"FILTER-HOUSING"

PP-MHS-4
1
OPERATION-SHEET

"FILTER-HOUSING"

PP-VWS-1
1
OPERATION-SHEET

"FILTER-HOUSING"

PP-VWS-2
1
OPERATION-SHEET

"FILTER-HOUSING"

PP-VWS-3

111

4

)

4

)

14

)

)

14

)

-

-,

PLAN-VERSION

PLAN-TYPE

PLAN-NAME

<<8>> WORKSTATION

(WORKSTATION-ID

<<9>> WORKSTATION

(WORKSTATION-ID

<<10>> TRAY

(

<<11>> TRAY

(

TRAY~-TYPE

TRAY-ID

TRAY-TYPE

TRAY-ID

=>1

=> OPERATION~SHEET

=> "FILTER-HOUSING"

=> VWS

=> MHS

=> SECTOR-4

=> $$TRAYO001

=> SECTOR-4

=> $$TRAY002

--END_REQUIREMENTS_SECTION--

--PROCEDURE_SECTION=--

<<1>> DELIVER-TRAY

(

ORIGIN

DESTINATION

TRAY-TYPE

TRAY~1D

SYSTEM

TYPE

PLAN-ID

PREC-STEPS

TIME

<<2>> DELIVER-TRAY

=> MHS

=> VHS

=> SECTOR-4
=> STRAY001
=> MHS

=> COMPLEX
=> PP-MHS-1

=> ()

14

=> 0000:00:00:30

112

’

)i

(ORIGIN => MHS ,

DESTINATION => VHS ’

TRAY-TYPE => SECTOR~-4 ,
TRAY-ID => $$TRAY002 ,
SYSTEM => MHS ,
TYPE => COMPLEX ,
PLAN-ID => PP-MHS-2 ,
PREC-STEPS => () ,
TIME => 0000:00:00:30) ;

<<3>> RECEIVE-TRAY

(TRAY-TYPE => SECTOR-4 ,
TRAY-ID => $$TRAY001 ,
SYSTEM => VWS ,
TYPE => PRIMITIVE |,
PREC-STEPS => (1) ,
TIME => 0000:00:00:30);

<<4>> RECEIVE-TRAY

(TRAY-TYPE => SECTOR-4 ,
TRAY-ID => $$TRAY002 ,
SYSTEM => VWS ,
TYPE => PRIMITIVE
PREC-STEPS => (2) ,
TIME => 0000:00:00:30);

<<5>> SETUP-AREA

(AREA-ID => TOOL-CHANGER ,
ITEMS => $$TOOL-CHANGER ,
SYSTEM => VWS ,

113

TYPE => COMPLEX

PLAN-ID => PP-VWS-1
PREC-STEPS => (4)
TIME => 0000:00:02:45

<<6>> MACHINE-LOT

<<7>> TAKEDOWN-AREA

(AREA-ID

ITEMS

SYSTEM

TYPE

PLAN-ID

PREC-STEPS

TIME

<<8>> SHIP-TRAY

(TRAY-TYPE

TRAY-ID

SYSTEM

(LOT-ID => $$LOT001
LOT-TYPE => FILTER-HOUSING
QUANTITY => 4
TRAY-ID => $$TRAY001
TOOL-SET => $$TOOL-SET001
SYSTEM => VWS
TYPE => COMPLEX
PLAN-ID => PP_VWS-2
PREC-STEPS => (3,5),

TIME => 0000:00:28:15

TOOL-CHANGER
$$TOOL-SET-1
VWS

COMPLEX
PP-VWS-3

(6)
0000:00:02:30

SECTOR-4 ’
SSTRAYO001 '

VWS ’

114

’

TYPE => PRIMITIVE |,
PREC-STEPS => (6) ,
TIME => 0000:00:00:30);

<<9>> SHIP-TRAY

(TRAY-TYPE => SECTOR-4 ,
TRAY-ID => $$TRAY002 ,
SYSTEM => VWS ,
TYPE => PRIMITIVE ,
PREC-STEPS => (7) '
TIME => 0000:00:00:30);

<<10>> DELIVER-TRAY
(ORIGIN => VWS P

DESTINATION => MHS p

TRAY-TYPE => SECTOR-4 ,
TRAY-ID => $$TRAY001 ,
SYSTEM => MHS ,
TYPE => COMPLEX ,
PLAN-ID => PP-MHS-3 ,
PREC-STEPS => (8) ,
TIME => 0000:00:00:30);

<<11>> DELIVER-TRAY
(ORIGIN => VWS ,

DESTINATION => MHS ’

TRAY~-TYPE => SECTOR-4 ,
TRAY-ID => $$TRAY002 ,
SYSTEM => MHS ,
TYPE => COMPLEX ,

115

PLAN-ID => PP-MHS-4 ,
PREC-STEPS => (9) ,
TIME => 0000:00:00:30);

-=-END_PROCEDURE_SECTION--

-~END_PROCESS_PLAN--

116

APPENDIX B

THE RS-232C INTERFACE FOR ASYNCHRONOUS COMMUNICATION

117

APPENDIX B

THE RS-232C INTERFACE FOR ASYNCHRONOUS COMMUNICATION

The EIA RS-232C completely specifies the interface
between data communication devices (for example, modems) and
data terminal equipment (for example, the computer and the
I/0 terminal). The standard RS-232C interface consists of

25 connection points as shown in table B.1.

Fig. B.1l shows how the RS-232C interface two
communication equipments. Conspicuous in the figure are the
two grounds defined in the RS-232C standard. One ground is
a chassis ground that is tied directly to the shields in the
systems and is also called shield ground. This ground
connection should be made between two devices only if it is
safe to connect the chassis grounds together. The other
ground is a signal ground that provides a common reference
point for all other signals. This connection is mandatory.
Because the signal grounds are not necessarily isolated from
the chassis ground, RS-232C has an inherent potential
ground-loop problem. While the standard is quite useful for
short distances, for longer distances it becomes unreliable
and hazardous. The published standard recommends that each
device should have a cable not in excess of 50 feet. The
terminal/computer interface on the left and the modem on the

right have a pair of wires dedicated to Transmitted Data

118

TABLE B.1 THE RS-232C CONNECTOR STANDARD

. — — " —— _——————— T ———— —— ——— T —— —— W M Gt S —— T — a0 W T ————

Pin # EIA Function
1 AA Protective ground (shield)
2 BA Transmitted data
3 BB Received data
4 CA Request to send
5 CB Clear to send
6 ccC Data set ready
7 AB Signal ground (common return)
8 CF Received line signal detector
(carrier detected)
9 - Reserved for testing
10 - Reserved for testing
11 -— Unassigned
12 SCF Secondary received line signal detector
13 SCB Secondary clear to send
14 SBA Secondary transmitted data
15 DB Transmitter signal element timing

(terminal transmitter clock)
16 SBB Secondary received data
17 DD Receiver signal element timing

(modem receiver clock)

18 - Unassigned

19 ScA Secondary request to send

20 CD Data terminal ready

21 CG Signal quality detector

23 CH Data signal rate selector (DTE to DCE)
CI Data signal rate selector (DCE to DTE)

24 DA Transmitter signal element timing

(terminal transmitter clock)

25 -- Unassigned

119

Terminal
or
computer

Ring Indicator (RI)
Data Terminal Ready (DTR)
Carrier Deteet (CD)

Dtat Set Ready (DSR)
Clear To Send (CTS) |
Request To Send (RTS)
Received Data (RxD)
Transmitted Data (TxD)

2 -2
0 w0]
L8 8

7 Signal 7

6 ground 6
5 -5
4. 4
L3 .3
e 2

1 Shield groued 1

1

Nodem
or
other telecom
equipment

Ring Indicator (RI)
Data Terminal Ready (DTR)
Carrier Detect (CD)

Dtat Set Ready (DSR)
Clear To Send (CTS)
Request To Send (RTS)
Received Data (RxD)
Transmitted Data (TxD)

Figure B.1 RS-232C interface with communication equipments

120

(TxD) and Received Data (RxD). These are compatible signals
because Transmitted Data is a modem input and a
computer/terminal output, the converse applies to Received
Data. Other signals reflect the telephone protocol of the
modem. Specifically, Request To Send (RTS) and Clear To
Send (CTS) relate to the characteristics of half-duplex
telephone lines. Such lines are capable of bi-directional
traffic, but they can send in only one direction at a time.
The terminal signals a modem with Request To Send when it
has characters to transmit, but these characters have to be
queued until the modem changes from a receive to a transmit
mode. When transmission is allowed, the Clear To Send
signal is returned to the terminal, and the transmission
begins. The modem can also turn off Clear To Send if the

modem moves into the receive mode from transmit mode.

The Clear To Send and Request To Send lines are held to
a constant voltage when the telephone connection is full-
duplex - that is, when transmit and receive functions can

occur simultaneously on independent wires.

Two READY signals are introduced in the RS-232C
standard. Data Set Ready (DSR) signifies that the modem is
operational, and Data Terminal Ready (DTR) is the
corresponding signal for computers and terminals. These
signals are sometimes connected to the power supply and

become asserted when the device is powered on. The Data Set

121

Ready signal for a modem indicates more than just a power on
condition, the modem is actually connected to a
communications line, and is not in a test mode or a
disconnected state. The READY signals are then passed
across the cable link so that the equipment on the opposite

end of the cable can sense the condition.

Carrier Detect (CD) and Ring Indicator (RI) are related
to telephone functions. The Ring Indicator is asserted
during the period that a ringing tone is present on the
communications line. When ringing is sensed at a computer
I/0 port, the port should post an interrupt, at which point
the computer can initiate a connection to the caller.
Carrier Detect is a signal that indicates that a remote
connection is currently active. If the connection should
break for any reason, the Carrier Detect signal is lost, and

this too should cause an interrupt at a computer I/0 port.

Table B.2 gives the sequence of logic signals needed to
establish a connection, transmit data, and terminate the
connection. The steps involved in this process are

described briefly below.

1. When the computer is ready to accept a call, it sets the

Data Terminal Ready signal (DTR) to 1.

122

aouanbos Jurjeudts piepueis Jzep-<¥ oYL 2@ °[qel

| —o O U0T)03UU0d Q[RUIWIAL| @
0 —= 2
0 —= 1)
i) - 0)
00 el |
i) - 0 gr21 doxg Y2 -
0 —) 19310081
0 —— V) zf Goee doag 06—))
vjef 1RdU] ——o af —~— BYR(~— If GL01-GLZ] ¥4 ~—— uj8p judo]
eieq jndyng —e Vi 1jf S202-G228 —= ejR] —= aq — = ejep qudyng|
[—— 0
[0 v
N - —— I GL21 Y) (=1)
1 -~ | u01)aq ysng
] — V) 1f] GooY —o | —=) g
20 |
Y00Y-JJo s307 ~— $}13Tp pagerq| g
1) —
durzassue
o e 1M I—]
sjeudis (V WIpof) (g WopoR) S{eud1s
Joynduo) 30BJI3YU] ¥ 198 ®v)¥(g 198 eje(20RJI9YT] [sutua] do3g

123

2. Data set A (modem A) monitors the telephone line, and
when it detects the ringing current, indicating an incoming
call, it signals the computer by setting the Ring Indicator
(RI) to 1. If DTR = 1 at the time the ringing current is
detected, the modem automatically answers the call by going
off-hook. Then, it sets the Data Set Ready (DSR) signal to

1.

3. The computer instructs modem A to start transmitting the
frequency representing a mark condition (2225 Hz) by setting
Request To Send (RTS) to 1. When this is accomplished,
modem A responds by setting Clear To Send (CTS) to 1. The
detection of the mark frequency at modem B causes it to set
the received line signal Carrier Detect (CD) to 1, and turn

on a front panel indicator light.

4. The user responds by pressing a button on the front panel
of the modem, which is equivalent to setting Request To Send
(RTS) to 1, causing transmission of the 1275-Hz signal.
Modem B then sets Clear To Send (CTS) and Data Set Ready
(DSR) to 1. When modem A detects the 1275-Hz frequency, it

sets Carrier Detect (CD) to 1.

5. A full-duplex link is now established between the
computer and the remote terminal. The computer can transfer
data to and from the remote terminal in the same way as in

the case of local terminals. Interface pins TxD

124

(Transmitted Data) and RxD (Received Data) are used for this
purpose, while all other signals in the interface remain

unchanged.

6. When the user signs off, the computer sets the Request To
Send and Data Terminal Ready (RTS and DTR) signals to O,
causing modem A to drop the mark condition and disconnect
from the line. Signals CTS, CD, and DSR are set to 0 by
modem A. When modem B senses the disappearance of the mark
condition on the line, it sets the received line signal CD

to 0.

7. Modem B responds by removing its mark frequency from the
line and setting CTS and DSR to 0. The user terminates the

connection by going on-hook.

8. The computer sets Data Terminal Ready (DTR) to 1, in

preparation for a new call.

Fig. B.2 shows how to connect terminals/computers
directly without the use of modems. Note that the
Transmitted Data and Received Data lines are crossed so that
the devices can, at least, transmit and receive properly.
Given the full-duplex nature of the hard-wired connection,
Request To Send and Clear To Send no longer serve a modem-
like function. Hence, Request To Send is folded back as

Clear To Send, and a transmission request is thereby always

125

Terminal
or
computer

Ring Indicator (RI)
Data Terminal Ready {DIR)
Carrier Detect (CD)
Signal Ground {GND)

Dtat Set Ready (DSR)

Clear To Send (CTS)

Request To Send (RTS)

Received Data {RxD)
Transmitted Data (TxD)

L

Shield ground

Nodem
or
other telecom
equipuent

Ring Indicator (RI)

Data Terminal Ready (DTR)
Carrier Detect (CD)
Signal Ground {GND)

Dtat Set Ready (DSR)
Clear To Send (CTS)
Request To Send (RTS)
Received Data (RxD)
Transmitied Data (TxD}

Figure B.2 RS-232C, terminal/computer to terminal/computer

126

granted. The dotted line shows this signal is used as
Carrier Detect at the other end because the presence of
Request To Send is functionally similar to the detection of
a carrier in a communications channel. The last set of
signals, Data Set Ready and Data Terminal Ready are crossed
so that each end of the link can detect the presence of a
ready condition on the other end. Note the dotted line
carries the READY signal to the Ring Indicator input.
Dotted lines in this drawing signify connections that are
sometimes made in practice, but are less common than the
connections as represented by solid lines which cross couple

or feed back pairs of signals.

127

APPENDIX C

SUMMARY OF HP RS-232C SERIAL STATUS AND CONTROL REGISTERS

128

APPENDIX C

SUMMARY OF HP RS-232C SERIAL STATUS AND CONTROL REGISTERS

STATUS Register O

CONTROL Register 0

STATUS Register 1

Card Identification

Value returned: 2 indicates a 96626 (if
130 is returned, the Remote jumper wire
has been removed from the interface
card); 66 indicates a 98644 (194 if the

Remote jumper has been removed).

Interface Reset

Any value from 1 thru 255 resets the
card. Execution is immediate; any data
transfers in process are aborted and any
buffered data is destroyed. A value of

0 causes no action.

