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Bioinformatics, the use of computer techniques to analyze biological data, has been

a particularly active research field in the last two decades. Advances in this field have

contributed to the collection of enormous amounts of data, and the sheer amount of avail-

able data has started to overtake the processing capability possible with current computer

systems. Clearly, computer architects need to have a better understanding of how bioin-

formatics applications work and what kind of architectural techniques could be used to

accelerate these important scientific workloads on future processors.

In this dissertation, we develop a bioinformatic benchmark suite and provide a de-

tailed characterization of these applications in common use today from a computer ar-

chitect’s point of view. We analyze a wide range of detailed execution characteristics

including instruction mix, IPC measurements, L1 and L2 cache misses on a real architec-

ture; and proceed to analyze the workloads’ memory access characteristics.

We then concentrate on accelerating a particularly computationally intensive bioin-

formatics workload on the novel Cell Broadband Engine multiprocessor architecture. The



HMMER workload is used for protein profile searching using hidden Markov models, and

most of its execution time is spent running the Viterbi algorithm. We parallelize and par-

tition the HMMER application to implement it on the Cell Broadband Engine. In order

to run the Viterbi algorithm on the 256KB local stores of the Cell BE synergistic pro-

cessing units (SPEs), we present a method to develop a fast SIMD implementation of the

Viterbi algorithm that reduces the storage requirements significantly. Our HMMER im-

plementation for the Cell BE architecture, Cell-HMMER, exploits the multiple levels of

parallelism inherent in this application, and can run protein profile searches up to 27.98

times faster than a modern dual-core x86 microprocessor.
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Chapter 1

Introduction

The success of genome sequencing efforts and developments in bioinformatics re-

sulted in a vast amount of data over the last two decades. This growth in data, coupled

with increasingly efficient techniques and tools devised by the bioinformatics community,

have resulted in many practical applications that are already saving and improving lives.

As bioinformatics emerges as an important class of scientific computing applications, it

is becoming more evident that further advances in this field can pave the way for eco-

nomically and scientifically significant achievements in areas such as protein structure

prediction for drug discovery and development of gene-based therapies.

We expect that the performance of bioinformatics applications will therefore be-

come an important factor in defining future high performance computing systems. De-

spite the fact that bioinformatics is a very active research area with many challenging

computational performance needs, bioinformatics workloads are not among those typi-

cally used by computer architects and systems designers for evaluating new ideas. Our

goals in this dissertation are to provide a thorough analysis of the performance character-

istics of selected bioinformatics applications from a computer architect’s point of view,

and to explore avenues to utilize recently proposed novel microarchitectures for acceler-

ating these workloads.
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1.1 Problem Definition

A series of high-profile successes have brought bioinformatics to the forefront of

modern science in recent years. The best example of these is the successful sequencing

of the human genome, which continues to capture the public imagination and increase

awareness and interest in bioinformatics research. A more subtle success story in bioin-

formatics is the amount of genomic data that is being collected. In August 2005, the total

amount of data in public DNA and RNA data repositories exceeded 100,000,000,000

bases for the first time [1]. The amount of base pairs in the NCBI GenBank has quintu-

pled between 2000 and 2005, and the average annual growth of this database has been

39.6% over the same period.

However impressive, this rate of growth might look like a mixed blessing if eval-

uated alongside the growth of microprocessor performance for the same interval. If the

current trends continue, annual growth of microprocessor performance might soon be lag-

ging that of genomic data; with potentially important implications on researchers’ ability

to analyze this data in a timely manner to facilitate future research.

The reasons of the recent slowdown in microprocessor performance growth are

complex. The field of computer architecture seems to have arrived at an important cross-

roads. Due to a combination of factors, time-honored techniques to utilize the increased

transistor budgets for higher performance do not seem to work anymore: the performance

returns from higher clock frequencies and deeper pipelines are diminishing due to power

density limitations and the inability of memory access speeds to keep up with the proces-

sor cores [38]. It has been clear for the last several years that future gains in processor

2



performance had to be obtained by new means; and the industry as a whole started shift-

ing towards new architectural concepts such as simultaneous multithreading (SMT) and

chip multiprocessors (CMPs). Recognizing the impracticality of supporting architectural

features for many different kinds of workloads, architects have also been revisiting the

concept of application-specific accelerators [10]. While the abundance of coarse-grained

task parallelism in many bioinformatics applications is well known, there is a need for

more detailed workload characterization of these applications in order to optimize their

performance on these new architectures, devise new methods of accelerating them, and to

define performance goals and suitable architectures for possible accelerator implementa-

tions. Equally needed are investigative studies of how recent novel processor architectures

could be utilized to accelerate these applications.

Another motivation for more detailed characterization and acceleration of computa-

tionally intensive bioinformatics applications is the migration of such workloads to work-

stations and desktops. The falling costs of disk storage and personal computers has made

it possible to run important bioinformatics workloads on researchers’ personal worksta-

tions. Our consultations with practicing bioinformaticists reveal that applications which

once were exclusively run on servers are now increasingly run on personal systems.

With these in mind, we believe that the existing situation necessitates a thorough

analysis analysis of bioinformatics workloads (which have some distinct properties dif-

ferentiating them from traditional scientific workloads included in benchmark suites like

SPEC FP, as we will argue in this dissertation) for optimum performance on future mi-

croarchitectures, as well as exploration of new architectures for accelerating bioinformat-

ics workloads. Our work in this dissertation attempts to address these issues.

3



1.2 Contributions and Significance

The contributions of this dissertation are the following:

• We identify and classify a representative set of bioinformatics application bench-

marks, and characterize their execution characteristics using hardware performance

counters on an x86 processor. Our methodology allows us to study these character-

istics over the complete run of each benchmark; and we compare and contrast the

statistics to that of SPEC INT and FP benchmark suites.

• Building on the findings of our workload characterization work, we present an anal-

ysis of the L2 cache performance characteristics of our bioinformatics benchmarks

on several different memory hierarchy configurations chosen to represent future

architectures.

• Finally, we consider the possibility of using recent non-conventional processor ar-

chitectures as a means to accelerate computational biology workloads. As a case

study, we use the Cell Broadband Engine (Cell BE) heterogeneous multiproces-

sor architecture to accelerate protein profile searching, a CPU-intensive application

whose performance characteristics have been studied earlier in the dissertation. We

describe and discuss the challenges of programming the Cell BE architecture and

data distribution strategies; and provide a detailed analysis of our experimental re-

sults. Our parallelization method can be used to port similar dynamic programming

workloads to the Cell BE.

4



In order to provide a background for our analysis work, this dissertation also provides a

brief introduction to bioinformatics concepts and detailed descriptions of our simulation/-

analysis frameworks and the Cell BE multiprocessor architecture.

We believe that our detailed analysis of the execution characteristics of bioinformat-

ics workloads can contribute directly to the evaluation process of similar workloads on fu-

ture microarchitectures. We also believe that the methodology and results we present for

running bioinformatics applications on the Cell BE architecture can contribute to imple-

mentations of current and future bioinformatics applications on similar, non-conventional

heterogeneous multiprocessor systems.

1.3 Organization of the Dissertation

In this dissertation, we aim to present an overall picture of current bioinformatics

applications and gradually expand our analysis to cover microarchitectural implications

of these workloads; and eventually present a case study to accelerate one of these work-

loads on a non-conventional multiprocessor architecture. This first chapter presents a

brief overview of our motivation, and outlines the contributions of this dissertation. In the

second chapter, we present an introduction to the general concepts of bioinformatics such

as introductory molecular biology, the different kinds of data involved, and important

application classes. In Chapter 3, we present a core group of bioinformatics workloads

emphasizing genomic applications, and proceed to present a detailed workload character-

ization using hardware performance counters. We describe our methodology and com-

ment on similarities and differences of the execution characteristics of these benchmarks

5



to those of the SPEC 2000 integer and floating-point benchmarks. In Chapter 4, we fo-

cus on the memory system performance of these benchmarks, concentrating on cache

access and TLB characteristics. We present the binary instrumentation based cache simu-

lation methodology we utilized, and discuss the implications of our findings. Our studies

take a different path in Chapter 5 where we proceed with a case study involving run-

ning a CPU-intensive bioinformatics application on a novel multiprocessor architecture:

the Cell Broadband Engine (Cell BE). We describe Cell BE and Cell BE programming

models briefly; and we present a detailed account of our porting work, complete with

discussions of how the unique features of this multiprocessor can be utilized for high

performance bioinformatics. Chapter 6 concludes this dissertation with our concluding

remarks.
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Chapter 2

Introduction to Bioinformatics

Among all the new promising scientific fields, there is little doubt that bioinformat-

ics stands at the center of interest. The promises of using computer technology to decode

the human genome to predict gene and protein functions, treat genetic diseases by iden-

tifying disease-related genes and rational design of drugs which directly target specific

genes and proteins (as opposed to expensive trial-and-error methods) have attracted both

big amounts of investment and some of the brightest minds in science to bioinformatics.

Never before the arrival of this new science have the fields of computer design and life

sciences been so close and so intertwined. In the work that follows, we aim to provide

a closer look at common bioinformatics applications from the viewpoint of the computer

architect. Before we proceed, a comprehensive introduction to the field of bioinformatics

is in order. Some of the questions one might ask are:

• What is bioinformatics? What has led to its emergence?

• What are the most important problems of interest to the bioinformatics community

with regards to computer systems performance?

• Just how much and what kind of data are involved? How is this data collected?

• What is the “end product” of bioinformatics, if one may even define such a thing?

How are the results obtained through bioinformatics applications used?

7



• Considering that new drugs and cures are often mentioned as the most promising

rewards of the advances in bioinformatics, where does bioinformatics fit in the drug

discovery process?

• What are the important bioinformatics application domains?

Along with a general introduction to the complex terminology and basic concepts of

bioinformatics, these are the questions that we intend to answer in this introductory chap-

ter.

2.1 What is Bioinformatics?

Bioinformatics can generally be described as the application of information tech-

nologies to the classification, organization, and analysis of biological data. At first sight,

the combination of biology, the study of living organisms, and information technologies

might indeed seem odd. However, as our understanding of the basic building blocks of

life gradually increased, the basic building blocks of life start to look more like just data

waiting to be discovered and analyzed. From small DNA sequences to complex protein

structures, life itself can be viewed as a giant collection of data and its interaction with

the world we live in. It probably would not be too farfetched to call life “the original

information technology”.

The necessity to introduce information technology into the study of life was a con-

sequence of the sheer amounts of biological data that has been collected by researchers.

While such data collection has been going on since the early days of the discovery of

DNA, there was a marked acceleration in the rate of data collection in the last couple of

8



decades. This acceleration, in turn, seems to be a direct result of several new techniques;

the most important of which are methods involving high-throughput determination of

DNA sequences using ABI sequences, mRNA expression using microarrays, and proteins

using mass spectrometry. In addition, the use of robotics technology in biological data

collection made it possible to automate tedious, routine procedures that were done man-

ually prior to the invention of these robotic devices. At the same time, the great advances

in technologies that were originally developed for VLSI circuit development and produc-

tion made it possible to produce miniaturized data collection and analysis devices such

as the “gene chips” that are used for high-speed gene sequencing. The “perfect storm”

that ensued from advances in these technologies and their use in biology, coupled with

high-performance microprocessor architectures, shaped the field of molecular biology by

significantly increasing the data collection throughput. As computer technology has been

introduced to cope with the resulting mountains of data, modern biology and computer

technology have become an inseparable pair, creating the field we called bioinformatics.

2.2 Basic Biological Concepts

The basic building block of any living organism is the cell. Any living being is

made up of cells, which can be very diverse and highly specialized in complex life forms.

Cells are considered living organisms themselves, and they interact with their surround-

ings and other cells through the use of different cellular mechanisms. These interactions

make it possible for a cell to sustain its lifecycle, during which it obtains energy, grows,

reproduces, and eventually dies. All of these distinct events in the cellular lifecycle are

9



based on numerous biochemical reactions. These biochemical reactions are controlled

primarily by large organic molecules called proteins; and these proteins play important

roles in vital biochemical processes by triggering them or acting as catalysts. Proteins,

along with the overall structure of any cell, are described by the genetic code in the DNA

(deoxyribonucleic acid) within the cell.

DNA is a macromolecule consisting of two molecules called DNA strands. DNA

strands are essentially long chains of basic units called nucleotides, which are formed by

the combination of one nucleic acid, one sugar, and one phosphate. The different nucleic

acids in nucleotides is what encodes genetic data in the DNA. There are four unique

nucleic acids types that can exist in a nucleotide. Since each of them can only couple

with a certain type of nucleic acid on the other strand, a single DNA strand can sufficiently

describe the genetic information encoded on the entire DNA. Possible nucleotides for a

DNA strand are Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). A can only

form a base pair with T, and C can only pair with G on the other strand. Since the

DNA sequence on a strand can consist of any combination of these four nucleotides, this

simple structure can encode the genetic information of an immense number of different

organisms. Figure 2.1 illustrates the structure of a DNA macromolecule, and highlights

the structures of nucleotides and base pairs.

As we mentioned earlier, the vital biochemical functions of cells are only possible

through the production of proteins. However, DNA by itself has little role in the actual

biochemical workings of the cell-it is the proteins that do all the work. DNA basically

contains the ”master plan” of the proteins that are so crucial to the survival of the cell,

and also acts as the template used by the cell for reproducing and making copies of itself.

10



Figure 2.1: DNA Structure

Therefore, the mechanism through which DNA is used to produce proteins is crucial, and

merits further elaboration.

A DNA strand contains regions of information that describe the structures of pro-

teins, along with regions that determine the probability of mRNA/protein production by

attracting or repelling ribosomes. The latter regions are called ”regulatory sequences”,

while the former are called genes. (Note that some simpler organisms, particularly viruses,

use RNA instead of DNA to encapsulate genetic material.) It is estimated that the human

species has about 20,000-25,000 genes[27], made up of about 3x109 base pairs. Parts of

the sequence information on a gene are spliced out during the transcription process which

will be described later, and do not code protein data. These parts are called introns, while

11



Figure 2.2: Gene Structure

the protein-encoding sections are called exons. Figure 2.2 illustrates the structure of a

gene.

In addition to genes and regulatory sequences, DNA strands also contain a large

amount of sequences that do not seem to serve a specific purpose in protein definition and

production. These non-coding sequences are sometimes referred to as junk DNA. While

there are many theories about the possible function of junk DNA, the exact functionality

of these regions are not fully understood. The total DNA possessed by an organism is

called the genome of that organism. For complex organisms, the genome is more precisely

defined as the entire DNA sequence of a full set of chromosomes, which are very long

strands of DNA that are found in every cell of such organisms. The general layout of a

chromosome can be seen in Figure 2.3.

Each gene specifies the structure and protein of a certain type of protein with the

help of regulatory regions on the genome. The process of using nucleotide sequences
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Figure 2.3: Chromosome Structure

in a gene to form proteins is called the central dogma of molecular biology. Figure 2.4

illustrates the process outlined in the central dogma. First, the DNA sequence replicates

itself to form a copy. Then, the gene that codes the protein is converted into pre-RNA, and

then a single-stranded sequence form called RNA through a process called transcription.

In simpler organisms (prokaryotes), the pre-RNA step is not necessary. At the end of

transcription into a form of RNA called the messenger RNA (mRNA), and the mRNA

strands are released into the fluid within the cell walls (cytoplasm). The actual process

of protein synthesis is accomplished by a cell organelle (small organ-like functional unit)

named the ribosome, which binds to the mRNA molecules and translates the genetic

information conveyed by the sequence to a protein structure. This last step of the protein

synthesis process is called translation.
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Figure 2.4: Central Dogma of Molecular Biology (Gene Expression)

The process outlined in the central dogma is also named gene expression, and its

end results are proteins. As we mentioned earlier, proteins control and regulate vital bio-

chemical processes; and this makes them ideal drug design targets. Many problems in

bioinformatics therefore have the goal of revealing the relationships between genes and

proteins they code, and ultimately determining the structural properties of proteins. Be-

fore we describe the bioinformatics application domains involved in solving these prob-

lems, we will describe the various kinds of biological data used in bioinformatics.
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2.3 A Glut of Data

Probably the most important reason underlying the increasing need for computing

performance in bioinformatics is the sheer size of genetic data that has been accumulat-

ing. Figure 2.5 illustrates the dramatic increase in the rate of data collection in the NCBI

database. Collection and sharing of genomic data seems to have a a ”snowballing” effect

in the sense that availability of genomic data from many other species facilitate compara-

tive genomics and facilitate the discovery of new protein-coding regions in other, related

species. Furthermore, the availability of large amounts of diversified biological data en-

courages the study of even larger, and computationally intensive problems as witnessed

in the emerging field of systems biology. Even if one takes the recent advances in chip

multiprocessors and proliferation of inexpensive computing clusters into account, it is ev-

ident that bioinformatics researchers might be overwhelmed by the amount of this data

if the prevailing trends continue. To quote M. J. Pallen, ”Genome sequencing risks be-

coming expensive molecular stamp collecting without the tools to mine the data and fuel

hypothesis-driven laboratory-based research.”[34],[76].

While the practice of converting biological data into digital form has almost cer-

tainly been going on since the first years computers entered the biology and medical

departments of universities, the rate of accumulation of sequence data has significantly in-

creased in the last two decades in particular. Jones[47] links this phenomenon to two key

events that have been taking place in this period: The US government’s Human Genome

Project and the EST (Expressed Sequence Tag) approach to gene discovery. The Hu-

man Genome Project; an ambitious undertaking with the previously unimaginable goal
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Figure 2.5: Genomic Data in the NCBI GeneBank Database

of sequencing the entire human genome; was planned in the late 1980s and initiated in

1990. In addition to generating huge amounts of data itself, the Human Genome Project

contributed to other large scale genomic data collection efforts by directly or indirectly

leading to many novel tools and techniques for capturing and analyzing sequence infor-

mation.

The EST methodology was devised by National Institute of Health (NIH) researchers

for accelerating the gene discovery process by isolating the messenger RNA molecules

and using this information to isolate the entire gene later. In conjunction with the Human

Genome Project effort, EST-based sequencing is generally accepted as a major driver

behind the massive amount of sequence data collected in the last decade.

A basic grasp of the various data types used in bioinformatics applications is there-

fore clearly crucial as a background for our analysis of these applications in the following
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chapters. In this section, we will briefly introduce the various kinds of data that provide

the input to many bioinformatics applications, along with widely used databases holding

such data, and the means through which this data is generally obtained.

2.3.1 Nucleotide and Genome Sequence Data

Nucleotide and genome sequence data form probably the largest segment of data

collected by molecular biologists. Nucleotide sequence data is primarily raw DNA se-

quence information which might just be the sequence for a gene specifying a certain pro-

tein, or an entire genome. Such data is generally represented as chains of letters(residues)

specifying different nucleic acids.

Nucleotide and genome sequence data together form what probably is the largest

collection of biological data. Most of this data is accessible to researchers all over the

world through the use of large repositories such as National Center for Biotechnology

Information(NCBI) GenBank[18], European Molecular Biology Laboratory(EMBL)[25]

and DNA Data Bank of Japan(DDBJ)[71] sequence databases. As of late 2005, the NCBI

GenBank contains more than a hundred billion base pairs of sequence data.

Currently, most nucleotide sequence data is obtained by the EST(expressed se-

quence tag) method where messenger RNA molecules are isolated and cloned, and then

partially sequenced in high-speed sequencers. The EST method yields large amounts of

sequence data which represents the expressed portions of genes. Considered to be one of

the most important factors in the growth of genomic data collection, the EST approach is

described in more detail in [9].
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Complete genome data is generally obtained by a technique called shotgun sequenc-

ing. In this method, complete sequence data for a long DNA strand is pieced together by

software from shorter random segments that have been obtained by sequencing physical

samples.

2.3.2 Protein Sequence Data

Since the primary structure of proteins are determined by their amino acid se-

quences representations, proteins can also be specified in sequence form. This repre-

sentation is similar to that of nucleotide sequence data, although in the case of protein

sequences each residue is an amino acid rather than a nucleic acid.

The central role of proteins and protein structure analysis in the drug discovery

process has led to sophisticated protein sequence databases with differing levels of de-

tail, and we will use the terminology introduced in [59] to describe these. At one end

of the spectrum are the large protein sequence databases such as SwissPROT and PIR,

which are primarily repositories of raw protein sequence data. In order of increasing spe-

cialization and sophistication, we observe composite protein sequence databases which

store filtered and annotated non-redundant data from different databases; and secondary

protein sequence databases which specialize in storing commonly conserved regions, pat-

terns, and other information distilled from primary and composite sequence databases.

