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Several trends in technology have important implications for embedded systems of

the future. One trend is the increasing density and number of transistors that can be

placed on a chip. This allows designers to fit more functionality into smaller devices,

and to place multiple processing cores on a single chip. Another trend is the increas-

ing emphasis on low power designs. A third trend is the appearance of bottlenecks in

embedded system designs due to the limitations of long electrical interconnects, and in-

creasing use of optical interconnects to overcome these bottlenecks. These trends lead

to rapidly increasing complexity in the design process, and the necessity to develop

tools that automate the process. This thesis will present techniques and algorithms for

developing such tools.

Automated techniques are especially important for multiprocessor designs. Pro-

gramming such systems is difficult, and this is one reason why they are not as prevalent



today. In this thesis we explore techniques for automating and optimizing the process

of mapping applications onto system architectures containing multiple processors. We

examine different processor interconnection methods and topologies, and the design im-

plications of different levels of connectivity between the processors.

Using optics, it is practical to construct processor interconnections having arbitrary

topologies. This can offer advantages over regular interconnection topologies. However,

existing scheduling techniques do not work in general for such arbitrarily connected

systems. We present an algorithm that can be used to supplement existing scheduling

techniques to enable their use with arbitrary interconnection patterns.

We use our scheduling techniques to explore the larger problem of synthesizing an

optimal interconnection network for a problem or group of problems.

We examine the problem of optimizing synchronization costs in multiprocessor sys-

tems, and propose new architectures that reduce synchronization costs and permit effi-

cient performance analysis.

All the trends listed above combine to add dimensions to the already vast design

space for embedded systems. Optimizations in embedded system design invariably re-

duce to searching vast design spaces. We describe a new hybrid global/local framework

that combines evolutionary algorithms with problem-specific local search and demon-

strate that it is more efficient in searching these spaces.
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Chapter 1

Introduction

The semiconductor industry has demonstrated remarkable progress during the past four

decades. For society, this has meant a continual decrease in the cost of electronic de-

vices, from computers to mobile phones to consumer electronics, and their increasing

prevalence in our lives. Much of this progress results from the ability to exponentially

decrease minimum feature sizes used to fabricate integrated circuits. The most fre-

quently cited trend is Moore’s Law, which states that the number of components on a

chip doubles every 18 months. The International Technology Roadmap for Semicon-

ductors predicts that by the year 2007, it will be possible to place 800 million transistors

in a one square centimeter chip. At the same time, design cycle times have decreased,

and interconnects between processing elements are becoming an increasing bottleneck.

For a system designer, the biggest challenges involve making effective use of this huge

potential functionality, and dealing with the associated complexity. In many ways, time

is a much more precious commodity for designers today than is chip area. For this rea-

son, tools that automate the design process are essential for the continued progress of

the industry. There has been much research done on lower level design tools which op-

timize and produce a physical layout for a circuit that has been described in a sufficient

1
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amount of detail. Less work has been done on tools for automating the higher levels of

design. This thesis will address several issues relating to high level design automation,

with a focus on embedded multiprocessor systems.

A central theme in this work is the effect of communication costs and resource con-

tention across processors in the system. We develop techniques and algorithms to deal

with these effects in systems whose complexity ranges from low cost shared bus systems

to high performance multiprocessor systems utilizing optical interconnects. Communi-

cation and contention effects, along with the nature of the application, influence the type

of interconnect that is most effective. We discuss different interconnection methods and

present algorithms for finding an optimal interconnect topology.

All our optimization problems involve searching large, complex design spaces. In-

deed, through our work with a diverse variety of complex optimization problems, we

have developed unique insights on general methods for addressing such problems. We

present a broadly-applicable framework, which has been derived from these insights, for

searching complex design spaces, and we describe how our optimization problems can

be solved using this framework.

1.1 Multiprocessor Embedded Systems

An embedded system is a combination of computing hardware and software designed to

perform a dedicated function. It is usually part of a larger system, such as the processor

in a cell phone. By contrast, a general purpose computing system such as a personal

computer is designed to perform many functions. Embedded systems typically offer

much higher performance, lower power, and lower cost for their dedicated function

than a general purpose system performing the same function. Examples of embedded

2



systems include consumer devices like MP3 players and cell phones, military radar and

imaging systems, and processors for automotive engine control.

The processing elements of an embedded system perform two main tasks—control

and data stream processing. The control functionality consists of choosing between

modes of operation for the device, based on inputs and state information. For example, a

simple controller chip on a microwave oven controls the power level and starts and stops

the oven based on the keypad inputs. Data stream processing, or digital signal processing

(DSP), is required in devices such as cell phones, which must sample data from the radio

receiver and convert it into a digital data stream using algorithms which might decrypt

the signal and correct for reception errors. In this thesis we will focus on developing

tools that optimize the signal processing (DSP) functionality of a system. Processors

with architectures that are optimized to provide very powerful digital signal processing

functionality are inexpensive, readily available, and prevalent in modern devices.

Applications like video processing and automated target recognition are extremely

computationally intensive, and require this processing to be performed in real time.

One way to meet these requirements is to design very large scale integrated (VLSI)

application-specific integrated circuits (ASIC) that are customized for the specific task.

The main problem with this approach is the long design cycle, and the fact that the

design is not flexible—if there are changes to the specifications, a new set of ASICs

must be designed and tested. Programmable solutions, by contrast, allow changes to be

made late in the design cycle by rewriting the software. The use of standard processing

cores that have been verified for correctness eliminates much of the error-prone testing

and debugging associated with ASIC design. However, it is often the case that a single,

standard DSP chip cannot deliver the performance required from the application. In

these cases, one attractive solution is to utilize multiple processors. Manufacturers today
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are able to place several processors on a single die. As the transistor count continues to

increase this becomes more cost effective, since it is less expensive to verify and test a

number of smaller, standard processing elements than to test a larger, more complicated

design. This will make multiprocessor design increasingly important in the future. One

trade-off that comes with using multiple processors is that programming them is more

complex, since it is necessary to deal with issues such as synchronization, deadlock,

interconnect architecture, and interprocessor communication costs. Software tools are

needed that allow the designer to specify an application at a high level, and that automate

the details like synchronization and code generation. This thesis explores algorithms and

techniques to develop such tools.

1.2 Contributions of this Thesis

One major theme of this thesis is an analysis of the effect of resource contention in

multiprocessor systems. We develop methods to analyze the effects of contention, ar-

chitectures that are optimized to deal with these effects, and synthesis techniques and

algorithms tailored to these architectures.

We consider a variety of systems with different cost/performance tradeoffs. Each

successive level of hardware complexity reduces the effects of communication cost and

resource contention, allows higher performance, and presents unique optimization chal-

lenges for the designer. We present techniques to deal with each of these challenges.

We begin with a shared electrical bus system, which is the simplest, lowest cost

solution. The effects of contention are the most pronounced in these systems, and per-

formance analysis is also the most complicated. We present a technique that makes

analysis more efficient in these systems.
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In order to reduce synchronization costs and improve predictability in these sys-

tems, researchers have previously developed anordered transactionstrategy that adds

a hardware controller to the shared bus system [102] and have analyzed the effects of

communication costs in these systems [62]. In this thesis we present a modification

of this idea that utilizes optical fiber interconnects. This has the effect of dramatically

reducing communication resource contention in the system.