Interrupt Status
Bit 7 set: Interface hardware interrupt
to CPU enabled.
Bit 6 set: Card is requesting interrupt
service.
Bit 5&4:

00 Interrupt Level 3

01 Interrupt Level 4

10 Interrupt Level 5

129

CONTROL Register 1

STATUS Register 2

STATUS Register 3

11 Interrupt Level 6

Bit 3 thru 0 not used.

Transmit BREAK
Any non-zero value sends a 400

millisecond BREAK on the serial line.

Interface Activity Status

Bit 7 thru 3 are used.

Bit 2 set: Handshake in progress. This
occurs only during multi-line function
calls.

Bit 1 set: Firmware interrupts enabled
(ENABLE INTR active for this select
code) .

Bit 0: Reserved for future use.

Current Baud Rate

Returns one of the values listed under

CONTROL Register 3.

130

CONTROL Register 3

STATUS Register 4

Set

Use

50

75

110

134.

(or

Current Character Format
See CONTROL Register 4 for

individual bits.

new Baud Rate

any one of the following values:

5

134)

150
200
300

600

131

1200

1800

2400

3600

4800
7200
9600

19200

function of

CONTROL Register 4 Set New Character Format

Character Format and Parity Settings

Parity Sense Parity Enable Stop Bits Character Length

(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&0)

00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char

01 EVEN parity 1 Enabled 1 1.5 stop 01 6 bits/char
10 Always ONE bits (if 10 7 bits/char
11 Always ZERO 5 bits/char) 11 8 bits/char

or 2 stop
bits (if
6, 7, or 8
bits/char).
Bits 7 and 6 are reserved for future

use.

STATUS Register 5 Current Status of Modem Control Lines
Returns CURRENT line state values. See
CONTROL Register 5 for function of each

bit.

CONTROL Register 5 Set Modem Control Line States
Sets Modem Control lines or interface

state as follows:

132

STATUS Register 6

CONTROL Register 6

Bit 4 set: Enables loopback mode for
diagnostic tests.

Bit 3 set: Set Secondary Request-to-Send
modem line to active state.

Bit 2 set: Set Data Rate Select modem
line to active state.

Bit 1 set: Force Request-to-Send modem
line to fixed active state.

Bit 1 clear: Toggle RTS line as in
normal OUTPUT operations.

Bit 0 set: Force Data Terminal Ready
modem line to fixed active state.

Bit 0 clear: Toggle DTR line as in

normal OUTPUT and ENTER operations.

Data In
Reads character from input buffer.
Buffer contents is not destroyed, but

bit 0 of STATUS Register 10 is cleared.

Data Out

Sends character to transmitter holding
register. This register is sometimes
used to transmit protocol control
characters or other characters without
using OUTPUT statements. Modem control

lines are not affected.

133

STATUS Register 7

CONTROL Register 7

STATUS Register 8

Optional Receiver/Driver Status

Returns current value of optional
circuit drivers or receivers as follows:
Bit 3: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).
Bit 1: Optional Circuit Receiver 2
(OCR2) .

Bit 0: Optional Circuit Receiver 3
(OCR3) .

Other bits are not used (always 0).

Set New Optional Drive States

Sets (bit=1) or clears (bit=0) optional
circuit drivers as follows:

Bit 3: Optional Circuit Driver 3 (OCD3).
Bit 2: Optional Circuit Driver 4 (OCD4).

Other bits are not used.

Current Interrupt Enable Mask

Returns value of interrupt mask
associated with most recent ENABLE INTR
statement. Bit functions are as
follows:

Bit 3: Enable interrupt on modem line
change. STATUS Register 11 shows which

modem line has changed.

134

STATUS Register 9

Bit 2: Enable interrupt on UART status
error. This bit is used to trap ERROR
167 caused by UART error conditions.
STATUS REgister 10, bits 4 thru 1, show
cause of error.

Bit 1: Enable interrupt when Transmitter
Holding Register is empty.

Bit 0: Enable interrupt when Receiver

Buffer is full.

Cause of Current Interrupt

Returns cause of interrupt as follows:
Bits 2&1: Return cause of interrupt
11=UART error (BREAK, parity, framing,
Oor overrun error). See STATUS Register
l10.

10=Receiver Buffer full. Cleared by
STATUS to Register 6.

0l1=Transmitter HOlding Register empty.
Cleared by CONTROL Register 6 or STATUS
to Register 9.

00=Interrupt caused by change in modem
status line(s). See STATUS Register 11.
Bit 0: Set when no active interrupt
requests from UART are pending. Clear
until all pending interrupts have been

serviced.

135

STATUS Register 10

STATUS Register 11

UART Status

Bit set indicates UART status or
detected error as follows:

Bit 7: Not used.

Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.

Bit 3: Framing error detected.

Bit 2: Parity error detected.

Bit 1: Receive Buffer Overrun error.

Bit 0: Receiver Buffer full.

Modem Status

Bit set indicates that the specified
modenm line or condition active.

Bit 7: Data Carrier Detect (DCD) modem
line active.

Bit 6: Ring Indicator (RI) modem line
active.

Bit 5: Data Set Ready (DSR) modem line
active.

Bit 4: Clear-to-Send (CTS) modem line
active.

Bit 3: Change in DCD line state

detected.

136

Bit 2: RI modem line changed from true
to false.

Bit 1: Change in DSR line state
detected.

Bit 0: Change in CTS line state

detected.

STATUS Register 12

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

—— — ————— A —————— T T —— A — ——— i - - — — ——— — T —— — T — T W T e — ——— ——- Sme =

Carrier Data Set Clear to
Detect 0 Ready Send 0 0 0 0
Disable Disable Disable

Val=128 Val=64 Val=0 Val=16 Val=8 Val=4 Val=2 Val=1

137

CONTROL Register 12

Modem Handshake Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit o
Carrier Data Set Clear to
Detect Not Ready Send Not Used
Disable Used Disable Disable
Val=128 Val=64 Val=0 Val=16 Val=8 Val=4 Val=2 Val=1
Interrupt Enable Register (ENABLE INTR)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Trans-—
Modem Receiver mitter Receiver
Not Used Status Line Holding Buffer
Change Status Regis~- Full
ter
Empty
Val=128 Val=64 Val=0 Val=16 Val=8 Val=4 vVal=2 Val=1l

138

STATUS Register 13

CONTROL Register 13

STATUS Register 14

CONTROL Register 14

Read 98644 "SCRATCH A default" baud rate
Returns the baud rate that will be

restored whenever SCRATCH A is executed
(same bit-definitions as STATUS register

3).

Set 98644 "SCRATCH A default" baud rate
Sets both the "current"and the "default"
baud rate that will be restored whenever
SCRATCH A is executed (same bit-
definitions as CONTROL register 3).
default value in this register is 9600

baud.

Read 98644 "SCRATCH A default" character
format

Returns the character format parameters
that will be restored whenever SCRATCH A
is executed (same bit-definitions as

STATUS register 4).

Set 98644 "SCRATCH A default" character
format

Sets the character format parameters
that will be restored whenever SCRATCH A

is executed (same bit-definitions as

139

CONTROL register 4). Default value in
this register specifies a character
format of 8 bits/character, 1 stop bit,

and parity disabled.

1490

APPENDIX D

REFERENCE FILES FOR DEMONSTRATION PART

141

fmlab5% cat pp_ccp_test

-- PROCESS_PLAN --

-- HEADER_SECTION ~--

PLAN_ID = pp_ccp_test;
PLAN VERSION = 1;

PLAN_ TYPE := PP.CCP#1;

PALN NAME := RECTANG SAMPLE;

—-- END_HEADER_SECTION --

-— PARAMETERS_SECTION --

=-— END_PARAMETERS_SECTION =--

REQUIREMENTS SECTION =--
<< 1 >> CELL_ELEMENT
(ELEMENT_1ID => VMC
<< 2 >> CELL_ELEMENT
(ELEMENT_ID => VISE
<< 3 >> CELL_ELEMENT
(ELEMENT_ID => GRIPPER
<< 4 >> CELL_ELEMENT
(ELEMENT_ID => ROBOT

—=-= END_REQUIREMENTS SECTION -~

== PROCEDURE_SECTION =--

<< 1 >> INIT

142

<< 2 >> LOAD_PART

(PART TYPE => RECTANGULAR |,

PART SIZE L => 6.0 ,
PART SIZE W => 3.0 ,
PART SIZE D => 1.0 ,

PART MATERIAL => AL ,
PREC_STEPS => () ,
TIME => 0000:00:01:00) ;

<< 3 >> MACHINE_PART

(NCFILE_NAME => easydemo.nc ,
PREC_STEPS => (2) ’
TIME => 0000:00:30:00);

<< 4 >> UNLOAD_PART

(PART_TYPE => RECTANGULAR |,
PART SIZE_L => 6.0 ,
PART_SIZE_W => 3.0 ,
PART SIZE D => 1.0 ,

PART_MATERIAL => AL ’

PREC_STEPS => (3) '

TIME => 0000:00:01:00);
<< 5 >> CLOSE

-- END_PROCEDURE_SECTION --

-- END_PROCESS_PLAN --

143

fmlab4% cat /usr/unger/vws2/design/nc/chendemo nc
%00001

NO0OOl1l (HEADER PROG
CHEN_DEMO_PART)
NO00O2 G91 G28 Z+0.0
N0O0O0O3 G91 G28 X+0.0 ¥Y+0.0

N0004 G52

N000O5 G92 X+0.0 ¥Y+0.0 Z+0.0

NO0O06 G10 P1 Q2 X-11.2 ¥-9.0 Z+0.0

NO0O7 GO G90 G54 X+0.0 Y+0.0

N0O0O0O8 (0.1 BY 1.0 BY 1.0 POCKET)

NO0O09 (CHANGING TOOL TO 0.375 INCH DIAMETER END_MILL)
NO0O10 M9

NO0O1ll GO

N0O12 G53 Z+0.0

N0O013 T3 M6

N0O0O1l4 GSO GO S1528 M3

NO0O15 G43 H3 Z+10.0

NOOl6 M8

NOO17 X+2.7 Y+0.7

N0018 GO Z+0.1

CHENDEMO NC PROG_NAME=

NOO1l9
NOO020
NOO21

Gl Z-0.1
Gl X+2.7
X+2.8875

F3.82 M8
Y+0.7
¥+0.5125

- NoO38

NOoO22
NOO023
NOO24
N0025
NOO026
NOO27
NOO28
NOO29
NOO30
NO0O031
NOO032
NOO33
NOO034
NOO35
NOO036
NOO37

Y+0.8875

X+2.5125

¥Y+0.5125

X+2.8875

Gl X+3.0 Y+0.3975
G3 X+3.0025 Y+0.4
Gl Y+1.0

G3 X+3.0 Y+1.0025
Gl X+2.4

G3 X+2.3975 Y+1.0
Gl Y+0.4

G3 X+2.4 Y+0.3975
Gl X+3.0

GO Z+1.0

X+3.0 Y+0.3875
zZ+0.1

Gl 2-0.1 F3.82
F7.64

G3 X+3.0125 Y+0.4
Gl Y+1.0

G3 X+3.0 Y+1.0125
Gl X+2.4

G3 X+2.3875 ¥+1.0
Gl Y+0.4

G3 X+2.4 Y¥Y+0.3875 R+0.0125
Gl X+3.0

(0.3 BY 0.5 BY 0.8 POCKET)
G90 GO Z+1.0

X+4.5 Y+0.85

R+0.0025

R+0.0025

R+0.0025

R+0.0025

NOO039
NOO0O40
NOO41
NOO42
NOO43
NOO44
NOO0O45
N0O46
NOO047
N0OO0O48
N0O049
NOO50

R+0.0125

R+0.0125

R+0.0125

144

NO0O51 GO Z+0.1

N0052 G1 Z-0.1875 F3.82 M8

N0O053 G1 X+4.5 ¥Y+0.55

NO0O54 G1 X+4.55 ¥Y+0.4975

NOO55 G3 X+4.5525 Y+0.5 R+0.0025
NOO56 Gl Y¥+0.9

N0O0O57 G3 X+4.55 ¥Y+0.9025 R+0.0025
NO058 Gl X+4.45

NOO59 G3 X+4.4475 Y+0.9 R+0.0025
NO060 Gl ¥+0.5

N0061 G3 X+4.45 ¥Y+0.4975 R+0.0025
N0O0O62 Gl X+4.55

N0O063 GO Z+1.0

NQO064 X+4.5 Y+0.85

N00O65 GO Z+0.1

NOO66 Gl Z-0.3 F3.82 M8

NOO67 G1 X+4.5 Y+0.55

NO068 G1 X+4.55 ¥Y+0.4975

NOO69 G3 X+4.5525 ¥Y+0.5 R+0.0025
NOO70 G1 Y+0.9

N0O0O71 G3 X+4.55 ¥Y+0.9025 R+0.0025
N0072 Gl X+4.45

NOO73 G3 X+4.4475 Y+0.9 R+0.0025
NO074 G1 ¥Y+0.5

NO0O75 G3 X+4.45 Y+0.4975 R+0.0025
N0O076 Gl X+4.55

NO077 GO Z+1.0

NO0O78 X+4.55 Y+0.4875

N00O79 Z+0.1

NO0O80 G1 Z-0.3 F3.82

NO081 F7.64

N00O82 G3 X+4.5625 Y+0.5 R+0.0125
NO0O83 G1 Y¥+0.9

N0O0O84 G3 X+4.55 ¥Y+0.9125 R+0.0125
N0O085 G1 X+4.45

NO086 G3 X+4.4375 ¥Y+0.9 R+0.0125
N0O087 G1 Y+0.5

N0O088 G3 X+4.45 Y+0.4875 R+0.0125
N0O089 Gl X+4.55

N0O0OS0 (0.1 BY 2.5 BY 1.0 POCKET)
N00921 G90 GO Z+1.0

N0092 X+3.75 ¥Y+0.7

N0O093 GO Z+0.1

N0094 G1 Z-0.1 F3.82 M8

NO095 G1 X+5.25 Y+0.7

N0O096 X+5.4375 ¥Y+0.5125

N0O097 Y¥+0.8875

N0O098 X+3.5625

N0099 ¥Y+0.5125

N0O100 X+5.4375

N0101l G1 X+5.55 ¥+0.3975

N0102 G3 X+5.5525 Y+0.4 R+0.0025
NO103 G1 Y+1.0

145

N0104 G3 X+5.55 Y+1.0025 R+0.0025
N0105 G1 X+3.45

N0106 G3 X+3.4475 Y+1.0 R+0.0025
N0107 G1 Y¥+0.4

N0108 G3 X+3.45 ¥+0.3975 R+0.0025
N0O109 G1 X+5.55

N0110 GO Z+1.0

NO1l1l1l X+5.55 ¥+0.3875

N0112 Z+0.1

N0113 G1 Z-0.1 F3.82

NO11l4 F7.64

NO11l5 G3 X+5.5625 Y+0.4 R+0.0125
NO11l6 G1 Y+1.0

NO117 G3 X+5.55 ¥+1.0125 R+0.0125
N0118 G1 X+3.45

NO119 G3 X+3.4375 Y+1.0 R+0.0125
N0120 G1 Y+0.4

N0121 G3 X+3.45 Y¥+0.3875 R+0.0125
N0122 G1 X+5.55

NO123 (0.1 BY 1.026 BY 0.7869 CONTOUR_POCKET)
N0124 (CAUTION UNTESTED CONTOUR_POCKET_ NC #1)
N0125 (CHANGING TOOL TO 0.125 INCH DIAMETER END MILL)
NOl26 M9