Some widely used composite protein sequence databases of the first type are OWL and

the NR(non-redundant) protein database from NCBI. An example for the latter group of

databases is Pfam, which contains profile hidden Markov model(HMM) descriptions for
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many different protein families. This kind of data is only relevant for HMM-based protein

profile searching applications, one of which will be examined in detail elsewhere in this

thesis.

Protein sequence data can be obtained with the use of chemical methods such as

Edman degradation or mass spectroscopy methods, with the latter quickly becoming the

more widely used of the two. Mass spectroscopy protein sequencing method[90] in-

volves breaking a purified sample of the target protein into smaller units called peptides

and measuring the molecular weights of the peptides using a mass spectrometer. The

resulting mass spectrum can then be analyzed computationally to determine the amino

acid sequence of the original protein. Data in composite and secondary protein sequence

databases are obtained by processing this raw sequence data.

2.3.3 Protein Structure Data

While the amino acid sequence of a protein describes its evolutionary ancestry and

possible functionality to an extent, the description of a protein only becomes complete

when its secondary and tertiary structure, a complete specification of repeating patterns

in a protein and its 3D physical structure. This data has generally been obtained by us-

ing time-consuming methods such as X-ray crystallography and NMR(nuclear magnetic

resonance) spectroscopy, which explains the relatively small amount of such data in the

important biomolecule 3D structure databases such as PDB[19] and MMDB[97].

Protein structure prediction, or the determination of a protein’s 3D structure from

its amino acid sequence, is one of the most active research areas in today’s bioinformatics.
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Many different approaches to this very difficult problem have been proposed, so far with

limited success. Protein folding is a subproblem of this quest, and involves modeling the

physical forces between the atoms forming the protein. Any significant future successes

in protein structure prediction are likely to revolutionize the field by accelerating the drug

discovery process many times.

2.3.4 Gene Expression Data

The amount of messenger RNA produced by a cell during gene expression provides

information about the state of the cell and the corresponding protein levels. Since such

information is valuable to understand how the cell functions and decipher the biochem-

ical pathways for certain cell functions, researchers collect gene expression data in the

form of a time series measurement of messenger RNA levels. Commonly used meth-

ods for gene expression data collection are cDNA microarrays and microarray analysis,

oligonucleotide chips produced by Affymetrix, and the SAGE (Serial Analysis of Gene

Expression) method. The largest gene expression data repository as of early 2006 is the

NCBI GEO(Gene Expression Omnibus) [15] database.

2.4 Bioinformatics Application Domains

Collecting, analyzing and processing the diverse set of data described in the previ-

ous section calls for an even more diverse group of applications and algorithms. Some of

these are more prominent than others: Genomics,the study of the entire genome of a given

organism, is probably the most familiar bioinformatics application domain for many. Ge-
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nomics itself covers a variety of different topics: While functional genomics involves the

identification of specific functions of a gene in the genome, comparative genomics deals

with the analysis of similarities and differences in the genomes of different species. Ge-

nomics applications are probably the most commonly used bioinformatics applications,

which is not surprising considering the fact that genomic data constitutes the majority

of biological data in existence. A close second is proteomics, which studies the entire

set of proteins of an organism. While proteomics and genomics applications account for

a large number of well-known bioinformatics application in use, there are many other

lesser-known application domains in bioinformatics. The field of bioinformatics is still

relatively new with a very diverse variety of problems and subfields; and providing a com-

prehensive listing of all bioinformatics applications is outside the scope of dissertation. In

this section, we identify and briefly describe some of the more important bioinformatics

application domains which provided the applications analyzed in the later chapters.

2.4.1 Sequence Alignment

Modern genomics relies on the paradigm of evolution which suggests that all or-

ganisms are related to each other as a result of the evolutionary process. This implies that

similar proteins should exist in related species, and hence the sequences that code these

proteins should also be similar. This similarity is called homology in molecular biology.

The most important practical use of homology is in the determination and confirmation

of coding regions in DNA sequences. Comparing a sequence region with regions known

to encode certain proteins in other organisms can be useful for confirming whether the re-
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gion might be instrumental in coding a similar protein, or not. A high degree of homology

between two sequences from different organisms might also provide clues on the evolu-

tionary links between the organisms. Sequence alignment algorithms are used to align two

sequences in a way to maximize the similarity between them. In many cases, commonly

used pattern matching techniques are not readily applicable to biological sequences due

to the fuzzy nature of the data. To illustrate this point, we consider an alignment of the

DNA sequence ”AGTAGC” with ”GAG”. An ordinary string matching algorithm will not

be able to find ”GAG” within the larger string; but in case of biological sequence data we

can use a gap to accommodate the non-matching character ”T”:

AGTAGC

-G-AG-

Gaps can be inserted in both the sequence that is being searched, and the sequence

that is being used as the search pattern. If we were to align ”AGTAGC” with the sequence

”GCTA”, we would have:

AG-TAGC

-GCTA--

The number of matching residues(symbols) contributes positively to the similarity score;

and gaps/non-matching residues contribute negatively. Sequence alignment algorithms

aim to maximize the similarity score by finding the best alignment possible, which gener-

ally means that gaps should be avoided wherever possible. In the specific case of amino

acid sequences, the contribution of each residue match or the penalty associated with gaps

or non-matching residues is generally read from scoring matrices that were computed
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with evolutionary relationships of different amino acids taken into account. These ma-

trices are also called substitution matrices, and the most important substitution matrices

in use are BLOSUM(Blocks Substitution Matrix) and PAM(Percent Accepted Mutation).

These matrices are provided in several different varieties based on the degree of identity

between the sequences to be aligned.

Pairwise sequence alignment algorithms described in the literature generally use

a dynamic programming approach to solve what is essentially an optimization problem.

The most important of these are Smith-Waterman[85] and Needleman-Wunsch[68] dy-

namic programming algorithms, both of which can compute optimal solutions to the

pairwise alignment problem. The time and space complexity of these algorithms led

researchers to design heuristic algorithms that approximate their results while allowing

shorter execution times. The most widely used heuristic-based sequence alignment algo-

rithms are BLAST[12] and FASTA[77]; both of which can align DNA, RNA or protein

sequences.

2.4.2 Multiple Sequence Alignment

Just like sequence alignment methods are used to assess the extent of homology be-

tween two sequences, it is possible to extend the procedure to three or more sequences to

look for signs of homology. Aligning a larger number of sequences provides more insight

into how the sequences diverged through the process of evolution and which regions in

the sequence were particularly prone to mutations. Multiple sequence alignment is also

a useful tool in determining phylogeny; the tree-like conceptualization of evolutionary
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ancestry links between different organisms or species.

Extending dynamic programming based pairwise sequence alignment algorithms to

alignment of three or more sequences is not feasible due to the exponential complexity of

this approach with the number of sequences[26]. Thompson et al.[92] state that multiple

alignments of as few as 8 sequences with pairwise alignment techniques were not possible

with the computational power available at the time of the study (1994). In order to over-

come the complexity problem, a progressive alignment approach has been proposed[36]

and eventually successfully implemented in several different multiple sequence alignment

applications. This approach exploits the concept of homology to build a progressive mul-

tiple alignment by doing a series of pairwise sequence alignments while following the

branching order of a phylogenetic tree, which shows the evolutionary ancestry relation-

ship between the sequences. Since two sequences in the same phylogenetic tree branch

are by definition closely related, the pairwise alignments get progressively more difficult

as the sequences get more and more distant.

Probably the most widely used multiple sequence alignment tool is CLUSTAL

W[92], which uses the progressive algorithm described above. This application gener-

ates the phylogenetic tree by calculating a distance matrix for every pair of sequences

in the input set, and completes progressive alignment by using this tree as a guide. T-

COFFEE[69] is another multiple sequence alignment tool which is gaining popularity;

and uses a different, more computationally intensive algorithm.
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2.4.3 Phylogenetic Analysis

The term phylogeny describes the evolutionary relationship between different species.

Since such relationships can best be visualized in the form of a tree, depicting phylogeny

information in a tree format facilitates further elaboration on the sequences belonging to

species or biological entities thought to be related.

Most of the algorithms used for phylogenetic analysis fall within two categories

depending on the type of data they use: Distance-based algorithms typically compute

similarity metrics in the form of distances computed from pairwise alignments. In con-

trast, character-based methods directly use the multiple alignment of sequences to infer

tree structures. In both cases, a wide variety of computational methods such as maximum-

likelihood analysis, least-squares techniques or clustering methods can be applied to an-

alyze the similarity data and compute the structure of the tree. A comprehensive descrip-

tion of various algorithms and approaches to phylogenetic analysis can be found in [75].

The most common phylogenetic analysis software in current use are PHYLIP[35]

and PAUP[2], both of which have been used to generate very complex phylogenetic trees.

2.4.4 Protein Structure Prediction

As we briefly mentioned while describing protein structure data, the capability to

deduce the three-dimensional physical structure of a protein from its amino acid sequence

is highly desired because of its potential applications in the drug discovery process. Since

the biochemical function of a protein depends on its physical shape, pharmacology re-

searchers need to know the precise shape of the protein to be able to design a compound
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that can attach to it. Currently, the only way to determine the structural layouts of proteins

is through experimental methods such as NMR and X-ray crystallography.

Among all of the diverse application domains in bioinformatics, protein structure

prediction probably has one of the highest (if not the highest) requirements for computing

performance. In theory, inferring the physical (tertiary) structure of a protein from its

amino acid sequence data should be possible through the use of molecular dynamics for-

mulations, because the structure of the protein is dictated by the attraction and repulsion

forces between the structural elements forming it. In practice, a solution by molecular

modeling seems elusive, primarily because of the overwhelming computational cost and

inaccuracies introduced by the experimental processes needed to determine the parame-

ters needed for the computation. As a result, current research in this field has focused on

statistical and empirical methods which exploit the existing repository of protein structure

data.

Since the emerging field of protein structure prediction is still very active and many

important questions remain answered, it is somewhat difficult to name applications in

wide use. An example application THREADER[46] which evaluates the compatibility of

known protein folds and amino acid sequences. Rost et al.[83] describe the important is-

sues in protein structure prediction while providing a good introduction to this application

domain.
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2.4.5 Systems Biology: The Holy Grail

While the insights provided by genomics, proteomics and functional genomics have

allowed scientists to understand the origins of life better and formulate drugs for diseases,

they do not afford us a complete understanding of the complex events that take place

in even the simplest organisms. An emerging paradigm called systems biology aims to

combine the numerous computational biology techniques and data in order to model entire

biological systems such as tissues, organs, even complete life forms. The ambitious goal

of being able to model extremely complex biological systems, if realized, could allow

scientists with a very useful tool to observe important biochemical pathways in silico and

even test the effects of new medications using computer simulations.

Since systems biology is a very recent concept, the kind of applications and data

formats it will require are not fully determined yet. The breadth of the effort implies that

algorithms, workloads and data formats from all domains of bioinformatics are likely be

utilized. A good and concise introduction to the concepts and challenges of systems biol-

ogy is presented by Morel et al. in [64]. Finkelstein et al.[37] present a useful discussion

of the computational requirements of the emerging field of systems biology, centering on

the modeling challenge.

Needless to say, computational requirements of systems biology applications will

be enormous; and the field is already being recognized as a ”grand challenge” in high

performance computing. At the time this chapter was being written, Freddolino et al.

have published the results of the first complete simulation of an entire life form in [39].

They used the NAMD molecular dynamics framework[80] to simulate the modeled virus
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for 13ns. of simulated time. Even though the simulated life form(the satellite tobacco

mosaic virus) was a very simple and primitive organism containing a total of two proteins,

their full simulation ran on a 256-node (512 processors) Intel Itanium 2-based SGI Altix

NUMA SMP system at a speed of 1.1ns of simulated time per day.

2.5 Bioinformatics and The Drug Discovery Process

In order to maintain growth and meet their targets, drug companies need to develop

at least several new drugs with high sales potential every year. An important reason be-

hind this pressure on pharmaceutical companies is the relatively short patent protection

periods for drugs. Once a company loses patent protection on one of its flagship drugs,

revenues from that product fall precipitously as competitors rush to produce generic ver-

sions. Faced with the difficulty of coming up with suitable candidates for such drugs

using traditional techniques, large pharmaceutical companies started exploring the use of

bioinformatics in drug design during the mid-1990’s[47].

Traditional drug discovery heavily relied on animal models of diseases and chemi-

cals whose therapeutic values have been determined to some extent. In contrast, bioinformatics-

centered drug discovery starts with the identification of genes associated with a certain

disease or desired drug response. The detection of disease-related genes can be accom-

plished through the use of microarrays that detect the presence of related mRNA. Using

comparative genomics techniques, similar sequences in other organisms can be identified

and a human protein structure can be modeled. Armed with this information, researchers

can then target this protein and design a compound to bind to this molecular target.
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Commonly referred to as the rational drug design, this approach to drug discovery

requires the use of many different tools in the bioinformaticists’ arsenal[59, 8]. Genomics

applications such as sequence alignment are used to find homology between human genes

and their counterparts in other species. Protein profile searching applications might be

used to find similar patterns in human and animal proteins, and protein structure predic-

tion techniques play an important role in finding the chemicals to bind to the physical

structures of target proteins. The interplay of different applications and algorithms in the

rational drug discovery process suggests that the performance of these diverse applica-

tions is crucial for success in rapid and efficient drug discovery. The obvious potential

scientific and financial rewards of rational drug discovery are important driving factors

behind the research activity in bioinformatics.
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Chapter 3

Workload Characterization of Bioinformatics Applications

3.1 Overview

While the design and analysis of faster algorithms for bioinformatics applications

is a very active field of research, very little had been published in the literature on general

performance characteristics of these applications and the implications on system or pro-

cessor design at the time of the start of our studies for this thesis. Most of the published

work in this field seemed to have focused on incremental improvements to bioinformat-

ics application suites or certain algorithms. One reason behind the apparent disconnect

between computational biology and computer architecture communities could be the lack

of a standard benchmark suite of bioinformatics applications.

We saw a clear need for such a set of well-defined benchmark applications drawn

from bioinformatics codes in common use, which will be an important step towards mo-

tivating further research on the characteristics of such applications and their implication

on computer systems engineering. We studied important application domains in bioinfor-

matics and identified most widely used bioinformatics applications for further analysis.

This chapter describes the results of our efforts: BioBench, a benchmark suite of bioin-

formatics applications chosen to reflect the diversity of bioinformatics codes in common

use. The applications in BioBench and the reference data sets were selected with input

from the bioinformatics community, and we expect BioBench to evolve in response to
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future developments and comments from both bioinformatics and computer architecture

communities. The initial BioBench suite aimed to provide tools to evaluate bioinformat-

ics applications on uniprocessor systems, a parallel version is part of our future plans for

BioBench.

In addition to providing a benchmark for evaluating the performance of computer

systems running common bioinformatics applications, a secondary goal of the BioBench

suite is to establish bioinformatics applications as a distinctly different class of applica-

tions than the commonly accepted framework of scientific applications. In contrast to

these scientific applications which typically are floating-point intensive, many bioinfor-

matics applications operate with textual representations of biological sequence data. The

straightforward encoding of this data can mean that many bioinformatics codes are pri-

marily fast string search or pattern matching applications; and we have reason to expect

distinctly different execution behavior for these benchmarks than traditional scientific

application benchmarks, particularly with respect to the importance of floating point ver-

sus integer operations and branch behavior. In the benchmark characterization part of

our work, we obtain basic execution characteristics for the applications present in the

BioBench suite, and compare these characteristics to those of SPEC 2000 benchmarks to

test the validity of our expectations.

The rest of this chapter is organized as follows: Section 2 describes major bioin-

formatics application domains represented in BioBench, and describes the applications.

Section 3 describes our experimental methodology and tools used to obtain performance

data. Section 4 presents this data, and compares the characteristics of BioBench applica-

tions to those of SPEC 2000 benchmarks. We present some of the related work in Section
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5, and finally, we present some concluding remarks in Section 6.

3.2 BioBench Suite Applications

An important goal of the BioBench effort was to define a representative set of

bioinformatics application domains. We first identified several important application

classes and selected commonly used applications from these classes. While a diverse

set of benchmark applications was desirable, we limited the scope of this initial re-

lease of BioBench to relatively mature application classes that found widespread usage

in academia and industry. In addition to widespread use, another important criterion in

choosing benchmarks was the availability of source code for use in our studies, and in

some cases a relatively less known application suite had to be chosen instead of a popular

commercial suite.

Equally important was the selection of input data that is representative of real-

world computational biology problems. Problem sizes were determined in collabora-

tion with members of the bioinformatics community, and our execution-based method-

ology allowed us to use complete copies of major protein and DNA databases instead

of smaller data sets which would not be representative of real-world problems and could

have skewed the results. As an example, the BLAST workload in BioBench was evaluated

using NCBI’s NT database, containing 11GB of data that represented all DNA sequences

discovered to date.

We recognize that bioinformatics is a very diverse field, and the initial version of

BioBench does not cover some important application domains like microarray analysis,
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protein structure prediction, protein docking and spectrometry. In its initial version, the

choice of BioBench applications reflects an emphasis on mature genomics tools. (Future

versions will address a much wider variety of bioinformatics application domains. As

new application domains emerge, we plan to update BioBench with new benchmarks.)

The application classes and the individual BioBench benchmarks selected to repre-

sent them are listed below.

3.2.1 Bioinformatics Application Domains Represented in Biobench

Sequence Similarity Searching

Sequence similarity searching applications are typically used to identify similari-

ties between DNA or protein sequences, or to search for certain subsequences in large

sequence databases. The similarity between two sequences (or the lack of it) can often

reveal important clues about structural or functional relationships between them, and in

some cases can provide important clues about common evolutionary roots of organisms.

As described in the introduction of this thesis, the nature of the sequence data necessitates

a more complex search mechanism than simple text search, and exact algorithms like the

Smith-Waterman algorithm has been developed for this purpose. The complexity of the

Smith-Waterman algorithm in turn has led to research on approximation-based method-

ologies for sequence similarity searching, and the most commonly used applications in

this field are both based on algorithms that approximate Smith-Waterman. BioBench con-

tains programs from both BLAST [12] and FASTA [77], the two most widely used suites

for sequence similarity searching.
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• BLAST: The most commonly used sequence searching application is represented

by two programs, BLASTN and BLASTP, in the BioBench suite. These programs

are used for DNA and protein sequence searching, respectively. We used the freely

available version 1.3 of the BLAST suite. The DNA and protein databases used

were NCBI’s NT (11GB) and NR (945MB) databases containing the full set of

non-redundant of DNA and protein sequences submitted to NCBI.

• FASTA: BioBench includes the main search utility from University of Virginia’s

FASTA suite v3.4t21, the other important sequence searching suite [77]. FASTA

is generally accepted to be slower than BLAST, but it is the preferred application

in some cases due to its higher sensitivity and better tolerance to gaps. Just like

BLAST, FASTA contains applications for searching protein and DNA sequences.

To reflect the difference between protein and nucleotide (DNA) searches, our test

cases use the FASTA application for searching against a DNA database and a pro-

tein database with suitable search sequences. The DNA database used in our study

is a daily update file to the NCBI GenBank data repository (190MB), and the pro-

tein database used is the entire SwissPROT protein database(70MB) at the date of

this study.

Phylogenetic Analysis

Phylogenetic analysis aims to discover how a group of related protein sequences

were derived from common origins during the process of evolution. This information is

frequently displayed as a hierarchical diagram called a phylogenetic tree. The discovery
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and visualization of such relationships between proteins offers important clues on how

certain traits were passed from species to species, and the results from phylogenetic anal-

ysis are commonly used to guide further analysis on proteins deemed to share common

ancestry.

• PHYLIP: To represent phylogenetic analysis applications, we chose a benchmark

from the PHYLIP suite [35], version 3.5c. PHYLIP is the most widely used phy-

logenetic analysis package, and contains several programs to conduct different

types of phylogenetic analysis. The PHYLIP application chosen for inclusion in

BioBench is PROTPARS, a protein parsimony computation application.

Multiple Sequence Alignment

Multiple sequence alignment is the process of aligning more than two sequences to

find regions of similarity. This kind of analysis is used to have a deeper understanding of

similarity patterns that might suggest common origins between the proteins they code.

