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Several trends in technology have important implications for embedded systems of
the future. One trend is the increasing density and number of transistors that can be
placed on a chip. This allows designers to fit more functionality into smaller devices,
and to place multiple processing cores on a single chip. Another trend is the increas-
ing emphasis on low power designs. A third trend is the appearance of bottlenecks in
embedded system designs due to the limitations of long electrical interconnects, and in-
creasing use of optical interconnects to overcome these bottlenecks. These trends lead
to rapidly increasing complexity in the design process, and the necessity to develop
tools that automate the process. This thesis will present techniques and algorithms for
developing such tools.

Automated techniques are especially important for multiprocessor designs. Pro-

gramming such systems is difficult, and this is one reason why they are not as prevalent



today. In this thesis we explore techniques for automating and optimizing the process
of mapping applications onto system architectures containing multiple processors. We
examine different processor interconnection methods and topologies, and the design im-
plications of different levels of connectivity between the processors.

Using optics, it is practical to construct processor interconnections having arbitrary
topologies. This can offer advantages over regular interconnection topologies. However,
existing scheduling techniques do not work in general for such arbitrarily connected
systems. We present an algorithm that can be used to supplement existing scheduling
techniques to enable their use with arbitrary interconnection patterns.

We use our scheduling techniques to explore the larger problem of synthesizing an
optimal interconnection network for a problem or group of problems.

We examine the problem of optimizing synchronization costs in multiprocessor sys-
tems, and propose new architectures that reduce synchronization costs and permit effi-
cient performance analysis.

All the trends listed above combine to add dimensions to the already vast design
space for embedded systems. Optimizations in embedded system design invariably re-
duce to searching vast design spaces. We describe a new hybrid global/local framework
that combines evolutionary algorithms with problem-specific local search and demon-

strate that it is more efficient in searching these spaces.
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Chapter 1

Introduction

The semiconductor industry has demonstrated remarkable progress during the past four
decades. For society, this has meant a continual decrease in the cost of electronic de-
vices, from computers to mobile phones to consumer electronics, and their increasing
prevalence in our lives. Much of this progress results from the ability to exponentially
decrease minimum feature sizes used to fabricate integrated circuits. The most fre-
guently cited trend is Moore’s Law, which states that the number of components on a
chip doubles every 18 months. The International Technology Roadmap for Semicon-
ductors predicts that by the year 2007, it will be possible to place 800 million transistors

in a one square centimeter chip. At the same time, design cycle times have decreased,
and interconnects between processing elements are becoming an increasing bottleneck.
For a system designer, the biggest challenges involve making effective use of this huge
potential functionality, and dealing with the associated complexity. In many ways, time

is a much more precious commodity for designers today than is chip area. For this rea-
son, tools that automate the design process are essential for the continued progress of
the industry. There has been much research done on lower level design tools which op-

timize and produce a physical layout for a circuit that has been described in a sufficient
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amount of detail. Less work has been done on tools for automating the higher levels of
design. This thesis will address several issues relating to high level design automation,
with a focus on embedded multiprocessor systems.

A central theme in this work is the effect of communication costs and resource con-
tention across processors in the system. We develop techniques and algorithms to deal
with these effects in systems whose complexity ranges from low cost shared bus systems
to high performance multiprocessor systems utilizing optical interconnects. Communi-
cation and contention effects, along with the nature of the application, influence the type
of interconnect that is most effective. We discuss different interconnection methods and
present algorithms for finding an optimal interconnect topology.

All our optimization problems involve searching large, complex design spaces. In-
deed, through our work with a diverse variety of complex optimization problems, we
have developed unique insights on general methods for addressing such problems. We
present a broadly-applicable framework, which has been derived from these insights, for
searching complex design spaces, and we describe how our optimization problems can

be solved using this framework.

1.1 Multiprocessor Embedded Systems

An embedded system is a combination of computing hardware and software designed to
perform a dedicated function. It is usually part of a larger system, such as the processor
in a cell phone. By contrast, a general purpose computing system such as a personal
computer is designed to perform many functions. Embedded systems typically offer
much higher performance, lower power, and lower cost for their dedicated function

than a general purpose system performing the same function. Examples of embedded



systems include consumer devices like MP3 players and cell phones, military radar and
imaging systems, and processors for automotive engine control.

The processing elements of an embedded system perform two main tasks—control
and data stream processing. The control functionality consists of choosing between
modes of operation for the device, based on inputs and state information. For example, a
simple controller chip on a microwave oven controls the power level and starts and stops
the oven based on the keypad inputs. Data stream processing, or digital signal processing
(DSP), is required in devices such as cell phones, which must sample data from the radio
receiver and convert it into a digital data stream using algorithms which might decrypt
the signal and correct for reception errors. In this thesis we will focus on developing
tools that optimize the signal processing (DSP) functionality of a system. Processors
with architectures that are optimized to provide very powerful digital signal processing
functionality are inexpensive, readily available, and prevalent in modern devices.

Applications like video processing and automated target recognition are extremely
computationally intensive, and require this processing to be performed in real time.
One way to meet these requirements is to design very large scale integrated (VLSI)
application-specific integrated circuits (ASIC) that are customized for the specific task.
The main problem with this approach is the long design cycle, and the fact that the
design is not flexible—if there are changes to the specifications, a new set of ASICs
must be designed and tested. Programmable solutions, by contrast, allow changes to be
made late in the design cycle by rewriting the software. The use of standard processing
cores that have been verified for correctness eliminates much of the error-prone testing
and debugging associated with ASIC design. However, it is often the case that a single,
standard DSP chip cannot deliver the performance required from the application. In

these cases, one attractive solution is to utilize multiple processors. Manufacturers today



are able to place several processors on a single die. As the transistor count continues to
increase this becomes more cost effective, since it is less expensive to verify and test a
number of smaller, standard processing elements than to test a larger, more complicated
design. This will make multiprocessor design increasingly important in the future. One

trade-off that comes with using multiple processors is that programming them is more

complex, since it is necessary to deal with issues such as synchronization, deadlock,
interconnect architecture, and interprocessor communication costs. Software tools are
needed that allow the designer to specify an application at a high level, and that automate
the details like synchronization and code generation. This thesis explores algorithms and

techniques to develop such tools.

1.2 Contributions of this Thesis

One major theme of this thesis is an analysis of the effect of resource contention in
multiprocessor systems. We develop methods to analyze the effects of contention, ar-
chitectures that are optimized to deal with these effects, and synthesis techniques and
algorithms tailored to these architectures.

We consider a variety of systems with different cost/performance tradeoffs. Each
successive level of hardware complexity reduces the effects of communication cost and
resource contention, allows higher performance, and presents unique optimization chal-
lenges for the designer. We present techniques to deal with each of these challenges.

We begin with a shared electrical bus system, which is the simplest, lowest cost
solution. The effects of contention are the most pronounced in these systems, and per-
formance analysis is also the most complicated. We present a technique that makes

analysis more efficient in these systems.



In order to reduce synchronization costs and improve predictability in these sys-
tems, researchers have previously developedrdared transactiorstrategy that adds
a hardware controller to the shared bus systemi [102] and have analyzed the effects of
communication costs in these systerns [62]. In this thesis we present a modification
of this idea that utilizes optical fiber interconnects. This has the effect of dramatically
reducing communication resource contention in the system.

The final, most complex architecture we consider is a multiprocessor system uti-
lizing free space interconnects. This can eliminate communication resource contention
entirely. One unique challenge for this system is to determine an optimal partitioning
of the chip area between regions that are connected electrically and regions that are
connected optically.

The optically connected systems offer the the ability to tailor the interconnection
network optimally for a specific application. This opens up a vast new design space
and poses several interesting challenges in scheduling and interconnect synthesis. We
present new scheduling, interconnect synthesis, and optimization techniques to address

these challenges.

1.2.1 Contention Analysis in Shared Bus Systems

A critical challenge in synthesis techniques for iterative applications is the efficient anal-
ysis of performance in the presence of communication resource contention. To address
this challenge for shared bus systems we introduce in Chapter 4 the concept of the period
graph. The period graph is constructed from the output of a simulation of the system,
with idle states included in the graph, and its maximum cycle mean is used to estimate
overall system throughput. We analyze the fidelity of this estimator. As an example of

the utility of the period graph, we demonstrate its use in a joint power/performance volt-



age scaling optimization solution. We quantify the speedup and optimization accuracy

obtained using the period graph compared to using simulation only.

1.2.2 Architectures Designed for Optically Connected Systems

In Chapterf B we will discuss the role that optical interconnects can play in embedded
multiprocessor systems, and derive some fundamental equations relating to optically
connected systems on chip. We will introduce three architectures on which a broad
class of high-throughput, self-timed DSP applications can be analyzed accurately using

efficient graph-theoretic algorithms.

1.2.3 Contention Analysis in Optically Connected Systems

Shared bus systems are appealing due to their simplicity and low cost. This is the pri-
mary driver for many embedded systems applications. However, a shared bus sometimes
cannot meet the performance requirements for systems with significant interprocessor
communication. In these cases, a designer may consider using a more expensive optical
interconnect. In Chaptér 5 we will explain how we modified the IPC graph model [102]
and the synchronization graph modeil[18] to work with the optical architectures devel-

oped in Chaptel 3.

1.2.4 Scheduling for Arbitrarily Connected Systems

Optics provide the ability to construct highly connected and irregular networks that are
streamlined for particular applications. Using these networks, itis possible to implement
application mappings that allow flexible, single-hop communication patterns between

processors, which has advantages for reduced system latency and power. This flexibil-



ity is particularly promising for embedded DSP applications, which are highly parallel
and typically have tight constraints on latency and power consumption. In Cliapter 6
we discuss the development of scheduling methods for optically connected embedded
multiprocessors. We demonstrate that existing scheduling techniques will deadlock if
communication is constrained by number of hops. We detail an efficient algorithm for
avoiding this deadlock, and demonstrate its performance on several benchmark exam-

ples.

1.2.5 Synthesizing an Optimal Interconnection Network

The freedom to optimize interconnection patterns opens up a vast design space, and
thus the design of an optimal interconnect structure for a given application or set of
applications is a significant challenge. In Chajpier 7, we illustrate both probabilistic and
deterministic interconnection synthesis algorithms. A key distinguishing feature to our
interconnect synthesis algorithms is that they work in conjunction with a scheduling

strategy—most existing interconnect synthesis algorithms assume a given schedule.

1.2.6 Simulated Heating

All of the optimization problems we have considered, such as dynamic voltage scal-
ing, scheduling, and interconnect synthesis, involve the search of vast design spaces.
Most DSP optimization problems that arise in hardware-software co-design also involve
searching large design spaces. For many of these problems, effiiahsearchalgo-

rithms exist for refining arbitrary points in the design space into better solutions. In
ChapterfB we introduce a novel approach, called simulated heating, for systematically
integrating parameterized local search into global search algorithms. Using the frame-

work of simulated heating, in Chapfér 9 we investigate both static and dynamic strategies



for systematically managing the trade-off between local search accuracy and optimiza-
tion effort for the voltage scaling application mentioned earlier, as well as a memory
cost minimization problem and a more widely known optimization problem (binary
knapsack). We also explain how simulated heating can be used in the transaction or-
dering optimization problem and the interconnect synthesis optimization problem. The

application of simulated heating to these last two problems is the subject of future work.



Chapter 2

Electronic Design Automation for Embedded

Systems

As mentioned earlier, the trend toward increasingly complex designs makes automated
design tools very attractive. Ultimately, we would like a single tool that could start
with an abstract, system-level design description and produce details of an optimized,
hardware implementation. To reach this goal, we must have a suitable framework for
describing the system at a high level of abstraction. Automated tools should be able to
use this high level specification to generate the details of the design. This chapter will

discuss the dataflow specification, and how it can be used for high level design.

2.1 Dataflow

Dataflow graphs have proven to be a very useful specification for signal processing sys-
tems for several reasons. First, they support block-diagram based visual programming.
Block diagrams (also called signal flow graphs or flow charts), are a versatile and im-

portant method for expressing DSP designs. Some of the most powerful DSP design

tools use block diagrams as their primary design language. In these tools, the user de-



scribes a signal processing system by assembling a block diagram from a library of
block functions, such as various types of filters. Examples of commercially available
tools using dataflow and visual programming are the Signal Processing Worksystem
from Cadencel14] and System Canvas from Angeles Design Systems [82].

A second strength of the dataflow specification is that it effectively exposes the par-
allelism in the application. It is difficult to compile programs written in imperative
programming languages such as C on parallel architectures, since these languages are
known to over-specify the control specification and the streaming specification. Paral-
lel languages such as Universal Parallel"C [22], are extensions of the serial languages
intended to be compiled on parallel machines. However, these languages make certain
assumptions about the hardware and are not applicable to a general architecture. They
also require the programmer to explicitly handle lower-level details that we would like
to avoid. The dataflow model imposes minimal data-dependency constraints in its spec-
ification, which allows the compiler to effectively detect parallelism.

A third advantage of the dataflow model is that in certain restricted forms it enables
efficient algorithms for determining whether a program will deadlock, and whether it
can be implemented in a finite amount of memory. This is not possible in more general
computational models, as will be discussed later.

We will focus on applications that can be described by synchronous dataflow graphs
(SDF) [69], and its various extensions such as boolean dataflow (BOF) [20]. In the SDF
model, streams of data flow through a network of computational nodes. A program
is represented as a directddtaflow graph The vertices of this graph, callexttors
represent computations and the edges represent FIFO buffers that queue the data. The
data, represented ligkens are passed from the output of one computation to the input

of another. The numbers of tokens produced and consumed by each actor is fixed. The
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programmer specifies the function performed at each node. The only constraints that are
placed on order of evaluation come from the data dependences in the graph.

Delays on SDF edges represent initial tokens, and specify dependencies between
iterations of the actors in iterative execution. For example, if tokens produced by the
kth invocation of actord are consumed by thg -+ 2)th invocation of actor3, then the
edge(A, B) contains two delays.

Actors can be of arbitrary complexity. In DSP design environments, they typically
range in complexity from basic operations such as addition or subtraction to signal pro-
cessing subsystems such as FFT units and adaptive filters.

We refer to an SDF representation of an application agpgatication graph In this
thesis we will mostly concentrate on a form of SDF callesnogeneouSDF (HSDF)
that is suitable for dataflow-based multiprocessor design tools since it exposes paral-
lelism more thoroughly. In HSDF, each actor transfers a single token to/from each
incident edge. General techniques for converting SDF graphs into HSDF form are de-
veloped in [69]. We represent a dataflow graph by an ordered palr), whereV is
the set of actors andl is the set of edges. We refer to the source and sink actors of a
dataflow edge: by src(e) andsnk(e), we denote the delay onby delay(e), and we
can represent an edgéy the ordered paifsrc(e), snk(e)). We say that is anoutput
edgeof src(e); e is aninput edgeof snk(e); ande is delay-lessf delay(e) = 0. The
execution time or estimated execution time of an aetisrdenoted (v).

Fundamental work related to the dataflow model was the workamputational
graphsby Karp and Miller [59]. In this model, the computation is represented as a
directed graph where nodes represent operations and edges represent queues of data.
Karp and Miller proved that computation graphs with certain propertiedetegminate

which means that the sequence of data values produced by each node does not depend
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Figure 2.1: Marked Petri net.

on thescheduleor order of execution of the actors. They gave conditions to determine
graphs whose computation can proceed indefinitely (avoidance of deadlock).

Several forms of dataflow are special caseBaifi nets A general form of Petri nets
is discussed in[86]. A Petri netis a directed gra@hs (V, A) whereV = {vy, ... v}
is the set of vertices and = {a, . .., a, } is a bad of arcs. The sel’ can be partitioned
into two disjoint setsP, representingplacesandT’, representingransitions Every arc
in a Petri net connects a place to a transition or a transition to a place. Places may
contain some number of tokens. A marking of a Petri net is a sequence of nonnegative
integers for each place in the net, representing the number of tokens in the place. A
Petri net together with a marking is callechaarked Petri net An example is given

below in FigurgZ]1. A Petri net executes by firing transitions. When a transition fires,

1A bag is distinguished from a set in that a given element can be includietes in a bag, so that the

membership function is integer-valued rather than boolean-valued.
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one token is removed from each input place of the transition and one token is added
to each output place of the transition. A transition that has enough tokens on its input
places to fire isenabled Enabled transitions may fire, but are not required to. Firing
may occur in any order and may continue as long as at least one transition is enabled.
In Figure[Z.1L, transitions,, t,, andt, are enabled. The marking can be represented as

a vector{1,1,2,0}. If transitiont, is fired, the new marking will b€1,1,1,1} and
transitionts will be enabled.

Marked graphsare a subclass of Petri nets. A marked graph is a Petri net in which
every place has exactly one input transition and one output transition. A marked graph
can be represented by a graph with only a single type of node corresponding to transi-
tions, with the data tokens considered to exist on the arcs. This representation is standard
in dataflow. The properties of marked graphs were first investigatedlin [27].

The application of dataflow to computer architectures and programming languages
was pioneered by Denni5s32]. The dataflow model of computer architecture was de-
signed to enforce the ordering of instruction execution according to data dependencies.
Execution of instructions is driven by the availability of data, as opposed to the more
conventional von Neumann computer where the execution of instructions is controlled
by a program counter. In a static dataflow machine, dataflow graphs are executed di-
rectly maintaining at the machine level a representation of the program as a dataflow
graph and by providing hardware capabilities to detect when an actor has sufficient data
to fire. There is a restriction that at most one data value can be queued on an edge at
one time. This enables the storage for edges to be determined at compile time. How-
ever, this restriction also limits the amount of parallelism that can be extracted from
loops. Thetagged-token dataflow modg, 47] was created to overcome this restric-

tion. This model supports the execution of loop iterations and function invocations in
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parallel. Data values are carried by tokens that include a three-part tag. The first part of
the tag marks the current procedure invocation, the second part of the tag marks the loop
iteration number, and the third part of the tag identifies the instruction number. Dataflow
computers successfully address the problems of synchronization and memory latency,
but are not as successful in coping with the resource requirements of large amounts of
parallelism in the code. This is due to the overhead in keeping track of the data tags.
Although some research continues on dataflow computers, none are in commercial de-
velopment today. Most research into dataflow today applies to program representation.
Synchronous dataflow (SDF) is a restricted version of dataflow in which the num-
ber of tokens produced and consumed by an actor on each edge is fixed and known at
compile time. Application of the SDF model to programming of multirate DSP sys-
tems was originated by Lee and Messerschrift [69]. Lee and Messerschmitt provided
efficient techniques to determine at compile time whether or not an arbitrary SDF graph
has a periodic schedule that neither deadlocks nor requires unbounded buffer sizes. They
also presented efficient methods for constructing such a periodic schedule whenever one
exists. The SDF model has been successful at describing a large class of DSP applica-
tions and has been utilized in numerous design environments. Techniques for compiling
general SDF programs for multirate DSP systems into efficient uniprocessor implemen-

tations that minimize both code and data memory requirements is presented in [15].

2.2 Architectural Synthesis

System-level synthesis requires as a first step the selection of an architecture. In some
cases, the designer is given a fixed platform, so the number of computing elements (pro-

cessors, functional units, etc.) is fixed in advance. More commonly in embedded system
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design, there is at least some flexibility to choose the number and types of processing
elements and their interconnection. Even with a fixed platform, there can be choices
between which tasks are performed by dedicated hardware units and which tasks are
performed in software. Modern systems consist of an increasing number of these pro-
cessing elements, each of which can be highly complex. The design may be realized on
a single chip gystem on chipr SoC), in a multichip design using multi-chip modules
(mcm), or on separate circuit boards.

The system synthesis problem can be described formally by means of a specifica-
tion graph [105], which is a grapfis = (Vs, Es) consisting ofD dependence graphs
Gi(Vi, E;) for 1 < ¢ < D and a set of mapping edgés$,, whereVs = Ui’ill/;,
Es=UZ,E; U Ey,andEy = U2 Ea. Here, By C Vi x Vi for1 <i < D.

The specification graph consists of layers of dependence graphs, each correspond-
ing to a different level of abstraction. For example, an application graph describes the
algorithm, an architecture graph describes the architecture, and a chip graph describes
the physical components of the system. An edge in the specification graph between a
task and a resource means that task can be implemented by that resource.

This can be better described by considering an example. The example in[Figure 2.2
was taken from[[T05]. Figurg 2.2a) depicts an application graph with four computa-
tional nodes and three communication nodes (shaded). The architecture, depicted in
Figure[Z.2b), consists of a RISC processor and two dedicated hardware modules. The
hardware modules are connected to each other by a point-to-point bus, and to the RISC
processor by a shared bus. The architecture graph corresponding to [Figure 2.2b) is
shown in Figureg Z]2c). The physical implementation consists of two separate chips
shown in Figurd 2Z]2d) with a corresponding chip graph depicted in Figure 2.2e). The
specification graph is shown in Figyre]2.3. The edfjgs and £, describe all possi-
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Figure 2.2: Example of a problem graph, an architecture graph, and a chip graph.

Figure 2.3: Specification graph corresponding to example of Fgure 2.2.
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ble mappings. The edgds,;; describe the possible mappings between the application
graph and the architecture graph. We can see thattaskn only be executed ansc
and taskv, can be executed on eithegsc or vgwnve. Communication task; can be
executed on the shared bus;. It can also be executed oR;yc if tasksvs; andwv, both
execute ongisc, Or onvgw If v3 andwv, also execute ongwy - The edgediy, de-
scribe the possible mappings between the architecture graph and the chip graph. From
these edges we can see that any of the tasks in the architecture graph (the RISC pro-
cessor, shared bus, point-to-point bus, and both hardware modules) can be implemented
inside CHIP1, and that the shared hyg can be handled by CHIP1 or by the off chip
busvocg. The dashed nodes and edges in Fidurg 2.3 arallamtatedin the imple-
mentation. The specification graph allows us to state a formal definition for allocation,
binding, and scheduling.

Theactivation of a specification grap&'s(Vs, Es) is a functiora : Vs U Es — {0, 1}
that assigns to each edge Fs and each node € Vs the value 1 (activated) or O (not
activated).

An allocation o of a specification graph is the subset of all activated nodes and
edges of the dependence graphs- ay U ag with ay = {v € Vs | a(v) = 1} and
ap = U2 {e € E; | a(e) = 1}. For the example above, the allocation of nodes is
ay = {VURISC; VHWMI, USB; VCHIP1 } -

A binding g is the subset of all activated mapping edges so that {e € E), |

a(e) = 1}. For the example above, the binding is

B = {(Uh URISC); (02, URISC)a (113, UHWMl)a (U4, URISC), (U5> USB), (1)6, URISC)a

(117, USB), (UR1807 UCHIPl), (USB, UCHIPl)a (UHWMla UCHIP1)}

so that all the architecture components are bound to CHIP1.

A feasible binding g is a binding that satisfies the following criteria:
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1. Each activated edgec [ starts and ends at an activated node.

2. For each activated nodec ay withv € V;, 1 < ¢ < D exactly one outgoing

edgee € V), is activated.

3. For each activated edge = (v;,v;) € ap Wwithe € E;, 1 < i < D either
both operations are mapped onto the same node or there exists an activated edge
é = (v;,v;) € ap with € € E,,, to handle the communication associated with

edgee, le. (177,,6]) € ag with (Ui,@), (Uj,UNj) € p.

It has been shown that the problem of finding a feasible binding is NP-compléte [19].

A scheduleis a functionr : Vp — Z* that satisfies for all edges= (v;,v;) € Ep
the conditionr(v;) > 7(v;) + delay(v;, 3) wheredelay(v, 3) is the execution time
delay of node given a binding3. For the example above a valid schedule(is,) = 0,
T(ve) = 1, 7(v3) = 2, 7(vg) = 21, 7(vs5) = 1, T(v6) = 21, T(v7) = 4.

A valid implementation s a triple(«, 3, 7) wherea is an allocation is a binding,
andr is a schedule.

Finally, with the definitions above we can state the problem formalgtem syn-
thesis consists of minimizing a functioi(«, 3, 7) which describes an optimization

goal, subject to
e o is afeasible allocation,
e [ is afeasible binding,

e 7 is aschedule.
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2.3 Scheduling

Implementing an algorithm specified as a dataflow graph (DFG) on a multiprocessor sys-
tem requires “scheduling” the actors. Scheduling was defined formally in Séctjon 2.2.
Scheduling involves the tasks of (1) assigning actors in the DFG to processors, (2) order-
ing the execution of these actors on each processor, and (3) determining the start times of
all the actors while maintaining the data precedence constraints of the DFG. Scheduling
has been studied extensively in many contexts, and has been classified based on which
of the tasks listed above are performed at compile time and which at runitime [68].

If all three are performed at compile time, the scheduling strategy is saidftdlyoe
static This method requires the least possible runtime overhead. The exact execution
times of all the actors are assumed to be given in advance. The processors can run in
lock step according to the schedule, and no explicit synchronization is required when
they communicate data. However, the exact run times of the actors cannot usually be
determined in advance, so the fully static strategy is often not practical.

For DSP applications, it is usually realistic to assume that good estimates for the
execution times can be determined. Given this assumptiself-dimed68] scheduling
strategy can be employed, where the ordering of the actors on each processor is speci-
fied, but not the exact start times. Each processor waits for the data needed by an actor
before executing that actor. This requires that the processors perform some run-time
synchronization when they exchange data, so the run-time overhead is greater for this
scheduling strategy. Examples of an application graph and a corresponding self-timed
schedule are illustrated in Figurej2.4.

Another consideration in scheduling is the size or granularity of an actor. Higure 2.5
shows a trade-off between parallelism and communication overhead in a heterogeneous

DSP system as the size of the actor is varied. Itis repeated from the study by Sarkar [93].
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Figure 2.4: An example of an application graph and an associated self-timed schedule.

The numbers on edges (4,8) and (4,9) denote nonzero delays.
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Figure 2.5: Partition-overhead trade-aff[93].
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The vertical axis is a measure of performance. As the average actor size is increased, the
interprocessor communication (IPC) overhead drops. At the same time, there is a loss of
parallelism, so the execution time for an ideal parallel system (with no IPC) increases.
Partitioning algorithms try to find the optimal balance between these two factors. Sarkar
developed a two-phase scheduling method. The first phase involved scheduling the input
graph onto an ideal architecture in which there are no resource constraints or communi-
cation costs. Thigfinite-resource multiprocessor architecture (IRMA) consists of

an infinite number of processors that are interconnected by a fully-connected crossbar
interconnect (an interconnect in which every processor is directly connected to every
other processor). The communication in the IRMA architecture is assumed to be si-
multaneous. In the second phase, the schedule derived for the IRMA architecture is
modified to work on the resource-constrained target architecture.

For a system with fixed resource constraints, the multiprocessor partitioning and
scheduling problems are NP hardi[42], so heuristics must be used. Many such heuristics
have been developed. Most existing scheduling heuristics try to minimize the schedule
makespan, which is the time it takes for all the tasks to finish the first iteration (execu-
tion of one schedule period). However, most DSP applications are non-terminating; an
example of a filter operating on an unbounded stream of speech samples. In this case,
it is more appropriate to generate schedules that maximize the throughput. Schedul-
ing heuristics can be classified into the following categories: list scheduling heuristics,
graph decomposition heuristics, and critical path heuristics.

The most well-studied area in scheduling involves heuristics based on the idea of
priority lists [371]. These heuristics use a priority list to define an ordering of the nodes
in the graph, and use an algorithm that selects each function in order of priority for

scheduling on an appropriate resource. In order to compute the priorities, the allocation
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and binding steps described in section 2.2 need to be performed in advance.

For DFGs with edge weights and node weights, a path weight can be defined as the
sum of the weights of both nodes and edges on the path. A critical path from a source
node to a sink node is a path with maximal weight. In the critical path techniques, the
graph is partitioned after examining the current critical path, zeroing an edge by com-
bining the incident nodes into a cluster, and repeating the process on the new critical
path. In the dominant sequence clustering algorithm by Yang and Gerasaulis [109], the
decision to zero an edge is based on the new start time of the node at the beginning of
the dominant sequence (the critical path after zeroing of one or more edges) and the start
time of an unscheduled node most likely to be affected by the zeroing decision. If either
of these start times is increased, the zeroing is not done. Due to the relative simplicity
of the zeroing criteria, the complexity of this methodl§(v + ¢) log v). The modified
critical path algorithm by Wu and Gajski-[108] considers as-late-as-possible binding,
which is found by traversing the graph from the sink nodes to the source nodes and as-
signing the latest possible start time to each node. A node on the critical path is selected

and placed on a different processor. The complexity of this meth6quis log v).

2.4 Modeling Self-Timed Execution

In relation to the scheduling taxonomy of Lee and Ha [68], in this thesis we focus on the
self-timedstrategy and variations of the closely-relatdered transactionstrategy
optimized for optically-connected multiprocessors. The self-timed and ordered trans-
action strategies are popular and efficient for the DSP domain due to their combina-
tion of robustness, predictability, and flexibility [101]. In self-timed scheduling, each

processor executes the tasks assigned to it in a fixed order that is specified at compile
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time. Before executing an actor, a processor waits for the data needed by that actor
to become available. Thus, processors are required to perform run-time synchroniza-
tion when they communicate data. This provides robustness when the execution times
of tasks are not known precisely or when they may exhibit occasional deviations from
their compile-time estimates. Examples of an application graph and a corresponding
self-timed schedule are shown in Figlirg 2.4.

