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There are multiple challenges in designing a static verification system for an

existing programming language. There is the technical challenge of achieving sound-

ness and precision in the presence of expressive language features such as dynamic

typing, higher-order functions, mutable state, control operators, and their idiomatic

usage. There is also the practical challenge of allowing gradual adoption of verifica-

tion in the face of large code bases in the real world. Failure to achieve this gradual

property hinders the system’s adoption in practice: Existing correct but unverifiable

components due to the lack of annotations, the unavailability or the source code, or

the inherent incompleteness of static checking would require tedious modifications

to a program to make it safe and executable again.

This dissertation shows a simple framework for integrating rich static rea-

soning into an existing expressive programming language by leveraging dynamic

checks and a novel form of symbolic execution. Higher-order symbolic execution

enables gradual verification that is sound, precise, and modular for expressive pro-

gramming languages. First, symbolic execution can be generalized to higher-order



programming languages: Symbolic functions do not make bug-finding and coun-

terexample generation fundamentally more difficult, and the counterexample search

is relatively complete with respect to the underlying first-order SMT solver. Next,

finitized symbolic execution can be viewed as verification, where dynamic contracts

are the specifications, and the lack of run-time errors signifies correctness. A fur-

ther refinement to the semantics of applying symbolic functions yields a verifier

that soundly handles higher-order imperative programs with challenging patterns

such as higher-order stateful call-backs and aliases to mutable state. Finally, with

a novel formulation of termination as a run-time contract, symbolic execution can

also verify total-correctness.

Using symbolic execution to statically verify dynamic checks has important

consequences in scaling the tool in practice. Because symbolic execution closely

models the standard semantics, dynamic language features and idioms such as

first-class contracts and run-time type tests do not introduce new challenges to

verification and bug-finding. Moreover, the method allows gradual addition and

strengthening of specifications into an existing program without requiring a global

re-factorization: The programmer can decide to stop adding contracts at any point

and still have an executable and safe program. Properties that are unverifiable

statically can be left as residual checks with the existing familiar semantics. Pro-

grammers benefit from static verification as much as possible without compromising

language features that may not fit in a particular static discipline. In particular, this

dissertation lays out the path to adding gradual theorem proving into an existing

untyped, higher-order, imperative programming language.
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Chapter 1: Introduction

Researchers constantly want to enrich existing programming languages with

more static checking, such as adding static types to untyped languages [1–3], or

adding refinement types to coarsely typed languages [4–7]. One recurring prob-

lem is that support for expressive language features tends to be non-trivial, with

soundness hard to establish due to subtle mismatches between the static and dy-

namic semantics. For example, refinement type checking for eager languages was

discovered unsound when applied as-is to lazy languages due to the difference be-

tween values and thunks [6], and set-based analysis for higher-order contracts [8]

was discovered unsound due to the difference between mathematical mappings and

higher-order functions in programming languages [9]. In addition, soundness for

a verified component sometimes is only guaranteed under the assumption that all

components it interacts with have also been verified. Lifting this assumption of-

ten requires additional work devising dynamic checks at component boundaries and

proving that these checks imply the desired static properties.

The challenges seem inherent for real-world programming languages, and com-

promises seem unavoidable. First, there is a natural trade-off between a language’s

expressiveness and its amenability to static verification. For example, first-class

1



functions prevent program flows from being straightforwardly computed from syn-

tax. Dynamic typing obscures basic invariants about the data shapes, which is only

worsened by dynamic typing idioms that rely on path-sensitive, inter-procedural rea-

soning to justify the use of partial functions. Mutable states introduce implicit com-

munication channels that can invalidate previously established invariants. Control

operators destroy assumptions about “well-bracketed” program flows. The interac-

tion of these features only introduce more opportunities for unexpected behavior,

challenging manual as well as automatic reasoning. Second, many static properties,

such as totality of functions, do not have any obvious corresponding dynamic checks.

This dissertation presents higher-order symbolic execution as a framework for

gradually enriching an existing programming language with more static reasoning

tools. Symbolic execution turns out an effective tool for turning dynamic checks

into static verification. When a specification is formulated as a dynamic check, it

can either be turned into static checks, giving programmers early feed-backs without

incurring any run-time cost, or be deferred to run-time with the existing familiar

semantics. A verification system based on this framework has multiple advantages:

It is relatively simple to ensure soundness, because symbolic execution (and its finite

abstraction) is an extension to the standard semantics that often proceed in lock-step

with it. It is also straightforward to employ a path-condition and state-of-the-art

SMT solvers to achieve good precision and accommodate many language idioms.

Higher-order symbolic execution is also modular, hence significantly mitigates the

common problem of path-explosion. Finally, as specifications are originally run-time

checks, unverifiable properties due to the inherent limitation of static checking can

2



be left as-is, allowing a flexible and safe interaction between verified and unverified

components.

In the rest of this document, chapter 2 generalizes symbolic execution to the

higher-order case, and shows that symbolic functions do not fundamentally compli-

cate the search space. Chapter 3 shows the use of symbolic execution as a static

verification, turning first-class higher-order contracts into expressive specifications,

most of which can be statically verified and discharged. Chapter 4 shows a novel for-

mulation of termination as a dynamically checkable property, which in turn allows

enforcing total correctness at run-time, which are also eligible for static verifica-

tion through symbolic execution. The sections below give an overview of the next

chapters.

1.1 Relatively complete counterexamples for higher-order programs

The Problem Demonstrating bugs with concrete counterexamples is extremely

useful in helping programmers understand defects in their code [10–14]. Symbolic

execution has proven effective in achieving this goal for first-order programs [10,11].

The gist of symbolic execution is simple: We simply run programs under a modi-

fied semantics that allows symbolic values, which may stand for multiple concrete

values. Symbolic execution then accumulates a path-condition remembering invari-

ants about symbolic values that are gained from taking conditional branches. The

path-conditions are helpful for eliminating spurious branches and generating fully

concrete counterexamples demonstrating reachable errors when they are found. Ex-

3



tending symbolic execution for higher-order programming languages would mean

that symbolic values can also stand for higher-order functions. The situation may

seem hopeless: A symbolic function represents unknown code, so how should execu-

tion proceed when one is applied, and how do we synthesize higher-order functions

to reproduce errors? The obvious approach of modeling functions as mappings has

multiple flaws. First, higher-order functions interact with their contexts not only

through the values they return, but also through the values they supply to their

functional arguments; modeling higher-order functions as mappings would miss the

second way functions interact with their contexts. Moreover, that functions can be

inputs of mappings means it would be non-trivial to decide if some keys should be

the same or distinct, because equality between executable functions is not trivial to

define.

Main Ideas We solve the problem of symbolically executing higher-order pro-

grams by noticing that even though the space of higher-order functions is huge,

there are only a few canonical ways in which unknown code interact with the known

code under symbolic execution to cause an error that the known code is responsible

for. In particular, there is no need to consider unknown code that introduces its

own errors (because verifying unknown code is not a very interesting problem). In

addition, because any error trace is finite, there is no need for the unknown code

to be recursive (because any counterexample with recursive functions could have

been unrolled to behave equivalently without). Finally, also due to error traces

being finite, there is no need to search for counterexamples with primitive functions

4



such as addition or multiplication in their code: They can be approximated as finite

maps over the finite error traces. In the end, higher-order unknown functions only

need to either ignore their arguments, or applying their arguments to a lower-order

function and recursively interact with the result. We use the operational semantics

to precisely define the notion of “who’s responsible for error” and prove soundness

and relative completeness of counterexample generation for a symbolic extension of

the PCF language [15].

Evaluation To evaluate the effectiveness of higher-order symbolic execution for

generating concrete counterexamples, we integrate this work into an existing con-

tract verification system for a subset of Racket programs. The language supports

first-class contracts, rich base values, and a simple module system. Benchmarks are

taken from prior lines of work on verification [1, 16–18] along with their modified

counterparts introducing bugs, as well as anonymous submissions to our online tool.

The tool quickly finds bugs in most benchmarks, some of which proven challenging

for more lightweight techniques such as random testing [19].

1.2 Soft-contract verification for higher-order stateful programs

The Problem Higher-order contracts generalize the traditional pre-and-post con-

ditions and enable dynamically enforcing invariants on higher-order functions. Con-

tracts can be composed using the full expressiveness of the host programming lan-

guage, and allow all correct programs to execute, as opposed to conservatively reject-

ing unverifiable programs as in more static approaches such as type systems. Despite

5



the advantages, contracts have obvious downsides: They delay error discovery un-

til run-time, and can introduce significant execution overhead. Verifying contracts

statically as much as possible, while leaving unverifiable ones as residual run-time

checks would bring in the benefits of both dynamic checking and static verification:

Programmers can state rich specifications without worrying about overhead from

most or all contracts, receive early warnings about violations, and always have cor-

rect and executable programs. Contract verification, however, is challenging, due

to the highly dynamic nature of contracts: They can be composed from arbitrary

expressions capable of crashing, diverging, and modifying states, and first-class con-

tracts are computed at run-time. This prevents straightforward verification methods

that translate contracts into logical formulas in some decidable theories. In addi-

tion, contracts are customarily used as boundary enforcement, and programmers

tend to not write contracts for private functions, relying on invariants established

by inter-procedural and path-sensitive reasoning. A compositional analysis is un-

likely to succeed in verifying idiomatic contracted programs without requiring heavy

annotations. Modularity, however, is crucial in scaling any analysis to a realistic

code base. Previous approaches to contract verification place restrictions on the

language and contracts that limit applicability to a realistic programming environ-

ment [18, 20–23].

Main Ideas We solve the problem of sound, precise, and modular contract veri-

fication of idiomatic programs in a higher-order, untyped, imperative language us-

ing higher-order symbolic execution. Symbolic execution provides a natural frame-
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work for path-sensitive reasoning, which is crucial in effectively handling idiomatic

untyped programs with dynamic type tests. Operational aspects in the language

such as higher-order functions or divergence are handled on the execution side,

and the solver is only integrated to do what it is best at: solving complex prop-

erties on base values such as arithmetic. There is no heavyweight translation of

the general-purpose programming language into the restricted logical formulas. By

letting the unknown code remember (behavioral) values that have escaped to un-

known functions, symbolic execution soundly approximates possible interactions in

higher-order stateful programs and can cause the code under verification to vio-

late contracts. That symbolic values can be functions makes the analysis modular,

allowing omitting arbitrary components in the program and approximating them

with (contracted) symbolic values. To ensure termination of symbolic execution, we

abstract it using well-studied methods for computing a sound, finite approximation

of an existing semantics [24, 25].

Evaluation We implement the verifier for a significant subset of core Racket,

and evaluate it on benchmarks from multiple lines of work [1, 9, 16, 18, 26], as well

as realistic libraries collected from different sources. Different benchmark suites

demonstrate different challenges for verification. In total, benchmarks consist of

86.7% imperative and 13.2% pure functional (by lines of code). The tool is shown

to not only verify almost all contracts, but also works for many interesting pro-

gramming patterns, with reasonable analysis time even for large programs. It also

uncover genuine bugs in some programs, confirmed by manual inspection.
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1.3 Size-change termination as a contract

The Problem Using dynamic checks as specifications seemingly has a flaw: They

cannot directly check for liveness properties such as termination, which would imply

that contracts cannot enforce total correctness. It seems that adding termination

checking to an existing language would require either intrusively adding a static type

system with inductive data types, or sub-optimally applying a separate termination

analysis that would not support gradual enforcement.

Main Ideas We solve the problem of supporting gradual enforcement of termina-

tion (and therefore total contracts) by expressing termination checking as a contract.

The key to achieving this goal is to approximate termination using a safety property

that implies it. Size-change termination [27,28] has proven effective in checking for a

wide range of terminating patterns in first-order and higher-order programs without

user annotations. The original analysis is presented as a size-change principle for

detecting a large class of terminating programs, and an analysis that checks if the

statically approximated program follows that principle. In our work, we transplant

this principle into the context of run-time checking, and propose an operational

semantics supporting a mix of terminating and non-terminating functions. Termi-

nation is ultimately broken down into simple “less-than” properties that symbolic

execution can readily check. A program enforced with termination contract termi-

nates either by adhering to the size-change principle, or by violating it and being

aborted. Termination contracts bring in new expressive styles of programming.
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First, dynamic termination checking can enforce termination in programs that are

challenging to check statically, such as Turing-complete language interpreters inter-

preting terminating programs. Second, programmers can specify termination that

can be gradually verified just as other properties, and the program is always safe

and executable. Finally, they now can use total contracts as propositions stating

various properties about the program, and the terms that satisfy these contracts

are proofs. Even when the terms cannot be statically checked, they are useful for

random testing.

Evaluation We evaluate termination contracts’ precision and run-time overhead

on terminating programs, and time to detect non-terminating programs. We also

evaluate the contract verifier’s effectiveness in verifying total contracts statically,

and whether it can work well as a theorem prover. To evaluate our termination

contract approach, we use benchmarks from different lines of work on termination

checking for functional programs [6,27–30], as well as multiple larger Scheme bench-

marks, and find dynamic checks robust against challenges such as dynamic types

and higher-order functions. To evaluate the contract verifier, in addition to these

benchmarks, we also test it on basic proofs of properties on lists. The contract

verifier is competitive, though not dominant, when compared to other tools, and

can be used to check inductive properties where the proofs need only describe the

high-level structure, analogous to F* [31] and Liquid Haskell [32].
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Chapter 2: Relatively Complete Counterexamples for Higher-Order

Programs

In this chapter, we study the problem of generating inputs to a higher-order

program causing it to error. We first approach the problem in the setting of PCF, a

typed, core functional language and contribute the first relatively complete method

for constructing counterexamples for PCF programs. The method is relatively com-

plete with respect to a first-order solver over the base types of PCF. In practice,

this means an SMT solver can be used for the effective, automated generation of

higher-order counterexamples for a large class of programs.

We achieve this result by employing a novel form of symbolic execution for

higher-order programs. The remarkable aspect of this symbolic execution is that

even though symbolic higher-order inputs and values are considered, the path con-

dition remains a first-order formula. Our handling of symbolic function application

enables the reconstruction of higher-order counterexamples from this first-order for-

mula.

After establishing our main theoretical results, we sketch how to apply the

approach to untyped, higher-order, stateful languages with first-class contracts and

show how counterexample generation can be used to detect contract violations in this
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setting. To validate our approach, we implement a tool generating counterexamples

for erroneous modules written in Racket.

2.1 Introduction

Generating inputs that crash first-order programs is a well-studied problem in

the literature on symbolic execution [10, 11], type systems [12], flow analysis [13],

and software model checking [14]. However, in the setting of higher-order languages,

those that treat computations as first-class values, research has largely focused on

the verification of programs without investigating how to effectively report coun-

terexamples as concrete inputs when verification fails (e.g., [5, 9, 18, 20, 22, 33]).

There are, however, a few notable exceptions which tackle the problem of

counterexamples for higher-order programs. Perhaps the most successful has been

the approach of random testing found in tools such as QuickCheck [19, 34]. While

testing works well, it is not a complete method and often fails to generate inputs

for which a little symbolic reasoning could go further. Symbolic execution aims to

overcome this hurdle, but previous approaches to higher-order symbolic execution

can only generate symbolic inputs, which are not only less useful to programmers, but

may represent infeasible paths in the program execution [9,18]. Higher-order model

checking [35] offers a complete decision procedure for typed, higher-order programs

with finite base types, and can generate inputs for programs with potential errors.

Unfortunately, only first-order inputs are allowed. This assumption is reasonable

for whole programs, but not suitable for testing higher-order components, which
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often consume and produce behavioral values (e.g., functions, objects). [36] gives

an approach to dependent type inference for ML that relies on counterexample

refinement. This approach can be used to generate higher-order counterexamples;

however no measure of completeness is considered.

In this chapter, we solve the problem of generating potentially higher-order

inputs to functional programs. We give the first relatively complete approach to

generating counterexamples for PCF programs. Our approach uses a novel form of

symbolic execution for PCF that accumulates a path condition as a symbolic heap.

The semantics is an adaptation of [18], where the critical technical distinction is our

semantics maintains a complete path condition during execution. The key insight

of this work is that although the space of higher-order values is huge, it is only

necessary to search for counterexamples from a subset of functions of specific shapes.

Symbolic function application can be leveraged to decompose unknown functions to

lower-order unknown values. By the point at which an error is witnessed, there are

sufficient first-order constraints to reconstruct the potentially higher-order inputs

needed to crash the program. The completeness of generating counterexamples

reduces to the completeness of solving this first-order constraint, and in this way is

relatively complete [37].

Beyond PCF, we show the technique is not dependent on assumptions of the

core PCF model such as type safety and purity. We sketch how the approach scales

to handle untyped, higher-order, imperative programs. We also show the approach

seamlessly scales to handle first-class behavioral contracts [38] by incorporating ex-

isting semantics for contract monitoring [39] with no further work. The semantic
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decomposition of higher-order contracts into lower-order functions naturally com-

poses with our model of unknown functions to yield a contract counterexample

generator for Contract PCF (CPCF) [9].

Contributions We make the following contributions:

1. We give a novel symbolic execution semantics for PCF that gradually refines

unknown values and maintains a complete path condition.

2. We give a method of integrating a first-order solver to simultaneously obtain a

precise execution of symbolic programs and enable the construction of higher-

order counterexamples in case of errors.

3. We prove our method of finding counterexamples is sound and relatively com-

plete.

4. We discuss extensions to our method to handle untyped, higher-order, imper-

ative programs with contracts.

5. We implement our approach as an improvement to a previous contract veri-

fication system, distinguishing definite program errors from potentially false

positives.

Outline The remainder of the chapter is organized as follows. We first step

through a worked example of a higher-order program that consumes functional in-

puts (§ 2.2). Stepping through the example illustrates the key ideas of how the path

condition is accumulated as a heap of potentially symbolic values with refinements
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and how this heap can be translated to a first-order formula suitable for an SMT

solver. Generating a model for the path condition at the point of an error recon-

structs the higher-order input needed to witness the error. Next, we develop the core

model of Symbolic PCF (§ 2.3) as a heap-based reduction semantics. We prove that

the semantics is sound and relatively complete, our main theoretical contribution.

We then show how to scale the approach beyond PCF to untyped, higher-order,

imperative languages with contracts (§ 2.5). We use these extensions as the basis of

a tool for finding contract violations in Racket code to validate our approach (§ 2.6).

Finally, we relate our work to the literature (§ 2.7) and conclude (§ 2.8).

2.2 Worked Examples

We illustrate our idea using an incomplete OCaml program. The basic idea

is that we give a semantics to incomplete programs using a heap of refinements

that constrain all possible completions of the program. When an error is reached,

the heap is given to an SMT solver, which constructs a model that represents a

counterexample.

As our example we use a function f that takes as its arguments a function g

and a number n and performs a division whose denominator involves the application

of g to n. We write •𝑇 to denote an unknown value of the appropriate type (and

omit the type when it is clear from context). This example, though contrived, is

small and conveys the heart of our method.

let f (g : int → int) (n : int) : int = 1 / (100 - g n)
in (• f)
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Now let us consider the possible errors that can arise from running this code for any

interpretation of the unknown value.

Although the application of unknown function • is an arbitrary computation

that can result in any error, we restrict our attention to possible errors stemming

from misbehavior of the visible part of the above code and assume function • is bug-

free. Through symbolic execution and incremental refinement of unknown values, we

reveal one implementation of • that triggers a division error in f’s implementation.

Error: Division_by_zero
Breaking context:

• = fun f → (f (fun n → 100) 0)

To find a counterexample, we first seek a possible error by running the program

under an extended reduction semantics allowing unknown, or opaque, values. When

execution follows different branches, it remembers assumptions associated with each

path, and opaque values become partially known, or transparent. To keep track of

incremental refinements throughout execution, we allocate all values in a heap and

maintain an upper bound to the behavior of each unknown value.

The semantics takes the form of a reduction relation on pairs of expressions and

heaps, written (𝐸,Σ) ⟼ (𝐸′, Σ′). In our example, the first step of computation is

to allocate a fresh location to hold the unknown function being applied.

((• f), ∅) ⟼ ((L1 f), [L1 ↦ •])

Allocating values in the heap this way gives us a means to refine values and to

communicate these refinements to later parts of the computation.

15



At this point, we can partially solve for the unknown value. Since it is applied

to f, it must be a function of one argument. But how can we solve for the body

of the function? The key observation is that while many possible solutions for the

function body may exist, if the function can reach an error state, then it can reach

that error state by immediately applying the input to some arguments, without

loss of generality. Since the input function takes two arguments, we can partially

solve for the body of the function as “apply the input to two unknown values.” By

allocating these two unknowns and refining f, we arrive at the state:

⟨(f L2 L3), [L1 ↦ fun f → (f L2 L3),

L2 ↦ •int→int,

L3 ↦ •int]

The program then executes f’s body, substituting g with L2 and n with L3.

The next sub-expression to reduce is (g n), which is (L2 L3) after substitution,

which is yet another unknown function application, so the next step is to partially

solve for L2. Unlike in the higher-order case, there is no interaction with the input

value that needs to be considered (since it is not behavioral), so the function can
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simply return a new, unknown output, L4, giving us the following transition:

⟨(L2 L3), [L1 ↦ fun f → (f L2 L3),

L2 ↦ •int→int,

L3 ↦ •int]⟩

⟼ ⟨L4, [L1 ↦ fun f → (f L2 L3),

L2 ↦ fun n → L4,

L3 ↦ •int,

L4 ↦ •int]⟩

At this point, we need to compute 100 - L4, i.e. subtract an unknown integer

from 100. The solution is simple, we extend the primitive arithmetic operations to

produce new unknown values and annotate the unknown result with a predicate to

embed the knowledge that it is equal to 100 - L4:

⟨100 - L4, [L1 ↦ fun f → (f L2 L3),

L2 ↦ fun n → L4,

L3 ↦ •int,

L4 ↦ •int]⟩

⟼ ⟨L5, [L1 ↦ fun f → (f L2 L3),

L2 ↦ fun n → L4,

L3 ↦ •int,

L4 ↦ •int,

L5 ↦ •int,fun x→x=(100-L4)]⟩
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We finally arrive at the point of computing 1 / L5. At this point the semantics

branches non-deterministically since L5 may represent a zero or non-zero value. In

the case of an error, we refine L5 to be zero, giving us the final state:

⟨error, [L1 ↦ fun f → (f L2 L3),

L2 ↦ fun n → L4,

L3 ↦ •int,

L4 ↦ •int,

L5 ↦ •int,fun x→x=0,fun x→x=(100-L4)]⟩

At this point, the program has reached an error state and has accumulated

a heap of invariants that constrain the unknown values. But notice that since

functions have been partially solved for as they’ve been applied, there are only first-

order unknowns in the heap. At this point, translation of refinements on integers

into first-order assertions is straightforward:
(declare-const L3 Int)
(declare-const L4 Int)
(declare-const L5 Int)
(assert (= L5 (- 100 L4)))
(assert (= 0 L5))

A solver such as Z3 [40] can easily solve such constraints and yield (L3 = 0, L4 =

100, L5 = 0) as a model. We then plug these values into the current heap and

straightforwardly obtain the counterexample shown at the start.

In summary, we use execution to incrementally construct the shape of each

function, query a first-order solver for a model for base values, and combine these

first-order values to construct a higher-order counterexample.
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2.3 Formal Model with Symbolic PCF

This section presents a reduction semantics illustrating the core of our ap-

proach. Symbolic PCF (SPCF) [9] extends the PCF language [15] with incomplete

programs containing symbolic values that can be higher-order.

We present the language’s syntax and semantics, describe its integration with

an external solver, and show how the semantics enables the generation of a coun-

terexample when an error occurs. Finally, we prove that our counterexample con-

struction is sound and complete relative to the underlying solver. The key technical

challenge in designing such a semantics is to make sure not to over-constrain un-

knowns, which would be unsound, while also not under-constraining unknowns,

which would be incomplete.

2.3.1 Syntax of SPCF

Figure 2.1 presents the syntax of SPCF. We write ⃗⃗⃗ ⃗⃗ ⃗𝐸 to mean a sequence of

expressions and treat it as a set where convenient. The language is simply typed

with typical expression forms for conditionals, applications, primitive applications,

recursion, and values such as natural numbers and lambdas. The evaluation context

ℰ is standard for a call-by-value semantics. We highlight non-standard forms in gray.

The key extension of SPCF compared to PCF is the notion of symbolic, or opaque

values. We write •𝑇 to mean an unknown but fixed and syntactically closed value1

of type 𝑇 . The system automatically annotates each opaque value with a unique
1For example, • does not approximate (𝜆 (x) y)
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label to identify its source location. It also uniquely labels each source location that

could have a potential run-time failure. In SPCF, such failures can only occur with

the application of partial, primitive operations.

When evaluating an SPCF expression, we allocate all values and maintain a

heap to keep track of their constraints. When execution proceeds through condi-

tional branches and primitive operations, we refine the heap at appropriate locations

with stronger assumptions taken at each branch. As figure 2.1 shows, a heap is a

finite function mapping each location 𝐿 to a stored value 𝑆 as an upper bound of

the value’s run-time behavior. A stored value 𝑆 is similar to a syntactic value, but

a stored unknown value can be further refined by arbitrary program predicates. For

example, •{nat, (𝜆 (x) (even? x))} denotes an unknown even natural number.

In addition, we use case𝑇 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗[𝐿 ↦ 𝐿] to denote a mapping approximating an

unknown function of type nat → 𝑇 . We clarify the role of this construct later when

discussing the semantics of applying opaque functions, but the intuition is that this

form is used to constrain unknown functions (of base type input) to always produce

the same result when given the same input; it is critical for achieving completeness

and is not present in the original SCPCF semantics of [9].

Syntax for answers Α is internal and unavailable to programmers. An answer

is either a location 𝐿𝑇 pointing to a value of type 𝑇 on the heap, or an error message

err𝐿O blaming source location 𝐿 for violating primitive O’s precondition. A source

location in an error message is not just for precise blaming, but is important in

defining what it means to have a sound symbolic execution, as we will discuss in

detail in section 2.3.2.
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[Expressions] 𝐸 ∶∶= Α | 𝑉 | 𝑋 | (if 𝐸 𝐸 𝐸) | (𝐸 𝐸) | (O ⃗⃗⃗ ⃗⃗ ⃗𝐸) 𝐿

[Contexts] ℰ ∶∶= [ ] | (if ℰ 𝐸 𝐸) | (ℰ 𝐸)| (𝐿 ℰ) | (O ⃗⃗⃗ ⃗⃗𝐿 ℰ ⃗⃗⃗ ⃗⃗ ⃗𝐸)

[Values] 𝑉 ∶∶= •𝑇𝐿 | (𝜆 (𝑋 ∶ 𝑇) 𝐸) | 𝑁
[Answers] Α ∶∶= 𝐿𝑇 | err𝐿O

[Operations] O ∶∶= zero? | add1 | div | …
[Predicates] 𝑃 ∶∶= (𝜆 (𝑋 ∶ 𝑇) 𝐸)

[Types] 𝑇 ∶∶= nat | 𝑇 → 𝑇
[Heaps] Σ ∶∶= ∅ | Σ, 𝐿 ↦ 𝑆

[Storeables] 𝑆 ∶∶= •{𝑇 ⃗⃗⃗⃗⃗ ⃗⃗𝑃} | (𝜆 (𝑋∶𝑇) 𝐸) | 𝑁 | case𝑇 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐿↦𝐿
[Variables] 𝑋,𝐿 ∈ identifier

Figure 2.1: Syntax of SPCF

We omit straightforward type-checking rules for SPCF and assume all consid-

ered programs are well-typed. In addition, we omit showing types and labels for

constructs such as locations and lambdas when they are irrelevant or clear from

context.

In the following, we use the term unknown program portion to refer to all

unknown values in the original (incomplete) program, and known program portion

to refer to the rest of it.

2.3.2 Semantics of SPCF

We present the semantics of SPCF as a binary relation (⟼) between states

of the form (𝐸,Σ). Key extensions to the straightforward concrete semantics in-

clude generalization of primitives to operate on symbolic values and reduction rules
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for opaque applications. Intuitively, reduction on abstract states approximates re-

duction on concrete states, accounting for all possible instantiations of symbolic

values. Figure 2.2 presents the reduction semantics of SPCF. The semantics is also

mechanized as a Redex model and available online.2

Each value is allocated on the heap and reduces to a location as shown in

rules Opq and Conc. Because an opaque value stands for an arbitrary but fixed and

closed value, we reuse a location if it has been previously allocated.

Rule Prim shows the reduction of a primitive application. We use 𝛿 to relate

primitive operators and values to results. Typically, 𝛿 is a function, but here it is a

relation because primitive operations may behave non-deterministically on unknown

values. In addition, the relation includes a heap to remember assumptions in each

taken branch. Rules for conditionals are straightforward, except we also rely on 𝛿 to

determine the truth of the value branched on instead of replicating the logic. We use

0 to indicate falsehood and any non-zero number for truth (as in PCF). Application

of a 𝜆-abstraction follows standard 𝛽-reduction.

Application of an unknown value to a function argument results in a range of

possibilities to consider. This space, however, can be partitioned into a few cases.

First, the unknown program portion can have bugs of its own regardless of the

argument, but our concern is only to find bugs in the known program portion so the

possibility of these errors is ignored. Second, the function argument escapes into an

unknown context and can be invoked in an arbitrary way. However, any invocation
2https://github.com/philnguyen/soft-contract/tree/pldi-2015/soft-contract/

ce-redex
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triggering an error can be reduced to a chain of function applications. Alternatively,

the unknown function may not explore its argument’s behavior directly during the

execution of its body, but delay that in a returned closure. Finally, the unknown

function may completely ignore its argument and fail to reveal any hidden bug,

allowing the program to proceed to other parts. These four cases result in specific

shapes a function can have. Therefore, upon opaque function application, we refine

the opaque function’s shape accordingly.

Consider this example:

•(nat→nat)→𝑇
L1

(𝜆 (x ∶ nat) (/ 1 x)L)

and the following possible instantiations of L1:

1. (𝜆 (f) (/ 1 0)) 3. (𝜆 (f) (𝜆 (x) (add1 (f x))))

2. (𝜆 (f) (f 0)) 4. (𝜆 (f) (𝜆 (x) 42))

Completion (1) raises an error from within the unknown function blaming L1 itself,

(2) triggers the division error blaming L, (3) delays the exploration of its argument’s

behavior by returning a closure referencing the argument, and (4) is a constant func-

tion ignoring its argument. As we are only interested in errors in the known program

portion, we ignore behavior such as (1). Rules AppOpq1, AppOpq2, AppOpq3 and

AppHavoc model the remaining possibilities.
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Rule AppOpq1 shows a simple case where the argument is a first-order value

with no behavior. In this case, we approximate the application’s result with a

symbolic value of appropriate type, and refine the opaque function to be of the form

case𝑇 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗[𝐿 ↦ 𝐿] to remember this mapping. Any future application of this function

to an equal argument gives an equal result.