The final, most complex architecture we consider is a multiprocessor system uti-

lizing free space interconnects. This can eliminate communication resource contention

entirely. One unique challenge for this system is to determine an optimal partitioning

of the chip area between regions that are connected electrically and regions that are

connected optically.

The optically connected systems offer the the ability to tailor the interconnection

network optimally for a specific application. This opens up a vast new design space

and poses several interesting challenges in scheduling and interconnect synthesis. We

present new scheduling, interconnect synthesis, and optimization techniques to address

these challenges.

1.2.1 Contention Analysis in Shared Bus Systems

A critical challenge in synthesis techniques for iterative applications is the efficient anal-

ysis of performance in the presence of communication resource contention. To address

this challenge for shared bus systems we introduce in Chapter 4 the concept of the period

graph. The period graph is constructed from the output of a simulation of the system,

with idle states included in the graph, and its maximum cycle mean is used to estimate

overall system throughput. We analyze the fidelity of this estimator. As an example of

the utility of the period graph, we demonstrate its use in a joint power/performance volt-
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age scaling optimization solution. We quantify the speedup and optimization accuracy

obtained using the period graph compared to using simulation only.

1.2.2 Architectures Designed for Optically Connected Systems

In Chapter 3 we will discuss the role that optical interconnects can play in embedded

multiprocessor systems, and derive some fundamental equations relating to optically

connected systems on chip. We will introduce three architectures on which a broad

class of high-throughput, self-timed DSP applications can be analyzed accurately using

efficient graph-theoretic algorithms.

1.2.3 Contention Analysis in Optically Connected Systems

Shared bus systems are appealing due to their simplicity and low cost. This is the pri-

mary driver for many embedded systems applications. However, a shared bus sometimes

cannot meet the performance requirements for systems with significant interprocessor

communication. In these cases, a designer may consider using a more expensive optical

interconnect. In Chapter 5 we will explain how we modified the IPC graph model [102]

and the synchronization graph model [18] to work with the optical architectures devel-

oped in Chapter 3.

1.2.4 Scheduling for Arbitrarily Connected Systems

Optics provide the ability to construct highly connected and irregular networks that are

streamlined for particular applications. Using these networks, it is possible to implement

application mappings that allow flexible, single-hop communication patterns between

processors, which has advantages for reduced system latency and power. This flexibil-
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ity is particularly promising for embedded DSP applications, which are highly parallel

and typically have tight constraints on latency and power consumption. In Chapter 6

we discuss the development of scheduling methods for optically connected embedded

multiprocessors. We demonstrate that existing scheduling techniques will deadlock if

communication is constrained by number of hops. We detail an efficient algorithm for

avoiding this deadlock, and demonstrate its performance on several benchmark exam-

ples.

1.2.5 Synthesizing an Optimal Interconnection Network

The freedom to optimize interconnection patterns opens up a vast design space, and

thus the design of an optimal interconnect structure for a given application or set of

applications is a significant challenge. In Chapter 7, we illustrate both probabilistic and

deterministic interconnection synthesis algorithms. A key distinguishing feature to our

interconnect synthesis algorithms is that they work in conjunction with a scheduling

strategy—most existing interconnect synthesis algorithms assume a given schedule.

1.2.6 Simulated Heating

All of the optimization problems we have considered, such as dynamic voltage scal-

ing, scheduling, and interconnect synthesis, involve the search of vast design spaces.

Most DSP optimization problems that arise in hardware-software co-design also involve

searching large design spaces. For many of these problems, efficientlocal searchalgo-

rithms exist for refining arbitrary points in the design space into better solutions. In

Chapter 8 we introduce a novel approach, called simulated heating, for systematically

integrating parameterized local search into global search algorithms. Using the frame-

work of simulated heating, in Chapter 9 we investigate both static and dynamic strategies
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for systematically managing the trade-off between local search accuracy and optimiza-

tion effort for the voltage scaling application mentioned earlier, as well as a memory

cost minimization problem and a more widely known optimization problem (binary

knapsack). We also explain how simulated heating can be used in the transaction or-

dering optimization problem and the interconnect synthesis optimization problem. The

application of simulated heating to these last two problems is the subject of future work.
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Chapter 2

Electronic Design Automation for Embedded

Systems

As mentioned earlier, the trend toward increasingly complex designs makes automated

design tools very attractive. Ultimately, we would like a single tool that could start

with an abstract, system-level design description and produce details of an optimized,

hardware implementation. To reach this goal, we must have a suitable framework for

describing the system at a high level of abstraction. Automated tools should be able to

use this high level specification to generate the details of the design. This chapter will

discuss the dataflow specification, and how it can be used for high level design.

2.1 Dataflow

Dataflow graphs have proven to be a very useful specification for signal processing sys-

tems for several reasons. First, they support block-diagram based visual programming.

Block diagrams (also called signal flow graphs or flow charts), are a versatile and im-

portant method for expressing DSP designs. Some of the most powerful DSP design

tools use block diagrams as their primary design language. In these tools, the user de-

9



scribes a signal processing system by assembling a block diagram from a library of

block functions, such as various types of filters. Examples of commercially available

tools using dataflow and visual programming are the Signal Processing Worksystem

from Cadence [14] and System Canvas from Angeles Design Systems [82].

A second strength of the dataflow specification is that it effectively exposes the par-

allelism in the application. It is difficult to compile programs written in imperative

programming languages such as C on parallel architectures, since these languages are

known to over-specify the control specification and the streaming specification. Paral-

lel languages such as Universal Parallel C [22], are extensions of the serial languages

intended to be compiled on parallel machines. However, these languages make certain

assumptions about the hardware and are not applicable to a general architecture. They

also require the programmer to explicitly handle lower-level details that we would like

to avoid. The dataflow model imposes minimal data-dependency constraints in its spec-

ification, which allows the compiler to effectively detect parallelism.

A third advantage of the dataflow model is that in certain restricted forms it enables

efficient algorithms for determining whether a program will deadlock, and whether it

can be implemented in a finite amount of memory. This is not possible in more general

computational models, as will be discussed later.

We will focus on applications that can be described by synchronous dataflow graphs

(SDF) [69], and its various extensions such as boolean dataflow (BDF) [20]. In the SDF

model, streams of data flow through a network of computational nodes. A program

is represented as a directeddataflow graph. The vertices of this graph, calledactors,

represent computations and the edges represent FIFO buffers that queue the data. The

data, represented bytokens, are passed from the output of one computation to the input

of another. The numbers of tokens produced and consumed by each actor is fixed. The
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programmer specifies the function performed at each node. The only constraints that are

placed on order of evaluation come from the data dependences in the graph.

Delays on SDF edges represent initial tokens, and specify dependencies between

iterations of the actors in iterative execution. For example, if tokens produced by the

kth invocation of actorA are consumed by the(k+ 2)th invocation of actorB, then the

edge(A,B) contains two delays.

Actors can be of arbitrary complexity. In DSP design environments, they typically

range in complexity from basic operations such as addition or subtraction to signal pro-

cessing subsystems such as FFT units and adaptive filters.

We refer to an SDF representation of an application as anapplication graph. In this

thesis we will mostly concentrate on a form of SDF calledhomogeneousSDF (HSDF)

that is suitable for dataflow-based multiprocessor design tools since it exposes paral-

lelism more thoroughly. In HSDF, each actor transfers a single token to/from each

incident edge. General techniques for converting SDF graphs into HSDF form are de-

veloped in [69]. We represent a dataflow graph by an ordered pair(V,E), whereV is

the set of actors andE is the set of edges. We refer to the source and sink actors of a

dataflow edgee by src(e) andsnk(e), we denote the delay one by delay(e), and we

can represent an edgee by the ordered pair(src(e), snk(e)). We say thate is anoutput

edgeof src(e); e is an input edgeof snk(e); ande is delay-lessif delay(e) = 0. The

execution time or estimated execution time of an actorν is denotedt(ν).