N0127 GO

N0O128 G53 Z+0.0

N0129 T1 Mé

NO130 G90 GO S4584 M3

NO131 G43 Hl1 Z+10.0

NO132 M8

N0133 X+0.6313 Y+1.0246

NO134 Z+0.1

NO135 G1 2-0.0625 F4.5

NO136 F9.0

N0137 G1 X+0.8325

NO138 Gl X+0.9262 Y+0.9621

N0139 G1 X+0.5743

N0140 G3 X+0.5595 ¥+0.8996 R+0.1375
NO141 G1 X+1.4405

N0142 G2 X+1.4253 ¥+0.8371 R+0.1375
N0143 Gl X+0.5747

NO144 G3 X+0.5998 ¥+0.8028 R+0.1375
N0145 Gl X+0.628 Y+0.7746

N0O146 G1 X+1.372

N0147 G1 X+1.3095 Y+0.7121

N0148 G1 X+0.6905

N0O149 G1 X+0.753 Y+0.6496

N0150 G1 X+1.247

NO151 G1 X+1.1845 Y+0.5871

N0152 G1 X+0.8155

NO153 Gl X+0.878 Y+0.5246

N0154 G1 X+1.122

NO155 Gl X+1.0595 Y+0.4621

N0156 G1 X+0.9405

146

NO157
NO158
N0159
NOleé0
NO1l61
NO1lé62
NO1l63
NOl64
NO1l65
NOlé6s6
NOl67
NOle68
N01l69S
NO1l70
NO171
NO1l72
N0173
NO174
NO175
NOl176
NO177
N0O178
NO179
NO180
NO1l81
NO1l82
NO183
NO184
NO0185
NO186
NO0187
NO188
NO0189
NO190
NO191
NO192
NO193
NO194
NO195

" NO196

NO197
N0O198
N0199
NO0200
N0O201
N0202
N0203
NO204
NO0205
NO206
N0207
N0O208
N0209

GO Z+1.0

X+1.1675 ¥+1.0246
Z2+0.1

Gl Z2-0.0625 F4.5

F9.0

Gl X+1.3687

G2 X+1.3937 ¥Y+1.0038
Gl X+1.4002 Y+0.9972
G2 X+1.4257 Y+0.9621
Gl X+1.0738

GO Z2+1.0

X+0.9806 Y+0.422
Zz2+0.1

Gl Z2-0.0625 F4.5

Fo.

G3
Gl
G3
Gl
G3
Gl

0

R+0.1775

R+0.1375

X+1.0194 Y+0.422 R+0.0275

X+1.4002 Y+0.8028
X+1.4002 Y+0.9972
X+1.3937 ¥Y+1.0038

R+0.1375

X+1.1697 ¥+1.026 R+0.1775

X+1.0402 ¥Y+0.9397

G2 X+0.9598 Y+0.9397
Gl X+0.8303 Y+1.026
G3 X+0.6063 Y+1.0038
Gl X+0.5998 Y+0.9972
G3 X+0.5998 Y+0.8028
Gl X+0.9806 Y+0.422
GO Z+1.0

X+0.6313 Y+1.0246
Z+0.1

Gl Z-0.1 F4.5

Fo.0

Gl X+0.8325

Gl X+0.9262 Y+0.9621
Gl X+0.5743

G3 X+0.5595 Y+0.8996
Gl X+1.4405

G2 X+1.4253 Y+0.8371
Gl X+0.5747

G3 X+0.5998 Y+0.8028
Gl X+0.628 Y+0.7746
Gl X+1.372

Gl X+1.3095 Y+0.7121
Gl X+0.6905

Gl X+0.753 Y+0.6496
Gl X+1.247

Gl X+1.1845 Y+0.5871
Gl X+0.8155

Gl X+0.878 Y+0.5246
Gl X+1.122

Gl X+1.0595 Y¥+0.4621
Gl X+0.9405

GO Z+1.0

R+0.0725

R+0.1775

R+0.1375

R+0.1375

R+0.1375

R+0.1375

147

N0210
NO211
NO212
N0213
N0214
NO215
N0216
NO0217
NO0218
NO219
NO0220
No221
N0222
N0223
N0224
N0225
N0226
NO0227
N0228
N0229
NOo230
N0231
NO0232
N0233
NO0234
N0235
No236
N0237
NO0238
N0239
N0O240
NO0241
NO0242
NO0243
NO244
N0245
NO246
N0247
N0248
N0249
N0250
N0251
N0252
N0253
WIDTH
N0254
N0255
NO256
NO257
N0258
N0259
NO260
N0261

X+1.1675 Y+1.0246
Z+0.1

Gl

F9.

Gl
G2
Gl
G2
Gl
GO

Z-0.1 F4.

0
X+1.3687
X+1.3937
X+1.4002
X+1.4257
X+1.0738
Z+1.0

5

Y+1.0038
Y+0.9972
Y+0.9621

X+0.9806 Y+0.422
Z2+0.1

Gl

Fo.

G3
Gl
G3
Gl
G3
Gl
G2
Gl
G3
Gl
G3
Gl
GO

Z-0.1 F4.

0
X+1.0194
X+1.4002
X+1.4002
X+1.3937
X+1.1697
X+1.0402
X+0.9598
X+0.8303
X+0.6063
X+0.5998
X+0.5998
X+0.9806
Z2+1.0

5

R+0.1775

R+0.1375

Y+0.422 R+0.0275

¥+0.8028
Y+0.9972
Y+1.0038

R+0.1375

Y+1.026 R+0.1775

¥Y+0.9397
¥+0.9397
Y+1.026

Y¥+1.0038
Y+0.9972
Y+0.8028
Y+0.422

X+0.9735 Y+0.4149
2+0.1

Gl

Fo.

G3
Gl
G3
Gl
G3
Gl
G2
Gl
G3
Gl
G3
Gl

(
)

G90 GO Z+1.0
X+0.55 Y+2.7

Z2-0.1 F4.

0

X+1.0265
X+1.4073
X+1.4073
X+1.4007
X+1.1641
X+1.0347
X+0.9653
X+0.8359
X+0.5993
X+0.5927
X+0.5927
X+0.9735

0.1 BY 5.525 BY

Z2+0.1

Gl

Fo.

G3
Gl
G3

Z-0.0625
0

5

Y+0.4149
Y+0.7957
Y+1.0043
¥Y+1.0109
Y+1.0343
Y+0.948

R+0.0725

R+0.1775

R+0.1375

R+0.0375

R+0.1475

R+0.1875

Y+0.948 R+0.0625

Y+1.0343
Y+1.0109
Y+1.0043
Y+0.7957
Y+0.4149

F4.5

R+0.1875

R+0.1475

1.325 CONTOUR_GROOVE OF

X+0.3 Y+2.45 R+0.25
X+0.3 Y+1.75
X+0.55 ¥Y+1.5 R+0.25

148

0.125

N0262 Gl X+5.45 Y+1.5
N0263 G3 X+5.7 Y+1.75 R+0.25
N0264 Gl X+5.7 Y+2.45

N0265 G3 X+5.45 Y+2.7 R+0.25
N0266 Gl X+0.55 Y+2.7

N0267 GO Z+1.0

N0268 X+0.55 Y+2.7

N0269 Z+0.1

N0270 Gl Z-0.1 F4.5

N0271 F9.0

N0272 G3 X+0.3 Y+2.45 R+0.25
N0273 Gl X+0.3 Y+1.75

N0274 G3 X+0.55 Y+1.5 R+0.25
N0275 Gl X+5.45 Y+1.5

N0276 G3 X+5.7 Y+1.75 R+0.25
N0277 Gl X+5.7 Y+2.45

N0278 G3 X+5.45 Y+2.7 R+0.25
N0279 Gl X+0.55 Y+2.7

N0280 (0.1 DEEP TEXT FMLAB)
N0281 (CHANGING TOOL TO 0.125 INCH DIAMETER
BALI,_NOSED END MILL)

N0282 M9

N0283 GO

N0284 G53 Z+0.0

N0285 T29 M6

N0286 G90 GO M3

N0287 G43 H29 Z+10.0

N0288 M8

N0289 X+1.675 Y+1.85

N0290 Z+0.1

N0291 Gl Z-0.0625 F4.5 (F)
N0292 G1 X+1.675 Y+2.35 F9.0
N0293 X+2.0083

N0294 GO Z+1.0

N0295 X+1.675 Y+2.1417

N0296 2+0.1

N0297 Gl Z-0.0625 F4.5

N0298 X+1.925 F9.0

N0299 GO Z+1.0

N0300 X+1.675 Y+1.85

NO301 Z+0.1

N0302 G1 Z-0.1 F4.5

N0303 Gl X+1.675 Y+2.35 F9.0
N0304 X+2.0083

N0305 GO Z+1.0

N0306 X+1.675 Y+2.1417

N0307 Z+0.1

N0308 G1 2-0.1 F4.5

NO309 X+1.925 F9.0

N0310 GO 2Z+1.0

NO311l X+2.175 Y+1.85

N0312 2+0.1

N0313 G1 Z-0.0625 F4.5 (M)

149

NO0314 Gl X+2.175 Y+2.35 F9.0
NO315 X+2.425 Y+1.9333

N0316 X+2.675 Y+2.35

N0317 Y+1.85

N0318 GO Z+1.0

N0319 X+2.175 Y+1.85

N0320 Z+0.1

N0321 Gl Z-0.1 F4.5

N0322 G1 X+2.175 Y+2.35 F9.0
N0323 X+2.425 Y+1.9333

N0324 X+2.675 Y+2.35

N0325 Y+1.85

N0326 GO Z+1.0

N0327 X+3.175 Y+1.85

N0328 Z+0.1

N0329 Gl Z-0.0625 F4.5 (L)
N0330 Gl X+2.8417 Y+1.85 F9.0
NO0331 Y+2.35

N0332 GO 2+1.0

N0333 X+3.175 Y+1.85

N0334 Z+0.1

N0335 Gl 2-0.1 F4.5

N0336 Gl X+2.8417 Y+1.85 F9.0
N0337 Y+2.35

N0338 GO Z+1.0

N0339 X+3.3417 Y+1.85

N0340 2Z+0.1

N0341 G1 2Z-0.0625 F4.5 (A)
N0342 Gl X+3.5917 Y+2.35 F9.0
NO343 X+3.8417 Y+1.85

NO344 GO Z+1.0

N0345 X+3.7583 Y+2.0167

N0346 Z+0.1

N0347 G1 2-0.0625 F4.5

N0348 X+3.425 F9.0

N0349 GO Z+1.0

N0350 X+3.3417 Y+1.85

NO0351 Z+0.1

N0352 G1 2-0.1 F4.5

N0353 Gl X+3.5917 Y+2.35 F9.0
N0354 X+3.8417 Y+1.85

N0355 GO Z+1.0

N0356 X+3.7583 Y+2.0167

N0357 Z+0.1

N0358 G1 2-0.1 F4.5

N0359 X+3.425 F9.0

N0360 GO Z+1.0

N0361 X+4.0083 Y+1.85

N0362 Z+0.1

N0363 Gl Z-0.0625 F4.5 (B)
N0364 Gl X+4.0083 Y+2.35 F9.0
N0365 X+4.2583

N0366 G2 X+4.3417 Y+2.2667 R+0.0833

150

N0367 Gl Y+2.1833
N0368 G2 X+4.2583 Y+2.1 R+0.0833
N0369 Gl X+4.0083

N0370 GO Z+1.0

N0371 X+4.2583 Y+2.1

N0372 2Z+0.1

N0373 Gl Z-0.0625 F4.5

N0374 G2 X+4.3417 Y+2.0167 R+0.0833 F9.0
N0375 Gl Y+1.9333

N0376 G2 X+4.2583 Y+1.85 R+0.0833
N0377 Gl X+4.0083

N0378 GO Z+1.0

N0379 X+4.0083 Y+1.85

NO380 Z+0.1

N0381 Gl Z-0.1 F4.5

N0382 Gl X+4.0083 Y+2.35 F9.0
N0383 X+4.2583

N0384 G2 X+4.3417 ¥Y+2.2667 R+0.0833
NO385 G1 Y+2.1833

N0386 G2 X+4.2583 Y+2.1 R+0.0833
N0387 Gl X+4.0083

N0388 GO Z+1.0

N0389 X+4.2583 Y+2.1

N0390 Z+0.1

N0391 G1 Z-0.1 F4.5

N0392 G2 X+4.3417 Y+2.0167 R+0.0833 F9.0
N0393 Gl Y+1.9333

N0394 G2 X+4.2583 Y+1.85 R+0.0833
N0395 G1 X+4.0083

N0396 (0.1 BY 1.5 BY 0.9 POCKET)
N0397 (CHANGING TOOL TO 0.375 INCH DIAMETER END MILL)
N0398 M9

N0399 GO

N0400 G53 Z+0.0

N0401 T3 M6

N0402 G90 GO S1528 M3

N0403 G43 H3 Z+10.0

N0404 M8

N0405 X+4.2 Y+0.7

N0406 GO Z+0.0

N0407 Gl Z-0.2 F3.82 M8

N0408 G1 X+4.8 Y+0.7

N0409 X+4.9875 Y+0.5125

N0410 Y+0.8875

N0411 X+4.0125

N0412 Y+0.5125

N0413 X+4.9875

N0414 Gl X+5.05 Y+0.4475

N0415 G3 X+5.0525 Y+0.45 R+0.0025
N0416 Gl Y+0.95

N0417 G3 X+5.05 Y+0.9525 R+0.0025
N0418 G1 X+3.95

N0419 G3 X+3.9475 Y+0.95 R+0.0025

151

N0420
NO421
NO422
NO423
NO424
N0425
NO426
NO0427
N0428
NO429
NO0430
NO431
N0432
NO433
NO434
NO435
NO436
N0437
N0438
NO439
N0440
N0441
NOo442
%

Gl Y+0.45

G3 X+3.95 Y+0.4475
Gl X+5.05

GO Z+1.0

X+5.05 ¥+0.4375
Z+0.0

Gl Z-0.2 F3.82
F7.64

G3 X+5.0625 Y+0.45
Gl Y+0.95

G3 X+5.05 Y+0.9625
Gl X+3.95

G3 X+3.9375 Y+0.95
Gl Y+0.45

G3 X+3.95 Y+0.4375
Gl X+5.05

GO

M9

M5

G53 Z2+0.0

G53 X+0.0 Y+0.0
M30
(END OF PROGRAM)

R+0.0025

R+0.0125

R+0.0125

R+0.0125

R+0.0125

152

fmtab18% cat vmc_setup

setup_# x_position y_position z_position vise_l vise_h
1) -11.748 -7.081 0.0 6.125 4.500
(2) -12.125 -6.0 0.0 6.125 4.500

153

fmlab19% cat ccfile

COM
CoM
COoM
COM
COM
COM
CoM
COM
COM
CoM
COM
COM
COM
CoM
COM
COM
COM
COM
CoM
COM
COM
CoM
COM
COM
COM
COoM
CoM

VMC
GRIPPER
VISE
ROBOT
ROBOT
GRIPPER
ROBOT
ROBOT
GRIPPER
VISE
ROBOT
ROBOT
VMC

VMC

VMC

VMC
GRIPPER
ROBOT
ROBOT
GRIPPER
VISE
ROBOT
ROBOT
ROBOT
GRIPPER
ROBOT
ROBOT

INITIAL
OPEN
OPEN
0.0000
0.0000
CLOSE
-14.8105
-14.8105
OPEN
CLOSE
-14.8105
0.0000
DOWNLOAD
PRE_SET
EXECUTE
INITIAL
OPEN
-14.8105
-14.,8105
CLOSE
OPEN
-14.8105
0.0000
0.0000
OPEN
0.0000
0.0000

160.0000
160.0000

-5.4810
-5.4810

-5.4810
80.0000
easydemo.nc

-5.4810
-5.4810

-5.4810
160.0000
160.0000

160.0000
80.0000

154

14.5000
2.5000

6.7000
4.7000

6.7000
8.0000

6.7000
4.7000

6.7000
14.5000
2.6000

14.5000
8.0000

APPENDIX E

PROGRAM LISTINGS

155

fmlab2% cat auto_main2.c

This is the main program for Cell Control Program (CCP) which is the
brain of UMCP VMC (vertival machining cell) cell host.