Applying a higher-order opaque function results in multiple distinct possibili-

ties. Rule AppOpq2 considers the case where the function ignores its argument (i.e.

it is a constant function). Any future application of this unknown function gives

the same result. Rule AppOpq3 considers the case where the unknown context does

not immediately explore its argument’s behavior but delays that work by wrapping

the argument inside another function. The context using this result may or may

not reveal a potential error. Finally, rule AppHavoc considers the case where the

unknown context explores its argument’s behavior by supplying an unknown value

to its argument and putting the result back into another unknown context.

When the argument is higher-order, we do not use a simple dispatch as in

rule AppOpq1 because there is no mechanism for comparing functions for equality

(without applying them as in rule AppHavoc).

Application rules for mappings are straightforward. Rule AppCase1 reuses the

result’s location for a previously seen application, whereas rule AppCase2 allocates

a fresh location for the result of a newly seen application.

These rules for opaque application collectively model the demonic context in

previous work on higher-order symbolic execution [9], but they unroll the unknown

context incrementally and remember its shape to enable counterexample construc-
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𝛿(Σ, zero?, 𝐿) ∋ (1, Σ) if Σ ⊢ 𝐿 ∶ zero?3

𝛿(Σ, zero?, 𝐿) ∋ (0, Σ) if Σ ⊢ 𝐿 ∶ zero?7

𝛿(Σ, zero?, 𝐿) ⊇ {(1, Σ[𝐿 ↦ 0]), (0, Σ[𝐿 ↦ ¬zero?])}
if Σ ⊢ 𝐿 ∶ zero? ?

𝛿(Σ, div, 𝐿1, 𝐿2) ∋ (𝑚/𝑛,Σ)
if Σ(𝐿1) = 𝑚 and Σ(𝐿2) = 𝑛, 𝑛 ≠ 0

𝛿(Σ, div, 𝐿1, 𝐿2) ∋ (•nat, (≡ 𝐿1 / 𝐿2), Σ′)
if Σ(𝐿2) ≠ 𝑛 and 𝛿(Σ, zero?, 𝐿2) ∋ (0, Σ′)

𝛿(Σ, div, 𝐿1, 𝐿2) ∋ (errdiv, Σ′)
if Σ(𝐿2) ≠ 𝑛 and 𝛿(Σ, zero?, 𝐿2) ∋ (1, Σ′)

Figure 2.3: Selected Primitive Operations

tion when execution finishes.

Finally, we define the semantics to be the contextual closure of all the above

reductions (rule Close). Errors halt the program and discard the context (rule

Error).

2.3.3 Primitive Operations

We rely on relation 𝛿 to interpret primitive operations. The rules straightfor-

wardly extend standard operators to work on symbolic values. In particular, division

by an unknown denominator non-deterministically either returns another integer or

raises an error. The relation also remembers appropriate refinements to arguments

and results at each branch. Figure 2.3 presents a selection of representative rules

for primitive operations zero? and div. We abbreviate (𝜆 (𝑋) (=𝑋𝐸)) as (≡𝐸).

Rules for primitive predicates such as zero? utilize a proof relation between the

heap, the value, and a predicate, which we present next.
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2.3.4 Proof Relation

We define a proof relation deciding whether a value satisfies a predicate. We

write Σ ⊢ 𝐿 ∶ 𝑃 3 to mean the value at location 𝐿 definitely satisfies predicate 𝑃 ,

which implies that all possible instantiations of 𝐿 satisfy 𝑃 . In the same way,

Σ ⊢ 𝐿 ∶ 𝑃 7 means all instantiations of 𝐿 definitely fail 𝑃 . Finally, Σ ⊢ 𝐿 ∶ 𝑃 ?

is a conservative answer when we cannot draw a conclusion given information from

existing refinements on the heap.

Precision of our execution relies on this proof relation. (A trivial relation

answering “neither” for all queries would make the execution sound though highly

imprecise.) Instead of implementing our own proof system, we rely on an SMT

solver for sophisticated reasoning on base values.

Figure A.4 shows the translation {{⋅}} of run-time constructs into logical for-

mulas. The translation of a heap is the conjunction of formulas obtained from each

location and its value, and the translation of each location and value is straightfor-

ward. In particular, a location pointing to a concrete number translates to the ob-

vious assertion of equality, and a mapping (case ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐿 ↦ 𝐿) adds constraints asserting

that equal inputs imply equal outputs. Since outputs of maps may be functions, it

might appear as though we need function equality. However, we do not need general

equality on functions, but just a specialized equality that can handle those opaque

functions generated by AppOpq1, AppOpq2, AppOpq3 and AppHavoc. Equality on

similar function forms proceeds structurally, while equality on different function

forms translate trivially to False (not shown).
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Notice that the proof system only needs to handle predicates of simple forms

and not their arbitrary compositions. We rely on execution itself to break down

complex predicates to smaller ones and take care of issues such as divergence and

errors in the predicate itself. For example, if the proof system can prove that

a value satisfies predicate 𝑃 , it automatically allows the execution to prove that

the value also satisfies (𝜆 (x) (or (𝑃 x) 𝐸)) for an arbitrarily expression 𝐸. By

the time we have [𝐿 ↦ • ⃗⃗⃗ ⃗⃗ ⃗⃗𝑃 ], we can assume all predicates ⃗⃗⃗ ⃗⃗ ⃗𝑃 have terminated with

true on 𝐿. Further, because many solvers do not support uninterpreted higher-order

functions, we do not assume such a feature, and the translation only produces queries

on first-order values. Nevertheless, the symbolic execution itself can reason about

higher-order unknown values. Handling higher-order functions on the semantics side

and not relying on the theory of uninterpreted functions also potentially allows the

method to scale to more realistic language features such as side effects.

For each query between heap Σ, location 𝐿 and predicate 𝑃 , we translate

known assumptions from the heap to obtain formula 𝜙, and the relationship (𝐿 : 𝑃 )

to obtain formula 𝜓. We then consult the solver to obtain an answer. As figure 2.5

shows, validity of (𝜙 ⇒ 𝜓) implies that value 𝐿 definitely satisfies predicate 𝑃 , and

unsatisfiability of (𝜙 ∧ 𝜓) means value 𝐿 definitely refutes 𝑃 . If neither can be

determined, we return the conservative answer.
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{{⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐿 ↦ 𝑆}} = ⋀ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗{{𝐿 ↦ 𝑆}}
{{𝐿 ↦ 𝑛}} = (𝐿 = 𝑛)
{{𝐿 ↦ •nat ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑃}} = ⋀ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{{𝐿 ∶ 𝑃}}
{{𝐿 ↦ case _…[𝐿1 ↦ 𝐿2] _…[𝐿3 ↦ 𝐿4] _…}}= (⋀ ((𝐿1 = 𝐿3) ⇒ (𝐿2 = 𝐿4))…)

{{𝐿 ∶ ((𝜆 (𝑋) (zero?𝑋)))}} = (𝐿 = 0)
{{𝐿 ∶ ((𝜆 (𝑋) (= 𝑋(+ 𝐿1 𝐿2))))}} = (𝐿 = (𝐿1 + 𝐿2))
{{𝐿1 = 𝐿2}}nat = (𝐿1 = 𝐿2)
{{𝐿1 = 𝐿2}}𝑇→𝑇 ′ = {{Σ(𝐿1) = Σ(𝐿2)}}
{{(case𝑇 [𝐿1 ↦ 𝐿2]… =case𝑇 [𝐿3 ↦ 𝐿4]…)}} = (⋀{{(𝐿1 = 𝐿3) ⇒ (𝐿2 = 𝐿4)}}…)
{{(𝜆 (𝑋) 𝐿1) = (𝜆 (𝑋) 𝐿2)}} = {{𝐿1 = 𝐿2}}
{{(𝜆 (𝑋) (𝐿1 (𝑋𝐿2))) = (𝜆 (𝑋) (𝐿3 (𝑋𝐿4)))}} = (∧ {{𝐿1 = 𝐿3}} {{𝐿2 = 𝐿4}})
{{(𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿1 𝑋)𝑌 ))) =(𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿2 𝑋)𝑌 )))}} = {{𝐿1 = 𝐿2}}

Figure 2.4: Heap translation

Proved
{{Σ}} ⇒ {{𝐿 ∶ 𝑃}} is valid

Σ ⊢ 𝐿 ∶ 𝑃 3

Refuted
{{Σ}} ∧ {{𝐿 ∶ 𝑃}} is unsat

Σ ⊢ 𝐿 ∶ 𝑃 7

Ambig
{{Σ}} ⇒ {{𝐿 ∶ 𝑃}} is invalid and {{Σ}} ∧ {{𝐿 ∶ 𝑃}} is sat

Σ ⊢ 𝐿 ∶ 𝑃 ?

Figure 2.5: Proof rules
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2.3.5 Constructing Counterexamples

For each answer reached by evaluation, the heap contains refinements to sym-

bolic values in order to reach such results. In particular, refinements on the heap in

an error case describe the condition under which the program goes wrong.

Specifically, at the end of evaluation, refinements on the heap are nearly con-

crete: higher-order symbolic values are broken down into a chain of argument de-

construction and mappings, and first-order symbolic values have precise constraints

that identify the execution path. Indeed, a model to the first-order constraints

on the heap yields a counterexample to the program. We simply plug first-order

concrete values back into the heap.

The reader may wonder if this process always generates an actual counterexam-

ple witnessing a real program bug (soundness), and if it always finds counterexample

when a bug exists (completeness). The next section clarifies these points.

2.4 Soundness and Completeness of Counterexamples

We show that our method of finding counterexamples in a higher-order pro-

gram is sound and relatively complete. Soundness means that the system only gives

an actual counterexample triggering a bug (not a false positive). Relative complete-

ness means that if the program actually contains a bug and the underlying solver

can answer all queries on first order data, the system constructs a concrete coun-

terexample witnessing that bug, even when it involves complex interactions between

higher-order values.
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The statements and proofs of soundness and completeness revolve around a

notion of approximation, which we first describe before stating our main theorems.

Approximation Relation We define an approximation relation between con-

crete and abstract states. A concrete state contains no unknown values, while an

abstract state may contain unknowns. We write (𝐸′, Σ′) ⊑ (𝐸,Σ) to mean “(𝐸,Σ)

approximates (𝐸′, Σ′),” or conversely, “(𝐸′, Σ′) instantiates (𝐸,Σ),” where (𝐸′, Σ′)

is a concrete state and (𝐸,Σ) is an abstract state. We make two remarks about the

relation before defining it.

First, as discussed in section 2.3.2, when analyzing an incomplete program, we

are only concerned with errors coming from known code. Therefore, we parameterize

the approximation relation with a set of labels ⃗⃗⃗ ⃗⃗𝐿 denoting application sites from the

known program portion. Figure 2.6 presents the straightforward definition of meta-

function 𝑙𝑎𝑏 for computing a program’s labels identifying application sites. The

function takes a heap to compute labels for intermediate states, where a function

may be referenced indirectly through its location. For the purpose of analyzing

program 𝐸, the set of labels is 𝑙𝑎𝑏∅[[𝐸]]. As an example, expression 𝐸 below has

an instantiation 𝐸′, but when analyzing 𝐸, we are only interested in the potential

division error at L and not L'.

𝐸 = (div 1 ( •int→int 1))L

𝐸′ = (div 1 ((𝜆 (x) (div 1 x)L') 1))L

Second, we enforce that each location in the abstract state unambiguously

approximates one location in the concrete state by parameterizing the approximation
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relation with a function 𝐹 mapping each label in the abstract state to one in the

concrete state. For example, we do not want the following concrete state (𝐸′, Σ′)

to instantiate the abstract state (𝐸,Σ), even though •int intuitively approximates

each number 1, 2, and 3 individually.

(𝐸,Σ) = ((if L L L) , {L ↦ •int})

(𝐸′, Σ′) = ((if L1 L2 L3), {L1 ↦ 1, L2 ↦ 2, L3 ↦ 3})

Instead, the following concrete state (𝐸″, Σ″) properly instantiates (𝐸,Σ) with func-

tion 𝐹 = {L ↦ L1}:

(𝐸″, Σ″) = ((if L1 L1 L1), {L1 ↦ 1})

Figure 2.7 defines the approximation parameterized by label set ⃗⃗⃗ ⃗⃗𝐿 and func-

tion 𝐹 . We present important, non-structural rules for the approximation relation

between heaps, values, and states. We omit displaying parameters when they are

unimportant or can be inferred from context. We defer the full definition to the

appendix.

Rule Heap-Ext states that if a heap approximates a concrete heap, it approx-

imates any extension of that concrete heap. This rule is necessary for ignoring

irrelevant computations in instantiation of an opaque function. Next, rules Heap-

Int, Heap-Lam, Heap-Opq-1, and Heap-Opq-2 show straightforward extensions to

the approximation when the heaps on both sides are extended. First, any concrete

value of the right type instantiates the opaque value •𝑇 as long as the instantiating

value does not contain source locations from the known program portion. Second,

refining an abstract value with a predicate known to be satisfied by the concrete
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value preserves the approximation relation. Because a predicate can contain loca-

tions, we substitute labels appropriately as indicated by function 𝐹 . We omit the

straightforward definition of this substitution.

Rules Heap-Case-1 and Heap-Case-2 establish the approximation between

functions on natural numbers. First, a fully opaque mapping approximates all func-

tions. In addition, if there exists an execution trace witnessing that applying the

concrete function yields a value approximated by an opaque value, then refining the

mapping preserves the approximation.

Rule Loc states that location 𝐿 approximates 𝐿′ if the pair agrees with function

𝐹 .

Rule Err-Opq reflects our decision of ignoring errors blaming source locations

from unknown code. Otherwise, rule Err says that an error with a known label

approximates another when they are the same error.

Finally, rule Opq-App states that we ignore irrelevant computation from a

concrete function that instantiates an unknown function. Specifically, if we can

establish that an opaque application approximates a concrete application by the

structural rule, then the opaque application continues to approximate each non-

answer state reachable from the concrete application. There are similar rules for

approximation by applying other forms of opaque functions, which we defer to the

appendix.

Theorem 1 states that every constructed counterexample from an error case

actually reproduces the same error. Notice that the theorem is conditioned on

Σ′ ⊑ Σ2 and does not imply that all errors in the abstract execution are real. In
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𝑙𝑎𝑏Σ[[((O 𝐸))𝐿]] = {𝐿} ∪ 𝑙𝑎𝑏Σ[[𝐸]]
𝑙𝑎𝑏Σ[[(𝐸1𝐸2)]] = 𝑙𝑎𝑏Σ[[𝐸1]] ∪ 𝑙𝑎𝑏Σ[[𝐸2]]

𝑙𝑎𝑏Σ[[(if 𝐸 𝐸1𝐸2)]] = 𝑙𝑎𝑏Σ[[𝐸]] ∪ 𝑙𝑎𝑏Σ[[𝐸1]] ∪ 𝑙𝑎𝑏Σ[[𝐸2]]
𝑙𝑎𝑏Σ[[(𝜆 (𝑋) 𝐸)]] = 𝑙𝑎𝑏Σ[[𝐸]]

𝑙𝑎𝑏Σ[[𝐿]] = 𝑙𝑎𝑏Σ[[Σ(𝐿)]]
𝑙𝑎𝑏Σ[[_]] = ∅

Figure 2.6: Computing concrete labels

particular, if a path is spurious, its final heap has no instantiation.

Theorem 1 (Soundness of Counterexamples).

If (𝐸,Σ1) ⟼→ (err𝐿O, Σ2) and Σ′ ⊑ Σ2, then (𝐸,Σ′) ⟼→ (err𝐿O, Σ″).

Theorem 2 states that we can discover every potential bug and construct a

counterexample for it, assuming the underlying solver is complete for queries on

first-order data.

Theorem 2 (Relative Completeness of Counterexamples).

If (𝐸′, Σ′
1) ⟼→ (err𝐿O, Σ′

2) and (𝐸′, Σ′
1) ⊑ ⃗⃗⃗ ⃗⃗𝐿 (𝐸,Σ1) and 𝐿 ∈ ⃗⃗⃗⃗⃗𝐿, then (𝐸′, Σ1) ⟼→

(err𝐿O, Σ2) such that there is an instantiation Σ′ to Σ2.

We defer the proofs of theorems 1 and 2 to the appendix.

2.5 Extensions

We discuss important extensions to our system for a more practical program-

ming language with dynamic typing, data structures, and contracts. In addition, we

address the issue with termination. Our end goal is apply the method to realistic

Racket [41] programs.
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Heap-Empty
∅ ⊑{}

⃗⃗⃗ ⃗⃗𝐿 ∅
Heap-Ext

Σ′ ⊑𝐹
⃗⃗⃗⃗⃗𝐿 Σ

Σ′[𝐿′ ↦ 𝑆′] ⊑𝐹
⃗⃗⃗⃗⃗𝐿 Σ

Heap-Int
Σ′ ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ
Σ′[𝐿′ ↦ 𝑁] ⊑𝐹[𝐿↦𝐿′]

⃗⃗⃗ ⃗⃗𝐿 Σ[𝐿 ↦ 𝑁]

Heap-Lam
Σ′ ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ (𝐸′, Σ′) ⊑𝐹
⃗⃗⃗⃗⃗𝐿 (𝐸,Σ)

Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]
⃗⃗⃗ ⃗⃗𝐿 Σ[𝐿 ↦ (𝜆 (𝑋) 𝐸)]

Heap-Opq-1
Σ′ ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ 𝑙𝑎𝑏Σ′[[𝑉 ′]] ∩ ⃗⃗⃗ ⃗⃗𝐿 = ∅
Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹[𝐿↦𝐿′]

⃗⃗⃗ ⃗⃗𝐿 Σ[𝐿 ↦ •𝑇 ]

Heap-Opq-2
Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ[𝐿 ↦ •𝑇𝑃…] Σ′ ⊢ 𝑉 ′ ∶ 𝐹 (𝑃1)3

Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹
⃗⃗⃗⃗⃗𝐿 Σ[𝐿 ↦ •𝑇𝑃…𝑃1]

Heap-Case-1
Σ′ ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ 𝑙𝑎𝑏Σ′[[𝐸′]] ∩ ⃗⃗⃗ ⃗⃗𝐿 = ∅
Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]

⃗⃗⃗ ⃗⃗𝐿 Σ[𝐿 ↦ case𝑇 [ ]]

Heap-Case-2
Σ″[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹

⃗⃗⃗⃗⃗𝐿 Σ[𝐿 ↦ case𝑇 […]]
𝐹 (𝐿𝑥) = 𝐿′

𝑥 ([𝑋/𝐿′
𝑥]𝐸′, Σ″) ⟼→ (𝑉 ′, Σ′) (𝑉 ′, Σ′) ⊑𝐹

⃗⃗⃗⃗⃗𝐿 (𝑉 , Σ)
Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]

⃗⃗⃗ ⃗⃗𝐿 Σ[𝐿 ↦ case𝑇 […𝐿𝑥 ↦ 𝑉 ]]

Loc
𝐹(𝐿) = 𝐿′

(𝐿′, Σ′) ⊑𝐹
⃗⃗⃗⃗⃗𝐿 (𝐿,Σ)

Err-Opq
𝐿′ ∉ ⃗⃗⃗⃗⃗𝐿

(err𝐿′
O , Σ′) ⊑𝐹

⃗⃗⃗⃗⃗𝐿 (𝐸,Σ)

Err
𝐿′ ∈ ⃗⃗⃗⃗⃗𝐿

(err𝐿O, Σ′) ⊑𝐹
⃗⃗⃗⃗⃗𝐿 (err𝐿O, Σ)

Opq-App
𝐸′ ≠ Α 𝑙𝑎𝑏Σ′[[𝐸″]] ∩ ⃗⃗⃗ ⃗⃗𝐿 = ∅ ((𝐿′

𝑓 𝐿′
𝑥), Σ″) ⊑𝐹

⃗⃗⃗⃗⃗𝐿 ((𝐿𝑓 𝐿𝑥), Σ)
Σ″(𝐿′

𝑓) = (𝜆 (𝑋) 𝐸″) Σ(𝐿𝑓) = •𝑇→𝑇 ′ ([𝑋/𝐿′
𝑥]𝐸″, Σ″) ⟼→ (𝐸′, Σ′)

(𝐸′, Σ′) ⊑𝐹
⃗⃗⃗⃗⃗𝐿 (((𝐿𝑓 𝐿𝑥)), Σ)

Figure 2.7: Approximation
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2.5.1 Dynamic typing

Dynamically typed languages defer safety checks to run-time to avoid conser-

vative rejection of correct programs. Such languages have mechanisms for run-time

inspection of data’s type tag. We model this feature by extending primitive pred-

icates with run-time type tests such as integer? or procedure?, which operate

in the same manner as zero? in the typed language. Changes to the semantics

are straightforward: we insert a run-time check into each application to ensure a

function is begin applied, and into each primitive application to ensure arguments

have the right tags. We also modify the rules for applying unknown functions, where

previous static distinction in function types are turned to corresponding dynamic

checks.

2.5.2 User-defined data structures

We extend the semantics to allow user-defined data structures, enabling pro-

grammers to express rich data such as lists and trees. Below is an example definition

of a binary tree’s node:

(struct node (left content right))

Each field in a data structure may itself be another data structure, function,

or base value. Following the same treatment as functions, we do not encode data

structures in the solver. Instead, we rely on execution to incrementally refine an

unknown value’s shape when knowing that it has a specific tag. For example, an

unknown node has the shape of (node L1 L2 L3) where each of the fields L1, L2 and
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L3 is an unknown and refinable value. As before, we only need to encode constraints

on base values at the leaves of data structures.

2.5.3 Contracts

Contracts generalize pre-and-post conditions to higher-order specifications [38],

allowing programmers to express rich invariants using arbitrary code. They can ei-

ther refine an existing type system [42] or ensure safety in an untyped language.

The following Racket [41] program illustrates the use of a higher-order con-

tract. Function argmin requires a number-producing function as its first argument

and a non-empty list as its second, and returns the list’s element that minimizes the

function. Here, contract any/c accepts any value, and combinator and/c returns

the conjunction of its arguments.
; argmin : (any/c → number?) (and/c pair? list?) → any/c
(define (argmin f xs)
(argmin/acc f (car xs) (f (car xs)) (cdr xs)))

(define (argmin/acc f b a xs)
(cond
[(null? xs) a]
[(< b (f (car xs))) (argmin/acc f a b (cdr xs))]
[else (argmin/acc f (car xs) (f (car xs)) (cdr xs))]))

Although the semantics of contract checking can be complex [43,44], it intro-

duces no new challenges in our system. We simply rely on the semantics of contract

checking itself to break down complex and higher-order contracts into simple pred-

icates. In addition, opaque flat contracts can be modeled soundly and precisely by

rules for opaque application. Extension to the contract checking semantics enables

our system to construct counterexamples to violated higher-order contracts.
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2.5.4 Termination

The semantics presented so far does not guarantee termination. We can either

accelerate (but not guarantee) termination by detecting recursion and widen values

accordingly [18], or guarantee termination through systematic transformation of the

semantics into a finite state or pushdown analysis of itself [24]. These techniques

introduce spurious paths as over-approximations to actual execution branches. This

affects both soundness and completeness of counterexamples. First, it requires more

work to guarantee soundness. Because multiple concrete traces may be approxi-

mated to the same abstract trace, running the program with one instantiation of a

constraint set may steer the program’s flow to a different concrete trace that has the

same abstraction. To ensure an instantiation corresponds to a real counterexample,

it is necessary to first run the program with the concrete value set before report-

ing it as a counterexample. Second, relative completeness is also lost in practice.

Even though execution still reveals every possible error, approximation results in a

less precise constraint set for each trace, and the system may repeatedly query the

solver for the wrong model before timing out. For example, a simplistic solver trying

to refute that “factorial(n + 4) ≥ 10” with no constraint may keep producing

non-negative values for n.

Nevertheless, for our specific need of counterexample generation to refine an

existing verification system (discussed next in section 2.6), we perform no abstrac-

tion. We rely on the previous system to prove the lack of counterexamples for a

large set of correct programs [18] (therefore, many correct programs without coun-
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terexamples do terminate). When used in combination with a verification system,

abstracting the state space for counterexample generation is of little value, and

makes it difficult to later concretize values to obtain a counterexample.

2.6 Implementation and evaluation

To evaluate our approach, we integrate counterexample generation into an

existing contract verification system for programs written in a subset of Racket [41].

The system previously either successfully verified correct programs or conservatively

reported probable contract violations and did not distinguish definite program errors

from potentially false positives. With the new enhancement, the tool identifies a

subset of reported errors as definite bugs with concrete counterexamples. Below,

we describe implementation extensions, discuss promising experiment results, and

address current difficulties.

2.6.1 Implementation

Our implementation and benchmarks can be found at

https://github.com/philnguyen/soft-contract/tree/pldi-2015

The prototype handles a much more realistic set of language features beyond SPCF.

First, our implementation supports dynamic typing with user-defined structures and

first class contracts as discussed in section 2.5. We also support more contract com-

binators such as conjunction, disjunction, and recursion. Second, we extend the

set of base values and primitive operations, such as pairs, strings and Racket’s full
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numeric tower, which introduces more error sources and interesting counterexam-

ples. Finally, we employ a module system to let users organize code. A module can

export multiple values and define private ones for internal use.

Apart from being implemented as a command line tool, we also made a pro-

totype available as a web REPL, accepting programs from anonymous users. The

system attempts to verify correct programs and refute erroneous programs with

concrete counterexamples. In some cases, it reports a probable contract violation

without giving any counterexample due to limitations of the underlying solver, or

the server simply times out after 10 seconds.

2.6.2 Evaluation

We collect benchmarks for our analysis from two sources: (1) prior published

work and (2) submissions to the web REPL we built.

Benchmarks from prior work are drawn from research on higher-order model

checking [16], dependent type checking [17], occurrence type checking [1], and our

own work on contract verification [18]. Since these prior works focus on verification,

the benchmarks are largely correct programs. In order to evaluate our counterexam-

ple generation technique, we modify each of the programs to introduce errors. To do

so, we weakened preconditions and omitted checks before performing partial opera-

tions. For example, a resulting program may deconstruct a potentially empty list or

compare potentially non-real numbers. We believe these changes are representative

of common mistakes. A complete listing of the modifications is available.3

3https://github.com/philnguyen/soft-contract/blob/pldi-2015/soft-contract/
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Benchmarks from our web service are submitted (anonymously) by users ex-

perimenting with the verification system. Many of these programs are buggy and

we test how effective at discovering counterexamples.

In total, the evaluation is run on 282 programs consisting of 4050 lines of

Racket code, excluding empty lines and comments. The largest programs are three

student video games of the order of 250 lines. The test suite includes correct pro-

grams the system tries to verify as well as incorrect programs the system tries to

generate counterexamples for.

We summarize our benchmark results in table 2.1. Each row shows the pro-

gram’s size (column 1), its highest function order (column 2), the time taken to verify

the correct version of the program (column 3, if applicable), and the time taken to

generate a counterexample refuting an incorrect variant of the program (column

4, if applicable). We compute each program’s order by inspecting its contract’s

syntax (which is an under-approximation, because a contract may be dynamically

computed). The last 3 rows “others”, “others-e” and “others-w” summarize many

small programs from our own benchmark suite as well as those collected from the

server; we report their total, minimum and maximum line counts, total verification

time, and highest function orders. With the exception of 5 programs in the last row

“others-w”, the system gives a counterexample for each incorrect program in a rea-

sonable amount of time: the most complicated error takes 7 seconds to detect, and

most errors in typical higher-order programs take less than 2 seconds. The last row

shows benchmarks (all contributed by anonymous users) that reveal the limitation

benchmark-verification/diff.txt
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of our counterexample generation in practice. In each of these cases, the system

soundly reports a probable contract violation, but is unable to generate a coun-

terexample confirming it. We discuss current shortcomings and language features

known to thwart the tool in section 2.6.3.

The overall result is promising. First, there are specific examples where our

prototype proves to be a good complement to random testing. For example, the

tool finds a counterexample to the following program quickly and automatically:

f n = (/ 1 (- 100 n))

By default, QuickCheck does not find this error as it only considers integers from

-99 to 99. Because QuickCheck treats a program as a black box, this conservative

choice is reasonable for fear that the integer may be a loop variable causing the test

case to run for a long time [45]. In contrast, our method explores the program’s

semantics symbolically and discovers 100 as a good test case.

Second, the resulting higher-order counterexamples suggest that the analysis

can produce useful feedback. For example, it is easy for programmers to forget that

Racket supports the full numeric tower [46] and that the predicate number? accepts

complex numbers. The contract on argmin in section 2.5.3 is in fact too weak to

protect the function. The system proves argmin unsafe by applying it to a specific

combination of arguments. First, f is given a function that produces a non-real

number, which causes < to signal an error. Second, xs is given a list of length 2,

which is the minimum length to trigger a use of <.

f = (𝜆 (x) 0+1i); xs = (list 0 0)
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Finally, the tool analyzes the functional encoding of object-oriented programs

effectively. Zombie is one such example with extensive use of higher-order functions

to encode objects and classes, and the analysis can reveal errors buried in delayed

function calls. We believe this is a promising first step for generating classes and

objects as counterexamples. In the example below, we define interface posn/c that

accepts two messages x and y, and function first-quadrant? that tests whether

a position is in the first quadrant.

(define posn/c
([msg : (one-of/c 'x 'y)]
→ (match msg ['x number?] ['y number?])))

; posn/c → boolean?
(define (first-quadrant? p)
(and (≥ (p 'x) 0) (≥ (p 'y) 0)))

The counterexample reveals one conforming implementation to interface posn/c

that causes error in the module.

(𝜆 (msg) (case msg [(x) 0+1i] [(y) 0]))

2.6.3 Difficulties

We discuss current difficulties to our approach and solutions in mitigating

them.

First, the analysis is prone to combinatorial explosion as inherent in symbolic

execution. Our tool finds bugs by performing a simple breadth-first search on the

execution graph, then stops and reports on the first error encountered with a fully

concrete counterexample. In practice, most conditionals come from case analyses
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instead of independent alternatives, and we rely on a precise proof system to elimi-

nate spurious paths. In addition, the modularity mitigates the problem further, as

modules tend to be small, and contracts at boundaries help recovering necessary

precision.

One major source of slowdown in our system is complex preconditions, where

each input is guarded against a deep, inductively defined property. Execution follows

different branches before being able to generate a valid input to continue verifying

the module. A naive breadth-first search is bogged down by a large frontier resulting

from different attempts to generate inputs, most of which are eventually found

invalid. To mitigate this slow-down, we identify a class of expressions as likely to lead

to counterexamples and prioritize their execution. Specifically, an expression whose

innermost contract monitoring is of a first-order property on a concrete module is

likely to reveal a bug.4 In contrast, expressions in the middle of input generation

do not have this form, because the inner-most contract monitoring is on the opaque

input source. Once the system successfully instantiates a concrete input and turns

the program into this “suspect” form, it focuses on exploring this branch with that

input instead of trying numerous other inputs in parallel. Using this simple heuristic,

we are able to cut the execution time of a module violating the “braun-tree” invariant

from non-terminating after 1 hour down to 2 seconds.

