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Abstract. The rank-revealing URV decomposition is a useful tool for the subspace tracking
problem in digital signal processing. Updating the decomposition is a stable process. However, down-
dating a rank-revealing URV decomposition could be unstable because the R factor is ill-conditioned.
In this paper, we review some existing downdating algorithms for the full-rank URV decomposition in
the absence of U and develop a new combined algorithm. We also show that the combined algorithm
has relational stability. For the rank-revealing URV decomposition, we review a two-step method
that applies full-rank downdating algorithms to the signal and noise parts separately. We compare
several combinations of the full-rank algorithms and demonstrate good performance of our combined
algorithm.
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1. Introduction. The rank-revealing URV decomposition [12] is a useful tool for
subspaces tracking problems in digital signal processing. Updating the decomposition
is a stable process requiring only O(m?) operations where m is the number of sensors.
Applying this updating technique on data sampled by the exponential windowing
method can have efficient and effective performance [4, 8].

In contrast to the exponential windowing method, some practical signal processing
applications use the rectangular windowing method to collect the sample data matrix
X. Since the sensors, or receivers, collect the data sequentially, a large set of data
will be accumulated over time. Even with a small forgetting factor in the exponential
windowing method, the earlier data might still distort or perturb certain estimates
and lead to inaccurate results. For example, the location of a moving signal is better
specified by the later data than by the earlier data, and it is better to reduce the
effect of earlier data.

The rectangular windowing method multiplies the data z; collected at time ¢, 7 <
t by a window function of size n defined as

W |1 fori=tt-1,...,t—n+1
wn,i(7) { 0 otherwise

Thus the earlier data are truncated, and the data matrix will be always the same size.

This function works like a window frame that only admits n pieces of data, and we

shift it forward to use the most recent n samples of data. The shift is illustrated in

Figure 1.

Let m be the length of the data vector. At time ¢, to compute a URV decom-
position of the data matrix in the window frame requires addition and deletion of a
row. Thus if there is a downdating algorithm that computes a URV decomposition
of the matrix resulting from deleting the first data in the window at time ¢ — 1 and
only requires O(m?) time, then applying the downdating and updating algorithms
sequentially will yield a new URV decomposition in O(m?) time.
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Fi1c. 1. The shift of the n size window frame

Consider an n x m data matrix X, where n > m. Then there exist unitary
matrices U and V of order n and m respectively and an upper triangular matrix R of

order m such that
=U [ R ] vH,

M) X:l)? 0

where xf is the first row of the data matrix X. Let Z = XV and ¥ = V.
Suppose that we only consider downdating algorithms using two-sided orthogonal
transformations. Then the downdating problem is to find an m x m upper triangular
matrix 7' and unitary matrices () and P such that

@) | =] ap ]

Let W be a permutation matrix that shifts the last row to be the first row. The
product of two unitary matrices U and diag(QW, I,_pm—1) will yield a new unitary
matrix with the special structure

po 07

(3) 0 7

where |p| = 1. Therefore, with V = VP, we have

y:ﬁvq&ﬂ
0
as a URV decomposition of X.

For those methods described in [7] and [9], since the matrix U is explicitly saved,
it can be easily modified to the form in (3). However, the matrix U is seldom saved in
most applications because the window size is large. Therefore, we only discuss those
algorithms that do not use U. In this paper, we first review some existing downdating
algorithms for the full-rank URV decomposition and develop a new combined algo-
rithm in §2. For the rank-revealing URV decomposition, we review a two-step method
that applies full-rank downdating algorithms to the signal and noise parts separately
in §3. We discuss the relational stability for those downdating algorithms in §4. The
experimental results will be given in §5. Finally, we state conclusions in §6.
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2. Full-rank algorithms. We first review several existing algorithms. Assume
that the given data matrix X has full rank m. Then we design a new combined
algorithm.

2.1. LINPACK and CSNE algorithms. Let us start from the algorithms
without applying right plane rotations, i.e., P = I in (2). In this case, RY R forms a
Cholesky factorization of the matrix Z# Z. The original problem can be restated as
finding an upper triangular matrix 7" such that

THT = RER — 221 |

which amounts to downdating a Cholesky factorization. The method in the LINPACK
package [6] described by Stewart [11] for downdating a Cholesky factorization is a
popular choice to solve this kind of problem.

