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1. INTRODUCTION.

Various proofs have been given of the minimum principle satisfied by an optimal control
in a partially observed stochastic control problem. See, for example, the papers by Bensoussan
(1], Elliott [5], Baussmann {7}, and the recent paper [9] by Haussmann in which the adjoint
process is identified. The simple case of a partially observed Markov chain is discussed in the

University of Maryland lecture notes [6] of the second author.

We show in this article how a minimum principle for a partially observed diffusion can be
obtained by differentiating the statement that a control u* is optimal. The results of Bismuit
(2], [3] and Kunita [10], on stochastic flows enable us to compute in an easy and explicit
way the change in the the cost due to a ‘strong variation’ of the an optimal control. The
only technical difficulty is the justification of the differentiation. As we wished to exhibit the
simplification obtained by using the ideas of stochastic flows the result is not proved under
the weakest possible hypotheses. Finally, in Section 6, we show how Bensoussan’s minimum

principle follows from our result if the drift coefficient is differentiable in the control variable.
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2. DYNAMICS.

Suppose the state of the system is described by a stochastic differential equation

dft = f(t, Ehu)dt + g(t$ ft)dwi)

G ER E=z0, 0<t<T. o (2.1)

The control parameter u will take values in a compact subset U of some Euclidean space R¥.

We shall make the following assumptions:

Aj: zo is given; if z¢ is a random variable and P, its distribution the situation when
[ |z|*Po(dz) < oo for some ¢ > n+ 1 can be treated, as in [9], by including an extra
integration with respect to P;.

Az: f 0,7} x R?* x U — R% is Borel measurable, continuous in u for each (¢, z),

continuously differentiable in z and for some constant K
(1+ 127" Stz u)] + |2t 2, 0)] < K.

As: ¢:{0,T)]x R® — R*®R™ is a matrix valued function, Borel measurable, continuously

differentiable in z, and for some constant K,
lg(t, z)[ + |9z (t, 7)| < K.
The observation process is given by

dy; = h(&)dt + du;

nweER™, y=0 0<t<T. (2.2)

In the above equations w = (w!,...,w") and v = (v1,..., vd) are independent Brownian

motions. We also assume
A4t b R% — R™ is Borel measurable, continuously differentiable in z, and for some
constant K3

[h(t, z)| + |z (t,2)] < K3.
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REMARKS 2.1. These hypotheses can be weakened. For example, in A4, h can be
allowed linear growth in z. Because g is bounded a delicate argument then impliés the
exponential Z of (2.3) is in some L* space, 1 < p < oo. (See, for example, Theorem 2.2 of
[8]). However, when h is bounded Z is in all the L” spaces, (see Lemma 2.3). Also, if we
require f to have linear growth in u then the set of control values U can be unbounded
as in [9]. Our objective, however, is not the greatest generality but to demonstrate the
simplicity of the techniques of stochastic flows.

Let P denote Wiener measure on the C(|0,T],R") and u denote Wiener measure
on C([0,T}, R™). Consider the space 11 = C{[0,T], R*) x C([0,T}, R™) with coordinate

functions (z:,y;) and define Wiener measure P on {1 by
P(dz,dy) = P(dz)u(dy).

DEFINITION 2.2. Write Y = (Y.} for the right continuous complete filtration on
C([0,T], R™) generated by Y;° = o{y, : s < t}. The set of admissible control functions U

will be the Y-predictable functions on [0,T) x C(|0,T], R™) with values in U.

For u € U and = € R® write €44 (z) for the strong solution of (2.1) corresponding to

control u, and with £;, (z) = z. Write

Z%, (z) = exp (/ath(fj', (z)) dy, — %[h(e;‘, (z))zdt) (2.3)

and define a new probability measure P* on {1 by %P;— = Zgr(z0). Then under P*
(€5¢ (z0), yt) is a solution of (2.1) and (2.2), that is £, (7o) remains a strong solution of
(2.1) and there is an independent Brownian motion v such that y; satisfies (2.2). A version
of Z defined for every trajectory y of the observation process is obtained by integrating by

parts the stochastic integral in (2.3).

