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Abstract
We develop a computational method based on a scalar potential representation, which efficiently re-

duces the solution of Maxwell’s equations to the solution of two scalar Helmholtz equations. One of the
key contributions of this paper is a theory for the translation of Maxwell solutions using such a represen-
tation, since the scalar potential form is not invariant with respect to translations. The translation theory
is developed by introducing “conversion” operators, which enable the representation of the electric and
magnetic vector fields via scalar potentials in an arbitrary reference frame. Advantages of this represen-
tation include the fact that only two Helmholtz equations need be solved, and moreover, the divergence
free constraints are satisfied automatically by construction. The availability of a translation theory for
this representation can find application in methods such as the Fast Multipole Method.
For illustration of the use of the representation and translation theory we implemented an algorithm

for the simulation of Mie scattering off a system of spherical objects of different sizes and dielectric
properties using a variant of the T-matrix method. The resulting system was solved using an iterative
method based on GMRES. The results of the computations agree well with previous computational and
experimental results.

1 Introduction

Perhaps there is no need to stress the need for efficient numerical solvers for the Maxwell equations in
frequency domain, as they are fundamental to many problems in theoretical and applied electromagnetics.
Decomposition of the solutions of these equations into multipole and related series are basic to multiple
scattering theory. Due to the vector structure of these equations, the representations involve often unwieldy
expressions involving series over the vector spherical harmonics. This leads, first, to rather complicated
(long) expressions, which themselves can be a source of error, and, second, to excessively large numbers
of unknowns in function representations. However, despite these difficulties, researchers have developed
the theory for the translation of such series with vector spherical harmonics and methods to compute the
translation coefficients (see, e.g., Refs. [19, 8, 16, 6, 23]).
Any solution of the free-space Maxwell equations can be expressed via two scalar potentials, which are

solutions of the scalar Helmholtz equation (see e.g. [12]). The translation theory for the latter equation is rel-
atively well developed both for function representations via multipole-type series and the far field signature
function (e.g. [18, 9, 12]). However, to apply this translation theory to the scalar potential representation
of solutions of the Maxwell equations, several issues must be addressed. The purpose of this paper is to
provide such a theory and apply it to Mie scattering problems.
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In a sense the method, which we develop in this paper, is similar to the method of translation of solutions
of the biharmonic equation, that we developed previously [14], where it was shown that any solution of the
biharmonic equation can be expressed as a combination of two solutions of the Laplace equations. However,
when the biharmonic solution is expressed in this form, the translations cannot be done independently.
Instead the two functions must be translated jointly, which, however, can be handled relatively easily by
the introduction of the concept of a sparse “conversion” operator. In fact given a fast-multipole method
routine for the Laplace equation, we show there that using the conversion operators, it can be used as a
fast-multipole method routine for the biharmonic and polyharmonic equations.
We following an approach similar to that paper and introduce a potential representation, and the concept

of “conversion” operators for the vector Maxwell equations, and show that given a multipole routine for the
scalar Helmholtz equation, a routine for the vector Maxwell equations may be obtained using the conversion
operators. Of course these conversion operators are different from those for the biharmonic equation. A
major difficulty that is faced with the vector representations, of maintaining the divergence free nature of
the solution, is avoided by construction.
The method of scalar potentials can be applied for the solution of different boundary value problems.

In this paper, for illustrating the use of the scalar potentials and the conversion operators, we demonstrate
how they may be used for the solution of multiple scattering problems, such as multiple scattering off many
spheres [4, 16, 24] using a variant of the T-matrix method [17, 20, 22] with solution of the linear system using
a GMRES-based iterative solver. The results of computations satisfy the Maxwell equations by construction,
and are validated by an a posteriori check of the error in satisfying the imposed boundary conditions. They
are also validated by comparisons with the theoretical and experimental data of Xu and Gustafson [25, 26].

2 Mathematical preliminaries

2.1 The Maxwell equations

In the frequency domain the phasors of the electric and magnetic field vectorsE andH for a monochromatic
wave of frequency ω satisfy the Maxwell equations

∇ × E = iωµH, ∇ × H = −iω²E, ∇ · E = 0, ∇ ·H = 0, (1)

which in the absence of sources and currents are valid in the carrier medium of electric permittivity ² and
magnetic permeability µ. As written, these vector equations incorporate eight relations (the equations for
the three components of the electric and magnetic fields, and the divergence free constraints).
The solution of these equations is composed of two fields describing incoming and outgoing waves. The

latter (radiating) waves satisfy the Silver-Müller radiation conditions

lim
r→0

³
µ1/2H(rad) × r−r²1/2E(rad)

´
=0, lim

r→0

³
²1/2E(rad)× r+rµ1/2H(rad)́ =0; r = |r| , r∈R3. (2)

Let the radiating field have all its singularities inside a sphere of radius a, while the incoming waves are
regular by definition everywhere in R3.
Taking the curl of the first equation (1), one can see that in a domain free of singularities the electric

field vector, E, satisfies the constrained vector Helmholtz equation¡
∇2 + k2

¢
E = 0, ∇ · E = 0, k = ω/c, (3)

where k is the wavenumber, c is the speed of light, c = (²µ)−1/2 . The same equations hold for the magnetic
field vector,H,¡

∇2 + k2
¢
H = 0, ∇ ·H = 0. (4)
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It is not difficult to show (e.g., see [12]) that in any given reference frame the electric and magnetic field
vectors can be expressed via two scalar potentials, φ (r) and ψ (r), that characterizing the TE and TM partial
wave polarization, respectively:

E =∇φ × r+∇ × (∇ψ × r) , H =
1

iωµ

¡
k2∇ψ × r+∇ × (∇φ × r)

¢
, (5)

where each potential satisfies the scalar Helmholtz equation¡
∇2 + k2

¢
φ = 0,

¡
∇2 + k2

¢
ψ = 0. (6)

The decomposition of the electric field (5) is equivalent to Eqs. (3) and (4), and therefore, the two scalar
functions φ and ψ completely characterize the electromagnetic field, and all mathematics related to solution
of the Maxwell equations can be expressed in terms of these potentials. We call this method as the “method
of scalar potentials”. In this theory we work only with φ and ψ and the actual values of E and H are
obtained as needed via direct application of Eqs. (5) or by use of some equivalent operators acting on the
representations in terms of the scalar functions φ and ψ.

2.2 Expansions of solutions over the basis of spherical wave functions

Solutions of the scalar Helmholtz equation can be also decomposed into the incoming and outgoing wave
functions. The latter satisfy the Sommerfield radiation condition

lim
r→∞

"
r

Ã
∂φ(rad)

∂r
− ikφ(rad)

!#
= 0, lim

r→∞

"
r

Ã
∂ψ(rad)

∂r
− ikψ(rad)

!#
= 0, (7)

which are equivalent to the Silver-Müller conditions (2) (e.g. see [12]). Consider a sphere of radius a and
the reference frame with the origin at the center of this sphere. Solutions singular (radiating) and regular
inside the sphere can be expanded as series over the spherical basis functions Smn (r) and Rmn (r), as

φ (r) =
∞X
n=0

nX
m=−n

φmn S
m
n (r) or φ (r) =

∞X
n=0

nX
m=−n

φmn R
m
n (r) , (8)

and similarly for ψ (r). Here

Rmn (r) = jn(kr)Y
m
n (θ,ϕ), Smn (r) = hn(kr)Y

m
n (θ,ϕ), n = 0, 1, 2, ..., m = −n, ..., n, (9)

where jn(kr) and hn(kr) are the spherical Bessel and Hankel functions (of the first kind), and Y mn (θ,ϕ)
are the orthonormal spherical harmonics:

Y mn (θ,ϕ) = (−1)m

s
2n+ 1

4π

(n− |m|)!

(n+ |m|)!
P |m|n (cos θ)eimϕ, (10)

P |m|n (µ) =
(−1)|m|

2nn!

¡
1− µ2

¢|m|/2 d|m|+n
dµ|m|+n

¡
µ2 − 1

¢n
,

n = 0, 1, 2, ...; m = −n, ..., n,

where P |m|n are the associated Legendre function expressed above via the Rodrigues formula. Here and
below we will use Cartesian (x, y, z) and spherical coordinates (r, θ,ϕ) related by

r =(x, y, z) = r (sin θ cosϕ, sin θ sinϕ, cos θ) . (11)
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The traditional way to represent the vectorsE andH is to insert expansions of type (8) directly into Eqs.
(5) and obtain (e.g. for the radiating solution):

E(r)=
∞X
n=0

nX
m=−n

h
φmnM

(s)m
n (r)+ψmn N

(s)m
n (r)

i
, (12)

M(s)m
n (r) = ∇Smn (r) × r, N(s)m

n (r) = ∇ × M(s)m
n (r),

whereM(s)m
n (r) andN(s)m

n (r) are singular spherical vector basis functions, and the φmn and ψmn are coeffi-
cients of the basis functions (not to be confused with the scalar potential functions φ and ψ). This requires
heavy use of vector algebra and the translation theory for vector functions. While such theories and meth-
ods are available [8, 6, 23] one of the purposes of the method of scalar potentials to reduce the complexity
by avoiding operations with vector basis functions. (Of course, we did need to use them to demonstrate
comparisons between our results and those of other authors.)
The expansions (8) specify mappings {φ (r) ,ψ (r)} À {Φ,Ψ}, where Φ = {φmn }, Ψ = {ψmn }

can be thought as matrices or vectors (with a proper alignment of the coefficients) and can be called as
function representations in the space of expansion coefficients. As these representations are available for
some domain, functions φ and ψ, and so E andH can be computed.