• CLUSTAL W: For our representative multiple-alignment benchmark, we chose the

CLUSTAL W multiple sequence alignment application. CLUSTAL W [92] builds

on the CLUSTAL package described in [43], and is currently the most commonly

used multiple sequence alignment application.

Protein Sequence Profile Searching

The process of evolution introduces a degree of randomness in the amino acid se-

quences which define proteins, causing additions or deletions of amino acids over time.
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This property of protein sequences necessitates the use of a fuzzy search mechanism.

When an evolutionary diverse set of proteins are under investigation to find remotely re-

lated (and therefore functionally similar) proteins, searching a sequence database for a

profile of a sequence family (a common signature of the family) can be more effective

than searching the same database for individual sequences. This analysis approach is

called sequence profile searching, or protein motif searching. The most common method

for this type of search involves the use of hidden Markov models, a probabilistic approach

commonly used in fields like speech recognition.

• HMMER: We selected the most commonly used protein sequence profile searching

program,HMMER[31], to represent this class of applications in BioBench. HM-

MER uses a hidden Markov model(HMM) based approach to conduct searches

of protein motifs against protein sequence databases, or single protein sequences

against protein motif databases. We used the hmmsearch application from the HM-

MER v2.3 to search the entire SwissPROT protein sequence database against the

consensus of a small selection of protein sequences.

Genome-level Alignment

Genome-level alignment algorithms and tools are used to align complete genomes

of related species. Due to the sheer number of nucleotides in a complete genome, multi-

sequence alignment algorithms and tools (which are more geared toward aligning sin-

gle proteins or simple nucleotide sequences) can not be used effectively for this task.

Genome-level alignment tools employ algorithms specifically developed for the purpose

36



of pairwise alignment of very large nucleotide sequences.

• MUMMER: MUMMER[29] is a genome-level alignment tool that uses suffix trees

to assemble complete genomes. We chose MUMMER v3.14 for inclusion in BioBench.

Sequence Assembly

Sequence assembly tools are used to generate sequence data from many small over-

lapping partial sequences obtained by DNA sequencing hardware. Also called shotgun

sequencing, sequence assembly is a crucial step in obtaining sequence data from physical

DNA sequences.

• TIGR: The class of sequence assembly applications is represented by the TIGR

Assembler[91] suite in BioBench. The version we used in BioBench was TIGR

Assembler v2.

3.3 Methodology and Tools

Many of the bioinformatics applications we selected, such as sequence similar-

ity searching and multiple alignment, are typically used in conjunction with very large

databases, resulting in large execution times that are impractical for a simulator-based

study. In order to meet our goal of collecting data on the entire execution of bioinfor-

matics applications with meaningful input sizes, we decided that the most suitable exper-

imental methodology was to use the hardware performance counters built into modern

microprocessors rather than a processor simulator.

Many modern microprocessors include special-purpose counters that can be used
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to count occurrences of different events and registers to access these counters. Among

the many different events that can be counted are cache misses, branch mispredictions,

and others that are useful measures of application performance. A particular drawback

of hardware performance counters is their limited number: there were only 2 on the Intel

Pentium 3 CPU used in our study. One workaround for this limitation is multiplexing,

which uses time-sharing to use the counters to measure different events at different time

slices, and extrapolates the result. For long-running applications (which is typical for

bioinformatics application workloads), the multiplexing method yields reasonably accu-

rate measurements [62]. We used the PAPI hardware performance counter access library

[21] that uses the perfctr Linux kernel patch for counter multiplexing. To facilitate data

collection and analysis, we used the PerfSuite [3] utilities.

Using these software to utilize CPU performance counters, we were able to run

unmodified BioBench applications with large input sizes characteristic of their typical

use. We used a commodity workstation based on an Intel Pentium 3 CPU running Linux

kernel 2.4.22; and PAPI v3.0.(At the time we ran our experiments(early 2004), a Pentium

3 based machine was the latest available to us) All BioBench programs were compiled

using gcc version 2.95 on the same computer system used for data collection, at the -

O4 optimization level. To collect some low-level hardware performance counter data not

collected by PerfSuite/PAPI, we also used the brink/abyss [89] toolset.

To provide a comparison to the SPEC benchmark suite, applications from the SPEC

2000 suite were also compiled using the same compiler and system using the default pa-

rameters. We collected execution characteristics using complete reference data input sets

from the SPEC distribution, to be used for comparison against the BioBench benchmark
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Benchmark
 Description
 Instruction Count

blastn
 DNA sequence searching
 215,131,057,029


blastp
 Protein sequence searching
 514,628,929,894


clustalw
 Multiple sequence alignment
 2,150,900,967,391


fasta_dna
 DNA sequence searching
 1,001,512,078,272

fasta_prot
 Protein sequence searching
 1,149,078,024,873


hmmer
 Sequence profile searching
 1,573,753,830,214


mummer
 Genome-level alignment
 106,703,486,044


protpars
 Phylogenetic analysis
 1,730,029,486,107


tigr
 Sequence assembly
 862,484,000,000


Table 3.1: BioBench Benchmarks and Workload Instruction Counts

Processor
 Intel Pentium III


Clock Speed
 700 MHz

Main Memory
 512MB

L1 data cache
 16KB, 4-way set assoc.

L1 instr. cache
 16KB, 4-way set assoc.


L2 cache
 256KB, 8-way set assoc.

Cache Line Size
 32B


Table 3.2: Parameters of the system used in the study

applications.

Our execution-based methodology allowed us to collect precise performance char-

acteristics on a real commodity processor for entire workloads that took up to 2.1 trillion

instructions. The number of instructions for each benchmark in the BioBench suite are

presented in Table 3.1. Some pertinent parameters of the Intel Pentium 3-based system

used for our study are given in Table 3.2.

3.4 Benchmark Characteristics

To characterize the BioBench suite, we collected detailed data on instruction pro-

files, basic block lengths, IPC, L1 and L2 data cache miss rates, and branch prediction

accuracy. The same set of data were collected for the SPEC 2000 benchmarks for com-
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parison.

3.4.1 Instruction Mix

In the first phase of the evaluation, hardware performance counters were used to

provide a count of instructions belonging to different major instruction classes in the x86

architecture. Instruction profiles for BioBench applications are given in Figure 3.1. For

comparison, the average instruction class percentages for SPEC INT and FP benchmarks

are also shown. The instruction class profiles of BioBench applications reveal several

interesting points: First, we observe that the floating point operation content of almost

all BioBench applications are negligible. This finding reflects the intuition that bioin-

formatics(particularly genomics) applications are inherently different from mainstream

scientific codes due to the representation of the sequence data they operate on. None

of the BioBench workloads contained a floating point instruction content of more than

0.09 % of all instructions executed. While operating on primarily string data, most of

the benchmarks do rely on some floating point computation for calculating statistics and

likelihood values as part of their main algorithms, but this does not seem to constitute a

significant part of the overall instruction count.

The average share of load instructions in BioBench applications has a marked dif-

ference from that of SPEC integer benchmarks, and these instructions constitute a larger

portion of the instruction mix in BioBench than in both classes of SPEC benchmarks. This

implies that the amount of computation per datum is relatively small, which is a typical

character of many search algorithms(Many of the BioBench components search through
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Figure 3.1: Instruction profiles for all BioBench benchmarks

large input files and databases.). The BioBench component with the lowest share of loads,

protpars, was also the one benchmark with the smallest input file size in the benchmarks.

(It is the second longest-running workload in BioBench, however.) Protpars essentially is

less of a database search application than many of the BioBench components are, since its

main function computes a tree-like hierarchy for related species using relatively shorter

sections of sequences. This benchmark also differed from the rest of BioBench compo-

nents with its larger share of integer ALU instructions, these instructions accounting for

more than half of the instruction count. Similarly high share of load instructions was

observed in one other non-search component, namely mummer which was found to be

highly memory-bound with its dependence on very large suffix-tree data structures cre-
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Figure 3.2: IPC values for all BioBench benchmarks and SPEC averages

ated in memory. The higher share of load/store operations in BioBench suggests that

bioinformatics applications might benefit from future architectures with higher memory

bandwidth and prefetching.

3.4.2 ILP(Instruction Level Parallelism)

Figure 3.2 shows the IPC values for the applications in the BioBench suite. The

somewhat higher average IPC of the BioBench benchmarks hint at higher levels of ILP

(instruction-level parallelism) in the BioBench applications than the SPEC INT and FP

benchmarks. There seems to be a marked difference between the ILP levels in the

BioBench suite and the SPEC INT suite, to the degree that only one BioBench applica-

tion(tigr) has an IPC level lower than the SPEC INT average. This finding is encouraging,
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and along with our earlier finding of almost negligible floating point content in BioBench,

suggests that the basic algorithms underlying these bioinformatics applications will bene-

fit from either wider superscalars of the future, or future chip multiprocessors with highly

optimized fast integer execution units. In light of the recent microarchitectural trends and

the increasing popularity of chip multiprocessors(CMPs), the finding that bioinformat-

ics applications exhibit a fairly good degree of fine-grained instruction-level parallelism

in addition to relatively easily exploited coarse-grained parallelism bodes very well for

these workloads. However, the average level of ILP still seems limited, which suggests

that we need to look elsewhere(thread-level and data parallelism) for even higher perfor-

mance gains for these applications.

The IPC values display a great deal of variability among benchmarks. blastn and

clustalw have the highest ILP levels among the benchmarks(It should come as no sur-

prise that these benchmarks also display higher degrees of branch prediction accuracy and

higher basic block lengths.). In turn, mummer and tigr have the lowest ILP. This dismal

performance seems to be related to the memory access characteristics of these bench-

marks: mummer in general is a highly memory-bound application which also seems to

suffer from high L1 and L2 data cache miss rates; and tigr has the highest L1 data cache

miss rates among all BioBench benchmarks. While we anticipated to observe high levels

of ILP in bioinformatics codes due to the often mentioned “embarassingly parallel” na-

ture of these programs, we did not expect to see this level of difference between BioBench

and SPEC suite. The considerable variation in the IPC values for the individual applica-

tions in BioBench is noteworthy, and our future work on BioBench will include a detailed

analysis of performance differences between applications that are very similar in function
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Figure 3.3: Basic block length for all BioBench benchmarks and SPEC averages

and usage, a clear example being blastn and fasta dna which execute essentially the same

kind of search using two different algorithms.

3.4.3 Basic Block Length

The basic block length for BioBench applications is shown in Figure 3.3. The av-

erage basic block length of the BioBench suite suggests that roughly one in every eight

instructions is a branch. Sequence similarity search and multiple alignment applications

have somewhat longer basic block lengths than the rest of the benchmarks, suggesting a

more regular control flow. On average, BioBench applications have a basic block length

that lies roughly between those of the SPEC INT and SPEC FP averages; all individual

BioBench benchmarks having higher basic block lengths than the SPEC INT average.
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Figure 3.4: Branch prediction accuracy for all BioBench benchmarks and SPEC averages

The higher basic block length for applications in BioBench support the finding that bioin-

formatics applications are closer to scientific workloads than integer workloads in terms

of the distribution of control transfer instructions.

3.4.4 Branch Prediction Accuracy

3.4.5 L1 and L2 Data Cache Miss Rates

Figure 3.4 shows the branch prediction accuracy for the benchmarks. While the

branch prediction accuracy for BioBench benchmarks is somewhat lower than that for

SPEC benchmarks, the difference is not significant considering the very high predic-

tion accuracy available with modern branch predictors. In general, the branch predic-

tion mechanisms in modern microprocessors seem to be working well for bioinformatics
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Figure 3.5: L1 data cache miss rate for all BioBench benchmarks and SPEC averages

applications.

An interesting observation in the predictability of branches in protein and DNA

searching applications: the branches in blastp and fasta prot seem to be much less pre-

dictable than their nucleotide(DNA) counterparts blastn and fasta dna. These two bench-

marks are the only entries in BioBench with less than 90 percent branch prediction ac-

curacy. This might be linked to the higher number of possible symbols in protein se-

quences(20 vs. 4). In fact, the two protein similarity search applications have the least

predictable branches in the suite.

Considering the size of the genetic databases that most bioinformatics applications

use, the memory subsystem behavior of these workloads will be a substantial determinant

of their overall performance and a detailed study of this is presented in another chapter of
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this dissertation. As a part of our study, we also looked at L1 and L2 data cache miss rates

of BioBench applications that were obtained using the processor performance counters

(BioBench applications display negligible instruction cache miss rates, therefore I-cache

results are not included in this study). L1 and L2 data cache miss rates are shown in

Figures 3.5 and 3.6, respectively, and highlight differences in memory usage patterns of

different BioBench components. The genome-level alignment program mummer and the

sequence assembly program tigr have higher L1 data cache miss rates than the rest of the

applications in BioBench, a characteristic mirrorred by their L2 data cache miss behav-

iors. These two applications had very high levels of memory utilization that eventually

led us to scale the problem size for mummer down to be able to run it to completion on our

test system with 512MB of main memory. In contrast, the multiple alignment component

clustalw displayed very low L1 and L2 data cache miss rates. The component with largest

duration of execution in our studies, clustalw displayed high IPC and fairly high average

basic block length in addition to its low memory footprint. To our knowledge clustalw

is one of the few commonly-used computational biology applications that had not been

implemented in hardware before, and we believe its characteristics warrant a closer look

at this benchmark as part of our future work. fasta prot also displays a similarly low L1

and L2 miss rate, suggesting high data locality.

3.4.6 Execution Profiles

Many performance characterization studies in the literature treat the workload as a

black box, and do not attempt to provide a view of how and where the workload spends
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Figure 3.6: L2 data cache miss rate for all BioBench benchmarks and SPEC averages

its execution time. Most workloads have a small number of functions where most of

the execution time is spent; and studying these (often short) parts of the code can yield

useful insights for better understanding of its performance characteristics potential for

future optimizations. We believed that a study of the breakdown of total execution time

for BioBench benchmarks would be helpful for determining where optimization efforts

should be focused. To this end, we used gprof [41] to profile the execution of BioBench

applications on an 2.8GHz Intel Pentium 4 based Linux workstation with 2GB of RAM.

All the workloads were compiled by gcc using the same settings used in the character-

ization study, and the same reference inputs were used. After a complete run of each

benchmark, we tabulated the top 5 functions with respect to percentage of execution time.

For each of the nine benchmarks, the total percentage of execution time spent in the top
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Rank
 Function
 % of Run Time

1
 BlastNtWordFinder
 84.85


2
 BlastNtWordExtend
 10.72

3
 ALIGN_packed_nucl
 2.09


4
 readdb_get_sequence
 1.49

5
 readdb_get_sequence_ex
 0.10


BLASTN


Rank
 Function
 % of Run Time

1
 bg_align
 26.27


2
 FLOCAL_ALIGN
 23.84

3
 LOCAL_ALIGN
 23.79


4
 do_fasta
 17.94

5
 discons
 2.34


FASTA_DNA


Rank
 Function
 % of Run Time

1
 diff
 51.16

2
 forward_pass
 23.97

3
 backward_pass
 21.61

4
 pdiff
 1.83


5
 open_penalty2
 0.21


CLUSTALW


Rank
 Function
 % of Run Time

1
 BlastWordFinder_mh_contig
 72.08


2
 SEMI_G_ALIGN_EX
 13.73

3
 BlastWordExtend_prelim
 11.18


4
 BLASTPerformFinalSearch
 0.42

5
 readdb_get_sequence
 0.32


BLASTP


Rank
 Function
 % of Run Time

1
 FLOCAL_ALIGN
 43.26


2
 do_fasta
 25.29

3
 savemax
 3.94


4
 spam
 3.91

5
 vfprintf
 2.93


FASTA_PROT


Rank
 Function
 % of Run Time

1
 P7Viterbi
 98.21

2
 P7ViterbiTrace
 0.69

3
 index
 0.31

4
 _int_malloc
 0.11


5
 SymbolIndex
 0.08


HMMER


Rank
 Function
 % of Run Time

1
 scanprefixfromnodestree
 40.89

2
 rescanstree
 32.26


3
 write
 6.89

4
 rescan
 4.66


5
 scanprefix
 4.65


MUMMER


Rank
 Function
 % of Run Time

1
 find_align
 42.94

2
 computePairRecords
 29.83


3
 buildHash
 8.80


4
 best_match_compare
 4.86

5
 reset_coords
 3.59


TIGR


Rank
 Function
 % of Run Time

1
 fillin
 98.77

2
 evaluate
 0.85


3
 preorder
 0.10

4
 savetree
 0.10


5
 savetraverse
 0.07


PROTPARS


Figure 3.7: Top 5 functions according to percentage of execution time in BioBench work-

loads

49



five functions range from 94.6 percent(BLASTN) to 99.2 percent(HMMER), therefore

just listing the top five functions gives a fairly thorough picture of the breakdown of exe-

cution time. Figure 3.7 displays this data in a table.

HMMER exhibits a very interesting profile, with one function dominating the en-

tire run of the program. The P7Viterbi() function, which takes up to 98.21 percent of

the execution time in our experiment, implements the Viterbi algorithm, the algorithm

used in hmmer search application for computing the overall probability of a path through

the hidden Markov model representation of a protein profile. Clearly, the impact of

P7Viterbi() on the performance of the hmmer search workload is so high that any ef-

fective optimization of this function can boost the performance of this workload signifi-

cantly. This property of HMM profile searching has been used to accelerate this workload

on several different platforms: Lindahl[?] used AltiVec SIMD extensions to accelerate

the P7Viterbi() function to significantly increase the performance of hmmer on IBM and

Motorola (Freescale) PowerPC platform. As we will explain in Chapter 5, the almost

total dependence of hmmer performance on one relatively compact function was one of

the most important reasons for choosing this workload as our case study for accelerating

bioinformatics workloads on the Cell Broadband Engine multiprocessor.

The execution time of clustalw is dominated by a few functions: Only three dif-

ferent functions (diff(),forward pass() and backward pass) account for 96.74 percent of

the execution time. A close look at the benchmark source code and the related work of

Thompson et al.[92] reveals that the algorithm used in clustalw consists of three stages:

Calculation of the distance matrix, guide tree calculation and progressive alignment. The

diff() function, which takes up 51.16% of the total execution time, implements a memory-
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efficient pairwise alignment algorithm (described by Myers and Miller in [67]) for the

progressive alignment stage. It is mentioned in [92] that the algorithm sacrifices compu-

tation speed for memory efficiency, which suggests it might be possible to replace it with

a faster algorithm on systems with sufficiently large memory for large alignments. The

other two functions are used in the pairwise alignment stage.

Protpars seems to spend almost all of its execution time (98.77 percent) in a single

function named fillin; which is a relatively straightforward and short function that operates

on a tree structure and counts the changes among the subparts of the tree. textitProtpars

was one of the more time-consuming applications we studied; and the relatively high L1

and L2 cache miss rates of this benchmark suggests that frequent cache misses caused by

the random, pointer-chasing nature of memory accesses in this function is probably the

most important factor responsible for its long run time and low performance.

FASTA uses a modified Smith-Waterman algorithm which works on a band of

residues, which is referred to as a “banded Smith-Waterman” algorithm. Most of the

execution time of Fasta dna are spent in the band boundary detection and band alignment

functions LOCAL ALIGN and bg align functions, as well as the banded Smith-Waterman

algorithm implementation itself in the form of FLOCAL ALIGN. For protein sequence

searching against a protein database, FASTA uses a full Smith-Waterman algoritm, and

the FLOCAL ALIGN function (executed with no band restrictions) takes up to 43.26 per-

cent of the execution time for Fasta prot. The performance characteristics of the Smith-

Waterman algorithm have been studied extensively, and any optimization of this function

could be applicable to accelerate FASTA in both protein and DNA searching modes.

A majority of the execution times of both BLAST applications are spent in the
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BlastNtWordFinder and BlastWordFinder mh contig(for BLASTP) functions which im-

plement the heuristic algorithm used to search words which will yield high scores after

alignment and scoring using the substitution matrix. BLAST is generally accepted to be

I/O bound, and previous attempts in the literature to improve its performance yielded only

limited results (with the exception of FPGA-based hardware implementations such as ),

suggesting that these functions remain difficult targets for acceleration.

A close look at the most-time consuming functions in the mummer and tigr bench-

marks reveal a similar structure where the main algorithm is divided into two major func-

tions which take up to more than 80 percent of the running time(In both of these bench-

marks, the rest of the execution time is spent in a large number of other functions; which

do not show up in the top 5 functions in Figure 3.7.). In the case of mummer, these two

functions are used to create and scan the suffix tree data structures. This application has

been continually improved in recent years, and most of the improvements seem to have

centered on decreasing the large memory footprint of the algorithms implemented in these

functions.