Fundamental work related to the dataflow model was the work oncomputational

graphsby Karp and Miller [59]. In this model, the computation is represented as a

directed graph where nodes represent operations and edges represent queues of data.

Karp and Miller proved that computation graphs with certain properties aredeterminate,

which means that the sequence of data values produced by each node does not depend
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Figure 2.1: Marked Petri net.

on theschedule, or order of execution of the actors. They gave conditions to determine

graphs whose computation can proceed indefinitely (avoidance of deadlock).

Several forms of dataflow are special cases ofPetri nets. A general form of Petri nets

is discussed in [86]. A Petri net is a directed graph,G = (V,A) whereV = {ν1, . . . , νs}

is the set of vertices andA = {a1, . . . , ar} is a bag1 of arcs. The setV can be partitioned

into two disjoint setsP , representingplacesandT , representingtransitions. Every arc

in a Petri net connects a place to a transition or a transition to a place. Places may

contain some number of tokens. A marking of a Petri net is a sequence of nonnegative

integers for each place in the net, representing the number of tokens in the place. A

Petri net together with a marking is called amarked Petri net. An example is given

below in Figure 2.1. A Petri net executes by firing transitions. When a transition fires,

1A bag is distinguished from a set in that a given element can be includedn times in a bag, so that the

membership function is integer-valued rather than boolean-valued.
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one token is removed from each input place of the transition and one token is added

to each output place of the transition. A transition that has enough tokens on its input

places to fire isenabled. Enabled transitions may fire, but are not required to. Firing

may occur in any order and may continue as long as at least one transition is enabled.

In Figure 2.1, transitionst1, t2, andt4 are enabled. The marking can be represented as

a vector{1, 1, 2, 0}. If transition t4 is fired, the new marking will be{1, 1, 1, 1} and

transitiont3 will be enabled.

Marked graphsare a subclass of Petri nets. A marked graph is a Petri net in which

every place has exactly one input transition and one output transition. A marked graph

can be represented by a graph with only a single type of node corresponding to transi-

tions, with the data tokens considered to exist on the arcs. This representation is standard

in dataflow. The properties of marked graphs were first investigated in [27].

The application of dataflow to computer architectures and programming languages

was pioneered by Dennis [32]. The dataflow model of computer architecture was de-

signed to enforce the ordering of instruction execution according to data dependencies.

Execution of instructions is driven by the availability of data, as opposed to the more

conventional von Neumann computer where the execution of instructions is controlled

by a program counter. In a static dataflow machine, dataflow graphs are executed di-

rectly maintaining at the machine level a representation of the program as a dataflow

graph and by providing hardware capabilities to detect when an actor has sufficient data

to fire. There is a restriction that at most one data value can be queued on an edge at

one time. This enables the storage for edges to be determined at compile time. How-

ever, this restriction also limits the amount of parallelism that can be extracted from

loops. Thetagged-token dataflow model[2, 47] was created to overcome this restric-

tion. This model supports the execution of loop iterations and function invocations in
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parallel. Data values are carried by tokens that include a three-part tag. The first part of

the tag marks the current procedure invocation, the second part of the tag marks the loop

iteration number, and the third part of the tag identifies the instruction number. Dataflow

computers successfully address the problems of synchronization and memory latency,

but are not as successful in coping with the resource requirements of large amounts of

parallelism in the code. This is due to the overhead in keeping track of the data tags.

Although some research continues on dataflow computers, none are in commercial de-

velopment today. Most research into dataflow today applies to program representation.

Synchronous dataflow (SDF) is a restricted version of dataflow in which the num-

ber of tokens produced and consumed by an actor on each edge is fixed and known at

compile time. Application of the SDF model to programming of multirate DSP sys-

tems was originated by Lee and Messerschmitt [69]. Lee and Messerschmitt provided

efficient techniques to determine at compile time whether or not an arbitrary SDF graph

has a periodic schedule that neither deadlocks nor requires unbounded buffer sizes. They

also presented efficient methods for constructing such a periodic schedule whenever one

exists. The SDF model has been successful at describing a large class of DSP applica-

tions and has been utilized in numerous design environments. Techniques for compiling

general SDF programs for multirate DSP systems into efficient uniprocessor implemen-

tations that minimize both code and data memory requirements is presented in [15].

2.2 Architectural Synthesis

System-level synthesis requires as a first step the selection of an architecture. In some

cases, the designer is given a fixed platform, so the number of computing elements (pro-

cessors, functional units, etc.) is fixed in advance. More commonly in embedded system
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design, there is at least some flexibility to choose the number and types of processing

elements and their interconnection. Even with a fixed platform, there can be choices

between which tasks are performed by dedicated hardware units and which tasks are

performed in software. Modern systems consist of an increasing number of these pro-

cessing elements, each of which can be highly complex. The design may be realized on

a single chip (system on chipor SoC), in a multichip design using multi-chip modules

(mcm), or on separate circuit boards.

The system synthesis problem can be described formally by means of a specifica-

tion graph [105], which is a graphGS = (VS, ES) consisting ofD dependence graphs

Gi(Vi, Ei) for 1 ≤ i ≤ D and a set of mapping edgesEM , whereVS =
⋃D
i=1 Vi,

ES =
⋃D
i=1 Ei ∪ EM , andEM =

⋃D−1
i=1 EMi. Here,EMi ⊆ Vi × Vi+1 for 1 ≤ i < D.

The specification graph consists of layers of dependence graphs, each correspond-

ing to a different level of abstraction. For example, an application graph describes the

algorithm, an architecture graph describes the architecture, and a chip graph describes

the physical components of the system. An edge in the specification graph between a

task and a resource means that task can be implemented by that resource.

This can be better described by considering an example. The example in Figure 2.2

was taken from [105]. Figure 2.2a) depicts an application graph with four computa-

tional nodes and three communication nodes (shaded). The architecture, depicted in

Figure 2.2b), consists of a RISC processor and two dedicated hardware modules. The

hardware modules are connected to each other by a point-to-point bus, and to the RISC

processor by a shared bus. The architecture graph corresponding to Figure 2.2b) is

shown in Figure 2.2c). The physical implementation consists of two separate chips

shown in Figure 2.2d) with a corresponding chip graph depicted in Figure 2.2e). The

specification graph is shown in Figure 2.3. The edgesEM1 andEM2 describe all possi-
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16



ble mappings. The edgesEM1 describe the possible mappings between the application

graph and the architecture graph. We can see that taskv1 can only be executed onvRISC

and taskv2 can be executed on eithervRISC or vHWM2. Communication taskv7 can be

executed on the shared busvSB. It can also be executed onvRISC if tasksv3 andv4 both

execute onvRISC, or onvHWM1 if v3 andv4 also execute onvHWM1. The edgesEM2 de-

scribe the possible mappings between the architecture graph and the chip graph. From

these edges we can see that any of the tasks in the architecture graph (the RISC pro-

cessor, shared bus, point-to-point bus, and both hardware modules) can be implemented

inside CHIP1, and that the shared busvSB can be handled by CHIP1 or by the off chip

busvOCB. The dashed nodes and edges in Figure 2.3 are notallocated in the imple-

mentation. The specification graph allows us to state a formal definition for allocation,

binding, and scheduling.