Note that U[R¥0]# is a QR factorization of Z. The strategy of the LINPACK
algorithm is to compute u? | the first row of the matrix U, explicitly in order to form
the new U factor with the structure in (3). Since the original matrix X has full rank,
the matrix R is also full-rank and [uj - - -u,,], the first m components of u, can be
uniquely determined by solving the triangular system [uy - - - u, | R = 2%

Actually, the first m components of each row of U can be computed in a similar
way, and the first m columns of U are well determined. Therefore, if we partition U
as

v=[ U, U, |

m n—1m

then the only constraint for the last (n — m) components of uf! is that they are
the first components of vectors that form an orthonormal basis for the orthogonal
complement of Uy. In order to simplify the calculation in downdating, we are free to
choose [a 0 - -0] as the last (n — k) components of uf!| where

a:\/l—H [ur - um] 115 -

Now, we determine a sequence of plane rotations Qy, Kk =m,...,1 of order m+ 1 in
the (k,m + 1) plane such that
(4) [uluma]Qlez[OOﬂ]a

with |p] = 1. Then the downdated triangular matrix 7" results from computing

R T
) @@ [ =[5 ]
We now state the LINPACK algorithm formally.
ALGORITHM 2.1. LINPACK

Compute [ug - - - uy,,] by solving [uy - - -up, R = 2.
Compute o = \/1 — || Ty - um] )3 -
Determine plane rotations Qp,, . .., Q1 satisfying (4).

Compute the downdated triangular matrix 7" using (5).
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Let one flop be one operation (+, —, #, or /). The LINPACK algorithm requires
4m?+0(m) flops resulting from m?+O(m) flops in triangular solving and 3m?+0(m)
flops in plane rotations.

It is possible that the matrix R is ill-conditioned. For example, as the signal-to-
noise ratio (SNR) or the sensor-to-signal ratio (m/d) increases, the smallest singular
value of the matrix R tends to zero. Under floating-point arithmetic, a breakdown
might occur in the LINPACK algorithm when there is a negative computed value
under the square root at step 2. In order to have a more accurate result, Bjorck,
Park, and Eldén [2] developed a method called Corrected SemiNormal Equations
(CSNE) using the original data matrix in the refinement of [u; - - - uy,] and «.

Let @ be the computed result at step 1 in the LINPACK algorithm. Since R is
nonsingular, there is a vector w such that Rw = u. The CSNE algorithm is based on
the seminormal equations

RERw = 7He, |

where e is the first unit vector of length n. To apply one step of refinement, we need
to find a vector dw such that

RERSw = 7y |

where r = e; — Zw 1s the residual. Let éu = Réw. Thus we have corrected vectors
w. = w+ 6w and 4. = u + éu. For the correction of the scalar «, we have

a0 = Ju—adls
= |UHe — UMy [ ? ] w2
= ||61 — chHz .

We now state the algorithm formally.

ALGORITHM 2.2. CSNE

Compute u by solving R7u = 2.

Compute w by solving Rw = u and compute the residual r = e; — Zw.
Compute 6u by solving R¥su = ZHr and let u = u + éu.

Compute dw by solving Réw = éu and let r = r — Zéw.

Compute a, = ||r]|2.

Determine plane rotations @1, ..., Q@ satisfying (4).

Compute the downdated triangular matrix 7" using (5).

Nk

There are four linear triangular systems to solve and three matrix-vector multi-
plications. The CSNE algorithm needs 6mn + 7m? + O(m) flops.

2.2. Chambers’ algorithm. Chambers’ algorithm [5] also avoids applying right
rotations. The idea is quite simple. With P = I if we multiply (2) by the unitary
matrix (), we have the updating problem

o ]=e[ ]

Then we examine the updating process and reverse it to obtain a solution to our
downdating problem.



The most common way for solving this updating problem is to apply a sequence
of left plane rotations Qr, ¥ = 1,...,m of order m + 1 in the (k, m 4+ 1) plane to
eliminate the row vector 2. Note that each rotation only modifies one row of 7' to
compute the corresponding row of R. Therefore, we can reverse each rotation process
and recover the matrix 7' row by row.