When in manual mode, the CCP take the input from user and perform
necessary steps to complete the task requested by user. When in auto
mode, CCP take the command from SCP (system control program) and
process the process plan file given by SCP, capture required
information, and manipulate data to form the Cell Command File
(ccfile). According to the cell command file, the CCP than execute the
cell commands to perform tasks.

* % ¥ ¥ F * *

* * *

#include <stdio.h>
#define READMQDE 0444
#define WRITEMODE 0222
#define ON 1
#define OFF 0

char *ecp,*scp,*comin,*comout,*stabuf [6];

main()
¢
int ccpmode,atoi(),manmode,quit_ccp_flag,quit_man_flag,quit_auto_flag;
/* ccpmode - indicate the current ccp mode under the main menu.
manmode - indicate the current ccp mode under the manual mode.
quit_*_flag - flags of quit status. */

int openfl,i,j;

char temp([30],*ecpsta(),*sta, *str,*rdy,*dwn,*ccfn,*ncfile,*mail,*tempf;
char eecpl64],*e,*path;

FILE *fp,*ppfp,*ccfp,*ccfile;

/* print the header */
printf{"\n\n\n");
printf("%s\n¥s\nXs\nXs\nXs\n%Zs\nXs\n",

H*******************i****i*i*ﬁ********ti*ﬁ*************i*************H'

"k * 1
u* Yelcome to the Cell Control Program (CCP) of the UMCP flexible *1,
w* manufacturing Cell. Please follow the instructions given by oo
u* the computer to perform desired tasks. ke,
n¥ *1

"**i***********************i***u);

printf("\n\n");

156

*

* ¥ ¥ * X

*

/* initialize and space buffers */
for (i=0;i<6;++i){
stabuf[i]l="

3

scp="
ecp="
comin="
comout="
sta="
str="
path="

/* loop main menu */
quit_ccp_flag = OFF;
do{

%
AN
s
[
s
aH

/* print the ccp main menu and select entry mode */

printf("\n%s%s%s%s","1. manual mode ",
"2. auto mode ",
3. help mode ",
"4, quit ccp "y;
do{
printf("\n%s" Yccp=>");
scanf("%s", temp);
ccpmode=atoi(temp);
if ((ccpmode <1) || (ccpmode > 4)) (
printf("%s","input error. valid number 1 .. 4");
>
else
break;
3}
while (1);

/* branch the program based on the ccp mode */

switch (ccpmode)(

case 1 : /* case 1 is manual mode */
/* loop the ccp/manual menu */

quit_man_flag = OFF;
do(

/* print the ccp/manual menu and select the entry mode */

printf("\n\nX¥s¥s¥%s%s",

do{

"1. status request .,
2. service request ",
"3, help ",

"4, quit manual mode®);

printf("\n¥s", "ccp/manual=>");

scanf("%s", temp);
manmode=atoi (temp)
if ((manmode <1) |
printf(“%st, i
}
else
break;

| (manmode > 4)) (
nput error. valid number 1 .. 4");

157

%ll;

)
while (1);

/* branch the manual mode based on the ccp/manual mode */
switch (manmode){
case 1: /* status request */
printf("\n¥s","1 am about to enter stareq.c");
stareq();
printf("\nl am in main program. ecpl[65]1=\n%s', ecp);
break;
case 2: /* service request */
srvreq();
break;
case 3 : /* ccp/manual help mode */
/* manhelp(); */
break;
case 4 : /* quit manual mode */
quit_man_flag = ON;

)
>
while (quit_man_flag == OFF);
break;
case 2 : /* case 2 is auto mode */

printf("\nl am in automode");

rdy="READY ";

dwn="DOWNLOAD";

ncfile=" ",

/* ncfile="/usr/unger/vws2/design/nc/chendemo_nc"; */

/* ncfile="/usr/unger/vws2/design/nc/fmecdemo_nc"; */

/* ncfile="/usr/unger/vws2/design/nc/nsfdemo_nc"; */

/* ncfile="/usr/unger/vws2/design/nc/magrabl_wax_mould"; */
quit_auto_flag=0FF;

AR LR check cell status -------------ve-uco--- */
str="STA ECP READY A
/* copy command to com_out register */
strcpy(comout,str);
printf("\ncomout :%s",comout);
/* copy command to ecp mailbox */
strcpy(ecp,str);
/* command execution */
ecpcom(ecp);
/* copy the returned message to appropriate status buffer */
strepy(stabuf [0],ecp);
printf("\nvmc_sta :%s",stabuf([01);
if (strncmp(stabuf(01+12,rdy,6)1=0)(
printf("\nXs","ECP is not ready, back to main menu.%);
quit_auto_flag=0ON;

break;
2
[* mmmemieemeccocmneenen cetl initialization ---=---v---vooccccncn-- */
str="COM ECP READY INITIAL %"

/* copy command to com_out register */

158

strcpy(comout,str);

printf("\ncomout :%s",comout);

/* copy command to ecp mailbox */

strcpy(ecp,str);

/* command execution */

ecpcom(ecp);

/* copy the returned message to appropriate status buffer */

strepy(stabuf[01,ecp);

printf("\nvmc_sta :%s",stabuf[0]);

if (strncmp(stabuf[0]1+12,rdy,6)1=0)¢
printf("\n%s","cell initialization fails, back to main menu.");
quit_auto_flag=0ON;

break;
}
J* e loop the service routine -----------~--------
mail="/usr/chen/automation/scpmail";
do{

/* report the ccp status to scp for engaging with scp */
if ((fp=fopen{mail,"w"))==NULL){
printf("\n%s","scpmail can’t be opened, back to main menu.");
quit_auto_flag=0N;
break;
}
printf("\n%s","scpmail is opened and will be closed soon");
fprintf(fp,"%s","ready");
fclose(fp);

/* receive scp command */
tempf="/usr/chen/automation/tempfile";
if ((fp=fopen(tempf,"r")) == NULL){
printf('"\n%s",
"scp command source can’t be opened, back to main menu");
quit_auto_flag=0ON;

break;
>
printf("\n%s",“tempfile is opened");
do(
if (fscanf(fp,"%64c",eecp)==1) (
for (i=0;i<64;++i) {
*(scp+i) = eecplil;
3
*(scp+b4) = '\0/;
printf("\nscp = %s",scp);
fclose(fp);
break;
>
rewind(fp);
>

while (1);
strcpy(comin,scp);

/* extract the path */
strncpy(str,scp+18,15);

159

*(str+15) = /\Q’;
printf("\npp_file :%s:",str);
for (i=0;i<15;++i)(
if (*(str+i) == 7 /) (
*(str+i) = /\0';
*(str+15) = '/ /;
break;

M

printf("\npp_file :%4s:\n",str);
path="/usr/chen/automation/";

strcat(path,str);

printf(*\n%s", path);

strepy(str,path);

printf("\nexecuting process plan ID :%s.",str);

[* - ccfile generation ---------- */
/* open process-plan file with file name found from scp command */
if ((ppfp=fopen(str,"r"))==NULL){
printf("\n¥%s","pp_file can’t be opened, back to main menu.");
quit_auto_flag=ON;
break;
)
printf("\npp_file is opened");
/* open cell-command file to write */
ccfn="/usr/chen/automation/ccfile";
if ((ccfp=fopen{ccfn,"w"))==NULL){
printf("\nXs","ccf_file can’t be opened, back to main menu.");
quit_auto_flag=0N;
break;
3 .
printf("\nccf_file is opened");
/* locate procedure section in the opened process-plan file */
e="PROCEDURE_SECTION";
if ((i=locate_string(ppfp,e))<0)¢
printf("\nprocedure section is not found, back to main menu");
fclose(ppfp);
fclose(ccfp);
quit_auto_flag=ON;
break;
2}
printf("\nprocedure section is found");
/* command recognition and decomposition */
e=u>>u;
do{
if ((i=locate_string(ppfp,e))>0)(
/* read in command */
fscanf(ppfp,"%s", temp);
j=strlen(temp);
printf("\ncommand length = ¥%-d",j);
printf{"\ncommand found :%s:",temp);

/* command recognition */
str="LOAD_PART";

160

if (strnemp(temp,str,j)==0) (
load_part(ppfp,ccfp);

3}
else (
str="UNLOAD_PART";
if (strncmp(temp,str,j)==0) (
untoad_part(ppfp,ccfp);
3
else (
str="MACHINE_PART";
if (strncmp(temp,str, j)==0) (
machine_part(ppfp,ccfp);
}
else
printf{"\nunrecognized command :%s, %s", temp,
"skip-over worning");
}
3}
3
}
while (i>0);
fclose(ppfp);

fclose(ccfp);

/* execution commands in ccfile */
openfl=open(ccfn,READMODE);
printf("\nopenf1 =%d",openf1);
while (read(openf1,eecp,65)>0)
¢
strcpy(ecp,eecp);
printf("\necp is :%s",ecp);
printf("\ncommand is :%8c",ecp+18);
/* seperate nc-file download command from others */
if (strncmp(ecp+18,dun,8)==0)
¢
printf("\nl am in download module");
strepy(comout, ecp);
ecpcom(ecp);
printf("\nreceived ecp:%s",ecp);
if (strncmp(ecp+12,rdy,6)!1=0)

<
printf("\n%s", "download procedure err, back to main menu");
quit_auto_flag=ON;
break;

)

strncpy(ncfile,comout+33,15);
for (i=0;i<15;++i)(
if (*(ncfile+i) == 7 1) {
*(ncfile+i) = \0’;
*(ncfile+15) = 7 /;
break;

>
path="/usr/unger/vws2/design/nc/";

161

strcat(path,ncfile);

strcpy(ncfile,path);

printf("executing nc_fite ID :%s.",ncfile);
downtoad(ncfile);

)
else
{
strcpy(comout,ecp);
ecpcom(ecp);
if (strncmp(ecp+12,rdy,6)1=0)
{
printf("\n¥%s", "ecp status error, back to main menu");
quit_auto_flag=ON;
break;
)
b

>

close(openfl);

/* scpcomout - response the result of execution */

if (quit_auto_flag==0FF) printf("\npp_file is successfully done");

3
while (quit_auto_flag==0FF);
break;
case 3 : /* case 3 is ccp help mode */
break;
case 4 : /* quit ccp */
quit_ccp_flag=0N;
}
)
while (quit_ccp_flag == OFF);
>

162

fmlab3% cat stareq.c

/* --
* This function is used to perform the ccp/manual/status_request mode of

* ccp program.

#include <stdio.h>
#define ON 1
#define OFF 0

char *ecp,*scp,*comin,*comout,*stabuf [6];

stareq()
e
char temp([30],*str;
int atoi(),quit_sta_flag,stamode;

quit_sta_flag = OFF;
do{
/* print ccp/manual/status_request menu and select entry mode */
printf("\n\n¥s¥s¥%s%¥s¥s¥%s","1. ECP ",
"2, VMC n,
"3, VISE ",
"4. GRIPPER ",
*5. ROBOT ",
"6. quit manual/sta_req");

do{
printf("\n%s", "ccp/manual/sta_req=>");
scanf("%s", temp);
stamode=atoi(temp);
if ((stamode <1) || (stamode > 6)) (
printf("%s","input error. valid number 1 .. 6");
b
else
break;
)

while (1);

/* branch ccp/manual mode based on stamode */
switch (stamode){
case 1
/* request for ECP status */
str=MECP ".
staio(str,stamode);
break;
case 2 :
/* request for VMC status */

163

str="VMC ",
staio(str,stamode);
break;

case 3 :
/* request for VISE status */
str="VISE ",
staio(str,stamode);
break;

case 4 :
/* request for GRIPPER status */
str="GRIPPER ;
staio(str,stamode);
break;

case 5 :
/* request for ROBOT status */
str="ROBOT ",
staio(str,stamode);
break;

case 6 :
/* quit ccp/manual/sta_req mode */
quit_sta_flag = ON;

>

printf("\necp in stareq.c :%s",ecp);

3}
while (quit_sta_flag == OFF);

l64

fmlab4% cat srvreq.c

* this function is used to perform the ccp/manual/service_request mode of
ccp program. It communicates with the main program through the parameters
declared at the outmost scope.

*

* % %

Inputs of this function are target selections and target positions
* provided by user. Outputs are the status of selected targets that were
* commanded.

#include <stdio.h>
#define ON 1
#define OFF 0]

char *ecp,*scp,*comin,*comout,*stabuf [6];

srvreq()

{
char temp(3]([30],*str,*tp(3],tmpl(30];
int i,j,k,atoi(),quit_srv_flag,srvmode;

/* initialization */
quit_srv_flag = OFF;
for (i=0;i<3;++i) tplil = » ".