3.5 Related Work

Many examples of application domain-specific benchmark suites have been pro-

posed and some were widely accepted, following the example of the SPEC [87] suite for

evaluation of integer and floating-point performance of computer systems. Among the

most notable are the TPC benchmarks [93] for database/transaction processing, and more

recently benchmark suites like MediaBench [56] or CommBench [99].
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To the best of our knowledge, a comprehensive set of bioinformatics benchmarks

has not been compiled and studied prior to our study. In contrast, studies on performance

of individual algorithms or tools were abundant in literature, and most of the published

work on performance studies of bioinformatics workloads involved either performance

optimization of established algorithms, or analysis of the performance of such algorithms

on parallel systems. Yap et al. [102] present a detailed study of parallel sequence search-

ing. Catalyurek et al. [23] analyze performance of specific applications on a centralized-

server, multi-client environment. While we could not find any comprehensive academic

study of multiple bioinformatics workloads that predated the first publication of our work,

we noticed at least one publication on the subject from the industry: The SGI Bioinformat-

ics Performance Report [4] includes several studies of uniprocessor and multiprocessor

bioinformatics applications.

Several bioinformatics benchmarks suites were proposed very shortly after the first

release of BioBench: Li et al.[57] proposed a similar benchmark suite (BioInfoMark) that

is somewhat broader in scope, and presented a detailed characterization suite which was

done using a very similar methodology to ours. Bader et al. also presented a benchmark

suite (BioSplash) in [14], which included some parallel applications and somewhat com-

prehensive workload characterization analysis. The BioSplash and BioInfoMark efforts

were combined in late 2005, giving way to a more streamlined benchmark suite named

BioPerf, described in some detail in [13].
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3.6 Concluding Remarks

In this chapter of the dissertation, we briefly identified and described important

computational biology application categories and presented BioBench, a benchmark suite

of bioinformatics applications that represents relatively mature application classes with

reference data that closely parallels real usage. BioBench applications and reference

input data have been made available to researchers and was received with interest. In

addition to allowing researchers to evaluate their systems using bioinformatics applica-

tions, BioBench also helped spur new benchmark suites for bioinformatics, and several

such suites followed our work. We believe BioBench filled an imminent need for a well-

defined set of benchmarks covering an important emerging class of applications.

Our evaluation of BioBench components validated our intuition that bioinformatics

applications have characteristics that distinguish them from traditional scientific com-

puting applications characterized by SPEC FP benchmarks. Bioinformatics applications

evaluated in this study displayed almost no significant floating point instructions and

higher ILP while having basic block lengths closer to SPEC FP benchmarks than SPEC

INT, implying similar regularity in distribution of branches. These findings indicate that

bioinformatics applications stand to benefit from future architectural features such as in-

creased memory bandwidth and wider execution units to exploit their high ILP. In addi-

tion, some of these applications might benefit from prefetching as well.

The applications studied in this chapter are single-threaded, and some applications

do not even have multithreaded counterparts. Given the current trends in microarchitec-

ture, we expect this situation to change soon: Bioinformatics researchers will certainly
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move quickly to take advantage of chip multiprocessor(CMP) architectures and paral-

lelize important bioinformatics applications. We believe that the performance characteri-

zation work presented here will still be pertinent to evaluating single-thread performance

of bioinformatics applications on future CMPs; and parts of the characterization data like

instruction profiles might be helpful to guide future performance characterization studies

of multithreaded bioinformatics applications. Overall, we believe that our findings from

this characterization study paved the way for deeper analysis which formed the basis of

the rest of this dissertation.

Looking ahead, we plan to expand BioBench with benchmarks from several other

emerging bioinformatics application domains in its next revision. Considering the paral-

lelism available in bioinformatics workloads, a parallel version of BioBench would be a

very valuable tool for studying the characteristics of these codes on multiprocessor sys-

tems and clusters, and such a version of BioBench is among our plans for future work

in this field. In addition, we will be conducting studies on different levels of parallelism

available in bioinformatics applications by studying BioBench components in detail to

evaluate how such applications can be accelerated using thread-level parallelism tech-

niques.
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Chapter 4

Memory System Performance of Bioinformatics Applications

4.1 Overview

The importance of bioinformatics applications has increased dramatically in the re-

cent years, mostly owing to the availability of massive amounts of genetic data from the

research community as well as the emergence of new techniques to use this data. Fast and

efficient utilization of this wealth of new genetic information holds many promises, some

of which are new therapies for many previously intractable diseases, accelerated drug dis-

covery schedules and more resistant, high-yield crops. Considering the immense potential

impact of the field on science and economy alike, we expect bioinformatics workloads to

be among the most important scientific computing workloads in the foreseeable future.

Many bioinformatics applications, particularly those in the genomics domain; in-

volve searching large volumes of genetic data for patterns. The amount of such data in

public and private databases is increasing at an almost exponential rate; and this increase

is expected to accelerate further in the near future. As of August 2005, the total amount

of DNA and RNA data in the three leading public databases (GenBank, EMBL-Bank and

DNA Data Bank of Japan) exceeds 100,000,000,000 bases, encompassing 165,000 dif-

ferent organisms[1]. The bad news for researchers eager to sift through this data is the

fact that available memory bandwidth and latency in recent computer architectures is not

exhibiting a trend similar to that of available biological data. Despite significant achieve-
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ments in process technology, the gap between DRAM latencies and operating frequencies

of modern microprocessors persists. Aptly named ”the memory wall” [100], the limita-

tions imposed by this gap mean that memory access time is likely to remain as an obstacle

on the path to higher performance. The adverse effects on application performance will

be even more pronounced for workloads which operate on large amounts of data, such as

bioinformatics applications.

To improve the performance of bioinformatics applications; a thorough understand-

ing of memory access characteristics and cache performance of such workloads is there-

fore crucial. While general performance characteristics of some of these workloads have

been studied in some detail on a per-application basis, very few results have been pre-

sented to provide insight into the memory performance characteristics of a wide range of

bioinformatics applications. In this chapter of this thesis, we aim to present a quantitative

study of memory footprints of bioinformatics applications sampled from a relatively com-

prehensive range of application domains. The remainder of this chapter is organized as

follows: We begin by presenting a very brief overview and descriptions of the workloads

we studied in Section 2. In Section 3 we outline some of the previous work related to the

area, and Section 4 describes our experimental methodology. We present our results in

Section 5, followed by our conclusions.

4.2 Applications

Over the last two decades, the scope of bioinformatics has widened to encompass

many different application domains; and an exact and concise description of the field
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remains elusive. Generally defined, bioinformatics is the application of information tech-

nologies to biology with the goal of understanding how the basic building blocks of living

organisms develop and interact with each other. A more detailed introduction is provided

in the first chapter of this thesis. For a more thorough description of bioinformatics con-

cepts, common applications and algorithms, we refer the interested reader to comprehen-

sive introductory works such as [59], [26] and [34].

In order to reflect the diversity of the field, the bioinformatics benchmarks used

in this study were chosen from the BioBench benchmark suite [11] described earlier in

Chapter 3, which contains applications from a reasonably diverse set of bioinformatics

application domains. The input parameters and data sets of the original BioBench distri-

bution were used without modification.

4.3 Related Work

While computational biology and bioinformatics have been active research topics

for a long time; comprehensive performance evaluation studies of diverse bioinformatics

applications have been absent from the literature until recently. It should be mentioned

that earlier work describing individual algorithms and bioinformatics applications has

usually included some coverage of cache performance characteristics.

More recently, there has been a series of proposals of bioinformatics benchmark

suites and accompanying workload characterization efforts with varying levels of detail.

Albayraktaroglu et al.[11] described the benchmark suite used in this study and presented

a workload characterization of bioinformatics applications, including a basic cache per-
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formance analysis and a comparison to both SPEC INT and SPEC FP suites. They articu-

late that bioinformatics applications exhibit cache miss rates between those of SPEC INT

and SPEC FP benchmarks in general. A later paper by Li et al.[57] describes and charac-

terizes a similar benchmark suite. According to their analysis, bioinformatics workloads

have a lower average cache miss rate than that of SPEC integer benchmarks. It should

be added, however, that their study excludes the much more memory intensive SPEC FP

benchmarks from their comparisons. Bader et al. present a comprehensive benchmark

suite in [13], without any memory performance analysis. In another study [14], Bader

et al. present and characterize a bioinformatics benchmark suite which includes paral-

lel applications. This study presents detailed memory system performance data covering

L1 and L2 cache miss rates, TLB miss rates and number of memory accesses among

others. Jaleel et al. studied the last-level cache access characteristics of several parallel

bioinformatics applications in [45].

Memory access characteristics of more traditional applications have been studied in

greater detail. Studies covering the SPEC benchmark suite[84], database workloads [16]

[94], and multimedia applications [86] provide extensive insight into the memory access

characteristics and performance of a wide spectrum of workloads.

4.4 Methodology

To obtain a comprehensive understanding of the memory behavior of bioinformatics

workloads, we wanted to study the impact of different cache sizes on application perfor-

mance. The two prevalent methodologies for these kind of studies are execution-based
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and trace-based simulation. Execution-based simulation relies on a detailed functional

model of the processor to capture the stream of memory accesses from the application

under study. The performance problems inherent in this method led to the use of trace-

based simulation; which involves generating and collecting memory address traces from

an application using methods like hardware probes or instrumentation. These traces are

then fed into a reconfigurable cache simulator. While collecting memory traces is practi-

cal for small computational kernels, benchmarks with small memory footprints and rep-

resentative program slices; this method was not suitable for studying complete runs of the

large benchmarks like those in this study. Therefore, the sheer size of the data sets used

by the applications that we studied necessitated the development of a cache simulation

framework that could cope with the large number of memory accesses.

We used the PIN binary instrumentation framework [58] to develop simCMPcache,

a configurable cache simulator for the x86 architecture that does not require trace collec-

tion. In addition to being fully configurable to test different cache parameters such as size,

associativity, and allocation/replacement policies; simCMPCache can also provide infor-

mation on the total amount of data shared between different threads of an application. In

the next section, we will describe simCMPcache briefly.

4.4.1 simCMPcache Cache Simulation Framework

PIN [58] is a dynamic binary instrumentation tool which provides the capability of

running applications in an instrumented mode similar to a virtual machine. The current

version of PIN supports a variety of Intel architectures including IA-32(32-bit x86), which
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is the architecture we used in this study. PIN is similar in design and concept to the earlier

ATOM toolkit for DEC/Compaq Alpha architecture. Similar to ATOM, PIN provides a

complete infrastructure for writing program analysis tools called PIN tools.

A PIN tool is a C/C++ application that uses the PIN API to insert instrumentation

calls in arbitrary points chosen by the programmer in a program instruction stream during

execution. The PIN API provides full access to the internal data structures of the execu-

tion environment, providing a flexible mechanism for analysis tasks like counting certain

types of instructions, or triggering different functions based on the type of x86 instruction

encountered. Routines using the API for purposes like these are called instrumentation

routines in PIN parlance. Instrumentation routines interact with analysis routines, which

are called by the instrumentation routines in runtime to do the actual analysis. For ex-

ample. a user can specify an analysis routine called saveBranchAddress() to save the

branch address every time an unconditional branch instruction is encountered.With such

comprehensive access to the instruction stream during actual execution on a real plat-

form, PIN allows computer architects to design and implement a large variety of analysis

tools to conduct microarchitectural studies. PIN also supports the instrumentation of

multithreaded applications. PIN automatically detects the creation of new threads and al-

locates contexts for these threads. Analysis results from these threads can then be tagged

with unique thread IDs assigned by PIN. We used a PIN-based cache simulator, sim-

CMPcache, developed by Jaleel et al.[45] for their work on last-level cache performance

analysis of bioinformatics benchmarks. This simulator uses two instrumentation routines

named Instruction() and Trace(); which are used to identify new instructions and new ba-

sic blocks(traces) respectively. The Instruction() routine checks the new x86 instruction

61



to detect whether it is a memory reference or not. In the case that the instruction is indeed

a memory access, then the thread ID, access type (read or write), the effective address and

size are used as input to the resulting call to the main analysis function, CacheLookup().

This routine executes a cache lookup from the built-in configurable cache model.

Our cache model can implement a two or three-level cache hierarchy with as many

caches per level as the number of cores in a CMP. In case of a CMP cache model, each

level can be configured to be shared or private. If the workloads to be analyzed are multi-

threaded, an invalidate-based MSI coherence protocol is used. In addition, simCMPcache

can also model a TLB and provide statistics on TLB accesses.

simCMPcache is a very flexible and powerful cache simulation framework that har-

nesses the capabilities of the PIN framework to eliminate the large storage requirements

and trace collection efforts associated with trace-driven cache simulators. Our use of sim-

CMPcache allowed us to evaluate a large number of simulations with varying cache sizes

to determine the memory footprints of bioinformatics workloads.

4.5 Experimental Results

Our consultations with practicing bioinformaticists suggested that bioinformatics

applications in production environments were typically optimized to the highest extent

possible; therefore we opted to optimize the benchmarks to a reasonably high level. All

benchmarks have been compiled using gcc 3.3 at the optimization level -O3 and stat-

ically linked. The gcc compiler suite supports a host of optimizations for the x86 ar-

chitecture like loop unrolling, and these have been enabled where applicable. Two of
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the BioBench applications (BLASTN and PROTPARS) could not be executed in our bi-

nary instrumentation-based cache simulation framework, and had been excluded from this

study. All of the remaining workloads were ran to completion using the the set of input

data provided with the BioBench distribution. We used a “compute-farm” composed of

systems based on various Intel Pentium 4 CPUs (running the same version of Linux) for

our measurements. Using such a cluster allowed us to cut down the data collection time

drastically; especially considering the large number of different cache size configurations

that we used in our studies. The benchmarks were either single-threaded from the start or

had multithreading disabled to make compilation on multiple platforms; and the simulta-

neous multithreading (SMT) support of the Pentium 4 architecture did not play a role in

our measurements.

Many bioinformatics applications are known to be memory bound, and cache size

can be a very important factor in the performance of such workloads. Our previous anal-

ysis of BioBench benchmarks showed that the instruction cache miss rates of many of

these applications were in many cases negligible, and L1 data cache miss rates were less

than 3% in average. To study the impact of L2 data cache size on performance, we used

simCMPcache to vary the size of the L2 cache from 64KB to 32MB in increments of

64KB; and plotted the results. Our analysis methodology uses the stack distance method

described in [61] to simulate multiple cache configurations in the same execution of the

simulator: the 64KB configuration is direct-mapped and the next configuration (128KB)

is 2-way set associative, and the associativity continues to increase as the cache size in-

creases. We used a line size of 64 bytes, and modeled a non-inclusive, write-through,

write-allocate cache with an LRU replacement policy. We chose to use misses per 1000
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Figure 4.1: BLAST

instructions for our cache miss rate statistics as this metric is a more appropriate choice

for the out-of-order Pentium 4 cores used in cluster we used to obtain our simulation data.

In general, the three sequence alignment applications we studied displayed simi-

lar memory footprint characteristics. The working set of BLASTN is around 512KB as

seen in Figure 4.1. Figure 4.2 and 4.3 show the variation of L2 data cache miss rates

of FASTA DNA and FASTA PROT respectively. The cache miss rate of FASTA DNA

is already at a fairly low level with minimal L2 cache size, and the working set seemed

to completely fit in a 512KB cache. As the cache size increased to the vicinity of 2MB,

the miss rate of this workload decreases to literally zero. The behavior of the protein se-

quence alignment counterpart is similar, and the working set appears to be around 256KB

for that application.

Despite having a fairly large input data set, CLUSTALW has a very low cache miss
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Figure 4.2: FASTA DNA
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Figure 4.3: FASTA PROT
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Figure 4.4: CLUSTALW

rate suggesting that this application has very high levels of data locality and a very small

working set as seen in Figure 4.4. For the input data we used in BioBench, a 128KB

cache was sufficient to fully contain the working set of CLUSTALW. CLUSTALW also

had some of the lowest L1 and L2 data cache miss rates in our studies in Chapter 1 along

with a relatively high IPC,

One of the few truly CPU-bound applications in the BioBench suite, HMMER ap-

peared to have a primary working set that fit in approximately 256KB. The miss rate

graph, seen in Figure 4.5 has a second plateau around 2MB, suggesting a secondary

working set. The first working set is most likely the memory necessary to contain the

in-memory representation of the HMM (Hidden Markov Model) data structure. The sec-

ond inflection point corresponds to a point where the cache is large enough to contain

both the HMM and the protein sequences to be searched against and the miss rate curve
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Figure 4.5: HMMER

tapers off.

In our previous analyses, TIGR was the BioBench application with the highest L1

data cache miss rate and the second highest L2 miss rate. Our findings in this study

yielded similar results: We observed that the memory footprint of TIGR was around

4MB(Figure 4.6. Around 10MB, the cache miss rate of TIGR stabilizes to a value close to

10 misses per 1000 instructions; and increasing the cache size to 32MB does not provide

a significant improvement.

MUMMER requires a cache size of around 64MB to decrease the miss rate to a rel-

atively high figure of 7-8 misses per 1000 instructions (Figure 4.7; which means MUM-

MER will keep incurring higher miss rates than other bioinformatics applications even on

the latest generation of chip multiprocessors such as the Intel Itanium 2 with its 24MB

shared last-level cache.
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Figure 4.6: TIGR
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Figure 4.7: MUMMER
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Figure 4.8: MUMMER256

Faced with the very high miss rate of MUMMER, we had to run a second experi-

ment with larger cache configurations in order to understand its working set characteris-

tics better.Figure 4.8 shows the results of this experiment, where the cache miss rates of

MUMMER can be observed to decrease below 5 percent only when the cache size is in-

creased to more than 64MB. The size of the working set seems to be close to 256MB. The

large memory footprint of MUMMER can be attributed to the large tree structures that its

main algorithm sets up in memory, and has been continually addressed by its developers

in the form of new versions with lower memory utilization.

4.6 Conclusions

In this chapter, we used a binary instrumentation-based cache simulation framework

to collect and analyze L2 data cache performance data for bioinformatics applications in
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the BioBench suite. We observed similar cache access characteristics in sequence analy-

sis applications such as FASTA and BLAST, which validated the findings of our previous

work. Our simulation framework allowed us to analyze a large number of cache con-

figurations and sizes, and our observations expanded our knowledge and understanding

of BioBench applications. Most importantly, our more detailed analysis of the memory

access characteristic of HMMER motivated us to concentrate our efforts on this impor-

tant, computationally intensive benchmark. The “two-level” cache footprint of HMMER

suggested that it would be possible to fit its working set in the confined memory space of

the SPE local stores with frequent DMA transfers; while our earlier findings of a single

dominant function within HMMER suggested it would provide a good candidate for SPE

implementation.
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Chapter 5

A Case Study: Protein Profile Searching on the Cell Broadband Engine

5.1 Introduction

In the previous chapters of this thesis, we characterized the performance of com-

putational biology workloads in detail and elaborated on different aspects of these char-

acteristics. As we have discussed in the introduction chapter, the amount of biological

sequence data collected by researchers is already at staggering levels and keep increas-

ing steadily. With the imminent introduction of even more sophisticated applications like

system biology and protein folding/prediction applications, the computing performance

demands of the emerging field of life sciences and bioinformatics will increase dramati-

cally in the years to come.

While the demand for higher computer performance is increasing, the last few

years have seen single core microprocessor performance reach a standstill due to a com-

plex combination of many factors. Increasing power density and diminishing returns

from deeper pipelines all but eliminated higher clock frequencies as a relatively effortless

means of reaching higher performance levels. As a result, the focus of technical innova-

tion has shifted to chip multiprocessing (CMP) architectures. While the first examples of

these multicore processors have been fairly conservative designs similar to existing SMP

architectures, processor architects have started to experiment with new, more unconven-

tional multiprocessor architectures in an effort to bring much needed innovation to the
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marketplace and enable higher performance levels.

The Cell Broadband Engine (Cell BE) architecture is one of the most novel entrants

in this race. A joint project of Sony, Toshiba and IBM, Cell BE is a heterogeneous mul-

tiprocessor which combines a two-way simultaneous multithreading PowerPC processor

core with eight DSP-like SIMD processing units (SPEs) and a high-bandwidth memory

subsystem. Initially slated for use in the Sony Playstation 3 game console, Cell BE has

features like a high-performance double precision floating point unit which suggest that

the architecture has been conceived with future applications outside the games/entertain-

ment domain in mind.