Second, there is a mismatch in the data-types between Z3’s data-type and

Racket’s rich numeric tower. In particular, Racket supports mixed arithmetic be-
4In a symbolic program, the monitored value in this position is usually abstract and covers all

values the module produces.
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tween different types of numbers up to complex numbers [46], while Z3’s treatment

of numbers resembles that from most statically typed languages, and the solver does

not perform well in generating models involving a dynamic restriction of a number’s

type. Below is an example in the last row in table 2.1 where the tool fails to generate

a counterexample:

; (integer? → integer?)
(define (f n) (/ 1 (+ 1 (* n n))))

In Racket, division is defined on the full numeric tower, and the result of (/ 1

(+ 1 (* n n))) may not be an integer. In the generated query, this result is an

unknown number L of type Real, and the solver cannot give a model to a constraint

set asserting “(not (is_int L))”. In addition, Racket distinguishes between exact

and inexact numbers, where inexact numbers are floating point approximations.

Because Z3 does not reason about floating points, we currently do not soundly

model inexact arithmetic.

2.7 Related work

We relate our work to four main lines of research: symbolic execution, coun-

terexample guided abstraction refinement for dependent type inference, random

testing, and contract verification.

First-order Symbolic Execution Symbolic execution on first-order programs

is mature and has been used to find bugs in real-world programs [10,47]. [10] presents

a symbolic execution engine for C that generates counterexamples of the form of
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mappings from addresses to bit-vectors. Later work extends the technique to gener-

ate comprehensive test cases that discover bugs in large programs interacting with

the environment [47].

Counterexample-guided Abstraction Refinement CEGAR has been used

in model checking and dependent type inference [5,16,36], where the inference algo-

rithm iteratively uses a counterexample given by the solver to refine preconditions

attached to functions and values. In case the algorithm fails to infer a specification,

the counterexample serves as a witness to a breaking input. Our work finds higher-

order counterexamples only by integrating a first-order solver, and is applicable to

both typed and untyped languages. In contrast, dependent type inference relies on

an extension to ML. In addition, work on higher-order model checking [16,35] ana-

lyzes complete programs with first-order unknown inputs, while we analyze partial

programs with potentially higher-order unknown values at the boundaries.

Random Testing Random testing is a lightweight technique for finding coun-

terexamples to program specifications through randomly generated inputs. QuickCheck

for Haskell [19] proves the approach highly practical in finding bugs for functional

programs. Later works extend random testing to improve code coverage and scale

the technique to more language features such as states and class systems. [48] use

contracts to guide random testing for Javascript, allowing users to annotate in-

puts to combine different analyses for increasing the probability of hitting branches

with highly constrained preconditions. [34] also extend random testing to work on
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higher-order stateful programs, discovering many bugs in object-oriented programs

in Racket. [49] use refinement types as generators for tests, significantly improving

code coverage.

Our approach is a complement to random testing. By combining symbolic

execution with an SMT solver, the method takes advantage of conditions generated

by ordinary program code and not just user-annotated contracts. In addition, the

approach works well with highly constrained preconditions without further help

from users. In contrast, random testing systems typically require programmers

to implement custom generators [19] or require user annotations to incorporate a

specific analysis collecting all literals in the program to guide input construction [48].

Type-targeted testing [49] is more lightweight and does not necessitate an extension

to the existing semantics, but gives no guarantee about completeness, as inherent

in random testing. Even though the tool rules out test cases that fail the pre-

conditions, regular code and post-conditions do not help the test generation process.

Our system makes use of both contracts and regular code to guide the execution

to seek inputs that both satisfy pre-conditions and fail post-conditions. Exploring

possible combination of symbolic execution and random testing for more efficient

bug-finding in higher-order programs is our future work.

Contract Verification and Refinement Type Checking Contracts and

refinement types are mechanisms for specifying much richer program invariants than

those allowed in a typical type system. Verification systems either restrict the

language of refinements to be decidable [5] or allow arbitrary enforcement but leave
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unverifiable invariants as residual run-time checks [7, 9, 21, 23]. While verification

proves the absence of errors but may give false positives, our tool aims to discover

concrete, real counterexamples to faulty programs. Our work is a direct extension

to previous work on symbolic execution of higher-order programs [9] and can be

viewed as a complement to contract verification.

2.8 Conclusion

We have presented a symbolic execution semantics for finding concrete coun-

terexamples in higher-order programs and proved it to be sound and relatively com-

plete. An early prototype shows that the approach can scale to realistically sized

functional programs with practical features such as first-class contracts. From the

programmer’s perspective, the approach is lightweight and requires no custom an-

notation to get started. However, if contracts are present, they can help guide the

search for counterexamples. Combined with previous work on contract verification,

it is possible to construct a tool that can statically guarantee contract correctness of

programs and simultaneously ease the understanding of faulty programs, speeding

up the development of reliable software.
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Program Lines Order Correct (ms) Incorrect (ms)

Kobayashi et al. 2011 benchmarks

fhnhn 18 2 38 50
fold-div 18 2 321 160
fold-fun-list 20 3 92 442
hors 25 2 49 34
hrec 9 2 52 143
intro1 13 2 24 128
intro2 13 2 25 127
intro3 13 2 25 23
isnil 9 1 13 9
max 14 2 32 135
mem 12 1 22 254
mult 9 1 61 147
nth0 15 1 19 296
r-file 50 1 74 123
r-lock 17 1 56 49
reverse 11 1 15 205

Terauchi 2010 benchmarks

boolflip 10 1 10 22
mult-all 10 1 9 225
mult-cps 12 1 253 35
mult 10 1 72 21
sum-acm 10 1 33 833
sum-all 9 1 8 186
sum 8 1 44 19

Tobin-Hochstadt and Felleisen 2010 benchmarks

occurrence (14) 116 1 99 226
Nguyên et al. 2014 benchmarks (video games)

snake 164 1 37,350 2,476
tetris 267 2 11,809 2,188
zombie 249 3 19,239 954

Nguyên et al. 2014 other benchmarks and anonymous web submissions

others (73) (2 - 51) 818 3 20,465 -
others-e (124) (3 - 23) 972 3 - 19,588
others-w (5) (4 - 4) 20 1 - 431*

Table 2.1: Program verification and refutation time
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Chapter 3: Soft Contract Verification for Higher-Order Stateful Pro-

grams

Software contracts allow programmers to state rich program properties using

the full expressive power of an object language. However, since they are enforced

at run-time, monitoring contracts imposes significant overhead and delays error

discovery. Soft contract verification aims to guarantee all or most of these properties

ahead of time, enabling valuable optimizations and yielding a more general assurance

of correctness. Existing methods for static contract verification satisfy the needs of

more restricted target languages, but fail to address the challenges unique to those

conjoining untyped, dynamic programming, higher-order functions, modularity, and

statefulness. Our approach tackles all these features at once, in the context of the full

Racket system—a mature environment for stateful, higher-order, multi-paradigm

programming with or without types. Evaluating our method using a set of both

pure and stateful benchmarks, we are able to verify 99.94% of checks statically (all

but 28 of 49, 861).

Stateful, higher-order functions pose significant challenges for static contract

verification in particular. In the presence of these features, a modular analysis

must permit code from the current module to escape permanently to an opaque
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context (unspecified code from outside the current module) that may be stateful

and therefore store a reference to the escaped closure. Also, contracts themselves,

being predicates written in unrestricted Racket, may exhibit stateful behavior; a

sound approach must be robust to contracts which are arbitrarily expressive and

interwoven with the code they monitor. In this chapter, we present and evaluate

our solution based on higher-order symbolic execution, explain the techniques we

used to address such thorny issues, formalize a notion of behavioral approximation,

and use it to provide a mechanized proof of soundness.

3.1 Static Contract Verification in a Stateful, Higher-order Setting

Software contracts [38, 50] allow programmers to provide rich specifications,

using the full expressiveness of the host programming language, that are enforced

dynamically. They have become a common mechanism for documenting and enforc-

ing invariants in many dynamically typed and higher-order languages [51–55].

(define x 0)
(define/contract (f n)
((and/c int? (≥/c 0)) → (𝜆 (n) (and/c int? (≥/c n)))
(set! x (max x n))
x)

To illustrate their use, consider the above function f written in Racket [41] that

returns the largest natural number ever provided to it. Function f has a dependent

contract enforcing that the function receives a single argument which must be a

natural number and returns an integer no less than this argument. Here, the range

“maker” (𝜆 (n) …) computes a range for each specific argument n, and contract
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(≥ /c n) accepts values no smaller than n.

While programmers may appreciate contracts for expressiveness and ease of

use, as contracts are first-class values composable from arbitrary expressions, they

have clear downsides: being checked dynamically delays error discovery and intro-

duces non-trivial run-time overhead [54]. Static verification of contracts eliminates

both disadvantages, verifying program components, discovering errors up front, and

turning previously expensive dynamic checks into strong static guarantees with no

run-time overhead. It aids programmer confidence in software correctness while

justifying the removal of run-time monitors which, in turn, can enable further opti-

mizations that the presence of interposed branches and calls prevented. Soft contract

verification aims to soundly over-approximate program behavior, verifying contracts

where possible and gracefully degrading by allowing them to be enforced dynami-

cally otherwise.

Verification of contracts in a stateful, higher-order, and dynamically-typed

language presents unique challenges:

• The idioms of dynamic languages thwart simple verification methods such as

type inference [26], where programmers rely on dynamic type tests to justify

uses of partial operations, with such tests being composed arbitrarily.

• Contracts are customarily used as enforcements at boundaries to ensure proper

interaction between different components. Programmers tend not to write

contracts for private functions, and rely on invariants established by inter-

procedural and path-sensitive reasoning. A compositional analysis is unlikely
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to succeed in verifying idiomatic dynamic programs without requiring heavy

annotation from the programmer. Modularity, however, is crucial in scaling

any analysis to a realistic code-base.

• Side effects complicate interactions between components through implicit com-

munication channels. In particular, impure functions can escape the target

module to be invoked an indeterminate number of times from an opaque con-

text, possibly invalidating previously established invariants and triggering er-

rors via interactions not possible in pure languages. Verification of effectful

functions must soundly approximate such arbitrary interactions.

• Contracts themselves are arbitrary expressions capable of crashing, diverging,

and modifying state, which prevents direct translation into pure functions and

logical formulae for existing solvers.

Previous approaches to contract verification place greater restrictions on the

language and contracts that limits applicability to a realistic programming envi-

ronment. For example, they either rely on a static type system with contracts as

function-level refinements [20–23], or assume the language is pure [18].

To advance this state of the art, we extend previous work on soft contract

verification via higher-order symbolic execution, allowing mutable state in both

concrete and symbolic functions. There were several crucial ingredients that made

this possible. By employing a path-condition as standard in symbolic execution,

our verification is inherently path-sensitive and capable of reasoning precisely on

many idiomatic dynamically typed programs. By allowing symbolic values to be
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higher-order and effectful, we achieve modularity, enabling the omission of arbi-

trary program components to trade between precision and complexity of analysis,

while internally incurring no precision loss from programming abstractions such as

private functions and sub-modules. By tracking values that have escaped to un-

known contexts and reasoning conservatively about locations that may be mutated

at arbitrary points, we make the verification robust against unknown effectful func-

tions. Finally, by relying on an extended operational semantics to encompass the

behavior of higher-order and stateful program features, and employing an SMT

solver for proving only first-order properties of restricted run-time structures, ver-

ification scales to a realistic programming language with provable soundness while

remaining capable of taking advantage of SMT solvers for sophisticated theorem

proving.

The primary technical delta from prior work on soft contract verification [18] is

the tracking of mutable functions and reasoning soundly about their possible effects.

This required two extensions to our abstract semantics, we 1) maintained an over-

approximation of the functions from transparent code that may have escaped to

an unknown context, and then 2) extended our havoc semantics to simulate any

sequence (of arbitrary order and length) of applying such functions at every point

where control may escape to any unknown context.

Contributions

In this chapter, we make the following four contributions:
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1. We give an extended operational semantics of a higher-order, stateful language

that can be used for modular symbolic execution.

2. We use a tunable abstraction process, enforcing termination of the analysis

at some cost to precision, coupled with a formal notion of behavioral over-

approximation in the presence of unknown higher-order, stateful values and a

mechanically verified proof of soundness.

3. We give a method for translating the symbolic execution history of a higher-

order, stateful program into a pure, first-order formula, allowing the integra-

tion of a first-order SMT solver.

4. We implement and evaluate a practical contract verifier for a significant subset

of Racket.

3.2 Examples

This section explains the essential ingredients of our verification approach

using examples. The approach is based on symbolic execution, which extends an

existing language with symbolic values, each standing for an unknown, but fixed,

concrete value. Symbolic execution explores a set of paths through a program,

maintaining a path condition along each to remember facts which must be true

about symbolic values on that specific path. Each path condition is a formula,

characterizing a particular path, that is strengthened incrementally as execution

passes through the conditional branches that separates this path from all others.
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By proving that some path conditions are contradictory and infeasible, the analysis

is able to show that certain paths, and the errors along them, are unreachable.

If a symbolic execution were to explore all possible paths and terminate show-

ing all errors to be unreachable, it would have performed a successful and complete

verification that the program is statically free from run-time errors. In any real pro-

gram, however, the number of distinct paths that may be explored is unbounded; in

a traditional symbolic execution meant for finding bugs, imperfect coverage is just

fine, for our purposes of static verification however, this unbounded set of paths must

be soundly over-approximated. In addition, symbolic execution of higher-order func-

tions requires simulating a program with unknown (opaque) functional values, i.e.,

we must reason about what happens when an unknown function is applied and the

control path itself is unknown. In this section, we begin by discussing how symbolic

execution can be used for program verification on a simple example, and then show

its macro-expansion and a detailed view of our method on the program expanded

to core forms (a smaller intermediate language). We then use further examples to

discuss mutable state, effectful callbacks, and finitizing abstraction.

3.2.1 Path-sensitivity, SMT Solving, and Elaboration to Core Forms

Our first example demonstrates a function we can show is safe using path-

sensitive reasoning over conditional control flow and first-order data—the basic

building block of our verification. Being able to handle such programs is not unique

to our process, but this example will allow us to illustrate the concepts underlying
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our approach before addressing higher-order values and mutable state. Function f

on the left column of Figure 3.1 expects a pair of a real number and a string, and

promises to return a real number. The function pattern-matches on its argument

before applying partial operations such as str-len and division. A complete veri-

fication assures that not only is f correct with respect to its explicit contracts, but

that the function’s uses of partial operations (such as / and str-len) are also safe,

and that pattern matching covers all cases.

Verification of f via symbolic execution begins by applying f to a fresh sym-

bolic value for its argument. All paths through f start with a path condition already

constrained so that f’s argument matches the contract and is assumed to be a pair

of a real number and string. Executing f’s body would then non-deterministically

follow each branch of the match form, because all of them could be possible. At

each branch, symbolic execution of f proceeds with a strengthened path-condition,

remembering the constraints on data that may be assumed down this particular

branch. For example, all paths reaching the second match clause will record in their

path conditions that x cannot be a pair where the first value is less than or equal

to 1. In this way, path-conditions encode the invariants that ensure the absence

of run-time errors, allowing us to prove that str-len is only applied on strings

or that / is given a non-zero divisor. By calling out to a dedicated SMT solver,

the analysis proves that, in the second clause, r must be both a real number and

also not a real number less than or equal to 1, so therefore a non-zero real num-

ber. Down the implicit failure branch where Racket’s match form would report an

incomplete-pattern-match error, the path condition would report that x must be a
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;; Original program
(define/contract (f x)
((cons/c real? str?) → real?)
(match x
[(cons r s)
#:when (≤ r 1)
(str-len s)]
[(cons r s)
(/ (str-len s) r)]))

;; Macro-expanded program
(define/contract (f 𝑥)
((cons/c real? str?) → real?)
(let* ([x1 x]

[k2 (𝜆 () (error "incomplete"))])
(if (cons? x1)
(let* ([x1-car (car x1)]

[x1-cdr (cdr x1)]
[k1(𝜆 () (let ([r x1-car]

[s x1-cdr])
(/ (str-len s) r)))]

[r1 x1-car]
[s1 x1-cdr])

(if (≤ r1 1) (str-len s1) (k1)))
(k2))))

Figure 3.1: A pattern-matching example, before and after expansion.

pair of a real and string while also not a pair—a contradiction. The SMT solver

will report that this path is infeasible and we have verified the match error can not

occur. Ultimately, an exhaustive symbolic execution of just this component proves

that f respects all its contracts (explicit or implicit), and no input can cause it to

violate any of those.

Although the previous symbolic execution is straightforward for this example,

it relies on knowledge of pattern-matching. Realistic programming languages can

have a broad set of built-in features and, in the case of Racket, even user-definable

syntax. Even match is simply a standard-library macro, with a pattern-matching

facility that can be extended by user-defined macros. Building a verification process

for a core language, after macro-expansion, allows better scaling of the process to

large code bases using high-level language features, so long as the analysis can reason

in terms of the fully-expanded intermediate language.

The program at the right column of Figure 3.1 shows the result of macro
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expanding function f into core Racket. The expanded program is more complicated

code in terms of simpler forms and is idiomatic of dynamically typed languages in

that correctness relies on path-sensitive properties such as aliasing and numerical

bounds. For example, the match macro generates an alias x1 for x, and then a

thunk k2 for exiting with an error if the match fails. Similarly, r1, r, and x1-car are

aliases, and the program invokes thunk k1, which performs a division on r only when

its alias r1 is greater than 1. Some thunks in the expansion of f would be unsafe

if invoked from an arbitrary context; however, as this program uses them only in

a correct way, our analysis proves that they are free from run-time errors. As our

analysis constructs path conditions, refined across all dynamic checks, regardless

of whether they are contracts specifically, no guard need be associated with these

intermediate thunks. While in unexpanded Racket there are many language forms

which may branch and refine the path condition, such as if, match, case, cond, for,

do, etc, fully expanded Racket only has the if form. In addition, the many forms

with complicated and unique control-flow behavior are compiled into administrative

bindings, calls, returns, conditionals and continuations.

Verification of the expanded program proceeds in a manner similar to the

original but needs to precisely track invariants about aliases and each closure’s

free variables. Variables in the analysis are bound to an abstract value that finitely

approximates all possible run-time values (when it is entirely unknown, this is simply

a • denoting a fully opaque, or unknown, value) paired with a symbolic value—a

name that may be referenced in the path condition. The full mechanics of abstract

and symbolic values is detailed and explained in Section 3.3. When execution reaches
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the let* form (a sequential let-binding form), it assigns to x1 the value that x holds,

which is an opaque value named x. Instead of being bound to a specific pair of

concrete values, as it would be in any real execution, x is bound to a fully opaque

abstract value (•) and a symbolic name, x (named for the original parameter), that

is referenced in the path condition and constrained by it to be a pair of a real number

and a string. At the let*-binding [x1 x], this symbolic name propagates from x

to x1. The next binding evaluates the 𝜆-term for a match error and assigns it to k2.

For closures, the analysis records both an abstract closure—the syntactic 𝜆-term

along with its abstract binding environment and the path condition at its creation

(to constrain any free variables)—along with a symbolic name which is simply its

syntactic 𝜆-term.

The analysis then reaches a conditional to check if x1 is a pair. In the “then”

branch, the symbolic name x is assumed in the path condition to be a pair and

any reference to variable x1-car or r1 returns a symbolic value named (car x),

and for x1-cdr or s1, the symbolic name (cdr x). Symbolic names may refer

to the value of any program expression—in this case, primitive operations. Most

operations can be straightforwardly proven safe, except for the division in thunk

k1, where the path condition saved at the time of its creation did not assume that

r was non-zero; this property was only recorded later before the application of k1

when r’s alias r1 was assumed greater than 1. However, we treat the fact that

k1’s symbolic name is a 𝜆-term as a signifier that the closure bound to k1 was

created within the caller. Assuming that the program has been 𝛼-renamed, any

free variable shared between k1 and the current scope must therefore denote the
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(define/contract (f g)
(((→ void?) → void?) → even?)
(define n 2)
(define double!
(𝜆 () (set! n (* 2 n))))

(g double!)
n)

(a) Effectful function escaping to
unknown context (safe, verified).

(define/contract (f g)
(((→ void?) → void?)

→ (and/c (≤/c 2) int?))
(define n 0)
(define inc! (𝜆 () (set! n (+ 1 n))))
(g inc!)
(if (< n 2)

(begin (g void) n)
2))

(b) Effectful function escaping to unknown con-
text (unsafe, unverified).

Figure 3.2: Symbolic functions and mutable state.

same value. This justifies strengthening k1’s saved path-condition with the caller’s

invariants, establishing that (car x) is greater than 1 and proving the division in

k1 safe. This is a precision-enhancing technique discussed further in Section 3.4.1.

In all, this process proves that the expanded version of f is also free of run-time

errors.

3.2.2 Effectful Callbacks and Mutated Location Tracking

The next two examples demonstrate the verification of a higher-order function

with mutable state. Function f in Figure 3.2a takes as its argument any function g

that accepts a callback, and promises to return an even integer. Internally, f defines

a mutable variable n, defines a callback double! that modifies n to its double,

and passes the callback to its argument g. Although g’s behavior is arbitrary, it

only causes modifications to f’s local state n in a controlled way through double!.

Our analysis is able to prove that n is always an even number, regardless of g’s

implementation, ensuring that f’s result respects its contract.
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To verify f in Figure 3.2a, we apply it to a fully opaque symbolic value. Within

f’s body, any reference to variable g returns a symbolic value named g. The seman-

tics of higher-order contract monitoring wraps g in a contract promising that f only

gives it a void-returning thunk, and ensuring that g only returns void [38]. Upon

applying g to double! and transferring control to g, the execution simulates arbi-

trary computation in g capable of affecting f’s behavior and revealing its reachable

errors. Specifically, g can both return a fully opaque symbolic value, and invoke (an

arbitrary number of times) any function from f that has leaked to it (in this case,

double!). Each update to n widens the value at n to approximate both old and

new values. By choosing an appropriate domain of abstract values (e.g., one that

preserves common predicates such as sign and parity tests) and providing a precise

abstract interpretation for arithmetic over this domain, our analysis proves that n

is always an even number regardless of how many times double! is invoked [56,57].

Returning n can thus be shown to satisfy f’s contract on its range and our sym-

bolic execution verifies that f cannot be blamed for any violation of its contract.

Section 3.4.1 describes the widening of values more generally.

Special care needs to be taken when a effectful callback escapes to an arbitrary

context. For example, in Figure 3.2b, an opaque function g is invoked on inc!, a

function that increments local variable n. The function, f, then tests to see if n

remains strictly less than 2, in which case it invokes g on void and returns n,

otherwise it returns 2. In the “then” branch, it may appear as though the call

to (g void) may not effect n since the void function has no effect. However, an

implementation of g that satisfies the contract can save the earlier reference to
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inc! and invoke it again many times when g is applied to void, invalidating any

assumption about n’s upper-bound.

3.2.3 Abstracting Symbolic Execution

Traditionally, symbolic execution is used to find potential errors, not to verify

programs. Symbolic execution explores a number of program paths precisely but

does not typically provide a terminating over-approximation of all possible program

paths [47, 58–61]. As described thus far, our process would not terminate on many

programs. Consider factorial, shown in Figure 3.3: execution repeatedly unfolds

factorial at each recursive call, applying the function to a fresh symbolic integer.

(define/contract (factorial z)
((and/c int? (≥/c 0)) → (and/c int? (≥/c 1)))
(if (≤ z 1)

1
(* z (factorial (- z 1)))))

Figure 3.3: Factorial

To ensure termi-

nation, we apply a

well-studied method for

systematically abstract-

ing an operational se-

mantics through finiti-

zation of dynamic program components [24]. The method yields many choices for

finitizing the structure of an abstract machine [62] that are sound, and permits a

method for tuning poly-variance to trade-off between precision and performance by

changing the machine’s allocation behavior [63]. Our instantiation of this frame-

work approximates recurring values and path-conditions at different iterations of

the same loop, summarizing repeated values and properties of data as loop invari-
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[Expressions] 𝐸 ∶∶= 𝑈 | 𝑋 | (𝐸 𝐸)𝐿 | (if 𝐸 𝐸 𝐸) | (set! 𝑋 𝐸)
| (𝐸 → (𝜆 (𝑋) 𝐸)) | (mon𝐿𝐿 𝐸 𝐸)

[Value Literals] 𝑈 ∶∶= (𝜆 (𝑋) 𝐸) | 𝑁 | O | •
[Integers] 𝑁 ∶∶= … | −2 | −1 | 0 | 1 | 2 | …

[Primitives] O ∶∶= int? | proc? | zero? | flat-contract? | add1 |…
[Variables] 𝑋,𝑌 = ⟨identifiers⟩

[Labels] 𝐿 = ⟨identifiers⟩

Figure 3.4: Syntax of 𝜆S.

ants, while providing exact execution for loop-free program fragments. We describe

our implementation in detail in Section 3.4.

In the case of factorial, execution branches on (≤ z 1), yielding two paths,

and learns that factorial either returns 1 or multiplies z with the result of its

recursive call (knowing that z is greater than 1). The recursive call similarly returns

1 in one of its branch, yielding (* z 1) as a result of the parent call to factorial.

Through finitization of dynamically generated program components, the analysis

reaches a fixed point, learning an over-approximation of factorial’s behavior: it

either returns 1, or the product of its argument z ≥ 1 with an integer no less than

1. Across all cases, the solver can verify that factorial satisfies its contracts.

3.3 Static verification through symbolic execution

We present our symbolic execution using language 𝜆S, an untyped lambda

calculus extended with mutable state and first-class higher-order contracts. The

language’s grammar is given in Figure 3.4.
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Apart from standard values such as 𝜆-abstractions (𝜆 (𝑋) 𝐸), natural num-

bers (𝑁), and primitive operations (O), 𝜆S includes symbolic values (•), each stand-

ing for an arbitrary value that is syntactically closed. (For example, • cannot stand

for (𝜆 (x) y) because y is free.)

Most forms are standard, such as variable reference (𝑋), conditional (if𝐸𝐸𝐸),

and variable mutation (set! 𝑋 𝐸). We annotate each function application (𝐸 𝐸)𝐿

with a source label 𝐿 to serve as a potential party to blame in case of a contract

failure.

Contracts are first-class values in 𝜆S and belong to the same syntactic category

as expressions. Expression (𝐸 → (𝜆 (𝑋) 𝐸′)) denotes a higher-order dependent

contract, which is a pair of contract domain 𝐸 and range “maker” (𝜆 (𝑋) 𝐸′)

that computes a range 𝐸′ dependent on the argument bound to 𝑋 for each specific

function application. For example,

(int? → (𝜆 (x) (𝜆 (a) (and (int? a) (> a x)))))

is a contract for functions that map each integer to a greater integer.

Finally, the monitoring form (mon𝐿𝐿′ 𝐸 𝐸′) denotes the dynamic enforce-

ment of contract 𝐸 between expression 𝐸′ and its surrounding context, where

𝐿 is the party to blame if 𝐸′ produces a value that fails the contract, and 𝐿′

is to blame if the context consuming the result of 𝐸′ uses the result in a way

that violates the contract. For example, (mon𝐿𝐿′ int? add1) evaluates to a blame

on 𝐿 for producing the function add1 instead of an integer, and the application
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((mon𝐿𝐿′ (int? → int?) add1) proc?) evaluates to a blame on 𝐿′ for supplying

the primitive function proc? to a guarded function add1 expecting an integer.

(define (box x)
(𝜆 (msg)
(match msg
['set-box! (𝜆 (w) (set! x w))]
['unbox x])))

(define (set-box! b v) ((b 'set-box!) v))
(define (unbox b) (b 'unbox))

Figure 3.5: Mutable box as closures.

Our language 𝜆S is min-

imal, but models core features

found in practical program-

ming languages. For example,

pattern matching can be ex-

panded into simple condition-

als as shown in Section 3.2.1,

and mutable boxes can be modeled using closures and mutable variables, as demon-

strated in Figure 3.5.

3.3.1 Semantics

We define the semantics of 𝜆S using a reduction relation over machine states,

𝜍, each constituted of four components as shown in Figure 3.6.

At a high level, our abstract machine is just a closure-creating, store-passing

interpreter, factored into several small-step rules and a single big-step rule that steps

a configuration within an evaluation context (see Figure 3.7). We then instrument

this machine with several extra components. In addition to a configuration and

store, each state tracks a store-cache (mapping variables to locally precise values

and their symbolic names) and a path condition (accumulating a conjunction of

facts, in terms of these symbolic names, that characterizes the current execution
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[States] 𝜍 ∶∶= (𝐶,𝑀,Φ,Σ)
[Closures] 𝐶 ∶∶= Α | (𝐸, Ρ) | (𝐶 𝐶)𝐿 | (if 𝐶 𝐶 𝐶) | (set! (𝑋,Ρ) 𝐶)

| (𝐶 → ((𝜆 (𝑋) 𝐸), Ρ))
| (mon𝐿𝐿 𝐶 𝐶) | (rt ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋

𝑋 𝑆 𝑀 Φ 𝐶)
[Evaluation Contexts] ℰ ∶∶= [ ] | (ℰ 𝐶)𝐿 | (𝑊 ℰ)𝐿 | (if ℰ 𝐶 𝐶) | (set! (𝑋, Ρ) ℰ)

| (ℰ → ((𝜆 (𝑋) 𝐸), Ρ))
| (mon𝐿𝐿 ℰ 𝐶) | (mon𝐿𝐿 𝑊 ℰ) | (rt ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋

𝑋 𝑆 𝑀 Φ ℰ)
[Answers] Α ∶∶= 𝑊 | blame𝐿𝐿

[Post-values] 𝑊 ∶∶= (𝑉 , 𝑆)
[Values] 𝑉 ∶∶= 𝑁 | O | • | Clo(𝑋,𝐸,Ρ,Φ) | Grd(𝛼, 𝛼) | ArrLL(𝛼, 𝛼)

[Symbols] 𝑆 ∶∶= 𝐸 | ∅
[Path-conditions] Φ = 𝒫(Exp)

[Address] 𝛼 = ⟨any enumerable set, e.g. ℕ⟩
[Store-cache] 𝑀 = Var → (WVal + {∅})

[Environments] Ρ = Var → Addr
[Value stores] Σ = Addr → 𝒫(Val)

Figure 3.6: State components for symbolic execution.
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path). We also include higher-order contracts as distinguished values, allow labeled

blame objects to result from evaluation, and track strongly updated variables.

3.3.1.1 State Components

Each machine state consists of four components:

1. A closure (𝐶) is either an answer (Α), an expression (𝐸) paired with an

environment (Ρ), or an inductively defined closure whose structure mimics

that of plain expressions (𝐸).