Theactivation of a specification graphGS(VS, ES) is a functiona : VS ∪ ES 7→ {0, 1}

that assigns to each edgee ∈ ES and each nodev ∈ VS the value 1 (activated) or 0 (not

activated).

An allocation α of a specification graph is the subset of all activated nodes and

edges of the dependence graphsα = αV ∪ αE with αV = {v ∈ VS | a(v) = 1} and

αE =
⋃D
i=1{e ∈ Ei | a(e) = 1}. For the example above, the allocation of nodes is

αV = {vRISC, vHWM1, vSB, vCHIP1}.

A binding β is the subset of all activated mapping edges so thatβ = {e ∈ EM |

a(e) = 1}. For the example above, the binding is

β = {(v1, vRISC), (v2, vRISC), (v3, vHWM1), (v4, vRISC), (v5, vSB), (v6, vRISC),

(v7, vSB), (vRISC, vCHIP1), (vSB, vCHIP1), (vHWM1, vCHIP1)}

so that all the architecture components are bound to CHIP1.

A feasible bindingβ is a binding that satisfies the following criteria:
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1. Each activated edgee ∈ β starts and ends at an activated node.

2. For each activated nodev ∈ αV with v ∈ Vi, 1 ≤ i < D exactly one outgoing

edgee ∈ VM is activated.

3. For each activated edgee = (vi, vj) ∈ αE with e ∈ Ei, 1 ≤ i < D either

both operations are mapped onto the same node or there exists an activated edge

ẽ = (ṽi, ṽj) ∈ αE with ẽ ∈ Ei+1 to handle the communication associated with

edgee, i.e. (ṽi, ṽj) ∈ αE with (vi, ṽi), (vj, ṽj) ∈ β.

It has been shown that the problem of finding a feasible binding is NP-complete [19].

A scheduleis a functionτ : VP 7→ Z+ that satisfies for all edgese = (vi, vj) ∈ EP

the conditionτ(vj) ≥ τ(vi) + delay(vi, β) wheredelay(v, β) is the execution time

delay of nodev given a bindingβ. For the example above a valid schedule isτ(v1) = 0,

τ(v2) = 1, τ(v3) = 2, τ(v4) = 21, τ(v5) = 1, τ(v6) = 21, τ(v7) = 4.

A valid implementation is a triple(α, β, τ) whereα is an allocation,β is a binding,

andτ is a schedule.

Finally, with the definitions above we can state the problem formally:system syn-

thesis consists of minimizing a functionh(α, β, τ) which describes an optimization

goal, subject to

• α is a feasible allocation,

• β is a feasible binding,

• τ is a schedule.
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2.3 Scheduling

Implementing an algorithm specified as a dataflow graph (DFG) on a multiprocessor sys-

tem requires “scheduling” the actors. Scheduling was defined formally in Section 2.2.

Scheduling involves the tasks of (1) assigning actors in the DFG to processors, (2) order-

ing the execution of these actors on each processor, and (3) determining the start times of

all the actors while maintaining the data precedence constraints of the DFG. Scheduling

has been studied extensively in many contexts, and has been classified based on which

of the tasks listed above are performed at compile time and which at run time [68].

If all three are performed at compile time, the scheduling strategy is said to befully

static. This method requires the least possible runtime overhead. The exact execution

times of all the actors are assumed to be given in advance. The processors can run in

lock step according to the schedule, and no explicit synchronization is required when

they communicate data. However, the exact run times of the actors cannot usually be

determined in advance, so the fully static strategy is often not practical.

For DSP applications, it is usually realistic to assume that good estimates for the

execution times can be determined. Given this assumption, aself-timed[68] scheduling

strategy can be employed, where the ordering of the actors on each processor is speci-

fied, but not the exact start times. Each processor waits for the data needed by an actor

before executing that actor. This requires that the processors perform some run-time

synchronization when they exchange data, so the run-time overhead is greater for this

scheduling strategy. Examples of an application graph and a corresponding self-timed

schedule are illustrated in Figure 2.4.

Another consideration in scheduling is the size or granularity of an actor. Figure 2.5

shows a trade-off between parallelism and communication overhead in a heterogeneous

DSP system as the size of the actor is varied. It is repeated from the study by Sarkar [93].
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The numbers on edges (4,8) and (4,9) denote nonzero delays.
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is repeated from the study by Sarkar [58]. It shows a trade off between parallelism and communi-

cation overhead in a heterogeneous DSP system as the size of the actor is varied. The vertical axis 

is a measure of performance. As the average actor size increases, the interprocessor communica-

tion (IPC) overhead drops. At the same time, there is a loss of parallelism, so the execution time 

for an ideal parallel system (with no IPC) increases. Partitioning algorithms try to find the optimal 

balance between these two factors. 

For a system with fixed resource constraints, the multiprocessor partitioning and schedul-

ing problems are NP hard [21], so heuristics must be used. Many such heuristics have been devel-

oped. They can be classified into the following categories: list scheduling heuristics, graph 

decomposition heuristics, and critical path heuristics.

For DFGs with edge weights and node weights, a path weight can be defined as the sum of 

the weights of both nodes and edges on the path. A critical path from a source node to a sink node 

is a path with maximal weight. In the critical path techniques, the graph is partitioned after exam-

ining the current critical path, zeroing an edge by combining the incident nodes into a cluster, and 

repeating the process on the new critical path. In the dominant sequence clustering algorithm by 

Gerasoulis and Yang [68], the decision to zero an edge is based on the new start time of the node 

Figure 14. Partition-overhead trade off [58]
Figure 2.5: Partition-overhead trade-off [93].
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The vertical axis is a measure of performance. As the average actor size is increased, the

interprocessor communication (IPC) overhead drops. At the same time, there is a loss of

parallelism, so the execution time for an ideal parallel system (with no IPC) increases.

Partitioning algorithms try to find the optimal balance between these two factors. Sarkar

developed a two-phase scheduling method. The first phase involved scheduling the input

graph onto an ideal architecture in which there are no resource constraints or communi-

cation costs. Thisinfinite-resource multiprocessor architecture (IRMA) consists of

an infinite number of processors that are interconnected by a fully-connected crossbar

interconnect (an interconnect in which every processor is directly connected to every

other processor). The communication in the IRMA architecture is assumed to be si-

multaneous. In the second phase, the schedule derived for the IRMA architecture is

modified to work on the resource-constrained target architecture.

For a system with fixed resource constraints, the multiprocessor partitioning and

scheduling problems are NP hard [42], so heuristics must be used. Many such heuristics

have been developed. Most existing scheduling heuristics try to minimize the schedule

makespan, which is the time it takes for all the tasks to finish the first iteration (execu-

tion of one schedule period). However, most DSP applications are non-terminating; an

example of a filter operating on an unbounded stream of speech samples. In this case,

it is more appropriate to generate schedules that maximize the throughput. Schedul-

ing heuristics can be classified into the following categories: list scheduling heuristics,

graph decomposition heuristics, and critical path heuristics.

The most well-studied area in scheduling involves heuristics based on the idea of

priority lists [31]. These heuristics use a priority list to define an ordering of the nodes

in the graph, and use an algorithm that selects each function in order of priority for

scheduling on an appropriate resource. In order to compute the priorities, the allocation
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and binding steps described in section 2.2 need to be performed in advance.