New microarchitectures like the Cell BE might be the key to enable even higher

levels of performance for resource-intensive computational biology applications of today

and tomorrow. We believe that the Cell BE architecture is particularly suitable for such

workloads with high degrees of parallelism at different granularity levels. As a case study

to evaluate the use of Cell BE in solving bioinformatics problems, we chose one of the

most CPU-intensive workloads that we studied earlier for porting to the Cell BE. The

hmmsearch protein profile searching application from the HMMER suite exhibits several

characteristics that we believe makes it a good candidate for a Cell BE application:

• As seen in Figure 3.7, most of the execution time of HMMER is spent in a single

function, providing the possibility of using the Cell BE SPEs as function offload

engines. As we will elaborate further later in this chapter, the ”SPE as offload en-

gine” concept is probably one of the most intuitive programming models for porting

applications to Cell BE. In this model, applications are modified by separating com-
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putationally intensive functions and optimizing them for the SIMD architecture of

the Cell BE SPEs. The scalar processor in the Cell BE (the PPE) can execute the

rest of the program in addition to managing data transfers between the main mem-

ory and the SPEs.

• Due to the nature of the algorithm (which operates by processing a relatively small

data structure repeatedly with many sequences), there is a significant level of data

parallelism in HMMER that can be exploited to keep the SPEs busy. If the DMA

operations can efficiently be overlapped with computation, this could allow fairly

high performance levels.

• Our previous analysis suggests that the HMMER application seems to be largely

CPU-bound. Despite the impressive memory bandwidth of the Cell BE, memory-

bound workloads are probably harder to port to the Cell BE due to the lack of

large amounts of shared memory, and CPU-bound applications such as HMMER

are better suited for the Cell BE SPE implementation.

In this chapter, we evaluate the performance of the Cell BE architecture running the

HMMER protein profile search workload. We describe our modifications to HMMER to

port it to the Cell BE architecture; and present our results. Our HMMER implementa-

tion for the Cell Broadband Engine, Cell-HMMER, provides up to a 27.98x performance

advantage over a recent dual-core x86 microprocessor. Even when Cell-HMMER run-

ning on a single Cell BE processor is compared to a 2-way SMP system with two such

dual-core processors, Cell-HMMER runs up to 14.13x faster.

The remainder of this chapter is organized as follows: Section 2 provides an in-

73



troduction to the background to the subject by describing the basic concepts of hidden

Markov models, their use in bioinformatics, the HMMER suite, and the significance of

the Viterbi algorithm. In Section 3, we present a brief outline of the Cell BE architecture,

programmability issues and programming models. We describe our Cell BE implemen-

tation of HMMER and our experimental methodology in Section 4, followed by the ex-

perimental results in Section 5. Some of the related work on the subject are described in

Section 6, and we close the chapter with our conclusions in Section 7.

5.2 Background

Some of the most important problems in modern bioinformatics involve determin-

ing the functionality of proteins, which are complex organic compounds that carry out

many essential tasks in living organisms.While the complete structure of a protein is

characterized by a combination of features such as its shape, the primary feature of the

structure of a protein can be simplified as a string of letters describing different amino

acids. Based on the assumption that structurally similar proteins have similar functions,

one way of identifying and classifying proteins is comparing protein sequences with the

contents of databases that contain protein sequences of known structure and functionality.

The difficulty of such database searches lies in the fuzzy nature of protein se-

quences. The process of evolution has a fairly high degree of randomness, and while

proteins of similar functionality are indeed similar in structure; there usually are slight

differences between them. These differences usually manifest themselves in the form of

additions or deletions of amino acids in the protein sequence. As a result, this variability
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rules out using common string search algorithms for protein sequence searches. To solve

this problem, researchers have proposed using probabilistic methods commonly used in

the field of machine learning such as hidden Markov models, which form the basis of the

application we have studied.

5.2.1 Hidden Markov Models(HMMs)

A hidden Markov model(HMM) is a statistical description of a system which con-

sists of a number of connected states, each of which can produce observable outputs. The

name ”hidden” refers to the fact that the outside observer does not know exactly what

state produced a certain output, but can infer a probability for any outcome. In many

application of HMMs, an HMM is typically used to represent a real-world process whose

statistical characteristics are either well understood or can be distilled from a large body

of observation data, even though the exact mechanism of the process might not be under-

stood in its entirety.

A very simple HMM can be in the form of a set of N interconnected, distinct states

which constitute a Markov chain. At regular time intervals (t = 1, t = 2, ..), the state

of the system undergoes a change and transitions to another state, or possibly the same

state. Assuming that the HMM is not a constrained-jump model, the state transition can

be to any state in the chain. Alternatively, one can specify rules on which transitions are

allowed; resulting in a constrained-jump model. An output symbol Ot is emitted by the

current state at time t. The symbol can be any one out of M different options. Following

the description and the notation in [81], the HMM in this example can be described by
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several key parameters:

• The number of distinct states in the system (N ). These states will be named

S1, S2, ..., SN . Furthermore, the state at time interval t will be qt.

• The number of distinct symbols that can be emitted by each state (M ).

• The state transition probability matrix A = aij where aij is the probability of a

transition from state i to state j, or:

A = aij, aij = P [qt+1 = Sj|qt = Si], 1 ≤ i, j ≤ N (5.1)

• The output symbol probability matrix B = bi(k) where bi(k) is the probability of

emitting the symbol k when the current state is Si.

• An initial probability vector π where π(i) is the probability of starting at state i.

πi = P [q1 = Si], 1 ≤ i ≤ N (5.2)

After a time period of L intervals, the outputs from this HMM will form the observa-

tion sequence O = O1, O2, O3.., OL. At this point, we can use the HMM to answer the

following questions:

• Given a sequence of observations (O1, O2...ON); what is the overall probability of

this particular sequence outcome?

• Given a sequence of observations (O1, O2...ON); what is the sequence of states that

is the most likely to have produced these observations?

76



The first question is aimed at computing the probability of the observation sequence be-

ing created by the particular HMM in consideration. Rabiner [81] describes this as the

evaluation problem and outlines the Forward algorithm which can efficiently solve the

problem. The solution to the evaluation problem can be used as a measure of the fit

between the observation sequence and the model.

To compute the probability of any path through the Forward algorithm, we start with

creating an array of per-state probabilities probt(i) where probt(i) is the probability that

the current state is Si at time interval t. These probabilities are set to 0 at the beginning of

the algorithm with the exception of the first(initial) state, which should be set to 1 as the

observations have to start at this point. Afterwards, the observations in the sequence are

considered one by one. Following the notation we introduced earlier, we call the current

observation Oj. For each state, the total probability of this symbol to be observed at time

t is the product of the possibility of the current state s producing this particular symbol

(bs(Oj)) and the probability of the system to reach the current state s at time t:

probt(s) = bs(Oj).
N∑

i−1

(probt−1(i).ais) (5.3)

For every observation symbol Oj (1 ≤ j ≤ M ), this computation should be done for

every state s = Sk (1 ≤ k ≤ N ). Once this part of the algorithm is complete, the

overall probability of the observation sequence can be obtained by adding the per-state

probabilities at the end of the observation sequence.

probsequence =
N∑

i=1

probM(i) (5.4)

The second question aims to estimate the exact sequence of states that could have

produced the outputs observed. It is possible that the same observation sequence might
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have been generated by different state sequences, but these state sequences will have

different probabilities of generating the observation sequence. The most likely state se-

quence, then, is the best estimate one can provide. Finding a solution to this problem

effectively reveals the ”hidden” part of the HMM as it allows us to guess the path taken

through the model. The most computationally efficient way of doing this is through the

use of the Viterbi algorithm[81, 95], which is very similar to the Forward algorithm just

described. Instead of using a summation operator to compute the total probability of ar-

riving at a particular state, the Viterbi algorithm uses a maximum operator to find the most

likely path:

probt(s) = bs(Oj). arg max
i∈states

(probt−1(i).ais) (5.5)

As in the Forward algorithm, this computation takes place for each symbol in the obser-

vation sequences and every state. At the end of this process, the most likely final state is

simply the one with the highest probability, which is:

P = arg max
i∈states

(probM(i)) (5.6)

Once the most likely final state is found, the most likely path can then be computed

by tracing the most likely predecessors at every step through the use of a process called

traceback.

Both Forward and Viterbi algorithms are basically matrix-vector multiplications.

In the case of the Forward algorithm, the inner loop operations describe in Equation 5.3

require N + 1 multiplications and N additions. Repeated over N states, the total number

of multiplications and additions for each symbol is (N +1).N and N 2, respectively. Fac-

toring in the M symbols in the observation sequence, the time complexity of the Forward
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algorithm (and the very similar Viterbi algorithm) is O(N 2.M). The storage requirements

of the Forward and Viterbi algorithms are dominated by the probability matrix formed by

the per-state probability array (probt(i)), meaning that the space complexity of these al-

gorithms is O(N.M).

5.2.2 HMMs in Bioinformatics

Starting in the last decade, the power and flexibility of HMM-based statistical ma-

chine learning techniques has been recognized by the bioinformatics community who

adapted HMM techniques to various computational biology applications such as gene pre-

diction, protein fold recognition and sequence alignment(These and other uses of HMMs

in bioinformatics have been outlined in [20, 31]). The HMMER workload that we used in

our study is one of the most common HMM-based applications in bioinformatics, and it

uses ”profile HMMs” for analyzing protein families and classifying proteins by compar-

ing them to statistical models of protein families.

The name ”profile HMM” refers to a specific type of HMM used to represent the

common characteristics of a related family of proteins. Early work on profile HMMs and

HMM-like models used relatively simple HMM representations to model protein motifs

(common sequences preserved in similar proteins). Krogh et al.[52] were the first to

propose a profile HMM in the currently used sense of the term, which utilizes delete

and insert states that allow the addition and omission of amino acid symbols anywhere

in the sequence. Eddy [31] differentiates between the later HMM representations and

earlier ones by calling these ”profile models” and ”motif models” respectively. The Plan7
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Figure 5.1: Plan7 HMM Example (motif length=6)

HMM architecture used in the current version of HMMER represents the final stage in

the evolution of profile HMMs. Since the HMM architecture used in HMMER is central

to our analysis of its performance in this study, we will briefly describe the Plan7 HMM

architecture in the next section.

5.2.3 Plan7 HMM Architecture

The particular HMM template used in HMMER is called the Plan7 profile HMM

architecture; and has unique characteristics which reflect the nature of the protein pro-

files it is used to represent. More specifically, the unique properties of the Plan7 model

stem from the necessity of being able to handle gaps in alignment where the evolutionary

process might have caused certain amino acid sequences to be deleted or inserted.

Figure 5.1 shows a 6-node (motif length=6) Plan7 HMM as used in HMMER. The

basic states in the Plan7 architecture are match(M ), insert(I) and delete(D) states. Each
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match state is associated with an insert and delete state (with the exception of the very

last match state); and each M/D/I state triplet is called a ”node”. Each match state

M can emit one of the 20-24 different amino acid symbols. Insert states also have the

same number of possible outputs; while delete states do not emit symbols. Match states

correspond to a one-to-one match between a particular amino acid in that location to

the same amino acid in the HMM. Occasionally the HMM can shift to insert states and

introduce sequences that do not match the model. In order to skip any number of match

states, the HMM can shift to the chain formed by the delete states and follow this path

until the match states where the sequence and the HMM converge again.

Every Plan7 HMM begins and ends with non-emitting begin(B) and end(E) states.

The B state makes it possible to enter the main model at any match state through the

use of B → Mi transitions, and similarly Mi → E transitions make it possible to exit

the model from any match state. The rest of the states in the Plan7 HMM are special

states (S, N, C, T, J) that are used for controlling algorithm-dependent properties of the

model. S and T are the beginning and end points of the HMM. The N and C states can

emit non-motif sequences before and after the motif, and the J state can emit non-motif

sequences between two copies of the motif. The N ,C and J states were added to the Plan7

HMM architecture to address the need for dealing with local alignments and multiple-hit

alignments. [30] details the use of these states.

In the context of protein profile matching, the primary problem one would like to

solve using an HMM is finding the likelihood that a certain protein sequence might be

related to the protein family modeled by the HMM. As described before in the context of

generic HMMs, this problem can be solved using the Viterbi algorithm. In this case, the
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sequence of observations is the protein sequence (string of amino acids), the ”time” axis

is the position of an amino acid symbol in the sequence. The HMM parameters are set by

training the model using a suitable method as described before.

To illustrate the use of a Plan7 HMM for protein profile matching, we assume an

HMM for a protein family P ; and a protein sequence S of length N . One can then cal-

culate the most probable path through the HMM that generates the sequence S by using

the Viterbi algorithm. If we call the overall probability of this path P (s); then one can

compare P (s) with the probability of S having been generated by a null model. If P (s) is

sufficiently higher than this probability; it can be concluded that the sequence S closely

matches the HMM and might be related to the protein family represented by the HMM.

Due to the existence of several different types of states, running the Viterbi algorithm

on a Plan7 HMM is only slightly more complicated than running it on a simpler jump-

constrained model we used earlier to introduce the algorithm. The model constraints

greatly limit the number of incoming transitions to states: with the exception of the first

M state, each M state has 4 incoming links, each non-emitting D state has 2, and each

I state has 2 including itself. As a result, the inner loop of the Viterbi algorithm can

be completely unrolled in implementations using the Plan7 HMM. A pseudocode im-

plementation of the Viterbi algorithm (which omits the special states N,C,B,E and J for

simplification) for a Plan7 HMM is given in Figure 5.2

The constraints on the number of incoming transitions to a state imply that the time

complexity of the Plan7 Viterbi algorithm are somewhat less than that of the Viterbi algo-

rithm on a non-jump constrained HMM. For a Plan7 HMM with N states and a sequence

of length M , only a fixed number of multiplications and additions will be needed for a

82



/* Viterbi algorithm for Plan7 HMM */
/* N=number of states, L=length of sequence */

for (i=1;i<=N;i++){
for (j=1;j<=L;j++) {

/* Process M states */
prob_m[i][j]=MAX({4 incoming transitions to match state})*bm[i][j];

/* Process D states */
prob_d[i][j]=MAX({2 incoming transitions to delete state});

/* Process I states */
prob_i[i][j]=MAX({2 incoming transitions to insert state})*bi[i][j];

}
process_special_states();

}
traceback(prob_m, prob_d, prob_i);

Figure 5.2: Pseudocode of the Viterbi algorithm main loop

full Viterbi computation, resulting in a time complexity of O(N.M) instead of O(N 2.M)

for the “generic” Viterbi. Therefore the computational cost of the Plan7 Viterbi algorithm

increases linearly with HMM or sequence length.

5.2.4 HMMER

HMMER[31] is a collection of biological sequence analysis applications using pro-

file hidden Markov models. While the HMMER suite includes different applications for

purposes like multiple alignment (hmmalign), protein domain searching (hmmpfam), and

HMM database management (hmmbuild, hmmcalibrate); we chose hmmsearch, the most

widely used and the most computationally intensive HMMER application, for our stud-

ies. Hmmsearch is used to search a protein sequence database against a single HMM

representing the common characteristics of a protein family, generally with the purpose

of finding sequences which may be related to the family modeled by the HMM.(Another

application in the HMMER suite, hmmpfam, uses the same underlying algorithms but
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Figure 5.3: Histogram of HMM Lengths in PFAM Database

searches an HMM database against a single protein sequence.) Throughout this disser-

tation, the terms HMMER or ”HMMER workload” are used to refer to the hmmsearch

application.

5.2.5 Input Data Characteristics and HMMER Performance

The limited capacity of the Cell BE SPE local stores necessitates careful planning

and allocation of storage for the HMM, which will in turn have implications about pro-

gram design and parallelization methodology. Our early work on porting HMMER to the

Cell BE architecture suggested that the maximum length of the HMM we could fit on

the SPE local store would need to be limited in the first version. In order to have a clear

understanding of the nature of the input data and its impact on HMMER performance; we

84



first studied the characteristics of the PFAM protein profile database.

The HMM models used in our studies come from the curated Pfam[17] protein

profile database, which contained HMM profiles of more than 8,000 protein families as

of May 2006 and had a coverage of 75% of all proteins represented in the comprehensive

SwissPROT protein database. A histogram of the distribution of HMM lengths in this

database can be seen in Figure 5.3. The arithmetic mean of the lengths(number of states)

for all HMMs in Pfam is 214.72, and the median is 164. The largest HMM in the database

has 2295 states. The 99.5 percentile point corresponds to 982, meaning that 99.5% of all

HMMs in Pfam have less than 982 states. Our early work on porting HMMER to the Cell

BE architecture suggested that the maximum length of the HMM we could fit on the SPE

local store would need to be limited in the first version. Considering that most typical

HMMER searches use profiles from the Pfam database; we used these characteristics to

guide our design decisions during the implementation of the Cell-HMMER.

HMMER search begins by loading the HMM data from an HMM database file into

an HMM data structure, which contains transition probabilities for every state and emis-

sion probabilities for every emitting state as well as basic metadata about the HMM such

as length (number of states, N ) and name of the protein family being described. In order

to simplify the Viterbi algorithm and improve its performance, HMMER converts and

stores the HMM data in log-odds format, where all transition probabilities are converted

into negative logarithms in order to change the multiplication operations into simple addi-

tions. After the log-odds conversion, HMMER allocates a re-sizable data structure large

enough to hold the complete set of intermediate probabilities. This information is needed

for the traceback step, and requires memory space on the order of O(N.M) for each se-
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Figure 5.4: HMMER execution time vs. HMM length

quence of length M . HMMER then starts reading sequences from the sequence database,

and executes the Viterbi algorithm for each sequence against the HMM. The process is

relatively easily parallelizable as the sequences are completely independent units of work,

and no data exchange between threads is needed throughout the computation(The stan-

dard HMMER distribution includes versions parallelized using both pthreads and MPI.)

Our previous analysis of the HMMER protein profile searching application as part

of the BioBench suite showed that a significant portion of the execution time is spent

in a single function which implements the Viterbi algorithm(Figure 3.7 shows that the

P7Viterbi() function takes up 98.21% of the total execution time.). In order to quantify

the impact of the variation of input HMM size on the percentage of total execution time

spent in the Viterbi algorithm, we used the same set of 30 HMMs as in our previous

experiment, and profiled(using gprof ) the execution of HMMER during HMM searches
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of the SwissPROT database against each HMM. The SMT feature of the Intel Pentium

4 CPU was disabled for this experiment. The resulting plot is shown in Figure 5.5. The

Viterbi algorithm takes up more than 95% of the execution time for all HMM lengths

up to around 800, and its share is higher than 90% for all HMMs used in the test. The

share of the Viterbi algorithm is definitely more than 98 percent for HMMs between 50 to

500, where most HMMs(more than 93%) in Pfam lie according to our previous analysis

of the database. It then seems to fall below 94% for HMMs larger than 900 states, and

continues falling. Upon closer examination of the gprof output; we saw that the decrease

in the execution time share of the P7Viterbi() function for larger HMMs was due to the

increasing share of the P7ParsingViterbi() function, which partitions larger HMMs to run

the Viterbi algorithm with limited system memory. Even for the largest HMMs, these

two Viterbi algorithm-related functions completely dominate the execution time of the

HMMER workload.

To analyze the impact of HMM length on HMMER execution time, we selected 30

different HMMs from the Pfam database and used HMMER to search the SwissPROT

protein sequence database against each HMM on an 2.8GHz Intel Pentium 4 system run-

ning an unmodified version of HMMER 2.3.2. The lengths of these HMMs vary from 16

to 1166, covering most of the length range in the Pfam database. We measured the exe-

cution times of these searches for both single and dual-threaded operation modes of the

Pentium 4 CPU using its 2-way SMT(simultaneous multithreading). The results, which

can be seen in Figure 5.4, illustrate that the execution time increases almost linearly as the

HMM size (number of states in the Viterbi algorithm) increases. Assuming that the execu-

tion time of HMMER is dominated by the Viterbi algorithm(an assumption we will show
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to be correct in our next experiment), this result verifies the linear relationship between

HMM length and the performance of the Viterbi algorithm for Plan7 HMMs described

earlier. The SMT feature appears to result in a 20-25% performance improvement for all

HMM lengths in dual-threaded tests.