LEMMA 2.3. Under hypothesis Ay, fort < T,

E[(Z5¢(20))?] < oo forallue U andallp, 1<p<oco.
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PROOF.
t
2 (a0) = 1+ | 28, (zo)(E8, (z0))' -
0

Therefore, for any p there is a constant Cp such that

E|(23 (z0))°] < C, [1+E(/ot (28, (20)) R (€L, (xo))zdr)pﬂ}.

The result follows by Gronwall’s inequality.

COST 2.4. We shall suppose the cost is purely terminal and given by some bounded,

differentiable function

c(&5r (o))

which has bounded derivatives. Then the expected cost if control u € U is used is
J(w) = Eule(€r (20))].
In terms of P, under which y; is always a Brownian motion, this is

J(e) = E| 237 (z0) ¢(€r (0))]. (2.4)



3. STOCHASTIC FLOWS.

For v € U write
t t
) =2+ [l € (@) widr+ [ lr, €2 (2)dw, (3.1

for the solution of (2.1) over the time interval [s,t] with initial condition £, (z) = z. In
the sequel we wish to discuss the behaviour of (3.1) for each trajectory y of the observation

process. We have already noted there is a version of Z defined for every y. The results of

Bismut [2] and Kunita [10] extend easily and show the map
€yt R — R

is, almost surely, for each y € C([0,T], R™) a diffeomorphism. Bismut [2] initially gives
proofs when the coefficients f and g are bounded, but points out that a stopping time
argument extends the results to when, for example, the coefficients have linear growth.
Write ||€%(zo) ]|t = J5up |€54 (z0)|. Then, as in Lemma 2.1 of (8], for any p,
LA

1 < p < oo using Gronwall's and Jensen’s inequalities

t P
€@l <C (141208 +| [ oo, € (zo))duwi])
0
almost surely, for some constant C.
Therefore, using Burkholder’s inequality and hypothesis A3, [|£%(z0)|lr is in L? for
all p, 1 <p<oo.
Suppose u* € U is an optimal control so J(u*) < J(u) for any other u € U. Write

. 3
€10 () for €¥,(-). The Jacobian ;”t (z) is the matrix solution C; of the equation for s < t,
¥ ¥ x

dCt = fo(t, 64 (2), w*)Cedt + ) g (¢, & ((2))Cedw} (3.2)
1=1 '

with C, = I.

Here I is the n x n identity matrix and ¢ is the *" column of g. From hypotheses A,

and A3, f; and g, are bounded. Writing ||C||r = sup |C,| an application of Gronwall’s
0<s<t
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Jensen’s and Burkholder’s inequalities again implies ||C||r is in L* for all p, 1 < p < oo.

. Consider the related matrix valued stochastic differential equation
Dy =1~ /Dfz & (2), ur)'dr
- Z/ Drgz T, far(z))

+ _Z/‘ D (g (r, &, (2))") ar. (3.3)

Then it can be checked that D;Cy; = I for t > s, so that Dy is the inverse of the Jacobian,
that is Dy = (ﬁ;g}i)—l . Again, because f,; and g, are bounded we have that || Dl is in
every L, 1 < p < oo.

For a d-dimensional semimartingale z; Bismut [2] shows one can consider the flow
€5 ¢(2) and gives the semimartingale representation of this process. In fact if z; = z, +

n .
Ar+ Y f: H;dw! is the d-dimensional semimartingale, Bismut’s formula states that
1=

t
Gele) =zt [ (£ €, (), )
o, 8%

£ €5y (o), ) i <)H+2§j T ) iy, 1)) er

t=1 =1
FOG, (e (6 . ar
+/, —a—’a—i(—z—sz,—i—iZZI/‘ (g()(,-, & (z) ) f (Zr) )

DEFINITION 3.1. We shall consider perturbations of the optimal control u* of the fol-

(3.4

lowing kind: For s € [0,T), h > 0 such that 0 < s < 8+ h < T, for any other admissible
control u € U and A € Y, define a strong variation of u* by

u(t,w) = { u'(t,w) if(t,w) ¢ [s,s+h]x A
L) if (t,w) € [s,s + k] x A.