For DFGs with edge weights and node weights, a path weight can be defined as the

sum of the weights of both nodes and edges on the path. A critical path from a source

node to a sink node is a path with maximal weight. In the critical path techniques, the

graph is partitioned after examining the current critical path, zeroing an edge by com-

bining the incident nodes into a cluster, and repeating the process on the new critical

path. In the dominant sequence clustering algorithm by Yang and Gerasoulis [109], the

decision to zero an edge is based on the new start time of the node at the beginning of

the dominant sequence (the critical path after zeroing of one or more edges) and the start

time of an unscheduled node most likely to be affected by the zeroing decision. If either

of these start times is increased, the zeroing is not done. Due to the relative simplicity

of the zeroing criteria, the complexity of this method isO((ν + e) log ν). The modified

critical path algorithm by Wu and Gajski [108] considers as-late-as-possible binding,

which is found by traversing the graph from the sink nodes to the source nodes and as-

signing the latest possible start time to each node. A node on the critical path is selected

and placed on a different processor. The complexity of this method isO(ν2 log ν).

2.4 Modeling Self-Timed Execution

In relation to the scheduling taxonomy of Lee and Ha [68], in this thesis we focus on the

self-timedstrategy and variations of the closely-relatedordered transactionsstrategy

optimized for optically-connected multiprocessors. The self-timed and ordered trans-

action strategies are popular and efficient for the DSP domain due to their combina-

tion of robustness, predictability, and flexibility [101]. In self-timed scheduling, each

processor executes the tasks assigned to it in a fixed order that is specified at compile
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time. Before executing an actor, a processor waits for the data needed by that actor

to become available. Thus, processors are required to perform run-time synchroniza-

tion when they communicate data. This provides robustness when the execution times

of tasks are not known precisely or when they may exhibit occasional deviations from

their compile-time estimates. Examples of an application graph and a corresponding

self-timed schedule are shown in Figure 2.4.

Theordered transactionmethod is similar to the self-timed method, but it also adds

the constraint that a linear ordering of the communication actors is determined at com-

pile time, and enforced at run-time [102]. The linear ordering imposed is called the

transaction orderof the associated multiprocessor implementation. The transaction or-

der, which is enforced by special hardware, obviates run-time synchronization and bus

arbitration, and also enhances predictability. Also, if constructed carefully, it can in gen-

eral lead to a more efficient pattern of actor/communication operations compared to an

equivalent self-timed implementation [62].

Next we will examine two related graph-theoretic models, theinterprocessor com-

munication graph (IPC graph)GIPC [101, 102] and thesynchronization graphGs [102],

that are used to model the self-timed execution of a given parallel schedule for a dataflow

graph. Given a self-timed multiprocessor schedule forG, we deriveGIPC by instantiat-

ing a vertex for each task, connecting an edge from each task to the task that succeeds it

on the same processor, and adding an edge that has unit delay from the last task on each

processor to the first task on the same processor. Also, for each edge(x, y) in G that

connects tasks that execute on different processors, an IPC edge is instantiated inGIPC

from x to y. Figure 2.6 shows the IPC graph that corresponds to the application graph

and self-timed schedule of 2.4. In this graph, the nodes labeled with “s” are nodes that

send data and the nodes labeled with “r” are nodes that receive data. The numbers in
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Figure 2.6: The IPC graph constructed from the application graph and schedule of Fig-

ure 2.4. Dashed edges represent IPC edges and shaded actors are communication ac-

tors(send and receive actors) that perform interprocessor communication. Numbers next

to edges represent delays.
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parentheses represent the sending and receiving actors. For examples(5, 2) represents

a communication actor with data from actor 5 being sent to actor 2.

The non-communication vertices inGs andGIPC correspond to individual tasks of

the application being implemented. Each edge inGIPC andGs is either anintraproces-

sor edgeor aninterprocessor edge. Intraprocessor edges model the ordering (specified

by the given parallel schedule) of tasks assigned to the same processor. Interprocessor

edges inGIPC, calledIPC edges, connect tasks assigned to distinct processors that must

communicate for the purposes of data transfer, and interprocessor edges inGs, called

synchronization edges, connect tasks assigned to distinct processors that must commu-

nicate for synchronization purposes. We will discuss the synchronization graph in more

detail in Chapter 5.

Each edge(vj, vi) in GIPC represents thesynchronization constraint

start(vi, k) ≥ end(vj, k − delay((vj, vi))) ∀k, (2.1)

wherestart(v, k) andend(v, k) respectively represent the time at which invocationk

of actorv begins execution and completes execution, anddelay(e) represents the delay

associated with edgee.

The IPC graph is an instance of Reiter’scomputation graphmodel [90], also known

as thetimed marked graphmodel in Petri net theory [86], and from the theory of such

graphs, it is well known that in the ideal case of unlimited bus bandwidth, the average

iteration period for the as-soon-as-possible (ASAP) execution of an IPC is given by the

maximum cycle mean (MCM)of GIPC, which is defined by

MCM(GIPC) = max
cycle C inGIPC

{∑
v∈C t(v)

Delay(C)

}
. (2.2)

The MCM can be computed efficiently—Karp’s algorithm [58] runs inΦ(nm) time

wheren is the number of actors in the graph andm is the number of edges. Dasdan and

25



Gupta [29] describe an algorithm based on Karp’s algorithm that runs in (worst case)

O(nm), and always faster than Karp’s algorithm.

2.5 Interconnect Synthesis

SoC design is moving toward a paradigm where reusable components called IP (for

intellectual property) from different vendors can be combined to rapidly create a design.

IP interface standards are being developed which define the services one IP component

(or IP core) is capable of delivering, and which enable IP cores to work with on-chip

buses and other interconnection networks. The SoC designer’s task is then to choose

the appropriate IP cores, map the application tasks onto these cores, and to construct a

communication network and corresponding glue logic to connect these IP cores.

Interconnect synthesis is becoming an increasingly important part of system-level

synthesis, given the larger number of blocks that must be interconnected and the in-

creasing importance of interconnect delay to overall performance. To date, shared bus

has been the dominant interconnect. However, researchers are now exploring a richer

set of interconnection schemes, including crossbars, meshes, and other point-to-point

topologies. We will explore interconnect synthesis in detail in Chapter 7.
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Chapter 3

System Architectures for Multiprocessor

Embedded Systems

There has been substantial research work in the areas of multiprocessor hardware and

software for high performance, general purpose computing. These machines tend to be

big and expensive, and are targeted toward solving large computational problems such

as climate simulation. As mentioned in the Introduction, embedded systems can also

utilize multiprocessor architectures, and some research work has focused on developing

application-specific multiprocessor systems. Since these systems only need to support a

limited number of programs, it is often possible to streamline the hardware architecture.

We will focus on systems running applications that can be described by dataflow graphs.

In these applications, parallelism is easier to identify and exploit because much more is

known about the structure of the computation.

We will discuss the role that optical interconnects can play in embedded multi-

processor systems, and derive some fundamental equations relating to optically con-

nected systems on chip. We will introduce three architectures on which a broad class of

high-throughput, self-timed DSP applications can be analyzed accurately using efficient

graph-theoretic algorithms.
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3.1 Multiprocessor Program Execution Models

For sequential computers, the principal execution model in use today is thevon Neu-

mann modelwhich consists of a sequential process running in a linear address space [45].