Finally, we implemented a random protein sequence generator to create random

protein databases and search them against the same HMM to obtain the results shown

in Figure 5.6, which shows the linear relationship between HMMER performance and

sequence length.

5.3 Cell BE: A Novel Chip Multiprocessor Architecture

Faced with the challenges of increasing power consumption and diminishing returns

on clock frequency increases, processor architects have recently turned to chip multipro-
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cessors (CMPs) to improve performance[88]. The advent of mainstream chip multipro-

cessors, which has long been anticipated by researchers[73], took place gradually; as

companies first designed CMPs based on proven processor cores with little or no modifi-

cation for CMP use. A later and more recent approach to CMP design is the use of rela-

tively simpler, mostly in-order processor cores that maximize instruction throughput[28]

Designers of future CMP architectures will more than likely explore a larger por-

tion of the CMP design space. We anticipate that the industry will continue increasing

the number of cores in their future CMPs while adopting as yet unfinalized, novel tech-

niques to improve single-thread performance using multiple cores. The importance of

obtaining high single-thread performance in a CMT system is evident from the many

different schemes that have been proposed for this purpose[24, 66]. Another possible

future direction for CMP design could be the use of single-ISA heterogeneous mul-
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tiprocessors where large out-of-order cores with high degrees of speculation are com-

bined with several smaller, simpler in-order cores to maximize both single and multiple

thread performance[54, 53]. Other possibilities include CMPs with coprocessors, which

could combine high-performance CMPs with application-specific custom comprocessors

through the use of high-performance I/O link technologies like HyperTransport (HT). Re-

gardless of which CMP organization(s) will dominate in the longer term, we will likely

witness many different CMP architectures in the next decade, some with novel features.

The Cell Broadband Engine (”Cell BE”) is one such CMP architecture developed

with the collaboration of Sony, Toshiba and IBM. Developed primarily for the Sony

Playstation 3 game console, the Cell BE will also be used in media and entertainment

devices such as high definition TV sets. However, some features of the Cell BE architec-

ture such as its double-precision floating point capability suggest that its designers had

envisioned other roles for the Cell BE from the beginning, as these features are of little

use in a game system. Before we explore the potential use of Cell BE for running a com-

putationally intensive bioinformatics application, we will describe the architecture of the

Cell BE in detail.

The Cell BE represents a radical departure from mainstream CMP design practices

with its unique architecture. It is organized as a heterogeneous, multi-ISA multiprocessor

with two different types of processor cores using different ISAs. One of these cores is the

PowerPC Processing Element (PPE), which is a 2-issue, in-order, 2-way simultaneous

multithreading PowerPC core that can act as a main processor or a controller for the rest

of the CMP. The PPE implements the full 64-bit PowerPC instruction set alongside the

full set of VMX (AltiVec) SIMD instructions; and is fully compatible with all PowerPC
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Figure 5.7: Cell Broadband Engine block diagram

applications. This feature provides the Cell BE with full backward compatibility with ex-

isting PowerPC software, an important feature to facilitate the adoption of the processor.

The PPE has access to 32KB split L1 caches and a 512KB unified L2 cache.

The Cell PPE comprises of three separate units: The instruction unit (IU), fixed-

point execution unit (XU) and the vector scalar unit (VSU). The functions of the IU

involve instruction fetch, decode, issue and completion. Branches are also handled by

the IU with the help of a branch predictor using a 2-bit by 4KB branch history table and

6 bits of branch history per thread. Four instructions per thread are fetched every cycle,

and the IU can issue two instructions per cycle after dependency checking. Structural

hazards do not allow the issue of two instructions to the same functional unit and some
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other combinations of vector operations, but every other combination of instructions can

be issued.

The XU is tasked with executing loads, stores and fixed-point operations. It consists

of a high performance fixed point arithmetic logic unit, a load/store unit and a 64-bit, 32-

entry register file. The XU load/store unit has an 8-entry miss queue and a 16-entry store

queue.

The VSU handles floating point and vector (SIMD) operations. SIMD instruction

set extensions have proven themselves as an effective way of increasing multimedia ap-

plication performance and have been part of almost every major ISA for the last decade.

The Cell BE architecture implements the full VMX SIMD ISA which allows operations

on 128-bit words which can contain data elements of varying width (i.e. 1x128-bit, 2x64-

bit, 4x32-bit, 8x16-bit or 16x8-bit elements in a single register/memory location). The

VSU has a dedicated vector register file containing 64 x 128-bit registers. For floating

point operations, the VSU has a ten-stage double precision (DP) execution pipeline and

a FP register file containing 32 x 64-bit registers. DP instructions are handled by the

floating point unit of the VSU whereas single precision (SP) floating point operations are

executed by the vector units.

In addition to the PPE, the Cell BE architecture contains eight smaller processor

cores. These processors are called Synergistic Processing Elements (SPE) and implement

a completely new 128-bit ISA with a rich set of SIMD instructions. The SPEs can not

access the main memory directly; but they have very low latency access to very fast,

dedicated 256KB SRAM-based local memories called “local stores”. Data transfer to

and from the main memory are accomplished through the use of fast DMA controllers
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on the chip, the use of which can be initiated by either the PPE or the SPEs. The DMA

mechanism maintains a coherent view of the memory and use the same page tables as

the PPE; therefore addresses can be passed between PPEs and the SPEs. A typical SPE

DMA data transfer moves 128 bytes at a time and SPE local stores have a 128-byte wide

access port (in addition to a narrow port which handles 128-bit non-DMA accesses) for

DMA access. The SPEs can work with any of the 128-bit vector element organizations

mentioned before. Access to the local 128-bit registers generally takes 2 cycles, and

access to the local store takes only 6 cycles.

Local stores are used as both instruction and data memories, which place important

limitations on code and data size for the SPEs and impact programmability. For streaming

applications similar to those in gaming and multimedia workloads that the Cell BE targets,

the application kernels and data usually fit in the SPE local stores and the distributed na-

ture of the SPEs make it possible to support a very large number of simultaneous memory

transactions.

The Cell BE architecture had been designed to support a 2-way symmetric multi-

processing in a “glueless”(without requiring additional hardware) configuration. A Cell

BE system configured in this way can make all 16 SPEs available to applications run-

ning on any one of the PPEs. A 4-way Cell BE configuration is also possible with the

use of additional hardware, and these configurations are illustrated in Figure 5.8. Even

larger Cell BE configurations are likely to be implemented in the future. IBM recently

announced[51] that it will be building a next-generation supercomputer (named “Road-

runner”) with 16,000 AMD Opteron processors and an equal number of Cell BE proces-

sors for the Los Alamos National Laboratory.
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Figure 5.8: Cell BE configuration

A detailed look at the Cell BE architecture reveals its designers’ desire to attack the

multiple important challenges faced by computer architects in recent years. Arguably the

most important of these is the increasing power densities of the processor cores. While

advances in process technology made it possible to increase microprocessor performance

by simply increasing clock frequencies over the last decade or so, the limitations of cool-

ing technology made it impossible to continue this practice. Similar problems had been

faced before during the era of bipolar transistors, and designers were able to overcome

these power limitations by migrating to CMOS technology. This time there is no viable

replacement for the CMOS process technology, eliminating the possibility of increasing
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clock frequencies as a means of attaining relatively effortless performance gains.

With features such as the use of a relatively simple, in-order core for the PPE and

extensive clock/power gating, the Cell BE multiprocessor design was conceived with low

power consumption in mind. The PPE instruction pipeline is only 11 stages deep, en-

abling a power-efficient design that can be clocked at high relatively high frequencies

without incurring excessive costs in power consumption. Kahle et al.[48] state that the

original design goal was to have a delay of 10 FO4 throughout the processor, which was

later adjusted to 11 because of area limitations.

The second significant obstacle on the path to higher microprocessor performance is

the gap between DRAM access latencies and processor core speeds. Throughout most of

the history of modern computer architecture, DRAM access latencies have lagged behind

processor core speeds, mainly due to the differences between the process technologies

required to build high-density DRAM circuitry and high-speed microprocessors. Since

most of the DRAM access latency is RC delay which does not improve with scaling, and

pipeline depths of modern microprocessor cores have been increasing; the DRAM access

latencies are effectively increasing. As a result, DRAM latencies in recent microarchi-

tectures have reached spectacularly high levels, such as 224 cycles for the Intel Pentium

4[5]. Barring an unprecedented breakthrough in memory technology, memory access la-

tency seems destined to remain as a barrier to higher processor performance in the years

to come.

The Cell BE design attacks the “memory wall” with multiple design features:

• A very high-bandwidth on-chip coherent bus (EIB): The Element Interconnect Bus
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(EIB) provides a very high-bandwidth coherent memory fabric that allows high

speed communication between the different processing units on the chip. The EIB

can deliver a maximum bandwidth of 96 bytes per cycle, and allows the main mem-

ory to be accessed as a single address space by either the PPEs or the SPEs (for

DMA transfers).

• High-performance XDR memory technology: The first examples of the Cell BE

will use Rambus XDR DRAM modules. Two channels are supported, each of which

can provide a maximum bandwidth of 25.6GB/s.

• Very fast SRAM-based local stores for every SPE: The use of dedicated 256KB

SRAM-based local stores (LS) for each SPE reduces main memory traffic signif-

icantly and increases the maximum number of memory transactions in flight by

offloading

• 128-entry register files in every SPE: The use of a very large (128 entries) and very

wide (128-bit) register file provides the Cell BE compiler with greatly improved

flexibility and reduces spills to the main memory. Unlike some other architectures

which implement separate register files for general purpose and SIMD instructions,

there is only one kind of register in the Cell BE SPE for both instruction types: all

registers can be used to store integer and floating point values, and 128-bit SIMD

vector elements of different element widths.

The idea of on-chip coprocessors to improve the performance of vector operations

has been implemented on Sony’s Emotion Engine processor, the CPU used in Sony

Playstation 2 [70]. Emotion Engine utilized two vector processing units (VPUs) with
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single precision FP units in addition to SIMD execution units; albeit with much smaller

local stores (VPU0 had separate 4KB instruction and data memories, while VPU1 had

16KB for each). Some Cell BE design ideas like DSP-like processing units with fast lo-

cal stores and the use of fast DMA controllers to shuttle data between the main memory

and local stores might have originated in the Emotion Engine, considering that Emotion

Engine was designed by the collaboration of Sony and Toshiba, two members of the Cell

BE consortium. Similarly, the use of general purpose processor cores in combination

with smaller DSP or DSP-like cores is not new; and among the earlier examples of this

design approach were the Texas Instruments TI 320C80 multiprocessor DSP and Cradle

Technologies CT3400 DSP architecture.

5.3.1 Cell BE Programmability

Programmability is a critical factor in the widespread adoption and eventual suc-

cess of a new architecture such as the Cell BE. In the previous sections, we described the

nontraditional microarchitecture of the Cell BE and its differences from traditional CMP

architectures. While the unique design of the Cell BE can potentially yield very high

performance for suitable task or data-parallel applications, this performance comes at a

price. The novelty of certain Cell BE technologies require the use of distinctly different

programming models than those of traditional CMP format that most recent micropro-

cessors follow. The programming models of traditional CMP architectures are essentially

identical to parallel programming models that have been used for larger shared mem-

ory SMP (symmetric multiprocessing) machines before. These models and programming
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methodologies, such as OpenMP and pthreads, had matured over time and became fa-

miliar technologies for programmers. Programmers with experience in such parallel pro-

gramming tools and techniques could be able to port their applications to the Cell BE by

using the processor’s features to emulate message-passing or shared memory program-

ming paradigms:Provided that the data partitioning can be done carefully to ensure that

the data blocks fit in the SPE local stores, a conventional shared memory programming

model can be approximated on the Cell BE by replacing shared memory accesses with

DMA transfers. This method essentially uses the SPE local stores as software-managed

caches. Alternatively, programmers can simulate a message passing model by utilizing

the mailbox mechanism or DMA channels to exchange messages/data between the SPEs

and the PPE.

While successfully porting applications to the Cell BE is possible using these meth-

ods, the task is significantly complicated due to the programming challenges that the Cell

BE architecture poses. We briefly describe some of these challenges below.

• Code partitioning for PPE and SPEs: The heterogeneous multi-ISA architecture

of the Cell BE implies that the PPE and SPE portions of the program executable

should be compiled separately. This requires the programmer to manually partition

the code into PPE and SPE portions; which might be a very time-consuming task

both during the design of new Cell BE programs, and porting legacy applications

to Cell BE.

• Lack of “real” shared memory semantics: The eight SPEs in the Cell BE have

direct access to a very fast local memory and an even faster register file that is larger
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than most traditional architectures, but the Cell BE lacks real shared memory that

can be directly addressed and accessed by the SPEs. Until Cell BE compiler tech-

nology matures to a level of sophistication needed to automatically insert instruc-

tions for data movement between the main memory and the local stores, orches-

trating this data movement remains the responsibility of the Cell BE programmer.

Recent work by IBM [32] on this subject looks particularly promising.

• Limited SPE local store size: The SPE local stores have only 256KB of stor-

age space for both code and data combined. This local store size is probably suf-

ficient for the initial applications of the Cell BE architecture in multimedia and

gaming: such applications generally include small, computationally intensive ker-

nels of code that carry out tasks like sound effects generation or rendering scenes.

However, many Cell BE SPE executables will not fit into the local stores while

allowing a comfortable space for data and buffers for data movement operations,

which can be critical for overlapping DMA operations with computation to im-

prove performance. To handle executables that are too large to coexist with data in

the local stores, the Cell BE programming libraries provide an overlay mechanism

that could be used to transparently overlay the code portion of the local store with

a new partitions of code during the execution of SPE programs. It will be the Cell

BE programmer’s responsibility to use mechanisms such as overlays or others to

ensure that the SPE programs can fit and operate within the SPE local stores.

While advances in compiler technology([33],[32]) will undoubtedly make it easier

to program processors like Cell BE in the future, most Cell BE porting projects such
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as the HMMER work outlined in this paper currently require considerable programming

effort. Cell BE architects have been aware of these programmability challenges from the

start, and they proposed a multitude of programming models to guide Cell BE developers.

Some of these models describe different methods of code partitioning between the PPE

and SPEs, such as those outlined by Kahle et al. in [48]. Other Cell BE programming

models emphasize task distribution strategies [60]. Some of these models are:

• Function offload model: This model allows the programmer to quickly boost the

performance of an application by porting its most computationally intensive func-

tions to the Cell BE SPE environment. The performance-critical functions could

ideally be modified to take advantage of the SPE features, optimized and mapped

to one or multiple SPEs. The rest of the program requires no change with the ex-

ception of the addition of a small stub which handles data transfer to the SPE and

calls the SPE function as necessary.

• Computational acceleration model: In this model, most of the computationally in-

tensive logic is parallelized and ported to the SPEs, and the PPE is relegated to the

task of controlling the SPEs only. This approach requires more extensive modi-

fication and parallelization of the original code, and offers the potential of higher

performance increases in return.

• Streaming models: Streaming models allow the developer to utilize SPE features

such as fast local store access, large register files and low DMA latency by running

small and fast computational kernels on the SPEs and streaming small sets of data

to them. The SPEs can be organized as a pipeline, in which every SPE could be
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running a different kernel. The PPE can then control the “stream processors”(SPEs)

and the overall flow of data. Some applications(e.g. image processing) are already

very viable candidates for streaming models of computation, and can benefit greatly

from such implementations on the Cell BE.

5.4 HMMER on the Cell Broadband Engine

In order to take advantage of the novel heterogenous multiprocessor architecture

of the Cell Broadband Engine, application code needs to be modified to utilize the eight

SPEs and the associated local stores. This currently requires application programmers

to manually partition the application code into parts to be executed on the PPE and the

SPEs, in addition to devising methods to utilize the DMA channels efficiently to shuttle

data to and from the SPEs. Future Cell BE compilers will make it possible to automate

this partitioning process, and [32] describes ongoing work in this area.

When used to compare protein motifs against protein sequences, HMMER can be

used in one-to-one,one-to-many,many-to-many or many-to-one search configurations us-

ing different applications in the suite. The hmmsearch application, which we studied on

our earlier work as part of the BioBench suite, searches a sequence database against a sin-

gle HMM; and the hmmpfam application searches a database of HMMs against a single

sequence. While both applications rely heavily on the Viterbi algorithm and are largely

similar, they have different characteristics and require different parallelization strategies.

The importance of the programs in the HMMER suite and their high computational cost

prompted many researchers to study and attempt to improve their performance using dif-
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ferent approaches. Some of the earlier work on improving HMMER performance targeted

hmmsearch using strategies like FPGA hardware acceleration[6], use of SIMD instruction

sets[96], and the use of unconventional architectures such as GPU clusters[44] or network

processors[101].

We chose to implement the hmmsearch application on the Cell BE architecture.

Hmmsearch reads sequences from a database one by one and executes the Viterbi al-

gorithm on each sequence using a common HMM. If the score of a sequence is higher

than a predefined threshold, the most likely path for the HMM is computed using the

traceback algorithm; and the best hits are recorded in a report. This structure lends itself

well to parallelization:shared-memory parallel implementations of hmmsearch typically

distribute sequences to different threads; each of which proceed to execute the Viterbi

algorithm. No inter-thread communication is necessary since each sequence is a separate

entity which can be processed independently of the others. As a result, a high degree of

parallelism is possible with fairly basic synchronization, resulting in good scalability.

A typical Cell BE porting effort would begin with determining the most computa-

tionally intensive functions of the workload that can be parallelized and executed on the

SPEs. Based on our earlier detailed analysis of the HMMER profile searching workload,

the Viterbi algorithm was the function most suitable for implementation on the Cell BE

SPE.
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5.4.1 Code Partitioning

We used the standard HMMER distribution as the starting point for Cell-HMMER.

Code for basic tasks like reading FASTA-formatted protein sequence files and HMM file

manipulation are directly ported from HMMER and run on the PPE.

To partition the main functionality of HMMER between the Cell BE and the SPE,

we referred to the literature on established parallel programming design patterns in ad-

dition to the Cell BE programming models mentioned earlier. The term “design pattern”

is used to describe generalized solutions to problems that commonly occur in software

design, and a wide variety of design patterns are available for many different application

types(The influential book by Gamma et al.[40] contains a wide selection of such patterns

and provides a good introduction to the concept). We found many of the patterns from

the parallel program design patterns literature to be readily applicable to the problem of

porting applications to the Cell BE. Cell-HMMER was implemented using a variation of

the “Manager-Workers” parallel design pattern that follows the Cell BE computational

acceleration model described earlier. Ortega-Arjona et al. describe the details of the

Manager-Workers parallel design pattern as well as other patterns in [74].

The Manager-Workers pattern provides a particularly suitable programming tem-

plate for applications with the following characteristics:

• The program needs to process data organized as a large number of independent

work units.

• The order of the input data needs to be preserved.

• There are no constraints on how the data is distributed to the processors.
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In Manager-Workers, one manager thread is tasked with creating the worker threads,

distributing work units to them and gathering results as the units are consumed by the

workers. The worker threads are tasked with requesting and receiving data from the man-

ager, carry out the necessary computation on this data, and return results to the manager.

In this pattern, no communications between workers are allowed. The only communi-

cation takes place between the manager and the workers. The manager distributes the

work units to the workers as they request them. For a problem setting with a large num-

ber of work units with varying lengths, this strategy provides a “natural load balance”[74].

While some worker threads are busy processing large work units, some others can process

several smaller units; balancing the load on the overall system.

HMMER needs to compute the Viterbi algorithm on a large number of protein se-

quences with differing sizes, all of which can be processed independently. We believe

this characteristic of HMMER makes it a good candidate for using the Manager-Workers

pattern. The manager role is assigned to the PPE (which will be dedicated to this task

only), and each SPE is a worker. There is no communication between the SPEs, and the

communication between the PPE and the SPEs is done using low-latency synchronization

primitives such as atomic variables and mutexes. The manager PPE component, and the

worker SPE components will be described in the next section. Figure 5.9(adapted from

[74]) illustrates the overall communication and data flow in Cell-HMMER.
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Manager

(PPE)


Worker

(SPE 0)


Worker

(SPE 1)


Worker

(SPE N)


SPE sends data request to PPE (via atomic variables)


PPE sends data to PPE (via DMA)


…


Figure 5.9: Cell-HMMER communication and data flow
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5.4.2 SPE Component

The SPE component of Cell-HMMER is an SPE program which initiates a DMA

transfer to copy the HMM, and enters a loop to process protein sequences transferred

from the main memory. Within this loop, the SPE component requests DMA transfers of

sequences, computes the Viterbi result, and transfers the results back to the main memory.