Theordered transactiomethod is similar to the self-timed method, but it also adds
the constraint that a linear ordering of the communication actors is determined at com-
pile time, and enforced at run-time[102]. The linear ordering imposed is called the
transaction orderof the associated multiprocessor implementation. The transaction or-
der, which is enforced by special hardware, obviates run-time synchronization and bus
arbitration, and also enhances predictability. Also, if constructed carefully, it can in gen-
eral lead to a more efficient pattern of actor/communication operations compared to an
equivalent self-timed implementation [62].

Next we will examine two related graph-theoretic models, itiberprocessor com-
munication graph (IPC graph:pc [101,102] and theynchronization grapli, [102],
that are used to model the self-timed execution of a given parallel schedule for a dataflow
graph. Given a self-timed multiprocessor schedulefpwe deriveGpc by instantiat-
ing a vertex for each task, connecting an edge from each task to the task that succeeds it
on the same processor, and adding an edge that has unit delay from the last task on each
processor to the first task on the same processor. Also, for eachedgen G that
connects tasks that execute on different processors, an IPC edge is instantiagag in
from z to y. Figure[Z.6 shows the IPC graph that corresponds to the application graph
and self-timed schedule pf2.4. In this graph, the nodes labeled with “s” are nodes that

send data and the nodes labeled with “r" are nodes that receive data. The numbers in
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Figure 2.6: The IPC graph constructed from the application graph and schedule of Fig-
ure[Z.4. Dashed edges represent IPC edges and shaded actors are communication ac-

tors(send and receive actors) that perform interprocessor communication. Numbers next

to edges represent delays.
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parentheses represent the sending and receiving actors. For exdamplerepresents
a communication actor with data from actor 5 being sent to actor 2.

The non-communication vertices (®, andGpc correspond to individual tasks of
the application being implemented. Each edgé&'ip: andG; is either anntraproces-
sor edgeor aninterprocessor edgentraprocessor edges model the ordering (specified
by the given parallel schedule) of tasks assigned to the same processor. Interprocessor
edges iG'pc, calledIPC edgesconnect tasks assigned to distinct processors that must
communicate for the purposes of data transfer, and interprocessor edggscalled
synchronization edgesonnect tasks assigned to distinct processors that must commu-
nicate for synchronization purposes. We will discuss the synchronization graph in more
detail in Chaptef]5.

Each edgé€v;, v;) in Gipc represents theynchronization constraint
start(v;, k) > end(v;, k — delay((v;,v;))) Vk, (2.1)

wherestart(v, k) andend(v, k) respectively represent the time at which invocation
of actorv begins execution and completes execution, &dy (¢) represents the delay
associated with edge

The IPC graph is an instance of Reitez@mputation grapimodel [90], also known
as thetimed marked grapimodel in Petri net theory [86], and from the theory of such
graphs, it is well known that in the ideal case of unlimited bus bandwidth, the average
iteration period for the as-soon-as-possible (ASAP) execution of an IPC is given by the

maximum cycle mean (MCMJ Gpc, which is defined by

Lcclt)],

MCM(Grpc) = cyclen(llziin}év'lpc { Delay(C)

(2.2)

The MCM can be computed efficiently—Karp’s algorithm1[58] runsdifvim) time

wheren is the number of actors in the graph ands the number of edges. Dasdan and
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Gupta [29] describe an algorithm based on Karp’s algorithm that runs in (worst case)

O(nm), and always faster than Karp’s algorithm.

2.5 Interconnect Synthesis

SoC design is moving toward a paradigm where reusable components called IP (for
intellectual property) from different vendors can be combined to rapidly create a design.
IP interface standards are being developed which define the services one IP component
(or IP core) is capable of delivering, and which enable IP cores to work with on-chip
buses and other interconnection networks. The SoC designer’s task is then to choose
the appropriate IP cores, map the application tasks onto these cores, and to construct a
communication network and corresponding glue logic to connect these IP cores.
Interconnect synthesis is becoming an increasingly important part of system-level
synthesis, given the larger number of blocks that must be interconnected and the in-
creasing importance of interconnect delay to overall performance. To date, shared bus
has been the dominant interconnect. However, researchers are now exploring a richer
set of interconnection schemes, including crossbars, meshes, and other point-to-point

topologies. We will explore interconnect synthesis in detail in Chapter 7.
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Chapter 3

System Architectures for Multiprocessor

Embedded Systems

There has been substantial research work in the areas of multiprocessor hardware and
software for high performance, general purpose computing. These machines tend to be
big and expensive, and are targeted toward solving large computational problems such
as climate simulation. As mentioned in the Introduction, embedded systems can also
utilize multiprocessor architectures, and some research work has focused on developing
application-specific multiprocessor systems. Since these systems only need to support a
limited number of programs, it is often possible to streamline the hardware architecture.
We will focus on systems running applications that can be described by dataflow graphs.
In these applications, parallelism is easier to identify and exploit because much more is
known about the structure of the computation.

We will discuss the role that optical interconnects can play in embedded multi-
processor systems, and derive some fundamental equations relating to optically con-
nected systems on chip. We will introduce three architectures on which a broad class of
high-throughput, self-timed DSP applications can be analyzed accurately using efficient

graph-theoretic algorithms.
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3.1 Multiprocessor Program Execution Models

For sequential computers, the principal execution model in use today wwthéleu-

mann modelvhich consists of a sequential process running in a linear address Space [45].
In 1966, Flynn [41] proposed a simple model of categorizing multiprocessors using this
execution model as either Single Instruction Multiple Data (SIMD) or Multiple Instruc-
tion Multiple Data (MIMD) according to how they partition control and data among
different processing elements. In a SIMD machine the same instruction is executed by
multiple processors using different data streams. Each processor has its own data mem-
ory, but there is a single instruction memory and control processor. In a MIMD machine,
each processor fetches its own instructions and operates on its own data. Using this ter-
minology, we would call a uniprocessor a single instruction, single data stream (SISD)
machine. MIMD machines fall into two categories—centralized shared-memory archi-
tectures and distributed memory architectures. Figure 3.1 [85] depicts the basic structure
of a centralized shared-memory multiprocessor, where the processors and memory are
connected by a shared bus. Processors communicate by writing and reading from loca-
tions in memory. In order to reduce the memory bandwidth requirement of the proces-
sors, memory cache is used. We may classify the data in the multiprocegsorads

dataif it is only used by a single processor, shared dataif it is used by multiple
processors. The communication mechanism utilizes shared data. When data is migrated
into a processor’s cache, the bus bandwidth is reduced since this processor does not
need to access main memory to fetch the data. Also, memory access time to cache is
faster than to main memory. When the data is private data, the program execution is
not affected. However, when shared data are cached, the data may be stored in multi-
ple caches. This complicates the program execution, since there must be some way to

reconcile the different copies of the data. This problem is calbathe coheren¢eand
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cache cache cache cache

main memory 1/0 system

Figure 3.1: Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystems share the same physical memory, typically connected by a

bus.

29



Processor Processor Processor Processor
+ cache + cache + cache + cache

o ) e, -t w0 ) [ wemr |——{ w0 ) [ wemar (w0 )

inC))

‘ Memory

Interconnection network

110 N Memory }——[ e} N Memory —[ 110 ]‘ Memory }——[ o

-/

‘ Memory

Processor Processor Processor Processor
+ cache + cache + cache + cache

(D1

Figure 3.2: Basic structure of a distributed-memory multiprocessor. Individual nodes

contain a processor, some memory, and an interface to an interconnection network that
connects all the nodes. Individual nodes may themselves contain a small number of
processors interconnected via a bus or other interconnect which is often less scalable

than the global interconnection network.

has been well studied in general purpose compufing [1]. For some embedded systems
applications the cache is eliminated in order to reduce complexity and cost.

Figure[3:R [85] depicts a distributed-memory machine, which has a physically dis-
tributed memory. These machines typically have larger processor counts, where a shared
bus cannot handle the required communication bandwidth. Distributing the memory re-
duces the latency for access to the local memory. Compared to the shared-memory

architecture, communication between processors is more complex.

3.2 Architectures Based on Dataflow

In the von Neumann architecture, all the data, the locations of the data, and the opera-

tions to be performed on the data, must travel between memory and CPU a word at a
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time. This has been termed the “von Neumann bottleneck” [3]. Hardware architectures
based on dataflow have been studied in order to avoid this bottleneck. The dataflow
model of computation was discussed in Chapter 2. Dataflow models use dataflow pro-
gram graphs to represent the flow of data and control. In this model an instruction may
be executed (dired) as soon as all its input operands are available. When an instruction
fires, it consumes its input values and generates some output values. Because of this,
the dataflow model iasynchronousin a dataflow architecture the program execution
involves receiving, processing, and sending out tokens containing data and a tag. Depen-
dencies between data are translated into tag matching and transformation. Processing
occurs when a set of matched tokens arrives at the execution unit. The matching unit
and execution unit are connected by queues. Several types of architectures based purely
on dataflow have been studied in the past. They differ in how the tokens are handled.
Thesingle token per ardataflow architecture was proposed by Dennis [34]. In this
architecture, a dataflow graph is represented by a numbactofity templateseach
containing an instruction ammperand slot$or holding operand values. Only one token
is allowed at a time on an arc. Acknowledge signals are used to enforce the single
token rule, making it relatively simple to detect when a node is enabledMThé&tatic
Dataflow Architecturg¢33] was a direct implementation of this model. One disadvantage
of this architecture is that consecutive iterations of a loop can only partially overlap in
time. Another is the additional token traffic caused by the acknowledgment tokens.
Thetagged-token dataflowodel [TO7] was created to allow loop iterations to pro-
ceed in parallel. In this model, each token contains a tag that defines the context in which
the data value will be used. Multiple tokens are allowed on an arc. A node is enabled as
soon as tokens with identical tags are present on each of its input arcs. Several groups

produced prototype implementations of this model [1T3/57T, 104]. A disadvantage of this
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model is that it is difficult to implement an efficient unit to handle the overhead of token
matching.

It was found that computers implementing pure dataflow performed poorly on se-
guential code. This is due in part to the fine granularity—tasks correspond to operations
such as a simple multiply or compare, and the overhead associated with token matching
of these tasks. One solution to this problem is to combine a dataflow architecture with
a von Neumann architecture. Most recent dataflow architectures empt@arse-grain
model in which the computational task of the dataflow actors consist of a number of
instructions; the computation inside each task is executed on a von Neumann processor
(often a commercial off-the-shelf processor), and the actors communicate and synchro-

nize according to dataflow semantics. This is shown conceptually in FHiguré_3.3 [98].

3.3 Architectures Utilizing Optical Interconnects

In future CMOS chip designs incorporating hundreds of millions of transistors, the wire
interconnect will become a limiting factor, both in terms of area overhead and delay. Op-
tical interconnects offer the potential to relieve this bottleneck. In this section we will
summarize some past work in optical interconnects and optically connected architec-
tures, and introduce two new architectures we have developed specifically as a platform

on which to map DSP applications described as dataflow graphs.

3.3.1 Optical Interconnect Technology

In recent years, optics have played an increasing role in multiprocessor systems. Com-

mercial high-performance computers now use fiber ribbons to connect multiple pro-

32



mul
add

mul
add

mul

sub
div
add

%
G101
9,0

mul

mul

(@) (b) ()

Figure 3.3: Comparison of execution models: (a) von Neumann (control flow) (b) pure

dataflow (c) coarse-grain model with dataflow graph and fully ordered grains.

33



cessing nodes[95]. Other examples include storage area networks using fiberchannel,
and optical clock distribution to reduce clock skew rate across a ¢hip [26]. Optical
technology has been advancing rapidly, driven in large part by the optical communi-
cations equipment market. Various studies have predicted that the energy consumed
by data communication will ultimately limit the processing speed in electronic proces-
sors [/9,[100]. Light signals do not suffer from effects such as electromagnetic in-
terference and capacitive effects, which limit electrical interconnects. While transistor
gate delay decreases linearly with decreases in minimum feature size, the wire delay
increases as wires become thinner. In addition, the cross-sectional area of metal wires
must increase with length to maintain acceptable attenuation. By contrast, an optical
channel has a constant transverse ared ofthere) is the wavelength of the lighf[34].
Thus beyond a certain transmission length, optical interconnections become favorable.
This break-even length is estimated to be betweémm andlcm [B63].

There has been theoretical woik][37] that has established that arbitrary connection
graphs can be realized with an effective interconnection density b¥ using optics.
At these densities, heat removal will be the limiting factor [83].

Several studies [36, 65] have addressed the question of what is the best size for
a VLSI processor connected by optics. These have concluded that the system should
be partitioned into clusters d)* to 10'? transistors. This allows the design to reach
points in the design space that are not achievable without optics. However, there may be
significant power and space costs. If size and power are the primary objectives, optical
systems become advantageous only with extremely large systems [84].

The main advantage of optics for a multiprocessor system is that it allows highly

parallel data links and a large degree of connectivity between processors.
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3.3.2 Prototype Optically-Connected Systems

Several research groups have demonstrated optically-connected multiprocessor systems
(e.g., seell46,48,76,177]). Some of these systems are based on free-space optical inter-
connects, while others are based on wavelength division multiplexing (WDM). WDM
systems typically utilize fiber or waveguide interconnects, and are advantageous for
hybrid integration of independent modules. The strength of a free-space optical inter-
connect scheme is its potential to provide an extremely high density of interconnections,
such as will be required for a single-chip system.

An example of a system utilizing free-space optical interconnects iSAIST-Net
prototype [48]. FAST-Net is a high throughput data switching concept that uses a re-
flective optical system to globally interconnect a multichip array of processors. The
three-dimensional optical system links each chip directly to every other with a dedi-
cated bidirectional parallel data path. The system utilizes smart-pixel arrays (SPA), in
which high density silicon electronics are integrated with two-dimensional arrays of
high speed Gallium Arsenide micro-laser/detector arrays. An array of SPAs is packaged
on a planar substrate and linked to itself through an optical system composed of a lens
array and a mirror. This concept provides internal bisection bandwidth [70] on the order
of 10'2 bits per second. Figufe 8.4 depicts the SPA and the optical imaging system.

Compiler technology and automated mapping tools for these systems have received
relatively less attention than the hardware. Seo and Chatterjee [94] presented a CAD tool
for physical placement of modules in SoC utilizing optical interconnects. The tool de-
termined which interconnects should be routed electrically and which should be routed
optically. They reported a 50% reduction in worst case interconnect delay over using all

metallic interconnects.
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Figure 3.4: FASTNet prototype.
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3.4 Optically Connected System on Chip

In this section we will examine several fundamental design considerations for systems
on chip utilizing optical interconnects. Our general model for a system-on-chip (SoC)
is one in which the chip is partitioned into regions that are connected with metallic
(local) interconnects, and these local regions are then connected through optical (global)
interconnects[11]. As mentioned in the Introduction, the applications we consider can
be modeled by dataflow, and consist of task graphs, where the individual tasks must fit
fully into a local region. The graph vertices (tasks or nodes) in the acyclic task graphs
represent computations while the edges represent the communication of a packet of data
from a source task to a sink task.

Three fundamental design considerations for such a system are addressed in this

thesis:

e What is the optimum size of a local partition?
e What techniques should we use to map and schedule tasks on these partitions?

e How do we synthesize an optimum global (optical) interconnection network for

the system?

These considerations are interrelated, since the size of the local partition will affect
the maximum size (granularity) of the tasks, and the scheduling of tasks depends on the
interconnection network. This section will focus on the question of optimal partition
size. Scheduling is addressed in Chapier 6 and interconnect synthesis is covered in

Chaptef]r.
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3.4.1 Global/Local Partitioning

This section presents an information-theoretical model for trade-offs in designing the
local partition of a SoC utilizing free-space optics. As mentioned earlier, free-space op-
tical interconnects can provide higher interconnect densities than other types of optical
interconnects. These trade-offs are fundamental in nature and will exist in any system
utilizing these interconnects.

These systems utilize arrays of vertical cavity surface emitting laser (VCSEL) trans-
mitters and photoreceivers to implement the interconnect. A single interconnect consists
of a VCSEL/photoreceiver pair. Light from the VCSEL must be directed to and imaged
on the appropriate photoreceiver. This is depicted for the FAST-Net system in Fig-
ure[3.b. Different systems use different imaging methods to accomplish this. The high
density of interconnections arises from the use of the third dimension (free-space) and
the fact that overlapping optical signals do not interfere with each other (i.e., there is no
crosstalk in free space).

As the dimensions of the local partition decrease, higher f-number lenses are re-
quired to collect the light from the transmitters in a constant focal-length system. (The
f-number of a lens is defined as its focal length divided by its diameter). Fjgure 3.6
depicts the diffraction-limited images of an array of point sources, in a random on/off
pattern, on an array of photodetectors. The data for the figure was generated using MAT-
LAB to compute the diffraction pattern for F/1 lenses (left) and F/2 lenses (right). Using
an optical system with f-number F and treating the transmitter as a point source operat-

ing at wavelength\, the diffraction-limited image of the source on the detector is given

Ai(p) = Iy (2‘]1;%))2 (3.1)

AF

by the expression

wherep is the radius from the center of the image dpds proportional to the source
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Figure 3.5: Schematic side view of the global optical interconnection shown folded

about the mirror plane for the FAST-Net system.
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Figure 3.6: An array of point sources imaged using f/1 optics (left) and /2 optics (right).
The left and right pictures are different scales—the partitions on the left are twice the

length of the partitions on the right.

intensity. The function/; is a first order Bessel function of the first kind.

From this equation, the signal received by the center channel for this pattern can be
calculated by spatially integrating over the corresponding photodetector. This calcula-
tion will also take into account the inter-pixel interference (IP1). We then vary the pattern
randomly to generate the conditional probability distributions for the center channel. If
we assume that the IPI is only significant between adjacent channels, we can use the
conditional probabilities to assess the mutual information corresponding to a channel be-
tween partitions. As partition size decreases, and the associated aperture sizes decrease
(increasing the f-number), the optical signal intensity decreases and the IPI increases.
Both effects reduce the mutual information. We can then characterize the mutual in-
formation as a function of partition size, and therefore, the number of partitions. The

mutual information between each source and its corresponding detector is given by

5 o

wherep(y|X = i) is the conditional probability that a valugeis received wher is

Lt (X;Y) = > p(yl X =i)log,

i=0,1
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Figure 3.7: Trade-Off between partition size, global data rate, and local data rate.

transmitted ang(y) is the probability density function (PDF) gf

Restoring the mutual information required for the application can be achieved by
decreasing the bit rate and integrating over a longer clock cycle in order to increase the
signal-to-noise ratio. We define the information capacity, or data rate, as the product of
the mutual information and the bit rate. Therefore, it can be generally shown that in-
creasing the number of partitions on a chip will lead to lower global data rate across the
chip. At the same time, smaller partitions will reduce the length requirements on local
interconnections (intra-partition) performed electrically. Therefore, local interconnect
data rates can benefit from reduced partition size. We assume that the data rate is in-
versely proportional to the RC time constant, which in turn is proportional to the square
of the interconnection length. A simple approximation then results in a facirde-
crease in local interconnect length, therefore, a fadtoncrease in the local data rate,
whereN is the number of partitions. These opposing effects of partition size suggest a
trade-off between the local and global data rates, which is illustrated hypothetically in
Figure[3.F, and thus an optimum partitioning of the SoC. This is the crossing point of

the two curves in Figurg 3.7.
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3.4.2 Typical Numbers

We next give some estimates of system parameters based on today’s components. The
optical channel density on the chip will impose a fundamental upper limit on the number
of partitions, M, for the SoC. For a chip with dimensioiis: L, the number of optical
channelsV will be given by N < L?/2d* whered is the VCSEL and detector pitch.
For a full crossbar connectioty = M (M — 1). For a “typical” VCSEL pitch of 125
microns, this implies that we would be limited to 57 partitions for a one square centime-
ter chip. The power requirements depend on the architecture, but some insight can be
gained by considering examples. Ligtrepresent the power required to drive a VCSEL-
detector pair. If every partition is transmitting and receiving data, the total optical power
is given by the number of partitions times the number of VCSEL-detector pairs trans-
mitting per partition times?%. The upper limit of power consumption corresponds to the
case in which all VCSEL-detector pairs are operating. Therefore, L?/2d*Py. The
lower limit to the power consumption corresponds to the case where only one pair per
partition is transmitting at any instant of time, which implies> M F,. If we assume
Py = 10 mW and 57 partitions, then the total power consumption would be 32W for
the one square centimeter chip in the most demanding case and 570mW for the least
demanding case.

The one-way data rate between two partitions is given by the data rate per VCSEL-
detector pair,.D,, times the number of pairsDpariition = L?/2d>M (M — 1)D,. For
Dy = 2.5 Gbps,Dparition = 4 Tbps in a two-partition architecture. In the case of a single
VCSEL-detector pair per cluster, the partition data rate is equal to the channel data rate

at 2.5 Gbps, with an aggregate data rate of 142.5 Gbps for 57 partitions.
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3.5 Modeling Optically-Interconnected Systems with Syn-
chronization Graphs

A graph-theoretic framework, called tsgnchronization graphfor analyzing arbitrary

algorithm-to-architecture mappings is given in[101]. In this section we describe three
architectures we developed to take full advantage of the analytical properties of this
framework. The synchronization graph applies to any hardware architectural model that

includes the following assumptions:

e For each computational task (dataflow node), a reasonably accurate estimate ex-
ists for the execution time of a task, and this execution time exhibits little or no

variation with input data.

e Once a communication link is reserved for a specific data packet, the link remains

reserved exclusively for that packet until transfer of the packet completes.

e The transit time of data packets through the interconnection network, once a com-

munication link has been reserved for the transfer, is deterministic.

If we assume that the time required to perform interprocessor communication is zero,
then the synchronization graph work shows that the throughput of a given algorithm-to-
architecture mapping can be determined accurately by an efficient graph-theoretic tech-
nique [18]. If the interprocessor communication is nonzero, the technique gives an upper
bound to the throughput. The tightness of this upper bound depends on the ratio of inter-
processor communication time to average task execution time. In optically-connected
multiprocessor systems, we can expect that this ratio is small. This is a particularly good
assumption if the implementation guarantees that there is never contention among the

processors for an optical link. The existence of an accurate, efficient throughput analy-
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sis technique opens up the possibility of developing improved algorithm-to-architecture

mapping techniques, which we explore in this thesis.

3.5.1 SLOT Architecture

We developed an architecture, which we &OT (Self-timed Locally Ordered Trans-
action), on which a broad class of high-throughput, self-timed DSP applications can
be analyzed accurately using efficient algorithms based on the synchronization graph
framework. SLOT enables the development of powerful tools for automatic applica-
tion mapping (compilation). The interprocessor connectivity requirements of SLOT are
large, and thus optical interconnect technology appears to be a natural match for SLOT
systems. In particular, a general-purpose slot architecture requires that each processor
have a dedicated communication channel for each processor with which it communi-
cates. Figur€ 3.8 gives a graphical representation of this architecture.

SLOT architectures can be composed of arbitrary, possibly heterogeneous, collec-
tions of processing elements, such as DSP processors, FPGA or ASIC subsystems, mi-
croprocessors, and microcontrollers. When a processor is embedded within a SLOT
architecture, one or more communication processors are used to interface the processor
to the rest of the multiprocessor system. Each communication processor is assigned a
pre-defined ordering of the interprocessor communication operations (send and receive
operations to and from other processors) that are required to interface the associated
(computation) processor. These local orderings of communication operations, on the
communication processors within a SLOT system, are repeated over and over again
based on the arrival of data (from the associated computation processors, or from other
communication processors). A group of communication processors can also be “clus-

tered together” without an associated computation processor. Such clusters of communi-

44



Computation

%

Communication

Figure 3.8:

A Rx from 2
9]
:53 A Photodiode Receiver
(e}
L
o . VCSEL Transmitter

A Rx\from 3
o —
5 Communication
o MUX i
(o) E— Proc MUX
L
o

A
A f 4
x from v

o —
L |
o I I
[So I
E 1 Proc 1
w

Schematic of SLOT architecture.

45



cation processors serve as routers that provide additional communication paths between
remote computation processors. Figire 3.8 depicts one computation and communica-
tion processor in a four-processor, fully connected system. A dedicated laser transmitter
is required for each other processor with which this processor must send data. Also, a
dedicated photodiode receiver and buffer memory is required for each processor from
which the processor receives data. With this architecture, there is no contention for com-
munication resources, and the synchronization graph models the system accurately. This
architecture is particularly well suited to be implemented in free-space optical systems
such as FAST-Net. As mentioned above, one advantage of free space interconnects is the
high density of interconnects that can be achieved. If we were to replace the processing
element in the FAST-Net prototype with the combination of multiplexers, communica-
tion processor, and computation processor from Figufe 3.8, SLOT could be implemented

using the FAST-Net optical imaging, packaging, and smart pixel array hardware.

3.5.2 Dedicated Channel Fiber WDM Architecture

One disadvantage of free-space optical systems is that they are very sensitive to align-
ment. The alignment of the optical paths described in Se¢fion] 3.4.1 from each laser
transmitter to the correct photodiode receiver may be difficult and not robust under some
operating environments (due to vibration, temperature changes, etc.). Fiber-based archi-
tectures do not suffer from this problem—the VCSEL-to-fiber and fiber-to-photodiode
interface has proven to be very robust in commercial systems. Here we describe a fiber-
based implementation of SLOT.

In this implementation, we need to assign a unique wavelength to each communi-
cation channel. We define the processor gréphas a directed graph in which the

nodes represent the processors in the system and the edges represent connections be-
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tween processors—if processdransmits data to processfirthere is an edgg, j) in

G,. This is essentially the WDM equivalent to the free space interconnect since there is
a dedicated channel between every pair of processors. Physical constraints will usually
place limits on the fan-out and fan-in of the processors. Fan-out of a progesssde-

fined as the out-degree of nogén G, while fan-in is defined as the in-degree of node
pin G,. We will define the maximum allowed fan-out 4s; and the maximum allowed
fan-in asf;,. Figure[3.P depicts this implementation.

The advantage of this implementation is that there are no central controllers required.
This architecture allows a direct implementation of the synchronization graph. A disad-
vantage is the number of wavelengths required—for a systemnyiiftocessors, there
aren? wavelengths required, orf,,, wavelengths required if we place a constraint on

the fanout.

3.5.3 One Wavelength Per Processor

In order to reduce the number of wavelengths required, we can implement a protocol in
which each processor is assigned a unique wavelength. In this system, we must ensure

that two processors do not send to a given processor at the same time—i.e., there is
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Figure 3.10: Architecture for wavelength ordered transactions.

possible contention at the (single) receiver of every processor. In order to accomplish
this, we introduce a controller for every wavelength. This controller grants access to
only one processor at a time. Figuire 3.10 depicts this implementation.

In this architecture, processor receives data on its uniquely assigned wavelength
Am. In order to grant\,, to processor, the controller for),, sends thenumberg on
its grant output (which is at wavelengty,). The controller has an acknowledgment
(ACK) receiver for every processor to which it grants access. The communication pro-

cessors must wait to be granted access to a particular wavelength before transmitting
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on that wavelength. The number of grant lines entering a communication processor is
equal tof,., since there must be a grant for eagland a processor transmits on a max-
imum of f,,; wavelengths. When a procesgonas completed transmission on a given
wavelength, say,, it sends an acknowledgment consisting of tluenberr on wave-
length \,. The number of ACK lines entering a wavelength contralles equal to the
fan-out f,,; for processor. One advantage of this architecture is that it requires fewer
wavelengths— wavelengths are required as opposedtor n f,.;. One disadvantage
is that it is more complicated andcontrollers are required. Also the throughput may be
lower since the system is more constrained—we have the same synchronization graph
as before with extra edges added for the grants and acknowledgments. We refer to this
architecture asvavelength division multiplexing ordered transacti¢qi¢DMOT).

We will examine the theoretical performance of the three architectures described

above in Chaptdi 5.

49



Chapter 4

Contention Analysis in Shared Bus Systems

Utilizing the Period Graph

4.1 Contention in Shared Bus Systems

In many practical multiprocessor systems, there is contention for one or more shared
communication resources. One example of this is a shared bus, in which the processors
must first gain access to the bus before they can execute an interprocessor communi-
cation (IPC) operation. Figuiie 4.1 depicts a simple architecture with three processors,
a shared memory, and a shared bus. One consequence of this contention is that under
self-timed, iterative execution, there is no known method for deriving an analytical ex-
pression for the throughput of the system [101], and thus, simulation is required to get a
clear picture of application performance. However, simulation is computationally very
expensive, and it is highly undesirable to perform simulation inside the innermost op-
timization loop during synthesis. To avoid such a simulation, an accurate and efficient
estimator for throughput is required. In this chapter we will present an efficient estima-
tor for the throughput of these systems when operating in a self-timed, iterative manner.