For ()1, the computations can be expressed as

6) Tz Timo | c s ti1 ti2 o tim
0 zo - Znm -5 ¢ 2 z9 o Zm |
where
i z
(7) c:%,ands:ﬁ.
VT + 29 l9; + 27

Now suppose that [ri;---71,] and [z1 - z,] are known. Our goal is to compute
[tll . 'tlm] and [52 e Em].

Since r11 = \/t%l + z%, we first have
2

— 2
tll = 11— %1 -

Once t1; is known, the scalars ¢ and s are computed by (7). From the first row in (6)
for computing r1;,7 = 2, ..., m, we have

(8) t1; = (ry; — szi)/c.
Applying the result in (8) to the second row in (6), we obtain
(9) Z; = cz; — sty; .

Therefore, we have reduced the problem size by one with a new updated (or down-
dated) vector [Z2- - -Zn]. Repeating this process will yield the downdated upper tri-
angular matrix 7'.

The algorithm is formally stated as the following.

ALGORITHM 2.3. CHAMBERS

(H = 21V
Fork=1,2,...,m
1. Compute tj; = r%k — zg
2. Ifk<m
Compute ¢ = tgg/rpr and s = z /rpg.
Compute (t; 41 - - tkm) using (8).
Replace (zk41 -+ 2m) by (Zp41 -+ Zm) in (9).
End if
End for

Chambers’ algorithm requires only 3m? + O(m) flops. However, the algorithm
breaks down when the argument of the square root at step 1 is non-positive for & < m,
and there is no way to recover. When the breakdown happens at k¥ = m, we know
that ¢, is quite small and Park and Eldén [10] suggest letting 4,5, = 0. Thus the
matrix 7" possibly has rank one less than the matrix R. It will be proved in section 4
that this assumption is within an acceptable relative error bound.
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2.3. Reduction algorithm. We now introduce an algorithm that applies right
rotations, the reduction algorithm, described by Park and Eldén [10]. The reduction
algorithm works on the problem (2) directly. We first determine a sequence of right
plane rotations Py, k = 1,...,m — 1 of order m in the (k, k 4 1) plane such that

[21-2Zm_1 Zm]P1- - Py = [0---0)2]|2] -

Each Py reduces the length of the downdated vector and reduces the problem size by
one. When we apply Pp to the matrix R, we create a nonzero entry at the (k+ 1, %)
position. So we need a corresponding left plane rotation Qf of order m in the (k, k+1)
plane to eliminate that nonzero entry. Therefore, the matrix

(10) ’g_l...Q{IRpl...pm_l

remains upper triangular. Consequently, the problem size becomes only one and the
downdated vector becomes a multiple of the last unit vector. The resulting matrix in
the above equation is equal to the downdated triangular matrix 7" except at position
(m,m). Tt is similar to the result in Chambers’ algorithm after performing m — 1
loops. Thus #,,,, can be computed simply by taking the square root of the difference
of the squares of the (m, m)-entry in (10) and ||z]|2.

We now state the algorithm formally.

ALGORITHM 2.4. REDUCTION

(H = 21V
1. Fork=1,2,...,m—1
1.1. Compute a right rotation Py to eliminate z; with 241 and
apply it to R and V.
1.2. Compute a left rotation @y to eliminate Tr41,k With rpp.
1.3. Let [tkk tkm] = [rkk Tkm].
End for

2. Compute tpmm = /T2, — ||2]3-

The reduction algorithm requires 12m? + O(m) flops. Again, the argument in
the square root at step 2 might be negative under floating-point arithmetic. We let
tmm = 0 1f the algorithm breaks down.

2.4. Combined algorithm. The LINPACK algorithm will stop when a break-
down occurs. Even with one step of refinement, the CSNE algorithm will lead to an
inaccurate result if the computed u is far from accurate. Actually, the LINPACK-type
algorithms still depend on the condition number of R.

Chambers’ algorithm has an attractive computational cost, but there is a risk of
breakdown. On the other hand, with higher flops, the reduction algorithm has the
advantage of avoiding breakdown. However, both algorithms have a common prop-
erty: i.e., they reduce the problem size and compute the downdated triangular matrix
T row by row. This suggests combining Chambers’s algorithm and the reduction
algorithm in order to obtain low cost and no breakdown.