Applying (3.4) as in Theorem 5.1 of [4] we have the following result.

THEOREM 3.2. For the perturbation u of the optimal control u* consider the process

w=at [ (N (10, €, ), w0 - 10 60, ) 69)
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Then the process &, (2¢) is indistinguishable from £}/, (z).

PROOF. Note the equation defining 2; involves only an integral in time; there is no

martingale term, so to apply (3.4) we have H; = O for all 1. Therefore, from™(3.4)
t .
Eele) =2+ [ 105, €6, (a0), e
¢ af: 4 (z') df; r (zf) -1 . . .
+L ( 6:1: )( 61: ) (f(rs Ea,r (Z,-), u‘") - f(f, ea,r (Z,-), uf)dr

t
+/ g(f‘, E;,r (zr))dwro

However, the solution of (3.2) is unique so

f:,: (2t) = f:,t (-”3)

REMARKS 3.3. Note that the perturbation u(t) equals u*(t) ift > s+hso zy = 2,44

ift > s+ hand
o (2r) = & (Zoan ) = Eoing (6501 ()

-



4. AUGMENTED FLOWS.

Consider the augmented flow which includes as an extra coordinate the stochastic

exponential Z;, with a ‘variable’ initial condition z € R for Z;, (). That is, consider the

(d + 1) dimensional system given by:

¢
o "’-’5+/ flr, &, ( )dr+/ g(r, &, (z))dw,

Zipe )=+ [ 7, (5 hE, () du.

8

Therefore,

Ziy(2,2) = 275, (2)
= zexp (/A h(f;,, (:c))'dy, — %/ﬂ h(f;), (x))zdr)

and we see there is a version of the enlarged system defined for each trajectory y by inte-

grating by parts the stochastic integral. The augmented map (z,z2) — (&, (z), Z;;(z,2))
is then almost surely a diffeomorphism of R%*!. Note that Q%‘F_L = 0, %{— = 0 and

g’;— = 0. The Jacobian of this augmented map is, therefore, represented by the matrix

8¢, (=
= 0
82'5§z'z! 82‘5!::,:!
z z

and for 1 <1 < d from equation (3.3)

02, A (&, (z)) 9, (2)
az, Z/ Zar | & oz

i2;, (z

*iézi—’—z—))dﬂ. (4.1)

)

+ 1 (€&, ()

(Here the double index k is summed from 1 to n).
We shall be interested in the solution of this differential system (4.1) only in the
situation when z = 1 so we shall write Z;,(z) for Z;,(z,1). The following result is

motivated by formally differentiating the exponential formula for Z;,(z).
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LEMMA 4.1.

P2l _ ([ helr o) 25 a0

where v = (v!,...,v") is the Brownian motion in the observation process.

PROOF. From (4.1} we see QE;&;LE)_ is the solution of the stochastic differential equa-

tion
92y (=) _ [* (9Zis(2) ¢, (=)
Tor oz nl(= ' : ’ . 2
Ox [ ( 9z h (fa,r( )) + Za,r (z)h;(fa', (:I:)) £y )dy (4 )
Write
. f 85.; r
Lyt (z) = 2, (x)([ hy - = -dv,.)
where
dy, = h(£,,(z))dt + dv;.
Because

2@ =1+ [ 2 @R (E, (D)

the product rule gives

f s s
Ly (z) :/ Zy, (z)hy - 6: dv,

" / ([ he TS50, ) 22, (6 (2))

T
365", dr
z

t
s [ 2, @ (EL @) b
. 86*5,7

t ¢
= [ Lo @rE, @ + [ 20, ke dy,.

Therefore, L, (z) is also a solution of (4.2) so by uniqueness

32:,: (55)

Loy(z) = dzx

REMARKS 4.2. As noted at the beginning of this section we can consider the

augmented flow

(2.2) = (£ (2), Zip(z,2)) forze RS, z€ R,
and we are only interested in the situation when z = 1, so we write Z;,(z).
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LEMMA 4.3. Z;,(2t) = 2, (z) where z is the semimartingale defined in (3.6).