As explained in Chaptér 2, in self-timed execution the assignment of tasks to processors
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Figure 4.1: Schematic of a three processor shared bus architecture.

and the execution ordering of tasks on each processor are determined at compile-time,
and at run-time, processors synchronize with one another only based on inter-processor
communication requirements, and do not necessarily synchronize at the end of each loop
iteration.

If contention is resolved deterministically, and execution times are constant, then
self-timed evolution may lead to an initial transient state, but the execution will even-
tually become periodic. This holds because the multiprocessor may be modeled as a
finite-state system, and thus, aperiodic behavior—which implies the presence of in-
finitely many states—cannot hold. In DSP systems, although execution times are not
always constant or known precisely, they typically adhere closely to their respective
estimates with high frequency. Under such conditions, the periodic execution pattern
obtained from the estimated execution times provides an estimate of overall system
throughput based on the task-level estimates. The estimates for task execution times
can be obtained through several methods. The most straightforward is for the program-

mer to provide them while developing a library of primitive blocks, as is done in the
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Ptolemy system[21]. Analytical techniques also exist. Li and Malik [72] have proposed
algorithms for estimating the execution time of embedded software tasks in an efficient
manner. Due to the largely deterministic nature of DSP applications, such system-level
performance analysis, and optimization based on task-level estimates is common prac-
tice in the DSP design community [25, 35] 50, 68].

For self-timed systems, when we apply execution time estimates to estimate over-
all throughput, it is necessary to simulate (using the execution time estimates) past the
transient state until a periodic execution pattern (steady state) emerges. Unfortunately,
the duration of the transient may be exponential in the size of the application specifica-
tion [T0O1], and this makes simulation-intensive, iterative synthesis highly unattractive.

We introduced the novederiod graphmodel [9] in order to greatly reduce the rate
at which simulation must be carried out during iterative synthesis. Given an assign-
mentv of task execution times, and a self-timed schedule, the associated period graph is
constructed from the periodic, steady-state pattern of the resulting simulation. The max-
imum cycle mean (MCM) of the period graph (with certain adjustments) is then used
as a computationally-efficient means of estimating the iteration period (the reciprocal of
the throughput) as changes are explored within a neighborhaadwthis context, the
MCM is the maximum over all directed cycles of the sum of the task execution times
divided by the sum of the edge delays. The MCM can be computed in low polynomial

time [66].

4.2 Constructing the Period Graph

The first step in the construction of the period graph is the identification of the period

from the simulator output. This can be performed by tracing backward through the
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simulation and searching for the latest intermediate time ingtaaitwhich thesystem
stateS(t,) equals the staté(t;) obtained at the end of the simulation (heredenotes

the simulation time limit). If no match is found, then the end of the first period exceeds
ty, and thus, the simulation needs to be extended begor@therwise, the region (often
depicted as a Gantt chart) that spans the intdtyat ] constitutes a (minimal) period

of the simulated steady state.

Here, the system state(t) contains the execution state of each processor, which
is either “idle” or representable by an ordered pal; 7), where A is the task being
executed at time, andr denotes the time remaining until the current invocatioriof
is completed. The staté(¢) also contains the current buffer sizes of all IPC buffers,
as well as any information (e.g., request queue status) that is used by the protocol for
resolution of communication contention. Our approach to efficiently determining the

period is as follows:

e Perform a simulation of the schedule for some tiMg,. Define a constant’,
which is an initial estimate for the number of complete cycles (invocations) of the
graph that must be simulated in order to find a period. this constant represents the
length of the initial transient, before the output becomes periodic. If this initial
estimate is too low, it will be increased during the algorithm. Nebe the number
of processors, and let; be the number of tasks scheduled on procegsahere
J € [1, N]. Tasks include IPC tasks as well as computational tasks. Label these
tasksVy,, Vs, ... V,,,. We consider the case where the system executes these tasks
infinitely. Theinvocation numbepf a task is defined as the number of times a
given task has executed, and is denoted with a superscript. For exdﬁf@e,
denotes theé,, invocation of taska on processoy. Define a simulation array

for each processdim;[:] wherei € [1, M;] and M; is the number of tasks on
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processor; that were output by the simulator. The elements of the simulation
array are the tasks, and are ordered by reverse start time, Shdh@Bim;[:]) >

Start(Sim;[i + 1]).

Create twddle vectorsof lengthn; for each processor spanning one invocation.
Label the firstidle vectofdleljl. [k] wherek € [1,n;]. Label the second idle vector

Tdle2! [K].

Examine thdPC buffer vectorat some fixed point of each idle vector. The IPC
buffer vector consists of the numbers of tokens queued on all the IPC edges of
the graph enumerated in some order. The IPC buffer vector must be output by the
simulator at least once every graph iteration. For example, the simulator could
output an IPC buffer vector for each processor every time the processor executes
the first task scheduled on it. In this way, each idle vector would be associated with
one IPC buffer vector. Label these vectdPBufl;[¢] andIPCBuf2,[q] where

q € [1, E] and E is the number of edges in the IPC graph. The IPC buffer vector
represents the state of the communication buffers in the systerfokets(e, t)

be the number of data tokens on edgs timet. Let TaskNum;(¢) be the number

of the node that is executing on procesgait timet. Pseudo-code from{10] for

constructing the period graph is shown in Figure 4.2.

Our experience suggests that in practice, most graphs have periods spanning only a

few invocations, so the above procedure for finding the period is efficient. For a system

with a period that spang/ invocations and with at most tasks per processor, this

method required N (N + 1) comparisons.

Figure[4.B(a) illustrates an application graph, Figure¢ 4.3(b) illustrates a self-timed

schedule, Figuré€ 4.3(c) shows the periodic steady state that results from the schedule
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Algorithm 4.1: CALCULATE PERIOD(C, Tsirm)

mine < 0

while min, < C

do

INCREMENT (Tgim)
SIMULATE(T si1m)

mine < min (Lf—jj)
for t «— 0to Ts;m
for j «— 1toN

do

span =0

repeat

do

a; = TaskNum;(t)
invocation;a| < invocation;la] + 1

do < b; = invocation;[al

if TaskNum;(t) > TaskNum;(t — 1)
then {Sim1;[i] = V*(j)a(j)

span «— span + 1
for k « 1tospan *ny

forj—1toN
if span *n; > M;
then {comment: error: increase C and start over

Idlel[k] = Finish(Sim;[k]) — Start(Sim;[k + 1])
Idle% (k] = Finish(Sim;[span % n; + k]) — Start(Sim;[span *n; + 1 + k])
forg«— 1toF
do IPCBufllg] = Tokens(q, Start(Sim1[1]))
IPCBuf2[q] = Tokens(q, Start(Simi[span x ny + 1]))

do

until T, (Idle} = Idie?) = 1 and (IPCBuf1 = IPCBuf2)

Figure 4.2: Pseudocode for constructing the period graph.
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and execution time estimates, and Figuré 4.3(d) depicts the resulting period graph. The
shaded nodes in Figufe 4.3(d) correspond to idle time ranges in the period, and solid
black circles on edges represent delays, which model inter-iteration dependencies. Note
that the steady state period may span multiple graph iterations (two in this example),

and in the period graph, this translates to multiple instances of each application graph
task.

For clarity in this illustration, we have assumed negligible latency associated with
IPC. As described below, non-negligible IPC costs can easily be accommodated in the
period graph model by introducirggndandreceivetasks at appropriate points.

As illustrated in Figuré 4]3, the period graph consists of all the tasks comprising the
period that was detected, with the idle time ranges between tasks (including those that
are caused by communication contention) also treated as nodes in the graph. The nodes
are connected by edges in the order that they appear in the period. An edge is placed
from the last node in the period for each processor to the first node in the period. This
edge is given a delay value of one (to model the associated transition between period
iterations), while all of the other intraprocessor edges have delay values of zero. This is
done for all the processors in the system. Our model utiseeslandreceivenodes for
IPC as described above. For each IPC point, a send node is placed on the processor that
is sending data, and a corresponding receive node is placed on the processor that will
receive the data. The period graph is completed by adding an edge from each send node

to its corresponding receive node.
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4.3 Fidelity of the Estimator

As mentioned above, the period graph can be used to estimate the system throughput of
a given self-timed schedule as the task execution times are varied. In order to make a
concrete example, we will examin®ltage scaling Some processors have the ability

to alter their execution voltage while in operation. This allows the processor to operate
at an optimal energy/efficiency point. When the voltage on a processor is varied, the

execution time of a computational task varies according to

Vaa

delay = k—%
YT W — V)2

(4.1)

whereV,, is the supply voltageV; is the threshold voltage, aridis a constant[[24].
We use a value di.8volts for the threshold voltage. The execution time of each of
these states in the original (non-scaled) period graph is referenced to a vgltagehe

change in execution time of each computational node is found by taking the derivative:

2
Ve | 1- ¢4

Ape; = pe, o= -1
V;“ef ]- - Vj‘/if

whereV,, is the new voltage. It is not obvious, however, how one should adjust the
idle times in the period graph. We separate the idle nodes into two setgention
idlesanddata idles When a node has the necessary data to execute (the necessary data
has already been produced), but is idle waiting for access to the bus, the associated idle
node is classified as a contention idle. When a node is idle waiting for its predecessors’
data, the associated idle node is classified as a data idle. By experimenting with a large
number of application graphs, we found that we could capture the effects of contention
and obtain the best fidelity by zeroing out the data idles and leaving the contention idles
constant as the computation idles are scaled. Using these rules, the fidelity is calculated

as follows:
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e Given an application graph, construct a valid schedule. We used the dynamic
level scheduling algorithm given by Sih and Léel![97]. Next, construct the period
graph as discussed earlier. Genersteoltage vectors (assignments of voltages
to the processors in the target architecture). For each voltage vector, perform
a simulation to determine the throughput, with the execution times of the tasks
on each processor given by4.1 according to the voltage on the processor. Also,
obtain an estimate for the throughput by calculating the MCM of the voltage-
scaled period graph, in which the execution times of the computation nodes are

given by[4.]L, and the execution times of the idle nodes are as explained above.

e Calculate the fidelity according to:

N

N-1
. 2
=1 j=i+1

where
1 if sign(S; — S;) = sign(M; — M;)
b= 0 otherwise
—1 ifz <O
signz) =9 0 ifz=0
1 ifx>0

The S; denote the simulated throughput values; andithere the corresponding

estimates from the period graph.

Figure[4.# plotsFidelity for a six-processor system in which the voltage on the
individual processors can vary between plus or minus five percent. The x-axis represents
the sum of the absolute values of the voltage changes over all processors. Each point

on the graph is a fidelity calculation fa¥ = 100 voltage vectors. A value of one
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Fidelity - 6 processors each changing by at most 15%
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Figure 4.4: Plot of fidelity (equation 4.2) for a six processor system vs. magnitude of

voltage change on all processors.
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6 processors each changing by at most 15%
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Figure 4.5: Plot of average error (equatjon 4.3) of fidelity estimate for a six processor

system vs. voltage change on processors.

is a “perfect” fidelity. It can be seen that in the range shown, the fidelity is always

greater tha.77. It is also important that the estimator have a small error at each point.

Figure[4.b plots

N

SIS — My)/Si] (4.3)

=1
for a six processor system. It can be seen that the error increases as the voltage vector

moves away from the reference point, and that the estimate is slightly biased. For the
range shown in the graphs, where each processor voltage is changed by a maximum of

fifteen percent, the error is less than four percent.
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4.4 Using the Period Graph in a Joint Power/Performance
Algorithm

An effective way to reduce power consumption of a processor core in CMOS technology
is to lower the supply voltage level, which exploits the quadratic dependence of power
on voltage [24]. Reducing the supply voltage also has the effect of decreasing the clock
speed and increasing circuit delay. The circuit delay can be modeled by 4.1. The power
consumption is given by

P = OéCLVdef (44)

where f is the clock frequency(';, is the load capacitance, ardis the switching
activity [?4]. To accommodate the possibility of putting processors in states of lower
switching activity during idle periods, our model includes a parametgrfor the idle
states, and a parametef,,_;q. for the computational tasks, whet€y. < anon_idie-
A more detailed power analysis could assign a differefdr each computational task
if that data were available. A different power optimization technique, which can be
used in conjunction with the voltage scaling technique presented here, utilizes a nearly
complete processor shutdown during the idle periods[52, 103]. In our model, this would
correspond tayq,. = 0. Our model for the power is the average energy consumption per
graph iteration period. This corresponds in a typical DSP system to the average energy
required to process one sample. Here, the energy of each node equals its power times
its execution time.

In a system consisting of multiple processors, one has the ability to choose, within
a certain range, the (fixed) operating voltage on each processor. This opens up an addi-
tional degree of freedom that can be exploited to minimize the system power consump-

tion. By choosing a lower voltage of a processor that is executing tasks that are not
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on the critical path, the throughput can remain unchanged while the overall power con-
sumption is reduced. In general, a combination of raising voltages on some processors
while lowering others can yield the most attractive power/performance solution.

When applying voltage scaling to a multiprocessor system, the valid solution space
is typically much too large to search by brute-force methods. In addition, since there
is no general analytical formula for calculating the throughput of these systems in the
presence of communication resource contention, each candidate solution must either be

simulated or estimated using some heuristic.

4.5 Genetic Algorithm Formulation

To demonstrate the general utility of the period graph based performance estimation
approach, we incorporated it into two significantly different probabilistic search tech-
niques to derive two different algorithms for systematic voltage scaling [7]. The first
algorithm presented utilizes the framework of genetic algorithms (GAS) [43]. We will
discuss GAs more in Chapt@r 8. The specific GA explored here consists of an inner GA
nested within an outer GA. The inner GA performs a local search around a point from
the population of the outer GA, using the MCM of the period graph in its objective func-
tion as an estimate for the throughput. A period constrBift;....¢ IS given as an input

to the optimization problem, where the period is the reciprocal of the throughput. The
objective function calculates the power consumption associated with each solution by
calculating the total energy per period, as discussed earlier. If the period associated with
a solution violates the period constraifituiion > Ttonstraint, th€ power consumption is
multiplied by a large penalty fact@f?0(Tzoution —Teonsiraint)  The GA attempts to minimize

this objective function.
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In the outer loop, a population @Y., voltage vectors is generated. A simulation
is run and a period graph constructed for each of these outer loop voltage vectors. For
each of the outer loop voltage vectors, a new inner loop population is generated such
that|Vouter; — Vinner;| < € fOri € Npyoc WhereN,,,. is the number of processorng, e,
is the voltage on processoin the outer populationV,,.., is the voltage on processor
7 in the inner population, andis a user-defined threshold. The inner population size is
Nimer- The inner GA then performs a local search using this population for a number
of generationszenerations;,,; in an attempt to find a locally optimal voltage vector.
The inner GA uses the MCM of the period graph in its objective function. After an
invocation of the inner GA is finished, one simulation is performed using the resulting
voltage vector, and the actual throughput for this point is used to compute its fitness. The
outer loop voltage vector is then replaced with this locally-optimized voltage vector for
use in the next outer loop generation. The outer loop is run for a number of generations

Generationsgyger-

4.6 Simulated Annealing Algorithm

Simulated annealing is another well-known method for searching large design spaces.
Using a standard simulated annealing package [23], we have implemented an alternative
version of period-graph-based voltage scaling optimization. The objective function here
is the same as for the genetic algorithm. The system is first simulated with an initial
voltage vector/; = LSV, and the period graph is built. In order to insure that the
period graph will be a good enough estimatae-aimulation threshold Ts maintained.

The difference between the current injgif ; to the objective function, and the voltage

vector LSV, corresponding to the simulation used to compute the current period, is
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calculated. If
V: — LSV;

>T
LSV, ’

the graph is re-simulated usn(g\/j. The period graph is rebuilt, andV; — LSV,.

ForT = 0, the graph will be re-simulated every time, and the period graph will offer no
speedup to the optimization. The larger the valu& pthe less often the graph will be
re-simulated, and the faster the optimization algorithm will perform. However, When

is too large, the fidelity of the period graph estimate will be unacceptably low and the
quality of the final result will suffer. Based on our experiments with a number of graphs,
the optimal value of" is application-dependent, but a valuelot= 0.1 generally gives

good results.

4.7 Results of Voltage Scaling using Period Graph

Figure[4.6(a) shows an example of the reduction in power resulting from the genetic
optimization algorithm on the FFT2 application graph. The parameters of the GA were
Nouter = Nipner = 50, Generations,yer = 10, andGenerations;,,., = 20. The local
search voltages were constrained to be within five percent of the corresponding outer
loop voltages. The period constraint was calculated by simulating the system with all
SiX processors operating at voltagg;. For this example, the system power consump-
tion was reduced by 43%, while maintaining the original throughput. To evaluate the
advantage of the period graph approach over using brute-force simulation, a second
nested GA was implemented. This algorithm was identical to the algorithm discussed
above, except that the inner loop did not use the period graph estimate for the through-
put. Instead, each voltage vector was evaluated by simulation. This algorithm consumed

21 times more CPU time, and produced similar results, as shown in Figurg 4.6(b).
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Genetic algo. fft3 (fixed throughput constraint) using period graph
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Iteration Number (1000 generations per iteration) (6 minutes CPU time/iteration)

(a) Using period graph. Each iteration requires 6 minutes

CPU time.

Genetic algo. fft3 (fixed throughput constraint) using simulation only
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PIPO ——

P/PO
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1 2 3 4 5 6 7 8 9 10

Iteration Number (1000 generations/iteration) (126 minutes CPU time/iteration)

(b) Using simulation only. Each iteration requires 126 min-

utes CPU time.

Figure 4.6: Plot of (optimized power)/(initial power) vs. genetic algorithm iteration
using the period graph estimator (a) and simulation only (b). Using simulation only, the

iterations require 21 times more CPU time.
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simulated annealing FFT3
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Figure 4.7: Plot of (optimized power)/(initial power) vs. time for the simulated anneal-

ing algorithm combined with period graph on the FFT3 application.

Figure[4.¥ summarizes the power reduction results for the simulated annealing algo-
rithm applied to a fast Fourier transform (FFT3) application graph, for different values
of the re-simulation threshold. It can be seen that &5 is increased, the algorithm
progresses more quickly. The simulated annealing algorithm begins with a ‘melting’
routine, where the temperature is increased until a phase change is detected. The initial
flat part of the curves corresponds to the time spent in the melting routine. We have
found that for values of ' above 20%, the period graph is not a good enough estimator
and the algorithm does not converge.

Table[4.1l summarizes the power reduction for the simulated annealing algorithm for
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application re-simulation threshold

- 0 2% 5% 10% 25%
FFT1(28) 0.96 095 065 060 1
FFT2(28) 0.97 090 0.71 0.97 1
FFT3(28) 1 077 059 059 1
mus(20) 0.89 0.71 067 082 1
meas(12) 0.77 0.73 0.81 0.82 1
qmf(14) 0.84 065 067 073 1
rand1(30) 091 0.77 053 065 1
rand2(100) 1 085 0.77 0.73 1
rand3(200) 1 1 1 094 1

Table 4.1: Ratio of optimized power to initial power for a fixed computation time using

period graph and simulated annealing.
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several additional applications using different values of the re-simulation threshold. At
the start of the optimization, all processor voltages were set at 5 volts. The throughput at
this point was used as the throughput constraint. In Table 4.1, the first three rows corre-
spond to three different FFT implementationsusrefers to a music synthesis algorithm,
gmf refers to a quadrature mirror filter bankeass a measurement application.

We implemented a random application graph generator based on Sih’s algarithm [96].
The last three rows of Tabje 4.1 correspond to three random graphs generated with this
algorithm. The numbers in parentheses give the numbers of nodes in these applications.
The optimization was performed forfexed timeof 30 minutes in each case. The op-
timum re-simulation threshold was between 2% and 10% in all casesI Foer0.25,
the period graph is not a good estimator and none of the results returned during the op-
timization algorithm satisfied the throughput constraint. For the largest graph, the fixed
simulation time was not long enough to make much improvement, but the best result
occurred forT" = 0.1, where the simulations are less frequent.

Table[4.2 summarizes the power reduction for the genetic algorithm with and without
using the period graph, with a fixed compile time (run time) of one hour. It can be seen
that, under the condition of fixed compile time, we achieve better results (lower power)
when utilizing the period graph. Also, comparing Taplg 4.1 with Tdble 4.2, we see
that the longer compile time given to the GA produced better results. We will explore
the issue of search efficiency under fixed optimization times in a systematic manner in

ChapterB.
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application using period graph no period graph

fftl 0.54 0.74
fft2 0.69 0.86
fft3 0.57 0.78
mus 0.68 0.90
meas 0.70 0.82
gmf 0.64 0.84
rand1(30) 0.55 0.78
rand2(100) 0.70 1
rand3(200) 0.87 1

Table 4.2: Ratio of (optimized power)/(initial power) for genetic algorithm with fixed

run time.

4.8 Summary of Period Graph Work

We have developed period graphmodel that can be used as a computationally effi-
cient estimator for the throughput in multiprocessor systems in which communication
contention renders exact analysis too time-consuming. This model is especially useful in
interactive synthesis techniques, such as those based on probabilistic search. We demon-
strated effective voltage scaling techniques based on incorporating the period graph into

genetic algorithm and simulated annealing formulations.
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Chapter 5

Contention Analysis in Optically Connected

Systems

We introduced the IPC graph model in Section 2.4 and showed that for systems without
contention, the maximum cycle mean (MCM) of the IPC graph can be used as an effi-
cient estimator for the system throughput. We showed in Chgpter 4 that for a shared-bus
system the analysis is complicated significantly by contention for the bus among the
processors. Shared bus systems are appealing due to their simplicity and low cost. This
is the primary driver for many embedded systems applications. In S¢ciion 5.1 we will
discuss Sriram’srdered transactions strated#02], and show that by incorporating an
additional hardware controller to a shared bus system, it is possible to remove the con-
tention that results in the difficult analysis, and to more fully optimize communication
patterns. With the hardware controller the processors still share a communication chan-
nel, namely the bus, but the contention is resolved by the controller. For systems that
require the performance, the cost of the additional hardware may be justified.

For systems with significant interprocessor communication activity and high per-
formance requirements, it may be the case that an electronic interconnect between the

processors is not appropriate. In Section B.5.2 we introduced two system architectures
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based on fiber interconnects. In the first architecture, there is a dedicated communica-
tion channel between every pair of processors so there is no sharing of communication
resources. In the second architecture, processors share their input ports—the amount of
sharing is reduced as compared to an electronic bus because different wavelengths can
be transmitted simultaneously in the fiber. In Secfioh 5.2 we will modify Sriram’s model

to work with this architecture.

5.1 Ordered Transactions

5.1.1 Ordered Transactions Concept

The ordered transactions strategy for multiprocessor shared bus systems consists of two

parts:
1. Determine at compile time the order in which processor communications occur.
2. Enforce that order at run time with a hardware controller.

As in the self-timed approach, a static schedule is first computed using execution time
estimates for the actors, but only the actor ordering on each processor is retained—the
actor start times are discarded. The hardware controller grants access to the processors
in the predetermined order. When a processor is granted access to the bus, it performs
its read or write operation and releases the bus back to the hardware controller. Since
the hardware controller enforces the communication order, there is no contention for
the bus, and no bus arbitration is necessary at the individual processors. The transaction
order preserves the data precedences in the algorithm, and therefore for a shared memory

system no semaphore synchronization is necessary. Also, send and receive operations
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always access the shared bus for one memory cycle—there is no polling required. This

reduces the number of shared memory accesses by at least a factor of two.

5.1.2 Synchronization Constraints

We introduced the interprocessor communication graph (IPC g@phy)and the syn-
chronization grapld- in SectiorZ}4. Initially( is identical toGp. However, various
transformations can be applied@ in order to make the overall synchronization struc-

ture more efficient[101]. After all transformations 6f) are complete(7, andGipc can

be used to map the given parallel schedule into an implementation on the target archi-
tecture. The IPC edges (#p represent buffer activity, and are implemented as buffers

in shared memory, whereas the synchronization edgés oépresent synchronization
constraints, and are implemented by updating and testing flags in shared memory. If
there is an IPC edge as well as a synchronization edge between the same pair of tasks,
then a synchronization protocol is executed before the buffer corresponding to the IPC
edge is accessed to ensure sender-receiver synchronization. On the other hand, if there
is an IPC edge between two tasks in thg -, but there is no synchronization edge be-
tween the two, then no synchronization needs to be done before accessing the shared
buffer. If there is a synchronization edge between two tasks but no IPC edge, then no
shared buffer is allocated between the two tasks; only the corresponding synchronization
protocol is invoked.

Any transformation we perform on the synchronization graph must respect the syn-
chronization constraints implied lty;p¢. If we ensure this, then we only need to imple-
ment the synchronization edges of the optimized synchronization graph (in conjunction
with the IPC edges of+pc). If G; = (V, E) andG, = (V, E) are synchronization

graphs with the same vertex-set and the same set of intraprocessor edges (edges that
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are not synchronization edges), we say tiajpreservess, if for all e € F, such that
e ¢ Fyi, we have

pa, (sre(e), snk(e)) < delay(e),

wherepq(z,y) = oo if there is no path from: to y in the synchronization grapfi, and
if there is a path from: to y, thenpg(x, y) is the minimum over all pathsdirected from
x to y of the sum of the edge delays pn Thus,G; preservess, if for any new edge
in G, (i.e., for any edge not ifr,), there is a path id7; directed from the source of the
edge to the sink that has a cumulative delay that is less than or equal to the delay of the
edge. The following theorem (developed in[101]) is fundamental to synchronization
graph analysis.

Theorem 1The synchronization constraints in a synchronization graph
Gl = (V,Ey U E!) imply the synchronization constraints of the synchronization
graphG? = (V, Ei U E?) if the following condition holdsVe s.t.e € E2, ¢ ¢ FEL,
pai(sre(e), snk(e)) < delay(e); that s, if for each edgethat is present it but not in
G1, there is a minimum delay path frosnc(e) to snk(e) in G} that has total delay of at
mostdelay (e).

Theorem 1 is the basis for a variety of useful synchronization graph transforma-
tions. One such transformation is the detection and removaldaindantsynchroniza-
tion edges, which are synchronization edges whose respective synchronization func-
tions are subsumed by other synchronization edges, and thus need not be implemented
explicitly. Another transformation, calledsynchronizationinvolves inserting synchro-
nization edges in a way that the number of original synchronization edges that become

redundant exceeds the number of new edges added.
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5.1.3 Ordered Transactions Graph

Sriram’sordered transaction grapfil02] is a useful data structure for analyzing ordered
transaction implementations. Given an orderfng, 0., . . ., 0,} for the communication
actors in an IPC graplvipc = (Vipc, Eipc), the corresponding ordered transaction

graphI’(Gipc, O) is defined as the directed graplyr = (Vor, Eot), where
Vor = Viec
Eor = Erpc U Eo
Eo = {(0p,01), (01,02), (02,03), ..., (0p-1,0p) }
delay(0;,0;41) =0for1 <i<p
delay(op,01) =1

Thus, an IPC graph can be modified by adding edges (the eddes)afbtained from
the orderingD to create the ordered transactions graph.

A closely related data structure is thansaction partial order graptGrpo. The
transaction partial order graph represents the minimum set of dependencies imposed
among different processors by the communication actors of the IPC graph. These de-
pendencies must be obeyed by any ordering of the communication operations. Under the
assumption that the send and receive actors are serially ordered on each prétessor,
can be computed fro'p¢ by first deleting all edges itrip¢ that have delays of one
or more, and then deleting all of the computation actors [62]. However, since we wish
to allow for the possibility of data transmission on multiple channels simultaneously we
do not make this assumption, and we must modify the algoritihm [8]. Figure 5.1 gives
pseudo-code for our modified algorithm for generating-o. The key difference with
our algorithm is that;pc may now contain computation nodes with multiple predeces-

sors and multiple successors. These nodes cannot be removed since this would require
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Algorithm 5.1 GENERATE TPO GRAPH(G|pc)

input: IPC Graph G|pc
output: Transaction Partial Order TPO Graph

finished « FALSE
for (Vedgese € Gpc)
do if (e is a feedback edge)
then {Delete e
while (finished = FALSE)
(finished = TRUE
for (V nodesv € G|pc)
(if (v is a computation node)
(if ((indeg(v) = 0) OR (outdeg(v) = 0))

then Delete v
finished = FALSE

elseif (indeg(v) = 1)
(p < predecessor node of v
do for (V¥ successors s of v)
do ¢ then J then ¢ do {Create edge (p, s)
Delete v
 finished = FALSE
elseif (outdeg(v) = 1)
(s « successor node of v
for (V predecessors p of v)
then Create edge (p, )
do < Delete v
\ finished = FALSE

Figure 5.1: Pseudo-code for generating the TPO graph from the IPC graph.
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()
(a) IPC graph. (b) Grpo after () Grpo after
one pass. two passes.