The idea is to apply Chambers’ algorithm first. If a breakdown occurs at & < m,
we adopt one reduction step from the reduction algorithm to reduce the problem
size by one. Then reapply Chambers’ algorithm until the next breakdown. If the
breakdown happens at & = m, we still let ¢,,, = 0. Since all the equations needed
are derived in the previous subsections, we now state the algorithm.
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ALGORITHM 2.5. COMBINED

(H = 21V
1. Fork=1,2,...,m—1
1.1. Compute p = r}, — z7.
1.2. If p>0
% perform one step of Chambers’ algorithm %
Compute {1 = /p.
Compute ¢ =t /rrr and s = zg /rgg.
Compute (tg z+1 - tkm) by (8).
Replace (zk41 -+ 2m) by (Zk41 -+ Zm) in (9).

1.3. Else
% perform one step of the reduction algorithm%
Compute a right rotation Py to eliminate z; with zp4q
and apply it to R and V.
Compute a left rotation @ to eliminate Tr41,k With
Tkk-
Let [ty -« thm) = [Pkk - Thml-
End if
End for
0 if r2, — 22 <0

2. Let ¢ = . .
mm {\/r%lm—zgl ifr2,  — 22 >0

Step 1.2 is from Chambers’ algorithm and step 1.3 is from the reduction algorithm.
The complexity of the combined algorithm lies between 3m? and 12m?, depending on
how many reduction steps it takes.

3. Rank-revealing algorithms. Suppose that the data matrix X has numeri-
cal rank d,d < m, i.e. its singular values satisfy

CLZ > 0a > g > > O

Then Equation (1) is a rank-revealing URV decomposition of X if the matrix R has
the form

R, F
R‘[o G]’

where

Rg 1s an upper triangular matrix of order d,

G i1s an upper triangular matrix of order m — d,

inf (Rs) m o4, and

IGIZ + | FIE & 03y, 4+ 0.
Since the matrix R has the data of the signal (R,) and the noise (F' and G) well
separated, we have to preserve this signal-noise (or large-small) structure for the
downdated triangular matrix 7. Therefore, we change (2) to

R, F T, B
"f | 0o G | P= 0 C ,
o oH Ap, Hp,
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where

A= 2 A 1 and P=[ P, P, ]
d m-—d d m-—d

We can not directly apply both the reduction and combined algorithms to the
rank-revealing case because the presence of the matrix P might mix the signal and
noise data. The LINPACK, CSNE, and Chambers’ algorithms have no risk of mixing
signal and noise. However, the large-small structure usually implies that R is 1ll-
conditioned and leads to an inaccurate result or a breakdown.

Park and Eldén [10] give a simple and direct method called the two-step proce-
dure to solve this problem. They consider only the LINPACK, CSNE, and reduction
algorithms. Similar work is also studied by Barlow and Zha [1]. Since we already have
algorithms for the full-rank problem, they suggest applying one of these methods to
compute the signal (7;) and noise (C') parts separately in order to keep the large-small
structure unchanged. The only additional work required is a connection task. After
computing Ty, we have to compute B and modify z for downdating the noise part.
Then we can patch these two parts up to form the downdated triangular matrix 7.

Note that those plane rotations that do not involve the vector z¥ in downdating
the signal part are also applied to the matrix F' directly. Therefore, whenever we apply
a rotation in a plane containing the vector z, we need an algorithm to perform the
corresponding computation on 22 and F.

Park and Eldén choose hyperbolic rotations as the connection algorithm. Sup-
pose that we have a plane rotation Q¥ with rotation factors (c1,s;) applied to 2
and the first row of R. Denoting the unknown vectors by a bar, the corresponding
computations on zZ and f¥ (the first row of F') can be expressed as

a e

From the second row of the above equation, we have

Therefore, we have a hyperbolic rotation

11  —si/er ]

H =
! |: —51/61 1/61

such that

]-n]

n n

Since each plane rotation in downdating the signal part has a corresponding hy-
perbolic rotation, we have to save all the rotation factors (¢;, s;) in the full-rank
algorithm. Then we use the hyperbolic rotations to obtain the matrix B and the
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modified downdated vector for the noise part. For the LINPACK and CSNE, algo-
rithms, we require d hyperbolic rotations. There 1s only one needed in the reduction
algorithm.