/* loop the service_request menu and select the entry mode */
do{
/* print ccp/manual/service_request menu */
printf("\n\n%s%s%s%ks%s",
"1. VMC ",
2. VISE ¥,
3. GRIPPER ",
"4. ROBOT ",
“S. quit manual/srv_req");
do{
printf{"\nXs","ccp/manual/srv_req=>");
scanf("%s", tmp);
srvmode=atoi{tmp);
if ((srvmode <1) || (srvmode > 5)) {
printf("%s","input error. valid number 1 .. 5%");
}
else
break;
>
while (1);

165

*

%

/* branch ccp/manual mode dased on srvmode */
switch (srvmode)(
case 1
/* request VMC service */
/* initialize str to a 64-character string, VERY IMPORTANT ¥/
str = "COM VMC pALH

/* enter target position coordinates x, y, and z */

do(
printf("\nPlease enter VMC target coordinates:");
printf("\n x =");
scanf("%s", temp{0]);
printf("\n y =");
scanf("¥s", temp{1]1);
printf{"\n z =),
scanf("%s", temp(2]);
printf("\nAre you SURE ? (y/n)");
scanf("%s", tmp);

>

while (tmp(0] != 'y’);

/* format temp to 15 characters a line */
for (j=0;j<3;++j)(
i=strlen(templ[jl);
for (k=i;k<15;++k) templ[jl(k] ="' /;
templ[j1([151 = /\0’;

/* form the command line */
for (i=0;i<3;++i)(
for (j=0;j<15;++]))
(str+18+(15%i)+j) = templil[jl;

/* copy command to com_out register */
strcpy(comout,str);
printf("\ncomout :%s", comout);

/* copy command to ecp mailbox */
strepy(ecp,str);

/* command execution */
ecpcom(ecp);

/* copy the returned message to appropriate status buffer */
strcpy(stabuf[2],ecp);
printf("\nvmc_sta :¥s",stabuf(2]);
break;
case 2 :
/* request VISE service */
/* initialize str to a 64-character format, VERY IMPORTANT */
str = "COM VISE %

166

/* enter desired action to be executed on vise */
do(
printf("*\n(o)pen or (c)lose the vise ?2%);
scanf("%s", tmp);
>
while ((tmp[0] I= ‘0’) && (tmp([0] != ‘c’));

/* format parameter fields */
if (tmpl0] == ‘o')

tp[0] = "OPEN w,
else

tp[0] = "“CLOSE ",
tp(1] = » ";
tpl21 = ¢ ",

/* form the command Line */

for (i=0;i<15;++i)(
*(str+18+i) = *(tp[01+i);
*(str+18+415+i) = *(tp[11+i);
*(str+18+430+i) = *(tpl[2)+i);

/* copy command to com_out register */
strcpy(comout,str);
printf{"\ncomout :%s", comout);

/* copy command to ecp mailbox */
strcpy(ecp,str);

/* command execution */
ecpcom(ecp);

/* copy the returned message to appropriate status buffer */
strcpy(stabuf{3],ecp);
printf("\nvmc_sta :%s",stabuf[3]);
break;
case 3 :
/* request GRIPPER service */
/* initialize str to a 64-character format, VERY IMPORTANT */
str = "COM GRIPPER w

/* enter desired action to be executed on gripper */
do(
printf("\n(o)pen or (c)lose the gripper ?2");
scanf("Zs", tmp);
3
while ((tmp[0] != fo’) && (tmpf{0] 1= ’c’));

/* format parameter fields */
if (tmp[0] == 'o’)

tp[01 = "OPEN ",
else

tp[0]1 = “CLOSE ",
tpl1] = » ",

167

tpl2; =" ";

/* form the command line */

for (i=0;i<15;++1)(
*(str+18+i) = *(tp[01+i);
*(str+18+15+i) = *(tp[11+i);
*(str+18+30+i) *(tpl2l+i);

/* copy command to com_out register */
strcpy(comout,str);
printf{"\ncomout :%s",comout);

/* copy command to ecp mailbox */
strcpy(ecp,str);

/* command execution */
ecpcom(ecp);

/* copy the returned message to appropriate status buffer */
strcpy(stabuf [4],ecp);
printf("\nvmc_sta :%s",stabuf[4]);
break;
case 4 :
/* request ROBOT service */
/* initialize str to a 64-character string, VERY IMPORTANT */
str = "COM ROBOT YLD

/* enter target position coordinates x, y, and z */

do{
printf("\nPlease enter ROBOT target coordinates:");
printf("\n X =);
scanf("Xs", temp[0]);
printf("\n y = "Y);
scanf("%s",temp{1]));
printf{"\n z=");
scanf("%s", temp(2]);
printf("\nAre you SURE ? (y/m)");
scanf("Xs", tmp);

>

while (tmp[0] t= 'y*);

/* format temp to 15 characters a line */
for (j=0;j<3;++j)(
i=strien(templjl);
for (k=i;k<15;++k) templjllk] = ' /;
temp[jl151="\0";

/* form the command line */
for (i=0;i<3;++i)(
for (j=0;j<15;++j)(
*(str+18+(15*i)+j) = templil[j];

168

/* copy command to com_out register */
strecpy(comout,str);
printf(*\ncomout :%s",comout);

/* copy command to ecp mailbox */
strcpy(ecp,str);

/* command execution */
ecpcom(ecp);

/* copy the returned message to appropriate status buffer */
strcpy(stabuf [5],ecp);
printf("\nvmc_sta :%s",stabuf(5]);
break;
case 5
/* quit ccp/manual/srv_req mode */
quit_srv_flag = ON;

b
while (quit_srv_flag == OFF);

169

fmlab5% cat staio.c

/* .. *
* This function is used to perform status request procedures. The procedures *
* are as the following: *
* 1). define the blank STA type command. *
* 2). call stafom() to fill out the target and form the command. *
* 3). registers the command to applicable registers. *
* 4). call ecpcom() to output/input the command and status. *
* 5). copy the latest status information to appropriate status buffer. *
* *
* Couple <string.h> commands are used in this function. Note that when use *
* the strcpy or strcat for a specific target pointer at the first time, *
* the target pointer has to be defined beforehand. *
* 1t may be defined as any string, even a null string (for strcat). However, *
* using strcpy or strcat without define the target pointer will cause *
* errors. *
g g QU */

char *ecp,*scp,*comin,*comout,*stabuf [6];

staio(str,stamode)
char *str;
int stamode;

/* str - is a pointer carries the target information whom the
staio get the status information from.
buf - is a status bUffer specifically assigned for the target
described in str.
ecp - is a pointer which acts as the ecp mailbox.
comout - is the outgoing command register. */

char *temp;

/* initialize the blank STA type command */
temp=¥STA %l
printf("\n¥%s","l am in staio.c, about to form STA command"),;

/* form the command line */
stafom(temp,str);

printf("\nl am back from stafom to staio");
printf("\ntemp is :Xs", temp);

/* copy temp to comout register */
strcpy(comout, temp);
printf("\ncomout is :%-s",comout);

/* copy temp to ecp mailbox */
strcpy(ecp, temp);

printf("\necp is :%-s",ecp);

170

printf("\n%s","1 am about to enter ecpcom.c");

/* communicate with ecp (equipment controller) */
ecpcom(ecp); /* send out message and receive answer from ecp */

/* update the status buffer */

strepy(stabuf [stamode] ,ecp);
printf("\nstatus_buffer :%s", stabuf[stamodel);

171

fmlab6% cat stafom.c

/* ... *
* This function is used to form the status-request-command in the right *
* format. *
UG */

stafom(temp,str)
char *temp,*str;
/* temp - a pointer of a blank command of specific type
str - command target, will be filled into the target field of temp */

int i;

/* fill the target into the target field of temp */
printf{"\n%s","l am in stafom.c¢c");
for (i=0;i<8;++i)(
*(temp+4+i) = *(str+i);
>
printf("\ntemp is :%s", temp);

172

fmlab8% cat ecpcom.c

/* ... *

* this program serves as the communication module for the ccp *
* to communicate with ecp of the vertival machining cell *

#include <stdio.h>
#include <sys/file.h>
#define READMODE 0444
#define WRITEMODE 0222

ecpcom(chars)
char *chars;

char *filel,temp[80];
int openfi,i;

printf("\nl am in ecpcom");
printf("\n%s" chars);
filel="/dev/ttyb";
openfl=open(filel, WRITEMODE);
for (i=0;i<64;++i){

temp[i] = *(chars+i);
2
temp[64)=/\n';
temp[651='\0"';
printf("\n%s", temp);
sleep (1);
write(openfl,temp,65);
i=close(openfl);
if (i==0) printf("\nttyb is closed");

filel="/dev/ttyb";

openfi=open(filel,READMODE);

printf("\nopenfl =%-d", openf1);

if (openf1>0) printf("\nopenfl is opened");
i=read(openfi,chars,64);

printf(*\n%d chars are successfully converted",i);
printf("\nchars=%s",chars);

i=close(openfl);

if (i==0) printf("\nttyb is closed from reading");

173

fmiab9% cat download.c

#include <stdio.h>
#define READMODE 0444
#define WRITEMODE 0222
#define ON 1
#define OFF 0

download(ncfile)
char *ncfile;
{
int i,openf2,count,quit;
char templ[80],*f2,*chars;
FILE *fp,*fopen();
/* ncfile - name of the file that contains the nc code.
count - count the length of each line read in from nc file.
quit - flag for quiting out from reading nc file.
temp - temporary buffer to store the latest input from nc file.
chars - temporary buffer to store the latest input from ecp.
f2 - file name of port b of sun workstation.
openf2 - file descripter for port b of sun workststion.
fp - pointer points to the nc file. */

/* initialize the program, delay the output for ecp to creat space */
quit=0FF;

count=0;

chars=ll i .
sleep (5);

/* open nc file and port b */

if ((fp=fopen(ncfile,"r*))I=NULL) (
printf("\nfile is opened\n");
f2="/dev/ttyb";
openf2=open(f2,WRITEMODE);

/* read in a line of code from nc file and put it to port b */
while (quit==0FF)

<
/* read in a line of code */
do (
if (fscanf(fp,"%c",&templcountl)!=1) {
quit=0N;
printf{"\nbreak the download program");
break;
)
++count;
>

while (templcount-111='\n’);

/* when not EOF, print to port b and to screen */

174

if (quit==0FF) (

/* add end_of_string character to initilize the unused
characters. Very Important ! */
templcountl='\0"’;

write(openf2, temp,count);
printf("%s", temp);

/* delay output to port b for synchronization */
for (i=0;i<30000;++1) {3

/* recognize the last line in nc file and set flag to ON */
if (count >0)(
if ((temp[01=="%") && (temp[11<’07))

quit=0N;
printf("\nend of the ncfile");
break;
)
}
count=0;
H
else {
break;
2}

Y

/* close all opened files and return positive number to calling
program */

fclose(fp);

close(openf2);

/* wait for the echo from the equipment controller for the completion
of downloading */

f2="/dev/ttyb";

openf2=open(f2,READMODE);

printf("\nopenf2 =%-d",openf2);

if (openf2>0) printf("\nopenf2 is opened");

i=read(openf2,chars,64);

printf("\n%d chars are successfully converted",i);

printf("\nchars=%s",chars);

i=close(openf2);

if (i==0) printf(“\nttyb is closed from reading");

return{1);

>

etse (
/* return negative number to calling program */
return(-1);

>

175

fmlab10% cat locate_string.c

This program is a function used to locate a string in a pointed file. *
The string and file pointer witl be passed from the calling program by *
using "call by referance" in passing arguments. *

*

The function will return the number of tries before it reaches the string *
If it fails in finding the string before EOF, a negative value will be *
returned. *

#include <stdio.h>
/* stdio.h has to be included for cc -c compilation due to the fact that FILE

declation is checked when the funtion is compiled */

locate_string(fp,str)
/* Notice that ";" is not allowed here */

FILE *fp;
char *str;

{

int i,flag;
char a(30];

i=0;

/* Counter that counts # of tries */

flag=0-1;

/* set negative # to flag (when assign a negative value to an int variable

, one has to use Yexpression" rather than assign the value directly */

while (fscanf(fp,"%s",a)==1)

{
++1;
if (strcmp(a,str)==0)
C
flag=i;
break;
>
>

return(flag);

176

fmlab11% cat load_part.c

/* .. *
* This program is a function used to decompose the PP_CCP work element *
* LOAD_PART into a set of cell level commands. *
* *
* Argument passed from the main program are pointer of the cell level *
* process plan file and pointer of the cell command file (CCF) where it *
* reads and writes the data. *
* Initialized value is the selected setup # of vmc_setup database. *
* database. Input is vmc_setup file and output are cell commands printed *
* to CCF. *
K o ehcccccmm-emcemceeeme,amm e e e et am e R e e e e e e e m e e Emmm - ... */

#include <stdio.h>

load_part(ppfp,ccfp)
FILE *ppfp,*ccfp;
¢
J* e DECLARATION =-=--ommevmmccmamaa e */
int setup_no,atoi(),i,locate_string();
/* setuo_no - is a pointer pointing to the current configuration in the
vimc_setup file.
atoi() - is a function that converts ASCII-string into integer */

float xa,ya,za,xb,yb,zb,xd,yd,zd,xp,yp,zp,vl,vh,w,atof();
/* xa,ya,za - robot home position, global coordinate system, inches.
xb,yb,zb - pick-up point (refer to center of gripper tip), global
coordinate system, inches.
xd,yd,zd - target point, global coordinate system, inches.
Xp,yp,2zp - vise position. Clamping direction is supposed to be
parallel to y axis of machine table. Point is refered to
the inner_left tip of vise. Global coordinate system ,
inches.
vl,vh - vise length and vise height. Height is measured between the
vise base to the vise top.
w - width of the part.
atof() - is a function that converts ASCII-string into real number */

FILE *fp,*fopen();
char *a,*e,temp(30],*field(6];

A PROGRAM BODY ------«c=ceccccomccncecnncn */
setup_no=1;

xa=0.0; ya=80.0; za=8.0;

xb=0.0; yb=160.0; zb=2.50;

/* find the part width from the pointed process_plan file */
e="PART_SIZE_W";

177

locate_string(ppfp,e);
est=>".
locate_string(ppfp,e);
fscanf(ppfp,"%s", temp);
w=atof(temp);

/* locate the line in vmc_setup file pointed by variable setup_no */
fp=fopen("/usr/chen/automation/vmc_setup","r");
do({
e:u(n;
locate_string(fp,e);
fscanf(fp,"%s", temp);
} while ((i=atoi(temp))!=setup_no);

/* read in five numbers from vmc_setup for calculation */
fscanf(fp,"%s", temp);

fscanf(fp,"%4s", temp); xp=atof(temp);
fscanf(fp,"%s", temp); yp=atof(temp);
fscanf(fp,"%s", temp); zp=atof(temp);
fscanf(fp,"%s", temp); vi=atof(temp);
fscanf(fp,"%s", temp); vh=atof(temp);

fclose("/usr/chen/automation/vmc_setup");

/* calculate the target point */

xd=xp-vl/2;

yd=yp+w/2+0.1;

zd=zp+vh+0.2;

/* printf("\nw=%-f xp=%-f yp=%-f vl=%-f vh=X-f\n\n",w,xp,yp,vl,vh); */

/* cell level command formation */
e="%";

/* move table to machine home position */

a="";

field[01="COM ";

field[1]1="VMC ",
field[2]=" ",
field[31="INITIAL ".
field(4]=" ".
field[5]1=" "we

for (i1=0;1<=5;++i)
strcat(a,field[il);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* open the gripper */
a=uu;

field[01="COM *;
field[11="GRIPPER ";

field[2)=" L

field[3]1="OPEN ",
fieldf4l=n ",
field[5]=" ",

for (i=0;i<=5;++i)