2.3 Expressions for operators as matrices relating expansion coefficients

Let A be a linear operator acting on functions, so that bφ = A [φ] . Further, let the functions bφ and φ be
expressed in a series over a functional bases (which can be the same or different), as in Eq. (9). In this case
the operator A can be represented as a matrix, A, acting on the coefficients of expansion of φ in its basis
and transforming them in to the expansion coefficients of bφ in its basis. Thus, the action of the operator on
the functions can be written in the equivalent forms

bφ = A [φ]À bΦ = AΦ. (13)

The entries of the matrix A as well as the vectors bΦ and Φ will, in general, depend on the particular
expansion bases, and we should indicate this explicitly or implicitly. Since the entries of the vectors Φ =n
φm

0
n0

o
and bΦ = nbφmn o are each characterized by two indices, the entries of the matrixA relating them can

be characterized by four indices, Amm0
nn0 = (A)

mm0
nn0 .

Differential Operators: The first type of linear operators that are important for the development of
the translation operations, are differential operators. When we differentiate functions, we usually expand
the original function and its derivative over the same basis. A remarkable property of the scalar Helmholtz
equation, is that the matrices of the differential operators are the same when expressed in either the basis
{Rmn (r)} or the basis {Smn (r)} [12]. The basic first-order differential operators here are

Dz =
1

k

∂

∂z
, Dx±iy =

1

k

µ
∂

∂x
± i

∂

∂y

¶
, (14)

Dt =
1

k
t·∇ = (tx + ity)Dx−iy + (tx − ity)Dx±iy + tzDz,

where t =(tx, ty, tz) is some constant vector. These operators can be represented in the space of coefficients
by matricesDz,Dx±iy, andDt, respectively. We remark that the matrices corresponding to these operators
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are very sparse, and may be written as [12]

(Dz)
mm0
nn0 = δmm0(amn δn0,n+1 − a

m
n0δn0+1,n), (15)

(Dx+iy)
mm0
nn0 = δm0,m−1(b−mn δn0,n−1 − bm−1n0 δn0,n+1),

(Dx−iy)mm
0

nn0 = δm0,m+1(b
m
n δn0,n−1 − b

−m−1
n0 δn0,n+1),

where δmm0 is the Kronecker symbol, and amn and bmn are real coefficients defined as

amn = a
−m
n =

s
(n+ 1 +m)(n+ 1−m)

(2n+ 1) (2n+ 3)
, for n > |m| , amn = 0, for n < |m| , (16)

bmn =

s
(n−m− 1)(n−m)

(2n− 1) (2n+ 1)
for 06m6n, (17)

bmn = −

s
(n−m− 1)(n−m)

(2n− 1) (2n+ 1)
for − n6 m <0,

bmn = 0 for |m|>n.

Instead of using sparse matrices to represent operators, it is sometimes simpler to represent their action via
simple relations between the function coefficients. For example, the action of operatorDt can be written as

bφmn = ∞X
n0=0

n0X
m0=−n0

(Dt)
mm0
nn0 φm

0
n0 = (tx + ity)

¡
bmn φ

m+1
n−1 − b

−m−1
n+1 φm+1n+1

¢
+ (18)

(tx − ity)
¡
b−mn φm−1n−1 − b

m−1
n+1 φ

m−1
n+1

¢
+ tz

¡
amn φ

m
n+1 − a

m
n−1φ

m
n−1
¢
.

Translation operators: The second type of linear operators that we wish to express explicitly are the
translation operators. In the functional space the translation operator generated by a constant translation
vector t is defined asbφ = T (t) [φ] , bφ (r) = φ (r+ t) . (19)

When both φ and bφ are represented in basis {Smn (r)} the matrices representing the multipole-to-multipole
translation operator can be denoted as (S|S) (t). The multipole-to-local operator can be written as (S|R) (t)
(φ is in {Smn (r)} and bφ is in {Rmn (r)}), and the local-to-local translation operator as (R|R) (t) (both φ
and bφ are in basis {Rmn (r)}. We further remark that the entries of the matrices (S|S) (t) and (R|R) (t)
for the Helmholtz equation are the same for the same t. Further, for the Helmholtz equation all matrices
for arbitrary t commute which each other (except for t = 0, which is a singular point for the multipole to
regular translation operator (S|R) (t)), and also commute with the matrices representing the differential
operators. This observation is the basis for a fast translation method, based on sparse matrix decomposition
of the dense translation matrix, and which was first introduced in [12].
Another fast translation method is based on decomposition of the translation vector into a pair of ro-

tations interspersed with translation along the polar axis direction. If needed all entries of the translation
matrices can be computed using fast recursive procedures [5, 11], which are much faster than direct expres-
sion of the matrix coefficients via the 3-j Wigner or similar symbols.
The translation operators for the case when the translation direction coincides with the polar z-axis,

t =tiz = (0, 0, t), we call coaxial translation operators. The representation of these operators is more
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compact, since for coaxial translations the order of the spherical basis functions, m, does not change. In
other words, the entries of the coaxial translation matrices have a factor δmm0 , as for the matrixDz (see Eq.
(15)), which in fact is the coaxial differentiation matrix, since in this caseDt = Dz. So performing a matrix-
vector product with the coaxial translation matrix requires fewer operations than the general translation and
can be used in decompositions of the general translation matrix [16]. The coaxial translation operators also
can be computed by a faster recursive procedures than those needed in the general case [11].
Rotation Operators: The third type of operators, which we mention are the rotation operators, defined

as bφ = Rot(Q) [φ] , bφ (br) = φ (r) , br = Qr, (20)

where r and br are coordinates of the radius-vector in the original and rotated reference frame, assuming
that the rotation transform in three dimensions is performed with real 3× 3 rotation matrix Q. The rotation
operator can also be represented by a matrix,Rot(Q). The entries of this matrix are proportional to δnn0 . In
other words, the rotation transform does not change the degree of the spherical basis functions. This makes
the rotation operator more compact than general translation operator, and this can be used in decompositions
of the translation matrix. Also the entries of matrixRot(Q) can be computed by fast recursive procedures
[11, 12].
As mentioned before, a particularly important type of decomposition of a translation operator is the

rotation-coaxial translation decomposition, where we decompose the general translation operation into a
rotation of the reference frame to align the z-axis with the direction of translation vector t, then translate
along the z-axis (“coaxial translation”), and then rotate back to obtain the original axes orientation.
If p is the truncation number at which we truncate all expansions in to the functional basis, with n =

0, ..., p− 1, m = −n, ..., n (so we hold only p2 terms in each of the expansions (8)), the general translation
matrix has p4 entries, and a computation of a general translation via a matrix-vector product requires O(p4)
operations, while the rotation-coaxial translation decomposition requires O(p3) operations.

3 Method of scalar potentials

3.1 Translations of vector functions

We must extend the translation operators for scalar Helmholtz functions introduced above to the case of the
vector Maxwell functions. SincebE (r) = E (r+ t)=∇ × ³rbφ´+∇ × ∇ × ³r bψ´+∇ × ³tbφ´+∇ × ∇ × ³t bψ´ , (21)bE = T (t) [E] , bφ = T (t) [φ] , bψ = T (t) [ψ] ,
we see that the translated function is not represented in the same form as the original function. At first
glance, representing the translations via scalar potentials 5, thus seems a non-trivial task. In fact, to retain
the scalar potential form for bE (r) in a basis centered at r = 0 we must express it in the formbE (r) = ∇ × ³reφ´+∇ × ∇ × ³r eψ´ . (22)

Due to linearity of all operations functions eφ and eψ should linearly depend on bφ and bψ. Such a linear
dependence is provided by conversion operators, which are defined then aseφ = C11 hbφi+ C12 h bψi , (23)

eψ = C21 hbφi+ C22 h bψi .
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The conversion operators can be represented as matrices acting on coefficients over the spherical wave
function basis. It is natural to represent

³eφ, eψ´ in the same basis as ³bφ, bψ´, and in this case it is not difficult
to see that the entries of the conversion operators will not depend on which basis {Smn (r)} or {Rmn (r)} we
use. Indeed, as we noticed above the differential operators for scalar functions are the same for the both
bases, while the conversion operators can be expressed in terms of such operators. So Eqs. (23) imply

eΦ = C11 bΦ+C12 bΨ, (24)eΨ = C21 bΦ+C22 bΨ.
Note that due to the symmetry in representation of the electric and magnetic field vectors (5) (the replace-
ment of φ with (iωµ)−1 k2ψ and ψ with (iωµ)−1 φ results in the same conversion operation, based on
consideration of the magnetic field vector, we have

C11 = C22, C12 = k
2C21. (25)

Below we derive explicit expressions for these matrices. This shows that these matrices are sparse and
the computational cost of the conversion procedure is low in terms of memory and time.