PROOF. Z}, (z) is the process uniquely defined by
t
S =1+ [ 2L @R (@) (4:2)

Consider an augmented (d + 1) dimensional version of (3.6) defining a semimartingale
Zt = (2t,1), s0 the additional component is always identically 1. Then applying (3.5) to
the new component of the augmented process we have

t

2 () = 14 / 2, ()W (€, () v

8
t
=1+ [ 20, W€ (@)ay,
8
by Theorem 3.2. However, (4.2) has a unique solution so Zye(z) = Z}4 (2).

REMARKS 4.4. Note that fort > s+ h

Z:,z (2) = Z;,t (Zah )-
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5. THE MINIMUM PRINCIPLE.
Control u will be the perturbation of the optimal control u* as in Definition 3.1. We

shall write z = £ , (z0). Then the minimum cost is

J(u*) = E|Z5r (zo)e(£o,r (20))]

= ElZ5, (z0)Z; 1 (z)e(ésr (2)))-
The cost corresponding to the perturbed control u is

J(u) = E[Z5,, (o) 2,7 (z) (& (2)))
= E|Z5,,(20)Z; 1 (204n )e(€ar (2041 )]

by Theorem 3.2 and Lemma 4.3. Now Z;r (-) and ¢({; 1 (*)) are differentiable with con-

tinuous and uniformly integrable derivatives. Therefore

J(u) = J(u*) = E[Zg,, (0} (Z, 1 (2041 )e(€5 4 (2041 ) — Z, 7 (2)e(€ 1 (2)))]

-z[[ " Lz (e, ) - 10, €0 (), )]

where

I(s,z) = 25, (z0)Zs 1 (Zr){ce(fir (z'))i%%(i)“+

i e ([ helein (D 2 eyane )} (L)) .

Note that this expression gives an explicit formula for the change in the cost resulting from
a variation in the optimal control. The only remaining problem is to justify differentiating
the right hand side.

From Lemma 2.3, Z is in every L” space, 1 < p < oo and from the remarks at the
beginning of Section 3, Cr = %&}- and Dr = (%&L) - are in every LP space, 1 < p < oo.

Consequently, I' is in every L? space, 1 < p < oo.
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Therefore

s+h

700 = I = [ E[(02) = X0, 2) (00 €60 (o) wr) = S, €60 (50, 2)]ar

8

+/M%Eﬁmad~rmwﬂﬂnGAaLm)—HnGA%%WDP’

8

s+h
+/ E[I‘(r,z)(f(r, Sor (20)s we) = f(r, €, (2), u)
—fr & (2), w) + 1(r, €, (2), u:))]dr

s+h
¢ B 6, o), w) - 10,65 ao), w2
= Ii(h) + Iy(h) + I3(h) + I4(h), say.

Now,

st+h
RIS K [ B[P, 2) T 210 + 6 (2ol

SKih sup  B(I0(s,2) = Do,)|(1 + 1€ (50)]lass )]

a<r<a+h

s+h
()< K [ EI0(0i2) = 10,200 + 1€ )lasn)]

< Keh sup  E||T(s,2) - D(r,z)|(1 + [ESIY

8<r<s+h
tMWSm[mEWmmm—mwr

< K3h5<rs<u£h E[[F(r,x)[ lz — Z-”a+h]-

The differences |I'(s, 2,) — I'(s,z)|, |T(s,z) — I'(r, )

| and ||z — z||,4» are all uniformly

bounded in some L?, p > 1, and

r]gﬁl IT(s,2,) = T(s,2)] =0 as.
lim [[(s,z) — [(r,z)| =0 as.

y—8

’!i_r}a ”I - Z.”,+h = 0.
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Therefore,

lima (s, 2) = I(s,2) = 0
lim |F(5,2) = I(r, 2l = 0

and gLr% Iz = z|ls+1 )|lp =0 for some p.

Consequently, '!1_?01 h= It (k) =0, for k =1,2,3.