2. A store-cache (𝑀) is a finite map from each variable, 𝑋, in scope to either a

value that 𝑋 must hold, or the special symbol ∅ indicating that 𝑋 may have

been modified arbitrarily.

3. A path condition (Φ) is a set (interpreted as a conjunction) of expressions

assumed to have evaluated to true.

4. A store (Σ) that maps each address (𝛼) to a set of values ( ⃗⃗⃗ ⃗⃗ ⃗𝑉 ). For a stan-

dard concrete execution that is deterministic, each value set is a singleton.

We generalize the store’s range to be a set, however, to allow modeling non-

determinism resulting from over-approximation of multiple execution paths.

Several further sub-components constitute these. Binding environments (Ρ)

map each variable in scope to an address (𝛼) in the value store. An answer (Α)

is either a post-value (𝑊 ) or an error (blame𝐿𝐿′) blaming component labeled 𝐿 for

violating the contract with 𝐿′. A post-value (𝑊 ) is a value (𝑉 ) paired with a
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symbolic name (𝑆) which relates this value to relevant constraints in the current

path condition. The special symbol ∅ indicates the lack of a symbolic name to

appear in the path condition.

A value (𝑉 ) is either a number (𝑁), primitive operator (O), function closure

(Clo(𝑋,𝐸,Ρ,Φ)), higher-order contract (Grd(𝛼, 𝛼)), guarded function (ArrLL(𝛼, 𝛼)),

or abstract value (•). We use 0 to represent falsehood, and any other value to

represent truth. For convenience, we assume zero? is a total predicate in 𝜆S that

tests for falsehood, and nonzero? is its complement. Similarly, flat-contract?

tests if a value is usable as a flat contract (e.g. either a primitive function or a

lambda), and dep-contract? tests if a value is a dependent contract.

The grammar for evaluation contexts (ℰ) follows that of closures (𝐶) and

enforces a standard left-to-right call-by-value semantics. In particular, we evaluate

functions before arguments, and contracts before monitored expressions.

The semantics is mostly standard with the addition of a store-cache and a

path-condition that tracks path-sensitive information about locations and symbolic

values, respectively. For example, an entry x ↦ (•, (+ y n)) in the store-cache

means that location x holds the symbolic value (+ y n), and expression (> x n) in

the path-condition indicates the constraint on symbolic values x and n. The name

x, when it appears as a symbol, refers to the value first bound to location x when x

is in scope.
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3.3.1.2 Reduction relation

We define the small-step operational semantics using reduction relation (⟼),

which defines the evaluation of a machine state as a sequence of atomic steps. The

relation (⟼) is defined as the context-closure of relation (⟼𝑣) over redexes, as

shown in figure 3.7. We present each aspect of this reduction relation in turn.

Some rules (e.g. [Grd], [AppClo], [MonFun]) involve allocating a value in the

store at some address 𝛼—we leave the choice of address allocation open, because

any allocation results in a sound over-approximation of the standard concrete se-

mantics [24, 63]. As we will see in Section 3.3.5, different allocation choices decide

whether the semantics is a traditional bug-finding symbolic execution or static ver-

ification with different trade-offs between precision and termination.

Distribution of environment into sub-expressions Rule [Distr] in Fig-

ure 3.8 shows the reduction of closures of the form (𝐸, Ρ), where 𝐸 contains one or

more sub-expressions. The (partial) meta-function distr shows the straightforward

definition of distributing environments into sub-expressions.

Values Rule [Lit] in Figure 3.9 shows the reduction for value literals. Each of

these expressions evaluates to an answer determined by meta-function lit. The

definition of lit is straightforward for base values. For each 𝜆-abstraction, the meta-

function saves the current path-condition to remember invariants about free vari-

ables, in addition to the environment as standard. Rule [Grd] shows the reduction

of a higher-order contract once its domain is evaluated: the reduction steps to a
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contract object with both its domain and range-maker components allocated in the

store.

Variable referencing and mutation Figure 3.9 also shows reduction rules

for referencing and mutating variables. Rule [Var] references the value at variable

𝑋 by performing a lookup in the store-cache (𝑀) as well as in the store (Σ). As

shown in the definition of relation lookup, we either use the cache result if the cache

indicates a definite hit, or look up in the store as standard if the cache indicates

that the variable has stopped being tracked precisely. Rule [Set] strongly updates

the store-cache and weakly updates the store.

Conditionals The last rules in Figure 3.9 shows reduction for conditionals. If

the evaluated condition is plausibly non-0, execution steps to the “then” branch

of the conditional and refines the path-condition to reflect the new assumption

(rule [CondTrue]). Here, relation feasible(Φ,O,𝑊,Φ′) guards the rule, ensuring

that value 𝑊 could possibly satisfy predicate O, given the current invariants in

path-condition Φ, and remembering the branch condition as an assumption of a

strengthened path-condition Φ′. If the condition is plausibly 0, execution steps

to the “else” branch of the conditional and refines the path condition to reflect the

inverse assumption (rule [CondFalse]). When both branches are plausible, execution

non-deterministically steps to both, each with the appropriately strengthened path

condition.
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(𝐶1,𝑀1, Φ1, Σ1) ⟼𝑣 (𝐶2,𝑀2, Φ2, Σ2)
(ℰ[𝐶1],𝑀1, Φ1, Σ1) ⟼ (ℰ[𝐶2],𝑀2, Φ2, Σ2)

Figure 3.7: Reduction on states.

((𝐸, Ρ),𝑀,Φ,Σ) ⟼𝑣 (𝐶,𝑀,Φ′, Σ) [Distr]
if distr(𝐸, Ρ) = 𝐶

where distr((𝐸1𝐸2)
𝐿, Ρ) = ((𝐸1, Ρ) (𝐸2, Ρ))𝐿

distr((if 𝐸 𝐸1𝐸2), Ρ) = (if (𝐸, Ρ) (𝐸1, Ρ) (𝐸2, Ρ))
distr((set! 𝑋 𝐸), Ρ) = (set! (𝑋,𝐸) (𝐸,Ρ))

distr((𝐸 → (𝜆 (𝑋) 𝐸′)), Ρ) = ((𝐸, Ρ) → ((𝜆 (𝑋) 𝐸′), Ρ))
distr((mon𝐿𝐿′ 𝐸 𝐸′), Ρ) = (mon𝐿𝐿′ (𝐸, Ρ) (𝐸′, Ρ))

Figure 3.8: Distribution of environment.
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Contract monitoring Figure 3.10 shows reduction rules for monitoring con-

tracts.

Rule [MonFlat] shows the straightforward monitoring of a flat contract—the

contract is simply applied on the value as a predicate. If the value passes this

predicate, it is returned as-is; otherwise, a blame on the party providing the value

is raised.

Rule [MonFun] shows the monitoring of a higher-order contract, which first

performs a first-order check ensuring the target is indeed a function, blaming the

party providing the value if it is not. If the value is indeed a function, monitoring

saves the higher-order contracts, the function being checked, along with the blame

parties into a guarded function to perform checks at each subsequent application,

following the semantics of monitoring higher-order contracts. The details of applying

a guarded function are described later in application rule [AppArr].

Application Figure 3.11 shows reduction rules for application. Values that can

be used as functions in 𝜆S are primitive operations, closures, and guarded func-

tions, whose applications are shown in rules [AppPrim], [AppClo], and [AppArr],

respectively. Applying an opaque value results in two possibilities covered in rule

[AppOpq].

Application of primitive operations rely on relation 𝛿 as in rule [AppPrim].

We generalize 𝛿 to a relation instead of meta-function to express non-determinism

in the presence of symbolic values. The result’s symbolic name is created through

meta-function ap, which reconstructs the application, except returning ∅ if either
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arguments is ∅.

Rule [AppClo] governs application of a closure and allocates the argument in

the store at an address 𝛼. Because some variables have new visible bindings, the

store-cache and path-condition need to be updated. The target closure’s parameter

(𝑋) now refers to a distinct location from the caller’s 𝑋 (if it exists), so it receives

a fresh entry in the store-cache pointing to the argument’s value as well as 𝑋 as the

symbolic name. The closure’s free variables, on the other hand, may or may not

refer to the same locations as they do at the call site, so their store-cache entries

are simply invalidated and treated conservatively. The closure application reduces

to the function body with the extended environment and store as standard, but also

saves the caller’s store-cache, path-condition, and symbolic name to reinstate upon

a return.

Rule [AppArr] describes the application of a guarded function, which is de-

composed into the monitoring of the argument against the contract’s domain with

reversed blame parties, followed by the application of the function under guard,

whose result is in turn monitored against the computed contract range. If the func-

tion’s guarding contract is not a concrete higher-order contract, it decomposes into

opaque domain and range contracts.

Rule [AppOpq] describes two non-deterministic cases that result from applying

an opaque function. Because a blame on an unknown program component is an

irrelevant analysis result, we ignore unknown functions that introduce errors of

their own. A well-behaved function, on the other hand, interacts with the rest

of the program in limited ways: it either returns a value, or if its argument 𝑉 is
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a function, applies 𝑉 to some value. Because each application of 𝑉 may modify

program state, and the effect of each application (e.g., whether it triggers an error)

may depend on the program state resulting from applying a stateful function (either

𝑉 itself or another function that has previously escaped from transparent code to

unknown code), arbitrary repetition of this application needs to be considered. We

therefore maintain a set of values that have escaped to unknown code at a special

address •, and upon invocation of an opaque function, we emulate an arbitrary

number of invocations of escaped code before finally returning an opaque value as

a result. The first case of rule [AppOpq] approximates all possible returns from the

unknown function by returning an opaque value. The second case of rule [AppOpq]

approximates all possible applications of the unknown function by applying any

value from the transparent code that has “leaked” into the unknown code (including

the argument from the latest opaque application, 𝑉 ), and then passes the result back

into an opaque function.
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(let ([f (let ([x −3])
(𝜆 (_)
(set! x (+ 1 x))
(/ 1 x)))])

(• f))

Figure 3.13: Havoc stateful callback.

To illustrate how rule [AppOpq]

uncovers errors, consider the example in

Figure 3.13 where execution discovers a

potential division-by-0 error in function

f when passed to an unknown context

in an execution branch where f is ap-

plied thrice. In another example, given in Figure 3.14, the first unknown context

cannot discover any error in the function app which flows to it, because there is no

possible error. However, its result, stored at variable h, can potentially reference

any value that has escaped to an unknown context. After the the effectful function

inc! flows to the unknown context, the variable n has potentially been modified to

0. Application of h then soundly discovers the potential error in app by invoking

app again.

(let* ([n −3]
[inc! (𝜆 (_) (set! n (add1 n)))]
[app (𝜆 (_) (/ 1 n))]
[h (• app)])

(• inc!)
(h 0))

Figure 3.14: Escaped stateful callback.

In Section 3.3.4, we pro-

vide a precise definition of be-

havioral over-approximation

and show that these rules are

sufficient to soundly approx-

imate the application of an

unknown function with arbi-

trary code. Although a naïve implementation of rule [AppOpq] is impractical, we

employ several optimizations to enable verification of realistic programs presented

in Section 3.4.
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Lastly, in [AppErr], applying a potentially non-functional value blames the

party performing the application.

Restoring context Figure 3.12 shows rule [Ret] for returning a value to the

caller. The store-cache entry for the distinct bound-variable 𝑋 is restored, while

entries for free variables are simply invalidated. In addition, the value receives the

symbolic name from the caller’s scope.

3.3.2 Primitive operations

Figure 3.15 shows a definition of select primitive operations extended to sym-

bolic values.

Although many primitives such as add1 are partial, we define O in 𝜆S to be the

unsafe versions of the primitives, which are total functions that always successfully

return a value. We therefore assume that references to primitives are appropriately

guarded with contracts (e.g. add1 would be guarded with (int? → (𝜆 (_) int?)))

and that programmers have no direct access to unsafe primitives.

The definition preserves precision for concrete arguments and returns an opaque

value otherwise.

3.3.3 Path-condition satisfiability

Effective verification relies on precise proving of infeasible path-conditions to

eliminate implausible blames and avoid exploration of spurious paths. While simple

properties such as implication and exclusion between type-like predicates are easy to
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check, more sophisticated properties such as arithmetic take more work to implement

efficiently. Making good use of an existing SMT solver can reduce implementation

effort without giving up the ability to prove rich invariants. Unfortunately, most

SMT solvers only support first-order formulae, which are a significant gap from

higher-order effectful expressions.

𝛿(Σ, int?, 𝑉 ) ∋ 0 if 𝑉 ≠ 𝑁
𝛿(Σ, int?, 𝑉 ) ∋ 1 if, 𝑉 = 𝑁 or 𝑉 = •
𝛿(Σ, add1,𝑁) ∋ 𝑁 + 1
𝛿(Σ, add1, 𝑉 ) ∋ • where, 𝑉 ≠ 𝑁

Figure 3.15: Primitive operations.

We overcome this issue

by making the following ob-

servation: run-time monitor-

ing, even of higher-order values,

only requires checking a first-

order property at any given

point in the program execution. Therefore, contract verification ultimately reduces

to proving implications between first-order properties. We rely on the operational

semantics to account for the execution of a program, while accumulating first-order

invariants in the path-condition to be able to prove necessary properties. Call outs

to the solver can be seen a precision optimization that prunes infeasible paths of

execution. We present a method to translate the path-condition into first-order for-

mulae such that unsatisfiable formulae implies an infeasible execution path. The

formulae’s satisfiability can be solved by an existing SMT solver such as Z3 [40] or

CVC4 [64].

The target formulae uses a unitype embedding V of the source language’s

dynamic type system as shown in Figure 3.16. Source language values are encoded

in the solver by pairing together a run-time type tag and an integer denoting the
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identity of the value: for source integers, it is just the integer itself; for all other

kinds of values such operators, functions, etc., it just distinguishes values.

type V = Int (unbox_int: ℤ)
| Op (op_id: ℤ)
| Lam (lam_id: ℤ)
| …

function istrue v = (v ≠ Int 0)

Figure 3.16: Datatype encoding for
SMT solver.

Figure 3.17 shows the translation.

The main translation takes a path-

condition Φ and produces a formula

stating properties about run-time val-

ues. It straightforwardly asserts that

the translation of each term in the path-

condition is not Int 0. Unsatisfiability

of this formula would imply an infeasible execution path.

The translation of each expression 𝐸 produces a term of sort 𝑉 in the logic.

Base values are straightforwardly mapped to those in the logic, while the translation

of functions such as primitives and lambdas merely retain the type tag. The transla-

tion uses a fresh id for each lambda literal, essentially existentializing the translated

value. Primitive operations that have a correspondence in the logic are translated as

is. For operations and expressions that do not have obvious translations, we simply

existentialize the result, as seen in the default cases of {{⋅}} and {{⋅, ⋅}}.

3.3.4 Soundness

This section proves the symbolic execution semantics is sound—that it discov-

ers any possible blame. Specifically, given a program with holes, if any instantiation

of the holes causes a blame on a label from the incomplete program, then running
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{{⋅}} ∶ Φ → Formula

{{𝐸…}} = ∧ (istrue {{𝐸}})…

{{⋅, ⋅}} ∶ O ×𝐸 → Term

{{add1,𝐸}} = Int (1+ unbox_int {{𝐸}})
…

{{O,𝐸}} = 𝑋, where 𝑋 fresh

{{⋅}} ∶ 𝐸 → Term

{{𝑁}} = Int 𝑁
{{O}} = Op unique(O)

{{(𝜆 (𝑋) 𝐸)}} = Lam 𝑋, where 𝑋 fresh
{{(O 𝐸)}} = {{O,𝐸}}

{{𝐸}} = 𝑋, where 𝑋 fresh

Figure 3.17: Translation of path-conditions and expressions into first-order for-
mulae.

the program (with holes) under the symbolic semantics discovers the same blame

(Theorem 3).

To prove our soundness theorem, we first define what it means for an incom-

plete program to approximate a complete one, then through a preservation lemma,

we show reduction preserves this approximation.

Figure 3.18 shows important rules for the approximation relation between

expressions and state components. We describe only the important rules and defer

to the appendix for full definitions. The base case of the derivation involves the

instantiation of holes (•), where each hole either stands for a literal base value,

or a syntactically closed 𝜆-abstraction whose body (𝐸•) does not contain further

holes and only contains a label (L•) distinct from any label from the transparent

part of the code. Approximation rules for expressions arise from the straightforward

structural induction.

The approximation between state components is indexed by an abstraction

82



[Instantiated Exprs] 𝐸• ∈ OExp ∶∶=

(𝜆 (𝑋) 𝐸•) | 𝑁 | O | 𝑋 | (𝐸•𝐸•)L• | (if 𝐸•𝐸•𝐸•) | (set! 𝑋 𝐸•)

free(𝐸•) ⊆ {𝑋}
(𝜆 (𝑋) 𝐸•) ⊑ •

𝐸 ⊑ 𝐸′

(𝜆 (𝑋) 𝐸) ⊑ (𝜆 (𝑋) 𝐸′)
𝐸1 ⊑ 𝐸′

1 𝐸2 ⊑ 𝐸′
2

(𝐸1𝐸2)
𝐿 ⊑ (𝐸′

1𝐸′
2)

𝐿

𝐸 ⊑ 𝐸′ Ρ ⊑𝐹 Ρ′ Φ ⊑𝐹 Φ′

Clo(𝑋,𝐸,Ρ,Φ) ⊑𝐹 Clo(𝑋,𝐸′, Ρ′, Φ′)
free(𝐸•) ⊆ {𝑋} restrictedF(Ρ)

Clo(𝑋,𝐸•, Ρ, Φ) ⊑𝐹 •

𝐶 ⊑𝐹 𝐶′ 𝐶1 ⊑𝐹 𝐶′
1 𝐶2 ⊑𝐹 𝐶′

2
(if 𝐶 𝐶1𝐶2) ⊑𝐹 (if 𝐶′𝐶′

1𝐶′
2)

𝐶1 ⊑𝐹 𝐶′
1 𝐶2 ⊑𝐹 𝐶′

2 𝐿 ≠ L•
(𝐶1𝐶2)

𝐿 ⊑𝐹 (𝐶′
1𝐶′

2)
𝐿

𝐶1 ⊑𝐹 𝐶′
1 𝐶2 ⊑𝐹 𝐶′

2 L• ∉ {𝐿,𝐿′}
(mon𝐿𝐿″ 𝐶1 𝐶2) ⊑𝐹 (mon𝐿𝐿″ 𝐶′

1 𝐶′
2)

𝐶 ⊑𝐹 𝐶′ ℰ ⊑𝐹 ℰ′ 𝐿 ≠ L•
ℰ[(𝐶 [ ])𝐿] ⊑𝐹 ℰ′[(𝐶′ [ ])𝐿]

ℰ ⊑𝐹 ℰ′

ℰ ⊑𝐹 ℰ′[((•, 𝑆) [ ])]
restrictedF(𝐶) ℰ ⊑𝐹 ℰ′[((•, 𝑆) [ ])]

ℰ[(𝐶 [ ])L•] ⊑𝐹 ℰ′[((•, 𝑆) [ ])]

𝐶 ⊑𝐹 𝐶′ 𝑀 ⊑𝐹 𝑀 ′ Φ ⊑𝐹 Φ′ Σ ⊑𝐹 Σ′

(𝐶,𝑀,Φ,Σ) ⊑𝐹 (𝐶′,𝑀 ′, Φ′, Σ′)

restrictedF(𝐶) ℰ ⊑𝐹 ℰ′[((•, 𝑆) [ ])] 𝑀 ⊑𝐹 𝑀 ′ Φ ⊑𝐹 Φ′ Σ ⊑𝐹 Σ′

(ℰ[𝐶],𝑀,Φ,Σ) ⊑𝐹 (ℰ′[((•, 𝑆) 𝑊)],𝑀 ′, Φ′, Σ′)

Figure 3.18: Approximation between program expressions.

map 𝐹 from each address in the instantiated component to one in the approximat-

ing component. The approximation between closures is only established between

closures whose corresponding sub-components are approximating, or between an

opaque value and a closure whose control component is purely instantiated, and an

environment component that only maps to “unknown” addresses simulated by the

special address • (enforced by map 𝐹 ). Predicate restrictedF( ⋅ ) restricts state com-

ponents to only contain addresses that are simulated by •. Approximation between
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evaluation contexts also include structural and non-structural cases: inserting trans-

parent “frames” into the holes of both evaluation contexts preserves approximation,

and an inner opaque application context approximates any number of insertions of

purely instantiated “frames”. Finally, approximation between states (𝜍) is either es-

tablished structurally through component-wise approximation, or non-structurally

where an opaque application approximates a state whose evaluation context and

top frames are purely instantiated.

We also define the multi-step standard reduction (⟼→) as the reflexive-transitive

closure of the standard reduction (⟼).

Lemma 1 (Reduction preserves approximation). If 𝜍1 ⊑𝐹 𝜍′1 and 𝜍1 ⟼ 𝜍2, then

there exists 𝜍′2 and 𝐹 ′ such that 𝜍2 ⊑𝐹 ′ 𝜍′2 and 𝜍′1 ⟼→ 𝜍′2.

Proof. By case analysis on the reduction 𝜍1 ⟼ 𝜍2 and approximation 𝜍1 ⊑𝐹 ′ 𝜍′1.

We defer to the appendix for the full proof, and link to our mechanization, written

in Lean. Most cases are straightforward and 𝜍′2 approximates 𝜍′1 in lock step. The

main complication comes from applying symbolic function, where the instantiated

state 𝜍1 transfers control to purely instantiated code (𝐸•), and the symbolic state

steps with [𝐴𝑝𝑝𝑂𝑝𝑞]. When this occurs, the same state that succeeds [𝐴𝑝𝑝𝑂𝑝𝑞]

continues to approximate an arbitrary number of states that 𝜍1 steps to, as long as

𝜍1’s control comes from instantiated code. By approximation, instantiated code can

only transfer to transparent code through returning, or applying one of the “leaked”

values approximated by those at •, which [𝐴𝑝𝑝𝑂𝑝𝑞] soundly simulates.

With the established small-step soundness of 𝜆S, we prove that running an in-
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complete program 𝐸′ approximates the result of running any of its full instantiation

𝐸. We define a helper meta-function load(𝐸) = ((𝐸, {}), {}, ∅, {}) that loads the

initial state of a program.

Theorem 3 (Blame soundness). If 𝐸1 ⊑ 𝐸′
1 and

load(𝐸1) ⟼→ (ℰ[blame𝐿𝐿′],𝑀,Φ,Σ), where 𝐿 ≠ L•, then there exists ℰ′, 𝑀 ′, Φ′,

and Σ′, such that load(𝐸′
1) ⟼→ (ℰ′[blame𝐿𝐿′ ],𝑀 ′, Φ′, Σ′).

Proof. The proof proceeds by rule-induction on the derivation of (⟼→) in the con-

crete error trace. The base case (reflexive) vacuously holds. The inductive case

(transitive) holds by lemma 13, where for each single reduction step (⟼) on the

concrete state, the abstract state continues to approximate the concrete state in zero

or more steps.

Corollary 1 follows from theorem 3, stating a practical implication for verifica-

tion: if an incomplete program is safe under the symbolic execution, no instantiation

of the program can causes a blame on any part of it.

Corollary 1 (Verified components cannot be blamed). If

load(𝐸) ⟼→/ ∶ (ℰ[blame𝐿𝐿′],𝑀,Φ,Σ) for any label 𝐿 appearing in 𝐸, then there is no

instantiation 𝐸′ ⊑ 𝐸 such that

load(𝐸′) ⟼→ (ℰ′[blame𝐿𝐿′],𝑀 ′, Φ′, Σ′).

Proof. The corollary holds as the contrapositive of Theorem 3.
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3.3.5 From symbolic execution to verification

Traditionally, symbolic execution was used for finding bugs in programs, and

not for static verification, because, as originally formulated, it does not provide

a terminating over-approximation that guarantees the absence of run-time errors.

To turn bug-finding symbolic execution into a verification process, we employ an

existing method for turning an operational abstract-machine semantics into an over-

approximation through a systematic finitizing of machine components [24]. Thus

far, we have allowed the closure to grow without bound, and have left value ad-

dresses (𝛼) allocation unspecified. A fresh allocation at each transition will yield

a concrete execution (assuming no opaque values), but a different allocation strat-

egy that repeatedly reuses addresses, and joins (conflates) values at those addresses

within the store, results in an approximation of multiple execution traces. Indeed,

any allocation policy is sound [65]. This is because all possible abstract allocators

are consistent simulations of the concrete allocator because the latter always allo-

cates a fresh address. This leaves the choice of allocation as a central “tuning knob”

for adjusting the analysis’s precision using any desired degree of poly-variance or

context sensitivity [63]. We also transform the evaluation contexts into explicit con-

tinuations, and store-allocate continuations at function boundaries and permit two

continuations to become conflated at a single continuation address; this redefines

each continuation to be a sequence of intra-procedural frames paired with a contin-

uation address for the current invocation. Although the continuation allocator may

also be adjusted arbitrarily, recent work has shown that in order to achieve precise
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call-and-return matching at no asymptotic cost to analysis complexity, the choice of

continuation address should be fixed as (𝐸, Ρ) where 𝐸 and Ρ are the call target’s

control and environment respectively [66].

The property we desire for path-sensitive contract verification is that the anal-

ysis should only approximate values at different iterations of the same loop, and

provide exact execution otherwise. We therefore instrument execution with another

component recording the set of control transfers from each source’s location to a

target’s function body. Each such set is an abstraction for a family of traces that

differ from one another only by the number of iterations through the same loops. By

pairing each syntactic component (e.g. variables) with this set in the allocated ad-

dress, we obtain an abstraction that meaningfully summarizes program components

such as values, continuations, and path conditions with probable cycles resulting

from loops. Although this allocation strategy does not guarantee a worst-case poly-

nomial time analysis, (i.e., a loop-free exponential time program would result in

exponential time analysis), it tends to give good precision and analysis time for real

programs. In addition, modularity helps mitigate the potential worst cases as the

user can always break a large program into smaller modules to verify separately.

Finally, we perform a standard global-store widening that weakens the corre-

lation between the store for values, continuations, and path conditions, and other

machine components by lifting these to the top level collecting semantics and main-

taining the store as the least-upper-bound of all stores visited across all paths. If

some of the precision lost during this transformation is needed, it may be regained

through the use of a more precise allocation strategy. Strategies, such as Shivers’
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time-stamp algorithm [67], may also be used to avoid revisiting a machine configu-

ration until the global store is updated.

3.4 Implementation and evaluation

This section discusses practical improvements in implementing contract ver-

ification, and examines our verifier’s analysis time and precision on a variety of

benchmarks.

3.4.1 Practical improvements

Richer abstract values and widening of base values. The formalism in

Section 3.3.1 uses only a single abstract value (•) that represents “any value”. In

our implementation, we enrich each such abstract value to carry a refinement set

containing predicates it is known to have satisfied. For example, •{int?,positive?} de-

notes an abstract positive integer. These refinements provide our analysis semantics

a way to short-circuit a call to the SMT solver. For our experiments, we restrict

the refinement set to predicates on base types, along with those that syntactically

appear in the program (e.g., user-defined contracts), as this provides a balance be-

tween precision and convergence. When two different values share the same address,

they are widened to an abstract value whose refinement set they both satisfy. In

addition, primitives such as addition and multiplication are extended to operate

precisely on such abstract values.
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Avoid re-running escaped values. Rule [AppOpq] in Section 3.3.1 over-approximates

all behavior triggered by the unknown part of the program, but is expensive when

implemented naïvely due to an ever-growing set of leaked values to be applied at

each opaque application. To reduce this cost, we memoize the result of applying

each leaked value by the portion of the value store that can potentially affect its

behavior, and only re-run a leaked value if the memoized portion of the store has

widened since that value was last run. This is especially effective at speeding-up

mostly-functional programs since pure functions do not depend on or modify muta-

ble state, and are thus only explored once.

Inter-procedural path-sensitivity Path-sensitivity across function bound-

aries is crucial for verifying programs with predicates that are abstracted arbitrarily.

We achieve this improvement by augmenting the semantics with a memo-table that

explicitly records information about each application’s results and the correspond-

ing path-conditions at each result. At any point in the execution, the memo-table

maintains an over-approximation of properties that must hold for each application’s

arguments and results. Each entry in the memo-table is then translated into an

uninterpreted first-order function along with formulae about arguments and results

for observed cases. These additional formulae yield more constraints that allow

eliminating more spurious paths.

Sharing invariants for provably same locations Application rule [App-

Clo] conservatively uses the callee’s saved path-condition, and returning rule [Ret]
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conservatively invalidates store-cache entries for the callee’s free-variables. In the

restricted case when the target function is known to share the same free-variables

as its caller, properties pertaining to variables shared between a call site and the in-

voked closure can be combined, strengthening instead of invalidating the saved path

condition. Our semantics maintains the invariant that a value’s symbolic name is

a 𝜆-term only when it is instantiated in the same scope as its caller (by inspec-

tion of the reduction rules, only rule [Lit] produces a 𝜆-term as a symbolic name).

Identical variable names in these cases imply identical dynamic locations (assuming

that the program has been 𝛼-renamed). We therefore achieve additional precision

in these particular cases by sharing the path-condition’s constraints and the store-

cache entries for those locations between callers and callees that are provably the

same.

(define (f x)
(let* ([y (car x)]

[z y])
(when (integer? y)
(set! x #f)
(set! y #f)
(add1 z))))

Figure 3.19: Stateful program with
let-aliasing.

Let-aliasing Finally, realistic pro-

gramming languages allow storing inter-

mediate results in variables, and some

programs may rely on reasoning through

aliases such as those introduced by

macro-expansion as shown in Figure 3.1.

In a language with let-aliasing, we sim-

ply allow the store-cache to initialize

each let-bound variable to the first value that flowed to them, effectively canoni-

calizing the symbolic names for values at let-bound variables. For example, in the
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following safe function f (Figure 3.19), looking up both y and z within the function

body would give a value with symbolic name (car x). Any test on y would give

information about z and vice versa. As previously noted in Section 3.3.1, the name

x appearing in symbolic names means the value first bound to location x and not

the location x itself. Any subsequent modification to location x only modifies the

store-cache and does not invalidate the path-condition.

3.4.2 Implementation

We extend the core semantics described in Section 3.3.1 to a practical imple-

mentation that verifies contracts in full Racket programs. By handling core forms

directly, and invoking the macro expander to desugar all others, the tool is able to

work on significant Racket programs. Compared to the formalism, the implemen-

tation provides significant extensions.

First, base values are much richer, including the full numeric tower and values

such as strings and symbols. Second, we support data-types such as pairs, mutable

boxes, mutable vectors, and user-defined structs with mutable fields. Third, we sup-

port additional contract combinators including disjunction, conjunction, recursion,

etc, and monitor contracts using indy instead of lax semantics as presented in rule

[AppArr] in Section 3.3.1 for complete contract monitoring with correct blame par-

ties [44]. Finally, we support multiple return values and arbitrary function arities,

resulting in several additional possible errors.