3.2 Conversion operators

Let us represent functions eφ and eψ in the form
eφ = bφ+ φ0, eψ = bψ + ψ0. (26)

As follows from Eqs. (21) and (22) the functions marked with primes satisfy

∇ ×
¡
rφ0
¢
+∇ × ∇ ×

¡
rψ0
¢
= ∇ ×

³
tbφ´+∇ × ∇ × ³t bψ´ . (27)

The scalar product of both sides of this equation with vector r then yields

r·∇ × ∇ ×
¡
rψ0
¢
= r·∇ ×

³
tbφ´+r·∇ × ∇ × ³t bψ´ . (28)

Due to the relations

∇ × ∇ ×
¡
rψ0
¢
= ∇

¡
ψ0 + r ·∇ψ0

¢
+ k2rψ0, (29)

∇ × ∇ ×
³
t bψ´ = ∇ ¡t ·∇ψ0¢+ k2tψ0, (30)

r·∇ ×
³
tbφ´ = − (r × t) ·∇bφ. (31)

Introducing the following differential operators

Drr = r
2 ∂

2

∂r2
+ 2r

∂

∂r
+ k2r2, Dr×t = (r × t) ·∇, (32)

Dr·t = (r·∇) (t ·∇) + k2 (r · t) ,

Eq. (29) can be rewritten in the form

Drr
£
ψ0
¤
= −Dr×t

hbφi+Dr·t h bψi . (33)
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Consider the action of operator Drr on a spherical basis function (9) (since the singular and regular basis
functions satisfy the same recurrence relations, it is sufficient to consider only one of them, say the regular
basis functions):

Drr [R
m
n (r)] = Y

m
n (θ,ϕ)Drr [jn (kr)] = Yn (θ,ϕ)n(n+ 1)jn (kr) (34)

= n(n+ 1)Rmn (r) .

This holds because the spherical Bessel (and Hankel) functions are the eigenfunctions ofDrr corresponding
to the eigenvalue n(n + 1). This means that in the space of expansion coefficients, for expansions of type
(8) Drr is represented by a diagonal matrixDrr, with entries

(Drr)
mm0
nn0 = n(n+ 1)δmm0δnn0 , n, n0 = 0, 1, ..., m = −n, ..., n, m0 = −n0, ..., n0. (35)

This also shows that function ψ0 is determined with the accuracy to an arbitrary function of r (indeed
∇ × (rf (r)) = 0), which in case of spherical basis functions is proportional to the zero order Bessel
function. This function can be deliberately set to zero, since in any case it does not contribute either to
E (r), or to H(r). Accepting this convention, we can define the inverse operator D−1rr as an operator,
represented by the diagonal matrix¡

D−1rr
¢mm0

nn0 =
1

n(n+ 1)
δmm0δnn0 , n, n0 > 0,

¡
D−1rr

¢00
00
= 0. (36)

The matrix representations of the operatorsDr×t and Dr·t are more involved and we show how one can
derive expressions for their entries in the Appendix. Similar to Eq. (18), it is convenient to write down the
results of the action of these matrices on the coefficients of some function χ :

bχmn = ∞X
n0=0

n0X
m0=−n0

(Dr×t)mm
0

nn0 χm
0

n0 =
i

2

¡
tx+iyc

m
n χ

m+1
n + tx−iycm−1n χm−1n − 2mtzχ

m
n

¢
, tx±iy = tx ± ity

(37)

bχmn = ∞X
n0=0

n0X
m0=−n0

(Dr·t)mm
0

nn0 χm
0

n0 = −
k

2

⎧⎨⎩
tx+iy

£
nb−m−1n+1 χm+1n+1 + (n+ 1)b

m
n χ

m+1
n−1

¤
+

tx−iy
£
nbm−1n+1 χ

m−1
n+1 + (n+ 1)b

−m
n χm−1n−1

¤
−

2tz
£
namn χ

m
n+1 + (n+ 1)a

m
n−1χmn−1

¤
⎫⎬⎭ , (38)

where cmn are real coefficients describing infinitesimal rotation, defined as

cmn =

⎧⎨⎩
p
(n−m) (n+m+ 1) for 0 6 m 6 n

−
p
(n−m) (n+m+ 1) for − n 6 m < 0

0 for |m| > n
(39)

These expressions yield the following expressions, which represent the action of the conversionmatrices:

eψmn = bψmn − 1

2n(n+ 1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i
³
tx+iyc

m
n
bφm+1n + tx−iycm−1n

bφm−1n − 2mtz bφmn ´+
k
n
tx+iy

h
nb−m−1n+1

bψm+1n+1 + (n+ 1)b
m
n
bψm+1n−1

io
+

ktx−iy
h
nbm−1n+1

bψm−1n+1 + (n+ 1)b
−m
n

bψm−1n−1
i
−

2ktz

h
namn

bψmn+1 + (n+ 1)amn−1 bψmn−1i

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (40)

n = 1, 2, ..., m = −n, ..., n, tx±iy = tx ± ity,
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eφmn = bφmn − 1

2n(n+ 1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ik2
³
tx+iyc

m
n
bψm+1n + tx−iycm−1n

bψm−1n − 2mtz bψmn ´+
ktx+iy

h
nb−m−1n+1

bφm+1n+1 + (n+ 1)b
m
n
bφm+1n−1

i
+

ktx−iy
h
nbm−1n+1

bφm−1n+1 + (n+ 1)b
−m
n
bφm−1n−1

i
−

2ktz

h
namn

bφmn+1 + (n+ 1)amn−1bφmn−1i
, (41)

n = 1, 2, ..., m = −n, ..., n, tx±iy = tx ± ity,

where the latter relation between eφmn and ³bφmn , bψmn ´follows from the symmetry relation (25).
3.3 Rotation-coaxial translation decomposition

We remark that the rotation transform defined by (20) does not change the form of decomposition (5) as
E and H are treated as physical vectors, which are invariant objects with respect to the selection of the
reference frame, and r and br are referred to the same point in the physical space. Thus in the rotated
reference frame we have for the electric field vector

bE (br) = ∇ × ³brbφ´+∇ × ∇ × ³br bψ´ . (42)

Furthermore, expressions for the conversion operators (40) and (41) are substantially simpler for coaxial
translations, t = tiz:

eψmn = bψmn + t

n(n+ 1)

n
imbφmn + k hnamn bψmn+1 + (n+ 1)amn−1 bψmn−1io , (43)

eφmn = bφmn + t

n(n+ 1)

n
ik2m bψmn + k hnamn bφmn+1 + (n+ 1)amn−1bφmn−1io ,

n = 1, 2, ..., m = −n, ..., n.

So the rotation-coaxial translation decompositions again appears to be an efficient computational procedure.
We also note that using the notation (24) and (25) we can see that general translation preserving the

scalar potential form (5) can be written asÃ eΦeΨ
!
=

µ
C11 (t) k2C21 (t)
C21 (t) C11 (t)

¶µ
T(t) 0
0 T (t)

¶µ
Φ
Ψ

¶
, (44)

whereT(t) is the translation matrix for scalar functions (e.g. (R|R)(t)). In the rotation-coaxial translation
decomposition this matrix can be represented as

T(t) = Rot−1(Q(t)Tcoax(t)Rot(Q(t)). (45)

On the other hand we haveÃ eΦeΨ
!
=

µ
Rot−1(Q(t)) 0

0 Rot−1(Q(t))

¶µ
Ccoax11 (t) k2Ccoax21 (t)
Ccoax21 (t) C11 (t)

¶
× (46)µ

Tcoax(t) 0
0 Tcoax (t)

¶µ
Rot(Q(t)) 0

0 Rot(Q(t))

¶µ
Φ
Ψ

¶
.
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It is not difficult to check directly, that Eqs. (44)-(46) result in the following relations

C11 (t) = Rot
−1(Q(t))Ccoax11 (t)Rot(Q(t)), C21 (t) = Rot

−1(Q(t))Ccoax21 (t)Rot(Q(t)), (47)

where the action of coaxial conversion operators Ccoax11 (t) and Ccoax21 (t) follows from Eqs. (43). We also
can note that the operator Drr defined by Eq. (32) is invariant with respect to the rotation transform, which
preserves the length of the radius-vector. So decompositions (47) can be combined with the form (33) for
conversion operation, resulting in

Dr×t = tRot−1(Q(t))Dr×izRot(Q(t)), Dr·t = tRot−1(Q(t))Dr·izRot(Q(t)), (48)

where the matricesDr×iz andDr·iz do not depend on t as they represent operators

Dr×iz = (r × iz) ·∇, Dr·iz = (r·∇) (iz ·∇) + k
2 (r · iz) . (49)

3.4 Computation of components of vector fields

One more operation should be specified as the method of scalar potentials is concerned. Given scalar
functions φ and ψ we should have an efficient procedure to compute components of electric and magnetic
field vectors according Eqs. (5). While this can be done directly using Eqs. (5), finite differences, and
samples of φ and ψ, more accurate, fast, and consistent way to do this is to obtain expansion coefficients for
the components of these vectors using expansion coefficients of the scalar potentials.
Consider projection of the electric field vector on some direction t. We have (29), (32), (14), and the

fact that (t·∇) (r ·∇) = (r ·∇) (t·∇) + t·∇:

Et = t · E = t· [∇φ × r+∇ × (∇ψ × r)] = (r × t) ·∇φ+ t·
£
∇ (ψ + r ·∇ψ) + k2rψ

¤
(50)

= (r × t) ·∇φ+ 2t·∇ψ +
£
(r·∇) (t ·∇) + k2 (r · t)

¤
ψ = Dr×t [φ] + 2Dt [ψ] +Dr·t [ψ] .