178

strcat(a,field{il);
strcat(a,e);
fprintf(ccfp,"%s\n",a);

/* open the vise */
a:uu;

field[0]l="COM ";
field[11="VISE .

field[21=n ";
field[3]="OPEN "
field[4]=" n;
field[5]=" n;

for (i=0;i<=5;++i)
strcat(a,fieldlil);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* move robot to 12 inches above pick-up point */
a=";
field(O}="COM ";
field[1]1="ROBOT ",
field[2]=" ",
for (i=0;1<=2;++1)

strcat(a,field[il);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f" xb,yb,zb+12);
fprintf(ccfp,"%%\n");

/* move robot to pick-up point */
a=hu;
field[01="COM ";
field[11="ROBOT =;
field[2]=" ",
for (i=0;i<=2;++i)
strcat(a,field[il);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.6f%-15.4f%-15.4f" ,xb,yb, zb);
fprintf(ccfp,"%%\n");

/* close gripper to hold the part */
a=uu;

field[01="COM ";

field[11="GRIPPER ";

field[21=" EH

field[31="CLOSE ",
field[4]=" ",
field[51=" ",

for (i=0;i<=5;++i)
strcat(a,field[il);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* move the robot to 2 inches above the target point */

ashn;

179

field[0]="COM ";
field[11="ROBOT ";
field[21=" ",
for (i=0;i<=2;++1)
strcat(a,field[il);
fprintf(ccfp,"%s",a);
forintf(ccfp,"%-15.4F%-15.4f%-15.4f",xd,yd,zd+2);
fprintf(ccfp,"%%\n");

/* move the robot to target point */
ashn;
field[0Ol="COM *;
field[11="ROBOT e
field[2)=" b
for (i=0;i<=2;++i)
strcat(a,field(il);
fprintf(ccfp,%s",a);
fprintf(ccfp,"%-15.46f%-15.4f%-15.4f",xd,yd, zd);
fprintf(ccfp,"%%\n");

/* release the part */
a:nu;

field[0)="COM ";
field[11="GRIPPER *;

field2]=" ";
field([31="0PEN ",
field[4) =" ";
field[5]=" n;

for (i=0;i<=5;++i)
strcat(a,fieldl(il);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* close the vise to hold the part on the table */
a:uu;

field[01="COM ";

field[11="VISE aH

field(2]1=" ",
field[31="CLOSE Iy
field[4=n n;
field[5]1=" ",

for (i=0;i<=5;++i)
strcat(a,fieldlil);

strcat(a,e);

fprintf(ccfp,"%s\n", a);

/* move the robot to 2 inches above the target point */
ashn,
field[0l="COM ";
field[11="ROBOT ";
field[2y=" i
for (i=0;i<=2;++i)
strcat(a,fieldlil);

180

fprintf(ccfp,it4s",a);
fprintf(ccfp,"%-15.4f%-15.41%-15.4f",xd, yd, zd+2);
fprintf(ccfp,"%%\n");

/* move the robot outside the machining zone */
a=";,
field{O]="COM ";
field[11="ROBOT ".
field[2)=0 ",
for (i=0;1<=2;++1)

strcat(a,field([il);
fprintf(ccfp,"¥%s",a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f" xa,ya,za);
fprintf(ccfp,"%%\n");

181

fmlab12% cat machine_part.c

/* ..
* This program is a function used to decompose the PP_CCP work element

* MACHINE_PART into a set of cell level commands.

* Argument passed from the main program are pointer of the cell level

* process plan file and pointer of the cell command file (CCF) where it
* reads and writes the data.

#include <stdio.h>

machine_part(ppfp,ccfp)

FILE *ppfp,*ccfp;

{
int i,locate_string();
char a[15],%e,*field(6];

e="NCFILE_NAME";
laocate_string(ppfp,e);
e=N=>u;
locate_string(ppfp,e);
fscanf(ppfp,"4s®,a);

/* cell Level command formation */
e=IxH;

field[01="COM ";

field[11="VMC ",

field(2]=" ",

field[4]=" n,
field[51=" LH

/* download the ncfile to vmc */

field[3]1="DOWNLOAD ",

for (i=0;i<=3;++i)
fprintf(ccfp,"Xs", field(il);

fprintf(ccfp,*X-15s4,a);

for (i=5;i<=5;++i)
fprintf(ccfp,"Xs®, fieldl[il);

fprintf(ccfp,"Xs\n",e);

/* preset the vmc */

field[3)="PRE_SET ",

for (i=0;i<=5;++i)
fprintf(ccfp,"%s%, fieldlil);

fprintf(ccfp,"%s\n", e);

/* command the vmc to start machining */

field[31="EXECUTE ",
for (i=0;i<=5;++i)

182

fprintf(ccfp, "4s", field(il);
fprintf(ccfp,"%s\n",e);

183

fmlab13% cat unload_part.c

This program is a function used to decompose the PP_CCP work element
UNLOAD_PART into a set of cell level commands.

* % %

*

Argument passed from the main program are pointer of the cell level
process plan file and pointer of the cell command file (CCF) where it
reads and writes the data.

Initialized value is the selected setup # of vmc_setup database.
database. Input is vmc_setup file and output are cell commands printed
to CCF.

* F X ¥ *

#include <stdio.h>

unload_part(ppfp,ccfp)
FILE *ppfp,*ccfp;
{
A L L L LR DECLARATION --=-----secmcmcccecc e
int setup_no,atoi(),i,locate_string();
/* setuo_no - is a pointer pointing to the current configuration in the
vme_setup file.
atoi() - is a function that converts ASCII-string into integer */

float xa,ya,za,xb,yb,zb,xd,yd,zd,xp,yp,zp,vl,vh,w,atof();
/* xa,ya,za - robot home position, global coordinate system, inches.
xb,yb,zb - pick-up point (refer to center of gripper tip), global
coordinate system, inches.
xd,yd,zd - target point, global coordinate system, inches.
Xp,Yp.,2Zp - vise position. Clamping direction is supposed to be
parallel to y axis of machine table. Point is refered to
the inner_left tip of vise. Global coordinate system ,
inches.
vi,vh - vise length and vise height. Height is measured between the
vise base to the vise top.
W - width of the part.
atof() - is a function that converts ASCIl-string into real number

FILE *fp,*fopen();
char *a,*e,temp[30],*field[6];

F A L EEEEEEETE PROGRAM BODY ==---=--=--ne-ccmncuenannn
setup_no=1;

xa=0.0; ya=80.0; za=8.0;

xb=0.0; yb=160.0; zb=2.50;

/* find the part width from the pointed process_plan file */
e="PART_SIZE_W";

184

* ¥ ¥ *

%*

*/

locate_string(ppfp,e);
ezN=>h,
locate_string(ppfp,e);
fscanf(ppfp,"%s", temp);
w=atof(temp);

/* locate the line in vimc_setup file pointed by variable setup_no */
fp=fopen("/usr/chen/automation/vmc_setup",’rt);
do{
e:u(u;
locate_string(fp,e);
fscanf(fp,"%s", temp);
} while ((i=atoi(temp))!=setup_no);

/* read in five numbers from vmc_setup for calculation */
fscanf(fp,"%s", temp);

fscanf(fp,"%s", temp); xp=atof(temp);
fscanf(fp,*%s", temp); yp=atof(temp);
fscanf(fp,"%s", temp); zp=atof(temp);
fscanf(fp,"%s", temp); vi=atof(temp);
fscanf(fp,"%s", temp); vh=atof(temp);

fclose("/usr/chen/automation/vmc_setup");

/* calculate the target point */

xd=xp-vi/2;

yd=yp+w/2+0.1;

zd=zp+vh+0.2;

/* printf("\nw=%-f xp=%-f vyp=%-f vl=%-f vh=%-f\n\n",w,xp,yp,vl,vh); */

/* cell level command formation */
e:n%u;

/* move table to machine home position */
ashu;
field[0]1="COM ";
field[1)=1VMC L
field[2]=" ",
field(31="INITIAL L H
field[4]=" ",
field[5]=" aH
for (i=0;i<=5;++i)
strcat(a,field[il);
strcat(a,e);
fprintf(ccfp,"%s\n*, a);

/* open the gripper */
a:uu;

field[01="COM ";
field[{11="GRIPPER ";

fieldr2i=" i

field[31="OPEN ",
fieldl4]=" "
field[51=" i

for (i=0;i<=5;++i)

185

strcat(a,field[il);
strcat(a,e);
fprintf(ccfp,%s\n",a);

/* move the robot to 2 inches above the target point */
a=hn;
field(0]="COM ";
field[11="ROBOT v;
fietd[21=" ",
for (i=0;i<=2;++i)

strcat(a,field(il);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f",xd,yd, zd+2);
fprintf(ccfp, "%%\n");

/* move the robot to target point */
as"n;
fietd[0l="COM ";
field[1]1="ROBOT ",
field[2)=" ",
for (i=0;i<=2;++i)
strcat(a,field[i]l);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.4f%-15.6F%-15.4f",xd, yd, zd);
fprintf(ccfp,"X¥\n");

/* close gripper to hold the part */
a="m;

field[0J="COM *;

field(1)="GRIPPER ";

field[21=" "

field[3]1="CLOSE ",
field[4)=" u;
field(5]=" ";

for (i=0;i<=5;++i)
strcat(a,field[il);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* open the vise */
astn;

field[0l="COM ";
field[11="VISE aH

field[2)=" e

field(3]1="OPEN we
field(4]=" ",
field([5)=" LH

for (i=0;i<=5;++i)
strcat(a,field[il);

strcat(a,e);

fprintf(ccfp,"Xs\n", a);

/* move the robot to 2 inches above the target point */

186

FELLLE
field[01="COM *;
field[1]="ROBOT ";
field[21=" A
for (i=0;i<=2;++1)

strcat(a,field[il);
fprintf(ccfp,"%s%,a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f" xd,yd, zd+2);
fprintf(cecfp,"4%\n");

/* move robot to 12 inches above pick-up point */
a="u;
field[01="COM ";
field[1]="ROBOT ",
field{2l=v ",
for (i=0;i<=2;++i)

strcat(a,field{il);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.4f%-15.4F%-15.4f",xb,yb,zb+12);
fprintf(ccfp,"%%\n");

/* move robot to 0.1 inch above pick-up point */
a=i.
field[0]l="COM ";
field[11="ROBOT L
field[2]1=" ",
for (i=0;i<=2;++i)

strcat(a,field[i]);
fprintf(ccfp,"Xs%,a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f",xb,yb,zb+0.1);
fprintf(ccfp,"%%\n");

/* open the gripper to release the part */
a:uu;

field[01="COM ";

field[11="GRIPPER ¥;

fieldr2l=" u;

field[31="0PEN ",
field4l=" ";
field[S1=" ";

for (i=0;i<=5;++i)
strcat(a,field[il);

strcat(a,e);

fprintf(ccfp,"%s\n",a);

/* move robot to 12 inches above pick-up point */
FELLH
field[0]="COM ";
field[1])="ROBOT ",
field[2]=" LH
for (i=0;i<=2;++i)
strcat(a,fieldl[il);
fprintf(ccfp,"%s",a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f" xb,yb,zb+12);

187

fprintf(ccfp,"%%\n");

/* move the robot to the robot home position */
a="u,
field[0]="COM ";
field[11="ROBOT L
field[21=" b
for (i=0;i<=2;++i)

strcat(a,fieldlil);
fprintf(ccfp,%s",a);
fprintf(ccfp,"%-15.4f%-15.4f%-15.4f",xa,ya, za);
fprintf(ccfp,"%%\n");

188

fmlab14% cat scpmail

ready

189

fmlab15% cat tempfile

COM ECP pp_ccp_test

190

%

I R R N R R R R R R R R R R A R A A R A A R T R R Y YRR R R RN R R Yy

1@

l

i { . .
12 1 . Equipment Control Program .
13 i * of .
14 I . The Vertical Machining Cell *
15 { * *
16 t . Flexible Manufacturing Laboratory .
17 { + Mechanical Engineering Department .
18 ! . University of Maryland *
19 1 . College Park, MD 20742 *
20 1 * .
71 1 . 1987 *
22 { * *
23 | [T X R EERE R AR R R R RS R RS S R 2 2 ZZ R R RS R R R R F R R S R R R R E R R R FRSNR ST R Y 3
40 !

50 !

6@ I Main Program ------ User Interface

70 !

80 COM /Comu/ Bufr$(1:4)[(64)

85 COM /Stat/ Status(1:4)[64]

86 COM /Sun/ Sunbox$(64)

30 DIM A${15] ,B$(15]) ,C$(15],Comreg$(64) ,Ecpstas(64] ,D$[170]

10@ CONTROL 17,3:9600 I I/0 TO VISE/GRIPPER
105 CONTROL 17,4;26

110 CONTROL 18,3;9600 { I/0 TO ROBOT AND VMC
115 CONTROL 18,4;26

120 CONTROL 13,3;9600 I I/0 TO SUN

125 CONTROL 13,4;26

13@¢ CONTROL 9,3:4800 t DATA BUS TO vMC

135 CONTROL 9,4:26
149 CLEAR SCREEN

150 PRINT % asactasicer tane sttt i e tio st ittt iotsdsattatainninstsiestneintennns
ISR R Y X A
151 PRINT "»
.
152 PRINT “s Welcome To The Equipment Control Program
.
153 PRINT "»
"
154 PRINT Vo0 a0t ranst sttt st sttt itnntnncttattatatatistniticiatsasnatntnsans
XXX XYL Y X A
160 PRINT TABXY(8,10),"1) MANUAL MODE"
170 PRINT TABXY(8,12),"2) AUTO MODE"
180 PRINT TABXY(8,14),"]) HELP"
150 PRINT TABXY(8,18),"4) EXIT"
200 INPUT "Please enter the selected number :" Uimode$
219 SELECT Uimode$

220 CASE ="1"

230 60SUB Manual
231 G070 149
240 CASE ="2"

250 60SUB Auto
251 GOTO 149

191

260 CASE ="3"

270 GOSUB Help

n GOTO 149

280 CASE ="4"

290 ’ G0SUB Ex1t

300 CASE ELSE

305 BEEP

310 PRINT TABXY(1,20),"#*+ Input Errori Retry after BEEP! e
320 WAIT 2

330 BEEP

33 PRINT TABXY(1,620).," "
340 GOT0 200

350 END SELECT

355 GOTQ 3000

LR I I e e e i b T T U RIS U SRR
999 |

100@ Manual: ! Sub Program of User Interface Main Program.