The implementation is available at https://github.com/philnguyen/soft-contract.
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3.4.3 Evaluation

To evaluate the tool’s effectiveness, we collect benchmarks from several lines

of previous work including soft typing for Scheme [26], occurrence type-checking [1],

higher-order model checking [16], and symbolic execution [9,18]. In addition, we ver-

ify other realistic libraries collected from different sources. We include summarized

results for small benchmarks from previous work on verification of pure programs

to show the lack of regress. Different benchmark suites each emphasize different as-

pects of verification. The occurrence-typing suite includes small programs whose

correctness heavily relies on reasoning about path-sensitivity and aliasing, which is

common in untyped programs. The hors suite includes many higher-order recursive

programs, where safety relies on inter-procedural reasoning. The benchmarks snake,

tetris, and zombie are moderately-sized programs with expressive contracts that

were collected from an introductory programming course. Finally, remaining bench-

marks are existing Racket libraries and programs collected from multiple sources,

written in the full Racket language with imperative features. In total, our bench-

marks are comprised of 86.7% stateful benchmarks (by lines of code) and 13.2%

pure functional benchmarks.

Table 3.1 show benchmark results. Line counts do not include empty and

commented lines. The number of checks is a static count of the number of safety

checks, including those in primitives and user-specified contracts, which could be

eliminated if proven correct. Although the number of checks seems unintuitively

high, it reflects the reality of safe dynamic languages. For example, each call site
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checks if it is applying a function, and each arithmetic operation checks that it

is passed numbers. We also include the number of checks resulting from user-

written contracts in parentheses on the right of columns Checks, False Pos, and True

Pos. True and false positives are determined through manual inspection. Finally,

verification time is measured in seconds.

Our results show that our tool not only can verify almost all contracts and

works for many interesting programming patterns, with reasonable analysis time

even for large programs. For example, slatex initializes mutable boxes with sen-

tinel values (e.g. #f), then updates them in a type-consistent way afterwards (e.g.

proper non-empty list). Our analysis proves all these uses safe. Another program,

nucleic2-modular, uses vectors to emulate records with fields having different

types, and passes data to many higher-order and partially applied functions, and

our analysis verifies that all the indices are in-bounds and updates and references

are type-consistent. In addition, the analysis’s modularity makes it practical, where

the programmer can break a large program into multiple modules to verify sepa-

rately. For example nucleic2 is originally a closed program taken from a standard

Scheme benchmark suite, and has literal vectors contributing to more than half of

the code. Although a good stress test, closed programs are not the focus of our

modular verification. Therefore, we abstracted out the input data and verified the

computation, demonstrating the intended use case. Finally, among the potential

errors reported, some are genuine bugs, as in slatex, such as applying an operation

expecting a pair where an empty list is possible. We also fix these errors and report

the result as slatex*.
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Program Lines Checks Time (s) False Pos True Pos
soft-typing 108 656 (37) 2.064 0 (0) 0 (0)
hors 266 2,194 (119) 4.828 2 (2) 0 (0)
occurence-typing 87 647 (51) 2.423 0 (0) 0 (0)
snake 142 1,232 (96) 2.485 0 (0) 0 (0)
tetris 259 2,390 (200) 6.578 0 (0) 0 (0)
zombie 235 1,049 (39) 3.000 0 (0) 0 (0)
fector 110 388 (20) 4.578 4 (0) 0 (0)
hash-srfi-69 290 1,920 (97) 4.125 1 (1) 0 (0)
leftist-tree 102 916 (25) 0.656 8 (0) 0 (0)
leftist-tree* 110 918 (25) 0.562 0 (0) 0 (0)
morsecode 185 1,013 (12) 4.968 0 (0) 0 (0)
nucleic2-modular 884 6,621 (11) 88.453 1 (0) 0 (0)
nucleic2-modular* 889 6,644 (11) 84.062 0 (0) 0 (0)
ring-buffer 51 353 (19) 0.563 8 (0) 0 (0)
ring-buffer* 58 354 (19) 0.438 0 (0) 0 (0)
slatex 2,300 11,633 (2) 1,213.650 2 (0) 6 (0)
slatex* 2,305 11,693 (2) 1,217.850 2 (0) 0 (0)
TOTAL 8.381 49,861 (785) 2,641.283 28 (3) 6 (0)

Table 3.1: Benchmark Results

Imperative benchmarks include some realistic programs we cannot fully verify.

Further inspection reveals that false positives come from a few specific programming

patterns.

First, the tool cannot yet reason about invariants established by a module

that controls the instantiation of certain structures and maintains strong invariants

about all instances (for example, that a “node” is always part of a non-empty proper

tree). This is seen in the ring-buffer and leftist-tree programs. Because our

semantics is conservative in assuming that opaque values can come from anywhere,

we cannot precisely reason about this pattern. A simple and efficient solution per-

mitting reasoning about this idiom is an important goal for future work. Modified

versions (ring-buffer* and leftist-tree*) with deep structural contracts enable
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the analysis to succeed in verifying the programs.

(define (reroot! fv)
(match (unbox fv)
[(list i x fv*)
(reroot! fv*)
(let ((v (unbox fv*)))
(let ((x* (vector-ref v i)))

(vector-set! v i x)
(set-box! fv v)
(set-box! fv* (list i x* fv))))]

[_ (void)]))
(reroot! fv)
; use of `vector-length` not verified
(vector-length (unbox fv))

Figure 3.20: reroot! example from fector

Second, our analysis

does not yet precisely verify

invariants established by ef-

fectful functions, as seen in

the fector benchmark. In

this module, several functions

rely on an operation reroot!,

presented in Figure 3.20 to

guarantee that the content of

the mutable box is a vector.

Because most data-structures in verification arise from unknown sources, and these

data structures, after passing through recursive contracts, are cyclic (to approx-

imate all possible values inhabiting the contracts), addresses typically stand for

multiple concrete addresses, preventing symbolic execution from performing strong

updates to such addresses. More precise abstraction and reasoning for mutable re-

cursive data-structures is a second goal for future work. Techniques such as abstract

garbage collection and counting [68] can help tracking precisely the cardinality of

abstract addresses, thus justifying strong updates.
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3.5 Related work

Our work builds on existing approaches to static contract verification via sym-

bolic execution. We relate our current contributions to these efforts and then more

broadly to work on verification in higher-order settings.

3.5.1 Symbolic execution

Symbolic execution simulates a program’s evaluation on symbolic values which

are unknown and may stand in for a number of possible concrete values. Path

conditions—formulas unique to a particular sequence of branches—constrain these

symbolic variables and denote infeasible runs where contradictory. In first-order

settings, symbolic execution has a mature and well-investigated methodology [10,47];

in higher-order settings however, it remains an active area of ongoing research. In a

higher-order setting, where a concrete value may be a first-class function, a variety

of sound choices exist for modeling the application of an opaque (symbolic) function

which do not exist in first-order languages [9].

There is also a general difference in motivation; while most applications of

symbolic execution involve bug finding and code auditing, our focus is on its use for

modular program verification and static contract checking.

3.5.2 Static contract verification

We have built on prior work [9,18] that develops static contract verification as

a (higher-order) symbolic execution of untyped functional programs (in this case,
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Racket). Previous work following this approach only handles pure functions, and

while robust for untyped functional programs, it falls down in the presence of even

well-encapsulated mutable state and other non-functional idioms. Further, the im-

plementation presented in that work handled only a small subset of Racket.

Another approach [20, 21] embeds dynamic monitors into the target program

and simplifies them away using compiler techniques and a specialized symbolic en-

gine. This approach of symbolic simplification may be applicable to untyped pro-

grams; however, a crucial pass used in this approach, dubbed logicization, requires

type annotations in order to translate program expressions into a first-order logic

(FOL). A similar method for Haskell [22] leverages a denotational semantics that

can be mapped onto first-order logic; this is both dependent on type information

and on the pure call-by-name semantics of Haskell.

Contract verification in the setting of first-order contracts is also more re-

stricted, and its investigation more mature. A prominent example is the work on

verifying C# contracts done in the Code Contracts project [69] and the Spec# sys-

tem [70, 71], with which, contract counter examples can be generated and explored

using a debugger.

Our approach allows higher-order dependent contracts and mutable state, does

not assume types to guide the verification process, supports blame, and verifies run-

time type safety in addition to richer contracts as part of the same process. In

addition, the aforementioned type-based approaches assume explicit monitoring of

recursive calls which allow the use of contracts as inductive hypotheses in such calls.

Our approach permits this as well, but remains flexible enough to accommodate
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Racket’s semantics which does not monitor recursive call sites.

3.5.3 Refinement type checking

Refinement type systems permit the inclusion of logical propositions within

type annotations and represent another approach to statically stating and proving

richer properties of programs—as such, there is meaningful overlap with contract

verification. Refinement type systems either restrict the expressivity of type refine-

ments so that checking is decidable [4], or they permit arbitrary refinements, as do

contracts in Racket, and use a general-purpose solver in the attempt to discharge

refinements [5, 23, 72]. When a refinement cannot be discharged, a system may re-

ject the program as a whole [5,72], or, as in the case of hybrid type checking [23], it

may residualize a run-time check to dynamically enforce each unverified refinement.

Manifest contracts [43, 73] equip static types with contracts as refinements, verify-

ing contracts either statically via sub-typing, or using a dynamic cast. Manifest

contracts have also been extended to algebraic data and mutable state [74, 75], in-

cluding stateful contracts. Residualized run-time checks correspond to our approach

of soft contract verification which degrades gracefully, removing only those contracts

which are verified. Unlike our approach, manifest contracts and hybrid type check-

ing require type annotations and only permit predicates on base types; while our

approach extends to dependent contracts, no mechanism currently exists for mix-

ing flat and higher-order specifications in refinement types. Furthermore, contract

evaluation may become stuck, diverge, or have side effects, while refinements are
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more restricted. Special care must be taken where refinements themselves contain

a potentially failing cast [23, 43]. Dependent JavaScript [76, 77] supports expres-

sive refinements for stateful JavaScript programs, including sophisticated dependent

specifications. Unfortunately, this approach relies on extensive type annotations and

whole-program analysis.

3.5.4 Higher-order model checking

Higher-order model checking is also applicable to verification problems in this

setting. This approach proceeds by compiling a target program into a higher-order

recursion scheme (HORS)—these are essentially programs in the simply-typed 𝜆-

calculus, with finitely inhabited types, that generate unbounded trees represent-

ing all possible program evaluation paths. While HORS generalizes finite-state

and pushdown systems, its model checking problem remains decidable while in

this ideal setting of simply-type 𝜆-calculus and finite base types [78–80]; how-

ever, there remains a significant gulf between this and real-world language features.

Other work has broadened the applicability of this approach to cases [81], to un-

typed languages [82,83], and to infinite data domains such as integers and algebraic

data-types [16,84]. The complexity of higher-order model checking is 𝑛-EXPTIME-

hard [85] but practical progress has lead to engines which can handle checking some

“small but tricky ... functional programs in under a second” [86].

While our approach tackles untyped, higher-order, stateful programs with so-

phisticated real-world language features, higher-order model checking is restricted
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to small, pure code snippets using a more restricted set of features. In addition,

our approach allows programmers to add dynamically enforced program invariants

via contracts and dispatch them gradually while the HORS approach only supports

assertions on first-order data which must all be verified. Our approach also permits

verification in the presence of unknown library functions (not only base values), a

crucial allowance for modular program verification. Our evaluation demonstrates

that our tool can verify many of the “small but tricky” examples checked in the

HORS literature.

3.5.5 Broadly related static analysis

Separation logic [87–89] provides a framework for reasoning compositionally

about the abstract effect of computations—we do not. More broadly, summarization-

based and bottom-up approaches aim to produce modular and compositional anal-

yses of program components. Our work takes a more operational view and does not

summarize the effects of known functions (instead it simulates them under an ap-

proximation). It does aim, however, to summarize the effects of arbitrary unknown

functions. This is done by operationally tracking which heap locations an unknown

function has access to. This process does bear some resemblance to a frame rule or

localization technique: if an unknown function does not have access to a location,

it cannot have an effect on it. As our evaluation shows, this is sufficient to verify

the preponderance of contracts in our benchmark suite.

As the target language is functional, benchmarks use mutable data sparingly
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and usually in a well-encapsulated manner. In addition, contracts in Racket usually

enforce properties of a component’s input and output data, not about its side effects.

For these reasons as well, we were able to obtain good results without separation

logic. We are not automatically verifying full functional correctness properties of

programs that make heavy use of pointer manipulation. While it is possible to

express, for example, a linked-list reversal algorithm that does pointer swapping,

our approach is unlikely to do a good job proving it correct. Rather, we target

type- and dependent-type-like properties expressed as contracts on higher-order,

imperative programs.

The trace semantics described in [90] is also related to our system. Both use

non-determinism and opaque values to model the behavior of components in a con-

text that includes mutation. This work uses denotational semantics and addresses

fundamentally distinct concerns. This system yields a sound and complete represen-

tation of a program’s operational behavior, whereas our system yields a computable

approximation aimed at static analysis applications.

Other notions of abstraction for addresses can also be used with our approach;

for example, a recency abstraction [91] tracks abstraction cardinality (singleness)

[92] in addition to a distinguished non-approximate heap location. If a heap location

is known to be single, our approach may be able to yield improved results where a

strong-update is enabled ahead of a contract.
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3.6 Conclusion

Contracts allow programmers to enforce sophisticated invariants within their

code using the power and expressiveness of the host language. However, this flexi-

bility comes at a cost to run-time efficiency and without any compile-time assurance

of correctness. Soft contract verification offers a remedy—by attempting to verify

contracts statically; where a contract can be verified, its code may be removed, per-

mitting optimization of the underlying program, and the program property it had

enforced at run-time will have been proven for all possible executions. We demon-

strate that symbolic execution may be extended to support higher-order languages

with mutable state in modular fashion, permitting arbitrary interaction with un-

known external components. This extension to opaque (unknown and potentially

stateful) functions requires us to make subtle but crucial choices; for example, ac-

counting for the possibility of a known function escaping permanently to an opaque

context. Our approach scales to the full Racket programming language and our

evaluation shows that our tool can verify more than 99.9% of dynamic checks across

a suite of realistic (14% pure and 86% stateful) benchmarks.
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Chapter 4: Termination as a Run-time Contract

Termination is an important but undecidable program property, which has led

to a large body of work on static methods for conservatively predicting or enforcing

termination. One such method is the size-change termination approach of Lee,

Jones, and Ben-Amram, which operates in two phases: (1) abstract programs into

“size-change graphs,” and (2) check these graphs for the size-change property: the

existence of paths that lead to infinite decreasing sequences.

We transpose these two phases with an operational semantics that accounts

for the run-time enforcement of the size-change property, postponing (or entirely

avoiding) program abstraction. This choice has two key consequences: (1) size-

change termination can be checked at run-time and (2) termination can be rephrased

as a safety property analyzed using existing methods for systematic abstraction.

We formulate run-time size-change checks as contracts in the style of Findler

and Felleisen [38]. The result compliments existing contracts that enforce partial

correctness specifications to obtain contracts for total correctness. Our approach

combines the robustness of the size-change principle for termination with the pre-

cise information available at run-time. It has tunable overhead and can check for

non-termination without the conservativeness necessary in static checking. To ob-
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tain a sound and computable termination analysis, we apply existing abstract in-

terpretation techniques directly to the operational semantics, avoiding the need for

custom abstractions for termination. The resulting analyzer is competitive with

with existing, purpose-built analyzers.

4.1 Size-change Contracts

A Fool’s Errand Imagine for a moment there existed a run-time mechanism

for checking whether a program, in its current state, will run forever or eventually

terminate. Such a check would be eminently useful. Any run-time mechanism for

enforcing partial correctness could easily be made to enforce total correctness by

use of this check. Moreover, static verification of termination would boil down to

proving these run-time checks always succeed, much like how type systems prove

run-time tag checks always succeed.

Of course, whether a program eventually terminates is one of the most use-

ful, yet fundamentally and famously unknowable, properties of programs [93, 94].

Moreover, due to its nature as a liveness property—it cannot be violated in a finite

execution—it cannot be directly checked at run-time.

An Indirect Tack Despite this situation, an indirect partial solution is pos-

sible by instead considering a safety property that implies the liveness property.

This indirect approach underlies successful static termination analysis tools such

as Terminator [95]. Given such a safety property, enforcing it at run-time would

ensure a non-terminating program would eventually “go wrong” by violating the
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safety property, at which point it could be stopped. The one, unavoidable, wrinkle

is that there will be some programs that run astray of the safety property, despite

eventually terminating. In this approach, static verification of termination could,

as suggested before, be phrased and designed just as any other safety verification

problem by proving the impossibility of a run-time check failure. This approach has

the added advantage that any program can be dynamically monitored regardless of

whether it can be statically verified.

A Universal Safety Property for Termination To design a run-time ter-

mination checker, the critical question is: what is a good safety property to enforce

that implies termination? Tools such as Terminator, AProVE, and many others

discover a program-specific termination argument, either through static analysis or

CEGAR-style refinement. While such approaches have proved quite successful in

learning complex termination arguments, these approaches undermine the ability to

dynamically monitor termination.

To remedy the situation, we propose using a universal property. A promising

candidate is the so-called size-change principle of [27]. The principle has proved

useful in static termination checking and has a well understood theory. Unfortu-

nately, the original work on size-change termination, which was developed for static

verification, defines the size-change principle as a property of a program abstraction:

a set of so-called size-change graphs (roughly a program call graph annotated with

information about non-ascending data flows between function parameters).
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This Paper We propose a run-time check inspired by the size-change principle for

program termination that dynamically builds and checks precise size-change graphs.

This dynamic mechanism is useful in its own right, but also can be used as a basis for

designing static termination checkers. Such static checkers can benefit from advances

in static analysis, particularly in abstract interpretation, since termination checks

are integrated into the language specification and do not require custom abstractions

or algorithms.

We formalize a semantics for a higher-order functional language that enforces

the size-change principle, thereby ensuring all programs terminate (§4.2.5). More-

over, we introduce a behavioral software contract, in the style of Findler and

Felleisen [38], that enables the selective enforcement of size-change termination.

Such contracts, when combined with traditional pre- and post-condition contracts,

form a notion of contracts for total-correctness.

We also develop a static termination checker (§4.3) by applying the static

contract verification technique of chapter 3 to the size-change semantics. The re-

sulting tool has no termination analysis specific abstractions, it simply treats the

size-change principle check as it would any run-time check, and yet an empirical eval-

uation (§4.4) shows that it is competitive with several state-of-the-art purpose-built

termination analyzers: Liquid Haskell, Isabelle, and ACL2.

Contributions This section contributes:

1. a semantic account of the size-change principle,

2. a proved-correct contract for size-change-based termination of functions,
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3. an implementation technique that preserves proper tail-calls and enables tun-

able run-time overhead, and

4. a static termination checker obtained by generic abstract interpretation tech-

niques.

4.2 Examples and Intuitions

This section develops intuitions for how dynamic checking of size-change ter-

mination (SCT) works via worked examples. We begin by sketching how SCT works

in the original static setting of [27].

4.2.1 The Factorial of Termination Papers

Consider the Ackermann function, the standard-bearer of examples for papers

on termination due its simplicity as a total—but not primitive recursive—function,

presented in figure 4.1 in Scheme notation:

1 (define (ack m n)
2 (cond [(= 0 m) (+ 1 n)]
3 [(= 0 n) (ack (- m 1) 1)]
4 [else (ack (- m 1)
5 (ack m (- n 1)))]))

Figure 4.1: Ackermann implementation

For the moment,

assume the function is

only applied to natu-

ral numbers. Under

that assumption, ack

always terminates and

the SCT method suf-

fices to prove it.
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Safe size-change graphs: The approach starts by using program analysis or

abstract interpretation to enumerate the ways in which a call to ack could result

in a subsequent call to ack before returning. We can see there are three potential

recursive calls within the function definition on lines 3, 4, and 5. For each of these

calls, describe the pairwise relations between the arguments of the call and recursive

call in terms of their size. (The original SCT approach assumes the language has

only well-founded data types with a known partial order.)

So for example, consider the possible call:

(ack m n) ; (ack (- m 1) 1).

There are two parameters, so we consider four possible size-change relations between

the inputs and recursive call. It is clear that the m parameter is strictly smaller

in the recursive call compared to the input of the original call. This change is

described with a “size-change graph,” {(m →

m)}, which is a binary relation saying

that whatever value is given for m in the original call will become a strictly smaller

argument m in the recursive call. But there is no size-change relation between the

original input n and recursive parameter m or n, nor between the original m and

recursive n, which we know is 1: each could become larger, smaller, or stay the

same.

Moving on to the call in line 5:

(ack m n) ; (ack m (- n 1)),
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we can see that m is unchanged and n is strictly smaller between calls (but there’s no

relation between m and n), so we describe this call with the graph: {(m →= m), (n →
n)},

which says m is non-ascending and n is descending.

Finally, consider the call in line 4:

(ack m n) ; (ack (- m 1) … ),

where the elided code is the nested call to ack of line 5. Here it is clear that m

strictly descends, but unclear what happens with n. So we can describe this call

with the size-change graph as used for the call in line 3.

At this point, we now have a sound collection of size-change graphs for all

possible successive calls to ack. They are sound since they properly account for all

possible strict descent or non-ascending transitions that occur in recursive calls at

run-time. As a side note: it is always safe to omit graph arcs (potentially losing

sufficient evidence to prove termination), but all arcs included in a graph must

soundly over-approximate all possible run-time behaviors.

Size-change principle: The next task is to check this set of graphs for the size-

change termination principle (SCP) to see if every infinite computation would give

rise to an infinitely decreasing value sequence, according to the size-change graphs.

To do this, we consider closing the set of graphs under sequential composition of

size-change graphs. The sequential composition of two graphs models two successive

calls to construct the size-change from the first to last call, and is defined, informally,
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as follows: there is a strict descending arc between two parameters, if there exists a

path between the parameters containing a strict descent; there is a is a non-ascending

arc if there exists a path containing only non-ascent arcs. Otherwise, there is no

path.

Coincidentally, the set of graphs for ack is already closed under sequential

composition, but to see an example, here’s the sequential composition of calling ack

on line 3 (or 4) followed by ack on line 5:

{(m →

m)}; {(m →= m), (n →

n)} = {(m →

m)},

which is equivalent, in terms of size-change, as calling ack on line 3 (or 4).

Once closed, we check each size-change graph to see if it

1. is idempotent, i.e. 𝑔; 𝑔 = 𝑔, and

2. lacks a self descending arc, i.e. (𝑥 → 𝑥) for some parameter 𝑥.

If such a graph exists, it represents a potential sequence of calls that can be iterated

infinitely often with no descent and thus it violates the size-change principle. If it

lacks such a graph, the program terminates. In the case of ack both graphs have

self-descending arcs and therefore terminates.

Dynamic size-change graphs: Having established the basic notions of the

static SCT approach, we now turn to a dynamic approach to monitoring size-change

termination.

The main idea is that rather than rely upon a program analysis to enumerate
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the various ways a function may call itself, we simply run the program and observe

such calls. Each time a function invokes itself, a size-change graph is dynamically

generated. Throughout a computation, the call sequence of size-change graphs is

accumulated. Before entering a function call, the current call sequence is checked

for the size-change principle. If it is violated, the program is stopped and an error

signaled; otherwise the call proceeds.

A program violating the size-change principle eventually accumulates a call

sequence witnessing the violation; a program maintaining the principle eventually

terminates.

In a similar vein, we need not rely on static analysis to infer the size-change

relation between arguments. At run-time, there are concrete values available at

both the call and recursive call site. Inferring the size-change graph boils down to

checking a partial order pairwise on the arguments. This is both easy to do and

potentially much more precise than the static approach. For example, there may be

size-change relations that hold on the particular path of execution under scrutiny,

which do not hold in general.

To make things concrete, reconsider ack. When switching perspectives to the

dynamic setting, we are no longer concerned with proving termination for all possible

executions of the function, but rather with a particular application. Consider (ack

2 0). The complete tree of call sequences and generated size-change graphs is shown

in Figure 4.2, but let us step through its construction. In calling (ack 2 0), control
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(ack 2 0)

{(m

→

m),(m

→

n)}

(ack 1 1)

{(m

→=m),(m

→

n),(n

→=m),(n

→

n)}

(ack 1 0)

{(m

→

m),(m

→=n),(n

→=m)}

(ack 0 1)

{(m

→

m),(n

→

m)}

(ack 0 2)

Figure 4.2: Calls and size changes for (ack 2 0)

reaches the recursive call on line 3, so we have the call sequence:

(ack 2 0) ; (ack 1 1),

from which we can read off the size-change graph. Just as in the static case, we

have (m →
m), but additionally, we know that (m →

n). This fact does not hold in all

runs of ack, but it holds in this one.

Aside: it is worth noting that this additional program fact is not necessary in

this particular example. After all, we have statically proven ack terminates in all

cases using less information. But for the purposes of illustration, we can see that

more information is available at run-time; and in principle, it is possible to safely

execute size-change terminating programs that are not statically verifiable, just as

by analogy it is possible to dynamically monitor type safety of programs that do

not trigger run-time type errors, yet are statically ill-typed.

Returning to the example: having generated the graph for this call, we then

112



check the SCT principle for the active sequence of calls; in this case there is just the

one graph: {(m →

m), (m →

n)}, which satisfies the size-change property, so execution

proceeds.

Now (ack 1 1) reaches the else branch and invokes a recursive call to (ack

1 0) on line 5. This call generates the graph {(m →= m), (m →
n), (n →= m), (n →= n)}.

We now check the size-change graphs of the sequence leading to this point, i.e., the

size-change graphs of:

(ack 2 0) ; (ack 1 1) ; (ack 1 0),

and determine if the size-change property holds, which it does. Now (ack 1 0)

reaches (ack 0 1) with graph {(m →

n), (n →

m), (m →= m), (n →= n)}, and the call

sequence still satisfies SCP. At this point (ack 0 1) terminates with 2. This brings

control back to the evaluation of (ack 1 1), which is now ready to proceed to

second call to ack on line 4 with the arguments (ack 0 1). At this point, we have

the call sequence:

(ack 2 0) ; (ack 1 1) ; (ack 0 2).

Note the calls to (ack 1 0) and (ack 0 1) are no longer active since they have

returned. Again we check the SCP of the size-change graph sequence for active calls,

which holds and the program terminates.
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A sometimes-buggy Ackermann: We have seen how run-time SCT monitoring

works for programs that maintain the size-change principle, but what about buggy

programs that do not? Consider the ack example, but change the call on line 4

from (ack (- m 1) … ) to (ack m … ). Computing (ack 2 0) would proceed as

before until reaching the call on line 5, corresponding to the right branch of the tree

in Figure 4.2, i.e. representing the call sequence:

(ack 2 0) ; (ack 1 1) ; (ack 1 2),

whose last size-change graph is now {(m →= m), (n →= m)}. But this graph is idempotent

and contains no self-descents, so at the point of this call a size-change violation is

signaled.

4.2.2 Keeping Closures in Order

The original formulation of SCT was for a first-order functional language with

a well-founded partial order on values. This was done largely to simplify the first

phase of static SCT verification where call-graphs and size-change relations are

generated. In higher-order languages, however, computing call-graphs is itself a

significant, extensively studied problem [96]. In the dynamic formulation, higher-

order functions do not pose a serious challenge since calls are observed as they

occur.

The one remaining issue concerns the choice of partial order for functions. We

make a simple choice and consider all closures to be incomparable. Consequently, no
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termination proof goes through by an argument about closure size. This is not to say

that all programs that use higher-order functions will be rejected by the size-change

monitor, just that they must have some descent on base values between calls to the

same function. Our empirical evaluation (§4.4) confirms this is a reasonable choice.

To illustrate, let us consider a program that recursively accumulates a closure and

eventually applies it in the base case of the function.

Consider a len function for lists, written in CPS as in figure 4.3. Static

analysis of size-change termination relies on an underlying control-flow graph, which

must eventually conflate all closures generated on line 5, regardless of call-sensitivity.

This results in a spurious loop where each closure bound to k may appear to call

one with a larger argument, failing the size-change principle.

1 (define (len l) (loop l (𝜆 (x) x)))
2 (define (loop l k)
3 (cond [(empty? l) (k 0)]
4 [(cons? l)
5 (loop (rest l) (𝜆 (n) (k (+ 1 n))))]))

Figure 4.3: List length in CPS

Dynamic check-

ing of size-change ter-

mination does not have

this problem, because

all the closures are ex-

act and distinct. Even

though the number of

closures is arbitrary, they are finite up to the previous loop descending on l, which

has been proven to terminate. The call sequence for (len '(2 1)), which is a
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sequence of tail-calls:

(len '(2 1)) ; (loop '(2 1) (𝜆 (x) x)) ;

(loop '(1) 𝑘1) ; (loop '() 𝑘2) ;

(𝑘2 0) ; (𝑘1 1) ; ((𝜆 (x) x) 2) ; 2

The recursive calls of loop to itself are easily proven safe through descent on the list.

The successive calls to continuations are arbitrarily many but finite. Here 𝑘1 and 𝑘2

stand for different closures of the (𝜆 (n) (k (+ 1 n))) term. The computation

proceeds to an answer since SCP is only checked between calls to the same closure,

directly or indirectly.

It is possible to define a partial order on closures, and this may be a worthwhile

addition to our approach. For example, [97] extend SCT to the untyped 𝜆-calculus

and use a partial order based on closure depth to order functions. In theory, this

could be used to dynamically order closures in our approach, too, however prag-

matically, it requires run-time facilities for “opening” closures [98], which are not

typically available.

4.2.3 Termination and Blame

It is useful to assert size-change termination of particular functions, without

necessarily asserting termination of the whole program. For this reason, we intro-

duce a contract, terminating/c, in the style of [38]. One key component of contract

semantics is blame to explain the party at fault in contract errors. While our for-

mal model does not represent blame, our implementation does. The addition of
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blame is at once simple and powerful in the setting of termination contracts. Each

terminating/c use marks a blame party, and if the function so wrapped fails to

terminate on some call, that location in the program is blamed. No sophisticated

run-time machinery is required.

The addition of blame enables a virtuous cycle in program development. If a

terminating function f calls g, then any failure to terminate on the part of g will be

blamed on f. To protect themselves from being blamed, the author of f can in turn

impose the same contract on g, leading to richer specifications and precise errors

pinpointing the faulty component. Finally, the provision of size-change termination

contracts enables a gradual-typing-style integration of total and partial program

components.

4.2.4 The Power of Dynamic Enforcement

Checking termination of a interpreter for a language that is Turing-complete is

challenging—after all, the interpreter does not terminate on all programs. Neverthe-

less, dynamic size-change monitoring allows the interpretation of many interesting

programs to finish. In Figure 4.4, we present a 𝜆-calculus implementation that first

compiles the term to a procedure and then applies this procedure to an environ-

ment. The compilation itself terminates by structural recursion, which is simple to

check, but the compilation result is a procedure whose termination is not obvious.