As Et satisfies the scalar Helmholtz equation, this function can be expanded into the series over the same
functional basis as φ and ψ. Denoting respective expansion coefficients as (Et)mn and using expressions for
representations of operators Dr×t, Dt, and Dr·t, we obtain

(Et)
m
n =

1

2

©
i
¡
tx+iyc

m
n φ

m+1
n + tx−iycm−1n φm−1n − 2mtzφ

m
n

¢
(51)

− k

⎧⎨⎩
tx+iy

£
(n+ 2) b−m−1n+1 ψm+1n+1 + (n− 1) b

m
n ψ

m+1
n−1

¤
+

tx−iy
£
(n+ 2) bm−1n+1 ψ

m−1
n+1 + (n− 1) b

−m
n ψm−1n−1

¤
−

2tz
£
(n+ 2) amn ψ

m
n+1 + (n− 1) a

m
n−1ψmn−1

¤
⎫⎬⎭
⎫⎬⎭ .

The same type of expression can be written for the projection of the magnetic field vector, (Ht)mn by re-
placing φ with (iωµ)−1 k2ψ and ψ with (iωµ)−1 φ. For convenience of the reader, we list the expansion
coefficients for the Cartesian components of the electric field vector, which follow from Eq. (51) by setting
(tx, ty, tz) = (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively:

(Ex)
m
n =

i

2

£
cm−1n φm−1n + cmn φ

m+1
n

¤
− (52)

k

2

£
(n+ 2) bm−1n+1 ψ

m−1
n+1 + (n− 1) b

−m
n ψm−1n−1 + (n+ 2) b

−m−1
n+1 ψm+1n+1 + (n− 1) b

m
n ψ

m+1
n−1

¤
,

(Ey)
m
n = −

1

2

£
−cm−1n φm−1n + cmn φ

m+1
n

¤
+

ik

2

£
(n+ 2) bm−1n+1 ψ

m−1
n+1 + (n− 1) b

−m
n ψm−1n−1 − (n+ 2) b

−m−1
n+1 ψm+1n+1 − (n− 1) b

m
n ψ

m+1
n−1

¤
,

(Ez)
m
n = −imφ

m
n + k

£
(n+ 2) amn ψ

m
n+1 + (n− 1) a

m
n−1ψ

m
n−1

¤
.
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Note also that E · r is a scalar function, that satisfies the Helmholtz equation, and according to Eqs. (5),
(29), we have (32) it is simply related to function ψ:

r · E =Drr [ψ] , (r · E)mn = n(n+ 1)ψ
m
n . (53)

Similarly,

r· (∇ × E)=Drr [φ] , [r· (∇ × E)]mn = n(n+ 1)φ
m
n . (54)

The latter two expressions specify operations, which in some sense are inverse to (52). Indeed, while
equations (52) allow us to get E from given φ and ψ, equations (53) and (54) can be used for determination
of φ and ψ from given E.
Again as in the case of conversion operators, we can see that physical components of the fields can be

computed using rapid procedures, and can be represented via sparse matrices.

3.5 Plane wave expansions

The method of scalar potentials can be used for solution of different electromagnetic scattering problems.
In typical formulations the incident field is taken in the form of a plane wave:

E = (s × q) eiks·r. (55)

where s is the direction of wave propagation and q is an arbitrary unit vector (for normalized wave). To
represent this field in form (5) we can take the scalar product of the electromagnetic vector and r to obtain

Drr [ψ] = r · E = r· (s × q) e
iks·r = − (r × q) ·seiks·r = −

1

ik
(r × q) ·∇eiks·r. (56)

Consider the Gegenbauer expansion for the plane-wave

eiks·r = 4π
∞X
n=0

nX
m=−n

inY −mn (s)Rmn (r) . (57)

Thus we have

−
1

ik
(r × q) ·∇eiks·r =

∞X
n=0

nX
m=−n

Amn R
m
n (r) , (58)

where

Amn = −
4πin

k

½
1

2

£
(qx + iqy)c

m
n Y
−m−1
n (s) + (qx − iqy)c

m−1
n Y −m+1n (s)

¤
−mqzY

−m
n (s)

¾
. (59)

Using the inversion of operator Drr in the space of expansion coefficients (36), we obtain

ψmn = −
4πin

n(n+ 1)k

½
1

2

£
(qx + iqy)c

m
n Y
−m−1
n (s) + (qx − iqy)c

m−1
n Y −m+1n (s)

¤
−mqzY

−m
n (s)

¾
,

(60)
n = 1, 2, ..., m = −n, ..., n.
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To determine the function φ we take the curl of the electric field vector:

∇ × E =∇ ×
h
(s × q) eiks·r

i
= ik (s × p) eiks·r, p = s × q. (61)

We have then:

Drr [φ]=r · (∇ × E) = ikr · [s× (s × q)] e
iks·r (62)

= −ik [r× (s × q)] ·seiks·r = − [r× (s × q)] ·∇eiks·r.

We obtain then similarly to the previous result coefficients for function φ:

φmn = −
4πin+1

n(n+ 1)

½
1

2

£
(px + ipy)c

m
n Y
−m−1
n (s) + (px − ipy)c

m−1
n Y −m+1n (s)

¤
−mpzY

−m
n (s)

¾
,

(63)
n = 1, 2, ..., m = −n, ..., n.

3.6 Electric and magnetic dipoles

Another elementary solution of the Maxwell equations in a homogeneous medium is produced by a point
singularity (point current source). This field, known as the field of Hertzian dipole of moment p produces
the electric field vector

E (r) =

µ
I+

∇∇

k2

¶
· [pG(r)] = pG+

1

k2
∇ (p·∇G) , (64)

where I and∇∇ are the unity and differentiation dyadic tensors, and dyadicG (r) is the free-space Green’s
function for scalar Helmholtz equation, for a source centered at the origin of the reference frame:

G (r) =
eikr

4πr
,
¡
∇2 + k2

¢
G (r) = −δ (r) , r = |r| . (65)

Consider the representation of the field of the dipole (64) via scalar potentials (5). First we note that for
field (64) function φ ≡ 0 (as this function is determined up to an arbitrary function of the distance r = |r|).
This is not difficult to show, since we have from Eqs (64) and (54):

Drr [φ] = r · (∇ × E) = r · (∇G × p) =
1

r

∂G

∂r
r· (r × p) = 0. (66)

Equations (64) and (54) yield then

Drr [ψ] = r · E =(r · p)G+
1

k2
(r·∇) (p·∇G) =

1

k2
Dr·p [G] . (67)

In the basis of singular spherical functions {Smn (r)} the function G (r) is represented by expansion
coefficients Gmn :

Gmn =
ik

(4π)1/2
δm0δn0, n = 0, 1, ..., m = −n, ..., n

Ã
G (r) =

ik

(4π)1/2
S00 (r) = G

0
0S
0
0 (r)

!
. (68)
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Representation (38) of operator Dr·pshows then that for function Dr·p [G] only expansion coefficients cor-
responding to degree n = 1 are non-zero, and, in fact, are dipoles for the scalar Helmholtz equation. So,
using inversion (36) of operatorDrr and representation we obtain

ψmn = −δn1
1

2k

©
(px + ipy) b

m
1 G

m+1
0 + (px − ipy) b

−m
1 Gm−10 − 2pza

m
0 G

m
0

ª
, (69)

n = 0, 1, ..., m = −n, ..., n.

Putting here expressions for differentiation coefficients (16) and (17) and for Gmn (68) we obtain then for-
mulae for non-zero expansion coefficients of function ψ.