101@ CLEAR SCREEN

1050 CALL Statuss

1260 CALL Status_prant

107@ FOR Tar=1 TO 4

1080 GOSUB Compocheck

1090 NEXT Tar

1150 PRINT TABXY(1t,1@);"COMMAND TARGET :"

116@ PRINT TABXY(5,11);"1). VMC 2). VISE 3). GRIPPER 4). ROBOT™
1165 REPEAT
1170 INPUT "Please enter the selected number :" Tar

1175 UNTIL (Tar<=4 AND Tar>=1)
1176 IF Statu$(Tar}[13;61<>"READY " THEN

177 PRINT TABXY(S5,18);Status(Tar)[518]1;"is not controllable at this momont.
Please read the status table.”
1178 GOTO 134%
1179 ELSE
1180 Status(Tar)(1 B4l1=Status(Tar){1,12)8"BUSY "AStatu$(Tar){19,64]
1181 PRINT TABXY(! Tar+4);Status(Tar)(5,63]
1182 END IF
1184 SELECT Tar
1185 CASE =t
1190 CALL Paral({As$,Bs . Cs)
1200 ComregSit 64]1="COM VMC “SASLBSACSE"YL"
1210 Bufrs$(1)[t ,64)=Comreg$
1211 PRINT TABXY(1,12);" Monitoring VMC Execut:ion
122¢@ CALL Vmccom
1230 GOTO 1330
1240 CASE =2
1245 CALL ParaZ(AS)
1250 Comreg$(1,64]1="COM VISE “BASR"
wgryge
12585 Bufr$(2)(1,64])=Comreg$
1256 PRINT TABXY(1 12);" Monitoring Vise Execution
1260 CALL Viscom
1265 GOTO 1330

192

1270
1275
1280

“gn

1285
1286

ion ...

1290
1295
1300
1305
1310
1315
1316
n

1330
1335
1340
1342

1343
1345
1350
1355
1356

1360
1430
1485
1496
1499
1500
1505
1510
1515
1520
1525

1526
1527
1530
1540
155¢
1560

1320

CASE =3
CALL Para3(As)

Comreg$(1,641="COM GRIPPER

g

Bufr$(3)(1 ,64)=Comreg$

PRINT TABXY(1,612);"
CALL Grpcom
6070 1330

CASE =4

CALL Para4(As Bs, C$)

Comreg$l[1,64]="COM ROBOT
Bufr$(4)(1 ,641=Comreg$

PRINY TABXY(1,12);"
CALL Rbtcom
END SELECT

Statu$(Tar){1,641=Bufr$(Tar){1,664)

PRINT TABXY(1!,Tar+4);Status(Tar){5 63)

PRINT TABXY(1,12);"
G0OSUB Compocheck
REPEAT

"8A%R"

Monitoring Gripper Execut

"BASRBSECSA"T

INPUT "More command ? (Y)es or (N)o",F$

UNTIL (F$="Y" OR F$="N")
PRINT TABXY(1,18);"

IF F$="Y" THEN GOTO 115@
RETURN

i

t

|

Auto: !

CLEAR SCREEN

CALL Statuss
CALL Status_print ,

GOSUB Ecp_status

PRINT TABXY(1 ,13)¢"

WAIT .1

RESET 18

ENTER 19;Sunbox$

PRINT TABXY(1,12);"Command Received :*
PRINT TABXY(1,13);Sunbox$l 1,541

PRINT

Comreg$l1,84])=Sunbox$(1,64]

Comtype$=Sunbox8i 1,31
SELECT Comtypes
CASE =“STA"

IF Sunbox$[5,12)="ECP

CALL Statuss

CALL Status_print
60SUB Ecp_status

193

* THEN

Monitoring Robot Executio

Sub Program of User [nterface Main Program.

ECP STANDBY

TABXY(N, 1) 4" s mm s m o o e e e oo o e e e

1650

Sunbox$(| ,64]1=Ecpstas{ | 641

167Q ELSE

168@ GOSUB Comexe

1630 END IF

{700 GOTO 1780

1710 CASE ="COM"

1720 IF Sunbox${19;8]1="DOUNLOAD" THEN

1730 CALL File_relay

1740 Sunbox$![1 ,64]1="STA"8Sunbox%$[4 ,64]

1750 ELSE

176Q 60SUB Comexe

1770 END IF

1780 END SELECT

1790 FOR I=12 TO 14

1800 PRINT TABXY(1 I):"

181@ NEXT 1

182@ OUTPUT 19;Sunbox$

1830 GOTO 1515

199@ RETURN

1995 |

1996 !

1999 !

2419 Help: ! Sub Program of User Interface Main Program.

2415 CLEAR SCREEN

2420 PRINT TABXY(8,14) "HELP MODE is not installed yet."

2425 PRINT TABXY(8,20),"Push the FZ key to continue ..."

2430 PAUSE

2435 RETURN

2495 |

2496 |

2499 1

2500 Exit: | Sub Program of User Interface Main Program.

2510 CLEAR SCREEN

2520 PRINT TABXY(8,14) "Bye! Have a nice day!"

2590 RETURN

2537 !

2598 !

2599

260@1 Compocheck: ICHECK COMPONENT STATUS.

2610 WHILE StatuS(Tar){13;6)<O"READY

2615 PRINT TABXY(1,610);"

2620 PRINT TABXY(1 11);"THE ";Statu®(Tar)f5 1215 1S ";Status(Tardl13;51:"1 (

R)etry or (I)gnore ? "

2630 REPEAT

2640 INPUT Cc$

2650 UNTIL (Cc$="R" OR CcS$="I")

2660 IF Cc#$="I" THEN GOTO 2831

2665 PRINT TABXY(1,11)§"PLEASE CHECK THE “;Status(Tar)[S,121;"AND THEN PRESS
THE F2Z KEY. -

2666 PRINT TABXY(1,13);"PLEASE MAKE SURE THE ";Statu$(Tar)[5,121;"I5 STANDBY
fo

2670 PAUSE

194

2671 PRINT TABXY(1!,613);"

2675 PRINT TABXY(Y 11);" CHECKING ...
2680 Bufr$(Tar)(1,64)1="STA"8Bufr$(Tar)(4,64]
2680 SELECT Tar
2700 CASE =1
2710 CALL Vmccom
2720) GOTO 2811
2730 CASE =2
2740 CALL Viscom
2750 GOTO 2811
2760 CASE =3
2770 CALL 6rpcom
2780 GOTO 2811
2790 CASE =4
72800 CALL Rbtcom
2810 END SELECT
2811 Status(Tar)[1,64)=Bufr$(Tar)it 64)
2813 PRINT TABXY(1 K Tar+4);Statu$(Tar)[5,63]
2820 I Go to the top of this sub. program to re-test the component."
72830 END WHILE)
2831 PRINT TABXY(1, t1);"
2840 RETURN
2895 !
2896 1
2897 1
29@@ Ccp_status: I CHECK ECP STATUS BASE ON THE COMPONENT STATUS.
2905 Ecpstas$(1,64]1="STA ECP READY
"<
291Q¢ FOR I=1 TO 4
2915 IF Statu$(I)(13;61<>"READY " THEN Ecpstasl(i 641="STA ECP DOUN “8Ec
pstas(19, 64]
2920 NEXT I
2935 RETURN
2945 |
28486 |
2947 1
2950 Comexe: ! EXECUTE THE "STA" COMMAND FOR COMPONENT STATUS REQUEST AND

“COM" COMMAND FOR EXECUTABLE COMMAND.
29E@ Tar$=Sunbox&{5,12!?
2979 SELECT Tars$

298@ CASE ="VMC -

2949 IF ((Comtype$="COM") AND (Statu$(1)[13;61<>"READY ")) THEN
3000 Sunbox$[1,64)=Status(1)[1,64]

3010 60T0 3370

3020 END IF

3030 Bufr$(1)[1,64)=Sunbox$(1 64)

3040 CALL Vmccom

3050 Statu$(1)1 64)1=Bufrs(1)(1, 64)

JORO Sunbox$[1,641=Status(1) 1,64}

3070 6070 3370

195

3080 CASE ="VISE "

3090 IF ((Comtype$="COM") -AND (Status$(2)[13, 181<>"READY ")) THEN
3100 - Sunbox$[1 ,641=Status(2)(1,64]

J1e GOTO 3370

3120 END IF

3130 Bufr$(2)[1,64)=Sunboxs$(1,64)

3140 CALL Viscom

3150 Statu$(2)[1,64)=Bufrs$(2)(1,64)

3160 Sunbox$[1 ,64]1=Status(Z)[1, 664!

3170 GOTO 3370

3180 CASE ="GRIPPER

3190 IF ({(Comtype$="COM") AND (StatuS(3){13;61<>"READY ")) THEN
3200 Sunbox$(1,64)=Status{3)(1,64]

3210 GOTO 3372

3220 END IF

3230 Bufr$(3)(1,64)=Sunboxs{1,664]

3240 CALL Grpcom

3250 Status(3)(1! ,64)1=Bufr$(3)(1,64)

3260 Sunbox%[1,64]1=5tatus(3){ 1,64}

3270 GOTO 3370

3280 CASE ="ROBOT "

3290 IF ((Comtype$="COM") AND (Statu$(4)(13;61<>"READY ")) THEN
3300 Sunbox${1,64]=Status(4){ 1,641

3310 GOTO 3370

3320 END IF

3330 Bufr$(4)l 1 641=Sunboxsl1,664]

3340 CALL Rbtcom

3350 Status$(4)(1,631=Bufr8(4)[1,64]

3360 Sunbox$(1 ,64)=Status(4)(1 64]

3370 END SELECT

3380 RETURN

3900 END

L L B R e il R e e Db b et bl i
3s0z | End of the ECP main program

BG4 1 == mm oo o e o e e oo :

3905 1

3906 |

3910 SUB Statuss I Status checking.
3911 COM /Comu/ Bufr$(1:4)(64]

3912 COM /Stat/ Status$(1:4)[64)

3913 Bufr$(1)(1,64)="STA VMC

g

3914 Bufr$(2)01,64)="5TA VISE
€

3915 Bufr$(3)(1 64)="STA GRIPPER
g

3916 Bufr$(4)(1 B64]1="STA ROBOT
gz

3318 PRINT TABXY(25,18):i"Checking the VMC"
3919 CALL Vmccom

3970 PRINT TABXY(725,18);"Checking the VISE"
3921 CALL Viscom

3923 PRINT TABXY(25,18);"Checking the BRIPPER"

196

3925 CALL Grpcom
3928 PRINT TABXY(25,18);"Chacking the ROBOT
3930 CALL Rbtcom
3935 FOR I=t TO 4

3938 Statu$(I)[1,641=Bufr$(1:{1 641}

3940 NEXT 1

3942 SUBEND

3947 1

3348 1

3949 !

3955 SUB Status_print ! Print out the cell status on the screen.

3956 COM /Comu/ Bufr$(1:4)(54]
3957 COM /Stat/ Statu$(1:4)[64]

3960 CLEAR SCREEN

3962 PRINT TABXY(1,1){"CELL COMPONENT STATUS TABLE:"

3964 PRINT TABXY(1,2) 3" === - o= mm e oo o oo oo

"

3966 PRINT TABXY(1,3);"NAME STATUS PARAME TERS"
3968 PRINT TABXY(1, 4); o m oo o oo oo e .

3970 FOR I=1 70 4
3972 PRINT TABXY(1,1+4);Status(1)(5,63)

3974 NEXT 1

3976 PRINT TABXY(1,805 == mm o m o m oo o e e e e e

3978 SUBEND

4000 |

4001 |

4907 |

4004 SUB Vmccom ! VMC Communication -- Command output, status Input.
4005 COM /Comu/ Bufr$(1:4){B4]

3007 DIM X${15]1,Y$(15]),2%015])

4910 ' ON TIMEOUT 18,60 GOTO 4300

4030 Aa$=Bufr$(1){1,K 3]

4040 SELECT Aa$

4050 CASE ="STAR" | CHECK COMMAND TYPE
4060 QUTPUT 18;Bufrs(1)
4070 ENTER 18:Bufr$(1)(1 641
4972 IF BufrS$(1){1,1)1<CHRS(ES) THEN Bufr$(1)[(1,641=Bufrs$(1){2 6418"%"
4080 GOTO 4310@
4930 CASE ="COM"
4100 DISABLE
4110 OUTPUT 18;Bufrs(t)
4115 ENIER 18:;Bufr$(1)i1,64)
412% IF BufrS(1){ 1, 1)<CHRS(B5) THEN Bufr$(1){ 1 64}=Bufr$(1)(2 RAIR" X"
4210 GOTO 4310
4220 CASE ELSE
4230 PRINT "Unrecognizable command type !
4235 Bufrs$(1)(1,64)="UNRECOGNIZABLE COMMAND TYPE"
4740 GOTO 4310
47250 END SELECT
430@ PRINT TABXY(1 12);* VMC/Human 1s not on"
4305 Bufr$(1)[1 64)="STALVMC OF F "4
gy

197

4310
450@
4501

45027
4510
4511

4520
4530
4540
4550
4560
4570
4572
4580
4590
4600
4610
4620
4630
4640
4650

4660
5000
S50t
50027
5005
5006
5020
5030
5040
S50
5060
5070
5072
5080
5030
5100
S1t0
5120
5130
5140
5150

5160
5500
5501

5502
5513
5514
5520
8530
5540
5550

SUBEND

1
1
f
SUB Viscom I VISE Communication -- Command output, status input.
COM /Comu/ Bufr$(1:4)[64]
! ON TIMEOQUT 17,6@ GOTO 4640
Aas=Bufrs$(2)(1, 3]
SELECT Aas
CASE ="STA" “COM"
OUTPUT 17;Bufr$(2)
ENTER 17 USING "B4A";Bufrs$(2)[1,64]
IF Bufr$(2)(1,11<CHR%(ES) THEN Bufr$(2)[(1 ,641=Bufr$(2){2,64)&"%"
5070 4660
CASE ELSE
PRINT "Unrecognizable command type 1"
Bufr$(2){1,64)="UNRECOGNIZABLE COMMAND TYPE"

GOTO 4660

END SELECT
PRINT TABXY(1 12);" VISE/Human 1s not on"
Bufr$(2)(1,641="5TA VISE OFF g

gy
SUBEND
|
1
[
SUB Grpcom | GRIPPER Communication -- Command output, status input.

COM /Comu/ Bufr$(1:4)(64]
| ON TIMEOUT 17,60 G0TO S140
Ras=Bufr$(3)(1,63]
SELECT Aas
CASE ="STA","COM"
OUTPUT 17;Bufr$(3)
ENTER 17 USING "B4A";Bufr$(3)[1 ,64]
IF Bufr$(3)(1,11(CHRS(BE5) THEN Bufr$(3){(1,64]=Bufr$(3)(2,6418" 2"
GNTO 5160
CASE ELSE
PRINT "Unrecognizable command type |"
Bufr$(3)(1,64]1="UNRECOGNIZABLE COMMAND TYPE"

GOTO 5160

END SELECT
PRINT TABXY(1,612);" GRIPPER/Human 1s not on"
Bufr$(3)(1,64)="STA GRIPPER OFF .

gy
SUBEND
f
t
|
SUB Rbtcom | ROBOT Communication -- Command output, status input.