Figure 5.2: The TPO grapitpo derived from the IPC graph in (a) after 1 pass (b) and

2 passes (c) of the algorithm given in Figlirg 5.1.

imposing some additional dependencies on these nodes, and wé&'wajto represent

the minimal set of dependencies. In each pass of the algorithm, the graph is reduced
by removing as many computation actors as possible. It terminates when no more com-
putation actors can be removed. We will see in Sedtion]5.2.2 that there are advantages
to operating on the reduced TPO graph, since the search space of possible transaction
orders can be exponential in the size of the graph.

Figure[5.2 shows an example of a how the transaction partial order graph is derived.
The IPC graph is shown [n5.2(a). After one pass of the algorithm given in Higuire 5.1, the
TPO graph contains two computation actors (Figure 5.2(b)). The algorithm terminates
after two passes with one computation actor remaining (Figure b.2(b)).

As described earlier, when the ordered transaction strategy is implemented using
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a hardware method such as micro-controller that imposes the linear order, there is no
need for synchronization and contention for shared communication resources is also
eliminated. Therefore, if the execution time estimates for the actors are accurate or are
true worst-case values, then the maximum cycle mean (MCM) of the ordered transac-
tion graph gives an accurate estimate or worst-case bound, respectively, of the itera-
tion period of the associated application graph under the ordered transaction strategy.
Such efficient, accurate performance assessment is useful for design space exploration
in general, and it is especially useful when implementing applications that have real time
constraints.

If interprocessor communication costs are negligible, an optimal transaction order
can be computed in low polynomial time for a given self-timed schedule [102]. This
method of deriving transaction orders is called Bedlman-Ford BasedBFB) method
since itis based on applying the Bellman-Ford shortest path algorithm to an intermediate
graph that is derived from the given self-timed schedule.

However, when IPC costs are not negligible, as is frequently and increasingly the
case in practice, the problem of determining an optimal transaction order is NF-hard [62].
This intractability has been shown to hold both under iterative and non-iterative execu-
tion of application graphs. Thus, under nonzero IPC costs, we must resort to heuristics
for efficient solutions. Furthermore, the polynomial-time BFB algorithm is no longer
optimal, and alternative techniques to account for IPC costs are preferable.

In the presence of non-negligible communication costs, an efficient transaction order
can be constructed with the help of the transaction partial order graph described
earlier. Thetransaction partial order algorithms one systematic approach for using
transaction partial order graphs to construct efficient orderings of communication oper-

ations. This algorithm proceeds by considering—one by one—each vereéx-gfthat
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has no input edges (vertices in the transaction partial order graph that have on input
edges are calleckadyvertices) as @andidateto be scheduled next in the transaction
order. Interprocessor edges are inserted from each candidate vertex to all other ready
vertices inGrpc, and the corresponding MCM is measured. The candidate whose cor-
responding MCM is the least when evaluated in this fashion is chosen as the next vertex
in the ordered transaction, and deleted fr6inpo. This process is repeated until all
communication actors have been scheduled into a linear ordering.

Khandelia [62] shows that the transaction partial order heuristic can improve the per-
formance beyond what is achievable by a self-timed schedule, even if synchronization
and arbitration costs are negligible compared to actor execution times. The performance
benefit is achieved by strategic positioning of the communication operations in ways

that do not result from the natural evolution of self-timed schedules.

5.2 WDM Ordered Transactions

In some applications, a shared electronic bus cannot handle the required communication
traffic, even if this traffic is carefully optimized by using the transaction partial order
heuristic. Moving to a faster shared medium such as optical ethernet may be a solutionin
some cases, since the interprocessor communication (IPC) is faster. However, we often
cannot derive suitable solutions for highly parallel applications scheduled on multiple
processors. In this case the shared nature of the interconnect becomes a bottleneck
for the large amount of IPC required to effectively use all the processors. For these
applications, alternative interconnection topologies are required.

One such alternative is to use multiple busses. Lee and Bier [67] describe how the

ordered transaction strategy can be extended to utilize a hierarchy of multiple busses.
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In Section3.5]2 we introduced the WDMOT architecture utilizing fiber optics which
is not a fully-connected topology (every processor pair having a dedicated channel), but
can support multiple simultaneous communications on different wavelengths. The ad-
vantage of this architecture over the fully-connected topology is that the number of
wavelengths required scales with instead of N2, whereN is the number of proces-
sors. In this section we will discuss a heuristic for developing good processor orderings
using this architecture, and compare the resulting system throughput with the through-
put obtained using the transaction partial order algorithm for an electrical bus and with
the throughput obtained in a fully connected system.

In the WDMOT architecture, we implement a protocol in which each processor is as-
signed a unique wavelength. We must ensure that two processors do not send to a given
processor at the same time—i.e., there is possible contention at the (single) receiver
of every processor. In order to accomplish this, we introduce a controller for every
wavelength. This controller grants access to only one processor at a time. [Figure 5.3
(repeated from Figurg 3]10) depicts the architecture. Three fibers are shown—one to
carry the data, one for the wavelength grant signals, and one for the wavelength release
signals. The grant and release signals indicate that the wavelength is available (wave-
length grant) or that a processor is finished using the wavelength (wavelength release or
ack). The signal for wavelengtky, being granted to processprconsists of an ID tag
for processop transmitted on\,. A portion of the grant signal is split off the grant fiber
and distributed to each processor, where it is separated by wavelength. Preaassor
transmit on\,, if it receives its own ID tag on receivér This is shown in more detail in
Figure[5.4 The controller for wavelenghj is responsible for ordering all communica-
tions to processaqy; (which receives data oky;) so that only one processor is attempting

to transmit on\; at a given time. In order to accomplish this, the wavelength controller
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Figure 5.5: Controller state diagram and synchronization signals used in the WDMOT

architecture.

must have a transmitter at the single wavelengthas well as a receiver at;. Each
processop; has a single receiver at, and a transmitter for each processor to which it
will send data. This number may be limited byaa-outconstraint. Figuré¢ 5.5 shows
the state diagram for a controller for wavelength In Figure[5.b there are: proces-
sors scheduled to transmit o), and the they are orderég.;, px2, - - . , Prm]- Since the
order of grants to\, is enforced by the controller, only one processor transmits;cat

a given time.

In Figure[5.#4 we show a tunable source being used in conjunction with each pro-
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cessor. Most commercially available tunable sources today use some type of microelec-
tromechanical (MEMS) switching element, and require times of the order of millisec-
onds to tune between different wavelengths. We can consider this tuning time as an
addition to the interprocessor communication time, and would like switching times on
the order of several clock cycles, which is on the order of nanoseconds. One way to ac-
complish this (although not strictly a ‘tunable’ source) is to simply use multiple discrete
sources, which can be selected electrically, and combine them together. This is shown
in the lower portion of Figur€ 5.4. Several groups are currently developing fast (Gb/s)
tunable wavelength converters for optical switching applications (e.g/ See 75, 89]), al-
though the number of output wavelengths demonstrated has been small. For example,
MaSanove et al. recently reported a tuning range of 22nm for an ImP tunable laser and
wavelength converter [75]. These devices may one day be suitable for the WDMOT
architecture.

Using the WDMOT architecture, any given interconnect topology that respects the
fanout constraints can be implemented. We show in Se¢fign 6.2 that the optimal in-
terconnect topology for a given application is often very irregular. We will explain in
ChaptefJ7 how to synthesize an optimal interconnect topology for a given application

with these fanout constraints.

5.2.1 Optical Components

The WDMOT architecture can be implemented with components developed for the
telecommunications market. The optical add/drop multiplexer (OADM) is a basic build-
ing block of many optical systems where signals with arbitrary wavelengths must be
multiplexed to, or demultiplexed from, wavelength multiplexed signals. Figuye-5.6 [55]

depicts the basic configuration of an OADM using a dielectric thin film filter. OADMs
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can be used at each processor to extract the correct wavelength for incoming data, to
separate the grant signals from the controllers, to multiplex outgoing data onto the data
fiber, and to multiplex the acknowlege signal onto the acknowledge fiber. At each con-
troller, OADMSs can be used to add the grant signal onto the grant fiber, and to drop the

release signal from the acknowledge fiber.

5.2.2 Transaction Ordering

We define an ordered transaction gra&pipyor In @ similar manner to Sectign 5.11.3.

Let ¢, be the set of communication edgesiinb whose target nodes are scheduled on
processop, andn, be the set of nodes that are sources for edgeb order to ensure

that no two processors attempt to transmit on the same wavelength at the same time, we
must determine a transaction orderifig for the nodes im, forp € [1... N] whereN

is the number of processors. Then

T(GIPC7 017 R ON) = GWDMOT = (VWDMOTv EWDMOT)a

where

Vawvpmor = Viec, and

Figure[5.F shows ordered transaction graphs for both electrical shared bus and WDMOT
architecture. For the electrical shared bus, all communications must be ordered and
four additional edges must be addedi@.c. For the WDMOT architecture only two
additional edges must be added¥g.-—nodes A and F which both send to processor

2 must be ordered, and nodes G and J which both send to processor 4 must be ordered.
Note that since the iteration cycle time (reciprocal of the throughput) of the system is

determined by the MCM of the ordered transaction graph, and since adding edges to a
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Figure 5.7: Comparison of ordered transaction graphs for shared bus (left) and WDM

architecture (right). Transaction order edges are shown dashed.

graph cannot decrease the MCM, the throughput of the WDMOT architecture cannot be
less than that of the electrical shared bus architecture. Next we address the question of
determining the ordering3, for each wavelength.

We first note that for the ordering to be correct, we should not introduce any zero-
delay cycles into the IPC graph. Such cycles would create deadlock in the system. In
Figure[5.F for example, an ordering beginning wikh— ¢ — D — E — A, plac-
ing £ before A, would add the edgéF, A) to G\pc and create the cycld — C' —

D — E — A. In other words, the transaction ordering should be a topological sort
of the directed acyclic graph resulting from removing the feedback edgesGipm
Equivalently, sinc&rrpo preserves all the dependenciesic, the transaction order-

ing must be a topological sort 6f1pp, and our goal is then to find the best topological
sort. Unfortunately, the number of possible topological sorts can be exponential in the
size of the graph. For example, for a complete bipartite graph 2mithodes, there are

(n!)? different topological sorts. We therefore see that we can reduce the search space

substantially by reducing the IPC graph and operating on the TPO graph.
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Algorithm 5.1: CHOOSE COMMUNICATON ACTOR(
G|pc, readyList

)

input: ipc graph G| pc
input: list of actors readyL ist
output: communication actor v

if readyList.size() =1
then {v — readyList.head()

for z € readyList
for y € readyList
if x#£vy

e = G|pc-addedge(z, y)
do do then temp.ald%c(:e)

criterialz] < MCM(G|pc)

for e € temp
L L do {G|pc.de|ete(€)
v «— min(criterialx])

Figure 5.8: Function to choose the next communication actor in the transaction or-

der [62].

We will see in Sectiofi 5.2.3 that a random topological sort produces relatively poor
results, and we must derive heuristics to guide the sort. We use a modification of the
transaction partial order heuristic[62]. In this heuristic, edges are added between com-
munication nodes (actors) {dpc that are contending for the bus, and the MCM of the
modified Gpc is measured. Actors whose corresponding MCMs are better are sched-
uled earlier in the transaction order, as discussed in Section 5.1.3. The algorithm for
choosing the next communication actor to schedule is given in Figure 5.8 while the
transaction partial order heuristic is given in Figgre 5.9. For the WDMOT architecture,
we must determine an ordering for each wavelength controller. In order to do this, we

first determine a global ordering of the communication actors using the TPO heuristic,
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Algorithm 5.2: TPO HEURISTIC(

G|pc, transactionOrder

)
input: IPC graph Gpc
output: linear list of communication actors transactionOrder

compute G1pg from G|pc
for v € G|PC
mark|[v] « FALSE
do < if indegree(v) = 0
then {readyList.append(v)

complete « FALSE
first — TRUE
while (complete # TRUE)
v «+ CHOOSE-COMMUNICATION-ACTOR(G pc, GTpQ, readyList)
mark[v] — TRUE
transactionOrder.append(v)
if (first)
then {first — FALSE

else {G|pc-addedge(w, v)
w <—v
do < foru € (v,u) € E
flag < TRUE
for s € (s,u) € E

if (mark(s) = FALSE)

doq do { then {flag — FALSE
if (flag)
| then {readyList.append()
if (readyList.empty() = TRUE)

then {complete — TRUE

\

Figure 5.9: TPO heuristi¢62].
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Algorithm 5.3: WDM TPO HEURISTIC(

G|pc,Q

input: IPC graph G pc
output: linear list of communication actors 2; for each wavelength

CALL HeuristicTPO(G | pc, transactionOrder)
forpe[l...N]
for edgese € G|pc

4o {if proc(target(e)) = p

then {e, — ¢, Ue

for edgese € ¢,

do {n, < source(e)
2, «— SORT(n, using transactionOrder)

do

Figure 5.10: WDM ordered transactions algorithm.

and then use this ordering to sort the actors in egcliPseudocode for the algorithm is

given in Figurg5.10.

5.2.3 Experiments

We ran the WDM ordered transactions algorithms on a set of randomly generated graphs.
These graphs were generated using a modified verion of Sih’s methiod [96] which pro-
duces graphs with a regular structure that resembles many DSP applications. We modi-
fied Sih’s algorithm to insure that the random connections do not introduce cycles, and
added a fanout parameter which controls the amount of parallelism in the graph. Pseudo-
code for the random graph generation algorithm is shown in the Appendix. An example
of a random graph generated using this algorithm is shown in Fjgure 5.11.

Figure[5.IP compares the WDM ordered transaction heuristic (using the fiber-based

WDMOT architecture) to the TPO heuristic (using a shared bus architecture) and a trans-
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Figure 5.11: Two examples of random graphs generated using a modification of Sih’s

algorithm [96] with 70 nodes and fanout 5.
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sort ordering for a set of random graphs.
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action order based on a random topological sort (using a shared bus architecture) for a
set of randomly generated graphs. The y-axis in Fifurg 5.12 is the ratio of throughput
to the maximum possible throughput (the reciprocal of the MCMFeE) (thethrough-

put ratio) that would be obtained for a full crossbar interconnect. In Figurg 5.12 the
ratio of average execution time for the computation actors to the average IPC commu-
nication time (thecomputation ratip was2.5. We observe that the throughput using

the WDMOT architecture is usually very close to this maximum in these graphs, and
generally better than that for the shared bus. We also observe a significant improvement
for the TPO heuristic over the topological sort ordering. For purposes of comparison
we assume the same communication times for both optical and electrical busses in this
experiment. In practice the communication times for the optical bus would be lower,
which would increase the relative improvement of the WDMOT results.

In Figure[5.1IB we plot the average, over 50 random graphs, of the throughput ratio
as the computation ratio is varied. We see that the WDMOT architecture produces
throughput very close to the theoretical maximum for this size grépk: (8 in Sih’s
algorithm and4 processors). Also, the relative performance of WDMOT to the shared
bus increases as the communication overhead increases (lower computation ratio on the
x-axis). The random topological sort performs significantly worse. Also, there is no
improvement as the communication overhead decreases. This is because the random
topological sort is imposing an inefficient ordering of the computation nodes as well as
the communication nodes, and this effect is dominant.

In Figure[5.1I4 we plot the average, over 50 random graphs, of the throughput ratio
as the number of processors is varied. Again we see that the WDMOT architecture
performs close to the theoretical maximum. We also observe that its performance is less

sensitive to the number of processors.
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Figure 5.13: Comparison of TPO heuristic, WDMOT heuristic, and random topological
sort ordering vs. computation ratio. Each point is the average of 50 random graphs. The

graph length was 8 and the application was scheduled on 4 processors.
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Figure 5.14: Comparison of TPO heuristic, WDMOT heuristic, and random topological

sort ordering vs. number of processors. Each point is the average of 50 random graphs.
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Chapter 6

Scheduling for Arbitrarily Connected Systems

Scheduling for multiprocessor systems was introduced in Ch@pter 2. A vast range of
scheduling techniques for task graphs has been developed (e.g-see [101] for a review of
several representative approaches); however, these techniques typically assume a fixed
communication network, and do not systematically take connectivity constraints into
account. By connectivity constraints, we mean the inability of certain pairs of pro-
cessors to communicate with each other. Such constraints are desirable to impose in
optically connected multiprocessors because the power consumption of communication
is relatively independent of distance, and largely dependent instead on the number of
electrical-to-optical conversions that must be performed (this will be discussed further
in SectionB.2).

Thus, it is advantageous to configure multiprocessor schedules in such a way that
multi-hop communication is avoided, or limited to some maximum number of hops per
communication operation, and the relative abundance of communication links is used
instead to achieve the required communication flexibility. However, such connectiv-
ity constraints can cause list scheduling techniques, and related methods to deadlock.

One contribution of this thesis is to develop a general framework for extending arbitrary
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list scheduling approaches to avoid deadlock, and operate efficiently in the presence of
connectivity constraints. We will apply this framework to jointly streamline the com-
munication network and task graph mapping for a given application in Ch@pter 7. This
framework can be used both for minimum-cost dedicated implementations, and for re-
configurable networks, where the goal is to save power consumption by activating a

minimal subset of available laser-detector pairs.

6.1 Implications of Increased Connectivity

It has been shown that optical interconnects can provide a higher degree of connec-
tivity than electrical interconnects. For example, Lil[71] claims that using technology
available in the year 2000, interconnects of up to 1000x1000 I/O elements per square
centimeter can be achieved. In this thesis we explore the implications of various levels
of connectivity for multiprocessor systems, and interconnection networks that can make
use of the unique properties of optical interconnects.

One consequence of increasing levels of connectivity between processors is that it is
easier for mapping algorithms to find good solutions. We show here that the quality and
number of solutions found by a probabilistic search algorithm is a strong function of
the level of connectivity. Connectivity can be defined in the following way for a system
with N processor§ Py, P, ..., Py}: Let Py — Py = TRUE iff there exists a direct
communication link fromPy to Py. Directional connectivity is defined as

Z Z Ivalue(Px — Py)
X Y#X
Directionlessconnectivity is defined as

Z Z Ivalue((Px — Py)V (Py — Px))

X Y<X
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Directional connectivity = 3 Y

Directionless connectivity = 2

Figure 6.1: Example of directional and directionless connectivity.

wherelvalue(TRUE) = 1 andlvalue(FALSE) = 0. An example is shown in Fig-
ure®l.

6.1.1 Topology Graph

We define a topology graph(®, L) such that the nodes @f correspond to the “proces-
sors” ® in the architecture and the edgkesn T" correspond to direct physical commu-
nication links between the processors. We define the set of all processoenddabel
the processor§p:, ps, . . ., pjo }. ThenT contains an edge;, p;) iff the interconnection
network provides a direct (single-hop) communication link frento p;. If [ is an edge

in 7', we say thatrc(l) is thesourcenode ofl; snk(/) is thesinknode ofi; [ is directed
from src(() to snk(l); [ is anoutput edgedf src(l); and! is aninput edgeof snk(l). We
denote thalegreeof a processor by the number of incident (physical) communication
links. The degree of a nodein T is equal to the sum of the number of input and output
edges ofv. For example, each processor in a fully-connected system|®jtproces-
sors, has degre|®| — 1) (two links—one incoming and one outgoing—to each other
processor). Furthermore,pathin 7'(®, L) is a nonempty sequenég lo,l3,... € L

such thatnk(l;) = src(es), snk(ez) = src(es), . .. whosepath lengthequals the num-
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ber of edges in the sequendeis said to bestrongly connected for each pair of distict
nodes(p;, p2) there is a path directed from to p, andthere is a path directed from

to py.

6.1.2 Effect of Connectivity on a Simple Mapping Algorithm

We begin by experimenting with a very simple mapping algorithm in order to observe
the effects of different levels of connectivity. In this experiment, a synthetic aperture
radar application with 60 tasks was mapped onto a 9 processor heterogeneous architec-
ture with the purpose of studying the resulting connectivity patterns. The goal of the
mapping algorithm was simply to determine which tasks should be assigned to which
processors, not the relative ordering of the tasks on the processors, or the effects of inter-
processor communication or iterative execution. With these numbers, the search space
consists of approximately - 10°” distinct mappings. A genetic algorithm was used to
explore this space. Performance was measured as a function of connectivity constraint
(i.e., an upper limit on allowable connectivity), with 10 trials for each connectivity con-
straint point. Figur¢ 612 shows the number of valid solutions found by the genetic algo-
rithm vs. connectivity. Figur€ 8.3 shows the best throughput obtained as a function of
the connectivity constraint. It can be seen that both the number of valid solutions and

the quality of these solutions increase with increased amounts of connectivity.

6.2 Connection Topologies

Electrically connected systems generally have a regular interconnection pattern, due
to the physical constraints imposed by two-dimensional circuit board layout. Some

examples include ring, mesh, bus, and hypercube interconnect topologies. Using these
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Figure 6.2: Impact of Connectivity on Search Efficiency.
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Figure 6.3: Impact of Connectivity on Performance.
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topologies, communication between remote processors requires multiple hops, which
increases both latency and power, and increases contention throughout the network.

In contrast, optically connected multiprocessors, particularly those utilizing free
space optics and three dimensions, are free to utilize arbitrarily irregular interconnection
networks. Once the signal is in the optical domain, there is very little attenuation, so the
energy required to transmit a unit of data is essentially independent of distance. The
required energy instead is a function of the number of electrical-to-optical conversions
that must be performed[63], which in turn is determined by the number of hops. Fur-
thermore, due to the flexibility of the communication medium, it is generally possible
to avoid multi-hop communication operations by simply activating direct communica-
tion channels between the source and destination processors. Together, these properties
make it desirable to limit the number of hops per communication operation when explor-
ing configurations (interconnection patterns and task graph mappings) for an optically
connected, embedded multiprocessor.

Irregular interconnection patterns arise naturally when scheduling task graphs under
the restriction of single-hop communication. A simple example of an irregular inter-
connection network is show in Figure6.4. Given four processors and four bidirectional
links, there are two possible topologies shown in Figure 6.4(a) and (b). Topology (a) has
a regular interconnection pattern, with each processor connected to two others. Topol-
ogy (b) is irregular, with one processor having degree three, one processor having degree
one, and the others having degree two. Topology (b) allows a single-hop schedule, since
all required communication can take place with only one hop. In topology (a), two hops
are required for communication from tagkto taskD and fromD to E.

Task graph scheduling algorithms generally produce schedules that require an ir-

regular interconnect topology for single-hop communication. For example, Higure 6.5
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Figure 6.4: (a)-(b) Two possible topologies with four processors and four bidirectional

links. (c) Application graph.

shows the application graph for an FFT application [56]. This application was sched-

uled on eight processors using the DLS algorithm [96], with no constraints made on

interconnect placement. Figure]6.6 shows the topology required to operate the result-
ing schedule using only single-hop communication operations. There are 14 directional
links out of a possible 56 for a fully connected system (the ratio of these two numbers

gives a measure of the average connectivity of each processor).

If we denote thedegreeof a processor by the number of incident (physical) com-
munication links, each processor in a fully-conneotgatocessor system, for example,
has degre@(n — 1) (two links—one incoming and one outgoing—for each processor).

In an arbitrary network, the relative variation in the degrees among different processors
gives a measure of the level of irregularity of the associated interconnection pattern. For

example, in the mapping of Figufe 6.6, processoasid6 have degree six, while pro-
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Figure 6.5: FFT1 application graph.

/

Figure 6.6: Single-hop processor topology for DLS schedule of FFT1 application.
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connectivity requirements averaged over 100 applications scheduled on
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Figure 6.7: Connectivity requirements of 100 benchmark applications.

cessors and5 have degree one. This trend of highly irregular connection requirements

occurs over a wide variety of task graph structures. To illustrate this, FHigure 6.7 plots

the average of these measures over 100 real and synthetic benchmark application graphs

when scheduled on different numbers of processors. The synthetic benchmarks used

in these experiments were generated using the graph generation techniquesof Sih [96],

which are designed to construct task graphs that resemble the dataflow structures found

in DSP applications.

As motivated earlier, when developing automated mapping tools for optically con-

104



nected systems, we have several design constraints. It is desirable to map the application
onto the architecture without requiring multi-hop communication, while satisfying con-
straints on system throughput and latency. We also have limits on the maximum 1/O
fanout and degree of a single processor. In order to conserve space and power, we

would also like to minimize the total number of communication links.

6.3 Connectivity and Scheduling Flexibility

Due to the desirability of single-hop communications in optically interconnected mul-
tiprocessors, as motivated in Sectigng 6.1 gngd 6.2, it is important during co-design to
employ scheduling techniques that carefully take into account the connectivity of candi-
date interconnection patterns. In systems that are not fully connected, the consequence
of single-hop communication is that each procegswan only send data to some subset
x(p) of the set of all processors, and only receive data from a sub$Ep) of &.

If these constraints are not considered, deadlock can easily occur during the schedul-
ing process. Consider an application gra@phtwo tasks/; andwy, in G that have been
scheduled on processagss and p,, respectively, and a third task that receives data
from vy andv,. Then if ;i (v1) N x2(ve) = 0, the scheduler is deadlocked.

We define deasible sebf processorsl[v| for a tasky as the largest subset &f
on whichr can be scheduled without deadlock. We would like to have an algorithm
to determine the feasible set of processbfg| for all v € G. In general, a constraint
imposed on one task (scheduling it on a processor) may caus$¢o be updated for all
v € (. This update consists of choosing a subset of tha@gdtthat existed before the
constraint—new members are never added.

We define theommunication flexibilityor simplyflexibility for short) of the system
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Partial Schedule:
A on processor 2
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WIA] = {2}
W[B] = {1}
WIF] = {1}
W[D] = {1,2}
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W[C] ={1,2,3

(b) Application graph (c)

Figure 6.8: Example requiring constraint information propagating both forward and

backward.

at any point during the scheduling process as the sum of the sizes of thd:gefisr all

v € (. The flexibility gives some measure of the degree of constraint imposed on all
tasks by a given scheduling move. Fig[ire 6.8 depicts a simple example of an application
graph with six tasks being scheduled on four processors. A partial schedule is shown
in Figure[6.8(c). Scheduling task in Figure[6.8(b) has an effect on tasks D, E,

and F'. Figure[6.B(c) shows the constraint sétgor each task after scheduling on
processor 1. The flexibility at this point is equal to 11. Hfhad been scheduled on
processor 2, the flexibility would be 16. This example also demonstrates the potential
for deadlock. After task3 is scheduled on processor 1, processor 0 becomes infeasible

for taskC', since scheduling tagk on processor 0 confines tagkto processor 0. Task
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Algorithm 6.1: Rf1(S)

input: set of processors S € ®

® isthe set of al processors
output: set of processors R that can be reached from Sin zero or one hop

RS
fordlpe S
foralze ®
do { do {if C(p,z) = TRUE
then {R — RU{z}
return (R)

Figure 6.9: Functiorzf'(S).

Algorithm 6.2: Rb'(S)

input: set of processors S € ®

® isthe set of al processors
output: set of processors R that can reach at |east one element in S with zero or one hop

RS
foralpe S
foralze @
do do {if C(z,p) = TRUE
then {R — RU{z}
return (R)

Figure 6.10: Functiokb' (.9).

Fis confined to processor 1 sinégis scheduled on 1. Task sends data to botk
and F’, and there is no processor which can communicate with both processors 0 and 1
in a single hop. Existing scheduling algorithms are not designed to detect this deadlock
condition. Avoiding these deadlock situations is not trivial, since scheduling one task in
the graph may possibly constrain any other task in the graph.