ψ−11 =
py − ipx

(24π)1/2
, ψ01 =

ipz

(12π)1/2
, ψ11 =

py + ipx

(24π)1/2
. (70)

Note, that the electric dipole also can be represented in the form:

ψ (r) = −
1

k2
p·∇G(r). (71)

This can be shown comparing Eq. (69) and Eq. (18) to represent operator p·∇. One can also perform an
exercise with vector algebra to show that ∇ × (∇ψ × r) = E for ψ and E given by expressions (71) and
(64). Taking into account (71) we can rewrite (64) in the form

E = pG−∇ψ. (72)

Similar expressions can be obtained for fictitious point magnetic currents, where H (r) is represented
in form (64). In this case we should have ψ = 0, while φ should be a sum of scalar dipoles with moments
proportional to that given by Eq. (70).

4 Multiple scattering from spheres

To demonstrate how the method of scalar potentials can be efficiently applied for solution of scattering
problems we will provide a solution of a classical problem of scattering off spheres (e.g. [4, 16, 24]). We
also draw attention to a corresponding calculation for the scalar Helmholtz equation presented in [10]. This
requires solution of a boundary value problem for Maxwell’s equations. Assume that in general we have
N dielectric spheres with radii aq of electric permittivity ²q and magnetic permeability µq respectively, and
whose centers are located at r0q, q = 1, ..., N. In the absence of spheres the electromagnetic field is a given
incident field, (Ein,Hin), while the presence of scatterers generates the scattered field (Escat,Hscat), in the
domain external to the spheres we have

E = Ein +Escat, H = Hin +Hscat, (73)

and respective decomposition of scalar potentials φ and ψ.
On the surface of the qth scatterer, Sq, we have transmission conditions

(nq × E)Sq =(nq × Eq)Sq , (nq × H)Sq =(nq × Hq)Sq , (74)

where nq is the surface normal, and (Eq,Hq) is the electromagnetic field inside the qth scatterer.
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4.1 Scattering from a single sphere

For a single sphere the electromagnetic scattering problem was considered by Mie (1908), who provided a
solution in the form of Mie series, i.e. series for electric and magnetic field vectors via vector spherical basis
functions of type (12). Below we provide a solution of the same problem using scalar potentials.

4.1.1 Boundary conditions for scalar potentials

Consider a reference frame with the origin at the center of sphere of radius a. Denote (Eint,Hint) the field
inside the sphere. Let then E and Eint be represented in the form (5), (r, θ,ϕ) be the spherical coordinates,
and

φ− φint
¯̄
r=a

= φa (θ,ϕ) , ψ − ψint
¯̄
r=a

= ψa (θ,ϕ) , (75)
∂φ

∂r

¯̄̄̄
r=a

−
∂φint

∂r

¯̄̄̄
r=a

= φ0a (θ,ϕ) ,
∂ψ

∂r

¯̄̄̄
r=a

−
∂ψint

∂r

¯̄̄̄
r=a

= ψ0a (θ,ϕ) .

Then we can express n×
¡
E− Eint

¢¯̄
r=a

via these functions and normal derivatives. Indeed,
The boundary condition (3) in terms of potentials can be written as

r×∇ ×
¡
r
¡
φ− φint

¢¢
+r×∇ × ∇ ×

¡
r
¡
ψ − ψint

¢¢¯̄
r=a

= 0. (76)

We have

∇φ−∇φint
¯̄
r=a

= φ0air +∇φa. (77)

Since

r×∇ × (rφ) = r× (∇φ × r) = r2∇φ− r (r·∇φ) , (78)

we obtain

r×∇ ×
¡
r
¡
φ− φ0

¢¢¯̄
r=a

= a2
¡
φ0air +∇φa

¢
− a2φ0air = a

2∇φa. (79)

Then we have

∇ (ψ + r ·∇ψ)|r=a = ir
∂

∂r

µ
ψ + r

∂ψ

∂r

¶
+
1

r
iθ
∂

∂θ

µ
ψ + r

∂ψ

∂r

¶
+

1

r sin θ
iϕ

∂

∂ϕ

µ
ψ + r

∂ψ

∂r

¶¯̄̄̄
r=a

(80)

= ir
∂

∂r

µ
ψ + r

∂ψ

∂r

¶¯̄̄̄
r=a

+∇

µ
ψ + a

∂ψ

∂r

¯̄̄̄
r=a

¶
.

So, using the first vector identity from Eq. (29) we obtain

r×∇ × ∇ ×
¡
r
¡
ψ − ψ0

¢¢¯̄
r=a

= air×∇
¡
ψa + aψ

0
a

¢
. (81)

We can rewrite the boundary conditions then as

a∇φa + ir×∇
¡
ψa + aψ

0
a

¢
= 0. (82)

14



Since for spherical basis vectors we have ir× iθ = iϕ, ir× iϕ = −iθ the above relation can be rewritten in
component form as

a sin θ
∂φa
∂θ

=
∂

∂ϕ

¡
ψa + aψ

0
a

¢
, (83)

a

sin θ

∂φa
∂ϕ

= −
∂

∂θ

¡
ψa + aψ

0
a

¢
.

Then we can separate φ and ψ by cross-differentiation:

∂

∂ϕ

µ
1

sin θ

∂φa
∂ϕ

¶
+

∂

∂θ

µ
sin θ

∂φa
∂θ

¶
= 0, (84)

∂

∂ϕ

µ
1

sin θ

∂

∂ϕ

¡
ψa + aψ

0
a

¢¶
+

∂

∂θ

µ
sin θ

∂

∂θ

¡
ψa + aψ

0
a

¢¶
= 0.

Introducing the Beltrami operator as

∇2(θ,ϕ) =
1

sin θ

∂

∂θ

µ
sin θ

∂

∂θ

¶
+

1

sin2 θ

∂2

∂ϕ2
. (85)

we obtain

∇2(θ,ϕ)φa = 0, (86)

∇2(θ,ϕ)
¡
ψa + aψ

0
a

¢
= 0.

The spherical harmonics Y mn (θ,ϕ) are the eigenfunctions of the Beltrami operator with eigenvalues
−n(n+ 1). Hence, we have equalizing to zero each harmonic (exclude zero):

φa|r=a = 0, (87)
ψa + aψ

0
a = 0,

or

φ|r=a = φint
¯̄
r=a

, (88)µ
ψ + a

∂ψ

∂r

¶¯̄̄̄
r=a

=

µ
ψint + a

∂ψint

∂r

¶¯̄̄̄
r=a

.

Note that in case of perfect conductor the field inside the sphere is zero, and, therefore, the right hand sides
of Eq. (88) should be set to zero.
Now we note that for dielectric spheres the same consideration applies to the vector of magnetic field,

where the function φ should be replaced by k2

iωµψ, while the function ψ should be replaced by
1
iωµφ (see

(5)). From equations (88) we have then

² ψ|r=a = ²
int ψint

¯̄
r=a

, (89)
1

µ

µ
φ+ a

∂φ

∂r

¶¯̄̄̄
r=a

=
1

µint

µ
φint + a

∂φint

∂r

¶¯̄̄̄
r=a

,

where we noticed that for a given frequency

1

cµk
=

1

ωµ
,

k2

ωµ
=

ω

c2µ
= ω². (90)
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4.1.2 T-matrix

The T-matrix relates coefficients of the incident and scattered fields (e.g. see [20]). In terms of scalar po-
tentials this relation can be found from the boundary conditions (88) and expansions of the scalar potentials
over the spherical basis functions. Since the zero order harmonics should be zero, these expansions are

φin =
∞X
n=1

nX
m=−n

φ(in)mn Rmn (r) , ψin =
∞X
n=1

nX
m=−n

ψ(in)mn Rmn (r) , (91)

φscat =
∞X
n=1

nX
m=−n

φ(scat)mn Smn (r) , ψscat =
∞X
n=1

nX
m=−n

ψ(scat)mn Smn (r) ,

φint =
∞X
n=1

nX
m=−n

φ(int)mn Rmn (νr) , ψint =
∞X
n=1

nX
m=−n

ψ(int)mn Rmn (νr) , ν =
kint

k
,

where kint is the wavenumber for the field inside the sphere, ν is the relative refractive index.
Now we note that due to completeness and orthogonality of the spherical harmonics relations for surface

functions (88) apply to each harmonic independently. For each n and m this provides a system of four
linear equations with respect to four unknowns φ(scat)mn ,φ

(int)m
n ,ψ

(scat)m
n ,ψ

(int)m
n . To resolve the system

in simpler form, we introduce the Ricatti-Bessel and Ricatti-Hankel functions

ηn (z) = zjn (z) , ζn (z) = zhn (z) . (92)

In this case

φ(scat)mn = −
νηn(ka)η

0
n

¡
kinta

¢
− µint

µ η0n (ka) ηn(kinta)

νζn(ka)η0n (kinta)−
µint

µ ζ 0n (ka) ηn(kinta)
φ(in)mn , (93)

ψ(scat)mn = −
νηn(ka)η

0
n

¡
kinta

¢
− ²int

² η0n (ka) ηn(kinta)
νζn(ka)η0n (kinta)− ²int

² ζ 0n (ka) ηn(kinta)
ψ(in)mn ,

φ(int)mn = ν
µint

µ

ζn(ka)η
0
n (ka)− ζ 0n (ka) ηn(ka)

νζn(ka)η0n (kinta)−
µint

µ ζ 0n (ka) ηn(kinta)
φ(in)mn ,

ψ(int)mn = ν
ζn(ka)η

0
n (ka)− ζ 0n (ka) ηn(ka)

νζn(ka)η0n (kinta)− ²int

² ζ 0n (ka) ηn(kinta)
ψ(in)mn .