In fact, in this example, the first test program c1 terminates when run, but c2 loops

infinitely. Dynamic size-change monitoring flexibly allows the first one to finish,

and quickly catches the divergence in the second one. The ability to check for ter-
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mination of specialized programs highlights the advantages of dynamic termination

checking.

1 (define comp
2 (terminating/c
3 (𝜆 (e)
4 (match e
5 [`(𝜆 (,x) ,e)
6 (let ([c (comp e)])
7 (𝜆 (𝜌) (𝜆 (z) (c (hash-set 𝜌 x z)))))]
8 [`(,e1 ,e2)
9 (let ([c1 (comp e1)] [c2 (comp e2)])

10 (𝜆 (𝜌) ((c1 𝜌) (c2 𝜌))))]
11 [(? symbol? x) (𝜆 (𝜌) (hash-ref 𝜌 x))]))))
12 (define c1
13 (terminating/c ; Okay
14 (comp '((𝜆 (x) (x x)) (𝜆 (y) y)))))
15 (define c2
16 (terminating/c ; Okay
17 (comp '((𝜆 (x) (x x)) (𝜆 (y) (y y))))))
18 (c1 (hash)) ; Okay
19 (c2 (hash)) ; Error

Figure 4.4: A checked 𝜆-calculus implementation

Execution of

(c1 (hash)) ter-

minates because no

function ever calls

itself with a non-

decreasing argument.

In contrast, during

the execution of

(c2 (hash)), the

compilation result

of (𝜆 (y) (y y))

calls itself (indi-

rectly) with a non-

decreasing argument (in this case, identical), hence caught by the monitoring. As

shown in the evaluation section (§4.4), our implementation is able to confirm the

termination of a Scheme interpreter executing merge-sort.

4.2.5 Dynamic SCT Monitoring

This section introduces language 𝜆SCT, which is 𝜆-calculus, extended with

base values and primitive operations, and with a modified semantics ensuring that

all programs terminate. Figure 4.5 shows 𝜆SCT’s syntax and semantics.
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4.2.6 A Terminating Semantics

The domain of values (𝑉 ) in 𝜆SCT includes primitives (O), integers (𝑁), pairs

(𝑉1, 𝑉2), and closures (Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ)). No primitive in 𝜆SCT is allowed to cause

divergence.

We present the semantics of 𝜆SCT in Figure 4.5. The semantics is defined by

relation Ρ,𝑀 ∪ {⊥} ⊢ 𝐸 ⬇ Α, which extends the standard semantics by accumu-

lating a size-change table 𝑀 . The size-change table maps each function (𝑉 ) to the

most recent arguments it was applied to, in the current dynamic extent, as well

as a sequence of size-change graphs ( ⃗⃗⃗ ⃗⃗ ⃗𝐺) recording ways in which arguments of (𝑉 )

descend. A size-change graph (𝐺) is a set of arcs of the form (𝑖 → 𝑗) or (𝑖 →= 𝑗),

indicating that the 𝑖-th argument always strictly descends (

→

) or never ascends (

→=)

to the 𝑗-th argument.

An evaluation answer (Α) can be a value, run-time error (errorRT), or size-

change error (errorSC). A run-time error is one resulting from misuse of language

constructs as standard in a programming language (e.g. applying a primitive to

arguments not in its intended domain, applying a non-function, or a function of the

wrong arity, etc.). A size-change error is one raised by size-change monitoring upon

detecting a size-change violation. We omit rules that introduce run-time errors and

error propagation, as they are entirely standard and not the focus of this chapter.

Rule [SC-App-Clo] shows application of a closure. In 𝜆SCT, all applications

are enforced to have the size-change property. Before executing the function’s body

as in the standard semantics, we update the size-change table and guard against a
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[Expressions] 𝐸 ∶∶= O | 𝑁 | (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) | 𝑋 | (𝐸 ⃗⃗⃗⃗⃗ ⃗𝐸) | (if0 𝐸 𝐸 𝐸)
[Value Literals] 𝑁 ∶∶= 0 | − 1 | 1 | …

[Primitives] O ∶∶= + | cons | car | cdr | …
[Values] 𝑉 ∶∶= O | 𝑁 | (𝑉 , 𝑉 ) | Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ)

[Standard Answers] 𝐴 ∶∶= 𝑉 | errorRT
[Answers] Α ∶∶= 𝐴 | errorSC

[Environments] Ρ = 𝑋 → 𝑉
[Size-change Table] 𝑀 ∈ 𝑉 ⇀ ⃗⃗⃗⃗⃗ ⃗𝑉 × ⃗⃗⃗ ⃗⃗ ⃗𝐺
[Size-change Graph] 𝐺 ∈ 𝒫(ℕ × 𝑅 × ℕ)

[Change] 𝑅 ∶∶= → | →=

SC-Err

Ρ,⊥ ⊢ 𝐸 ⬇ errorSC

SC-Prim

Ρ,𝑀 ⊢ O ⬇ O

SC-Base

Ρ,𝑀 ⊢ 𝑁 ⬇ 𝑁

SC-Lam

Ρ,𝑀 ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

SC-Var

Ρ,𝑀 ⊢ 𝑋 ⬇ Ρ(𝑋)

SC-If-T
Ρ,𝑀 ⊢ 𝐸 ⬇ 0 Ρ,𝑀 ⊢ 𝐸1 ⬇ Α

Ρ,𝑀 ⊢ (if0 𝐸 𝐸1𝐸2) ⬇ Α

SC-If-F
Ρ,𝑀 ⊢ 𝐸 ⬇ 𝑉 where 𝑉 �0 Ρ,𝑀 ⊢ 𝐸2 ⬇ Α

Ρ,𝑀 ⊢ (if0 𝐸 𝐸1𝐸2) ⬇ Α

SC-App-Clo
Ρ,𝑀 ⊢ 𝐸 ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′) Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥
Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], upd(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ Α

Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⬇ Α

Figure 4.5: Syntax and semantics of 𝜆SCT.
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violation to the size-change property. Helper function upd updates the size-change

table with the function’s latest arguments and size-change graph, potentially re-

turning ⊥ if there is a size-change violation. If upd does not return a table, the

evaluation aborts with an error as in rule [SC-Err].

4.2.7 Updating and Monitoring Size-change Graphs

Figure 4.6 lists helper functions that update and monitor SCT.

Function upd takes the size-change table (𝑀), function (𝑉 ), and its latest

arguments ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛). It computes a new size-change graph (𝐺𝑛) for the transitions from

the previous arguments ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛−1) to these new arguments, ensures that the new graph

sequence (𝐺𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐺𝑛−1) does not violate the size-change property, and then updates

the graph in 𝑚. If function 𝑉 has not been applied before and there is no entry in

𝑚, a trivial entry with the current argument list as well as the empty graph sequence

is stored.

Function graph computes a size-change graph from two value lists. For each

value 𝑉𝑗 at index 𝑗 in the latter list that is observed to be strictly smaller than some

value 𝑉𝑖 at index 𝑖 in the former list, an arc (𝑖 → 𝑗) is included in the graph. When

the values are equal, we include (𝑖 →= 𝑗) instead.

The composition (;) of two size-change graphs (𝐺0 and 𝐺1) includes an arc

(𝑖 → 𝑘) if there is an arc (𝑖 𝑅 𝑗) in 𝐺0 and (𝑗 𝑅 𝑘) in 𝐺1, with at least one arc being

a strict descent. If 𝑖 propagates to 𝑘 only through non-ascendancy, the weaker arc

(𝑖 →= 𝑘) is included.

Finally, predicate prog? checks for the lack of violation to the size-change
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upd ∶ 𝑀 × 𝑉 × ⃗⃗⃗⃗⃗ ⃗𝑉 → 𝑀 ∪ {⊥}
upd(𝑀,𝑉 , ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛) =𝑀[𝑉 ↦ ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛, [])], if 𝑉 ∉ 𝑀

upd(𝑀,𝑉 , ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛) =
⎧{
⎨{⎩

𝑀[𝑉 ↦ ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛, 𝐺𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗𝐺𝑛−1)]
if prog?(𝐺𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗𝐺𝑛−1)

⊥ otherwise
where ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛−1, ⃗⃗⃗ ⃗⃗ ⃗𝐺𝑛−1) ≡ 𝑀(𝑉 )
and 𝐺𝑛 = graph( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛−1, ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛)

graph ∶ ⃗⃗⃗ ⃗⃗ ⃗𝑉 × ⃗⃗⃗ ⃗⃗ ⃗𝑉 → 𝐺
graph( ⃗⃗⃗ ⃗⃗ ⃗𝑉 , ⃗⃗⃗ ⃗⃗ ⃗𝑉 ′) = {(𝑖 → 𝑗) | 𝑉𝑖 ∈ ⃗⃗⃗ ⃗⃗ ⃗𝑉 , 𝑉𝑗 ∈ ⃗⃗⃗ ⃗⃗ ⃗𝑉 ′, 𝑉𝑗 ≺𝑉𝑖}

∪ {(𝑖 →= 𝑗) | 𝑉𝑖 ∈ ⃗⃗⃗ ⃗⃗ ⃗𝑉 , 𝑉𝑗 ∈ ⃗⃗⃗ ⃗⃗ ⃗𝑉 ′, 𝑉𝑗 =𝑉𝑖}

(; ) ∶ 𝐺 × 𝐺 → 𝐺
𝐺0 ; 𝐺1 = {(𝑖 → 𝑘) | (𝑖 → 𝑗)∈𝐺0, (𝑗 𝑅 𝑘)∈𝐺1}

∪ {(𝑖 → 𝑘) | (𝑖 𝑅 𝑗)∈𝐺0, (𝑗

→ 𝑘)∈𝐺1)}
∪ {(𝑖 →=𝑘) | (𝑖 →= 𝑗)∈𝐺0, (𝑗

→=𝑘)∈𝐺1,
∄𝑗.(𝑖 → 𝑗)∈𝐺0 ∧ (𝑗 𝑅 𝑘)∈𝐺1,
∄𝑗.(𝑖 𝑅 𝑗)∈𝐺0 ∧ (𝑗 → 𝑘)∈𝐺1}

prog? ∶ ⃗⃗⃗ ⃗⃗ ⃗𝐺 → 𝔹
prog?(𝐺𝑛…𝐺1) = ⋀1≤𝑖≤𝑗≤𝑛 desc?(𝑔𝑖;… ; 𝑔𝑗)

desc? ∶ 𝐺 → 𝔹
desc?(𝐺) = (𝐺 = 𝐺;𝐺) ⟹ ∃𝑖.(𝑖 → 𝑖)∈𝐺

Figure 4.6: Updating and monitoring size-change

termination principle: a graph sequence 𝐺𝑛 …𝐺1 violates the size-change principle if

there exists a sub-sequence 𝐺𝑖;… ;𝐺𝑗 (where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛) that is both idempotent

and lacking of an strict descending arc of a parameter to itself.

4.2.8 Well-founded Partial Order

Figure 4.7 shows an example of a well-founded partial order (⪯) on values

in 𝜆SCT. It is defined on integers by comparing absolute values, and a field of a

data-structure is considered smaller than any data-structures that contain it (i.e.,
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≺ , ⪯ ⊆ 𝑉 × 𝑉
𝑁1 ≺ 𝑁2 if |𝑁1| < |𝑁2|
𝑉 ≺ (𝑉 ′,_) if 𝑉 ⪯ 𝑉 ′

𝑉 ≺ (_, 𝑉 ′) if 𝑉 ⪯ 𝑉 ′

𝑉 ⪯ 𝑉 ′ if 𝑉 ≺ 𝑉 ′ or 𝑉 = 𝑉 ′

Figure 4.7: Example well-founded partial order ⪯

the tail of any list is considered less than than the original list). Although simple,

this relation is sufficient to check for termination in most programs that descend on

integers and data-structures. If a program descends following a different order, the

user of 𝜆SCT can replace the default order with an appropriate one.

4.2.9 Totality of Evaluation

We may note that all programs in 𝜆SCT terminate, either by adhering to the

size-change principle, or by violating it and aborting with an error.

Theorem 4 (Termination of 𝜆SCT). For all 𝐸, Ρ, 𝑀 , where fv(𝐸) ⊆ dom(Ρ),
Ρ,𝑀 ⊢ 𝐸 ⬇ Α for some Α.

4.2.10 Soundness and Completeness

The size-change property is a safe over-approximation to ensure termination.

The correctness of monitoring this property can therefore be understood as any

strategy that satisfies the following properties:

soundness: if a program evaluates to a value under the modified semantics, running

the program without termination checking gives the same result.

SCT-completeness: if a program terminates and maintains the under the standard

semantics, running that program under the modified size-change property un-
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der the standard semantics, running that semantics with termination checking

gives the same result. program under the modified semantics with termination

checking gives the same result.

In addition, because all programs terminate under the modified semantics when

termination checking is enabled, all diverging programs are caught as error-raising

programs.

We now formally establish the correctness of 𝜆SCT’s size-change monitoring

semantics with respect to its standard semantics.1

Theorem 5 (Soundness of size-change monitoring in 𝜆SCT). If Ρ,𝑀 ⊢ 𝐸 ⬇ 𝐴, then
Ρ ⊢ 𝐸 ⇓ 𝐴.

Proof. By induction on the derivation of Ρ,𝑀 ⊢ 𝐸 ⬇ 𝐴.

Corollary 2 (Size-change monitoring catches divergence). If program 𝐸 diverges
under the standard semantics, then
{}, {} ⊢ 𝐸 ⬇ errorSC.

Proof. From Theorem 4, 𝐸 either evaluates to a standard answer or errorSC under
size-change monitoring. By contrapositive of Theorem 5, 𝐸 evaluates to errorSC if
𝐸 diverges.

A semantics that produces call sequences Before stating and proving

completeness of size-change monitoring, we define a mostly-standard semantics that

also evaluates to set of size-change tables along with the answer, but performs

no guarding against any size-change violation. It is in lock-step with the standard

semantics, and resembles the terminating semantics in accumulating the size-change

table. Figure 4.8 shows this semantics.

Lemma 2 (Completeness of call-sequence semantics).
If Ρ ⊢ 𝐸 ⇓ 𝑉 then Ρ, {} ⊢ 𝐸 ↓↓ 𝑉 , {𝑀 …} for some {𝑀 …}.

1𝜆SCT’s standard dynamic semantics is unsurprising and can be found in the supplemental
material.
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CC-Base

Ρ,𝑀 ⊢ 𝑁 ↓↓ 𝑁, {𝑀}

CC-App
Ρ,𝑀 ⊢ 𝐸 ↓↓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′), {𝑀 ′ …} Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ↓↓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗{𝑀𝑥 …}

Ρ′⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗[𝑋↦𝑉𝑥], ext(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ↓↓ 𝐴, {𝑀″…}
Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ↓↓ 𝐴, {𝑀 ′ …} ∪ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗{𝑀𝑥 …} ∪ {𝑀″…}

ext ∶ 𝑀 × 𝑉 × ⃗⃗⃗⃗⃗ ⃗𝑉 → 𝑀
ext(𝑀, 𝑉 , ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛) = 𝑀[𝑉 ↦ ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛, [])], if 𝑉 ∉ 𝑀
ext(𝑀, 𝑉 , ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛) = 𝑀[𝑉 ↦ ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛, 𝐺𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗𝐺𝑛−1)]

where ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛−1, ⃗⃗⃗ ⃗⃗ ⃗𝐺𝑛−1) ≡ 𝑀(𝑉 )
and 𝐺𝑛 = 𝑔𝑟𝑎𝑝ℎ( ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛−1, ⃗⃗⃗ ⃗⃗ ⃗𝑉𝑛)

Figure 4.8: Call-sequence Semantics of 𝜆SCT.

Proof. By induction on the derivation of Ρ ⊢ 𝐸 ⇓ 𝑉 .

Lemma 3 (Completeness of s.c. monitoring w.r.t. call-sequence semantics). If
Ρ,𝑀 ⊢ 𝐸 ⬇ errorSC and Ρ,𝑀 ⊢ 𝐸 ↓↓ 𝑉 , {𝑀 ′ …} then there exists 𝑀𝑖 in {𝑀 ′ …}
and 𝑉 such that ¬prog?(𝐺) where (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥, 𝐺) = 𝑀𝑖(𝑉 ).

Proof. By induction on the derivation of Ρ,𝑀 ⊢ 𝐸 ⬇ errorSC.

Theorem 6 (Completeness of size-change monitoring in 𝜆SCT). If Ρ, {} ⊢ 𝐸 ⬇
errorSC and Ρ ⊢ 𝐸 ⇓ 𝑉 then Ρ, {} ⊢ 𝐸 ↓↓ 𝑉 , {𝑀 …} such that there exists 𝑀𝑖 in
{𝑀 …} and 𝑉 such that ¬prog?(𝐺) where (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥, 𝐺) = 𝑀𝑖(𝑉 ).

Proof. Follows from Lemma 2 and Lemma 3.

4.2.11 Termination Checking as a Contract

It can be useful to enforce termination checking selectively on parts of the

code rather than on the entire program. We present a simple extension to 𝜆SCT

called 𝜆CSCT, which adds a construct (term/c 𝐸) that guards (𝐸) with a contract

ensuring it behaves as a size-change-terminating function. Other than executing the

bodies of contract-guarded functions, the 𝜆CSCT semantics is similar to the standard
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[Expressions] 𝐸 ∶∶= … | (term/c 𝐸)
[Values] 𝑉 ∶∶= … | term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ))

Wrap-Lam
Ρ ⊢ 𝐸 ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ)

Ρ ⊢ (term/c 𝐸) ⇓ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ))

App-Term
Ρ ⊢ 𝐸 ⇓ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′)) Ρ ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥
Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], upd({},Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ Α

Ρ ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⇓ Α

Figure 4.9: Syntax and semantics of 𝜆CSCT.

semantics. Figure 4.9 shows the key extension to 𝜆CSCT’s syntax and semantics. The

[Wrap-Lam] rule shows the introduction of a termination-checked function. Only

closures are capable of violating SCT in 𝜆SCT, so we only wrap closures and return

other values as-is.

4.3 Static SCT Verification

Given termination formulated as a dynamically checkable property, we can

systematically turn these dynamic checks into static verification by building on

prior work in higher-order symbolic execution [9, 18, 25, 99].

Symbolic execution extends the standard semantics with symbolic values that

can stand for any values (including higher-order values), and maintains a path-

condition, which is a formula about facts that must hold for symbolic values on each

path. Because termination checks ultimately decompose into “less-than” checks,

which check for a definite descent of values along a well-founded partial order, there
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is no special challenge in using symbolic execution for size-change termination check-

ing. Symbolic execution can readily leverage SMT solvers for precise reasoning about

path-conditions, proving termination that depends on sophisticated path-sensitivity.

Although symbolic execution has traditionally been used to find bugs [47,

58–61] as opposed to verifying programs as correct, we can apply a well studied

technique for abstracting the operational semantics through finitizing the program’s

dynamic components [24,25] and obtain a verification that particular errors cannot

occur at run-time.

4.3.1 Extended Semantics

Figure 4.10 shows extension to 𝜆SCT, called 𝜆SSCT that allows symbolic execu-

tion, as well as the key extension to the semantics that enables symbolic execution.

We extend the set of values (𝑉 ) with symbolic values (𝑆), which can stand for

any value. The semantics of 𝜆SSCT must then account for symbolic values, which

means some expressions can non-deterministically evaluate to multiple answers to

soundly over-approximate all the cases resulting from possible instantiations of sym-

bolic values. Symbolic execution maintains a path-condition (Φ) that characterizes

each path, which is a set of symbolic values assumed to have evaluated to true

(interpreted as a conjunction).

With symbolic values, orders between values are necessarily more conserva-

tive. The size-change graphs computed between symbolic value lists in Figure 4.6

have, in general, no more arcs than in the concrete case. Each arc now represents

a must-descend or must-non-ascend relationship over all possible concrete paths.
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[Values] 𝑉 ∶∶= … | 𝑆
[Symbolic Values] 𝑆 ∶∶= 𝑋 | 𝑁 | (O ⃗⃗⃗ ⃗⃗𝑆)
[Path Conditions] Φ = ⃗⃗⃗⃗⃗𝑆

Sym-If-T
Ρ,Φ ⊢ 𝐸 ⇓𝑠 𝑆,Φ′ Ρ, (= 𝑆 0)∷Φ′ ⊢ 𝐸1 ⇓𝑠 Α,Φ″

Ρ,Φ ⊢ (if0 𝐸 𝐸1𝐸2) ⇓𝑠 Α,Φ″

Sym-If-F
Ρ,Φ ⊢ 𝐸 ⇓𝑠 𝑆,Φ′ Ρ, (≠ 𝑆 0)∷Φ′ ⊢ 𝐸2 ⇓𝑠 Α,Φ″

Ρ,Φ ⊢ (if0 𝐸 𝐸1𝐸2) ⇓𝑠 Α,Φ″

Figure 4.10: Semantics of symbolic 𝜆SSCT.

A sufficiently precise symbolic execution, coupled with effective SMT solving, can

maintain a graph with enough arcs to prove that functions will always maintain

their size-change properties.

Proposition 1 (Soundness of static verification). If {} ⊢ 𝐸 ⇓ 𝑉 and {} ⊢ 𝐸1 ⇓ 𝑉1
and (𝐸 𝐸1) diverges, then {}, {} ⊢ ((term/c 𝐸) 𝑆) ⇓𝑠 errorSC, Φ′ (𝑆 is a fresh
symbolic value).

Proof. Follows from soundness of dynamic checking of size-change termination
(Theorem 5) and soundness of higher-order symbolic execution (Theorem 3).

4.3.2 Ackermann Revisited

Now consider again the example ack, a termination-checked Ackermann func-

tion shown in Section 4.2.

Suppose ack’s precondition is that its arguments are natural numbers. To

verify ack, we apply the function on symbolic natural numbers m and n that have

passed ack’s precondition with the path-condition {(≥ m 0), (≥ n 0)}. With
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these symbolic inputs, execution considers all three branches, and accumulates in

the path-condition assumptions about the values: in the first branch, m is 0; in the

second branch, m is positive and n is 0; in the last branch, both m and n are positive.

The first branch simply returns and does not trigger any size-change moni-

toring. The second branch reaches a recursive call with the path-condition {(≥ m

0),(≠ m 0),(= n 0)}. The recursive call proceeds, checking for all relationships

that can be established between the old and new arguments as in Figure 4.6. In this

case, with the path-condition that m is positive, symbolic execution easily proves

that (- m 1) is less than m according to the partial order defined in Figure 4.7. No

other definite order can be established between the new arguments (- m 1), 1 and

the old ones m, n. This gives the new size-change graph of {(𝑚 → 𝑚)}.2 We extend

ack’s set of size-change graphs with this new graph. In addition, symbolic execution

can prove the new call to ack receives the same path-condition as the previous call:

both new arguments (- m 1) and 1 are natural numbers.

The third branch reaches the inner recursive call to ack before reaching the

outer one. The path-condition, again, is sufficient for establish the descent from

n to (- n 1) and maintenance of m, yielding the new graph {(𝑚 →= 𝑚), (𝑛 → 𝑛)}.

When execution reaches the outer recursive call to ack, the descent from m to (- m

1) can be straightforwardly established. In each case, symbolic execution can also

prove that the new arguments are natural numbers.

Figure 4.11 summarizes all the ways ack can call itself recursively. Because

no composition of size-change graphs drawn from this set can yield a graph that
2We use variable names instead of indices for graph nodes in this section.
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(ack m n)
where (≥ m 0)∧(≥ n 0){(m

→

m)} {(m

→=m),(n

→

n)}

Figure 4.11: Abstract call and size-change graphs for ack.

violates the size-change principle (i.e. one that is both idempotent and lacking of a

self-descent arc), ack never violates size-change termination.

4.4 Implementation and Evaluation

We implement the semantics presented in Section 4.2.5 as a library in the

Racket programming language through instrumentation of the application form,

and also apply the contract verifier developed from chapter 3 to statically verify

this semantics.

We then evaluate the effectiveness and efficiency of size-change monitoring.

Effective monitoring should allow all or most terminating programs to finish execu-

tion, and quickly catch diverging programs. Efficient monitoring should introduce

little overhead compared to execution without monitoring. Finally, we evaluate the

contract verifier, now capable of verifying total correctness, on its effectiveness when

used as a theorem prover.
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4.4.1 Implementation

An application (f x ...) in Racket is syntactic sugar for (#%app f x ...),

and libraries can modify what an application means by redefining the #%app form.

For our purposes, we redefine the application form to implement the rules [SC-App-

Clo] in Figure 4.5 [App-Term] in Figure 4.9. If size-change termination is being

enforced, the #%app form looks up the size-change table to guard against violations.

We evaluate two techniques to maintain size-change tables. The first technique

wraps each application with code that imperatively updates and restores the table.

The second uses continuation-marks [100]. The former can be implemented in most

languages, and gives relatively good performance, but breaks proper tail calls. The

latter is simple to implement in languages with support for continuation marks, and

preserves tail calls, but shows high overheads in tight loops.

Our semantics implicitly assumes that closures can be compared structurally

for equality, which is not possible in practice. We instead hash the closure and

consider all closures with the same hash code to be equivalent. This preserves

soundness as the table 𝑚 cannot grow infinitely, but could produce false positive

error reports. Note that this incompleteness does not affect the static analysis,

which is derived from the semantics itself. Future work includes run-time support

for more precise comparison between closures.

In addition, we expose a parameter specifying the custom partial order for use

in termination checks, with a default implementation as described in Figure 4.7.

Although a naive implementation would be prohibitively expensive, with a
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few optimizations, the overhead can be brought down to acceptable for the goal of

debugging

Reducing monitoring frequency The construction and checking of size-change

graphs is expensive, but need not be performed each time a function calls itself re-

cursively. Because strict progress down any well-founded partial order can only

be maintained a finite number of times, any non-SCT program will violate the

size-change principle regardless of the monitoring frequency. We therefore use ex-

ponential back-off to reduce the frequency of extending and monitoring each func-

tion’s size-change. This significantly reduces the monitoring overhead, although

risks keeping data from earlier iterations live for longer necessary.

Avoiding instrumentation for known functions Functions that are known

to terminate need no instrumentation. We maintain a white-list of primitives known

to terminate.

Monitoring size-change graphs only for loop entries We identify “loop

entries” to monitor instead of constructing and monitoring a size-change graph for

each function. For example, suppose even? and odd? are mutual recursive func-

tions, where the top-level context calls even?, then only even? is a loop-entry and

requires size-change monitoring.

132



4.4.2 Effectiveness and Efficiency on Terminating Programs

Table 4.1 shows terminating programs we use to evaluate the dynamic checks

and static analysis of terminating contracts. The programs were collected from

previous work on termination checking: size-change termination for first-order pro-

grams (sct) [27]; size-change termination for higher-order programs (ho-sct) [28];

Liquid Haskell (lh) [6]; Isabelle [29]; ACL2 [30]; and a collection of larger Scheme

benchmarks that terminate by the size-change principle.

The table shows the precision of dynamic checking and static analysis, as well

as comparison with other systems where possible. Most programs are small and

under 15 lines. The largest program is scheme with 1,100 lines, which implements

an interpreter for R5RS Scheme that interprets the mergesort algorithm on a list of

strings. We did our best efforts to translate programs from one system to another.

For example, sct-2 is originally an untyped program composing a heterogeneous

list which cannot be typed in Liquid Haskell and Isabelle. We translated sct-2 to

work with an equivalent custom tree data-type.

Several cases where the programs need modifications to be successfully verified

by the systems are annotated in the table. For example, sct-1 and sct-2 originally

use conditionals, and can only be verified when converted to use pattern-matching.

Some other programs are only verified successfully with annotational help on termi-

nation, such as explicit lexical ordering (e.g. lh-merge), or a custom partial-order

(e.g. acl2-fig-2). Some programs are not expressible in all systems. For ex-

ample, ACL2 cannot check higher-order programs, and the type systems in Liquid
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Program Dyn. Static LH Isabelle ACL2
sct-1 (rev) 3 3 3R 3 3

sct-2 3 3 7 3R 3

sct-3 (ack) 3 3 3A 3 3

sct-4 3 3 7 3 3

sct-5 3 3 7 3 3

sct-6 3 3 7 3 3

ho-sc-ack 3 7 -T -T -H
ho-sct-fg 3 3 3 3 -H
ho-sct-fold 3 3 3A 3 -H
isabelle-perm 3 3 7 3 3

isabelle-f 3 7 7 3 3

isabelle-foo 3 7 7 3 3

isabelle-bar 3 7 7 3 3

isabelle-poly 3 7 7 7 7

acl2-fig-2 3O 7 7 7 7

acl2-fig-6 3 3 7 7 7

acl2-fig-7 3 7 7 7 3

lh-gcd 3 7 3 3 3

lh-map 3 3 3 3 -H
lh-merge 3 3 3A 3 3

lh-range 3O 7 3A 7 3

lh-tfact 3 3 3 3 3

dderiv 3 3 A: With annotations
deriv 3 7 O: Custom partial order
destruct 3 7 H: No H.O. functions
div 3 3 T: Not typable
nfa 3 3 R: Rewritten to use
scheme 3 7 pattern matching

Table 4.1: Evaluation on terminating programs
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Haskell and Isabelle do not support the Y-combinator that has self-applications (e.g.

ho-sct-ack). To our surprise, current versions of the tools cannot check some of

their own benchmarks despite our best efforts to reproduce (e.g. isabelle-poly for

Isabelle; acl2-fig-2 and acl2-fig-6 for ACL2). Overall, our system works well

for a wide range of programs and idioms, including higher-order untyped programs

with moderate side effects (such as in the Scheme benchmarks).

Figure 4.12 shows the slowdown of dynamic checks for select programs: factorial,

sum, and merge-sort, as well as their interpreted version inside a Scheme inter-

preter. These programs demonstrate that different patterns of computation incur

different amounts of overhead from size-change monitoring. For programs that do

significant work between recursive calls, such as factorial or the Scheme inter-

preter, overhead is negligible. For programs that don’t do significant work between

recursive calls, such as sum, the overhead is significant. For programs that operate

over large data-structures such as merge-sort, overhead is much more significant.

That the overhead stays fixed when the input grows (for continuation-mark imple-

mentation on tight loops, approximately two orders of magnitude) suggests that

further optimization effort to trim down the constant factor can make monitoring

suitable for realistic uses.
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4.4.3 Effectiveness on Diverging Programs

We also evaluate dynamic monitoring on non-terminating programs to deter-

mine how quickly the monitoring system catches divergence. These programs include

modified versions of correct programs, as well as one originally incorrect program

(nfa) that our static analysis discovered. Because violation of the size-change prin-

ciple tend to show up in early iterations, our dynamic contracts catch the error very

early, resulting in immeasurable delay from the start of the program to the point

where divergence is detected.