The algorithm described in Figurgs]6[9, 6.L0, B[1T,]6.12[and 6.13, works by prop-

agating constraint information forward and backward through the application gtaph

The inputn specifies the maximum number of hops allowed for two processors to com-
municate with each other. In this chapter we will concentrate on single-hop commu-

nication, wheren = 1. First an edge-reversed copy of the application grapld is
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Algorithm 6.3: BFSFORWARD(G, s, n, endNodes, bottomNodes, F')

input: application graph G

input: nodes in G being considered

input: set of discovered endNodes

input: maximum hop communication allowed n

output: stack of newly discovered bottomNodes

input/output: array F of sets of feasible processorsfor each nodein G
local variables: queue of nodes Q, array dist of distancesfor each node
local variables: set R of processor numbers, application graph nodes w, v

foralwe G
do {dist[w] = —1 dist[s] =0

Q — {s}
while (Q # 0)
v = head(Q)
for all w € Adj[v]
(if dist[w] < 0
do ENQUEUE(Q, w)
do dist[w] = dist[v] + 1
then < Flw] = Flw]| N Rf™(F[v])
if outdegree(w) =0
\ then {PUSH(w, bottomNodes)

Figure 6.11: Function bfsForward().
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Algorithm 6.4: BFSBACKWARD(G, H, s, n, endNodes, topNodes, F)

input: edge-reversed application graph G

comment: for every node v € G, v = G[u] gives corresponding nodein G
input: array of nodes H

comment: for any nodewv € G, u = H [v] references corresponding nodein @
input: node s in G being considered

input: set of discovered endNodes

input: maximum hop communication n allowed

output: stack of newly discovered topNodes

input/output: array F of sets of feasible processors for each nodein G

local variables: queue of nodes Q, array dist of distances for each node
local variables: set R of processor numbers, application graph nodesw, v, §

local variables: nodesin G: W, v

foralwe @
do {dist{w] = -1 §= H[s
dist[§] = 0
Q — {5}
while (Q # 0)
v = head(Q)
for all w € Adj[v]
if dist[w] < 0
ENQUEUE(Q, w)
do w = Hw]
do 0= HJv]
then < dist[w] = dist[v] + 1
Flw] = F[w] N Rb™(F[0])
if outdegree(w) =0
then {PUSH(w, topNodes)

Figure 6.12: Function bfsBackward().
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Algorithm 6.5: FEASIBLE(G, G, H, s, p, n, F, commit)
input: application graph G
input: edge-reversed application graph G
comment: for every nodew € G, v = G [u] gives corresponding nodein G
input: array of nodes H
comment: for any nodev € G, v = H[v] references corresponding nodein G
input: node s in G being considered
input: processor p being considered
input: maximum hop communication n allowed
input: boolean value commit determinesif changesto I are saved
input/output: array F of sets of feasible processorsfor each nodein G
local variables: local copy of F Flocal, set of discovered endNodes
local variables: stack of nodestopNodes, application graph nodes v, v, by
local variables: sets of processor numbersf and r

itp ¢ Fls
then {return—l
Flocal = F
Flocal[s] = {p}
PUSH(topNodes, s)
while topNodes # ()
while topNodes # ()
POP(topNodes, v )
do ¢ INSERT(endNodes, v¢)
BFSFORWARD (G, s, n, endNodes, bottomNodes, Flocal)
while bottomNodes # ()
POP(bottomNodes, vp)
do { INSERT(endNodes, vy,)

BFSBACKWARD (G, H, s, n, endNodes, topNodes, Flocal)

do

if commit
then {F = Flocal
flexibility = 0
foralvedG
do {flexibility = flexibility + size(Flocal)
return (flexibility)

Figure 6.13: Function feasible() determines feasibility and flexibility (degree of con-

straint) for scheduling taskon processop.
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created. When making a scheduling move (introducing a new constraint atg,tdsk
constraint information is propagated forward using breadth first searchsftbnough

G. When arendnodgtask with no successors) is discovered during the forward phase
for the first time, it is added to a stack (nanetiNodes.

At the end of the forward phase, the backward phase begins. Each endnode is re-
moved from the stack and the constraint information is propagated backward by per-
forming breadth first search from the endnodes throlighWhile propagating back-
ward, newly discovered endnodes Bfare added to a second stack. These endnodes
are removed from the stack, and search continues in the forward direction. The process
continues until there are no newly found endnodes.

We defineRf!(S) and Rb'(S) for sets of processors reachable fréhin one hop.

Then for multiple hops

Rf*(S) = Rf'(Rf'(5))
RB*(S) = Rb'(Rb(S))
Rf™(S) = RfH(Rf"(S5))
Rb™(S) = Rb*(RV"1(9))

We define the functionbfsForward() andbfsBackward() which use breadth first
search to propagate constraint information for a taska graphG in the forward and
backward direction.

The feasible() function described in Figurg 6]13 returns an integer equal to the
sum of the sizes of the constraint sets for all nodes in the application gfaphen
scheduling a tasks on a processay, given an input: corresponding to the maximum
number of communication hops allowed. slfs not feasible om, the function returns

—1.
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(scheduling step) at specified

point in feasible

feasible sets

(1) schedule A on 2. end J

\fA:[Z] B:[1,2,3] C:[0,1,2,3] D:[1,2,3]

feasible() E:[0,1,2,3] F:[0,1,2,3]

(2) schedule B on 1: after A:[2] B:[1] C:[0,1,2,3] D:1,2,3]
bfsForward () from B E:[0,1,2,3] F[1]

(2) schedule B on 1: after A;[2] B:[1] C:[0,1,2,3] D:[1,2]
bfsBackward () from F E:[0,1,2,3] F:[1]

(2) schedule B on 1: after A:[2] B:[1] C:[0,1,2,3] D:[1,2]
bfsForward() from A E:[1,2,3] F:[1]

(2) schedule B on 1: after A:[2] B:[1] C:1,2,3] D:[1,2]
bfsBackward() from E E:[1,2,3] F:[1]

(3) schedule C on 3: end gfA:[2] B:[1] C:[3] D:[2] E:[3] F:[1]

feasible()

(3 alternate) sched C on 1. end

feasible()

DfA:[2] B:[1] C:[1] D:[1,2] E:[1] F:[1]

Table 6.1: Feasible sets at various points during scheduling.
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Table[6.1L lists the constraint sets for the tasks in the example of Figure 6.8 at various
stages of théeasiblefunction. We are scheduling on 2, B on 1, andC on either 3
or 1. Here we can see that after scheduling t&sén processor 1, processor 0 is not a
feasible choice for task'. In Table[G.]L, the last row corresponds to the second choice

of scheduling” on processor 1.

6.4 Complexity of the Constraint Algorithm

The bfsForward function will be called once for the task being considered, and
once for each task i6/ with no predecessors (endnodedf. The bfsBackward
function will be called once for each task@with no successors (endnodedf). The
complexity of breadth first search {3(v + ¢) for a graph withv nodes and: edges.
The bfsForward andbfsBackward functions require a set intersection of two sets
of sizeO(N) whereN is the number of processors in the system. This has complexity
O(N log N). FunctionsRb™ andRf"™ also have complexity) (N log N). The overall
complexity is therefore

O(v(v+e)NlogN) (6.1)

This is a reasonable complexity figure in the embedded systems domain, where com-
pile/synthesis time tolerance is significantly higher compared to general-purpose com-
putation (e.g., seei74]).

For interconnection graphs that are strongly connected, such as those in which all
links are bidirectionalRf™(S) = & (the set of all processors) altb”(S) = ¢ after
some number of hops < N, and the breadth first searches do not need to proceed for
distances further thah whereh is the maximum hop constraint given beforehand. In

this case the complexity 9(vh N log N).
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6.5 Incorporating Feasibility and Flexibility into Schedul-

ing
The general class of list scheduling algorithms can easily be adapted to produce single-
hop (orn-hop) schedules by incorporating our constraint algorithm. This is advanta-
geous because it allows us to leverage a large library of useful scheduling techniques.

In list scheduling, a priority list. of tasks is constructed. The priority ligtis a
linear ordering(v, v», . .., vy) Of the tasks in the application gragh= (V, E) such
that for any pair of distinct tasks andv;, v; is to be given higher scheduling priority
thany; if and only if ¢ < j. Each task is mapped to an available processor as soon as
it becomes the highest-priority task according:tamong all tasks that are ready. This
process is repeated until all tasks are scheduled.

The concepts of feasibility and flexibility, which where developed in Sediign 6.3,
can be incorporated into the general framework of list scheduling by restricting the set
of candidate processors to include only those that are feasible at the given scheduling
step, and by taking flexibility into account in designing the priority metric through which
tasks are ordered.

In the context of single-hop communication across arbitrary interconnection pat-
terns, the incorporation of feasibility considerations is required (to avoid scheduler
deadlock, as discussed in Section 6.3), while incorporation of flexibility is optional.
Furthermore, there are many possible ways to consider flexibility in the task prioriti-
zation process. We show in Sectipn] 6.6 that even simple techniques for incorporating
flexibility information can lead to large performance improvements for a targeted class

of architectures.
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6.6 Scheduling Experiments using Flexibility

As mentioned earlier, our scheduling technique operates in conjunction with a given
list scheduling strategy. In our experiments, we employed the DLS algoritiim [96] as
the underlying list scheduling strategy, although, as explained in S€ctijon 6.3, any list
scheduling algorithm could have been used.

We examined a set of DSP application benchmarks and scheduled them using two
different scheduling modes, one that incorporates only feasibility information (to avoid
deadlock), and another that takes both feasibility and flexibility into account. We refer
to these as thieasibility-onlyandfeasibility-flexibilitymodes, respectively. To evaluate
the performance across a range of connectivity levels, we scheduled the applications
onto networks with varying degrees of connectivity.

In the feasibility-only mode, the processBrconsidered for a given taskat each
scheduling step was restricted to be in the feasiblelselt for v, as described in Sec-
tion[6.3, and no modification was made to the task prioritization metric of the underlying
list scheduling strategy (DLS).

In the feasibility-flexibility mode, the processét considered at each scheduling
step was again restricted to be in the feasible set;fbpwever, whenever two processor
assignments for resulted in equal priority levels(v), whereL represents the priority
metric of the original DLS algorithm, priority was given to the assignment that resulted
in a higher value of flexibility. In other words, priority was given to assignments that
offered greater flexibility for future scheduling decisions.

For each application, we chose a numbérmf processors, then generated a fully
connected network withV(N — 1) links. We scheduled the application using both
feasibility-only and feasibility-flexibility modes onto this network. Next we removed

one link from the network at random, and again scheduled the application using both
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Figure 6.14: Makespans for schedules constructed using DLS plus flexibility computa-

tion with and without considering the processor flexibility metric.

scheduling modes. We continued this process of removing links until no links remained,
resulting with all the tasks scheduled on a single processor. We define the relative im-
provement of the feasibility-flexibility mode over the feasibility-only mode by compar-
ing the average makespan over all link configurations.

The result of this experiment for an FFT application is shown in Figurg 6.14. If
we compare the average makespan for the schedules generated by feasibility-flexibility

mode (the top curve in Figuie 6]14) with the average makespan of the schedules gen-
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Application || N | Improvement(%o)
FFT1 7 30
Karpl10 6 26
Irr 8 17
Qmf4 7 19
NN16-3-4 || 8 21
Suml 6 8
Laplace | 7 23
FFT2 7 15

Table 6.2: Relative makespan improvement obtained by using flexibility information in

the scheduling process.

erated without incorporating flexibility (the bottom curve in Figiire 6.14) we see a 30%
relative improvement when the scheduling algorithm incorporates the flexibility metric.
Table[6.2 summarizes this relative improvement for several other DSP applications.
We performed experiments with the following application graphs: FFT1, Irr, FFT3,
Karpl10, Qmf4, Laplace, Suml, and NN16-3-4. The FFT graphs are differentimplemen-
tations of the fast Fourier transform from Kahn![56] and contain 28 nodes each. Karp10
refers to the Karplus-Strong music synthesis algorithm with 10 voices (21 nodes), and
Qmf4 is a quadrature mirror filter bank with 14 nodes. Laplace is a Laplace transform,
Irr is an adaptation of a physics algorithm, and sum1 is an upside down binary tree rep-
resenting the sum of products computation. A neural network classifier algorithm with
16 input nodes, 3 intermediate layers, and 4 output nodes labeled NN6-3-4 was also

tested.
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Application || N | Reduction in comm. energy(%)Makespan increase
for single hop

FFT1 7 16 8
Karp10 6 24 4
Irr 8 16 (2)
Qmf4 7 32 3
NN16-3-4 || 8 58 2
Suml 6 1 4
Laplace || 7 4 (3)
FFT2 7 12 2

Table 6.3: Reduction in communication of single hop schedule over three-hop schedule.

6.6.1 Power Reduction with Single Hop Communication

As mentioned earlier, it is advantageous to limit interprocessor communication to a low
number of hops because the energy required is proportional to the number of electrical-
to-optical conversions. In order to quantify this effect, we scheduled the benchmark
applications using our modified scheduling technique, which takes the number of hops
as an input parameter. We scheduled the benchmarks with hop constraints of one hop
and three hops, and compared the communication energy required. For our purposes,
we assumed all communication tasks transferred the same number of bits, so the energy
cost of all IPC actors was equal. With a three-hop limit, the scheduler is free to choose
any communication path that involves three or fewer hops and is thus less constrained
in its scheduling choices than with a one-hop limit. Tablé 6.3 shows the reduction in
the required communication energy for single-hop schedules over three-hop schedules

for the benchmark applications. We would expect that in general the schedules con-
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structed with the three-hop limit would have a lower makespan, since the scheduler is
less constrained—the set of moves available to the scheduler at any point using three
hops is a superset of the moves available when limited to one hop. For these bench-
marks, however, we found that any undesirable effect of the additional constraint for
single-hop schedules was very small, as can be seen in[Table 6.3. In two of the bench-
marks (Irr and Laplace), the makespan was in fact better (lower) when we limited the

scheduler to single hops.

6.7 Summary of Flexibility Work

Optical interconnect technology is promising for global communication in embedded
multiprocessors, since the interconnection patterns can flexibly be streamlined and re-
configured to match the target applications. However, due to the power consumption
characteristics of optical links, it is useful to restrict communication across them to
low-hop transfers. We have demonstrated an effective algorithm for determining the
set of feasible processors that will avoid schedule deadlock in a single-hop schedule,
and a useful metric, called communication flexibility, for the degree to which a given
scheduling decision constrains future decisions (in the context of the given communi-
cation topology). We used this algorithm and the flexibility metric in conjunction with
the DLS algorithm to map several DSP applications across a wide range of interconnect
topologies. The results depicted in Figure 6.14 6.2 demonstrate both the sound-
ness of our feasibility computation techniques, and the utility of our flexibility metric in

guiding the scheduling process.

119



Chapter 7

Synthesizing an Efficient Interconnect Network

Embedded systems typically run a limited and fixed set of applications. We can use
this application-specific information to optimize the interconnection network. For our
purposes, an optimal network is defined in the context of a set of applications and con-
straints. The constraints may include the latency, throughput, and power consumption
for the given applications, along with cost and area constraints of the overall system.
This problem is important for today’s system-on-chip (SoC) designs utilizing elec-
tronic interconnects as well as future designs that might utilize optical interconnects.
SoC design is moving toward a paradigm where reusable components called IP (for in-
tellectual property) from different vendors can be combined to rapidly create a design.
IP interface standards are being developed that define the services one IP component
(or IP blockK) is capable of delivering, and that enable IP blocks to work with on-chip
buses and other interconnection networks. The SoC designer’s task is then to choose
the appropriate IP blocks, map the application tasks onto these blocks, and to construct
a communication network and corresponding glue logic to connect these IP blocks. As
transistor density increases, more IP blocks can be placed on a single chip, and the num-

ber of possible interconnections (links) between them increases. The longest wires on
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the chip are usually due to these links. These wires contribute to delay and limit the
maximum achievable clock rate. Also, routing these interconnections is a significant
challenge for the EDA tools. Therefore, if we can minimize the number of links re-
quired in the high level design stage, placement and routing can be improved in the back
end of the design process and performance will increase.

In a system utilizing optical interconnects, cost and area constraints dictate the total
number of transmitters and receivers in the system (i.e., total number of optical links).
Routing constraints from local partitions to their associated VCSEL transmitters and
detectors dictate a maximum fanout for each local partition. An optimum interconnect
is then one that minimizes the number of links while enabling the application to meet
the power, latency, and throughput constraints.

Realistic optical networks may incorporate relatively high, but not necessarily com-
plete (fully connected), levels of connectivity. Even in fully-connected systems, such as
FAST-Net [48], it is still desirable from the viewpoint of power and heat dissipation to
have a minimal interconnect mapping, since for a given application, non-essential trans-
mitters can be turned off. In other optical processing implementations, the interconnect
network can be reconfigured between applications [54].

The freedom to optimize interconnection patterns opens up a vast design space, and
thus the design of an optimal interconnect structure for a given application or set of
applications is a significant challenge. In this chapter, we illustrate both probabilistic
and deterministic interconnection synthesis algorithms. A key distinguishing feature to
our interconnect synthesis algorithms is that they work in conjunction with a scheduling

strategy—most existing interconnect synthesis algorithms assume a given schedule.
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7.1 Greedy Interconnect Synthesis Algorithm

We developed a greedy, heuristic algorithm, which we caltwephase link adjustment
(TPLA) algorithm [6], to synthesize an interconnect and an associated multiprocessor
schedule for a given application. The TPLA algorithm starts with a fully connected net-
work, and operates idownandup phases. Input to the algorithm is either a makespan
constraint for the application, or a constraint on the total number of links.

Each step of the down phase in TPLA removes one link, while each step of the up
phase adds one link. One step of the down phase consists of assigning each existing link
a score based on the schedule makespan resulting from its removal, and removing the
link with the lowest score. A history of scores is kept for each link. For the first pass
through the down phase, ties between links are broken randomly. On subsequent phases,
the link history is used to break ties. The down phase continues until all the links are
removed.

Conversely, one step of the up phase in TPLA consists of assigning a score to each
missing link based on the makespan resulting from its addition. The up phase continues
until the network is fully connected. Repeated, alternating invocations of down and up
phases are executed for some time limit (determined by the user), and the best result
found is taken. Given a makespan constraint, this best result minimizes the number of
links. Alternatively, given a constraint on the number of links, the best result minimizes

the makespan.

7.1.1 Experiments with TPLA

We evaluated the TPLA algorithm on a neural network classifier application called

RBFNN, consisting of 16 input nodes, 3 intermediate layers, and 4 output nodes. This
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Figure 7.1: Link synthesis using the TPLA algorithm.

benchmark was chosen in part since it exhibits a large amount of inter-processor com-
munication. The scheduling algorithm used was the DLS algorithin [96] modified to

incorporate the flexibility metric, as detailed in Sectjon 6.5. The bottom curve of Fig-

ure[7.1 shows the best makespan achieved for each level of connectivity between 0 and
fully connected, after one down phase and one up phase. This gives a Pareto curve of
the trade-off between number of links and makespan for the application. For purposes
of comparison, the upper curve of Figure] 7.1 shows the makespan achieved by starting

with fully connected and randomly removing one link at a time. The TPLA algorithm
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shows a significant improvement (42% relative improvement) over random removal,
and is thus a promising starting point for developing more sophisticated link synthe-
sis algorithms. More broadly, it demonstrates the effectiveness of joint scheduling and

interconnect synthesis.

7.2 Link Synthesis using Genetic Algorithm

We developed a genetic algorithm (GA) based interconnect synthesis algorithm. This
algorithm also employs the dynamic level scheduling (DLS) algorithm [5] modified for
arbitrary interconnection networks as the underlying list scheduling strategy, although
any list scheduling algorithm could have been used. The algorithm takes into account
constraints on the total number of links,, and a maximum fanout for each processor

fmax, @S described earlier and motivated by area and cost constraints for the system.

7.2.1 Genetic Algorithm Overview

Genetic algorithms will be described in more detail in Chapter 8—we give a brief
overview here in order to explain the link synthesis algorithm. When a genetic algo-
rithm is used to solve an optimization problem, it is necessary to be able to represent a
single solution to the problem with a single data structure. This representation is often
called achromosomer anindividual. The quality orfitnessof a given solution is eval-

uated using awbjective function Genetic algorithms are capable of both broad search
(exploration) and local search (exploitation) of a search space. They are often preferred
than gradient search methods because they avoid local minima, and do not require a
smooth search space.

The basic steps of a genetic algorithm are shown in Figufe 7.2. The genetic algo-
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Initialize population

Select individuals
for mating

Mate individuals to
produce offspring

Mutate offspring

Insert offspring
into population

Are stopping
criteria satisfied?

Finish

Figure 7.2: Basic steps of a GA.
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Figure 7.3: Crossover operator applied to array chromosome.

rithm creates an initighopulationof candidate solutions using an initialization operator.
Often the initial population is distributed randomly over the search space. The genetic
algorithm first selects individuals from the population and perfarrassoveandmuta-

tion operations on these individuals. Traditional crossover generateshivdoen from

two parentsin a population. This is depicted in Figyre]7.3 for a chromosome whose rep-
resentative data structure is an arraycrdssover points chosen, shown by the dashed
vertical line in Figurg 7]3, and the child chromosome is formed by the elements from
the first parent chromosome to the left of the crossover point and the elements from
the second parent to the right of the crossover point. The mutation operator specifies
a procedure for changing (mutating) an individual. The specifics of the mutation de-
pend on the data structure used to represent an individual. A typical mutation operator
for an individual represented by a binary string flips the bits in the string with a given
probability (themutation probability. Onegenerationof a genetic algorithm consists

of performing crossover and mutation on individuals in the population. There are many

possibilities for evolving the population. simple GA uses non-overlapping popula-
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tions. Each generation creates an entirely new population of individuadtealy state
GA uses overlapping populations, in which a fraction of the population is replaced in
each generation. In aimcrementalGA each generation consists of only one or two

children.

7.2.2 Problem representation

In our algorithm, the individuals are bit vectors corresponding to a given interconnect
topology. The fitness function for a chromosome in our interconnect synthesis algorithm
is described by

fitness= M (1 + Py + P,) (7.1)

where M is the makespan (latency) calculated by the modified DLS algorithm for the
interconnect topology of the chromosontg, (equatior| 7]6) is a penalty based on vio-
lating the fanout constraint,..., and P, (equation 7]7) is a penalty based on violating
the maximum link constraint,...

We define dink vectoras a bit vector with one entry for each possible intercon-
nection between two processors. For a system withrocessors, there aré(N — 1)
entries in the link vector. The link vector for a four processor system would be denoted

as
I'= (lorloalosliolizlislaolan laslzolsils2) (7.2)

wherel;; equals one if there is a connection from processor processolj and zero

otherwise. We defing; = 0 if ¢ = 5. We also writel as

U= (loly ... Iy_1) (7.3)

wherel, describes the (outgoing) connections for procegs®e will refer to thel,, as
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processor link vectorsWe define the fanout of processdry

fi= Zlij = i (7.4)

ny = Z Ji (7.5)
=0
while the fanout penalty is given by
N—-1
Pr=> P (7.6)
1=0

whereP; = max(0, (f; — fmax))- The link penalty is given by

P, = max(0, (n; — lnax))- (7.7)

7.2.3 Fanout Constraints

In a real system, cost and area constraints will place a limit on the processor fanout.
For example, in a free-space optical system such as FAST-Net [48], each link requires a
dedicated VCSEL/photoreceiver pair. In the WDM-based system proposed in Chapter
B, a separate wavelength is required to transmit to each processor, and each processor
requires a tunable source. In this case there is a physical limit on the number of re-
solvable wavelengths, given by= B/I" whereB is the fiber bandwidth anfl is the
channel spacing. Cost constraints may also limit the number of wavelengths allowed
for the tunable sources. For today’s WDM systeins;: 50GHz while B = 4000GHz
corresponding to the wavelength range frod30 to 1565nm (C band) in a fiber. This
yields80 channels. In order to achieve such narrow channel spacing, the temperature of
the laser transmitter must be carefully controlled. A lower cost variant to WDM, called

coarse wavelength division multiplexing (CWDM) is being deployed in metropolitan

128



networks. The latest standard proposed by the Full Spectrum CWDM Alliance is a
channel spacing’ = 20nm (= 3600GHz) starting from 1271nm up to 1611nm. The
wider channel spacingy 72 times greater) allows lower tolerances on the lasers, and
allows them to operate without temperature control.

In any case, it is important to have a link synthesis algorithm that can conform to
fanout constraints. Our GA is able to incorporate these constraints in a straightfor-
ward manner by implementing the initialization, crossover, and mutation operators as

described below.

7.2.4 Crossover and Mutation Operators

We first note that if an individual topology is represented as a binary string as in equation
[72, then the typical crossover operations like array one-point crossover (Figure 7.3) or
two-point crossover will not preserve the fanout constraint. This is illustrated in Figure
[7-4 where both parents obey a fanout constrdint. = 2, but processo® of child X

has fanoutf,x = 3. This is because the crossover point can be chosen at any point.
If we instead choose to represent the topology by the vector representation of Equation
[7.3, fanout constraints are preserved in the crossover operation, since the link vectors
for individual processor§ are never altered. The crossover operation only rearranges
the relative position of these link vectors. This is illustrated in Fidure 7.5.

We also must ensure that the initial population obeys the link constraint. The initial-
ization operator generates random processor link vectors which each satisfy the fanout
constraint Equatiofi 1.4N — 1 of these vectors are then concatenated to form the link
vector.

The mutation operator simply chooses a random bit in the link vector, and sets its

value to zero. This removes a link if one existed at this point. Since the mutation
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loa=(1,1,0) foa =2
lia=(0,01) fia=1
loa=(0,1,1) for =2

I3a = (0,0,0) fsa=0

lop = (1,0,1)  fop =2
Lip=(0,1,0) fip=1
l;B:(OﬁU-l) fop=1

lsp = (1,0,0) fip=1

[ 1[ 1] ol of o[ 1] o] 1] 1] 0] O] O] parentA
|

L 1f o[ 1] ol 1[ of of of 1] 1] 0] O]

parent B

(17 1] 1] o[ 1] o[ o] o] 1] 1] o] o] childX
(1] o[ o[ of o[ 1] o] 1] 1] o] 0] O] pilq Y
X Y
lox = (1,1,1)  fox =3 loy = (1,0,0)
lix =(0,1,0) fix=1 Iy = (0,0,1)
@X:(Ovosl) fox =1 l;Y:(Ole)
fax =1 Izy = (0,0,0)

Figure 7.4: Crossover operation for link synthesis using the binary string representation
Equation 7. Link fanout constraint is not preserved for ciildwhere the fanout of

processod is fox = 3.
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loa = (1,1,0) foa =2 lop = (1,0,1)  fop =2
~ ==Kl
lia=(0,0,1) fia=1 Lp=(0,1,0) fig=1
loa=(0,1,1) fos =2 lag = (0,0,1) fop =1
ﬂ ﬁ pEy
Isa=1(0,0,0) f34a=0 Isp =(1,0,0) fap=1
l
loa la bha lsa parent A
\
[
ITJB le f?B EiB parent B

loa lia l2p I3 child X

EJB llB lZA l;A Chlld Y

X Y
lox = (1,1,0) fox =2 loy = (1,0,1)  foy =2

- . 0
Lix =(0,0,1) fix=1 Ly =(0,1,0) fiy =1

lox = (0,0,1) fox =1 by = (0,1,1) foy =2 E >

- 2
Iix = (1,0,0) fsx =1 Isy = (0,0,0) fsy =0 Y

]

Figure 7.5: Crossover operation for link synthesis using the vector representation Equa-

tion[7.3. The fanout constrairft,., = 2 is preserved in the children.
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operator only removes links, the fanout constraint is preserved.

7.2.5 Experiments

We evaluated our GA-based interconnection synthesis algorithm on the RBFNN appli-
cation discussed above. We compared the GA-based algorithm to the TPLA algorithm.
The genetic algorithm has several advantages over the TPLA algorithm. The first advan-
tage is that it is able to incorporate fanout constraints, which the TPLA algorithm does
not. Cost and area considerations often dictate fanout constraints. In a free-space optical
system, as already mentioned, fanout is dictated by the number of VCSELSs and photore-
ceivers that can be placed adjacent to a processor. In a WDM system, cost constraints
dictate the number of wavelengths used. The second advantage is that, in order to syn-
thesize a network for a given link constraint, the TPLA must evaluate many intermediate
topologies that do not meet the link constraint during its construction phases. This makes
it much less efficient, especially for systems with a large number of processors. Neither
of these algorithms take into account isomorphically unique link topologies, which is
the subject of the following section. Figyre]7.6 shows the best latency achieved for each
level of connectivity between zero connectivity and fully connected for both algorithms.
This gives a Pareto curve of the trade-off between number of links and latency for the
application. In order to properly compare the different algorithms, the GA run time was
limited to the run time required by TPLA. The results show that the algorithm based
on the GA performs 21% better (producing lower makespan schedules), when averaged

over the different link configurations, for this benchmark.
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Figure 7.6: Comparison of TPLA and genetic algorithm for neural network application.
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(@) (b)

Figure 7.7: Example of two isomorphic graphs.
7.3 Using Graph Isomorphism

If we consider systems in which all the processors are identical (homogeneous processor
set), then we can pare the design space significantly if we only consider isomorphically
unique topology graphs.Two graphs= (V, E) andG’'(V’, E’) are isomorphic if we

can relabel the vertices of to be vertices of’, maintaining the corresponding edges

in G andG’. For example, the graphs in Figuies 7J]7(a) and 7.7(b) are isomorphic with
the vertices relabelled as follows:— a, 2 — b, 3 — ¢, and4 — d.

Consider a topology grap&¥ with £ edges andV nodes where each node corre-
sponds to a processor and each edge corresponds to a link between two processors.
The maximum number of edges @ is E,,.x = N(N — 1) corresponding to a fully
connected graph (full crossbar interconnect). If all links are bidirectional, the topology
graph is undirected anf,,., = N (NN — 1)/2. We can represent the graphs with either
an adjacency list or adjacency matrix and label each different representation. Then for a

graph with £ edges the number of different labellings is given by

(B Ea! NN -1)
Mg = < E ) " B (Bome — E)! _ ENN(N—1)— B)! (7.8)
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which increases exponentially witN. The maximum value of., occurs attl =
FE.ax/2. However, the number of isomorphically unique graphsq.. iS much less
thann,. For very smallV, we can enumerate the different possibilities to show this.
Figure[7.8 depicts the different isomorphic graphs for= 4 processors and’ = 3
bidirectional links. There arg0 different graph labellings, but we observe that most are
isomorphic—only3 are isomorphically unique.