In 1966, Flynn [41] proposed a simple model of categorizing multiprocessors using this

execution model as either Single Instruction Multiple Data (SIMD) or Multiple Instruc-

tion Multiple Data (MIMD) according to how they partition control and data among

different processing elements. In a SIMD machine the same instruction is executed by

multiple processors using different data streams. Each processor has its own data mem-

ory, but there is a single instruction memory and control processor. In a MIMD machine,

each processor fetches its own instructions and operates on its own data. Using this ter-

minology, we would call a uniprocessor a single instruction, single data stream (SISD)

machine. MIMD machines fall into two categories—centralized shared-memory archi-

tectures and distributed memory architectures. Figure 3.1 [85] depicts the basic structure

of a centralized shared-memory multiprocessor, where the processors and memory are

connected by a shared bus. Processors communicate by writing and reading from loca-

tions in memory. In order to reduce the memory bandwidth requirement of the proces-

sors, memory cache is used. We may classify the data in the multiprocessor asprivate

data if it is only used by a single processor, orshared dataif it is used by multiple

processors. The communication mechanism utilizes shared data. When data is migrated

into a processor’s cache, the bus bandwidth is reduced since this processor does not

need to access main memory to fetch the data. Also, memory access time to cache is

faster than to main memory. When the data is private data, the program execution is

not affected. However, when shared data are cached, the data may be stored in multi-

ple caches. This complicates the program execution, since there must be some way to

reconcile the different copies of the data. This problem is calledcache coherence, and
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Figure 3.1: Basic structure of a centralized shared-memory multiprocessor. Multiple

processor-cache subsystems share the same physical memory, typically connected by a

bus.
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Figure 3.2: Basic structure of a distributed-memory multiprocessor. Individual nodes

contain a processor, some memory, and an interface to an interconnection network that

connects all the nodes. Individual nodes may themselves contain a small number of

processors interconnected via a bus or other interconnect which is often less scalable

than the global interconnection network.

has been well studied in general purpose computing [1]. For some embedded systems

applications the cache is eliminated in order to reduce complexity and cost.

Figure 3.2 [85] depicts a distributed-memory machine, which has a physically dis-

tributed memory. These machines typically have larger processor counts, where a shared

bus cannot handle the required communication bandwidth. Distributing the memory re-

duces the latency for access to the local memory. Compared to the shared-memory

architecture, communication between processors is more complex.

3.2 Architectures Based on Dataflow

In the von Neumann architecture, all the data, the locations of the data, and the opera-

tions to be performed on the data, must travel between memory and CPU a word at a
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time. This has been termed the “von Neumann bottleneck” [3]. Hardware architectures

based on dataflow have been studied in order to avoid this bottleneck. The dataflow

model of computation was discussed in Chapter 2. Dataflow models use dataflow pro-

gram graphs to represent the flow of data and control. In this model an instruction may

be executed (orfired) as soon as all its input operands are available. When an instruction

fires, it consumes its input values and generates some output values. Because of this,

the dataflow model isasynchronous. In a dataflow architecture the program execution

involves receiving, processing, and sending out tokens containing data and a tag. Depen-

dencies between data are translated into tag matching and transformation. Processing

occurs when a set of matched tokens arrives at the execution unit. The matching unit

and execution unit are connected by queues. Several types of architectures based purely

on dataflow have been studied in the past. They differ in how the tokens are handled.

Thesingle token per arcdataflow architecture was proposed by Dennis [34]. In this

architecture, a dataflow graph is represented by a number ofactivity templates, each

containing an instruction andoperand slotsfor holding operand values. Only one token

is allowed at a time on an arc. Acknowledge signals are used to enforce the single

token rule, making it relatively simple to detect when a node is enabled. TheMIT Static

Dataflow Architecture[33] was a direct implementation of this model. One disadvantage

of this architecture is that consecutive iterations of a loop can only partially overlap in

time. Another is the additional token traffic caused by the acknowledgment tokens.

The tagged-token dataflowmodel [107] was created to allow loop iterations to pro-

ceed in parallel. In this model, each token contains a tag that defines the context in which

the data value will be used. Multiple tokens are allowed on an arc. A node is enabled as

soon as tokens with identical tags are present on each of its input arcs. Several groups

produced prototype implementations of this model [13, 51, 104]. A disadvantage of this
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model is that it is difficult to implement an efficient unit to handle the overhead of token

matching.

It was found that computers implementing pure dataflow performed poorly on se-

quential code. This is due in part to the fine granularity—tasks correspond to operations

such as a simple multiply or compare, and the overhead associated with token matching

of these tasks. One solution to this problem is to combine a dataflow architecture with

a von Neumann architecture. Most recent dataflow architectures employ acoarse-grain

model in which the computational task of the dataflow actors consist of a number of

instructions; the computation inside each task is executed on a von Neumann processor

(often a commercial off-the-shelf processor), and the actors communicate and synchro-

nize according to dataflow semantics. This is shown conceptually in Figure 3.3 [98].

3.3 Architectures Utilizing Optical Interconnects

In future CMOS chip designs incorporating hundreds of millions of transistors, the wire

interconnect will become a limiting factor, both in terms of area overhead and delay. Op-

tical interconnects offer the potential to relieve this bottleneck. In this section we will

summarize some past work in optical interconnects and optically connected architec-

tures, and introduce two new architectures we have developed specifically as a platform

on which to map DSP applications described as dataflow graphs.

3.3.1 Optical Interconnect Technology

In recent years, optics have played an increasing role in multiprocessor systems. Com-

mercial high-performance computers now use fiber ribbons to connect multiple pro-
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dataflow (c) coarse-grain model with dataflow graph and fully ordered grains.
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cessing nodes [95]. Other examples include storage area networks using fiberchannel,

and optical clock distribution to reduce clock skew rate across a chip [26]. Optical

technology has been advancing rapidly, driven in large part by the optical communi-

cations equipment market. Various studies have predicted that the energy consumed

by data communication will ultimately limit the processing speed in electronic proces-

sors [79, 100]. Light signals do not suffer from effects such as electromagnetic in-

terference and capacitive effects, which limit electrical interconnects. While transistor

gate delay decreases linearly with decreases in minimum feature size, the wire delay

increases as wires become thinner. In addition, the cross-sectional area of metal wires

must increase with length to maintain acceptable attenuation. By contrast, an optical

channel has a constant transverse area ofλ2, whereλ is the wavelength of the light [84].

Thus beyond a certain transmission length, optical interconnections become favorable.

This break-even length is estimated to be between0.1mm and1cm [63].

There has been theoretical work [37] that has established that arbitrary connection

graphs can be realized with an effective interconnection density of1/λ2 using optics.

At these densities, heat removal will be the limiting factor [83].

Several studies [36, 65] have addressed the question of what is the best size for

a VLSI processor connected by optics. These have concluded that the system should

be partitioned into clusters of104 to 1012 transistors. This allows the design to reach

points in the design space that are not achievable without optics. However, there may be

significant power and space costs. If size and power are the primary objectives, optical

systems become advantageous only with extremely large systems [84].

The main advantage of optics for a multiprocessor system is that it allows highly

parallel data links and a large degree of connectivity between processors.
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3.3.2 Prototype Optically-Connected Systems

Several research groups have demonstrated optically-connected multiprocessor systems

(e.g., see [46, 48, 76, 77]). Some of these systems are based on free-space optical inter-

connects, while others are based on wavelength division multiplexing (WDM). WDM

systems typically utilize fiber or waveguide interconnects, and are advantageous for

hybrid integration of independent modules. The strength of a free-space optical inter-

connect scheme is its potential to provide an extremely high density of interconnections,

such as will be required for a single-chip system.