However, the hyperbolic rotation is not recommended since it is not backward
stable [3] [13]. Furthermore, if a breakdown occurs at the last step of the reduction
algorithm, the assignment of 0 to 44 implies a plane rotation with 90 degree rotation
and the hyperbolic rotation cannot be completed. Park and Eldén leave Z and the
last row of the corrected F' unchanged and go on downdating the noise part.

In contrast to hyperbolic rotations, Equations (8) and (9) in Chambers’ algorithm
give an alternative way to perform the two-step method. Actually, it computes [T B]
and modifies zI simultaneously. On the other hand, those left rotations in (10)
for the reduction algorithm also are applied to the matrix F directly. This implies
that the combined algorithm can be applied to the two-step method without using
hyperbolic rotations. Note that the only difference between Chambers’ algorithm and
the reduction algorithm is the formula to modify the downdated vector for the noise
part.

The combined algorithm still has the same trouble on the last row of the corrected
Fas in the reduction algorithm when ¢44 is assigned to be 0. The assignment happens
because rounding errors make the last component of the corrected 2z larger than the
corrected rgg. This means that the two scalars are within a small error bound and the
assignment is an natural choice. Once the assignment is made, we can eliminate the
last row of the corrected F' with the diagonal entries of G by multiplying a sequence
of left rotations.

This connection process using plane rotations refines the resulting matrix B and
increases the norm of the matrix C' so that the downdated triangular matrix 7" is more
like a diagonal block matrix. Furthermore, the enlargement of the diagonal entries
of G will increase the use of Chambers’ algorithm instead of the reduction step in
downdating the noise part and reduce some operation costs. In section b, we will
show the combined algorithm plus plane rotations make a good connection between
the signal and noise parts.

Since we only apply a few more plane rotations, the complexity of the combined
algorithm for the rank-revealing case is still O(m?). Therefore, we have an algorithm
which will not break down in floating-point arithmetic so that the downdate 1s always
computable.

One remark has to be noted in the rank-revealing case. Since one row is deleted
from the original data matrix, it is possible that the resulting triangular matrix 7y
has numerical rank degeneracy. We examine the resulting matrix 75 by applying
the deflation algorithm defined in [12] after performing each downdate. If T is rank
deficient, we repartition the matrix, reducing the dimension of 7.

4. Error analysis. In contrast to the methods in which the matrix U is available
[7] and [9], none of the downdating algorithms introduced in this chapter is backward
stable in the classical sense [14]. In fact, Bjorck, Park and Eldén [2] stated that no
algorithm using the matrix R only to compute the required entries of the matrix U
can be backward stable. However, Stewart [11] found an special error property called
relational or mized stability for these algorithms. Furthermore, Stewart [13] showed
that relational stability can be preserved after a sequence of updates and downdates.
He also proved that if the final leading principal matrix 75 in the sequence is well
conditioned, it will be computed accurately. Based on this analysis, our goal is to
verify the relational stability of the combined algorithm. Through out this section,
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a “tilde” will denote a result computed in floating-point arithmetic. The quantities
[|A|| and ||#|| will denote the Frobenius norm of a matrix A and the Euclidean norm
of a vector = respectively. We study the first order perturbation analysis only and
suppress the higher order terms. The relation symbol < denotes less than or equal
to without considering the second and higher terms.

Suppose that T is the computed downdated triangular matrix. Relational stability
ensures that there exists an (m 4+ 1) x m matrix F satisfying

(12) IENZ k| Rllear ,

and unitary matrices @ and P such that

T
~ E .
AP +

(13) QH[g]ﬁ:

Here ey is the machine relative precision and &, is a constant depending on m and
the computer arithmetic. For convenience, we let ¥ = 2 P and express E as

AT
E_[AyH]'

From (13), we can understand why these algorithms are not backward stable, because
the error matrix F is not only dependent on R and z but also on the result 7.
It has been shown that in (12),

o ky =m?/24+ 9my/m+ O(m), for the LINPACK algorithm [11],

o ky, = 4m+/m, for Chambers’ algorithm [3].
On the other hand, algorithms involving hyperbolic rotations do not have relational
stability because the parameter &y, in (12) is not bounded and depends on the tangents
of rotation angles [3]. Therefore, the two-step method using hyperbolic rotations is
not relationally stable.