For largerN, n, increases rapidly according to Equation 7.8. We enumerated the
possibilities and tested for isomorphism fgr= 5 and /N = 6 using Brendan McKays'’s
nautyprogram [78], which is currently the fastest published graph isomorphism testing
program. The results are shown in Figlirg 7.9 Bor= 6 and £ = 12 we observe
that there is & order magnitude difference between theandn pique. Also, this ratio
increases wittn,. We would like to exploit this property to pare the design space for
link synthesis.

Sincen, is so large it is impractical to compute and store the isomorphic graphs
in advance. Rather, we employ an on-line isomorphic test in order to speed up our
deterministic algorithm. This is illustrated in Figure 7.10. In this algorithm we store
the topology graphs, and schedule them only if they are not isomorphic with another
topology graph previously evaluated. We begin with a connected graphith e =
N — 1 edges, and define a s€tof evaluated graphs. Initiallyy = G;. We define a
parametey,,,., which corresponds to the maximum number of graphs we will consider
at a givere, and a parameté¥,,... . Which corresponds to the best graph witedges.

We construct grapty, by adding an edge tG;. At this step, there ar&(N —1) —e
possible edges to add. &, is not isomorphic with a graph i, we setS = S U {G5}
and schedul&’, using a combination of the DLS scheduling algorithmi [97] and the

flexibility algorithm as described in Chaptér 6. If the throughput ugiags higher than
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N = 4 processors, all links bidirectional
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Figure 7.8: Isomorphically unique graphs containifigedges forN = 4 processors.

Here we only consider undirected graphs representing bidirectional links in order to

make the figure clearer.
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Figure 7.9: A comparison of the number of possible graph labelliggsven by Equa-

tion [7.8 with the number of these graphs that are isomorphically unique.
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Figure 7.10: Bottom-up heuristic for constructing an efficient link topology that utilizes

a graph isomorphism test.
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the throughput usingr,.: . then we replacés,... .. Next we construct a grapi; by
removing an edge frort,. If G5 is not isomorphic with a graph i6 we schedulérs,

setS = SU{G3}, and updat&y. .. If G5 = G, then the algorithm is “stuck”—further
combinations of adding and removing edges will produce graphs already evaluated. At
this point we construat?; by adding an edge @', and repeat the above process by
constructing a newr, (with one more edge this iteration) by adding an edgé'toWe
continue until either the throughput constraint is met and the algorithm is successful,
or until e = e, and the algorithm fails to meet the throughput constraints wijth
edges.

The graph isomorphism test speeds up the deterministic link synthesis algorithm
only if isomorphism testing of a topology graph is faster than the scheduling the appli-
cation on the graph. The complexity of the graph isomorphism algorithm is still an open
problem—there exists no known P algorithm for graph isomorphism testing, although
the problem has also not been shown to be NP-complete. It is thought that the prob-
lem falls in the area between P and NP-complete, if such an area éxists [99]. However,
McKay’s nauty[78] program has been proven to be very efficient in practice. Although
its worst case run time is exponentiall[81], an empirical test of a large number of ran-
domly generated graphs produced run times 2 ns on a 1 GHz Pentium Il machine
wherep is the number of nodes in the graph![78]gquals the number of processors in
our case). By comparison, the DLS scheduling algorithm has complexityp) where
v is the number of nodes in thask graph[97]. We modify the DLS scheduling algo-
rithm by adding a flexibility calculation at each scheduling step. The complexity of the
flexibility algorithm (Equation 6]1) i®)(v(v + e)p log p) wheree is the number of edges

in the graph, so the overall complexity scheduling an arbitrary graph using the modified
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DLS scheduling algorithm is
O(v*(v + €)p®log p). (7.9)

The number of tasks in the application will be much greater than the number of pro-
cessors in practice, so>> p ande >> p. For randomly generated graphs, the nauty
program is therefore much faster than the modified DLS scheduling algorithm and we

achieve significant speedup by detecting and exploiting graph isomorphism.
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Chapter 8

Design Space Exploration Using Simulated

Heating

8.1 Introduction

Application-specific, parameterized local search algorithms (PLSAS), in which opti-
mization accuracy can be traded off with run-time, arise naturally in many optimization
contexts, including most of the optimzation problems discussed in this thesis. For many
problems in system design, the user wishes to first quickly evaluate many trade-offs in
the system, often in an interactive environment, and then to refine a few of the best de-
sign points as thoroughly as possible. Often, an exact system simulation may take days
or weeks. In this context, it is quite useful to have optimization techniques where the
run-time can be controlled, and which will generate a solution of maximum quality in
the allotted time.

In this chapter we introduce a novel approach, which we siatlulated heating
for systematically integrating parameterized local search into evolutionary algorithms
(EAs). Using the framework of simulated heating, we investigate both static and dy-

namic strategies for systematically managing the trade-off between PLSA accuracy and
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optimization effort. Our goal is to achieve maximum solution quality within a fixed
optimization time budget.

We show that the simulated heating technique better utilizes the given optimization
time resources than standard hybrid methods that employ fixed parameters, and that the
technique is less sensitive to these parameter settings. In Cfiapter 9 we apply this frame-
work to the voltage scaling optimization problem discussed in Seffion 4.3, a memory
cost minimization problem for embedded systems, and the well-known binary knapsack
problem. We compare our results to the standard hybrid methods, and show quantita-
tively that careful management of this trade-off is necessary to achieve the full potential
of an EA/PLSA combination. We also explain how simulated heating could be used for
the interconnect synthesis problem and for the problem of finding optimal transaction
orders. Demonstrating the use of simulated heating on these last two problems is the
subject of future work.

For many optimization problems, efficient algorithms exist for refining arbitrary
points in the search space into better solutions. Such algorithms are loaliédearch
algorithmsbecause they define neighborhoods, typically based on initial “coarse” solu-
tions, in which to search for optima. Many of these algorithms are parameterizable in
nature. Based on the values of one or more algorithm parameters, pacinaeterized
local search algorithm (PLSAQan trade off time or space complexity for optimization
accuracy.

PLSAs and evolutionary algorithms (EAs) have complementary advantages. EAs
are applicable to a wide range of problems, they are robust, and are designed to sample
a large search space without getting stuck at local optima. Problem-specific PLSAs are
often able to converge rapidly toward local minima. The term ‘local search’ generally

applies to methods that cannot escape these minima. For these reasons, PLSAs can be
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incorporated into EAs in order to increase the efficiency of the optimization.

Several techniques for incorporating local search have been reported. These include
Genetic Local Search[B0], Genetic Hybrids [40], Random Multi-Skart [61], GRASP [38],
and others. These techniques are often demonstrated on well-known problem instances
where either optimal or near-optimal solutions are known. The optimization goal of
these techniques is then to obtain a solution very close to the optimum with acceptable
run-time. In this regard, the incorporation of local search has been quite successful.
For example, Vasquez and Whitley [106] demonstrated results within 0.75% of the best
known results for the Quadratic Assignment Problem using a hybrid approach, with all
run times under five hours. In most of these hybrid techniques the local search is run
with fixed parameter values (i.e. at the highest accuracy setting).

In this thesis, we consider a different optimization goal, which has not been ad-
dressed so far. Here we are interested in generating a solution of maximum quality
within a specified optimization time, where the optimization run time is an important
constraint that must be obeyed. Such a fixed optimization time budget is a realistic
assumption in practical optimization scenarios. Many such scenarios arise in the de-
sign of embedded systems. In a typical design process, the designer begins with only
a rough idea of the system architecture, and first needs to assess the effects of a large
number of design choices—different component parts, memory sizes, different software
implementations, etc. Since the time to market is very critical in the embedded system
business, the design process is on a strict schedule. In the first phases of the design
process, it is essential to get good estimates quickly so that these initial choices can be
made. Later, as the design process converges on a specific hardware/software solution,
it is important to get more accurate solutions. In these cases, the designer needs to have

the run time as an input to the optimization problem.
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In order to accomplish this goal, we vary the parameters of the local search during
the optimization process in order to trade off accuracy for reduced complexity. Our
optimization approach is general enough to hold for any kind of global search algorithm;
however, in this paper we test hybrid solutions that solely use an EA as the global search
algorithm. Existing hybrid techniques fix the local search at a single point, typically at
the highest accuracy. In the following discussion and experiments, we refer to this
method as &xed parameter methodVe will compare our results against this method.

One of the central issues we examine is how the computation time for the PLSA
should be allocated during the course of the optimization. More time allotted to each
PLSA invocation implies more thorough local optimization at the expense of a smaller
number of achievable function evaluations (e.g., smaller numbers of generations ex-
plored with evolutionary methods), and vice-versa. Arbitrary management of this trade-
off between accuracy and run time of the PLSA is not likely to generate optimal re-
sults. Furthermore, the proportion of time that should be allocated to each call of the
local search procedure is likely to be highly problem-specific and even instance-specific.
Thus, dynamic adaptive approaches may be more desirable than static approaches.

In this thesis, we describe a technique cakeuulated heatingT2, [T13], which
systematically incorporates parameterized local search into the framework of global
search. The idea is to increase the time allotted to each PLSA invocation during the
optimization process—Ilow accuracy of the PLSA at the beginning and high accuracy
at the enfl. This is in contrast to most existing hybrid techniques, which consider a
fixed local search function, usually operating at the highest accuracy. Within the context

of simulated heating optimization, we consider both static and dynamic strategies for

In contrast to [T13], the time budget here refers to the overall GSA/PLSA hybrid, not only the time

resources needed by the PLSA.
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systematically increasing the PLSA accuracy and the corresponding optimization effort.
Our goals are to show that careful management of this trade-off is necessary to achieve
the full potential of an EA/PLSA combination, and to develop an efficient strategy for
achieving this trade-off management. We show that, in the context of a fixed optimiza-
tion time budget, the simulated heating technique performs better than using a fixed
local search.

In most heuristic optimization techniques, there are some parameters that must be set
by the user. In many cases, there are no clear guidelines on how to set these parameters.
Moreover, the optimal parameters are often dependent on the exact problem specifica-
tion. We show that the simulated heating technique, while still requiring parameters to
be set by the user, is less sensitive to the parameter settings.

First we will outline PLSAs for three of the optimization problems covered in this

thesis.

8.1.1 PLSA for Voltage Scaling
Background

Dynamic voltage scaling 73] in microprocessors is an important advancing technology.
It allows the average power consumption in a device to be reduced by slowing down
(by lowering the voltage) some tasks in the application. Here we will assume that the
application is specified as a dataflow graph. We are given a schedule (ordering of tasks
on the processors) and a constraint on the throughput of the system. We wish to find a
set of voltages for all the tasks that will minimize the average power of the system while
satisfying the throughput constraint. The only way to compute the throughput exactly in
these systems is via a full system simulation. However, simulation is computationally

intensive and we would like to minimize the number of simulations required during
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synthesis. We have previously demonstrated that a data structure, callpdribe
graph, can be used as an efficient estimator for the system throughput [9] and thus

reduce the number of simulations required.

Using the Period Graph for Local Search

As explained in[9] and in Chaptéf 4, we can estimate the throughput of the system
as voltage levels are changed by calculating the maximum cycle f@aGM) [66]

of the period graph. In order to construct the period graph, we must perform one full
system simulation at an initial point—after the period graph is constructed we may use
the MCM estimate without re-simulating the system. It is showrilin [9] that the MCM
of the period graph is an accurate estimate for the throughput if the task execution times
are varied around a limited region (local search), and that the quality of the estimate
increases as the size of this region decreases. A variety of efficient, low polynomial-
time algorithms have been developed for computing the maximum cycle mean (e.g.,
see [29]).

We can use the size of the local search neighborhood as the paranetarpa-
rameterized local search algorithm (PLSA). We call this parameter the re-simulation
threshold ), and define it as the vector distance between a candidate point (vector of
voltages) and the voltage vectbr from which the period graph was constructed. To
search around a given poiltin the design space, we must simulate once and build the
period graph. Then, as long as the local search points are within a distboel’, we

can use the (efficient) period graph estimate. For points outsidle must re-simulate

2Here the maximum cycle mean is the maximum, over all directed cycles of the period graph, of the
sum of the task execution times on a cycle divided by the sum of the edge delays (initial tokens) on a

cycle.
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and rebuild the period graph. Consequently, there is a trade-off between speed and ac-
curacy forr—asr decreases, the period graph estimate is more accurate, but the local

search is slower since simulation is performed more often.

PLSA Implementation

To solve the dynamic voltage scaling optimization problem we use a GSA/PLSA hybrid
where an evolutionary algorithm is the GSA and the PLSA is either a hill climhing [64]
or Monte Carlo[57] search utilizing the period graph. Pseudo-code for both local search
methods is shown in Figur€sB.1 dnd 8.2. The benefit of using a local search algorithm
is that within a restricted voltage range we can use the period graph estimator for the
throughput, which is much faster than performing a simulation. The local search algo-

rithms are explained further below.

Voltage Scaling PLSA 1: Hill Climb Local Search

For the hill climbing algorithm, we defined a parametgwhich is the voltage step, and

a re-simulation threshold, which is the maximum amount that the voltage vector can
vary from the point at which the period graph was calculated. We ran the algorithm for
I iterations. So for this case, the PL3Ahad 3 parameter§ r, andd. One iteration of

local search consisted of changing the node voltages, one at a tini@, byd choosing

the direction in which the objective function was minimized. From this, the worst case
costC(I,r,¢) for I iterations would correspond to evaluating the objective funcibn
times, and re-simulating/ /[r/J]) times. For our experiments we fixddando and
defined the local search parametemas 1/r. Then for smallep (corresponding to
larger re-simulation threshold) the voltage vector can move a greater distance before a

new simulation is required. For a fixed number of iteratidns the local search, a
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Algorithm 8.1: HiLL CLIMB LOCAL SEARCH(
X/Fn,N, 1, G,Fobj,ér@m,vgut,score

)

input: voltage vector Vi, of size N

input: number of iterations /

input: period graph G with N tasks

input: objective function Fobj derived from maximum cycle mean of G scaled by V
iNput: d,eqm IS the resmulation threshold distance

output: voltage vector Vot

LowScore «+— oo
§ < Oresim/100
Vo an
for (k=0;k < IL;k++)
for (i =0;i < N;i+ +)
Vo — Vi
V0i] — Vo(1 4+
fl — FOb] (Va
V[i] — Vo(1 —
fa — Fopj(V,
Vil =V
fre Fopi(V,6)
do gif (f1 < f)
do then {V[i] < Vo(1+ )
eseif (f2 < f)
then {V[i] — Vo(1 —9)
D — |V = Vil
if (D < éregm)
Resimulate and rebuild G
then ¢ —
{Vin <=V
score — Fopi (V, G)
if (score < LowScore)
th LowScore « score
{Vc;ut =V

Figure 8.1: Pseudo-code for hill climb local search for voltage scaling application.
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Algorithm 8.2. MONTE CARLO LOCAL SEARCH(

‘/in, ]\[7 R7 G, Fobj, D, 6resim, VOUt? Score

input: voltage vector an of size N
input: number of random points generated R

input: D is maximum distance from an to random point
input: period graph G with N tasks

input: objective function Fobj derived from maximum cycle mean of G scaled by 1%
input: dyggim is the resimulation threshold distance

output: voltage vector Vout
output: score

Generatea list Lygyq of R randorP vectors uniformly distributed within
a distance no more than D from Vj,
Ve — an
score «— oo
for (i=1t0 R)
do {g. — ||V — Viy
while (Lyzng Not empty ) B
(Pop head of list Ly to get V'
Scale G by V
g — |V = V|
if (¢ < dresim) .
f FObj (Va G)
do 4 then {if (f < score)
then {score — f
V, —V
Resimulate around V and rebuild G
else ¢ for (r = 1tosize(Lygng))
do {q, — |V, — V2|
L Sort Lyanq according to lowest g first

Figure 8.2: Pseudo-code for Monte Carlo local search for voltage scaling application.
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smallerp corresponds to a shorter running tire¢p) for L(p). The accuracy(p) is
lower, since the accuracy of the period graph estimate decreases as the voltage vector

moves farther away from the simulation point.

Voltage Scaling PLSA 2: Monte Carlo Local Search

In the Monte Carlo algorithm, we generatédrandom voltage vectors within a dis-
tanceD from the input vector. For all points within a re-simulation threshgleie used

the period graph to estimate performance. A greedy strategy was used to evaluate the
remaining points. Specifically, we selected one of the remaining points at random, per-
formed a simulation to construct a new period graph, and used the resulting estimator
to evaluate all points within a distanedrom this point. If there were points remaining

after this, we chose one of these and repeated the process. For the experiments we fixed
N and D and defined local search parameter 1/r. As for the hill climbing local
search, smaller values pfcorrespond to shorter run times and less accuracy for the

Monte Carlo local search.

8.1.2 PLSA for Interconnect Synthesis

In Sectio 71 we described a greedy heuristic algorithm, called the TPLA algorithm [6],
to synthesize an interconnect and an associated multiprocessor schedule for a given
application. Here we will describe how this algorithm can be parameterized so that it
can be used as a PLSA for simulated heating.

The TPLA algorithm starts with a fully connected network, and operatemwn
andup phases. Each step of the down phase in TPLA removes one link, while each step
of the up phase adds one link. We can modify this basic idea to create a parameterized

local search for interconnect synthesis. The input to the local search is a processor
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A B C

17

Input:

Remove (A,B) and (B,C)

Add (B,A) and (C,D)

A B C
Output: /
D

Figure 8.3: PLSA for interconnect synthesis. The output topology graph is one possible

topology generated from the input topology graph with: 2.

topology graph (Section 6.1.7)(®, L) with ¢ processors (nodes in the topology graph)
and! links (edges in the topology graph). We first remomMénks, wherep < [. There
ared = (/l)) possible choices. Next we add backnks to achieve a new topology with
[ links. This effectively creates a set of topologies in a local region around the input
topology. Figurd 8]3 illustrates this concept.

There arep(¢p — 1) — (I — p) positions where a link may be added where one does
not already exist, so there ane= (4)(4"1){;”"’)) possible choices for adding back the

p links. The total number of combinations for first removimnginks then adding back

p links is the product ot: andd. Many of these topologies may be isomorphic to one
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another, so the online graph isomorphism test (Se€tign 7.3) can be used to avoid evalu-
ating isomorphic topologies. Each time an isomorphically unique topology is created, it
is evaluated using a scheduling algorithm utilizing the feasibility and flexibility metrics
(Chaptei’p), and the topology with the best schedule is chosen as the output of the local
search.

The number of topologies generated (the local search complexity) is a rapidly in-
creasing function op, andp can be used as the PLSA parameielt is also possible to
place a limit on the number of combinationsolinks removed ¢,,...) and the number
of combinations ofy links added backu,.,). In this case the local search parameter
P = dmaxUmax CaN be adjusted so that the local search complexity does not increase so

fast with increasing.

8.1.3 PLSA for Ordered Transactions

The ordered transactions strategy was covered in Ch@pter 5, where it was shown that the
problem of finding optimal transaction orders is NP-complete. In this section, we outline
how a PLSA could be constructed for this problem. Recall that the ordered transactions
graph (Sectiofi 5.7.3)(G1pc, O) is created from an IPC grapghpc and a transaction
orderO, and that the MCM of" gives the throughput of the system. A PLSA for the
ordered transactions problem takes an input ordefingand evaluates permutations
aroundO;, to produce a better ordering,;. The permutation method we propose is

a pair swap—we swap the positions of a pair of nodes in the transaction ordering. If
the swapping does not create any zero-delay cycles, we can calculate the MCM of the
new ordered transaction graph. If the pair swap has produced a lower MCM, we keep
this ordering and attempt to swap another pair of nodes. This continues for a number

of iterations, where is the local search parameter. Pseudo-code for this local search is
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Algorithm 8.3: ORDERED TRANSACTIONS LOCAL SEARCH(
Oin, Girc, Oout
)

input: transaction ordering O;, of length n
input: IPC graph Gipc
output: new transaction ordering Ogyt
LN
Oout < Ojn
bestScore «— MCM(I'(G1pc, Ojp))
count < 0
while (i > 0) A (count < pn)
Jj=-1
t=1—1
while (j < ) A (count < pn)
je—j+1
if Oout(i] # OoutlJ]
temp < Oogyt|¢]
Ooutli] — Oout//]
Ooutlj] < temp
if zero-delay cyclesinI'(Gipc, Oout)
do then {score — oo
then ese {&Ofe — 1\101\/1(1—‘(61113(]7 OOUI))
if score < bestScore
then {bestScore < score

temp «— Ogyt[i]
ese

do

Ooutli] — Ooutl]
Ooutlj] < temp

Figure 8.4: Pseudo-code for PLSA for ordered transactions strategy.

given in Figurg 84

8.2 Hybrid Global/Local Search Related Work

In the field of evolutionary computation, hybridization seems to be common for real-
world applications([43] and many evolutionary algorithm/local search method combi-
nations can be found in the literature, e.g.) [30, 53,[80,/92, 111]. Local search tech-
niques can often be incorporated naturally into evolutionary algorittifAs) (in order

to increase the effectiveness of optimization. This has the potential to exploit the com-
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plementary advantages of EAs (generality, robustness, global search efficiency), and
problem-specific PLSAs (exploiting application-specific problem structure, rapid con-
vergence toward local minima). Below we list some hybrid methods in the literature, and
suggest how they could potentially be adapted to use our simulated heating technique.
One problem to which hybrid approaches have been successfully applied is the
guadratic assignment problem (QAP), which is an important combinatorial problem.
Several groups have used hybrid genetic algorithms that are effective is solving the QAP.
The QAP concerns facilities, which must be assigned#tdocations at minimum cost.
The problem is to minimize the cost

C(TF) = Z Z aijbﬂ'(i)w(j)> RS H(n)

i=1 j=1
wherell(n) is a set of all permutations dfL, 2, ...,n}, a;; are elements of a distance
matrix, andb;; are elements of a flow matrix representing the flow of materials from
facility 7 to facility ;.

Merz and Freisleben]30] presented a Genetic Local Search (GLS) technique, which
applies a variant of the-optheuristic as a local search technique. For the QAP, the 2-opt
neighborhood is defined as the set of all solutions that can be reached from the current
solution by swapping two elements of the permutatio he size of this neighborhood
increases quadratically with The 2-opt local search employed by Merz takes the first
swap that reduces the total céstr). This is done to increase efficiency.

Fleurent and Ferland{40] combined a genetic algorithm with a local Tabu Search
(TS) method. In contrast to the simpler local search of Merz, the idea of the TS is to
consider all possible moves from the current solution to a neighboring solution. Their
method is called Genetic Hybrids. They improved the best solutions known at the time
for most large scale QAP problems.

By comparison, simulated heating for QAP might be formulated as a combination
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of the above two methods. One could consider the best ofoves found that reduce
C(m), wherem is the PLSA parameter.

Vasquez and Whitley[106] also presented a technique, which combines a genetic
algorithm with TS, where the genetic algorithm is used to explore in parallel several
regions of the search space and uses a fixed Tabu local search to improve the search
around some selected regions. They demonstrated near optimal performance, within
0.75% of the best known solutions. They did not investigate their technique in the
context of a fixed optimization time budget.

Random multi-start local search has been one of the most commonly used tech-
niques for combinatorial optimization problemsI[6T, 91]. In this technique, a number
of solutions are generated randomly at each step, local search is repeated on these solu-
tions, and the best solution found during the entire optimization is output. Several im-
provements over random multi-start have been described. Greedy randomized adaptive
search procedures (GRASP) combine the power of greedy heuristics, randomization,
and conventional local search procedures [38]. Each GRASP iteration consists of two
phases—a construction phase and a local search phase. During the construction phase,
each element is selected at random from a list of candidates determined by an adaptive
greedy algorithm. The size of this list is restricted by parametesiad 3, wherea is
a value restriction and is a cardinality restriction. Feo et al. demonstrate the GRASP
technique on a single machine scheduling problem [39], a set covering problem, and a
maximum independent set problemI[38]. They run the GRASP for several fixed values
of  and 3, and show that the optimal parameter values are problem dependent. In sim-
ulated heatingy and 5 would be candidates for parameter adaptation. In the second
phase of GRASP, a local search is applied to the constructed solution to find a local

optimum. For the set covering problem, Feo et al. defihgzaexchange local search
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where all k-tuples in a cover are exchanged with a p-tuple. Hereas fixed during
optimization. In a simulated heating optimizatianmight be used as the PLSA param-
eter, with smaller tuples being exchanged at the beginning of the optimization and larger
tuples examined at the end. A similar k-exchange local search procedure was used for
the maximum independent set problem.

Kazarlis et al. [60] demonstrate a microgenetic algorithm (MGA) as a generalized
hill-climbing operator. The MGA is a GA with a small population and a short evolution.
The main GA performs global search while the MGA explores a neighborhood of the
current solution provided by the main GA, looking for better solutions. The main advan-
tage of the MGA is its ability to identify and follow narrow ridges of arbitrary direction
leading to the global optimum. Applied to simulated heating, MGA could be used as the
local search function with the population size and number of generations used as PLSA
parameters.

He and Xu [49] describe three hybrid genetic algorithms for solving linear and par-
tial differential equations. The hybrid algorithms integrate the classical successive over
relaxation (SOR) with evolutionary computation techniques. The recombination opera-
tor in the hybrid algorithm mixes two parents, while the mutation operator is equivalent
to one iteration of the SOR method. A relaxation parametéor the SOR is adapted
during the optimization. He and Xu observe that is very difficult to estimate the optimal
w, and that the SOR is very sensitive to this parameter. Their hybrid algorithm does not
require the user to estimate the parameter; rather, it is evolved during the optimization.
Different relaxation factors are used for different individuals in a given population. The
relaxation factors are adapted based on the fitness of the individuals. By contrast, in
simulated heating all members of a given population are assigned the same local search

parameter at a given point in the optimization.
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When employing PLSASs in the context of many optimization scenarios, however, a
critical issue is how to use computational resources most efficiently under a given opti-
mization time budget (e.g., a minute, an hour, a day, etc.). Goldberg and Voessner [44]
study this issue in the context of a fixed local search time. They idealize the hybrid as
consisting of steps performed by a global sol@ifollowed by steps by a local solver
L, and a search space as consisting of basins of attraction that lead to acceptable targets.
Using this, they are able to decompose the problem of hybrid search, and to characterize
the optimum local search time that maximizes the probability of achieving a solution of
a specified accuracy.

Here, we consider both fixed and variable local search time. The issue of how to
best manage computational resources under a fixed time budget translates into a prob-
lem of appropriately reconfiguring successive PLSA invocations to achieve appropriate

accuracy/run-time trade-offs as optimization progresses.

8.3 Simulated Heating

From the discussion of prior work we see that one weakness of many existing ap-
proaches is their sensitivity to parameter settings. Also, excellent results have been
achieved through hybrid global/local optimization techniques, but they have not been
examined carefully for a fixed optimization time budget. In the context of a limited time
budget, we are especially interested in minimizing wasted time. One obvious place to
focus is at the beginning of the optimization, where many of the candidate solutions
generated by the global search are of poor quality. Intuitively, one would want to evalu-
ate these initial solutions quickly and not spend too much time on the local search. Also,

it is desirable to reduce the number of trial runs required to find an optimal parameter
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setting. One way to do this is to require only that a goadge for the parameter be

given. These considerations lead to the idea of simulated heating.

8.3.1 Basic Principles

A general single objective optimization problem can be described as an objective func-
tion f that maps a tuple ofn parameters (decision variables) to a single objective
y. Formally, we wish to either minimize or maximize = f(Z) subject tozr =
(x1,22,...,2,) € X whereZ is called thedecision vectarX is theparameter space

or search spaceandy is the objective. A solution candidate consists of a particular
(0, 70) Wherey, = f(xp).

We will approach the optimization problem by using iterative search process
Given a setX, and a functior¥’, which mapsX onto itself, we define an iterative search
process as a sequence of successive approximatidnsdtarting with an:® from X,
with 't = F(a") for r = (0,1,2,...). Oneiteration is defined as a consecutive
determination of one candidate from another candidate set usingBof@ an evolu-
tionary algorithm, one iteration consists of the determination of one generation from the
previous generation, with' consisting of the selection, crossover, and mutation rules.

The basic idea behind simulated heating is to vary the local search paragmeter
during the optimization process. This is in contrast to the more commonly employed
technique of choosing a single value fo(typically that value producing highest ac-
curacy of the local search(p)) and keeping it constant during the entire optimization.
Here, we start with a low value fgr, which implies a low cost’(p), and accuracyl(p)
for the local search, and increaget certain points in time during the optimization,
which increaseg’(p) and A(p). This is depicted in Figurg 8.5, where the dotted line

corresponds to simulated heating, and the dashed line corresponds to the traditional ap-
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Figure 8.5: Simulated heating vs. traditional approach to utilizing local search.

proach. The goal is to focus on the global search at the beginning and to find promising
regions of the search space first; for this phdge,) runs with low accuracy, which in

turn allows a greater number of optimization steps of the global s&ar&ifterwords,

more time is spent by.(p) in order to improve the solutions found or to assess them
more accurately. As a consequence, fewer global search operations are possible during
this phase of optimization. Sincé(p) is systematically increased during the process,

we use the terrsimulated heatindor this approach by analogy to simulated annealing

where the ‘temperature’ is continuously decreased according to a given cooling scheme.