The nfa program is particularly interesting, because it is a Scheme bench-

mark that has been around for decades. It is a program that implements a non-

deterministic finite automaton of the regular expression ((a|c)*bcd)|(a*bc), then

run the automaton on the string a133bc. The function shown in figure 4.13 imple-

ments one state recognizing the sub-expression (a|c)* with the bug underlined.

1 (define (state1 input)
2 (and (not (null? input))
3 (or (and (char=? (car input) #\a)
4 (state1 (cdr input)))
5 (and (char=? (car input) #\c)
6 (state1 input))
7 (state2 input))))

Figure 4.13: Buggy function in nfa benchmark

The bug was never

discovered, because the par-

ticular benchmark input

did not trigger the di-

vergence, and most static

analysis only check for par-

tial correctness. Our static

analysis was the first to discover this error after many years.

137



4.4.4 Theorem Proving as Total-contract Verification

We evaluate the contract verifier’s effectiveness as a theorem prover, taking

advantage of total contracts. In particular, total contracts can be viewed as proposi-

tions referring to values in the programs, and values that satisfy these contracts are

proofs. The ability to use total contracts as theorems empowers programmers with

a new means of stating invariants. In particular, properties about multiple runs of

functions cannot be expressed as contracts on those functions. Figure 4.14 shows an

instance of such properties, where no contract can enforce that a function is mono-

tonic. Instead, we state function inc’s monotonicity externally as (monotonic/c

inc), and provide a proof inc-is-monotonic that confirms this fact holds for any

pair of integers m and n. In this case, the proof returns an arbitrary value 'trivial

that is computationally uninteresting, and the contract verifier can easily verify the

“side condition” (implies (≤ m n) (≤ (f m) (f n))).

The contract verifier can verify more interesting properties such as associativity

of append or distributivity of map over append. In these cases, the proof only

needs to call itself recursively on a smaller list in order to bring in the inductive

hypothesis. Figure 4.15 shows what the proofs look like. In effect, proofs only need

to describe the high-level structure, and the contract verifier, possibly with the help

of an underlying SMT solver, can take care of simple details such as congruence

closure and arithmetic.

Using the contract verifier for theorem proving, we are able to prove common

properties of functions on lists, the most interesting so far being insertion sort pro-
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;; inc's property not enforcable as inc's own contract:
;; ∀m,n, m ≤ n ⟹ inc(m) ≤ inc(n)
(define inc (𝜆 (n) (+ n 1)))

;; Proposition as syntactic sugar for total dependent function contract
(define-syntax-rule (∀ ([x c] ...) prop)

(and/c terminating/c
(->i ([x c] ...)

(_ {x ...} (𝜆 (_) prop)))))

;; Proposition ``maker''
(define (monotonic/c f)

(∀ ([m int?] [n int?]) (implies (≤ m n) (≤ (f m) (f n)))))

;; Proposition on `inc`
(define/contract inc-is-monotonic (monotonic/c inc)

(𝜆 (m n) 'trivial))

Figure 4.14: Monotonicity stated externally

ducing an ordered list. Even though the tool allows concise and high-level proofs,

one main shortcoming is that it is unintuitive when it fails unless the programmer

is familiar with the inner workings of the tool. For example, the proof may fail be-

cause the omitted details involve a theory not supported by the underlying solver,

or because it does not perform a case analysis on some data, which symbolic execu-

tion may not automatically do due to the risk of path explosions. More predictable

theorem proving as well as more helpful error messages are important future work

in order to make the contract verifier practical as a theorem prover.

4.5 Related Work

Our work builds on the size-change termination (SCT) approach [27] and on

static contract verification via symbolic execution (chapter 3). We relate our con-
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(define map ...)
(define append ...)

(define/contract append-assoc
;; Claim
(∀ ([xs list?] [ys list?] [zs list?])
(equal? (append xs (append ys zs))

(append (append xs ys) zs)))
;; Proof
(𝜆 (xs ys zs)
(match xs

['() 'trivial]
[(cons _ xs*) (append-assoc xs* ys zs)])))

(define/contract map-distr-append
;; Claim
(∀ ([f (and/c terminating/c (any/c -> any/c))]

[xs list?]
[ys list?])

(equal? (map f (append xs ys))
(append (map f xs) (map f ys))))

;; Proof
(𝜆 (f xs ys)
(match xs

['() 'trivial]
[(cons _ xs*) (map-distr-append f xs* ys)])))

Figure 4.15: Proofs of functions on lists
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tributions to dynamic and static termination checking, and then to static contract

verification.

4.5.1 Dynamic Termination Checking

To the best of our knowledge, no existing work enforces termination dynam-

ically using behavioral contracts. Related work has investigated dynamic loop de-

tection, non-termination auditing, and more restricted declarative languages.

The auditing tool Looper [101] dynamically monitors a Java program in order

to detect non-termination using concolic (concrete and symbolic) execution. Along

the path of a potentially non-terminating loop, it derives a path condition paired

with a memory map (an encoding of heap values at the end of a loop iteration as a

function of their initial values), and uses an SMT solver to check if the initial path

condition (after zero iterations) implies itself under the loop iteration’s memory

map. If this fails, Looper will observe another iteration and record a new path

condition and memory map. When each path condition implies the next (under

that iteration’s memory map), in a cyclic chain that terminates with the original

path condition, the program will not terminate.

Unlike our contracts, Looper does not monitor code for non-termination

during normal execution; instead, it is deployed by an auditor to determine whether

an apparent loop is an actual one. While Looper can provide an affirmative proof

that code will not terminate, our approach will signal that a function does not

obey SCT, a more conservative notion of termination. This means our approach is
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susceptible to false positives and may blame functions which do always terminate,

but will never permit non-termination. Looper, on the other hand, is susceptible to

false negatives and may fail to prove an execution to be definitively non-terminating.

Looper’s soundness is also contingent on all changes to memory being visible and

accounted for in the memory map, which is not always the case in C due to external

state and shared-memory parallelism.

Jolt [102] (and successor Bolt [103]) is an infinite-loop detection and recov-

ery tool for C programs. It instruments C code to dynamically monitor for loops

that are in the exact same state at two consecutive iterations. Compared with

Looper, this is an especially conservative detection for non-termination, however

Jolt also has a facility for skipping the program counter past the end of the loop

to recover from non-termination and show that this simple technique is effective in

many cases (sometimes depending on inputs).

There are also dynamic termination schemes for more restricted languages.

For example, dynamic checking for active database rules [104], or queries in general

logic programs [105, 106]. [105] exploits features unique to SLDNF-trees to identify

loop goals with a provably finite term-size. [106] provides a declarative fixed-point

semantics that captures termination properties (for an interpretation of Prolog)

with the explicit goal of facilitating the extraction of a static analysis using abstract

interpretation.
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4.5.2 Static Termination Checking

A variety of approaches have been used for static verification of termination

and non-termination. None of these systems combine dynamic and static verification

in a single system, or allow terminating and non-terminating components to be

composed. We begin with the systems we compare with in §4.4.2.

[97] extend the SCT approach to higher-order languages—specifically, the

untyped 𝜆-calculus. As all values in this language are functions, they select the

“height” of a closure as its size. [28] then extended this approach to handle user-

defined data-types and general recursion. This work was not empirically evaluated

in the context of a real programming system [107], but establishes techniques we

build on. SCT has been extended to monotonicity constraints, which have been

shown to be more general than traditional SCT [108]; these could be formulated as

a dynamic contract in future work.

[30] develops a static analysis for automatic termination proofs in the context

of the ACL2 system—a functional language and first-order logic for theorem proving.

All programs admitted by ACL2 must be terminating, as non-termination could

render it inconsistent, however manual termination proofs are complex and require

deep expertise. The paper’s approach uses precise calling-context graphs in order to

refine static control flow with path feasibility based on accumulating governors (sets

of branch points governing control flow for a sub-expression). Strongly connected

components are then further refined using a calling-context measure in order to

discover a well-founded order over which parameters descend. A major innovation on
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traditional SCT approaches is the refinement of feasible paths using governors. Our

approach analogously tracks path conditions for static verification. Their method

was effective at proving more than 98% of the roughly 10k functions of the ACL2

regression suite terminating. [29] then extends the approach to Isabelle/HOL and

certifies the termination proofs with LCF-style theorem proving.

LiquidHaskell uses termination proving to ensure precision and soundness

for its refinement type system in the presence of lazy evaluation [109]. Subtle un-

soundness can result from using refinement types in conjunction with call-by-name

evaluation and the direct approach to fixing this unsoundness, by expressing po-

tential non-termination as a type refinement, leads to substantial imprecision. Liq-

uidHaskell bridges this gap by encoding size-change invariants, over user-specified

well-founded metrics, directly into the existing type system (as further type refine-

ments). This permits proofs over programs to circularly depend on termination

proofs during SMT solving. Broadly this same approach is taken to directly encode

termination proofs, via size-change refinements, with dependent types in Depen-

dentML [110]. LiquidHaskell has a scalable implementation, used to verify

correctness and termination properties over a corpus of real-world Haskell libraries

(≥10𝑘 LOC). TEA is also a termination analysis for Haskell, based on techniques

of path analysis and abstract reduction [111].

TNT is a concolic executor for statically enumerating non-terminating lassos

in C programs—paths that fold back on themselves, forming a non-terminating

loop [112]. statically precise enough to handle cases that rely on symbolic shape

information such as cyclic lists.
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[113] use a modal logic allowing predicates to be written that are qualified by

a program expression they pertain to. Qualified formulae are trivially rendered true

by a diverging program, so a manifest contradiction (i.e., false) being interpreted

as true constitutes a proof of non-termination for the qualifying expression. The

approach then uses a refinement process to identify the specific conditions on data

that will lead to proving this contradiction. This system was only evaluated on

small expressions (≤25 lines) in a language of pure built-in expressions, assignments,

conditionals, and while loops.

AProVE is a system for automating termination (and non-termination) proofs

of term-rewriting systems (TRSs) [114–116] built using the dependency pair frame-

work [117, 118]. Unlike previous methods for proving TRSs terminating, which

required the right-hand side of each rewrite rule to be simplified compared with

its left-hand side, the dependency pair framework only requires corresponding sub-

terms at recursive calls be simplified. This innovation is analogous to the SCT

approach’s requirement that arguments be descending over some well-founded order

as opposed to static control-flow being strictly stratified. [119] extends the depen-

dency pair framework to higher-order functions. [120] contrast and synthesize the

dependency pair framework with SCT.

Numerous techniques have been proposed and evaluated for verifying termi-

nation in languages such as C and Java, where higher-order programming is un-

common. Terminator [95, 121, 122] and transition invariants [123–125] as well as

others [126–129] have seen extensive development, and share some key ideas with

our approach, but differ substantially in goals and language from our system, and
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thus make significantly different choice in approach.

Terminator is a program analysis and verification tool for proving termi-

nation of C programs statically, which has been used to prove the termination

of low-level programs such as Windows device drivers. Like our system, it relies

on the “indirect approach” described in the introduction—find a safety property

which implies termination, add a check for that property to the program, and ver-

ify using an existing tool that the check cannot fail. The key difference with our

approach is in the choice of property. Terminator aims to prove termination

of tricky first-order loops, and thus must find potentially-complex custom ranking

functions (found via [122]) for each program to be verified. To find these proper-

ties, it relies on a counter-example guided abstraction refinement (CEGAR) [130]

loop which attempts to verify termination using an off-the-shelf verifier and refines

the property upon failure. Terminator starts with a very simple property and re-

peatedly improves it, generating complex predicates with non-trivial relationships

between multiple variables. In contrast, our approach (similar to other approaches

for higher-order languages) picks a single general safety property and uses it for all

programs. This limits the ability of our tool to verify the termination of loops such

as those Terminator aims at, but allows our tool to run as a contract without

first requiring several runs of a static verifier. Additionally, constructing static ver-

ification tools for heap-manipulating imperative programs is much trickier in the

higher-order setting we consider.
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4.6 Conclusion

Termination is a fundamental program correctness property, but uncheckable

even at run-time. To avoid this limitation, we adapt the size-change principle from

static termination analysis to perform dynamic checking of termination, exploiting

the insight that every infinite execution must have a call that fails to follow the

size change principle. This leads to the first run-time mechanism for enforcing

termination in a general-purpose programming system. As it is formulated as a

behavioral contract, this also makes it the first contract for total correctness. By

checking termination as a contract, we can enforce termination in settings where

static checking is fundamentally impossible, as in an interpreter.

Further, we compose our dynamic checking strategy with prior work show-

ing how to statically verify compliance with contracts in higher-order languages to

produce a novel static checker for program termination—without any termination-

specific work. We compare our static checker against three state-of-the-art custom

tools on their own benchmarks, and find that ours is able to statically verify pro-

grams that exceed the capacities of each of the existing tools.

Sound dynamic enforcement of liveness properties opens up new possibilities

for program correctness, analysis, and specification—in this chapter we have taken

only the first step.
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Chapter 5: Future Work and Conclusion

This section explores future work enabled by higher-order symbolic execution

and concludes.

5.1 Future work

Future directions of this line of work includes applying it to program verifica-

tion and optimization, as well as improving symbolic execution itself.

Overhead elimination for sound gradual typing A gradual type sys-

tem [131–134] allows mixing typed and untyped modules in a single program. To

ensure soundness, the type system generates contracts to protect the typed world

whenever it interacts with the untyped one, guarding it against values flowing from

the untyped that violate invariants ensured by the type system. Experiments show

that such mechanism can be prohibitively expensive [135], and some systems weaken

soundness guarantees to achieve practical performance [136]. By applying this work

to verify the untyped modules against contracts generated by typed ones, we should

be able to eliminate all or most of the overhead from soundness enforcement without

requiring any work from the programmers to modify the programs.
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More sophisticated notions of termination Size-change termination is

particularly simple and robust: It is easy to formulate as a run-time check and

can capture many terminating functional programs and proofs. But there has been

further developments since the original work [108]. It would be useful to explore how

to efficiently implement more sophisticated notions of termination beyond SCT.

Run-time contracts for other liveness properties As demonstrated in

chapter 4, there are benefits in formulating a liveness property as a run-time check-

able property: The run-time check may be more precise, and integrates well with

the contract system, which provides a tool for gradual enforcement. Discovery of

other instances of this idea, and possibly generalizing it, is therefore useful.

Incremental symbolic execution Analysis tools benefit greatly from incre-

mentality, where a small change to the source code only triggers re-analyzing of a

small part of it. A recent development in systematic derivation of static analysis

from big-step operational semantics [25] is particularly amenable to incremental-

ity, where an entry in the memo-table only needs re-analyzing if the expressions

that it depends on change. Making symbolic execution incremental would enable

interactive usage of the tool, shortening the feedback loop.

5.2 Conclusion

This dissertation explores symbolic execution for higher-order languages and

its application in leveraging run-time checks as specifications, enabling a gradual
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verification that is sound, precise, and modular. First, it shows that symbolic sym-

bolic execution is feasible in a higher-order setting, and can find bugs and generate

concrete counterexamples in a relatively complete way with respect to the underly-

ing first-order SMT solver. Next, it shows that not only useful as a bug-finding tool,

symbolic execution can also be finitized and used as a verification that is particu-

larly effective against first-class, higher-order contracts, whose expressiveness and

dynamicity prevent more conventional techniques such as type systems or direct

translation to logics. Finally, it shows that even liveness properties such as termi-

nation and total correctness can also be expressed as dynamic safety checks, which

integrates well with the existing contract system and can be verified by symbolic

execution in the same way as every other safety property, inheriting all existing

benefits. The verification framework obtained from dynamic checks and symbolic

execution is effective in gradually and non-intrusively enriching an existing language

with more static checks.
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Appendix A: Proofs

A.1 Proof of Soundness and Relative Completeness of Counterexam-

ples

A.1.1 Definitions

This section shows full definitions for metafunctions and relations omitted

from the paper.

Figure A.1 shows metafunction 𝑎𝑝𝑝?𝑋[[𝐸]] that determines whether expression

𝐸 applies variable 𝑋 or not. This definition is used in determining whether a

function directly applies its argument. Next, figure A.2 shows the approximation

relation between heaps. Next, figure A.3 shows the approximation between states of

the form (𝐸,Σ). Finally, figure A.4 shows the translation of a heap into a formula.

𝑎𝑝𝑝?𝑋[[(𝑋 𝐸)]] = true
𝑎𝑝𝑝?𝑋[[(if 𝐸 𝐸1𝐸2)]] = 𝑎𝑝𝑝?𝑋[[𝐸]] ∨ 𝑎𝑝𝑝?𝑋[[𝐸1]] ∨ 𝑎𝑝𝑝?𝑋[[𝐸2]]

𝑎𝑝𝑝?𝑋[[(𝐸1𝐸2)]] = 𝑎𝑝𝑝?𝑋[[𝐸1]] ∨ 𝑎𝑝𝑝?𝑋[[𝐸2]]
𝑎𝑝𝑝?𝑋[[(O 𝐸… )]] = ∨ (𝑎𝑝𝑝?𝑋[[𝐸]])…

𝑎𝑝𝑝?𝑋[[𝐸]] = false

Figure A.1: Checking for direct application
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Heap-Empty
∅ ⊑{}

𝐿⃗ ∅
Heap-Ext

Σ′ ⊑𝐹
𝐿⃗ Σ

Σ′[𝐿′ ↦ 𝑆′] ⊑𝐹
𝐿⃗ Σ

Heap-Int
Σ′ ⊑𝐹

𝐿⃗ Σ
Σ′[𝐿′ ↦ 𝑁] ⊑𝐹[𝐿↦𝐿′]

𝐿⃗ Σ[𝐿 ↦ 𝑁]

Heap-Lam
Σ′ ⊑𝐹

𝐿⃗ Σ (𝐸′, Σ′) ⊑𝐹
𝐿⃗ (𝐸,Σ)

Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]
𝐿⃗ Σ[𝐿 ↦ (𝜆 (𝑋) 𝐸)]

Heap-Opq-1
Σ′ ⊑𝐹

𝐿⃗ Σ 𝑙𝑎𝑏Σ′[[𝑉 ′]] ∩ 𝐿⃗ = ∅
Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹[𝐿↦𝐿′]

𝐿⃗ Σ[𝐿 ↦ •𝑇 ]

Heap-Opq-2
Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹

𝐿⃗ Σ[𝐿 ↦ •𝑇𝑃…] Σ′ ⊢ 𝑉 ′ ∶ 𝐹 (𝑃1)3

Σ′[𝐿′ ↦ 𝑉 ′] ⊑𝐹
𝐿⃗ Σ[𝐿 ↦ •𝑇𝑃…𝑃1]

Heap-Case-1
Σ′ ⊑𝐹

𝐿⃗ Σ 𝑙𝑎𝑏Σ′[[𝐸′]] ∩ 𝐿⃗ = ∅
Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]

𝐿⃗ Σ[𝐿 ↦ case𝑇 [ ]]

Heap-Case-2
Σ″[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹

𝐿⃗ Σ[𝐿 ↦ case𝑇 […]]
𝐹 (𝐿𝑥) = 𝐿′

𝑥 ([𝑋/𝐿′
𝑥]𝐸′, Σ″) ⟼→ (𝑉 ′, Σ′) (𝑉 ′, Σ′) ⊑𝐹

𝐿⃗ (𝑉 , Σ)
Σ′[𝐿′ ↦ (𝜆 (𝑋) 𝐸′)] ⊑𝐹[𝐿↦𝐿′]

𝐿⃗ Σ[𝐿 ↦ case𝑇 […𝐿𝑥 ↦ 𝑉 ]]

Heap-Const-Func
Σ″ ⊑𝐹

𝐿⃗ Σ
𝐹(𝐿) = 𝐿′ 𝑙𝑎𝑏Σ″[[𝐸′]] ∩ 𝐿⃗ = ∅ Σ″(𝐿′) = (𝜆 (𝑋) 𝐸′) 𝐹𝑉 [[𝐸′]] = ∅

𝑙𝑎𝑏Σ′[[𝐸″]] ∩ 𝐿⃗ = ∅ (𝐸′, Σ″) ⟼→ (𝑉 ′, Σ) (𝑉 ′, Σ′) ⊑𝐹
𝐿⃗ (𝑉 , Σ)

Σ′[𝐿′
𝑎 ↦ 𝑉 ′] ⊑𝐹[𝐿𝑎↦𝐿′

𝑎]
𝐿⃗ Σ[𝐿𝑎 ↦ 𝑉 ,𝐿 ↦ (𝜆 (𝑋) 𝐿)𝑎]

Heap-Clo
Σ′ ⊑𝐹

𝐿⃗ Σ 𝐹(𝐿) = 𝐿′

Σ′(𝐿′) = (𝜆 (𝑋) 𝐸′) 𝐹𝑉 [[𝐸′]] = {𝑋} ¬(𝑎𝑝𝑝?𝑋[[𝐸′]]) 𝑙𝑎𝑏Σ′[[𝐸′]] = ∅
Σ′ ⊑𝐹

𝐿⃗ Σ[𝐿 ↦ (𝜆 (𝑋) (𝜆 (𝑌 ) (( • 𝑋) 𝑌 )))]

Heap-Havoc
Σ′ ⊑𝐹

𝐿⃗ Σ 𝐹(𝐿) = 𝐿′

Σ′(𝐿′) = (𝜆 (𝑋) 𝐸′) 𝐹𝑉 [[𝐸′]] = {𝑋} 𝑎𝑝𝑝?𝑋[[𝐸′]] 𝑙𝑎𝑏Σ′[[𝐸′]] = ∅
Σ′ ⊑𝐹

𝐿⃗ Σ[𝐿 ↦ (𝜆 (𝑋) ( • (𝑋 • )))]

Figure A.2: Approximation between Heaps
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Loc
𝐹(𝐿) = 𝐿′

(𝐿′, Σ′) ⊑𝐹
𝐿⃗ (𝐿,Σ)

Err-Opq
𝐿′ ∉ 𝐿⃗

(err𝐿′
O , Σ′) ⊑𝐹

𝐿⃗ (𝐸,Σ)

Err
𝐿′ ∈ 𝐿⃗

(err𝐿O, Σ′) ⊑𝐹
𝐿⃗ (err𝐿O, Σ)

Opq-App
𝐸′ ≠ Α 𝑙𝑎𝑏Σ′[[𝐸′]] ∩ 𝐿⃗ ⊆ 𝑙𝑎𝑏Σ[[𝐿𝑥]] ((𝐿′

𝑓 𝐿′
𝑥), Σ″) ⊑𝐹

𝐿⃗ ((𝐿𝑓 𝐿𝑥), Σ)
Σ″(𝐿′

𝑓) = (𝜆 (𝑋) 𝐸″) Σ(𝐿𝑓) = •𝑇→𝑇 ′ ([𝑋/𝐿′
𝑥]𝐸″, Σ″) ⟼→ (𝐸′, Σ′)

(𝐸′, Σ′) ⊑𝐹
𝐿⃗ ((𝐿𝑓 𝐿𝑥), Σ)

If
(𝐸′, Σ′) ⊑𝐹

𝐿⃗ (𝐸,Σ) (𝐸′
1, Σ′) ⊑𝐹

𝐿⃗ (𝐸1, Σ) (𝐸′
2, Σ′) ⊑𝐹

𝐿⃗ (𝐸2, Σ)
((if 𝐸′𝐸′

1𝐸′
2), Σ′) ⊑𝐹

𝐿⃗ ((if 𝐸 𝐸1𝐸2), Σ)

App
(𝐸′

1, Σ′) ⊑𝐹
𝐿⃗ (𝐸1, Σ) (𝐸′

2, Σ′) ⊑𝐹
𝐿⃗ (𝐸2, Σ)

((𝐸′
1𝐸′

2), Σ′) ⊑𝐹
𝐿⃗ ((𝐸1𝐸2), Σ)

Prim
(𝐸′, Σ′) ⊑𝐹

𝐿⃗ (𝐸,Σ) …

((O 𝐸′ … ), Σ′) ⊑𝐹
𝐿⃗ ((O 𝐸… ), Σ)

Lam
(𝐸′, Σ′) ⊑𝐹

𝐿⃗ (𝐸,Σ)
((𝜆 (𝑋 ∶ 𝑇) 𝐸′), Σ′) ⊑𝐹

𝐿⃗ ((𝜆 (𝑋 ∶ 𝑇) 𝐸), Σ)
Nat
(𝑁,Σ′) ⊑𝐹

𝐿⃗ (𝑁,Σ)

Figure A.3: Approximation between Expressions
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{{ ⃗𝐿 ↦ 𝑆}} = ⋀ ⃗{{𝐿 ↦ 𝑆}}
{{𝐿 ↦ 𝑛}} = (𝐿 = 𝑛)
{{𝐿 ↦ •nat 𝑃⃗}} = ⋀ ⃗{{𝐿 ∶ 𝑃}}
{{𝐿 ↦ case𝑇 …[𝐿1 ↦ 𝐿2] … [𝐿3 ↦ 𝐿4] …}}

= ⋀ ({{𝐿1 = 𝐿3}}nat ⇒ {{𝐿2 = 𝐿4}}𝑇)…
{{𝐿 ∶ ((𝜆 (𝑋) (zero?𝑋)))}} = (𝐿 = 0)
{{𝐿 ∶ ((𝜆 (𝑋) (= 𝑋(+ 𝐿1 𝐿2))))}} = (𝐿 = (𝐿1 + 𝐿2))
{{𝐿1 = 𝐿2}}nat = (𝐿1 = 𝐿2)
{{𝐿1 = 𝐿2}}𝑇→𝑇 ′ = {{Σ(𝐿1) = Σ(𝐿2)}}
{{(case𝑇 [𝐿1 ↦ 𝐿2]… =case𝑇 [𝐿3 ↦ 𝐿4]…)}} =

({{(𝐿1 = 𝐿3) ⇒ (𝐿2 = 𝐿4)}}…)
{{(𝜆 (𝑋) 𝐿1) = (𝜆 (𝑋) 𝐿2)}} = {{𝐿1 = 𝐿2}}
{{(𝜆 (𝑋) (𝐿1 (𝑋𝐿2))) = (𝜆 (𝑋) (𝐿3 (𝑋𝐿4)))}} =

(∧ {{𝐿1 = 𝐿3}} {{𝐿2 = 𝐿4}})
{{(𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿1𝑋)𝑌 ))) = (𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿2𝑋)𝑌 )))}} =

{{𝐿1 = 𝐿2}}

Figure A.4: Translation of Heap

A.1.2 Theorems and Lemmas

This section presents the proofs for soundness and relative completeness of

counterexamples as well as supporting lemmas.

Soundness of counterexamples results from the fact that the reduction leaves

enough refinements to unambiguously steer all concretizations of a branch’s heap to

only follow that branch.

Relative completeness of counterexamples results from soundness of the reduc-

tion relation and completeness of the underlying solver for first-order data.

A.1.2.1 Soundness and Completeness of Counterexamples

Proof of theorem 1
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Proof. Follows from lemmas 4, 6, and 7.

Proof of theorem 2

Proof. Soundness of the reduction relation (lemma 5) ensures the error is discovered,

and the completeness of the first-order solver ensures the heap can be instantiated.

A.1.2.2 Lemmas on reduction relation

Lemma 4 (Completeness of Refinement in Reduction). Heap refinements are suf-

ficient to steer all concrete executions through the same path.

If (𝐸1, Σ1) ⟼ (𝐸2, Σ2) and Σ′ ⊑𝐹 Σ2 where Σ2(𝐿) is structurally similar

to Σ′(𝐹(𝐿)) for all 𝐿 ∈ dom(𝐹), and (𝐸′
1, Σ′) ⊑ (𝐸1, Σ1), then (𝐸′

1, Σ′) ⟼→

(𝐸′
2, Σ″) such that (𝐸′

2, Σ″) ⊑ (𝐸2, Σ2).

Proof. By case analysis of the reduction and approximation relations.

• Case (𝑉 , Σ1) ⟼ (𝐿,Σ[𝐿 ↦ 𝑉 ]) where 𝑉 is fully concrete: then (𝑉 , Σ′) ⟼

(𝐿′, Σ′[𝐿′ ↦ 𝑉 ]), which refines (𝐿,Σ[𝐿 ↦ 𝑉 ])

• Case (•𝑇𝐿, Σ1) ⟼ (𝐿,Σ[𝐿 ↦ •𝑇 ]) and (𝑉 ′, Σ′) ⊑ (•𝑇𝐿, Σ1): then (𝑉 ′, Σ′) ⟼

(𝐿′, Σ′[𝐿′ ↦ 𝑉 ′]), which refines (𝐿,Σ[𝐿 ↦ •𝑇 ])

• Case ((if 𝐿 𝐸0 𝐸1), Σ1) ⟼ (𝐸𝑖, Σ2) because 𝛿(Σ1, zero?, 𝐿) ∋ (𝑖, Σ2): then

by lemma 9, 𝛿(Σ′, zero?, 𝐿′) ∋ (𝑖, Σ″). Thus ((if 𝐿′𝐸′
0𝐸′

1), Σ′) ⟼ (𝐸′
𝑖 , Σ″),

which refines (𝐸𝑖, Σ2)

• Case ((O 𝐿⃗), Σ1) ⟼ (Α,Σ2): by lemma 9, ((O 𝐿⃗′), Σ′) ⟼ (Α′, Σ″), which

refines (Α,Σ2)
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• Case ((𝐿1𝐿2), Σ1) ⟼ ([𝑋/𝐿2]𝐸,Σ1), Σ1(𝐿1) = (𝜆 (𝑋) 𝐸) and Σ′(𝐿′
1) =

(𝜆 (𝑋) 𝐸′): then ((𝐿′
1𝐿′

2), Σ′) ⟼ ([𝑋/𝐿′
2]𝐸′, Σ′), which refines ([𝑋/𝐿2]𝐸,Σ1).

• Case ((𝐿1𝐿2), Σ1) ⟼ (𝐿𝑎, Σ1[𝐿1 ↦ case𝑇 […𝐿2 ↦ 𝐿𝑎 …]]) and ((𝐿′
1𝐿′

2), Σ′) ⊑

((𝐿1 𝐿2), Σ1) and Σ′(𝐿′
1) = case𝑇 […𝐿′

2 ↦ 𝐿′
𝑎 …]: then ((𝐿′

1 𝐿′
2), Σ′) ⟼

(𝐿′
𝑎, Σ′), which refines (𝐿𝑎, Σ1[𝐿1 ↦ case𝑇 […𝐿2 ↦ 𝐿𝑎 …]]).