Our next task is to prove that the reduction algorithm has relational stability.
We adopt the notation in [14] that fl(a) represents the floating-point representation
of a. Operations in floating-point arithmetic are based on the following rules:

1. fl{a*b)=(a*xb)(1+e€),

2. M{afb) = (a/b)(1+c)

3. fllaxb)=all+e)+b(l+e),
4. f(va) = va(l+ ),

where |e|, |e1], |e2] < ear. For convenience, we denote

P(a+b)+e)=f(fl(a+b)+c).

Each step of the combined algorithm uses either Chambers’ algorithm or the
reduction algorithm to reduce the problem size by one. Thus we only need to prove
relational stability for the reduction algorithm.

The main computation in the reduction algorithm is plane rotation. Therefore,
we begin with an error analysis for computing right plane rotations. At step 1.1 in
Algorithm 2.4, we compute a sequence of plane rotations Py, ..., Py_1 so that

gt = AT PO ) Paa)
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where § is a multiple of the mth unit vector. Wilkinson [14, pp. 135-138] showed

that, for any z, there exists a sequence of exactly orthogonal matrices Py, ..., Pp—1
independent of z such that

(14) 1Ay = (15" = 2 Pro- - Prcal| £ 6(m = D)lzllear

Next, we apply these right rotations to the matrix R and compute corresponding
left plane rotations @)1, ..., @mx_1 so that

(15) T = A" (QE_ (- (QF(RPy)) -+ Pac1))

(Here the left rotations are of order m which is one less than those in (2) since we
apply them to the matrix R only.) Note that the matrix T’ is equal to the matrix
T except in the (m, m)-entry. As Wilkinson [14, p. 141] pointed out, the order of
pre- and post-multiplications effects only the second order term in error analysis. For
convenience, we derive an error bound for the case in which the left rotations are
applied after applying all the right rotations, though the right and left rotations are
applied alternately in the reduction algorithm.
Let

R = "™ Y(---(RPy)--)Pp_1) .

By an argument similar to the derivation of (14) and norm property, we have

(16) |R' = RPy - Pru_i]| £ 6(m — D)||Rl|ear -

Furthermore, there also exists a sequence of exactly orthogonal matrices @1 e @m_l
such that

(17) 1T = Q1+ QTR < 6(m — D[R [lear ,

Applying the triangular inequality to (16), we have
(18) I1R] < (Vm +6(m — Dear)|| R,

where the \/m comes from taking the Frobenius norm of a unitary matrix. Therefore,

combining (16),(17), and (18), we have

AT = 7' = QF_, - QURP, - P
< QU QIR HIQE ., - QF (R — RPy - Py
< 6(m— D[R lear + V| R — RPy - P
< 6(m — Dear(am -+ 6(m — Dean)||Rl| + 6(m — 1)/mear| Rl

Neglecting the €3, term, we have that
(19) AT £ 12(m — 1)V/me || R

_Now, in step 2 of the reduction algorithm, we compute trmm from the (m, m)-entry
of T" (updated R) and g, (approximate 2-norm of ) using the equation

Erim = [T + €0)2 (L4 €3) = (Gm + €2)* (14 €))L+ 65)} 2 (1 + €6)
11



where

lel] < 12(m — )v/mey||R|| from (19),
lea] £ 6(m —1)||z|lear from (14), and
<

les|, leal, les|, |€s] ey from floating-point operations rules.

Simplifying the above equation using the fact that ||z]| < ||R|| and neglecting the €3,
term, an error bound for t,,,, is characterized by

(20) | Al | £ [12(m = 1)V/m + 2]en || RI| -

Note that %,,,, should be non-negative in the reduction algorithm. If there is a
breakdown at the final step, it means that zero is within the bounded interval

[Emm — (12(m = D)v/m + x| RI|, Tonm + (12(m — 1)v/m + 2)en || R]]) -

Thus Park and Eldén’s suggestion to put a zero when a breakdown occurs is accept-
able.

Consequently, combining (14), (19), and (20), we derive a relational error bound
for the reduction algorithm as

IN

VIATY2 + [ Al |2 + | AGH |
[12(m — 1)v/m+ O(m)]ep||R|| .

1E]]
(21)

Therefore, we have shown that the combined algorithm (Algorithm 2.5) has relational
stability.