8.3.2 Optimization Scenario

We assume that we have a global search algorithm (&&Adperating on a set of

solution candidates and a PLSA(p), wherep is the parameter of the local search

3In this thesis, we focus on an evolutionary algorithm as the global search algorithm, although the

approach is general enough to hold for any global search algorithm.
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procedurf. Let

e (};, define the maximum (worst-case) time needed-p generate a new

solution that is inserted in the next solution candidate set,

e ((p) denote the complexity (worst-case run-time)ofor the parameter choice

D,
e A(p) be the accuracy (effectiveness)lofvith regard top, and

¢ R denote the set of permissible values for paramet@iypically, R may be

described by an intervdib,.i, . . . pmax) N R whereR denotes the set of reals and

C<pmin) S C<pmax) .

Furthermore, suppose that for any pair, p;) of parameter values we have that

(p1 <p2) = (C(p1) < C(p2)) and (A(p1) < A(p)) (8.1)

Thatis, increasing parameter values in general result in increased consumption of compile-
time, as well as increased optimization effectiveness.

Generally, it is very difficult, if not impossible, to analytically determine the func-
tions C(p) and A(p), but these functions are useful conceptual tools in discussing the
problem of designing cooperating GSA/PLSA combinations. The techniques that we
explore in this thesis do not require these functions to be known. The only requirement
we make is that the monotonicity propeffy]8.1 be obeyed at least in an approximate
sense (fluctuations about relatively small variations in parameter values are admissible,
but significant increases in the PLSA parameter value should correspond to increasing
cost and accuracy). Consequently, a tunable trade-off emerges: Afh¢is low, re-

finement is generally low as well, but not much time is consundégh) is also low).

4For simplicity it is assumed here thats a scalar rather than a vector of parameters.
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Conversely, higher(p) requires higher computational c@stp). We define simulated
heating as follows:

Definition 1: [Heating scheme]

A heating schemé/ is atripleH = (Hg, Hiy, Hset) Where:

e Hpis avector of PLSA parameter values with; = (p1, ..., pn),

Di € [pmina cee apmaa:]’ andpl S D2 S e S Pns

e M is a boolean function, which yields true if the number of iterations performed
for parametep; does not exceed the maximum number of iterations allowed for

pi, and

e H, is aboolean function, which yields true if the size of the solution candidate
set does not exceed the maximum sizegfaand iterationt of the overall

GSA/PLSA hybrid.

The meanings of the functions;; and H,.; will become clear in the global/local
hybrid algorithm of Figuré 8|6, which is taken as the basis for the optimization scenario
considered in this thesis.

The GSA considered here is an evolutionary algorithm (EA) that is

1. Generational, i.e., at each evolution step an entirely new population is created.
This is in contrast to a non-generational or steady-state EA that only considers a

single solution candidate per evolution step;

2. Baldwinian, i.e., the solutions improved by the PLSA are not re-inserted in the
population. This is in contrast to a Lamarckian EA, in which solutions would be

updated after PLSA refinement.
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Input:

Output:
Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Algorithm 8.1: Global/Local Hybrid()
H = ((p1,--.,pn), Hit, Hset) (heating scheme)
Trmax (Maximum time budget)
s (best solution found)
Initialization: SetT = 0 (time used)t = 0 (iterations performed), an
¢ = 1 (current PLSA parameter index).
Heating: Setp = p;.

Next iteration: Create an empty multi-set of solution candidates- 0.

Global search: If t = 0, create a solution candidat@t random. Otherwise,

generate a new solution candidate usindpased on the previous solution

candidate sef; _; and the associated quality functidp_;.
Local search: Apply L with parametep to s and assign it a quality (fitness
Fy(s).

Termination for candidate set: SetS, = S; + s andT = T + Cyx + C(p).
If the conditionH,, is fulfilled andT" < T,.. then go to Step 4.
Termination for iteration: Sett = t + 1. If the conditionH;, is fulfilled
andT < T,.. then go to Step 3.

Termination for algorithm: If i < n increment. If 7" < T,,., then go to
Step 2.

Output: Apply L with parametep,,.. to the best solution inJ, .., S;
regarding the corresponding quality functiakis the resulting solution is

the outcome of the algorithm.

Figure 8.6: Global/Local Search Hybrid.
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8.4 Simulated Heating Schemes

We are interested in exploring optimization techniques in which the overall optimization
time is fixed and specified in advance (fixed time budget). During the optimization
and within this time budget, we allow a heating scheme to adjust three optimization

parameters per PLSA parameter value:
1. the number of GSA iterations,
2. the size of the solution candidate $ét and
3. the maximum optimization time using this parameter value

We distinguish between static and dynamic heating based on how many of the pa-
rameters are fixed and how many are allowed to vary during the optimization. This is
illustrated in Figurg 8]7. In our experiments, we keep the size of the solution candidate
(GA population) fixed, and thus only consider the FIS, FTS, and VIT strategies. For the

sake of completeness, however, we outline all these strategies below.

8.4.1 Static Heating

Static heating means that at least two of the above three parameters are fixed and iden-
tical for all PLSA parameter values considered during the optimization process. As a
consequence, the third parameter is either given as well or can be calculated before run-
time for each PLSA parameter value separately. As illustrated in Figudre 8.7 on the left,

there are four possible static heating schemes.
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iterations
fixed

size of solution
candidate set
fixed

time
variable

iterations
variable

size of solution
candidate set
variable

Figure 8.7: lllustration of the different types Bfstatic heating and) dynamic heating.

For static heating, at least two of the three attributes are fix&dlS (efers tofixed

iterations and population size per parametef;S refers tofixed time and population

sizeper parameterEIT refers tofixed iterations and fixedtime per parameter.) For

dynamic heating, at least two attributes are variabi&T (refers tovariable iterations

andtime per parameterVIS refers tovariable iterations and populatiorsize; VTS

refers tovariable time and populatiorsize In our experiments, we will only consider

the FIS, FTS, and VIT strategies.
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PLSA Parameter Fixed — Standard Hybrid Approach

Fixing all three parameters is identical to keepingonstant. Thus, only a single PLSA
parameter value is used during the optimization process. This scheme represents the
common way to incorporate PLSAs into GSAs and is taken as the reference for the

other schemes as actually no heating is performed.
Number of Iterations and Size of Solution Candidate Set Fixed Per PLSA Param-
eter (FIS)

In this strategy (FIS), the parameteris constant for exactly; = ¢, iterations. The
question is, therefore, how many iteratiapsmay be performed per parameter within

the time budgef ... Having the constraint
Tax > t,N(Cax + C(p1)) + t,N(Cox + C(p2)) + ... + t,N(Cax + C(pn))

we obtaint, with

(8.2)

t, = {N Z?l(j(:ii:xju C(I%))J

as the number of iterations assigned to egch
Amount of Time and Size of Solution Candidate Set Fixed Per PLSA Parameter
(FTS)

For the FTS strategy, the points in time wheres increased are equi-distant and may
be simply computed as follows. Obviously the time budget, when equally split between
n parameters, becomé&$ = T,,../n per parameter. Hence, the number of iteratigns

that may be performed using parameigri = 1, ..., n is restricted by

tiN(Cox + C(p) < T, ,¥i=1,...,n
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Thus, we obtain

t; = {nN(CiijC(pi))J

as the maximum number of iterations that may be computed using paramieterder

(8.3)

to stay within the given time budget.

Number of Iterations and Amount of Time Fixed Per PLSA Parameter (FIT)

With the FIT scheme the size of the solution candidate set is different for each PLSA pa-
rameter considered. The time per iteration for parametergiven byT; = Tax/tmax

and is the same for ail; with 1 < i < n. This relation together with the constraint
T; > Ni(Csx + C(pi))

yields

TmaX
N = me(cﬁx T cm»J 84)

as the maximum size of the solution candidate sepfor

8.4.2 Dynamic Heating

In contrast to static heating, dynamic heating refers to the case in which at least two of
the three optimization parameters are not fixed and may vary for different PLSA param-
eters. The four potential types of dynamic heating are shown in Figyre 8.7. However,
the scenario where all three optimization parameters are variable and may be different
for each PLSA parameter is more hypothetical than realistic. This approach is not in-
vestigated in this thesis and only listed for reasons of completeness. Hence, we consider
three dynamic heating schemes where only one parameter is fixed. One of the vari-
able parameters is determined dynamically during run-time according to a predefined

criterion. Here, the criterion is whether an improvement with regard to the solutions
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generated can be observed during a certain time interval (measured in seconds, num-
ber of solutions generated, or number of iterations performed). The time constraint is

defined in terms of the remaining variable parameter.

Number of Iterations and Size of Solution Candidate Set Variable Per PLSA Pa-

rameter (VIS)

With the VIS strategy, the tim&; = T,,../n per PLSA parameter value is fixed (and
identical for allp;). If the time constraint is defined on the basis of the number of
solutions generated, the hybrid works as follows: As long as thefirsenot exceeded,
new solutions are generated usimgand copied to the next solution candidate set—
otherwise, the next GSA iteration wigh, ; is performed. If, however, the time elapsed
for the current iteration is less thdhandnone of the recently generatéd;., solutions
achieves an improvement in fitness, the next iteration wyith started.

It is not practical to consider a certain number of iterations as the time constraint—
since the time per iteration is not known, there is no condition that determines when the

filling of the next solution candidate set can be stopped.

Amount of Time and Size of Solution Candidate Set Variable Per PLSA Parameter

(VTS)

There are two heating schemes possible when the number of iteratipes PLSA
parameter is a constant valye= t,,../n. One scheme we call VTS-S, in which the next
solution candidate set is filled with new solution candidates untilMgy, solutions, no
improvement in fitness is observed. In this case the same procedure is applied to the
next iteration using the same parameterlf ¢; iterations have been performed far

the next PLSA parametex. ; is taken.
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In the other heating scheme, which we call VTS-T, the filling of the next solution
candidate set is stopped if, fdt.,, seconds, the quality of the best solution in the

solution candidate set has stagnated (i.e. has not improved).

Number of Iterations and Amount of Time Variable Per PLSA Parameter (VIT)

Here again there are two possible variations. The first, called VIT-I, considers the num-
ber of iterations as the time constraint. The next PLSA parameter value is taken when
for a numbett,, of iterations the quality of the best solution in the solution candidate
set has not improved. As a consequence, for each parameter a different amount of time
may be considered until the stagnation condition is fulfilled.

The alternative VIT-T is to define the time constraint in seconds. In this case, the
next PLSA parameter value is taken when,fqf, seconds, no improvement in fitness
was achieved. As a consequence, for each parameter a different number of iterations
may be considered until the stagnation condition is fulfilled.

In the next chapter we will describe some experiments to verify the simulated heating

technique.
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Chapter 9

Simulated Heating Experiments

Hybrid global/local search techniques are most effective in problems with complicated
search spaces, and problems for which local search techniques have been developed that
make maximum use of problem-specific information. We investigate the effectiveness of
the simulated heating approach on the voltage scaling problem for embedded multipro-
cessors described in Section 4.3, as well as a memory compaction problem in embedded
systems. These problems are very different in structure, but both have vast and com-
plicated solution spaces. In addition, the parameterized local search algorithms (PLSA)
for these applications exhibit a wide range of accuracy/complexity trade-offs. To fur-
ther illustrate the utility of simulated heating, we demonstrate its use on the well-known

binary knapsack problem.

9.1 Simulated Heating for Voltage Scaling

The problem of dynamic voltage scaling for multiprocessors was introduced in Sec-
tion @3 and two different PLSAs for the problem were presented in Section 8.1.1. In
this section we explain how we used simulated heating to solve this problem. Experi-

mental results are given in Sectipn]9.4.
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9.1.1 \oltage Scaling Problem Statement

We assume that a schedule has been computed beforehand so that the ordering of the
tasks on the processors is known. The optimization problem we address consists of find-
ing the voltage vectov’ = (4, 15, ..., 1,) for then tasks in the application graph, such

that the energy per computation period (average power) is minimized and the through-
put satisfies some pre-specified constraint (e.g., as determined by the sample period in
a DSP application). For each task, as its voltage is decreased, its energy is decreased
and its execution time is increased, as described in [9]. The computation period is de-
termined from the period graph. A simple example is shown in Figure 9.1. Here we can
see that by decreasing the voltage on t&skhe average power is reduced while the
execution time is unchanged. There is a potentially vast search space for many practical
applications. For example, if we consider discrete voltage steps of 0.1 Volts over a range
of 5 Volts, there are®® possible voltage vectorig from which to search. The number

of tasksn in an application may be in the hundreds.

9.1.2 GSA: Evolutionary Algorithm for Voltage Scaling

Each solutiors is encoded by a vector of positive real numbers of izeepresenting

the voltage assigned to each of tNetasks in the application. The one-point crossover
operator randomly selects a crossover point within a vector then interchanges the two
parent vectors at this point to produce two new offspring. The mutation operator ran-
domly changes one of the elements of the vectors to a new (positive) value. At each
generation of the EA an entirely new population is created based on the crossover and
mutation operators. The crossover probability wasthe mutation probability wag 1,

and the population size was.
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(b)

Figure 9.1:(a) Period Graph before voltage scaling. The numbers represent execution
times (t) and energies (e) of the tasks. The execution period is determined by the longest
cycle,A — B — (', whose sum of execution times is 4 units. The energy of each task
is 4 units. the average power is 4 units (16 total energy divided by period of 4).

(b) After voltage scaling. The voltage on taskhas been reduced, increasing its execu-
tion time from 1 unit to 2 units and decreasing its energy consumption from 4 units to 2
units. The overall execution period is still 4 units since both cydles: D — C and

A — B — C now have execution time of 4. The average power is 3.5 units (14 total

energy divided by period of 4).
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9.2 Simulated Heating for Memory Cost Minimization

In order to further demonstate the simulated heating technique, we apply it to another op-
timization problem in electronic design automation that has a complicated search space.
This section will explain both the PLSA and the GSA for this problem. Experimental

results are given in Section 9.4.

9.2.1 Background

Digital signal processing (DSP) applications can be specified as dataflow graphs [17].
As explained in Chaptéi 2,in dataflow a computational specification is represented as a
directed graph in which verticeadgtorg specify computational functions of arbitrary
complexity, and edges specify FIFO communication between functiossh@duldor
a dataflow graph is simply a specification of the order in which the functions should
execute. A given DSP application can be accomplished with a variety of different
schedules—we would like to find a schedule which minimizes the memory requirement.
A periodic scheduldor a dataflow graph is a schedule that invokes each actor at least
once and produces no net change in the number of data items queued on each edge. A
software synthesis tool generates application programs from a given schedule by piecing
together inlining) code modules from a predefined library of software building blocks
associated with each actor. The sequence of code modules and subroutine calls that is
generated from a dataflow graph is processed by a buffer management phase that inserts
the necessary target program statements to route data appropriately between actors.
The scheduling phase has a large impact on the memory requirement of the final
implementations, and it is this memory requirement we wish to minimize in our opti-

mization. The key components of this memory requirement are the code size cost (the

172



sum of the code sizes of all inlined modules, and of all inter-actor data transfers). Even
for a simple dataflow graph, the underlying range of trade-offs may be very complex We
denote aschedule loopvith the notationnT17> . .. T,,), which specifies the successive
repetitionn times of a subschedulg 75 . . . T,,, where thél; are actors. A schedule that
contains zero or more schedule loops is callddaoped scheduleand a schedule that
contains exactly zero schedule loops is calldthaschedulgthus, a flat schedule is a
looped schedule, but not vice-versa).

Consider two schedule$, = (8Y 7)(2Y Z) and.S; = X (10Y Z) which repeat for
the actorsX, Y, andZ the same number of times (1, 10, 10, respectively). ddue size
for scheduless; andS; can be expressed, respectivelyxdX ) + «(Y) + x(Z) + L.,
where L. denotes the processor-dependent, code size overhead of a software looping
construct, andi(A) denotes the program memory cost of the library code module for
an actorA. The code size of schedulg is larger because it contains more “actor
appearances” than schedule (e.g., an actol” appears twice irb; vs. only once in
Ss), andS; also contains more schedule loops (2 vs. 1). Biigering cosbf a schedule
is computed as the sum over all edged the maximum number of buffered (produced,
but not yet consumed) tokens that coexisteotinroughout execution of the schedule.
Thus, the buffering costs ¢f, andS; are 11 and 19, respectively. Theemory cosbf a
schedule is the sum of its code size and buffering costs. Thus, depending on the relative

magnitudes ok(X ), x(Y), k(Z), andL,, eitherS; or .Sy may have lower memory cost.

9.2.2 MCMP Problem Statement

Thememory cost minimization problefCMP) is the problem of computing a looped
schedule that minimizes the memory cost for a given dataflow graph, and a given set of

actor and loop code sizes. It has been shown that this problem is NP-complete [17]. A
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tractable algorithm calle@DPPO(code size dynamic programming post optimization),
which can be used as a local search for MCMP, has also been described [16, 111, 112].
In this work the CDPPO was applied uniformly at “full strength” (maximum accu-
racy/maximum run-time), and as conventionally done with local search techniques, did
not explore application of its PLSA form. As explained below, the CDPPO algorithm
can be formulated naturally as a PLSA with a single parameter such that accuracy and

run-time both increasmonotonicallywith the parameter value.

9.2.3 Implementation Details for MCMP

To solve the MCMP we use a GSA/PLSA hybrid where an evolutionary algorithm is the
GSA and CDPPO is the PLSA. The evolutionary algorithm and parameterized CDPPO

are explained below.

9.2.4 GSA: Evolutionary Algorithm for MCMP

Each solutions is encoded by an integer vector, which represents the corresponding
schedule, i.e., the order of actor executiofisn@s). The decoding process that takes

place in the local search/evaluation phase (step 5 in F[gure 8.6) is as follows:

e First a repair procedure is invoked, which transforms the encoded actor firing

sequence into a valid flat schedule.

¢ Next the parameterized CDPPO is applied to the resulting flat schedule in order
to compute a (sub)optimal looping, and afterward the data requirement (buffering
cost) D(s) and the program requirement (code size cé¥t) of the software
implementation represented by the looped schedule are calculated based on a

certain processor model.
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Finally, both D(s) and P(s) are normalized (the minimum valués,, and Pn;, and
maximum valuesDnax and Prax for the distinct objectives can be determined before-

hand) and a fitness is assigned to the solutiactcording to the following formula:

D(S) — Dnin X 0.5P(8) — Prin

—_— R 9.1
Dmax - Dmin Pmax - Pmin ( )

F(s)=0.5

Note that the fitness values are to be minimized here.

9.2.5 PLSA: Parameterized CDPPO for MCMP

The “unparameterized” CDPPO algorithm was first proposedin [16]. CDPPO computes
an optimal parenthesization in a bottom-up fashion, which is analogous to dynamic pro-
gramming techniques for matrix-chain multiplication![28]. Given a dataflow géagh
(V, E) and an actor invocation sequence (flat sequefice), . . ., f., where eactly; €
V', CDPPO first examines all 2-invocatienb-chaing fi, f2), (f2, f3), -, (fa-1, fn) tO
determine an optimally-compact looping structusal{schedulefor each of these sub-
chains. For a 2-invocation sub-chdift, f;11), the most compact subschedule is eas-
ily determined: iff; = f;11, then(2f;) is the most compact subschedule, otherwise
the original (unmodified) subschedufef;,; is the most compact. After the optimal
2-node subschedules are computed in this manner, these subschedules are used to de-
termine optimal 3-node subschedules (optimal looping structures for subschedules of
the form f;, f;.1, fi+2); and the 2- and 3-node subschedules are then used to determine
optimal 4-node subschedules, and so on untilrtm®ode optimal subschedule is com-
puted, which gives a minimum code size implementation of the input invocation se-
qguencefy, fo, ..., fa.

Due to its high complexity, CDPPO can require significant computational resources

for a single application—e.g., we have commonly observed run-times on the order of
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30-40 seconds for practical applications. In the context of global search techniques,
such performance can greatly limit the number of neighborhoods (flat schedules) in
the search space that are sampled. To address this limitation, however, a simple and
effective parameterization emerges: we simply set a threstotoh the maximum sub-
chain (subschedule) size to which optimization is attempted. This threshold becomes
the parameter of the resultimgarameterized COPPQPCDPPO) algorithm.

In summary, PCDPPO is a parameterized adaptation of CDPPO for addressing the
schedule looping problem. The run-time and accuracy of PCDPPO are both monotoni-
cally nondecreasing functions of the algorithm “threshold” paramétem the context

of the memory minimization problem, PCDPPO is a genuine PLSA.

9.3 Simulated Heating for Binary Knapsack Problem

In order to further illuminate simulated heating, we begin by demonstrating the tech-
nique on a widely known problem, namely the binary (0-1) knapsack problem (KP).
This problem has been studied extensively, and good exact solution methods for it have
been developed (e.g. s€el[88]). The exact solutions are based on either branch-and-
bound or dynamic programming techniques. In this problem, we are given a get of
items, each with profi\; and weightw,;, which must be packed in a knapsack with
weight capacity.. The problem consists of selecting a subset ofitltems whose total

weight does not exceadand whose total profit is a maximum. This can be expressed

formally as:
maximizez = » _ A;u; (9.2)
j=1
subject to
Z w;x; < ¢ (9.3)
j=1
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z;€0,1,j€1,...,n (9.4)

wherez; = 1if item j is selected, and; = 0 otherwise.

Balas and Zemel[4] first introduced the “core problem” as an efficient way of solv-
ing KP, and most of the exact algorithms have been based on this idea. Pisinger [87]
has modeled the hardness of the core problem and noted that is is important to test at a
variety of weight capacities. He proposed a series of randomly generated test instances
for KP. In our experiments we generate test instances using the test generator function
described in appendix B of [B7]. We compare our results to the exact solution described

in [B8], for which the C-code can be found in[.10].

9.3.1 Implementation

To solve the KP we use a GSA/PLSA hybrid as discussed in Seciion 8.3 where an evolu-
tionary algorithm is the global search algorithm (GSA) and a simple pairwise exchange

is the parameterized local search algorithm (PLSA). The evolutionary algorithm and

local search are explained below:

GSA: Evolutionary Algorithm

Each candidate solutionis encoded as a binary vectdy wherez; are the binary
decision variables from equatipn9.4 above. The weight of a given solution cansidate
isws = 7, z;w;, and the profit ok is A, = > 77, 2;A;. The sum of the profits of
allitems is defined aa, = > 7| A;. We define a fitness function which we would like
to minimize

A — A, Ifwg<ec
F(s) = (9.5)
Ay +wy ifwg >c

Thus we penalize solution candidates whose weight exceeds the capacity, and seek
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to maximize the profit. The\, term was added so thdt(s) is never negative. For

the KP experiments we used a standard simple genetic algorithm described in [43]
with one point crossover, crossover probability, non-overlapping populations of size
popsize= 100, and elitism.

Parameterized Local Search for Knapsack Problem

At the beginning of the optimization algorithm, the items are sorted by increasing
profit, so thatA, < A; for all © < j. Given an input solution candidate the local
search first computes its weight,. If w, > ¢, items are removedz{ set to zero)
starting ati = 0 until w, < ¢. For local search parametgr= 1, this is the only
operation performed. Fgr > 1, pair swap operations are also performed as explained
in Figure[9.2, where we attempt to replace an item from the solution candidate with a
more profitable item not included in the solution candidate. The number of such pair
swap operations igs. Thus the local search algorithm requires more computation time
and searches the local area more thoroughly for highd@rhese are the monotonicity
requirements expressed in Equation 8.1. We define parametéras no local search—

i.e. the optimization is an evolutionary algorithm only, and no local search is performed.

9.4 EXxperiments

In this section we present experiments designed to examine several aspects of simu-
lated heating for the two embedded systems applications. We would like to know how
simulated heating compares to the standard hybrid technique of using a fixed parameter
(fixed p). We summarize the fixed results for all problems for different values pf

We examine how the optimal value pffor the standard hybrid method depends on the

application.
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Algorithm 9.1: PAIR SWAP LOCAL SEARCH(

Sin7F7 Sout

input: solution candidate s;,, of size n

input: fitness function

output: new solution candidate sqt

LN

Sout < Sin

bestScore «— F(sjq)

count < 0

while (i > 0) A (count < pn)

j=-1

1=1—

do
do

1

while (j < ) A (count < pn)

J=7+1
if sout[i] # soutls]

then

temp = soutl]

soutli] = soutlJ]

soutlJ] = temp

score = F'(sout)

if score < bestScore
bestScore = score

then temp = soutl?]
else 4 soutli] = soutlJ]
soutlj] = temp

Figure 9.2: Pseudo-code for pair swap local search for binary knapsack problem.
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Next we compare both the static and dynamic heating schemes to the standard ap-
proach, and to each other. For the static heating experiments, we utilize the FIS and
FTS strategies. Recall thatS refers tofixed number ofiterations and populatiorsize
per parameter, andTS refers tofixed time and populatiorsize per parameter. For the
dynamic heating experiments, we utilize the two variants oMHe strategy Yariable
iterations andtime per parameter). We also examine the role of parameter range and

population size on the optimization results.

9.4.1 PLSARun-Time and Accuracy for Voltage Scaling and MCMP

Recall that there is a trade-off between accuracy and run-time for the PLSA. Lower
values of local search paramegemean the local search executes faster, but is not as
accurate. Figur€ 9.3 shows how the run-time of the PLSA varies withr the two
applications. It can be seen that the monotonicity property, Equ@tipn 8.1, is satisfied for

the PLSAs.

9.4.2 Standard Hybrid Approach for Voltage Scaling and MCMP

The standard approach to hybrid global/local searches is to run the local search at a fixed
parameter. We present results for this method below. It is important to note that, for a
fixed optimization run-time, the optimal value of local search parameatan depend on

the run-time and data input and cannot be predicted in advance. Figure 9.4 shows results
for the MCMP optimization using fixed values p{standard approach—no heating), for

11 different initial populations, for population sizés = 100 and N = 200. The y-

axis on these graphs corresponds to the memory cost of the optimized schedule so that
lower values are better. The x-axis corresponds to the fixealue. For each value

of p, the hybrid search was run for a time budget of 5 hours with a fixed valye of
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Run Times vs. PLSA Parameter p
16 T T T T

Run Time (seconds)

(a) MCMP application.

Run Times for Voltage Scaling on FFT3
9 T T T T

Run Time

(b) Voltage scaling application.

Figure 9.3: Local search run times ysfor MCMP application (a) and voltage scaling

application (b).
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lower quartile ——
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(@) N = 100
N=200
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0.34
0.32 | lower quartile —— |

upper quartile --------

400 500 600

(b) N = 200

Figure 9.4: Standard hybrid approach to MCMP application using fixed PLSA param-
eterp. Hybrid was run for 5 hours at each value jof Population size for GA was
N =100 in B4(a) andV = 200 in -4(b). Median, lower quartile, and upper quartile of

11 different runs shown in the three curves for eacfLower memory cost is better).
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The same set of initial populations was used. From these graphs, it can be seen that the
local search performs best for valuespofiround 39. Figurg 9.5 shows the number of
iterations (generations in the GSA) performed for each valye 8E p increases, fewer
generations can be completed in the fixed optimization run time.

Figure[9.6 shows results for the voltage scaling applicatior6 ahfferent input
dataflow graphs, for fixed values pf(no heating), forl1 different initial populations,
using both hill climb and Monte Carlo local search methods. For each valpgetioé
hybrid search was run for a time budget28f minutes with a fixed value gb. The
y-axis on the graph corresponds to the ratio of the optimized average power to the initial
power, so that lower values are better. For ggc¢he same set of initial populations was
used. From these graphs, it can be seen that the best valueaf also depend on the

specific problem instance.

9.4.3 Static Heating Schemes for Voltage Scaling and MCMP

For the MCMP application, the run-time limit for the hybrid was seTjtax = 5 hours.

Two sets of PLSA parameters were usBd,= [1, 153,305,457, 612] and

R% = [1,39,77,116,153]. The value o = 612 corresponds to th total number of actor
invocations in the schedule for the MCMP application and is thus the maximum (highest
accuracy) possible. The parameter Bétwas chosen so that it is centered around the
best fixedp values. Figur¢ 917 summarizes the results for the MCMP application with
GSA population sizeV = 100. In Figure[9.7, eleven runs were performed for each

heating scheme and for each parameter set. The bo¥ pligiure[9.7(a) corresponds

1The ‘box’ in the box plot stretches form tis" percentile (‘lower hinge’) to thg5" percentile
(‘upper hinge’). The median is shown as a line across the box. The ‘whisker’ lines are drawr @it the

and90™ percentiles. Outliers are shown with a ‘+’ character.
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Number of generations(iterations) performed for each p
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Figure 9.5: Standard hybrid approach (fixgaho heating), MCMP application, using a
fixed run time. Number of generations completed is shown for hybrids utilizing different

values ofp. Fewer generations are completed for higher
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No Heating, Monte Carlo Local Search
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Fixed PLSA parameter p
(a) Monte Carlo local search.
1 No Heating, Hill Climb Local Search
‘ : : : : —
— FFT2
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o
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S \\x
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Fixed PLSA parameter p

(b) Hill climb local search.