The coefficients relating φ(scat)mn and φ(int)mn to φ(in)mn are the Lorenz-Mie coefficients for the TE partial
wave polarization, and the coefficient relating ψ(scat)mn and ψ(int)mn to ψ(in)mn are the Lorenz-Mie coefficient
for the TM partial wave polarization (in optics approximation µint = µ, ²int = ν2² is usually employed –
in this case the Lorenz-Mie coefficients depend only on ka and ν).
Note that expressions for the internal field coefficients can be simplified using the Wronskian for spher-

ical Bessel functions

ζn(ka)η
0
n (ka)− ζ 0n (ka) ηn(ka) = ka

©
hn(ka)

£
jn(ka) + kaj

0
n (ka)

¤
−
£
hn(ka) + kah

0
n (ka)

¤
jn(ka)

ª
(94)

= (ka)2
£
hn(ka)j

0
n (ka)− h

0
n (ka) jn(ka)

¤
= −i.
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So

φ(int)mn = −iν
µint

µ

µ
νζn(ka)η

0
n

¡
kinta

¢
−
µint

µ
ζ 0n (ka) ηn(k

inta)

¶−1
φ(in)mn , (95)

ψ(int)mn = −iν

µ
νζn(ka)η

0
n

¡
kinta

¢
−
²int

²
ζ 0n (ka) ηn(k

inta)

¶−1
ψ(in)mn .

We checked that the obtained solution coincides with the Mie solution. For this purpose we took the
incident field in the form of plane wave (55) and found expansion coefficients for corresponding scalar
potentials using Eqs. (60) and (63). Further we computed coefficients the Lorenz-Mie coefficients and
determined the expansion coefficients for the scalar potentials of the scattered field according to Eq. (93).
Evaluation of the scattered electric and magnetic fields was performed using truncated expansions of the
x, y, and z field components over the singular spherical basis functions, where the expansion coefficients
were computed (52).

4.2 Scattering from several spheres

To check the derived translation relations we considered multiple scattering problem. Solution of this prob-
lem for scalar case (acoustic scattering) using multipole reexpansions was obtained in [10] and in (e.g. [16])
for EM case. In the EM case it is convenient to use 2 component vectors for representation of expansion co-
efficients, where the first component corresponds to potential φ and the second - to potential ψ. For scatterer
q we can write thenµ

Φscatq

Ψscatq

¶
=

Ã
T
(φ)
q 0

0 T
(ψ)
q

!Ã
Φin,effq

Ψin,effq

!
, (96)

whereT(φ)q andT(ψ)q are diagonal matrices of the Lorenz-Mie coefficients (T-matrices) for the qth scatterer,
while Φin,effq and Ψin,effq are the coefficients of the effective incident field for this scatterer. The latter
coefficients can be thought as a sum of coefficients for actual incident field (e.g. taken in the form of plane
wave) and coefficients due to other scatterers. So we can writeÃ

Φin,effq

Ψin,effq

!
=

µ
Φinq
Ψinq

¶
+
X
q0 6=q

⎛⎝ C11

³
r0q0q

´
k2C21

³
r0q0q

´
C21

³
r0q0q

´
C11

³
r0q0q
´ ⎞⎠× (97)

Ã
(S|R)(r0q0q) 0

0 (S|R)
³
r0q0q
´ !µ Φscatq0

Ψscatq0

¶
,

where r0q0q = r
0
q − r

0
q0 is a vector directed from the center of scatterer q

0 to scatterer q and we used represen-
tation of the translation operator in form (44) with multipole-to-local (S|R) translation operator.
One can substitute Eq. (97) into Eq. (96) to obtain a linear system of type

LA = Ain, L = T−1 − (̂S|R), (98)

where A is a vector stacking expansion coefficients
¡
Φscatq ,Ψscatq

¢
, q = 1, ..., N , Ain is the vector of in-

cident field coefficients, T is the diagonal T -matrix composed of T(φ)q and T(ψ)q , q = 1, ...,N , and (̂S|R)
denotes translation operator, which is composed from blocks of scalar translation operators and conversion
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matrices. This system can be solved directly using standard methods. In practice, we use truncation of the
vectors and matrices with truncation number p to have p2 expansion coefficients for each scatterer. This
results in the system of size 2Np2. Computation of entries of the translation matrices takes O(N2p4) oper-
ations and direct solution (e.g. using Gauss elimination or LU−decomposition) can be done in O(

¡
Np2

¢3
)

operations. This complexity prevents one from solving problems with largeN and p and some other methods
should be used in this case. For example, the computational work can be reduced to O(N2p3Niter), where
Niter is the number of iterations, if we use iterative methods and rotation-coaxial translation decomposition.
Indeed in this case each iteration requires just one matrix-vector multiplication involving the system matrix
L. As Eq. (98) shows this consists of diagonal (T−1) matrix multiplication and multiplication by matrix
(̂S|R). The latter operation can be performed for expense of (2N)2 p3 operations, if instead of (44) we use
decomposition (46). This method works well for N . 100, while for larger N methods of matrix-vector
multiplication linear with respect toN (orN logN ), such as fast multipole methods (e.g. see [7, 15, 13]) or
other speed up techniques [21] must be employed. We do not consider such techniques in this paper.

4.3 Numerical tests

In numerical tests we performed computations off a spatial distributions ofN scatterers of equal or different
size. The truncation number p was selected according

p = [kamax] + p0(kamax, ², δ), (99)

where [] denotes integer part, p0 depends on the acceptable error of computation, ², maximum sphere radius,
amax = max {aq}, and separation between the spheres, δ = min {bq/aq}, where bq is the distance from the
center of sphere q to the closest point on the neighbor sphere (δ > 1). Such dependences were studied for
scalar case [13], and in the present study we used these results as a guide for selection of p. However, for
every computed case at some p we performed a posteriori error check, to ensure that solution is correct.
The basis for such an error check is the following. As φ and ψ satisfy the scalar Helmholtz equation,

the expansion coefficients for components of the electric field (52) (and similarly for magnetic field) ensure
that the EM field is divergence free. Therefore, all errors (truncation, roundoff, iteration) are related to the
boundary conditions alone. To check that the obtained fields are actually solutions of the boundary value
problem for the Maxwell equation, we sampled the entire boundary (of all scatterers) withM points, ym, at
which we computed the following errors for the boundary conditions for electric field

²(bc)m s =

¯̄
n (ym) ×

£
E (ym)−E

int (ym)
¤¯̄³

1
M

P
m |E (ym)|

2
´1/2 , ²(bc)∞ = max

m
²(bc)m , ²

(bc)
2 =

"
1

M

X
m

¯̄̄
²(bc)m

¯̄̄2#1/2
. (100)

A similar error measure was computed for the magnetic field as well. All computations reported below were
performed in double precision.

4.3.1 Single sphere

Scattering from a single sphere is classical Mie scattering case, which solutions are investigated thoroughly
(see, e.g. [3]). We validated our computations by comparisons of some standard cases. As a benchmark
case we considered scattering off a perfect conductor, in which case Eint = 0 and so instead of general
boundary conditions (74) it is sufficient to use n × E = 0. This also can be considered as a limiting case
with ²int →∞, µint → 0. To measure the error we sampled the surface with a equiangular grid with respect
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Figure 1: On the left: the distribution of the dimensionless energy density over a surface of perfectly con-
ducting sphere at ka = 10 for incident wave vector s and electric field polarization p shown. On the right:
different shades of gray show areas of maximum relative error in boundary conditions ²(bc)∞ defined by Eq.
(100), which is a function of ka and p0. The thick curve shows conventional dependence p0 (ka) used by
many authors.

to the spherical angles θ and ϕ and performed computations for a range of ka and corresponding values of
the truncation numbers p. Some results of error measurements are shown in Fig.1.
For computations we used incident field in the form of plane wave (55), where the electric field vector

had polarization direction p = s × q (usually we directed axes to have s =(0, 0, 1), p = (1, 0, 0)). Some
example of computation of distribution of parameters on the scatterer surface is shown in Fig. 1 (left). Here
the arrows show the direction of the wave vector, s, and of the polarization vector, p. The plotted value is
the dimensionless energy density of the electromagnetic field, e = 1

2

³
|E|2 + |H|2

´
, where E and H are

the dimensionless electric and magnetic vectors (set ² = µ = 1). Fig. 1 (right) shows ²(bc)∞ defined by Eq.
(100) for a 21 × 20 surface grid which we used for error measurement. This error depends on ka and p or
p0, which is defined by Eq. (99). The curves of constant ²

(bc)
∞ divide the (ka, p0) plane into domains shown

in shades of gray. We also plotted the dependence for usually recommended criterion for selection of p (ka)
(e.g. [2])

p = ka+ 4 (ka)1/3 + 3 (101)

(one can determine p0 from this using Eq. (99)). As the figure shows the error in boundary conditions in
this case is somewhere between 10−6 and 10−4, which also slightly depends on ka.