The most important task of the SPE program is running the Viterbi algorithm.

The information to transfer the HMM data structure, such as the memory address

and length of the HMM, are conveyed to the SPE threads as part of the initial context, a

128-byte data structure passed to each SPE when the SPE threads are being started. This

allows the SPE threads to start the DMA transfers for the HMM data without help from

the PPE. The HMM is almost always the largest single DMA transfer in the application

and need to be transferred only once, therefore overlapping this transfer with the PPE’s

setup and creation of the initial sequence buffer improves overall performance. With the

HMM transfer complete, the SPEs can now proceed to request sequences and execute the

Viterbi algorithm.

The most important constraint for implementing the Viterbi algorithm on the Cell

BE is the storage requirements of this algorithm. We previously showed that the Viterbi

algorithm on a Plan7 HMM has a memory footprint in the order O(N.M) if we need all

the intermediate probabilities at the end of the operation. For a typical HMM of length

200, this implies that only sequences less than 1250 characters could be processed with-

out leaving any space in the local store for the program binary, the HMM itself and other

variables that might be needed by the program. This situation requires the use of a differ-
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ent approach to implementing the Viterbi algorithm in the limited SPE environment. One

possible approach is converting the Viterbi algorithm to a streaming workload as done

in[44], another might be changing the Viterbi algorithm to process its inputs in smaller

units and combine results later. Either one of these approaches would require nontrivial

modifications to the Viterbi algorithm.

The Viterbi algorithm operates by evaluating each HMM state in a loop that iter-

ates through all the symbols in the input sequence. Each iteration of this sequence loop

is dependent on the values produced by the previous iteration. However, the algorithm

requires all of the previous values produced by each iteration for a full traceback. A key

observation that made the Cell-HMMER work possible was that we only need complete

traceback information on a few sequences which result in high enough Viterbi scores to be

considered significant hits. A great majority of sequences do not have such high scores;

and therefore will never need a full traceback. If a full traceback is not necessary, the

Viterbi algorithm could be modified to discard the intermediate probability values pro-

duced by all but the previous iteration at any point. For an HMM with N states and a

sequence of M symbols; this modification effectively reduces the storage requirement of

the Viterbi algorithm from O(N.M) to O(N), making it possible run the algorithm in

the limited SPE local stores on the Cell BE. We wrote our SIMD Viterbi implementation

using this approach, and allocated a 150KB buffer in each of the 256KB SPE local stores.

This buffer size can accommodate a maximum HMM length of 500; which covers more

than 93% of all the protein families in Pfam according to our analysis. Future Cell BE

implementations with larger SPE local stores (which might be produced using promising

dense cache technologies like eDRAM or zRAM) could lessen the impact of this limita-
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Wait for sequence DMA to

buffer 1 to complete


Initiate sequence DMA for
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Figure 5.10: Double buffering as used by Cell-HMMER

tion. We are planning to develop a version of Cell-HMMER without HMM length limits

as part of our future work on the subject.

In order to improve the performance of Cell-HMMER by overlapping DMA op-

erations with computation, we use a “double buffering” technique as shown in Figure

5.10. This method uses two sequence data buffers in the SPE local store: Each SPE

start the Viterbi processing by initiating a DMA to one of the buffers. As soon as this

DMA is complete, the SPEs enter a loop where the SPE initiates a sequence DMA to the

other buffer, and starts processing the sequence which was transferred as the result of the

previous DMA. Since processing a sequence using the Viterbi algorithm generally takes

longer than DMA’ing from the main memory to the SPE, this alternation between the two
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for (i = 1; i <= L; i++) {
mmx[i][0] = imx[i][0] = dmx[i][0] = -INFTY;

for (k = 1; k <= hmm->M; k++) {
/* match state */

mmx[i][k]  = -INFTY;
if ((sc = mmx[i-1][k-1] + hmm->tsc[TMM][k-1]) > mmx[i][k])

mmx[i][k] = sc;
if ((sc = imx[i-1][k-1] + hmm->tsc[TIM][k-1]) > mmx[i][k])

mmx[i][k] = sc;
if ((sc = xmx[i-1][XMB] + hmm->bsc[k]) > mmx[i][k])

mmx[i][k] = sc;
if ((sc = dmx[i-1][k-1] + hmm->tsc[TDM][k-1]) > mmx[i][k])

mmx[i][k] = sc;
if (hmm->msc[dsq[i]][k] != -INFTY) mmx[i][k] += hmm->msc[dsq[i]][k];
else

mmx[i][k] = -INFTY;

/* delete state */
dmx[i][k] = -INFTY;

if ((sc = mmx[i][k-1] + hmm->tsc[TMD][k-1]) > dmx[i][k])
dmx[i][k] = sc;

if ((sc = dmx[i][k-1] + hmm->tsc[TDD][k-1]) > dmx[i][k])
dmx[i][k] = sc;

/* insert state */
if (k < hmm->M) {

imx[i][k] = -INFTY;
if ((sc = mmx[i-1][k] + hmm->tsc[TMI][k]) > imx[i][k])

imx[i][k] = sc;
if ((sc = imx[i-1][k] + hmm->tsc[TII][k]) > imx[i][k])

imx[i][k] = sc;
if (hmm->isc[dsq[i]][k] != -INFTY) imx[i][k] += hmm->isc[dsq[i]][k];
else

imx[i][k] = -INFTY;
}

}
}

MAX(incoming transitions to M )k

MAX(incoming transitions to D )k

MAX(incoming transitions to I )k

Figure 5.11: Main loop of the Viterbi algorithm code in standard HMMER
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Figure 5.12: 128-bit SIMD vector maximum operation

buffers efficiently hides the DMA transfer time by completely overlapping computation

with communication by alternating between the two buffers. The size of the two sequence

buffers are configurable. Our analysis of the latest version of the SwissPROT protein se-

quence database, we found that only 4 of the more than 250,000 sequences in SwissPROT

were longer than 10,000 characters. We decided to use a sequence buffer size of 10KB in

our experiments, resulting in a total SPE local store usage of 20KB for sequence data.

The primary task of the SPE component of Cell-HMMER is high-performance
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SIMD Viterbi computation. Such a SIMD Viterbi implementation exists in the form of

the AltiVec implementation of Lindahl; and the similarities between the AltiVec and Cell

BE SPE instruction sets and C/C++ programming intrinsics would have simplified the

porting effort a great deal. However, this code implemented a full Viterbi algorithm with

traceback; which is not possible on the limited local store of the SPE for most sequence

and HMM sizes. For this reason, we chose to write a new SIMD implementation of the

Viterbi algorithm for the Cell BE SPE to operate on a much more stringent memory foot-

print, keeping only the intermediate results for the previous pass in the inner loop. Our

implementation is written using the SPE C programming intrinsics. It features a loop

unrolled 4 times (as opposed to 8 times in the Lindahl implementation) and its design

represents a compromise between readability and high performance.

The use of SIMD vector operations is critical to obtain the highest possible perfor-

mance on the Cell BE SPE; and the performance advantage of Cell BE in many different

workloads can be directly attributed to its efficient SIMD instruction set among its many

architectural features. Similarly, SIMD implementations of HMMER are crucial to ob-

tain the highest HMMER performance on many general microprocessor architectures.

The IBM/Freescale PowerPC architecture can execute HMMER remarkably faster than

other architectures largely due to the existence of a very efficient AltiVec SIMD imple-

mentation of HMMER by Lindahl. The x86 microarchitecture have been updated with a

wide variety of SIMD instructions over the last ten years, but SIMD implementations of

HMMER on the x86 platform still can not perform as fast as the PowerPC versions on

a clock-by-clock adjusted basis. The reasons for this performance difference lie in the

instruction sets, and provide useful insights about HMMER performance on the Cell BE
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as well as other platforms.

In order to simplify the Viterbi algorithm and improve its performance, HMMER

converts and stores the HMM data in log-odds format, where all transition probabili-

ties are converted into negative logarithms in order to change the multiplication opera-

tions into simple additions. The original Viterbi algorithm requires finding the minimum

among the results of these multiplication operations, and the change to negative loga-

rithms converts the minimum operator to a maximum operator. This part of the code is

repeated for each state of the HMM and for each symbol in the sequence, and its sheer

frequency renders it very important for high HMMER performance. A portion of this

code is shown in Figure 5.11.

In a straightforward SIMD implementation of this code, the addition operations and

the subsequent comparisons to find the maximum value for each state group can be re-

placed with vector operations. Assuming that the 128-bit vector registers in many SIMD

architectures could be used to store 4 32-bit unsigned integers representing the intermedi-

ate values, this could be greatly facilitated by a 4-way vector maximum operation which

can compare two such vector registers. The AltiVec SIMD instruction set used by Lin-

dahl’s high-performance HMMER implementation has a single instruction (VMAXUW)

which accepts two 128-bit registers holding four 32-bit unsigned integers each and places

the larger integer in each slot in the corresponding slot in the destination register. While

the VMAXUW instruction is supported by the Cell BE PPE, no equivalent single instruc-

tion exists for the Cell BE SPE. The same operation can instead be done by using two

instructions in the Cell BE SPE ISA: The CLGT d,a,b instruction sets the bits of the des-

tination register to 1 if the integer in the corresponding vector slot in register a is greater

111



AltiVec /VMX

(Cell BE PPE)
 SSE2 (x86)
 Cell BE SPE


VMAXUW d,a,b


MOVDQA xmm3,xmm2

PCMPGTD xmm3,xmm1

PAND xmm2,xmm3

PANDN xmm3,xmm1

POR xmm3,xmm2


CLGT d,a,b

SELB c,b,a,d


Figure 5.13: Instructions needed for vector maximum

than that in register b. A following SELB instruction then is used to select the vector

elements and place them in the destination register.

The Intel SSE2/SSE3 SIMD extensions do not provide a vector maximum operation

instruction for 32-bit unsigned integers(“doublewords” in x86 terminology) even though

they include similar instructions for 8-bit unsigned (PMAXUB) and 16-bit (PMAXSW)

signed integers. Without such an instruction, the best implementation of a vector max-

imum operation of the type used in the HMMER Viterbi code requires the use of 5 in-

structions. The lack of a 32-bit vector maximum instruction for signed integers seems to

have a fairly large negative impact on the HMMER performance of the x86 architecture.

Walters et al. [96] identify and discuss this issue in their description of the SSE2/SSE3

version of the HMMER Viterbi code they implemented.

Cell-HMMER uses both the PPE and SPE for running the Viterbi algorithm, and

the higher performance of the 32-bit unsigned integer vector maximum operation on the

Cell BE PPE and SPEs had a very important impact on our results. The SIMD instruction

sequences required to implement the unsigned integer vector maximum operation on the

x86(SSE2), PowerPC(AltiVec) and the Cell BE architectures are shown in Figure 5.13.
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In late 2006, Intel announced that a 32-bit unsigned integer vector maximum instruc-

tion(PMAXUD) will be part of the SSE4 SIMD extension ISA to be used in future x86

instructions[7]. We believe that future HMMER implementations that use the PMAXUD

instruction could demonstrate much higher performance on the x86 architecture.

The end of the sequence database is communicated to the SPE threads by a special

token flag variable set by the PPE thread. The SPE threads check this flag every time

the sequence buffer is empty. If the flag is set, the SPE threads complete their operation,

transfer their last Viterbi results to the main memory via DMA and exit.

5.4.3 PPE Component

The PowerPC-compliant PPE in the Cell BE is an in-order, 2-way simultaneous

multithreading processor. In Cell-HMMER, we primarily use the PPE as a task controller

and an I/O processor for HMM and sequence data. While the PPE is a powerful processor

in its own right and could have been used to speed up Viterbi processing, the only place

we use the PPE for computation is during the processing of sequences which require

traceback. The reasons behind this design choice have to do with the demands of the

sequence input and synchronization:

• Sequence input takes time:Reading every sequence from a large sequence database

file, memory allocation and manipulation of the data structures used to represent se-

quence entries is a time-consuming task; and this step needs to be overlapped with

Viterbi computation on the SPEs for maximum performance. In many test cases,

we found that the time required to read and set up all sequences in a sequence
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database was very close to the time required to process these sequences on 8 or

more SPEs. This keeps the PPE busy throughout the buffering process, and does

not leave much time for computation. In fact, sequence input becomes a limiting

factor on 2-processor Cell BE blade servers, which make up to 16 SPEs available

for Cell BE programs. We found that file input became a bottleneck with larger

SPE numbers, as we will discuss later.

• Orchestrating multiple SPEs requires complex synchronization:With multiple

SPEs requesting sequences from the buffer and sending results back, the synchro-

nization task requires the resources of the PPE. The PPE constantly monitors the

state of the sequence buffer, stops and restarts SPE threads as necessary, and gathers

results at the end. We believe implementing a completely self-arbitrating HMMER

port would have been much more difficult and probably have not resulted in much

higher performance.

The Cell-HMMER PPE application starts by reading the HMM file, converting into

negative logarithm format, and packing the HMM into an efficient data structure that can

be transferred to the HMM buffer of the SPEs in as few DMA operations as possible. The

PPE then starts reading sequences from the sequence database into a buffer in the main

memory, setting up a data structure called a “job entity” for each sequence as it goes.

Each sequence is stored in a 128-byte aligned memory address to facilitate SPE-initiated

DMA transfers, and each job entity contains information such as the sequence length,

sequence name and the address of the sequence in the memory. In order to ensure that

the SPEs can not catch up to the PPE and deplete the buffer quickly, the PPE buffers a
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configurable number of sequences before starting the SPE threads.

Buffer synchronization is done using atomic variables in the main memory, which

can be a atomically read and incremented/decremented by the SPEs and the PPE. As soon

as the SPE threads start up and get ready to start processing sequences, they request the

next available job entity entry by issuing a DMA request from the PPE buffer. This data

structure contains all the information the SPE requires to initiate a DMA transfer and start

processing, and the rest of the sequence transfer operation can proceed without help from

the DMA. The SPEs decrement the number of sequences in the buffer as they consume

sequences, and the PPE thread increments it as it reads more sequences and adds to the

buffer. When the buffer is empty, the SPE threads will go to sleep until the PPE can

replenish the buffer with more sequences and wakes them up. This continues until all the

sequences in the sequence database are read.

The initial sequence buffer should ideally be large enough to ensure temporal sep-

aration between the PPEs and the SPEs, so that the SPEs can not catch up with the PPEs

very quickly. A second reason for this separation is the performance hit incurred by the

SPE-initiated DMA transfers when the data comes from the L2 cache instead of the sys-

tem memory. As a result, the aforementioned temporal separation could also contribute to

performance by increasing the probability that the cache lines containing the sequences

are evicted from the Cell BE cache by the time they are needed by the SPEs. On the

other hand, the buffer should not be so large since the SPEs can not do useful work while

the sequences are being buffered in the very beginning of the application. We tuned the

initial buffer size by conducting experiments, and varied it according to the number of

sequences in the sequence database. For most of our experiments, the size of this buffer
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was in the range of 2 to 3 percent of the overall number of the sequences in the input

database.

The Cell BE architecture supports multiple page sizes. 4KB pages can be used

simultaneously with any two of 64KB, 1MB or 16MB pages. We used 16MB memory

pages to allocate sequence data buffers in order to minimize the negative impact of fre-

quent TLB reloads.

A naive and less complex implementation might possibly read all sequences into

a buffer, and then start the SPE sequences. The SPEs could then self-arbitrate without

any help from the PPE thread, and process the sequences in the buffer. Reading all se-

quences from a large database can take a long time, and the performance of such an

implementation will clearly suffer since the SPEs are doing nothing during this time. In

our implementation, the relatively complex PPE function to read and simultaneously dis-

tribute sequences to the SPEs keeps the PPE busy until all the sequences are read and

buffered. As a result, overlapping Viterbi computation on the SPEs with sequence input

on the PPE improves the performance of Cell-HMMER significantly.

After the SPEs process the sequences, the results of the Viterbi algorithm are trans-

ferred to the main memory by the SPEs via DMA without any help from the PPE thread.

and the PPE compares each result with a threshold value to determine whether a PPE

Viterbi traceback run is necessary. Traceback computation can not be done on the SPEs

because of the limited size of the SPE local stores. Running the Viterbi algorithm with

full traceback is not a problem on the PPE, as the PPE can access large amounts of main

memory directly. For sequences whose scores exceed the threshold, the PPE repeats the

Viterbi computation with full traceback information for postprocessing. We use the very
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fast AltiVec(VMX) implementation by Lindahl for PPE-side Viterbi computations. As

stated earlier,only a very small number of sequences actually need traceback: among the

5 HMMs that we used for our experiments(Figure 5.14), the highest number of significant

hits against the more than 250,000 sequences was only 148. We observed that typically

less than 0.1 percent of sequences require traceback operations in large HMMER runs

using common threshold values. Consequently, the PPE-side Viterbi processing of has

little negative impact on the performance of Cell-HMMER for many typical HMMER

jobs. For this reason, we did not need to utilize the two-way SMT feature of the PPE to

improve the performance of this step. Figure 5.14 shows the number of tracebacks (sig-

nificant hits) for each of the five HMMs used in our experiments when searched against

the SwissPROT database.

Finally, the PPE could be used for postprocessing of traceback information to dis-

play alignment statistics and a histogram to the user. The contribution of this step to the

overall execution time of HMMER is insignificant in comparison to the Viterbi algorithm,

and we did not implement this part in the first version of Cell-HMMER. The code for this

step does not require a different Cell BE implementation and could be adapted from a

standard HMMER distribution with little effort.

5.5 Experiments

5.5.1 Experimental Methodology

Cell-HMMER was developed in the C programming language using the public ver-

sion 1.0 of the Cell BE Software Development Kit (SDK) by STI. The basis for sequence
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HMM Name

Length

(states)


Description


COQ7
 100
 Ubiquinone biosynthesis protein COQ7


Maf1
 200
 Maf1 regulator


Lipoprotein_1
 300
 Borrelia lipoprotein


APG9
 400
 Autophagy protein Apg9


GerA
 500
 Bacillus/Clostridium GerA spore

germination protein


Figure 5.14: HMMs used in the experiments

and HMM input/file manipulation code and the AltiVec Viterbi implementation was the

HMMER 2.3.2 by Eddy[31].

The development of Cell-HMMER was started before there was any Cell BE hard-

ware available to us, and we used the Mambo Cell BE simulation framework from IBM[78]

for our initial development work. Mambo is a very flexible cycle-accurate simulator

which faithfully models both SPE and PPE pipelines and DMA effects, and using Mambo

significantly simplified our work. Later stages of the development were done on both

Mambo and a Sony PlayStation 3 gaming console running the Linux operating system.

The input data we used for our experiments came from well-known bioinformatics

databases: Pfam[17] and SwissPROT. We chose five different HMMs that range between

100 and 500 states from Pfam; and these HMMs are listed in Figure 5.14. As mentioned

earlier, the maximum HMM length usable on Cell-HMMER is 500; which covers 93

percent of HMMs in Pfam. Allocating the maximum amount possible to the HMM buffer

required us to use a conservative setting of 10000 for maximum sequence size, and we

processed the complete SwissPROT sequence database to strip away sequences longer
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Processor
 Clock Speed


Intel Pentium 4
 2.8 GHz


AMD Opteron 246
 2.0 GHz


AMD Opteron 280
 2.4 GHz


AMD Opteron 280 (2-way SMP)
 2.4 GHz


# of

Cores


1


1


2


4


L1 Cache


16 KB


128 KB


256 KB


256 KB


L2 Cache


1 MB


1 MB


2 MB


2 MB


RAM


2 GB


4 GB


4 GB


4 GB


Figure 5.15: Configurations of the x86 systems used in the experiments

than 10000 characters (Of the more than 250,000 sequences in SwissPROT, only 4 were

longer than this limit.).

We obtained performance measurements on real Cell BE hardware by running Cell-

HMMER on a prototype dual-processor Cell server blade at IBM T.J.Watson Research

Center.The two 3.2GHz Cell BE processors on this system make up to 16 SPEs available

to the user, however we used only 8 SPEs for the relatively small SwissPROT data set.

To compare the HMMER performance of Cell BE with x86 generations from the last

two generations, we obtained performance measurements on four different x86 system

configurations. The details of these systems are given in Figure 5.15.