• Case ((𝐿1 𝐿2), Σ1) ⟼ (𝐿𝑎, Σ1[𝐿1 ↦ (𝜆 (𝑋) 𝐿𝑎)]) and ((𝐿′
1 𝐿′

2), Σ′) ⊑

((𝐿1𝐿2), Σ1[𝐿1 ↦ (𝜆 (𝑋) 𝐿𝑎)]) and Σ′(𝐿1) = (𝜆 (𝑋) 𝐿′
𝑎): then ((𝐿′

1𝐿′
2), Σ′) ⟼

(𝐿′
𝑎, Σ′), which refines (𝐿𝑎, Σ1[𝐿1 ↦ (𝜆 (𝑋) 𝐿𝑎)])

• Case ((𝐿1𝐿2), Σ1) ⟼ ((𝐿3(𝐿2𝐿4)), Σ1[𝐿1 ↦ (𝜆 (𝑋) (𝐿3 (𝑋𝐿4)))]) and

((𝐿′
1 𝐿′

2), Σ′) ⊑ ((𝐿1 𝐿2), Σ1) and Σ′(𝐿′
1) = (𝜆 (𝑋) (𝐿′

3 (𝑋𝐿′
4))): then

((𝐿′
1 𝐿′

2), Σ′) ⟼ ((𝐿′
3 (𝐿′

2 𝐿′
4)), Σ′), which refines ((𝐿3 (𝐿2 𝐿4)), Σ1[𝐿1 ↦

(𝜆 (𝑋) (𝐿3 (𝑋𝐿4)))])

• Case ((𝐿1𝐿2), Σ1) ⟼ ((𝜆 (𝑌 ) ((𝐿3𝐿2)𝑌 )), Σ1[𝐿1 ↦ (𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿3𝑋)𝑌 )))])

and ((𝐿′
1 𝐿′

2), Σ′) ⊑ ((𝐿1 𝐿2), Σ1[𝐿1 ↦ (𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿3𝑋)𝑌 )))])

and Σ′(𝐿′
1) = (𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿′

3𝑋)𝑌 ))): then ((𝐿′
1 𝐿′)2), Σ′) ⟼

((𝜆 (𝑌 ) ((𝐿′
3𝐿′

2)𝑌 )), Σ′), which refines ((𝐿1𝐿2), Σ1[𝐿1 ↦ (𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿3𝑋)𝑌 )))])

Lemma 5 (Soundness of Reduction).

If (𝐸′
1, Σ′

1) ⟼ (𝐸′
2, Σ′

2) and (𝐸′
1, Σ′

1) ⊑ (𝐸1, Σ1) then (𝐸1, Σ1) ⟼→ (𝐸2, Σ2)

such that (𝐸′
2, Σ′

2) ⊑ (𝐸2, Σ2).

Proof. By case analysis of the reduction and approximation relations.
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• Case (𝑁,Σ′
1) ⟼ (𝐿′, Σ′

1[𝐿′ ↦ 𝑁]): We have (𝑁,Σ′
1) ⊑𝐹 (•nat𝐿 , Σ1),

and (•nat𝐿 , Σ1) ⟼ (𝐿,Σ[𝐿 ↦ •nat]) where (𝐿′, Σ′
1[𝐿′ ↦ 𝑁]) ⊑𝐹[𝐿↦𝐿′]

(𝐿,Σ[𝐿 ↦ •nat])

• Case ((if 𝐿′ 𝐸′
0 𝐸′

1), Σ′
1) ⟼ (𝐸′

𝑖 , Σ′
2) because 𝛿(Σ′

1, zero?, 𝐿′) ∋ (𝑖, Σ′
2), and

((if𝐿′𝐸′
0𝐸′

1), Σ′
1) ⊑ ((if𝐿𝐸0𝐸1), Σ1): By lemma 10, we have 𝛿(Σ1, zero?, 𝐿′) ∋

(𝑖, Σ2), thus ((if 𝐿 𝐸0𝐸1), Σ1) ⟼ (𝐸𝑖, Σ2) and (𝐸′
𝑖 , Σ′

2) ⊑ (𝐸𝑖, Σ2).

• Case ((O 𝐿⃗′), Σ′
1) ⟼ (Α′, Σ′

2) and ((O 𝐿⃗′), Σ′
1) ⊑ ((O 𝐿⃗), Σ1): By lemma

10.

• Case ((𝐿′
1 𝐿′

2), Σ′
1) ⟼ ([𝑋/𝐿′

2]𝐸′, Σ′
1) where Σ′

1(𝐿′
1) = (𝜆 (𝑋) 𝐸′) and

((𝐿′
1𝐿′

2), Σ′
1) ⊑ ((𝐿1𝐿2), Σ1) where Σ1(𝐿1) = (𝜆 (𝑋) 𝐸): then ((𝐿1𝐿2), Σ1) ⟼

([𝑋/𝐿2]𝐸,Σ1) where ([𝑋/𝐿′
2]𝐸′, Σ′

1) ⊑ ([𝑋/𝐿2]𝐸,Σ1)

• Case (𝐸′
1, Σ′

1) ⟼ (𝐸′
2, Σ′

2) where 𝐸2 ≠ Α and (𝐸′
1, Σ′

1) ⊑ ((𝐿1 𝐿2), Σ1)

because Σ2(𝐿1) is an opaque function: then ((𝐿1 𝐿2), Σ1) continues to ap-

proximate (𝐸2, Σ′
2) by the same rule.

• Case (𝐸′
1, Σ′

1) ⟼ (Α′, Σ′
2) where (𝐸′

1, Σ′
1) ⊑ ((𝐿1𝐿2), Σ1) because Σ2(𝐿1) =

case𝑇 […]:

– SubCase Α′ = err𝐿O: By the approximation relation’s premise, 𝐿 ∉ 𝐿⃗,

so the error coming from the opaque program portion is approximated by

any expression.

– SubCase Α′ = 𝐿′: The opaque application either returns a fresh opaque

value or an existing value already known to approximate 𝐿′.
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• Case (𝐸′
1, Σ′

1) ⟼ (Α′, Σ′
2) where (𝐸′

1, Σ′
1) ⊑ ((𝐿1𝐿2), Σ1) because Σ2(𝐿1) =

(𝜆 (𝑋) 𝐿𝑎):

– SubCase Α′ = err𝐿O: By the approximation relation’s premise, 𝐿 ∉ 𝐿⃗,

so the error coming from the opaque program portion is approximated by

any expression.

– SubCase Α′ = 𝐿′
𝑎: By the approximation relation’s premise, (((𝜆 (𝑋) 𝐸′)𝐿′

𝑥), Σ′
0) ⟼

(𝐿′
𝑎, Σ′

1) where (𝜆 (𝑋) 𝐸′) is a constant function approximated by 𝐿𝑎.

• Case (𝐸′
1, Σ′

1) ⟼ (Α′, Σ′
2) where (𝐸′

1, Σ′
1) ⊑ ((𝐿1𝐿2), Σ1) because Σ2(𝐿1) =

(𝜆 (𝑋) (𝐿3 (𝑋𝐿4))):

– SubCase Α′ = err𝐿O where 𝐿 ∉ 𝐿⃗: the error coming from the opaque

program portion is approximated by any expression.

– SubCase Α′ = err𝐿O where 𝐿 ∈ 𝐿⃗: the context (𝐿3([ ]𝐿4)) discovers the

error (lemma 8).

– SubCase Α′ = 𝐿′
𝑎: the opaque application returns a fresh opaque value.

• Case (𝐸′
1, Σ′

1) ⟼ (Α′, Σ′
2) where (𝐸′

1, Σ′
1) ⊑ ((𝐿1𝐿2), Σ1) because Σ2(𝐿1) =

(𝜆 (𝑋) (𝜆 (𝑌 ) ((𝐿3𝑋)𝑌 ))):

– SubCase Α′ = err𝐿O: the error source 𝐿 must be from the opaque program

portion because (((𝜆 (𝑋) 𝐸′) 𝐿′
𝑥), Σ′

0) ⟼→ (𝐸′
1, Σ′

1) and (𝜆 (𝑋) 𝐸′)

does not directly apply its argument in 𝐸′.

– SubCase Α′ = 𝐿′
𝑎: the value is approximated by a freshly allocated func-

tion (𝜆 (𝑌 ) ((𝐿3𝐿′
𝑥)𝑌 )).
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Lemma 6. If a concrete heap instantiates an abstract heap, it instantiates any other

heap that reduces to the abstract heap.

If Σ′ ⊑ Σ2 and (𝐸1, Σ1) ⟼ (𝐸2, Σ2) then Σ′ ⊑ Σ1.

Proof. By case analysis of the reduction (𝐸1, Σ1) ⟼ (𝐸2, Σ2). In each case, either

Σ1 is the same as Σ2, is a restriction of Σ2, or maps the same location in Σ2 to a

more approximate value.

Lemma 7. If a heap approximates a concrete heap, it approximates any heap that

concrete heap reduces to.

If (𝐸′
1, Σ′

1) ⟼ (𝐸′
2, Σ′

2) and Σ′
1 ⊑ Σ, then Σ′

2 ⊑ Σ.

Proof. By case analysis of the reduction (𝐸′
1, Σ′

1) ⟼ (𝐸′
2, Σ′

2). In each case, either

Σ′
2 is the same as Σ′

1 or extends Σ′
1.

Lemma 8.

If (ℰ[𝐿′
𝑥], Σ′

1) ⟼→ (err𝐿O, Σ′
2) and (𝐿′

𝑥, Σ′
1) ⊑𝐿⃗ (𝐿𝑥, Σ1) then ((𝐿1(𝐿𝑥𝐿2)), Σ1) ⟼

→ (err𝐿O, Σ2).

Proof. Without loss of generality, any context triggering an error from the concrete

program portion can be reduced to the minimal form: ℰ ∶∶= [ ] | (ℰ𝐿), which the

context (𝐿1 ([ ] 𝐿2)) produces an approximation of.

A.1.2.3 Lemmas on Primitives

Lemma 9 (Completeness of Refinement in Primitives).

If 𝛿(Σ,O, 𝐿) ∋ (𝑉 ,Σ1) and (𝐿′, Σ′) ⊑ (𝐿,Σ) then 𝛿(Σ′,O, 𝐿′) ∋ (𝑉 ′, Σ′
1) such

that (𝑉 ′, Σ′
1) ⊑ (𝑉 ,Σ1).
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Proof. By inspection of 𝛿 and cases of O and the approximation relelation.

Lemma 10 (Soundness of Primitives).

If (𝐿′, Σ′
1) ⊑ (𝐿,Σ1) and 𝛿(Σ′

1,O, 𝐿′) ∋ (Α′, Σ′
1), then 𝛿(Σ1,O, 𝐿) ∋ (Α,Σ2) such

that (Α′, Σ′
2) ⊑ (Α,Σ2).

Proof. By case analysis of O.

Lemma 11. Primitives only refine the heap.

If 𝛿(Σ1,O, 𝐿) ∋ (Α,Σ2) and Σ′ ⊑ Σ2, then Σ′ ⊑ Σ1.

Proof. By case analysis of O.

Lemma 12. Primitives only refine the heap.

If 𝛿(Σ′
1,O, 𝐿) ∋ (Α,Σ′

2) and Σ′
1 ⊑ Σ, then Σ′

2 ⊑ Σ.

Proof. By case analysis of O.

A.2 Verification Soundess Proof

A.2.1 Soundness

This appendix establishes the formal soundness of the symbolic execution se-

mantics, justifying its use for program verification. The mechanized proof of sound-

ness is available online at https://github.com/philnguyen/soft-contract/tree/

popl18-ae/mechanized.
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𝐸 ⊑𝐹 𝐸′

(𝜆 (𝑋) 𝐸) ⊑𝐹 (𝜆 (𝑋) 𝐸′) 𝑁 ⊑𝐹 𝑁 O ⊑𝐹 O 𝑋 ⊑𝐹 𝑋

𝐸1 ⊑𝐹 𝐸′
1 𝐸2 ⊑𝐹 𝐸′

2 𝐿 ≠ L•
(𝐸1𝐸2)

𝐿 ⊑𝐹 (𝐸′
1𝐸′

2)
𝐿

𝐸1 ⊑𝐹 𝐸′
1 𝐸2 ⊑𝐹 𝐸′

2 𝐸3 ⊑𝐹 𝐸′
3

(if 𝐸1𝐸2𝐸3) ⊑𝐹 (if 𝐸′
1𝐸′

2𝐸′
3)

𝐸 ⊑𝐹 𝐸′

(set! 𝑋 𝐸′) ⊑𝐹 (set! 𝑋 𝐸′)

𝐸1 ⊑𝐹 𝐸′
1 𝐸2 ⊑𝐹 𝐸′

2
(𝐸1 → (𝜆 (𝑋) 𝐸2)) ⊑𝐹 (𝐸′

1 → (𝜆 (𝑋) 𝐸′
2))

𝐸1 ⊑𝐹 𝐸′
1 𝐸2 ⊑𝐹 𝐸′

2 L• ∉ {𝐿′, 𝐿″}
(mon𝐿𝐿′ 𝐸1 𝐸2) ⊑ (mon𝐿𝐿′ 𝐸′

1 𝐸′
2)

free(𝐸•) ⊆ {𝑋}
(𝜆 (𝑋) 𝐸•) ⊑𝐹 • 𝑁 ⊑𝐹 •

Figure A.5: Approximation between expressions

A.2.1.1 Approximation

The approximation relation (⊑) between components is indexed by an ab-

straction map (𝐹 ) from each address in the instantiated component to one in the

approximating component.

Structural cases are straightforward. In non-structural cases where the right-

hand side is •, some components in the left-hand side are enforced by predicate

restrictedF(⋅) that all controls (𝐸•) are purely instantiated, and all addresses only ref-

erence either values instantiated by unknown code or those from the set of “leaked”

values from the known code. The latter property is established by making 𝐹 map

all “unknown” addresses to the special address •, which holds • and the set of all

“leaked” values from the transparent code.
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𝑁 ⊑𝐹 𝑁 O ⊑𝐹 O
𝐸 ⊑𝐹 𝐸′ Ρ ⊑𝐹 Ρ′ Φ ⊑𝐹 Φ′

Clo(𝑋,𝐸,Ρ)Φ ⊑𝐹 Clo(𝑋,𝐸′, Ρ′)Φ′

free(𝐸•) ⊆ {𝑋} restrictedF(Ρ)
Clo(𝑋,𝐸•, Ρ)Φ ⊑𝐹 •

𝑉 ⊑𝐹 𝑉 ′ 𝑆 ⊑ 𝑆′

(𝑉 , 𝑆) ⊑𝐹 (𝑉 ′, 𝑆′) 𝑆 ⊑ ∅

𝑆 ⊑ 𝑆

Figure A.6: Approximation between runtime values

A.2.1.2 Proof

Lemma 13 (Reduction preserves approximation).

If 𝜍1 ⊑𝐹 𝜍′1 and 𝜍1 ⟼ 𝜍2 then there is some 𝜍′2 and 𝐹 ′ such that 𝜍2 ⊑𝐹 ′ 𝜍′2 and

𝜍′1 ⟼→ 𝜍′2

Proof. By case analysis on the derivation of 𝜍1 ⊑𝐹 𝜍′1 and 𝜍1 ⟼ 𝜍2.

• Case ℰ[(𝐸,Ρ)] ⊑𝐹 ℰ′[(𝐸′, Ρ′)] where the distr relation holds: Next states

continue to approximate by rule [Distr].

• Case ℰ[(𝑈, Ρ)] ⊑𝐹 ℰ′[(𝑈 ′, Ρ′)]: Next states continue to approximate by rule

[Lit]

• Case ℰ[(𝑋,Ρ)] ⊑𝐹 ℰ′[(𝑋, Ρ′)]: Next states continue to approximate by rule

[Var], and existing approximation between environments, store-caches, and

stores.

• Case ℰ[(𝑁,Ρ)] ⊑𝐹 ℰ′[(•, Ρ′)]: Next states step by rule [Lit]. The new states
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approximate because 𝑁 ⊑𝐹 •.

• Case ℰ[(set! (𝑋,Ρ) 𝑊)] ⊑𝐹 ℰ′[(set! (𝑋,Ρ′) 𝑊 ′)]: Next states continue to

approximate by rule [Set].

• Case ℰ[(if𝑊 𝐶1𝐶2)] ⊑𝐹 ℰ′[(if𝑊 ′𝐶′
1𝐶′

2)]: By soundness of relation feasible?

and that 𝑊 ⊑𝐹 𝑊 ′, RHS must at least reduce through the rule that applies to

LHS (either [CondTrue] or [CondFalse]), which preserves approximation.

• Case ℰ[(𝑊1𝑊2)𝐿] ⊑𝐹 ℰ′[(𝑊 ′
1 𝑊 ′

2)𝐿]:

– If 𝑊 ′
1 is concrete, both states must reduce through the same reduction

rule and the next states preserve the approximation relation.

– If 𝑊 ′
1 is (•, 𝑆), 𝑊1 must contain purely instantiated code by the defini-

tion of 𝑊1 ⊑ 𝑊 ′
1. By assumption, 𝑊1’s environment Ρ only has access

to “leaked” values approximated by those at address •. The execution of

(𝑊1 𝑊2) now has access to 𝑊2 in addition, which is soundly approxi-

mated by rule [AppOpq] extending • to containt the approximating value

𝑊 ′
2. (If 𝛼 is the new address pointing to the value at 𝑊2, the new ab-

straction map is F[𝛼 ↦ •]). The opaque application with store extended

at • continues to approximate the arbitrary state that (𝑊1𝑊2) steps to.

• Case (ℰ[𝐶],𝑀,Φ,Σ) ⊑𝐹 (ℰ′[(• [𝑊])],𝑀 ′, Φ′, Σ′) because restrictedF(𝐶) and

ℰ ⊑𝐹 ℰ′[( • [ ])]:

Either the same non-structural approximation continues to hold between RHS

and LHS’s next state, or if LHS transfers control to transparent code by ap-
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plying a function, the function must be approximated by one value in Σ′(•),

which [AppOpq] soundly approximates by non-deterministically applying one.

Proof of theorem 3

Proof. The proof proceeds by rule-induction on the derivation of (⟼→) in the con-

crete error trace. The base case (reflexive) vacuously holds. The inductive case

(transitive) holds by lemma 13, where for each single reduction step (⟼) on the

concrete state, the abstract state continues to approximate the concrete state in zero

or more steps.

A.3 Proofs of Soundness and SCT-Completeness for Termination

Contract

Proof of Theorem 4

Proof. Consider an infinite sequence of function calls. By Lemma 14 below, there’s

a closure that keeps being called. The sequence of arguments to this closure cannot

satisfy the size-change property an infinite number of times. The diverging program

that results in this call sequence will be killed.

Lemma 14 (Recurring closure). Along any infinite sequence of function calls, there

is at least one closure that is called infinitely often.

Proof. Consider the sequence of closures

Clo(𝑋1, 𝐸1, Ρ1),… ,Clo(𝑋𝑖, 𝐸𝑖, Ρ𝑖),…
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along the infinite call sequence.

• Case 1: These come from a finite set. At least one must repeat infinitely often.

• Case 2: There are fresh closures that keep being generated dynamically. Be-

cause new infinite closures must be generated through finite 𝜆 forms, there

must be some infinite subset of closures Clo(𝑋𝑖, 𝐸𝑖,_) generated by one same

form (𝜆 (𝑋𝑖) 𝐸𝑖). Let Clo(𝑋𝑚, 𝐸𝑚,_) be the set of closures whose body 𝐸𝑚

contains this form (𝜆 (𝑋𝑖) 𝐸𝑖).

– Claim: There must be some closure Clo(𝑋𝑗, 𝐸𝑗, Ρ𝑗) that keeps being called

infinitely often.

– Proof: By induction on the lexical depth of the term (𝜆 (𝑋𝑚) 𝐸𝑚).

∗ Subcase 1: (𝜆 (𝑋𝑚) 𝐸𝑚) has lexical depth 0 (i.e. it is a top-level

𝜆). Because it is not enclosed by any 𝜆, the closure Clo(𝑋𝑚, 𝐸𝑚, {})

is created only once. By assumption, Clo(𝑋𝑚, 𝐸𝑚, {}) is called in-

finitely often to dynamically create the infinite closure set Clo(𝑋𝑖, 𝐸𝑖,_).

∗ Subcase 2: (𝜆 (𝑋𝑚) 𝐸𝑚) is directly enclosed by (𝜆 (𝑋𝑛) 𝐸𝑛).

· Subsubcase 2a: The set Clo(𝑋𝑚, 𝐸𝑚,_) is finite: at least one of

them is called infinitely often to generate the infinite closure set

Clo(𝑋𝑖, 𝐸𝑖,_).

· Subsubcase 2b: The set Clo(𝑋𝑚, 𝐸𝑚,_) is infinite: apply the

induction hypothesis on (𝜆 (𝑋𝑛) 𝐸𝑛) (where new 𝑖 is 𝑚 and

new 𝑚 is 𝑛).
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{} ⊑𝐹 {}
Ρ ⊑𝐹 Ρ′

Ρ[𝑋 ↦ 𝛼] ⊑𝐹 Ρ′[𝑋 ↦ 𝐹(𝛼)]
𝑀 ⊑𝐹 𝑀 ′ 𝑊 ⊑𝐹 𝑊 ′

𝑀[𝑋 ↦ 𝑊] ⊑𝐹 𝑀 ′[𝑋 ↦ 𝑊 ′]

𝐶1 ⊑𝐹 𝐶′
1 𝐶2 ⊑𝐹 𝐶′

2
ℰ[(if [ ] 𝐶1𝐶2)] ⊑𝐹 ℰ′[(if [ ] 𝐶′

1𝐶′
2)]

𝐶 ⊑𝐹 𝐶′ ℰ ⊑𝐹 ℰ′ 𝐿 ≠ L•
ℰ[([ ] 𝐶)𝐿] ⊑𝐹 ℰ′[([ ] 𝐶′)𝐿]

𝑊 ⊑𝐹 𝑊 ′ ℰ ⊑𝐹 ℰ′ 𝐿 ≠ L•
ℰ[(𝑊 [ ])𝐿] ⊑𝐹 ℰ′[(𝑊 ′ [ ])𝐿]

ℰ ⊑𝐹 ℰ′ Ρ ⊑𝐹 Ρ′

ℰ[(set! (𝑋, Ρ) [ ])] ⊑𝐹 ℰ′[(set! (𝑋, Ρ′) [ ])]

ℰ ⊑𝐹 ℰ′ 𝑀 ⊑𝐹 𝑀 ′

ℰ[(rt ⃗𝑌
𝑋 𝑆 𝑀 Φ [ ])] ⊑𝐹 ℰ′[(rt ⃗𝑌

𝑋 𝑆 𝑀 ′ Φ [ ])]

ℰ ⊑𝐹 ℰ′ 𝐶 ⊑𝐹 ℰ′ L• ∉ {𝐿,𝐿′}
ℰ[(mon𝐿𝐿′ [ ] 𝐶)] ⊑𝐹 ℰ′[(mon𝐿𝐿′ [ ] 𝐶′)]

ℰ ⊑𝐹 ℰ′ 𝑊 ⊑𝐹 𝑊 ′ L• ∉ {𝐿,𝐿′}
ℰ[(mon𝐿𝐿′ 𝑊 [ ])] ⊑𝐹 ℰ′[(mon𝐿𝐿′ 𝑊 ′ [ ])]

ℰ ⊑𝐹 ℰ′

ℰ ⊑𝐹 ℰ[( • [ ])]

restrictedF(𝐶) ℰ ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]
ℰ[([ ] 𝐶)L•] ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]

restrictedF(𝑊) ℰ ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]
ℰ[(𝑊 [ ])L•] ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]

restrictedF(𝐶1) restrictedF(𝐶2) ℰ ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]
ℰ[(if [ ] 𝐶1𝐶2)] ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]

restrictedF(Ρ) ℰ ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]
ℰ[(set! (𝑋, Ρ) [ ])] ⊑𝐹 ℰ′[( • 𝑊 ′)𝐿]

Σ ⊑𝐹 Σ′ 𝑉 ⊑𝐹 𝑉 ′

Σ ⊔ [𝛼 ↦ 𝑉 ] ⊑𝐹 Σ′ ⊔ [𝐹(𝛼) ↦ 𝑉 ′]

𝐶 ⊑𝐹 𝐶′ 𝑀 ⊑𝐹 𝑀 ′ Φ ⊑𝐹 Φ′ Σ ⊑𝐹 Σ
(𝐶,𝑀,Φ,Σ) ⊑𝐹 (𝐶′,𝑀 ′, Φ′, Σ′)

restrictedF(𝐶) ℰ ⊑𝐹 ℰ′[( • [ ])] 𝑀 ⊑𝐹 𝑀 ′ Φ ⊑𝐹 Φ′ Σ ⊑𝐹 Σ′

(ℰ[𝐶],𝑀,Φ,Σ) ⊑𝐹 (ℰ′[( • 𝑊)],𝑀 ′, Φ′, Σ′)

Figure A.7: Approximation between machine components
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restrictedF(𝑁) restrictedF(O)
restrictedF(Ρ)

restrictedF(Clo(𝑋,𝐸•, Ρ)Φ)

restrictedF({})
restrictedF(Ρ) 𝐹(𝛼) = •

restrictedF(Ρ[𝑋 ↦ 𝛼])
restrictedF(𝑉 )

restrictedF((𝑉 , 𝑆))

restrictedF(Ρ)
restrictedF((𝐸•, Ρ))

restrictedF(𝐶1) restrictedF(𝐶2)
restrictedF((𝐶1𝐶2)

L•)

restrictedF(𝐶1) restrictedF(𝐶2) restrictedF(𝐶3)
restrictedF((if 𝐶1𝐶2𝐶3))

restrictedF(𝐶) restrictedF(Ρ)
restrictedF((set! (𝑋, Ρ) 𝐶))

Figure A.8: Restriction on runtime components instantiated by unknown code
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Prim

Ρ ⊢ O ⇓ O

Base

Ρ ⊢ 𝑁 ⇓ 𝑁
Lam

Ρ ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ)

Var

Ρ ⊢ 𝑋 ⇓ Ρ(𝑋)

App-Clo
Ρ ⊢ 𝐸 ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′) Ρ ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥

Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥] ⊢ 𝐸′ ⇓ Α
Ρ ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⇓ Α

SC-Err

Ρ,⊥ ⊢ 𝐸 ⬇ errorSC

SC-Prim

Ρ,𝑀 ⊢ O ⬇ O

SC-Base

Ρ,𝑀 ⊢ 𝑁 ⬇ 𝑁

SC-Lam

Ρ,𝑀 ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

SC-Var

Ρ,𝑀 ⊢ 𝑋 ⬇ Ρ(𝑋)

SC-If-T
Ρ,𝑀 ⊢ 𝐸 ⬇ 0 Ρ,𝑀 ⊢ 𝐸1 ⬇ Α

Ρ,𝑀 ⊢ (if0 𝐸 𝐸1𝐸2) ⬇ Α

SC-If-F
Ρ,𝑀 ⊢ 𝐸 ⬇ 𝑉 where 𝑉 �0 Ρ,𝑀 ⊢ 𝐸2 ⬇ Α

Ρ,𝑀 ⊢ (if0 𝐸 𝐸1𝐸2) ⬇ Α

SC-App-Clo
Ρ,𝑀 ⊢ 𝐸 ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′) Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥

Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], update(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ 𝐴
Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⬇ 𝐴

Figure A.9: Standard and Terminating semantics of 𝜆SCT.
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[Expressions] 𝐸 ∶∶= O | 𝑁 | (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) | 𝑋
| (𝐸 ⃗⃗⃗⃗⃗ ⃗𝐸) | (term/c 𝐸)

[Value Literals] 𝑁 ∶∶= 0 | − 1| 1 | …
[Primitives] O ∶∶= + | cons | car |cdr | …

[Values] 𝑉 ∶∶= O | 𝑁 | (𝑉 , 𝑉 ) | Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ)
| term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ))

[Size-change Table] 𝑀 ∈ 𝑉 ⇀ ⃗⃗⃗⃗⃗ ⃗𝑉 × 𝐺
[Size-change Graph] 𝐺 ∈ 𝒫(ℕ × 𝑅 × ℕ)

[Change] 𝑅 ∶∶= → | →=

Figure A.10: Syntax of 𝜆CSCT.
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Prim

Ρ ⊢ O ⇓ O

Base

Ρ ⊢ 𝑁 ⇓ 𝑁
Lam

Ρ ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

Var

Ρ ⊢ 𝑋 ⇓ Ρ(𝑋)

Wrap-Lam
Ρ ⊢ 𝐸 ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

Ρ ⊢ (term/c 𝐸) ⇓ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ))

Wrap-Prim
Ρ ⊢ 𝐸 ⇓ O

Ρ ⊢ (term/c 𝐸) ⇓ O

App-Clo
Ρ ⊢ 𝐸 ⇓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′) Ρ ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥

Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥] ⊢ 𝐸′ ⇓ Α
Ρ ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⇓ Α

App-Term
Ρ ⊢ 𝐸 ⇓ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′)) Ρ ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Ρ𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥

Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], update({},Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ Α
Ρ ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⇓ Α

SC-Err

Ρ,⊥ ⊢ 𝐸 ⬇ errorSC

SC-Prim

Ρ,𝑀 ⊢ O ⬇ O

SC-Base

Ρ,𝑀 ⊢ 𝑁 ⬇ 𝑁

SC-Lam

Ρ,𝑀 ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

SC-Var

Ρ,𝑀 ⊢ 𝑋 ⬇ Ρ(𝑋)

SC-Wrap-Lam
Ρ,𝑀 ⊢ 𝐸 ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ)

Ρ,𝑀 ⊢ (term/c 𝐸) ⬇ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸, Ρ))

SC-Wrap-Prim
Ρ,𝑀 ⊢ 𝐸 ⬇ O

Ρ,𝑀 ⊢ (term/c 𝐸) ⬇ O

SC-App-Clo
Ρ,𝑀 ⊢ 𝐸 ⬇ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′) Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥

Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], update(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ Α
Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⬇ Α

SC-App-Term
Ρ,𝑀 ⊢ 𝐸 ⬇ term/c(Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′)) Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥
Ρ′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑋 ↦ 𝑉𝑥], update(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ⬇ Α

Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ⬇ Α

Figure A.11: Semantics of 𝜆CSCT.
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CC-Prim

Ρ,𝑀 ⊢ O ↓↓ O, {𝑀}
CC-Base

Ρ,𝑀 ⊢ 𝑁 ↓↓ 𝑁, {𝑀}

CC-Lam

Ρ,𝑀 ⊢ (𝜆 ( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋) 𝐸) ↓↓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸, Ρ), {𝑀}

CC-App
Ρ,𝑀 ⊢ 𝐸 ↓↓ Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋, 𝐸′, Ρ′), {𝑀 ′ …} Ρ,𝑀 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥 ↓↓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗{𝑀𝑥 …}

Ρ′⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗[𝑋↦𝑉𝑥], ext(𝑀,Clo( ⃗⃗⃗ ⃗⃗ ⃗⃗𝑋,𝐸′, Ρ′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑉𝑥) ⊢ 𝐸′ ↓↓ 𝐴, {𝑀″…}
Ρ,𝑀 ⊢ (𝐸 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸𝑥) ↓↓ 𝐴, {𝑀 ′ …} ∪ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗{𝑀𝑥 …} ∪ {𝑀″…}

Figure A.12: Call-sequence Semantics of 𝜆CSCT.
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