4.3.2 Two spheres

The case of two spheres is also important for validation of the results, since this introduces separation
distance between the spheres as an additional parameter affecting the error. Also this case validates the
translation theory and the iterative solver (GMRES), which we used in all the multisphere cases for solution
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of the resulting linear system, since this brings substantial speed ups due to rotation-coaxial translation
decomposition.
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Figure 2: Two pictures on the left illustrate distribution of the dimensionless field energy density over the
surface of two perfect conductors at different polarizations of the incident plane wave shown by vector p
at ka = 10. The graph on the right shows dependence of the error in boundary conditions ²(bc)∞ on the
dimensionless separation parameter δ and p0 for ka = 5. The line here shows p0 = 9, which follows from
usually recommended truncation number p = ka+ 4(ka)1/3 + 3.

Fig. 2 demonstrates some results of computations for two perfectly conducting spheres of equal size.
The picture on the right shows patterns of the dimensionless energy density for ka = 10 and dimensionless
separation δ = 2. Comparing these with that shown in Fig. 2 we can see that the presence of the second
sphere is substantial and also orientation of the vector directed from one sphere to the other with respect to
the wave vector s and polarization vector p is important. The chart on the right of Fig. 2 shows computations
of the error in boundary conditions ²(bc)∞ as a function of p0 and δ (measured for polarization shown in the
left bottom picture for ka = 5). We can see that computations can be stably performed even for the case
when the spheres touch each other (δ = 1). However the truncation number in this case should be larger
than predicted by Eq. (101) if the required accuracy is 10−4 or less. The increase in the truncation number
for fixed accuracy depends on ka and δ and such corrections should be kept in mind when computations
are performed for multiple scatterers. Note that this effect was also observed in computations of acoustic
scattering (scalar Helmholtz equation, [13]) and the errors for the Maxwell’s equation are about the same
order.

4.3.3 Multiple sphere cases

Many computations were performed for multiple sphere configurations, where we varied the sizes, loca-
tions, and dielectric properties of the spheres, the wave polarization directions and the wavenumber. Figures
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3 and 4 demonstrate some results for random and regular distributions of spheres with the same dielectric
properties ²int/² = 10+0.1i, µint/µ = 1. In the first case the size distribution of the spheres was uniformly
random with amin/amax = 0.5 and kamax = 10. As the locations were also uniformly randomly generated
inside some bounding box we removed overlapping spheres to leave 100 non-intersecting spheres (some
of them were almost touching their neighbors). GMRES-based iteration process shows exponential conver-
gence in terms of the absolute error in the expansion coefficients (see 3). After achieving some prescribed
error the iteration process was terminated and the error in boundary conditions (100) was measured over
38200 points sampling the entire surface of 100 spheres. As it is seen this error varies in a wide range,
which we relate to the proximity of the neighbor spheres to a given one. If a sphere is well separated from
the other spheres the error was low, and it substantially increases for touching spheres. In any case, the worst
errors were of order of several percents in this case (p = 26).
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Figure 3: Illustration of computations of scattering for 100 spheres of random size and location. The incident
wave vector and polarization are shown by arrows s and p. Intensity of gray shadows on the spheres
correspond to log10 e, where e is the dimensionless energy density. The bottom left picture shows spatial
distirbution of e over the imaging plane represented by dots on the to left picture. The top right chart shows
convergence of the GMRES-based iterative solver, and the bottom right chart illustrates distirbution of error
in boundary conditions ²m (100) over 38200 surface nodes.

The configuration shown in Fig. 4 is computed for a little bit higher wavenumbers and we used truncation
number p = 31. Here the spheres of the same size are arranged in a grid with spacing equal to the sphere
radius (δ = 2). The nature of convergence of the iteration was the same as in the previous case, while the
rate of convergence was a bit faster. The iterative process was terminated at about the same accuracy as in
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the case of random distribution, while the error in boundary conditions measured over 47750 points which
sampled the surface with the same density was substantially smaller and did not exceed 2.4·10−5, which is
due to there were no spheres too close to each other.
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Figure 4: The same as Fig. 4, but for regular distirbution of 125 spheres of equal size.

In any case these tests showed that the numerical process is stable and the error in the solution is reason-
ably small. Some additional research is obviously needed to improve the error for the cases when δ is close
to 1 (while for comparisons with experiments a few percent errors could be acceptable).

4.3.4 Computation of amplitude scattering matrix

The scattering matrix is introduced to handle cases of arbitrary wave polarization (due to the linearity of
the scattering problem) and, therefore, does not depend on the polarization angle. If a group of scatterers
is to be identified as a scattering object the amplitude scattering matrix can be computed. If we direct the
z-axis as the incident wave vector s and consider the scattering plane which passes through the z-axis and
the observation point, which is characterized by spherical coordinates (θ,ϕ) and is located far from the
scatterer, then by definition the scattering matrix with components S1, ..., S4 that are functions of (θ,ϕ)
relates components of the scattered far field and the incident field for electric vector as [2]:µ

Escat||
Escat⊥

¶
=
eikr−ikz

−ikr

µ
S2 S3
S4 S1

¶µ
Ein||
Ein⊥

¶
, (102)
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where the symbols k and ⊥ are related to the components parallel and perpendicular to the scattering plane.
The property of the far scattered field is that the radial component decays faster than the angular compo-

nents,Escatr = O(r−2) (as r · E satisfies the Helmholtz equation), whileEscatθ = O(r−1), Escatϕ = O(r−1).
Therefore Escat|| = Escatθ , and Escat⊥ = −Escatϕ . The parallel and perpendicular components of the incident
field are related to the x and y components asµ

Ein||
Ein⊥

¶
=

µ
cosϕ sinϕ
sinϕ − cosϕ

¶µ
Einx
Einy

¶
, (103)

while for the parallel and perpendicular components of the scattered field are

µ
Escat||
Escat⊥

¶
=

µ
cos θ 0 − sin θ
0 1 0

¶⎛⎝ cosϕ sinϕ 0
sinϕ − cosϕ 0
0 0 1

⎞⎠⎛⎝ Escatx

Escaty

Escatz

⎞⎠ . (104)

In computations we can then solve two problems with x and y incident electric field polarization, Einx =¡
Einx , 0, 0

¢
eikz,Einx =

¡
0, Einy , 0

¢
eikz, which produces vectorsEscatx =

¡
Escatxx , E

scat
xy , E

scat
xz

¢
andEscaty =¡

Escatyx , Escatyy , Escatyz

¢
, respectively. Then, using Eqs. (102)-(104) we can derive

µ
S2 S3
S4 S1

¶
=

µ
eikr

−ikr

¶−1µ
cos θ 0 − sin θ
0 1 0

¶⎛⎝ cosϕ sinϕ 0
sinϕ − cosϕ 0
0 0 1

⎞⎠× (105)

⎛⎝ Escatxx Escatyx

Escatxy Escatyy

Escatxz Escatyz

⎞⎠µ cosϕ sinϕ
sinϕ − cosϕ

¶
.

Note then that the far-field pattern can be found from the computed expansion coefficients of scattered field
related to φ(scat)(q)mn and ψ(scat)(q)mn via (52) for each scatterer in the system of N scatterers:

Escat (r) =
NX
q=1

∞X
n=0

nX
m=−n

E(scat)(q)mn Smn
¡
r− r0q

¢
∼

NX
q=1

e−iks
0·r0q

∞X
n=0

nX
m=−n

E(scat)(q)mn Smn (r)

(106)

∼
eikr

ikr

NX
q=1

e−iks
0·r0q

∞X
n=0

nX
m=−n

i−nE(q)(scat)mn Y mn (θ,ϕ) , s0=
r

r
= (sin θ cosϕ, sin θ sinϕ, cos θ) .