The only remaining problem concerns the differentiability of

s+h
L) = [ E[Rea)(n €, (eo), ue) = 10 €, (20), )]

The integrand is almost surely in L!([0,T]) so 21_‘151 h1 I (R) exists for almost every s €

[0,T]. However, the set of times {s} where the limit may not exist might depend on the

control u. Consequently we must restrict the perturbations u of the optimal control u* to

perturbations from a countable dense set of controls. In fact:

1)

2)

3)

Because the trajectories are, almost surely, continuous, Y, is countably generated
by sets {A4,,}, ¢ = 1,2,... for any rational number p € [0,T]. Consequently Y¥; is
countably generated by the sets {A;,}, r < t.

Let Gy denote the set of measurable functions from (1,¥;) to U C R*. (Ifu € U
then u(t,w) € G;.) Using the L!-norm, as in [5], there is a countable dense subset
H, = {uj,} of G,, for rational p € [0,T|. If H; = |J H, then H; is a countable
dense subset of Gy. If uj, € H, then, as a functionpf:tonstant in time, u;, can be
considered as an admissible control over the time interval [t,T] for t > p.

The countable family of perturbations is obtained by considering sets A,, € Y%,

functions u,, € Hy, where p <, and defining as in 3.1

w (s, ) = { u’ (s, w) if (s,w) € [t,T] x A,
WETET wgp(s,w) i (s,w) € [, T x A,

Then for each 1,71,p
s+h
g b7 [ B[R €, (o) ) - Sl 6, () wD]dr (1)
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exists and equals
E[C(s,2)(/(s, €4 (z0)s usp) = (5, €5, (0), ') ln, |

for almost all s € [0,T}.

Therefore, considering this perturbation we have

Jim A7 (I (u3,) — I () = B[00 (50 €64 (@0), wip) = Fle, & (z0)s 0 |

>0 for almost all s € |0,7.

Consequently there is a set S C [0,T} of zero Lebesgue measure such that, if s ¢ S, the

limit in (5.1) exists for all 1, 7, p, and gives
E[D(s,2)(7 (5, €4 (20), wip) = Fls, &, (0), w*))a, | 2 0.

Using the monotone class theorem, and approximating an arbitrary admissible control

u € U we can deduce that if s ¢ S
E[r(s,z)(f(s, €., (z0), 1) = f(s, &, (z0), u‘))IA} >0 forany A€Y,.  (5.2)
Write

d& +(z T
() = B [ecltsr (26) "2+ elggr (o)) ([ el (20)

af;éax(z) dva) Y {z}]

where, as before, z = {5, (z0) and E* denotes expectation under P* = P¥ . Then p,(z)

is the co-state variable and we have in (5.2) proved the following ‘conditional’ minimum
principle:

THEOREM 5.1. Ifu* € U is an optimal control there is a set S C [0, T| of zero Lebesgue

measure such that if s¢ S
E'ps(2)f(s,z,u*) | Ys] € E*[ps(z) f(s,2,u) | V)] as.

That is, the optimal control u* almost surely minimizes the conditional Hamiltonian and

the adjoint variable is p,(z).
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6. CONCLUSION.
Using the theory of stochastic flows the effect of a perturbation of an optimal control
is explicitly calculated. The only difficulty was to justify its differentiation. The adjoint

process is explicitly identified as p,(z).

THEOREM 6.1. If f is differentiable in the control variable u, and if the random variable
z = €5 ,(%0) has a conditional density g, (z) under the measure P*, then the inequality of
Theorem 5.1 implies

k

. af .
Z(uj(s) ~us(s)) / I‘(s,:z;)—-—a (s, z,u")gs(z)dz < 0.
. R
=1

This is the result of Bensoussan’s paper [1].

The method of this paper can be applied to completely observable systems by ini-
tially considering ‘stochastic open loop’ controls, systems with stochastic constraints and
deterministic systems. The adjoint process can be explicitly identified. ‘Almost minimum’
principles for ‘almost optimal’ controls can be obtained. Some of these will be discussed

in later work.
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