COM /Comu/ Bufr$(1:4)[64)
I ON TIMEOUT 18,60 GOTO 5640
Aas=Bufrs(4)i1 3]
SELECT Aas
CASE ="STA", “COM"

198

5560 OUTPUT 18;Bufr$(4)

5570 ENTER 18;Bufr$(4)(1 ,64]
5572 IF Bufr$(4)[1 11<CHR$(BS) THFN Bufr$(4)[! 64]1~Bufrs$(4)(2,6418"2"
5580 GOTO 5660
5530 CASE ELSE
5600 PRINT "“Unrecognizable command type !“
5610 Bufr$(4)(1,641="UNRECOGNIZABLE COMMAND TYPE"
5620 GOTO 5660
5630 END SELECT
5640 PRINT TABXY(1,12);" ROBOT/Human is not on"
5650 Bufr$(4)(1, 641="STA ROBOT OFF g
wgrye
5660 SUBEND
(000 !
6001 |
6004 SUB Paral(A%$ B$,(s) I Input parameters for VMC table -- X,Y,7 coord.
6005 REPEAT
6006 INPUT "(Clontrol or (I)nitialize the VMC ?" AlS

6007 UNTIL (A1$="C" OR AlS$="1")
6008 IF A1$="1" THEN

6009 A1 ,151="INITIAL

6010 BE[1,15)=A%[1,15]

6Ot CH[1,15)=A%(1,15]

6017 GOTO 6130 16070 6110

50t4 END IF

6015 REPEAT

6020 INPUT “Enter the X-coordinate of table:" A

6030 UNTIL A<=12

602@ REPERT

65050 INFUT "Enter the Y-coordinatie of table:" B
BOE® UNTIL B<=12Z

B@7@ REPEAT

6080 INPUT "Enter the Z-coordinate of table:" C
6090 UNTIL C<=12

E10@ AS(1 151=VALS(A)

G11@ BS(1,15)=VALS$(B)

6120 C${1,151=VALS$(C)

6130 SUBEND

6300 !

6301 !

6302 |

6305 SUB ParaZ(A%) I Input parameters for VISE -- OPEN,CLOSE, INITIAL.
6310 RCPEAT

La7® INPUT "(C)lose, ‘0)pen o (1)nitialize 1he vise 7" HI®

6330 UNTIL ((Ai$="C" OR AI$="0") OR (Al$="1"))
6340 1F A1$="C" THEN

6350 A$I 1, 15]1="CLOSE

6360 ELSE

636t IF Al$="0" THEN

6370 As{ 1, 151="0PEN "
6371 ELSE

6377 Asl! 1G)1="TNITIAL

6373 END IF

6380 END IF

199

6390 SUBEND

6600 !

66O _t

@7 ¢

6605 SUB Para3(As)) Input parameters for GRIPPER -- OPEN, CLOSE, INITIAL.
6619 REPEAT

6620 INPUT "(C)lose, (O)pen or (I)nitialize the gripper 7" AlS

6630 UNTIL ({A1$="0" OR A1$="C") OR (A1$="1"))
6640 IF Al$="C" THEN

6650 ASl 1, 15)="CLOSE *

6660 ELSE

6661 IF A1$="0" THEN

6670 AS{1,15]1="0PEN "

6671 ELSE

6672 AS(1 , 1S]1="INITIAL "

6673 END IF

6680 END IF

6650 SUBEND

RapQ

6901 !

6907 !

6993 | Input parameters for ROBOTY -- X, Y, Z coordinates.
6905 SUB Parad(A% 8BS .CS) I Input parameters for ROBOT -- X,Y,Z coord.
5308 REPEAT

6909 INPUT “(Clontrol or (I)nitialize the robot ?" AlS

6310 UNTIL (Als="C" OR AlI$="1")
6911 IF Ats="1" THEN

6912 AS{ 1, 15)="INITIAL "

6913 B0

6914 C=2

6915 GOTO 7010

6916 END IF

B919 REPEAT

6920 INPUT “Enter the X-coordinate :" A
6932 UNTIL A<=50 .

6340 REPEAT

6950 INPUT “Enter the Y-coordinate :".,8

6360 UNTIL B<=48

6970 REPEAT

6980 INPUT "Enter the Z-coordinate :",C

699@ UNTIL C<=48

7002 AS{1,15]1=VALS(A)

710 B[, 15])=VALS(B)

7070 Cs$[1,15])=VALS(()

703@ SUBEND

7115 1

7116 |

17

7200 SUB File_relay | RECEIVE THE NC FILE FROM CCP, SAVE IT TO THE DISC,
AND DOUNLOAD IT TO THE VMC.

7210 COM /Comu/ Bufr$(1:4)(64)

722@ COM /Sun/ Sunbox$[641

723@ DINM DS 80)

724Q ASSIGN @Buff TO BUFFER (51200

200

7250 ASSIGN @Source TO 19
726@ ASSIGN @Dest TO 9
7270 PURGE “NCFILE: f 1400,1"

‘7280 CREATE BODAT "NCFILE:,1400,1",220 | SOK BYTE =(20@ REC)+(256 BYTE/REC)
7230 ASSIGN ONcfile TO “NCFILE:, 1400, 1"
7281 Sunbox$[1:64)="STA VMC READY "8Sunbox$[19,64]
730@ OUTPUT @Source;Sunbox$ t ECHO BACK TO CCP.
7301 WAIT .1
7302 RESET 19
7310 ENTER @Source;D$ t ASSIGN THE INBOUND NC CODE 70 Ds.
7320 GUTPUT @Buff;D$ I WRTTE D$ ONTO THE HIGH SPEED MEMORY BUFFER.
T330 IF (WO$01,11<40"%") OR (D%(2,21>CHR$(48}))) THEN GOTO 7310Q
7340 TRANSHFER @Buff TO ONcfile I DUMP THE CONTENTS OF BUFFER ONTQ THe DISC.
735@ WAIT 6
7360 Bufrs$(1){1,64]1="COM VMC READY DOWNLOAD
x t SIGNAL THE VMC TO PREPARE RECEIVING DARTA FROM ECP.
7370 CALL Vmccom | SEND OUT THE SIGNAL AND RECEIVE ECHO FROM VMC.
7380 CONTROL @Buff 531 | SET THE EMPTY POINTER TO THE FIRST BYTE OF BUFFER.

739@ ENTER @Buff;iD$

739t PRINT D%

7400 QUTPUT @Dest;Ds

7500 IF ((DSL1,110:%") OR (D$(2,21>CHR$(48))) THEN GOTO 739¢
7510 ASSIGN @Buff TO «

7520 ASSIGN @Source TO +#

7530 ASSIGN @Dest TO +

7540 ASSIGN @Ncfile TO +#

7542 CLEAR SCREEN

755@ SUBEND

201

10
20
30

40

50

60

70

80

90

100
110
120

130
140
150

160
170

180

190
200
210

220
221
222
224
226
238
240

250
260
270
280
290
310
315
320
325

REM VMC / ROBOT CONTROLLER SIMULATION PROGRAM
CLs

PRINT
Whkkkhkhkhkhkhkhkkhkhhhhhhkhkhhhhhhhkhkhhkhkhkkhkhhkhhkhkhkhkhkkhkhkhkkkkhkkhkkkkx

dededed kg de ok ok k kg ok

PRINT "“*

* 1

PRINT "=* VMC / Robot Controller
*) N

PRINT "=*

* M

PRINT '"* Simulation Program
*

PRINT "%

*

PRINT

Wk kkkkdkhhhkddkkdkkdkkkkkkkkkkhdkkkkdkkdkkkkkdkkkkkkkkkkkkkkkkkk
khkkkkkhkhkdhkki

OPEN "coml:9600,e,7,1,cs3000,cd,ds" AS #1

OPEN "HISTORY.DOC" FOR OUTPUT AS #2

LOCATE 12,1:PRINT " VMC / Robot
Standby "

LINE INPUT #1,A$

IF LEFTS$ (A$,1)=CHRS$(10) THEN AS$=MIDS$ (AS,2)

LOCATE 12,1:PRINT "Command Received :

"

PRINT "#";A$;"*";:PRINT

PRINT === e e e e e e e e

PRINT #2,DATES;" ":TIMES
PRINT #2,A$
LOCATE 17,1:PRINT "
"
IF LEFTS (A$,3)<>"COM" THEN GOTO 290
MIDS (AS,1,3)="STA"
IF MIDS$ (A$,19,8)="DOWNLOAD" THEN GOSUB 460
IF MID$(A$,19,7)="PRE_SET" THEN GOSUB 500
IF MIDS$ (A$,19,7)="EXECUTE" THEN GOSUB 520
IF MID$(A$,19,7)="INITIAL" THEN GOTO 350
LOCATE 17,1:PRINT "Enter (r)eady or (d)own for
":MID$(AS,4,6) ;" status:";
INPUT C$
IF C$="r" THEN MIDS$(A$,13,6)="READY ":GOTO 400
IF C$="d" THEN MID$(AS$,13,6)="DOWN ":GOTO 400
GOTO 240
IF LEFTS (AS$,3)<>"STA" THEN GOTO 390
LOCATE 17,1:INPUT "Please enter the X position :",6Al$
LOCATE 18,1:INPUT "Please enter the Y position :",6A2%
LOCATE 19,1:INPUT "Please enter the 2 position :",6A3$
LOCATE 21,1:INPUT "Are youy sure?",A4$:IF A4S$<>"y" THEN
GOTO 310

202

330
335
340
345
350
370
380
390
400
410
420
430
440
450
460
470
471
472

473
474

480
500

501
502

503

504
505
506

510
520

521
522
525
526

550
560

LOCATE 17,1:PRINT "

LOCATE 18,1:PRINT "

LOCATE 19,1:PRINT "

LLJ

LOCATE 21,1:PRINT "

":GOTO 370

A13="0 ": A2$="0 ": A3$="0
"

MIDS (AS$,19,15)=A1$:MIDS$ (AS$,34,15)=A2$:MIDS$(AS$,49,15)=A3S
GOTO 240

LOCATE 17,1:INPUT "I/O Error. Please check the I/0 and
press RETURN key.",C$:GOTO 210

LOCATE 14,1:PRINT "

LOCATE 13,1:PRINT "

LOCATE 17,1:PRINT "

"

PRINT #2,AS$

PRINT #1,AS$;CHRS(10)

GOTO 120

LOCATE 16,1:PRINT "Please follow the following procedure
to download data:"

LOCATE 17,1:PRINT "1. set the vmc to edit mode."

LOCATE 18,1:PRINT "2. turn the edit lock of VMC to OFF.

LOCATE 19,1:PRINT "3. press the IN key on VMC control
panel."

LOCATE 21,1:INPUT "press the <CR> when completed ...",F$
FOR I=16 TO 21 :* LOCATE I,1 : PRINT "

" ¢ NEXT I

RETURN

LOCATE 16,1:PRINT "Please follow the following procedure

to pre-set VMC:"

LOCATE 17,1:PRINT "1. turn the handle-driven mode."
LOCATE 18,1:PRINT "2. move the tool to the lower-left
corner."

LOCATE 19,1:PRINT "3. rewrite plateform x,y coordinates
in edit mode."

LOCATE 20,1:PRINT "4. offset tool length.

LOCATE 22,1:INPUT "press the <CR> when completed ...",F$
FOR I=16 TO 22 : LOCATE I,1 : PRINT "

" : NEXT I

RETURN

LOCATE 16,1:PRINT "Please follow the following procedure
to execute the machining:"

LOCATE 17,1:PRINT "1. turn to memory mode."

LOCATE 18,1:PRINT "2. push the cycle-start buttom."

LOCATE 20,1:INPUT "press the <CR> when completed ...",F$S
FOR I=16 TO 20 : LOCATE I,1 : PRINT "

" : NEXT I

RETURN

END

203

10 REM Vise / Gripper Controller simulation program.
11 CLS
12 PRINT

Whdkkkhkhhhkhhhhhkhhhkhhkhkhkhkhhkhkhhkhkhhhkhkhkhkkhkhhhhhkhkkkhkkkhkkhkdkkkihkk

khkhkkkhkkkhkkkkt

13 PRINT "*
xM

14 PRINT "* Vise / Gripper Controller
]

15 PRINT "*
xN

16 PRINT "=* Simulation Program
* "

17 PRINT "%
* N

18 PRINT

Whdkhkkhkhkhkkhhkhkkhkhhhkhhhhkhkhhhhhhhkhkhhkhhhhhhhhhkhhhkhhhktkhkhhk

Kk ok ok okokkkkkkk

20 OPEN "coml:9600,e,7,1,cs3000,cd,ds" AS #1
30 OPEN "HISTORY.DOC" FOR OUTPUT AS #2

35 LOCATE 12,1:PRINT " Vise/Gripper
Standby"

40 LINE INPUT #1,AS$:REM Wait for and receive the ECP
command.

45 IF LEFT$(A$,1)=CHR$(10) THEN A$=MIDS$(A$,2):REM Take off
the leading "LF".

50 LOCATE 12,1:PRINT "Command Received :
"

60 PRINT "W :pS "k . PRINT :REM Print the received
command on the screen.

65 PRINT M——m—m e e o o e e

70 REM Write the date,time and received command into
"HISTORY.DOC" file.

78 PRINT #2," === mm o e e e e e o

80 PRINT #2,DATES;" ";TIMES
100 PRINT #2,AS$
105 LOCATE 17,1:PRINT "

"

109 REM Command type checking.
110 IF (LEFTS$(A$,3)="COM") OR (LEFT$(AS$,3)="STA") THEN GOTO
130

120 LOCATE 17,1:INPUT "I/O Error. Please check I/0 and press

RETURN key.",C$

129 REM Human intervention (input "r" or "d" for ready or
down) .

130 LOCATE 17,1:INPUT "Enter (r)eady or (d)own for device
status:";C$

140 IF CS$="r" THEN MIDS$(AS$,13,6)="READY ":GOTO 170

150 IF C$="d" THEN MID$(A$,13,6)="DOWN ":GOTO 170

160 GOTO 130

169 REM Status checking requested by ECP. Always response
with "OPEN".

204

170
174

175
177
180
185
187
190
200

210
220

IF LEFT$(A$,3)="STA" THEN MIDS$ (A$,19,5)="OPEN "

REM Change the ECP command format into controller
response format.

IF LEFTS$(A$,3)="COM" THEN MIDS$(AS$,1,3)="STA"

IF MIDS$(A$,19,7)="INITIAL" THEN MIDS (AS$,19,7)="OPEN
LOCATE 14,1:PRINT "

LOCATE 13,1:PRINT "

LOCATE 17,1:PRINT "

"
PRINT #2,A$ tREM Write the controller response to
W"HISTORY.DOCY file.

PRINT #1,A$;CHRS$(13) ;CHRS$(10) :REM Write the
controller response to ECP.

GOTO 35

END

205

CURRICULUM VITAE

Name: Sujen Chen

Permanent address: 4325 Rowalt Drive
Apt. #201

College Park, MD 20740

Degree and date to be conferred: M.S., 1988
Date of birth: May 28, 1961

Place of birth: Taipei, Taiwan, R. 0. C.

Secondary education: The Second Boys’ High School of Tainan,

Taiwan, June 1979

College institutions Dates Degree Date of Degree
Feng Chia University 1979-83 B.S. June 1983
University of Maryland 1985-88 M.S.(M.E.) May 1988

Major: Mechanical Engineering

Professional positions held: Engineering Assistant,
Aeronautical Research Laboratory, Chung-Shan Institute of

Science and Technology, Taiwan.