Finally, we check the algorithm for the rank-revealing case. The additional work
is to eliminate the last row of the corrected F'. We only need to apply m — d more left
rotations in (15). This adds 6(m — d)\/m to the coefficients in (17), (19), and (20).
So the final coefficient in (21) becomes 18(m — 1)y/m + O(m). The rank-revealing

combined algorithm also has relational stability.

A

5. Experimental results. In this section, we show some experimental results
using the two-step method for the rank-revealing downdating problem. There are
several combinations from those full-rank algorithms that can be applied to the sig-
nal and noise parts. However, considering the properties and complexity for each
algorithm, we choose the following three combinations as our test algorithms:

Phase Algorithm A Algorithm B Algorithm C
Signal LINPACK/CSNE Reduction Combined
Connection Hyperbolic Hyperbolic | Combined /Plane
Noise LINPACK/Reduction | Reduction Combined
Note that the LINPACK algorithm cannot be present alone in any phase because of

its breakdown at step 2. We have to use a backup algorithm to recover, like the CSNE
and reduction algorithms in Algorithm A.

We construct a 100 x 8 test matrix A whose entries are taken from a uniform
distribution in (0, 1). Some portions of the matrix K are multiplied by scalars v and
6 to make varied numerical ranks. Then we multiply A on the right by a random
unitary matrix. The size of the window function is 12.

In order to estimate the numerical rank, we need a tolerance described in [12].
The tolerance is an upper bound for the sum of squares of the singular values in the
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noise part and works like a barrier that separates the signal and noise parts. The
numerical rank d is chosen as the smallest integer such that the norm of the resulting
matrix C' is less than the tolerance.

Suppose that the sizes of the noise collected in sensors are roughly the same. It
has been shown in [8] that the sum of the squares of the (m — d) smallest singular
values of the data matrix sampled by the rectangular windowing method satisfies

U?H_l + -+ 02 & (m —d)e? x (window size)

where € is the noise size. Therefore, in our tests, the tolerances are chosen as
tol_u = 1y * 6 % /12(8 — d) , for the updating algorithm,
tol.d =g+ 6*+/12(8 — d+ 1), for the deflation algorithm.
The factors 1, and 14 are chosen by users to control the the accuracy of the approx-
imate signal subspace. In our tests, the factor v, is set to 1 and the factor g is
chosen to make all three test algorithms give correct ranks.
Suppose that we partition the covariance matrix of the data matrix 7 as
H As Ac
a=2z=| G o]

where A 1s of order d. We test the accuracy of the signal part by computing the
relative error norm

14s = T Tl
1Al

where T is the computed Ty. Let Z = WEXYH be the singular value decomposition of
the matrix Z. For the accuracy of the noise part, we compute the sum of the sins of
the canonical angles between the subspaces spanned by the last 8 — d columns of the
matrices V and Y. Finally, we show the relative error norm of the covariance matrix

|A =TT
1Allr

where T denotes the computed 7. All computations use double-precision IEEE
floating-point arithmetic.

In order to make a fair comparison, we ran 50 trials for each test and show the
average results. The average costs over b0 trials, 88 downdates per trial, for each test
are given in Table 3.

Test 1 & 2: Our first test matrix has a fixed numerical rank of 4. The test matrix
KH is constructed as

1 25 50 75 100

O~NOUTRWNE

where the gray area is multiplied by § = 10~* for Test 1 and by § = 103 for
Test 2. The factor 14 1s set to 4 and 8 for Test 1 and 2 respectively. Table 1
and 2 show the average results of the rank estimates, the relative error norms,
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and the condition numbers of the matrix R. No breakdown occurred, so the
LINPACK algorithm is always used in Algorithm A. All three algorithms give
good results. However, Table 3 shows that the average cost of Algorithm C
is less than the other two.

In order to make an ill-conditioned signal or noise part, we now increase the
condition number of Rs or G by applying another scalar ~.

Test 3:

Test 4:

Suppose that we have one signal stronger than others. The test matrix K

looks like
1 15 40 55 70 80 100

O~NOUTRWNE

where the light gray area is multiplied by 6 = 10~7 and the dark gray area is
multiplied by ¥ = 102. The scalar ¥ makes R; ill-conditioned around those
positions with a sharp rank drop. We choose the factor »3 = 20. The results
are given in Figure 2 and Figure 3.