An example of a system utilizing free-space optical interconnects is theFAST-Net

prototype [48]. FAST-Net is a high throughput data switching concept that uses a re-

flective optical system to globally interconnect a multichip array of processors. The

three-dimensional optical system links each chip directly to every other with a dedi-

cated bidirectional parallel data path. The system utilizes smart-pixel arrays (SPA), in

which high density silicon electronics are integrated with two-dimensional arrays of

high speed Gallium Arsenide micro-laser/detector arrays. An array of SPAs is packaged

on a planar substrate and linked to itself through an optical system composed of a lens

array and a mirror. This concept provides internal bisection bandwidth [70] on the order

of 1012 bits per second. Figure 3.4 depicts the SPA and the optical imaging system.

Compiler technology and automated mapping tools for these systems have received

relatively less attention than the hardware. Seo and Chatterjee [94] presented a CAD tool

for physical placement of modules in SoC utilizing optical interconnects. The tool de-

termined which interconnects should be routed electrically and which should be routed

optically. They reported a 50% reduction in worst case interconnect delay over using all

metallic interconnects.
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Fig. 1. In theFAST-Netconcept, a multichip smart pixel array is linked to itself in a global optical
interconnection pattern using a lens array and mirror. The optical rays represent data paths by which
clusters of VCSEL’s and detectors are imaged onto similar clusters on different chips. Each chip is
connected to every other in this manner. An interface at the edge of the multichip substrate enables
high bandwidth into, and out of, the module. The insert depicts a magnified view of the I/O pattern for
one of the SPA chips—partitioned into 16 clusters of VCSEL’s (dots) and photodetectors (squares).

B. FAST-Net Concept Overview

The FAST-Netapproach is depicted in Fig. 1. An array
of SPA’s is packaged on a common planar substrate, such
as a multichip module (MCM) or printed circuit board
(PCB). The SPA array is linked to itself though an optical
system comprising a lens array and mirror. Each SPA is a
hybrid Si-GaAs device in which the Si electronic chip is
bump-bonded to a GaAs optoelectronic array of emitters
and detectors. The GaAs IC contains an interleaved array
of vertical-cavity surface-emitting lasers (VCSEL’s) and
MSM photodetectors (PD’s). The CMOS chip contains
the drivers, receivers, and digital logic associated with the
routing, electronic I/O, and computational elements of the
architecture. The optoelectronic I/O elements are arrayed in
a grid of clusters of VCSEL’s and photodetectors. Previous
experiments demonstrated sufficient optical resolution and
registration across the entire multichip array to accom-
modate element-to-element spacing as small as100 m
within clusters [2], [3]. Each cluster may eventually contain
many VCSEL’s and photodetectors operating at rates of1
Gbit/s—leading to a large aggregate bandwidth between
each pair of chips in the array. With proper optical design,
there is potential for a massive amount of internal BSBW in
the system depicted in Fig. 1. For example, if each of the 16
chips in Fig. 1 contained 1024 VCSEL’s and photodetectors
running at link rates of 1 Gbit/s, the aggregate optical input
and output contributed by each chip would be 1 Tbit/s. With
16 of these smart pixel arrays linked in a fully connected
pattern, half of their aggregate bandwidth crosses any

bisection boundary. Therefore, the BSBW of the optical
module would be 8 Tbits/s.

In previous research, a series of laboratory trials were
conducted to validate key optomechanical aspects of perfor-
mance and packaging for the approach. An optomechanical
alignment method was refined using photolithographic
masks to emulate the VCSEL/PD arrays [7]. These initial
experiments proved that high registration and resolution
could be achieved with theFAST-Netglobal optical system.
The interconnection system was shown to register a well-fo-
cused simulated multichip VCSEL/PD array to within

10 m across an 10 cm plane. Another key step in
the experimental demonstration of theFAST-Netconcept
was the incorporation of a multichip array of VCSEL/PD
arrays [1]. These experiments validated the ability of the
optical system to be aligned to multiple active VCSEL’s
and photodetectors that are precisely positioned in the
plane while achieving high overall optical efficiency and
low optical crosstalk [2], [3]. The results proved that the
resolution and registration of theFAST-Netsystem were
sufficient to handle the simultaneous requirements of large
interchip distances and the small interelement spacing of the
VCSEL/PD arrays.

The focus of the present experiments is on the incorpo-
ration of a packaged multichip array of the first generation
of fully functional SPA’s into an optomechanical prototype.
To this end, theFAST-Netexperiments integrate elements
of advanced electronics, optoelectronics, mechanics, and
optomechanics—with each contributing to the overall
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Figure 3.4: FASTNet prototype.
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3.4 Optically Connected System on Chip

In this section we will examine several fundamental design considerations for systems

on chip utilizing optical interconnects. Our general model for a system-on-chip (SoC)

is one in which the chip is partitioned into regions that are connected with metallic

(local) interconnects, and these local regions are then connected through optical (global)

interconnects [11]. As mentioned in the Introduction, the applications we consider can

be modeled by dataflow, and consist of task graphs, where the individual tasks must fit

fully into a local region. The graph vertices (tasks or nodes) in the acyclic task graphs

represent computations while the edges represent the communication of a packet of data

from a source task to a sink task.

Three fundamental design considerations for such a system are addressed in this

thesis:

• What is the optimum size of a local partition?

• What techniques should we use to map and schedule tasks on these partitions?

• How do we synthesize an optimum global (optical) interconnection network for

the system?

These considerations are interrelated, since the size of the local partition will affect

the maximum size (granularity) of the tasks, and the scheduling of tasks depends on the

interconnection network. This section will focus on the question of optimal partition

size. Scheduling is addressed in Chapter 6 and interconnect synthesis is covered in

Chapter 7.
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3.4.1 Global/Local Partitioning

This section presents an information-theoretical model for trade-offs in designing the

local partition of a SoC utilizing free-space optics. As mentioned earlier, free-space op-

tical interconnects can provide higher interconnect densities than other types of optical

interconnects. These trade-offs are fundamental in nature and will exist in any system

utilizing these interconnects.

These systems utilize arrays of vertical cavity surface emitting laser (VCSEL) trans-

mitters and photoreceivers to implement the interconnect. A single interconnect consists

of a VCSEL/photoreceiver pair. Light from the VCSEL must be directed to and imaged

on the appropriate photoreceiver. This is depicted for the FAST-Net system in Fig-

ure 3.5. Different systems use different imaging methods to accomplish this. The high

density of interconnections arises from the use of the third dimension (free-space) and

the fact that overlapping optical signals do not interfere with each other (i.e., there is no

crosstalk in free space).

As the dimensions of the local partition decrease, higher f-number lenses are re-

quired to collect the light from the transmitters in a constant focal-length system. (The

f-number of a lens is defined as its focal length divided by its diameter). Figure 3.6

depicts the diffraction-limited images of an array of point sources, in a random on/off

pattern, on an array of photodetectors. The data for the figure was generated using MAT-

LAB to compute the diffraction pattern for F/1 lenses (left) and F/2 lenses (right). Using

an optical system with f-number F and treating the transmitter as a point source operat-

ing at wavelengthλ, the diffraction-limited image of the source on the detector is given

by the expression

Ai(ρ) = I0

(
2J1( πρ

λF
)

πρ
λF

)2

(3.1)

whereρ is the radius from the center of the image andI0 is proportional to the source
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Figure 3.5: Schematic side view of the global optical interconnection shown folded

about the mirror plane for the FAST-Net system.
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Figure 3.6: An array of point sources imaged using f/1 optics (left) and f/2 optics (right).