Figures 5 and 6 show some comparisons of computations using the present method with computations
and experiments of Xu and Gustafson (2003), which are well documented and data are available via their
web site [26]. First we compared the computations for the 2 sphere configuration, where two identical
touching spheres of optical BK7 glass (refractive index kint/k = 2.5155 + 0.0213i, which corresponds to
²int/² = 6.3273 + 0.1072i, µint/µ = 1) were located along the x axis (the center of the first sphere was
at the origin of the reference frame and the center of the other had positive x-coordinate) and the scattering
plane was at ϕ = 0. The size parameter in this case was ka = 7.86. The angular dependences of i11 = |S1|2

and i22 = |S2|2 for which data is available are plotted in Fig. 5. In our computations we used p = 21 which
is the same as is used in the computations with vector wavefunctions by [26]. The theoretical results using
the present method and the method used by Xu and Gustafson are almost on top of each other and so both
of them agree well with the experimental data.
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Figure 5: Comparison of computations using the present theory with theory and experiments of Xu and
Gustafson (2003) [26] for amplitudes of the scattering matrix entries. The scattering agglomerat consists of
two contacting spheres of the same size and dielectric properties.

The case shown in Fig. 6 presents 15 sphere configuration, where the larger spheres were made of BK7
glass and are the same as in the case shown in Fig. 5. The smaller 12 spheres were acrylic (refractive index
kint/k = 1.615 + 0.008i, which corresponds to ²int/² = 2.6082 + 0.0258i, µint/µ = 1). All neighboring
spheres were in contact. The aggregate was oriented by such way that the chain of the larger spheres defines
the z-axis and the centers of the twelve smaller spheres are located in the xz plane. The scattered plane is
tilted by angle ϕ = −3.5 deg. In our computations we used truncation number p = 21. The results of our
computations visually coincide with computations of Xu and Gustafson, and so agree well with experiments.
Here also angular dependence of i12 = |S3|2 is provided.

5 Conclusions

We have developed a theory that enables the solution of the Maxwell equations via reduction of these
equations to two scalar Helmholtz equations. The translation theory is modified to reduce all operations with
vector functions to operations with the scalar potentials. The theory was validated by solution of scattering
problem from several spheres using a posteriori error control in boundary conditions and comparisons with
theoretical and experimental results of other authors. The theory and computational methods based on it can
be developed further for the efficient solution of various electromagnetic scattering problems.
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A Appendix

A.1 Operator Dr×t
The simplest (while not the most elegant) way to obtain representation of operator Dr×t is to use a direct
method. In this way we have

Dr×t = (r × t) ·∇ = (ytz − zty)
∂

∂x
+ (ztx − xtz)

∂

∂y
+ (xty − ytx)

∂

∂z
(107)

=
i

2
kr

½
tz sin θ

£
e−iϕDx+iy − eiϕDx−iy

¤
+ (tx − ity)

£
eiϕ sin θDz − cos θDx+iy

¤
−

(tx + ity)
£
e−iϕ sin θDz − cos θDx−iy

¤ ¾
.

According Eqs. (14) and (15) operatorsDx±iy andDz act on the spherical basis functionsRmn (r) as follows

Dz [R
m
n (r)] = a

m
n−1R

m
n−1 (r)− a

m
n R

m
n+1 (r) , (108)

Dx±iy [Rmn (r)] = b
∓m−1
n+1 Rm±1n+1 (r)− b

∓m
n Rm±1n−1 (r) ,

where coefficients amn and bmn are specified by Eqs. (16) and (17). Then we can use properties of spherical
harmonics (10) to obtain

Dr×t [Rmn (r)] = −imtzR
m
n (r) +

i

2

£
(tx + ity)c

m−1
n Rm−1n (r) + (tx − ity)c

m
n R

m+1
n (r)

¤
, (109)

where the coefficients cmn are specified by Eq. (39). Finally, to get the representation of the operator in the
space of coefficients we note that

Dr×t

" ∞X
n=0

nX
m=−n

χmn R
m
n (r)

#
=
∞X
n=0

nX
m=−n

χmn Dr×t [R
m
n (r)] (110)

=
∞X
n=0

nX
m=−n

χmn

½
−imtzR

m
n (r) +

i

2

£
(tx + ity)c

m−1
n Rm−1n (r) + (tx − ity)c

m
n R

m+1
n (r)

¤¾

=
∞X
n=0

nX
m=−n

bχmn Rmn (r) = ∞X
n=0

nX
m=−n

" ∞X
n0=0

n0X
m0=−n0

(Dr×t)mm
0

nn0 χm
0

n0

#
Rmn (r) .

This yields Eq. (37).
Another way to derive Eq. (37) is to note that Dr×t is nothing but an infinitesimal rotation operator,

which describes rotation by angle dδ about axis directed as t. Indeed for such small rotation transform we
have

r0 = r+dr0, dr0 = (t × r) dδ, dr0 ·∇ψ = (t × r) ·∇ψdδ (111)

Using the Taylor expansion, we have

ψ
¡
r+dr0

¢
= ψ (r) + dr0 ·∇ψ = ψ (r) + (t × r) ·∇ψdδ. (112)

On the other hand this is a rotation described by real rotation matrixQ (dδ) :

ψ
¡
r+dr0

¢
= Rot (Q (dδ)) [ψ (r)] . (113)
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Comparing Eqs. (112) and (113), we can see that

Dr×t = −
d
dδ
Rot (Q (δ))

¯̄̄̄
δ=0

. (114)

Now we can use a result for representation of infinitesimal rotation operator in the space of expansion
coefficients [12], which results in Eq. (37). Note that this operator became especially simple (diagonal)
when the rotation axis is iz . In this case the small rotation angle δ is related to the spherical polar angle ϕ
only, and we have

Dr×iz [R
m
n (r)] = −

d
dδ
Rot (Q (δ)) [Rmn (r)]

¯̄̄̄
δ=0

= −jn(kr)
∂

∂ϕ
Y mn (θ,ϕ) (115)

= −imjn(kr)Y
m
n (θ,ϕ) = −imRmn (r) .

This results in conversion operators (43). One also can see that if we set tx = ty = 0, tz = 1 in Eq.
(109), we obtain the same result. In fact, Eq. (109) can be thought as a result of infinitesimal rotations
about axes x, y, and z, since the infinitesimal rotations commute and so rotation about rotation axis t can be
decomposed into three Cartesian components.

A.2 Operator Dr·t
First we can consider action of operator

(r·∇) (t ·∇) = kr
∂

∂r
Dt (116)

on the spherical basis functions Rmn (r), where Dt is defined by Eq. (14). So we obtain

kr
∂

∂r
Dt [R

m
n ] =

k2r

2

⎧⎪⎪⎨⎪⎪⎩
tx−iy

h
b−m−1n+1 R

0m+1
n+1 − bmn R

0m+1
n−1

i
+

tx+iy

h
bm−1n+1 R

0m−1
n+1 − b−mn R

0m−1
n−1

i
+

2tz
£
amn−1R0mn−1 − amn R0mn+1

¤
⎫⎪⎪⎬⎪⎪⎭ , (117)

where

R
0m
n (r) = j0n(kr)Y

m
n (θ,ϕ) , tx±iy = tx ± ity. (118)

Further we can express functions Rmn (r) in the form

Rmn (r) =
1

αmn
r−njn (kr)Rmn (r) , (119)

where Rmn (r) are elementary normalized solutions of the Laplace equation in spherical coordinates

Rmn (r) = αmn r
nY mn (θ,ϕ) , αmn = (−1)

n i−|m|
s

4π

(2n+ 1) (n−m)!(n+m)!
. (120)
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It was shown recently [14] that these functions satisfy the following relation

(r · t)Rmn = −
itx−iy (n+m+ 2) (n+m+ 1)Rm+1n+1

2 (2n+ 1))
(121)

−
itx+iy (n−m+ 2) (n−m+ 1)R

m−1
n+1 + 2tz (n+m+ 1) (n−m+ 1)R

m
n+1

2 (2n+ 1))

+ r2
itx−iyRm+1n−1 + itx+iyR

m−1
n−1 − 2tzR

m
n−1

2(2n+ 1)
.

Therefore, since Dr·t = (r·∇) (t ·∇) + k2 (r · t) we can combine the above expressions to determine

Dr·t [Rmn ] = −
k

2

⎧⎨⎩
tx+iy

£
b−mn (n− 1)Rm−1n−1 + (n+ 2)b

m−1
n+1 R

m−1
n+1

¤
+

tx−iy
£
bmn (n− 1)R

m+1
n−1 + (n+ 2)b

−m−1
n+1 Rm+1n+1

¤
−

2tz
£
(n− 1)amn−1Rmn−1 + (n+ 2)amn Rmn+1

¤
⎫⎬⎭ . (122)

In this derivation we use definition of spherical basis functionsRmn (r) via orthonormal harmonics (9), (10),
relations (119) and (120), and well-known relations between the spherical Bessel functions of different
order and their derivatives [1]. As action of Dr·t on basis functions is known, expressions for the matrix
representation of this operator,Dr·t can be obtained in the same way as we obtainedDr×t (see Eq. (110)).
The final result is written out in Eq. (38).
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Figure 6: The same as in Fig. 5, but for 15 sphere agglomerate of spheres of different size and properties
(shown in the top right picture). The shades of gray here show distribution of log10 e, where e is the energy
density over the surface of the scatterers for the x-polarized incident plane wave.
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