In the first graph of Figure 2, we also mark the position where there 1s a
breakdown. A “x” means that the CSNE algorithms is applied instead of
the LINPACK algorithm. A “4” represents an assignment of 0 in the signal
part in the reduction algorithm and no hyperbolic rotation is applied. A “o”
shows that the combined algorithm assigns a 0 in the signal part and applies
the plane rotations to eliminate the last row of the corrected F'.

Algorithms A and B have a large relative error for the signal part when a
breakdown occurs. Because of the ill-conditioned R, the solutions to the
triangular linear systems in Algorithm A are less accurate, even if the CSNE
algorithm corrects it by one step of refinement. For Algorithm B, the reduc-
tion steps in the signal part not only transfer the norm of the vector z to
its last component but also transfer most of the energy of R, to its last col-
umn. The enlargement of the arguments at step 2 in Algorithm 2.4 increases
the absolute error when we assign a 0 to {zq. Algorithm C still has good
performance in this test.

We construct the test matrix K as

1 15 40 55 70 80 100

O~NOUTRWNE

where the light gray area is multiplied by § = 107% and the dark gray area
is multiplied by ¥ = 107°. The factor v, is set to 6. The scalar v makes
G ill-conditioned so that the data matrix is similar to the one with large
sensor-to-signal ratio (m/d).

Figure 4 shows the results. No breakdown occurs in any algorithm. However,
the relative errors for the signal part of Algorithm A and B jump when the
numerical rank increases. We find that the large errors actually start from
the numerical rank degeneracy around position 26 shown in Figure 5. This is

14



due to the ill-conditioned G and the inaccurately computed noise part when
downdating by hyperbolic rotations. Again, Algorithm C shows good results.

6. Conclusions. We have presented a new algorithm, the combined algorithm,
and shown its good performance on several ill-conditioned downdating problems. The
combined algorithm has the following features:

e The work per downdate is O(m?).
o The algorithm is as efficient as Chambers’ algorithm and does not break down.
e Since the algorithm does not use hyperbolic rotations, it has relational sta-
bility with the coefficient k, = 12(m — 1)y/m for the full-rank case and
kym = 18(m — 1)y/m for the rank-revealing case.
We believe that the combined algorithm is suitable for real-time computations.

7. Acknowledgements. I thank my thesis advisor, Dianne P. O’Leary, for her
very helpful comments.
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Ave. Rank Ave. Error Ave.
Algorithm | Estimate Signal Noise Cond(R)
A 4 2.6937e-15 | 5.9723e-04 | 9.6484e+04
B 4 3.245be-15 | 5.9723e-04 | 9.6484e+04
C 4 2.1222e-15 | 5.9723e-04 | 9.6484e+04
TABLE 1

Average results of the rank estimates, the signal and noise errors, and the condition numbers

of R for Test 1 (6§ =10"%)

Average results of the rank estimates, the signal and noise errors, and the condition numbers

of R for Test 2 (§ =107%)

Ave. Rank Ave. Error Ave.
Algorithm | Estimate Signal Noise Cond(R)
A 4 2.3847e-15 | 6.2704e-08 | 1.0911e+09
B 4 2.8806e-15 | 6.2704e-08 | 1.0911e+09
C 4 2.3357e-15 | 6.2704e-08 | 1.0911e+09
TABLE 2
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Algorithm A | Algorithm B | Algorithm C
Test 1 533 922 256
Test 2 533 922 524
Test 3 624 920 278
Test 4 571 920 260
T'ABLE 3

Average operations count (flops) for all tests.
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Fic. 2. The plots of the estimated rank, the signal error, and the noise error vs. the window
position for Test 3 (6§ = 1077 and v = 10?).
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" Relative Errors for covariance matrix
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Fic. 3. The plots of the relative errors for the covariance matriz vs. the window position for
Test 3 (6§ =107 and v = 10?).
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Fic. 4. The plots of the estimated rank, the signal error, and the noise error vs. the window
position for Test 4 (6§ =107% and v =107°).
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Relative Errors for Covariance Matrix
10_10 E T T T T T

-11
-12
-13
10 '

15|

10;

10'16 I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Algorithm A - — - — . Algorithm B — — ——  Algorithm ¢ ——

Fic. 5. The plots of the relative errors for the covariance matriz vs. the window position for
Test 4 (6§ =107% and v =1079).

20