Figure 9.6: Standard hybrid approach using fixed PLSA parameters, voltage scaling
application, with Monte Carlo local searchin 9.6(a) and hill climb local searchinD.6(b).
Hybrid was run for 20 minutes at each valuegpoMedian of 11 runs for eachh Lower
values of power are better. We see that the optimal valyeisfdifferent for the six

different input dataflow graphs.
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MCMP / N = 100: Fixed p (curve) — FIS(left boxplots) — FTS(right boxplots)

{FIS,R1} {FIS,R2} {FTS,R1} {FTS,R2}

— lower quartile
0.5 — median N
—— upper quartile

0.45

0.4

cost

0.35

0.3

©

0.25 Static heating p— 1

1 1 1 1 1 1 1
100 200 300 400 500 600
fixed PLSA parameter p

Figure 9.7: Static heating for MCMP with the local search parametaried in two
different ranges—the first range covers all possible valties 612), while the second
range(1 — 153) is concentrated around the best fixedalue. (a)[FISR'], (b)[FIS,R?],
(©)[FTS,R], (d)[FTS,R?]. The solid curve depicts the standard hybrid approach for
different values of. Lower values of cost are better. The box plots display the static
heating results. The solid line across the box represents the median over all calculations.
The lowest cost is obtained for the standard hybrid approachpwitt39. The best static
heating scheme is (d), corresponding to FTS operating in the restricted parameter range
which includes = 39. We note that this value gfcould not be determined in advance,

and could only be found by running the standard hybrid solution for all valugs of
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Heating scheme Iterations per parameter p

type range 1 | 39| 77|115| 153 | 305| 457 | 612

FIS [1,612] 4 | X | X | X 4 4 4 4

FIS | [1,153] | 33 33|33 33|33 | x | x | x

FTS| [1,612] |176| x | x | x | 14| 4 | 2 | 2

FTS | [1,153] |175|94|42| 23| 14 | x | x | x

Table 9.1: Iterations performed per parameter value for four different heating schemes
for MCMP. The numbers correspond to a single optimization run. For the other ten runs

they look slightly different.

to FIS with parameter set'. Figure[9.]7(b) corresponds to FIS with parameter/&et
Figure[9.V(c) corresponds to FTS with parameter/getFigure[9.J7(d) corresponds to
FTS with parameter sdt?. The solid curves in Figurg 9.7 are the results for fixed
Table[9.]l summarizes the iterations performed for each parameter for both FIS and FTS
with both parameter ranges.

For the voltage scaling application, we ran the static heating optimization for a run-
time of Thax Minutes. For FIS and FTS, the parameter sets used &fere (1,2, 3, 4, 5]
andR* = [2.25,2.50,2.75, 3.00, 3.25]. The parameter sét® was chosen by examining
the fidelity of the period graph estimator. Recall that the PLSA parameésaelated to
the re-simulation threshold. It is observed thatgor. 1 the fidelity of the estimator is
poor. Forp greater thars, with the voltage increments used, the re-simulation threshold
is so small that simulation is done almost every time. This corresponds to the highest
accuracy setting. The parameter $twas chosen to center around the best fixed
values. Results for FIS and FTS on the FFT2 application using the Monte Carlo local

search are shown in Figure9.8. The box plot in Figurg 9.8(a) corresponds to FIS with
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FFT2 / Static / both p ranges / Monte Carlo local search
{FISR3} {FISR4} {FTSR3} . {FTS,R4} i

08 . . r

No heating / fixed p / Monte Carlo / ft2

075 - 1 0ol

%ﬂ E ‘{0.85 Ha
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= e
0.75
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0.65 - L L L L L L 1 | L L L L L I
1 15 2 .25 3 35 4 4.5 5 D'71 15 2 25 3 35 4 45 5
Fixed PLSA parameter p fixed PLSA paramet ter p
(a) Static heating(box plots), p fixed (upper (b) The 2 ranges for fixed p.
curve).

Figure 9.8: Static heating for voltage scaling with different parameter ranges—
(Q)[FIS,R?], (b)[FIS,RY], (c)[FTS,R?], (d)[FTS,R*] (shown in the four box plots) com-
pared with the standard hybrid method results (fixed valugsbbwn in the solid line).

Here the static heating schemes all perform better than the standard hybrid approach.
The first parameter range includes all valueg oivhile the second range is centered

around the best fixedvalue. This is shown in more detail in 9.8(b).
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parameter rang&3. Figure[9.B(b) corresponds to FIS with parameter ralitjeFigure
0.8(c) corresponds to FTS with parameterigétFigure[9.8(d) corresponds to FTS with

parameter rang&*. The solid curves in the figure are the results for fixed

9.4.4 Dynamic Heating Schemes for Voltage Scaling and MCMP

We performed the dynamic heating schemes VIT.I and VIT.T for both the MCMP and
voltage scaling applications. Recall that VIT stands for variable iterations and time per
parameter; during the optimization the next PLSA parameter is taken when, for a given
numbert,q0f iterations (VIT.I) or a given tim@ g (VIT.T), the quality of the solution
candidate has not improved.

For the MCMP application, the run-time limit for the hybrid was setligy =
5 hours and the same two sets of PLSA parameters were used as in the static heating
case. Eleven runs were performed for all cases. Results for dynamic heating on the
MCMP application are shown in Figufe P.9 For the voltage scaling application, the run
time wasTax = 20 minutes. Results for voltage scaling with VIT.l and VIT.T using the
Monte Carlo local search are shown in Figlire P.10. For the dynamic heating schemes,
the search algorithm operates with a given PLSA parameter until the quality of the best
solution has not improved for eithég,giterations (VIT.I) orlsagseconds (VIT.T). Itis
therefore interesting to observe the amount of time spent on each parameter during the

optimization. This is illustrated in Figufe 9]11.

9.4.5 Knapsack PLSA Run-Time and Accuracy

To test the binary knapsack problem, we generat®d pseudo-random test instances
for each technique as suggestedlin [87]. The weights and profits in these instances

were strongly correlated. The weight capacityof the ith instance is given by, =
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MCMP / N = 100 : Fixed p(curves) : VIT-I(left boxplots) : VIT-T (right boxplots)

{VIT.|,R1} {VIT.I,R2} {VIT.T,R1} {VIT.T,R2}

— lower quartile
0.5 — median N
—— upper quartile

0.45

0.4

cost

0.35

0.3

Dynamic heating

0.25} +

(b) !
1 1 1 1 1 1 1 1 4*7 1
100 200 300 400 500 600
fixed PLSA parameter p

Figure 9.9: Dynamic heating for MCMP with different parameter ranges depicted by the
four box plots—(a)[VIT.IR'], (b)[VIT.l, R?], (c)[VIT.T, R'], (d)[VIT.T, R?]. The solid

line represents the standard hybrid technique wittxed at different values from 1 to

612. The solid lines across the boxes represents the median over all calculations. The
lowest cost is obtained for the standard hybrid approach with 39. The best dy-
namic heating scheme is (d), corresponding to VIT.T operating in the restricted parame-
ter range which includgs = 39. We note that this value gfcould not be determined in
advance, and could only be found by running the standard hybrid solution for all values

of p.
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fft2 / Dynamic / both p ranges / Monte Carlo local search

0.8 {VIT.I,R3} {VIT.I,R4} {VIT.T,R3} {VIT.T,R4}
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Figure 9.10: Dynamic heating for voltage scaling with different parameter
ranges depicted by the four box plots—(a)[VIR#], (b)[VIT.I, R*], (c)[VIT.T, R3],
(d)[VIT.T, RY]. VIT.T refers to variable iterations and time per parameter, with the next
parameter taken if, for a given time, the solution has not improved. The solid curve
depicts results for the standard hybrid approach. All the dynamic schemes outperform
the standard hybrid (fixeg) approach, with the lowest average power obtained for (a)

VIT.I which utilizes the broader parameter range.
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Figure 9.11: Percent of time spent on each parameter in r&hga) and in range??

(b) for VIT.T.

192



binary knapsack run times for fixed p
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Figure 9.12: Local search run times ysfor binary knapsack problem.

| (¢W) /1001 ] wherelV is the sum of the weights of all items. For each test instance we
compared the hybrid solution with an exact solution to the problem using the method
given in [88]. We defined an error sum over all the problem instances as a figure of merit

for the hybrid solution technique:

1000

e=Y (a—f) (9.6)

=1
whereq; is the profit given by the exact solution apgis the profit given by the hybrid
solution.

Figure[9.IR shows how the run-time of the pair swap PLSA increasespwHig-
ure[9.1IB depicts the sum of errors (Equation 9.6) for the binary knapsack problem for
different values op with the number of generations fixed @t We can see that higher
values ofp produce smaller error, at the expense of increased run time. Thus the pair

swap PLSA satisfies the monotonicity requirement from Equéation 8.1.
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x 10 Binary Knapsack fixed parameter 10 generations (variable runtime)
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sum of errors over 1000 instances
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Figure 9.13:Standard hybrid approach for binary knapsack (fixed, no heating) using
a fixed number of generationsand not fixing overall hybrid run timeCumulative
error shown for hybrids utilizing differenp. Higher p is more accurate but requires

longer run times.
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9.4.6 Knapsack Standard Hybrid Approach

The standard hybrid approach to hybrid global/local searches is to run the local search
at a fixed parameter. This is shown in Figlre P.14 for different valugsaoid for two
different run times. Here the y-axis corresponds to the sum of errors over all test cases
(Equationf9.6). We see that, for a fixed optimization run-time, the optimal value of local
search parameterusing the standard hybrid approach can depend on the run-time and
data input—for a run time of 2 seconds, the best valugief2, while for a run time of

5 seconds, the best valuefs 5. We note here and with the other applications studied

that this value op cannot be predicted in advance.

9.4.7 Knapsack Static Heating Schemes

The static heating schemes FIS and FTS were performed for the binary knapsack prob-
lem. Results are shown in Figure 9.15 for run timeg ahd5 seconds, and compared
with the standard hybrid approach for different valueg.dt can be seen that the static
heating scheme outperformed the standard hybrid approach, and that this improvement

is greater for the shorter run times.

9.4.8 Knapsack Dynamic Heating Schemes

The dynamic heating schemes VIT.l and VIT.T were performed for the binary knap-
sack application. Recall that VIT stands for variable iterations and time per parameter;
during the optimization the next PLSA parameter is taken when, for a given number
of iterations (VIT.I) or a given time (VIT.T), the quality of the solution candidate has
not improved. Figurg€ 9.16 shows results for these dynamic schemes. Results for static

heating schemes are shown on the right for comparison. We observe that the dynamic
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(a) Run time 2 seconds.
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(b) Run time 5 seconds.

Figure 9.14: Standard hybrid approach applied tobinary knapsack for different
values ofp, wherep is fixed throughout. Y-axis is sum of errors. Run time is 2 seconds

in (a) and 5 seconds in (b).
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x10° Binary Knapsack run time = 1
2 T T T T T T
<+— standard hybrid —

l«—— static heating —

sum of errors over 1000 instances

p=0 p=1 p=2 p=5 FTS FIS

(a) Run time 1 second.

x10° Binary Knapsack run time = 5

<«——— standard hybrid ————>*Static Heating —

sum of errors over 1000 instances

p=0 p=1 p=2 p=5 FTS FIS

(b) Run time 5 seconds.

Figure 9.15:Static heating (2 bars on right) applied tbinary knapsack compared to
the standard hybrid approach (4 bars on left). Y-axis is sum of errors over all 1000
problem instances. The 4 bars on left correspond to the standard hybrid approach. Run

time is 1 second i 9.15(a) and 5 secondsin 9.15(b).
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x10° Binary Knapsack run time = 1
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sum of errors over 1000 instances

VIT.I VIT.T

(a) Run time 1 second

Binary Knapsack run time = 5
2000 T
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VIT. VIT.T

(b) Run time 5 seconds

Figure 9.16:Dynamic heating for binary knapsack (two bars on rightcompared to

static heating (two bars on left). VIT refers to variable iterations and time per parame-
ter, with the next parameter taken if, for a given number of iterations (VIT.I) or a given
time (VIT.T), the solution has not improved. Run time is 1 secorfd in 9]16(a) and 5 sec-
onds in[9.16(h). Y-axis is cumulative error over all problem instances (note the different

y scales for the two plots).
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Quality of solution

min opt Iomax

Figure 9.17: Relationship between the value@nd the outcome of the optimization

process.

heating schemes outperform the static heating schemes significantly, and that the amount

of improvement is greater for shorter run times.

9.5 Comparison of Heating Schemes

The results indicate that the choice of parametdoes affect the outcome of the opti-
mization process. For the MCMP application, there is a pronounced region forpfixed
values aroungh = 39 where the hybrid (withp fixed) performs best. This is illustrated

in Figure[9.4(a) (also shown as the solid curves in Figlrgs 9.7 anhd 9.9). This is due
to the trade-offs in accuracy and complexity with For smaller values of, a larger
number of iterations can be performed. (cf. Figure 9.5). It seems that there is a point
beyond which increasing decreases the performance of the hybrid algorithm. As il-
lustrated in Figur€ 9.17, continuously increasingtarting fromp = pnin also increases

the accuracyd(p) of the PLSA and therefore the effectiveness of the overall algorithm.

However, when a certain runtime complexityp,) of the PLSA is reached, the benefit
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of higher accuracy may be outweighed by the disadvantage that the number of iterations
that can be explored is smaller. As a consequence, values greatepjh@ay reduce

the overall performance as the number of iterations is too low. Figure 9.6 depicts the
performance of the hybrid with fixed for the voltage scaling application on six differ-

ent applications. It can be seen that the region of best performance is not as pronounced
as in the MCMP application, and that this optimal valuepa$ different for different
applications.

The observation that certain parameter ranges appear to be more promising than
the entire range of permissibfevalues leads to the question of whether the heating
schemes can do better when using the reduced range. One would expect that the static
heating schemes, for which the number of iterations at each parameter is fixed before-
hand, would benefit the most from the reduced range, since the hybrid would not be
“forced” to run beyona,.. The dynamic heating schemes, by contrast, will continue to
operate on a given parameter as long as the quality of the solution is improving. For the
MCMP application, range?? = [1,39, 77,116, 153] is centered around the best fixed
p values. Figure§ 9.7 through 910 compare the performance over the two parameter
ranges. For the static heating optimizations in Figlirgs 9.7 aind 9.8, the performance is
improved by using the reduced parameter ranges. The dynamic heating optimization in
Figure[9.D shows a smaller relative improvement. The dynamic heating optimization
in Figure[9.ID actually shows a benefit to using the expanded parameter range. It is
important to note that in practice one would not know about the characteristics of the
different parameter ranges without first performing an optimization at each value. This
would take much longer than the simulated heating optimization itself, so in practice the
broader parameter range would probably be used. The data forfiia@dhe MCMP
problem (Figur¢ 9.4(R) arid 9.4)(b)) demonstrate that it can be difficult to find the optimal
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p value and that this optimum may be isolated, p.®alues close (e.g. 100) to optimum
yield much worse results. If we calculate the median ovep athlues tried, the mean
performance of the constaptapproach is worse than the median performance of the
FTS and VIT methods.

Figure[9.IB compares the results of the different heating schemes for the MCMP
application with population siz& = 100, 200, 50 and parameter range'. Figure[9.10
compares the heating schemes for the voltage scaling application on different graphs for
both types of local search.

Comparing the heating schemes across all different cases, we see that the dynamic
heating schemes performed better in general than the static heating schemes. For all
cases, the best heating scheme was dynamic. For the binary knapsack problem and the
voltage scaling problem, simulated heating always outperformed the standard hybrid
approach.

For the MCMP problem, there was one PLSA parameter where the standard hybrid
approach slightly outperformed the dynamic, simulated heating approach. We note that
in practice, one would need to scan the entire range of parameters to find this optimal
value of fixedp, which is in fact equivalent to allotting much more time to this method.
Thus, we can say that the simulated heating approach outperformed the standard hybrid

approach in the cases we studied.

9.5.1 Effect of Population Size

Figure[9.2D shows the effect of the population size for MCMP for the static heating
schemes. Figuré 921 shows the effect of population size on the dynamic heating
schemes for MCMP.

For FIS, smaller population sizes seem to be preferable. The larger number of itera-
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Figure 9.18: Comparison of heating schemes for MCMP wth= 100. The two

box plots on left correspond to the static heating schemes. The two box plots on the
right correspond to dynamic heating schemes. The best results (lowest memory cost)
are obtained for the VIT.T dynamic heating scheme. This refers to variable iterations

and time per parameter, where the parameter is incremented if the overall solution does
not improve after a pre-determined time, called the stagnation time. The solid curve

represents the standard hybrid approach applied at different values op fixee point

p = 39 slightly outperforms the VIT.T scheme.
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FFT1 Monte Carlo local search

FFT1 hill climb local search
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(a) Monte Carlo local search. (b) Hill climb local search.

Figure 9.19: Comparison of heating schemes for voltage scaling with (a) Monte Carlo
and (b) hill climb local search. The two box plots on left correspond to the FIS and
FTS static heating schemes, while the two box plots on the right correspond to dynamic
heating schemes VIT.lI and VIT.T. The line across the middle of the boxes represents
the median over the runs, while the ‘whisker lines’ are drawn at the 10th and 90th
percentiles. The solid curve represents the standard hybrid approach applied at different
values of fixedp. In this application, all the simulated heating schemes outperformed
the standard hybrid approach. The best results were obtained for the dynamic VIT.T

scheme.
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Figure 9.20: Static heating with different population siz¢s—9.20(a) FIS[and 9.20(b)
FTS.
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tions that can be explored fof = 50 may be an explanation for the better performance.
In contrast, the heating scheme FTS achieves better results when a larger population
n = 200 is used. For the dynamic heating schemes, the results seem to be less sensitive

to the population size.

9.6 Discussion

Several trends in the experimental data are summarized below:

e The dynamic variants of the simulated heating technique outperformed the stan-

dard hybrid global/local search technique.

e When employing the standard hybrid method utilizing a fixed parametan

optimal value ofp may be isolated and difficult to find in advance.
e Such optimal values qgf depend on the application.

e When performing simulated heating, our experiments show that choosing the pa-
rameter range to lie around the best fixedalues yields better results than using
the broadest range in most cases. However, using the broader range still produces

good results, and this is the method most likely to be used in practice.
e The dynamic heating schemes show less sensitivity to this parameter range.

e Overall, the dynamic heating schemes performed better than the static heating

schemes.

e The dynamic heating schemes were also less sensitive to the population size of

the global search algorithm.
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9.7 Conclusions

Efficient local search algorithms, which refine arbitrary points in a search space into
better solutions, exist in many practical contexts. In many cases, these local search algo-
rithms can be parameterized so as to trade off time or space complexity for optimization
accuracy. We call these parameterized local search algorithms (PLSAs). We have shown
that a hybrid PLSA/EA (parameterized local search/evolutionary algorithm) can be very
effective for solving complex optimization problems. We have demonstrated the impor-
tance of carefully managing the run-time/accuracy trade-offs associated with EA/PLSA
hybrid algorithms, and have introduced a novel framework of simulated heating for this
purpose. We have developed both static and dynamic trade-off management strategies
for our simulated heating framework, and have evaluated these techniques on the binary
knapsack problem and two complex, practical optimization problems with very different
structure. These problems have vast solution spaces, and underlying PLSAs that exhibit
a wide range of accuracy/complexity trade-offs. We have shown that, in the context of a
fixed optimization time budget, simulated heating better utilizes the time resources and
outperforms the standard fixed parameter hybrid methods. In addition, we have shown

that the simulated heating method is less sensitive to the parameter settings.
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Chapter 10

Conclusions and Future Work

In this thesis we explored the implications of varying degrees of connectivity and con-
tention in multiprocessor embedded systems for digital signal processing applications.
A trade-off exists in such systems between cost/complexity and reduced resource con-
tention (leading to higher performance). We presented techniques for analyzing these
trade-offs, for making the most efficient use of available resources at a given design
point, and for streamlining the system for a targeted set of applications.

The simplest and cheapest systems utilize a shared electrical bus. As explained in
Chapterf}4, the shared bus precludes an analytic expression for the system throughput,
and simulation is required to get an accurate performance measurement. However, simu-
lation is computationally expensive and it is undesirable to perform repeated simulations
during an optimization. We developegariod graphmodel that can be used as a com-
putationally efficient estimator for the throughput in these systems. We demonstrated
the utility of this estimator by using it in a genetic algorithm and a simulated annealing
algorithm for a voltage scaling application to reduce power.

With the additional expense of a hardware bus controller that imposes a global order-

ing of all communications, it is possible to remove the contention that results in the diffi-
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cult analysis and to more fully optimize communication patterns in an application. This
has been demonstrated to increase the performance and to be a useful cost/performance
trade-off for several applications[101]. For highly parallel applications with more se-
vere real-time constraints, however, the single bus becomes a bottleneck for communica-
tion between processors. In Chagier 5 we introduced a system architecture that utilizes
optical fiber interconnects over multiple wavelengths. This enables multiple, simulta-
neous communications and increases the system throughput. In this architecture there
is a controller for each communication wavelength, and we introduced a modification
of the TPO heuristicl[62] for determining optimal communication orderings for all the
wavelengths. We guantified the performance improvement over the single bus controller
for several applications.

A wide range of scheduling techniques for multiprocessor systems have been de-
veloped. However, these techniques typically assume a fixed communication network
and do not systematically incorporate connectivity constraints. Connectivity constraints
may be dictated by cost, area, or power constraints. Due to the power consumption char-
acteristics of optical links, it is useful to restrict communication across them to low-hop
transfers. Connectivity constraints cause existing multiprocessor scheduling methods to
deadlock. In Chaptdi 6 we demonstrated a polynomial complexity algorithm for deter-
mining the set of feasible processors that will avoid schedule deadlock in a limited-hop
schedule. We also introduced a useful metric, called communication flexibility, for the
degree to which a given scheduling decision constrains future scheduling decisions (in
the context of the given communication topology). We used this algorithm and the
flexibility metric in conjunction with a standard dynamic list scheduling algorithm to
effectively map several DSP applications across a wide range of interconnect topolo-

gies.
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In Chapter{[7 we explored the problem of deriving an interconnect network for a
given application that minimizes the number of links required and maintains fanout
constraints, while also satisfying the throughput or latency requirements of the appli-
cation. This problem is important in today’s system-on-chip (SoC) designs as well as
future SoC designs that might utilize optical interconnects. We described probabilistic
and deterministic algorithms for interconnect synthesis. A key distinguishing feature
of our technique is that we perform scheduling and interconnect synthesis together—
existing interconnect synthesis algorithms assume a given application mapping exists
before performing the interconnect synthesis. We demonstrated how the design space
can be greatly reduced by considering graph isomorphism, and utilized an efficient graph
isomorphism tests in our deterministic algorithm.

Most optimization problems that arise in hardware-software co-design are highly
complex. The scheduling, interconnect synthesis, memory, and voltage scaling opti-
mization problems investigated in this thesis all involve searching vast design spaces. In
ChaptefB we demonstrated that a hybrid PLSA/EA (parameterized local search/evolutionary
algorithm) can be very effective for solving these complex optimization problems. We
presented PLSAs for the voltage scaling, interconnect synthesis, and ordered transac-
tions problems.

We demonstrated the importance of carefully managing the run-time/accuracy trade-
offs associated with EA/PLSA hybrid algorithms, and introduced a novel framework of
simulated heating for this purpose. We developed both static and dynamic trade-off
management strategies for our simulated heating framework, and in CRapter 9 evaluated
these techniques on the voltage scaling problem, a memory cost minimization problem,
and the binary knapsack problem. Simulated heating experiments with the interconnect

synthesis problem and the ordered transactions problem are two directions for future
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work.

The PLSAs underlying these problems exhibit a wide range of accuracy/complexity
trade-offs. We have shown that, in the context of a fixed optimization time budget, sim-
ulated heating better utilizes the time resources and outperforms the standard fixed pa-
rameter hybrid methods. In addition, we have shown that the simulated heating method

is less sensitive to the parameter settings.
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Appendix

.1 Random Graph Generation Algorithm

Sih’'s random graph generatar[96] produces graphs with characteristics similar to those
of many DSP benchmarks. We made several modifications to this algorithm to generate
the random graphs used in this thesis.

First, before we add a random edge we first check (using Warshall’s algorithm for
transitive closure) that the edge will not introduce a cycle in the graph. Second, we
input the number of nodes in the graph instead of the graph length. Third, we make
the maximum fanout from each node an explicit input. This controls the amount of

parallelism in the graph. Pseudo-code for the algorithm is given in Figufés 1, g, and 3.
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Algorithm A.1: GENRANDOMGRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowlPCcost, highIPCcost

)

procedure CREATENODE(low, high)
comment: Create and return a new node with random execution time < [low, high|

Create new noden
n.execTime < UNIFORMRANDOM (low, high)
return (n)

procedure CONNECTNODES(src, snk, adjM)
comment: Connect src node to snk node in adjacency matrix

adjM[src][snk] « 1

procedure ExTENDNODE(oldEndNode,endNodes,fanout)
comment: Connect a newly created node to one of the endNodes

I — UNIFORMRANDOM (1,fanout)

for (i —1...1)

m «— CREATENODE(lowExecTime, highExecTime)
CONNECTNODES(oldEndNode, m)
endNodes.delete(oldEndNode)
endNodes.add(m)

procedure CONVERGE(nodesToConverge,endNodes)
comment: Cause some endNodesto all convergeto asingle node

p «— CREATENODE(lowExecTime, highExecTime)
for i — 1...nodesToConverge.size()
nodesToConverge.deleteHead(h)
do < endNodes.delete(h)
CONNECTNODES(h,p)
endNodes.add(p)

procedure bIVERGE(endNodes, num, V, divergedNodes)
comment: randomly chosen endnode diverges out

fori < 1...num
n <+ CREATENODE(lowExecTime, highExecTime)
do < CONNECTNODES(V, n)
divergedNodes.add(n)
endNodes.delete(V)

Figure 1. Pseudo-code for procedures used in the random graph algorithm.
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Algorithm A.1: GENRANDOMGRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowIPCcost, highlPCcost

)

procedure DIVERGECONVERGE(endNodes, V, W, L, numAdded)
comment: Attach a structure which diverges and then convergesto an endnode

W < UNIFORMRANDOM (2, W)

nodeList « ()

DIVERGE(endNodes, w, V, divergedNodes)

len — choose randomly from [0. .. L]

fori«—1...w
divergedNodes.deleteHead(h)

do < n — EXTENDNODE(h,endNodes,len)

nodelList.add(n)

CONVERGE(nodeList,endNodes)

numAdded «— w(len + 1) + 1

procedure PICKRANDOMLY (nodeList, n)
comment: Create arandom list of n nodesfrom nodeList

S0
while (nodeList.size() < n)
p < nodelList.firstPtr
r — UNIFORMRANDOM (0, nodeList.size)
forie[l...r]
do ¢ do {p < p.next
ifpégs
S —Su{p}
then {nodeList.insert(p)

procedure RANDOM CONNECTION (adjM)
comment: Add arandom edge that doesn’t create a cycle

ok < FALSE
while (ok = FALSE)

h «— pIckRANDOMLY (allNodes, 1)

t — PICKRANDOMLY (allNodes, 1)

do ¢ TRANSITIVECLOSURE(adjM)
if (PATH(h,t) =0)
then {ok — TRUE

CONNECTNODES(h,t,adjM)

Figure 2: Pseudo-code for the random graph algorithm (continued from Figure 1).
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Algorithm A.1: GENRANDOM GRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowIPCcost, highlPCcost

)

main
for i — 1...startNodes
d {u «— CREATENODE(lowExecTime, highExecTime)
endNodes.add(u)
n «— startNodes
while (n < numNodes)
(actionNumber < UNIFORMRANDOM (0, 100)
if (actionNumber < 20)
v < PICKRANDOMLY (endNodes, 1)
do ¢ EXTENDNODE(v, endNodes, 1)
n—n+1
elseif (actionNumber < 40)
(¢ « UNIFORMRANDOM(1, fanout)
convNodes < PICKRANDOMLY (endNodes, c)
CONVERGE(convNodes, endNodes)
nN—n-+1
elseif (actionNumber < 80)
d — UNIFORMRANDOM (1, fanout)
u < PICKRANDOMLY (endNodes, 1)
DIVERGE(endNodes, d, u, divergedNodes)
n«—n+d
elseif (actionNumber < 100)
u < PICKRANDOMLY (endNodes, 1)
e < UNIFORMRANDOM (1, fanout)
DIVERGECONVERGE(endNodes, u, d, e, numAdded)
(N < n+ numAdded
for i < 1...numRandomConnections
do {RANDOMCONNECTION(adjM)

do

do

do

do

Figure 3. Pseudo-code for the random graph algorithm (continued from Figure 2).
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