For the baseline x86 tests, we used the standard HMMER 2.3.2 source code distri-

bution with pthreads multithreading support. Since Cell-HMMER currently does not have

the final postprocessing step, we commented out the postprocessing functionality before

compiling HMMER on each target system using the gcc C compiler at the optimization

level −O2. As the standard HMMER distribution does not use SSE2/SSE3 SIMD accel-

eration, the x86 code does not have SIMD support. It should be noted that versions of

x86 HMMER with SSE2/SSE3 acceleration exist[96]. The lack of source code for these

versions would have meant that the postprocessing functionality could not be commented
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Architecture
 Frequency

COQ7


Time (s)

MAF1


Time(s)
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Time(s)
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Time(s)


Cell BE - 1 SPE
 3.2 GHz
 97
 115.44
 135.4
 155.83
 173.68

Cell BE - 2 SPEs
 3.2 GHz
 48.63
 57.81
 67.75
 77
 86.95

Cell BE - 3 SPEs
 3.2 GHz
 32.47
 38.6
 45.22
 51.41
 58.06

Cell BE - 4 SPEs
 3.2 GHz
 24.36
 28.98
 33.99
 38.61
 43.6

Cell BE - 5 SPEs
 3.2 GHz
 19.57
 23.18
 27.2
 30.96
 34.89

Cell BE - 6 SPEs
 3.2 GHz
 16.32
 19.35
 22.68
 25.78
 29.1

Cell BE - 7 SPEs
 3.2 GHz
 14.03
 16.6
 19.48
 22.17
 24.98

Cell BE - 8 SPEs
 3.2 GHz
 21.9
 14.57
 17.07
 19.41
 21.85


AMD Opteron 280 (2-way SMP)
 2.4 GHz
 86.13
 174.32
 288.86
 332.68
 411.9
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 2.4 GHz
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 661.35
 815.33
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Figure 5.16: Execution times for the test HMMs

HMM

Speedup vs.


P4

Speedup vs.

Opteron 246


Speedup vs.

Opteron 280


Speedup vs.

Opteron 280(2P)


GerA
 78.12x
 102.47x
 37.31x
 18.85x

APG9
 70.63x
 93.25x
 34.07x
 17.13x

Lipoprotein_1
 61.84x
 81.38x
 29.82x
 16.92x

Maf1
 46.80x
 56.68x
 22.71x
 11.96x

COQ7
 15.73x
 19.34x
 7.72x
 3.93x


HMM
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Speedup vs.


P4


Normalized
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 27.98x
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 61.80x
 81.59x
 25.55x
 12.85x

Lipoprotein_1
 54.11x
 50.86x
 22.37x
 12.69x

Maf1
 40.95x
 35.42x
 17.03x
 8.97x

COQ7
 13.77x
 12.09x
 5.79x
 2.94x


Figure 5.17: Speedup obtained by Cell-HMMER using 8 SPEs

out, therefore we chose not to use these in our experiments.

5.5.2 Results

Figure 5.16 shows execution times of HMM searches for our 5 test HMMs on dif-

ferent platforms and the Cell BE. We used default HMMER options and searched the

complete SwissPROT sequence database (250,000 sequences) against the test HMMs.

For the Cell BE, we repeated the experiment while varying the number of active SPEs

from 1 to 8. The graphs in Figure 5.18 compare the performance of all twelve configu-
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rations for different input sizes. The performance data clearly shows Cell-HMMER has

significant performance advantages over conventional architectures, even with only one

SPE active in many cases. While the performance advantage in the single SPE can be

largely attributed to the use of SIMD optimizations coupled with the fast local store; the

performance gap widens as number of active SPEs increase and the parallelism inherent

in the workload can be fully exploited.

Using all 8 SPEs, Cell-HMMER on a 3.2GHz Cell BE not only performs up to 37

times faster than a dual-core Opteron at 2.4GHz; but also easily outperforms a 2-way SMP

configuration using the same Opteron processors. The clock-adjusted 14.13x performance

differential between the Cell BE and the 4-core SMP setup suggests that Cell-HMMER

is likely to remain competitive against next-generation quad-core x86 processors, even

factoring in an optimistic 50% performance improvement for the future x86 part. The

introduction of 4-way vector maximum instruction in SSE4 might change the situation

in the x86 architecture’s favor: such an instruction will make it possible to improve the

performance of x86 HMMER performance significantly(The results in [44] suggest that

Lindahl’s SIMD implementation of the Viterbi algorithm code provides a 4x-7x perfor-

mance advantage to the PowerPC architecture, which has such an instruction).

For our relatively small input data set, we observe almost perfectly linear scaling

on the Cell BE as the number of SPEs increase. The decrease in execution time was

linear for all but one HMM: the smallest data set, COQ7. The execution time for this

input increased as the number of SPEs increased from 7 to 8. This is almost certainly

due to the additional overhead introduced when the sequence buffer gets depleted too

frequently. Since the input HMM was fairly small and the SPEs were able to complete
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the Viterbi algorithm very quickly, the increased contention for sequences harmed perfor-

mance. Our experiments using up to 16 SPEs on the 2-processor Cell BE blade servers

at IBM confirmed that the same problem manifests itself at different points for other data

sets: Inevitably the SPEs catch up to the PPE, and the PPE frequently has to stop the

threads and replenish the buffer. Our default buffer size (2000) was too small to reduce

the occurrence of these events, and we are considering using a tunable buffer to overcome

this scalability problem. Such a buffer can either adjust its size statically using a formula

based on the size of the input HMM and the number of active SPEs; or adaptively change

its size during execution if the SPEs start catching up the PPE too frequently.

Figure 5.17 illustrates the speedup of HMMER searches on the Cell BE with 8

SPEs over other systems in our tests. When the numbers are normalized by the clock

speed to eliminate the effects of differences in clock speeds; the Cell BE architecture and

Cell-HMMER outperforms all the other systems by more than an order of magnitude in

many cases.

5.6 Related Work

The computational complexity of bioinformatics algorithms and the resulting per-

formance issues have been recognized fairly early on, and numerous attempts have been

made to accelerate important bioinformatics applications and workloads. Many of these

attempts were straightforward optimization and parallelization work; while some fol-

lowed unconventional approaches.

Some of the earliest attempts to improve the performance of computationally de-
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Figure 5.18: Performance data
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manding bioinformatics workloads involved the use of fast, heuristics-based algorithms

to replace computationally intensive, exact algorithms. Perhaps the best known exam-

ples of this approach are the BLAST[12] and FASTA[] algorithms which were devised to

approximate the Smith-Waterman algorithm [85]).

Current approaches to accelerating bioinformatics workloads range from special-

purpose hardware to optimized versions of the original applications; and many solutions

that have been proposed fall somewhere in between. Hardware acceleration of bioinfor-

matics applications offers great improvements in performance at the expense of decreased

flexibility. The special-purpose hardware approach requires the mapping of computation-

ally intensive parts of the underlying algorithm to an ASIC or more typically an FPGA

implementation. These ASICs or FPGAs are then installed on a host system which han-

dles high-level I/O to access the database, or execute non-critical sections. Such imple-

mentations [22],[72],[65],[6] have usually been successful in many niches where a single,

specific algorithm is targeted or the targeted class of applications share common opera-

tions that can be sped up by the acceleration hardware.

Bioinformatics applications have also been accelerated on non-conventional archi-

tectures such as commodity graphics processing units (GPUs) [44], multicore digital sig-

nal processors (DSPs) [63], and network processors [101] with some degree of success.

In many cases, such application specific hardware is used to close the performance gap

between exact algorithms (which yield more precise results) and their fast approxima-

tions.

The software optimization approach involves rewriting or modifying a particular

bioinformatics application by either using a more efficient algorithm, by making use of
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inherent parallelism, or by utilizing mechanisms used in recent microprocessors to accel-

erate other kinds of applications. A very common example is the use of SIMD extensions

that were originally designed to address the needs of multimedia applications [82]. Many

bioinformatics applications employ algorithms that can benefit from the use of SIMD ex-

tensions, and in many cases the best performing versions of these applications depend on

SIMD instructions for high performance.

Several papers in the computer architecture and performance evaluation literature

have recognized HMMer as an interesting and computationally intensive workload even

before its inclusion in the SPEC 06 benchmark suite. Our earlier work describing the

BioBench suite[11] was probably among the first workload characterization studies of

HMMER. Later studies by Li et al.[57] and Bader et al.[14][13] also characterize HM-

MER as part of their proposed benchmark suites. The results presented in these studies

mostly coincide with our findings, such as: many bioinformatics benchmarks (particularly

those in the domain of genomics) have little or no usage of floating point instructions; a

higher degree of ILP is available in bioinformatics applications than in SPEC INT or

FP benchmarks; and branches in bioinformatics applications are slightly less predictable

than the SPEC benchmarks used in the studies. The few discrepancies between the re-

sults of these studies can probably be attributed to differences in the input data sets and

methodologies.

Some recent work on HMMer performance optimization concentrated on using con-

ventional processor architectures. Walters et al.[96] an MPI version of HMMer for clus-

ter systems, and presented results suggesting better scalability and performance than the

freely available PVM-based HMMer. They also presented a version of HMMer which
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uses the Intel SSE2 128-bit SIMD extensions to accelerate the Viterbi algorithm, much

like Lindahl’s work involving an AltiVec port of HMMer. Their SSE2-optimized HMMer

port exhibits a 23.2 percent reduction in execution time. Combining their SSE2 optimiza-

tions with their MPI port of HMMer, Walters et al. were able to obtain a speedup of 6.65

times using an 8-processor cluster. This implementation is most likely the best perform-

ing HMMer implementation for x86-based PC clusters. In a similar study, Landman et

al.[55] describe a version of HMMer optimized for the AMD Opteron architecture[49]

which makes use of loop optimizations and conditional move instructions for hard-to-

predict branches. Their HMMer implementation runs up to 1.96 times faster than stock

HMMer on the same hardware, despite not using SSE2 SIMD instructions.

Two recent studies that studied HMMer on unconventional architectures deserve

special mention. Wun et al.[101] presented an implementation of HMMer on the Intel

IXP 2850 network processor. Their implementation, JackHMMer, uses a different ap-

proach than ours for exploiting the coarse-grained parallelism of HMMer. JackHMMer

utilizes a different HMMer operation model which compares a HMM model database

against a single sequence, as opposed to the more common model of comparing a sin-

gle HMM model with many sequences. In JackHMMer, HMM data is kept in the faster

SRAM-based memory while intermediate data resides in the DRAM main memory. The

sequence information is stored in the local scratchpad memory of the IXP MEs (micro-

engines, i.e. execution units). The sections of model and intermediate data required for

the multiple jobs running on the MEs are laid out in the form of ”work packets”, which

are then transferred to SRAM from DRAM by the MEs. This data arrangement is fea-

sible on the Intel IXP architecture due to the existence of real shared memory, and the
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relatively large size of SRAM compared to the 256KB SPE local store size. The authors’

implementation of HMMER running on a 1.4GHz IXP network processor is 1.82 times

faster than an optimized HMMER implementation running on a 2.6GHz Intel Pentium 4

processor. However, the optimized x86 version of HMMER used in this study does not

take advantage of SSE/SSE2 SIMD extensions, reportedly because of the lack of a vec-

tor maximum operation we mentioned earlier. Wun et al. also provide a basic workload

characterization of HMMer and a scalability analysis for both JackHMMer and a modi-

fied local memory version of JackHMMer. This local memory version works by copying

models to very fast local ME memory, which bears a similarity to SPE local stores. The

authors found that this version performs 3.5x times faster than the x86 baseline and scales

much better to more than 15 microengines, but is limited to small profile models due to

the size of the ME local memories.

Horn et al.[44] implemented ClawHMMER, a version of HMMer for clusters of

Nvidia or ATI graphics processors(GPUs). Using their GPU-specific HMMER imple-

mentation written in the Brook programming language, the authors were able to obtain

an almost 37x speedup over an unmodified HMMER running on a 2.8GHz Intel Pentium

4 CPU, and a 3.9x speedup over the optimized AltiVec version by Lindahl running on a

2.5GHz PowerPC G5. They also demonstrate linear speedup on a 16-node GPU rendering

cluster. This work by Horn et al. also classify Cell BE as a streaming processor architec-

ture not unlike the GPUs they used in their study, and suggest that a similar approach to

theirs for parallelizing HMMER on GPUs would be suitable for a future Cell BE imple-

mentation. While our programming model differed somewhat from the one outlined in

this paper, we found the discussion of their batching strategies useful for early guidance
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of our efforts.

Cell-HMMER differs from both JackHMMER and ClawHMMER in a few critical

aspects. ClawHMMER converts the Plan7 Viterbi algorithm into a streaming workload;

while Cell-HMMER maintains the structure of the original Viterbi code in HMMER. We

plan to investigate the performance of a streaming HMMER on the Cell BE as part of

out future work. JackHMMER is essentially an implementation of hmmpfam, and utilizes

a different axis of parallelism than the one used in our work. As mentioned earlier, the

strategy we used to port HMMER to the Cell BE could not be used for hmmpfam due to

the need to maintain the complete intermediate probability matrix for this application.

The Cell BE multiprocessor was first described in [79], and later in more detail by

Kahle et al. [48]. Kahle et al. explain the motivation for many Cell BE design decisions

and provide a comprehensive discussion of Cell BE programming models. Another ref-

erence on Cell BE programming models is [60]. A later paper by Gschwind et al.[42]

describes the design philosophy behind the Cell BE microarchitecture and includes a

detailed discussion of the ”synergistic processing” computational model of the Cell BE

SPEs. Kistler et al. [50] describe the Cell BE on-chip communication networks, protocols

and related performance issues.

A recent and very comprehensive work by Eichenberger et al.[32] presents a de-

tailed discussion of important compilation issues for the Cell BE.(An earlier work de-

scribing the same compiler technology is [33].) The authors describe a modern opti-

mizing compiler framework that can not only apply Cell BE-specific optimizations like

automatic memory alignment and SIMDization of sequential code, but also compile and

automatically partition unmodified OpenMP programs to the Cell BE PPE and SPEs. The
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auto-SIMDization optimizations applied by this compiler results in an average of 9.9x

speedup over sequential code, and task-level automatic partitioning and parallelization

yields an average of 6.8x speedup for a variety of benchmarks. While the current version

of their compiler can not apply all of these optimization techniques at the same time, a

future integrated implementation of this research compiler could offer significant perfor-

mance improvements since SIMDization and automatic partitioning are techniques that

are fairly independent of each other.Considering the difficulty of manual partitioning to

program the Cell BE, we anticipate such compilers to be very important for widespread

adoption of the Cell BE architecture.

Williams et al.[98] evaluated the performance of Cell BE architecture running a

variety of scientific computing applications. They present a detailed analysis of how the

Cell BE performs for traditional HPC workloads dominated by floating-point operations.

They compare the Cell BE results with results obtained on a Cray X1E vector machine,

an AMD Opteron x86 server, and an Intel Itanium 2 VLIW system. Their findings illus-

trate the performance advantages of the Cell BE architecture: they report a speedup of

5.5x running 2D FFTs, and 37x running a stencil computation over the base and report

speedups of up to 5.5x over an Opteron. In addition, Williams et al. compare the power

efficiency of the Cell BE against the aforementioned systems, and propose an improved

Cell BE processor with better double-precision floating point performance.
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5.7 Conclusions

In this chapter, we presented Cell-HMMER, a high-performance implementation of

HMMER search on the Cell Broadband Engine architecture. When executed using all 8

SPEs on the processor, Cell-HMMER outperforms current dual-core x86 processors by

a comfortable margin in both single-processor (2 cores total) and 2-way SMP (4 cores

total) configurations. We expect Cell-HMMER to be competitive against current and

future quad-core x86 microprocessors as well.

The Cell BE architecture offers the potential of significant performance improve-

ments for workloads that can utilize its features effectively. For many different types

of workloads, this requires the presence of some data parallelism that can leverage the

multiple SPEs. The fact that we were able to demonstrate speedup with a single SPE

suggests that the combination of the low memory latency of the SPE local stores and

the high memory bandwidth of the Cell BE architecture can be very effective in execut-

ing such workloads. Additional performance improvements are possible by exploiting

finer-grained data parallelism through the use of SIMD instructions, as we have done for

developing Cell-HMMER. Judging by the results of previous work that used SIMD in-

structions to accelerate HMMER ([44],[96]) and our tests, we believe a per-core speedup

of 2x to 4x could be attributed to the use of SIMD instructions in Cell-HMMER (The pre-

viously mentioned approximate speedup figures for Lindahl’s AltiVec SIMD HMMER

implementation are higher because it can process 8 states at a time, compared to 4 in

Cell-HMMER). The rest of the speedup reflects the benefits of moving the data closer to

the SPEs and using the low-latency local stores.
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Most of the effort in porting HMMER to the Cell BE architecture was spent in

designing and implementing an efficient PPE-SPE partitioning for the program logic, de-

signing efficient data structures for DMA transfers between the main memory and the

SPE local stores, and fine-tuning the synchronization mechanism. While our results jus-

tified the effort and time spent in the development of Cell-HMMER, we believe there is a

need for more advanced development tools and methodologies for Cell BE development.

Development of tools that could automate the partitioning work and reduce the difficulty

of Cell BE programming. Integrated with compiler technologies that can convert scalar

code to SIMD, it might be possible to use such compilers ([33]) and tools to produce a

quick Cell BE port of suitable applications that can be further refined and optimized.

Considering the time and effort currently required to port applications to the Cell

BE, equally needed are methodologies to rapidly assess whether a workload will benefit

from the Cell BE architecture or not. Our choice of HMMER was guided by detailed

analysis of the source code of the function that dominated its execution time, and lessons

learned from previous work that implemented this workload on other architectures. How-

ever, such information may not readily be available for many workloads; and assessing the

suitability of an application to the Cell BE multiprocessor remains a length process which

often involves some exploratory coding. In our experience, relying solely on characteri-

zation data obtained on different platforms turned out to be a suboptimal method for such

assessment tasks: Some of our earlier work involved preliminary research on a possible

port of BLAST to the Cell BE architecture. At first sight, BLAST looks like it can benefit

from the Cell BE architecture: Based on our studies, BLAST had relatively few branches

(Figure 3.1), highest degree of branch predictability among BioBench benchmarks (Fig-
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ure 3.4), and much lower cache miss rates than those of HMMER (Figures 3.5 and 3.6).

Furthermore, about 90 percent of the execution time is spent in two or three functions

in both DNA and protein variants of the BLAST workload (Figure 3.7). However, ex-

ploratory coding and analysis of the code revealed that BLAST performance was heavily

dependent on fast I/O, and a Cell BE implementation of BLAST was not likely to result

in performance improvements of the magnitude we were able to obtain for HMMER. It

should be noted that other bioinformatics applications, such as the rest of the applications

in BioBench, could also benefit from being ported to the Cell BE architecture. To this

end, we expect to see and take part in more exploratory porting studies to investigate the

potential Cell BE performance of these applications in the future.

As mentioned earlier, we observed speedups with even a single SPE. We believe

that a single SPE-like execution unit with sufficient local storage could be a worthwhile

addition to many conventional microarchitectures, and intend to expand our research in

this direction. The Viterbi algorithm is used in many other applications such as speech

processing, machine learning and telecommunications. We believe it should be possible

to adapt our Cell BE implementation of the Viterbi algorithm to accelerate such appli-

cations, and to use similar approaches on aforementioned SPE-like accelerators in future

processors.

We employed numerous techniques to improve the performance of Cell-HMMER

to its current level. Cumulatively, these techniques such as aggressive SIMD optimization,

double buffering and doing tracebacks on the PPE allowed us to utilize the the high on-

chip memory bandwidth and the multi-level software managed memory architecture of

the Cell BE to good effect. We still believe there is room for improvement: as the Cell BE
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architecture gains acceptance and Cell BE development tools become more powerful and

widely available, we hope to be able to continue working on improving Cell-HMMER.

Several objectives of our future work are already well-defined. The size of SPE local

stores limits the size of input HMMs Cell-HMMER can currently handle, and we would

like to revisit this problem in the future. Future Cell BE variants will probably provide

larger SPE local store sizes and dampen the impact of this limitation. In addition, we

want to improve the IPC figures we are getting on the SPEs, primarily by optimizing the

SPE portion of Cell-HMMER to eliminate residual branch misses in the code.

The Cell BE architecture offers significant performance benefits at the cost of some

degree of programming complexity. For many workloads such as HMMER, the additional

time required to successfully develop and debug Cell BE applications is worth the effort.
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