The left and right pictures are different scales—the partitions on the left are twice the

length of the partitions on the right.

intensity. The functionJ1 is a first order Bessel function of the first kind.

From this equation, the signal received by the center channel for this pattern can be

calculated by spatially integrating over the corresponding photodetector. This calcula-

tion will also take into account the inter-pixel interference (IPI). We then vary the pattern

randomly to generate the conditional probability distributions for the center channel. If

we assume that the IPI is only significant between adjacent channels, we can use the

conditional probabilities to assess the mutual information corresponding to a channel be-

tween partitions. As partition size decreases, and the associated aperture sizes decrease

(increasing the f-number), the optical signal intensity decreases and the IPI increases.

Both effects reduce the mutual information. We can then characterize the mutual in-

formation as a function of partition size, and therefore, the number of partitions. The

mutual information between each source and its corresponding detector is given by

Imut(X;Y ) =
∑
i=0,1

p(y|X = i) log2

[
p(y|X = i)

p(y)

]
dy (3.2)

whereρ(y|X = i) is the conditional probability that a valuey is received wheni is
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transmitted andp(y) is the probability density function (PDF) ofy.

Restoring the mutual information required for the application can be achieved by

decreasing the bit rate and integrating over a longer clock cycle in order to increase the

signal-to-noise ratio. We define the information capacity, or data rate, as the product of

the mutual information and the bit rate. Therefore, it can be generally shown that in-

creasing the number of partitions on a chip will lead to lower global data rate across the

chip. At the same time, smaller partitions will reduce the length requirements on local

interconnections (intra-partition) performed electrically. Therefore, local interconnect

data rates can benefit from reduced partition size. We assume that the data rate is in-

versely proportional to the RC time constant, which in turn is proportional to the square

of the interconnection length. A simple approximation then results in a factor
√
N de-

crease in local interconnect length, therefore, a factorN increase in the local data rate,

whereN is the number of partitions. These opposing effects of partition size suggest a

trade-off between the local and global data rates, which is illustrated hypothetically in

Figure 3.7, and thus an optimum partitioning of the SoC. This is the crossing point of

the two curves in Figure 3.7.
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3.4.2 Typical Numbers

We next give some estimates of system parameters based on today’s components. The

optical channel density on the chip will impose a fundamental upper limit on the number

of partitions,M , for the SoC. For a chip with dimensionsLxL, the number of optical

channelsN will be given byN ≤ L2/2d2 whered is the VCSEL and detector pitch.

For a full crossbar connection,N = M(M − 1). For a “typical” VCSEL pitch of 125

microns, this implies that we would be limited to 57 partitions for a one square centime-

ter chip. The power requirements depend on the architecture, but some insight can be

gained by considering examples. LetP0 represent the power required to drive a VCSEL-

detector pair. If every partition is transmitting and receiving data, the total optical power

is given by the number of partitions times the number of VCSEL-detector pairs trans-

mitting per partition timesP0. The upper limit of power consumption corresponds to the

case in which all VCSEL-detector pairs are operating. Therefore,P ≤ L2/2d2P0. The

lower limit to the power consumption corresponds to the case where only one pair per

partition is transmitting at any instant of time, which impliesP ≥ MP0. If we assume

P0 = 10 mW and 57 partitions, then the total power consumption would be 32W for

the one square centimeter chip in the most demanding case and 570mW for the least

demanding case.

The one-way data rate between two partitions is given by the data rate per VCSEL-

detector pair,D0, times the number of pairs:Dpartition = L2/2d2M(M − 1)D0. For

D0 = 2.5 Gbps,Dpartition = 4 Tbps in a two-partition architecture. In the case of a single

VCSEL-detector pair per cluster, the partition data rate is equal to the channel data rate

at 2.5 Gbps, with an aggregate data rate of 142.5 Gbps for 57 partitions.
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3.5 Modeling Optically-Interconnected Systems with Syn-

chronization Graphs

A graph-theoretic framework, called thesynchronization graph, for analyzing arbitrary

algorithm-to-architecture mappings is given in [101]. In this section we describe three

architectures we developed to take full advantage of the analytical properties of this

framework. The synchronization graph applies to any hardware architectural model that

includes the following assumptions:

• For each computational task (dataflow node), a reasonably accurate estimate ex-

ists for the execution time of a task, and this execution time exhibits little or no

variation with input data.

• Once a communication link is reserved for a specific data packet, the link remains

reserved exclusively for that packet until transfer of the packet completes.

• The transit time of data packets through the interconnection network, once a com-

munication link has been reserved for the transfer, is deterministic.

If we assume that the time required to perform interprocessor communication is zero,

then the synchronization graph work shows that the throughput of a given algorithm-to-

architecture mapping can be determined accurately by an efficient graph-theoretic tech-

nique [18]. If the interprocessor communication is nonzero, the technique gives an upper

bound to the throughput. The tightness of this upper bound depends on the ratio of inter-

processor communication time to average task execution time. In optically-connected

multiprocessor systems, we can expect that this ratio is small. This is a particularly good

assumption if the implementation guarantees that there is never contention among the

processors for an optical link. The existence of an accurate, efficient throughput analy-
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sis technique opens up the possibility of developing improved algorithm-to-architecture

mapping techniques, which we explore in this thesis.

3.5.1 SLOT Architecture

We developed an architecture, which we callSLOT(Self-timed Locally Ordered Trans-

action), on which a broad class of high-throughput, self-timed DSP applications can

be analyzed accurately using efficient algorithms based on the synchronization graph

framework. SLOT enables the development of powerful tools for automatic applica-

tion mapping (compilation). The interprocessor connectivity requirements of SLOT are

large, and thus optical interconnect technology appears to be a natural match for SLOT

systems. In particular, a general-purpose slot architecture requires that each processor

have a dedicated communication channel for each processor with which it communi-

cates. Figure 3.8 gives a graphical representation of this architecture.

SLOT architectures can be composed of arbitrary, possibly heterogeneous, collec-

tions of processing elements, such as DSP processors, FPGA or ASIC subsystems, mi-

croprocessors, and microcontrollers. When a processor is embedded within a SLOT

architecture, one or more communication processors are used to interface the processor

to the rest of the multiprocessor system. Each communication processor is assigned a

pre-defined ordering of the interprocessor communication operations (send and receive

operations to and from other processors) that are required to interface the associated

(computation) processor. These local orderings of communication operations, on the

communication processors within a SLOT system, are repeated over and over again

based on the arrival of data (from the associated computation processors, or from other

communication processors). A group of communication processors can also be “clus-

tered together” without an associated computation processor. Such clusters of communi-
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cation processors serve as routers that provide additional communication paths between

remote computation processors. Figure 3.8 depicts one computation and communica-

tion processor in a four-processor, fully connected system. A dedicated laser transmitter

is required for each other processor with which this processor must send data. Also, a

dedicated photodiode receiver and buffer memory is required for each processor from

which the processor receives data. With this architecture, there is no contention for com-

munication resources, and the synchronization graph models the system accurately. This

architecture is particularly well suited to be implemented in free-space optical systems

such as FAST-Net. As mentioned above, one advantage of free space interconnects is the

high density of interconnects that can be achieved. If we were to replace the processing

element in the FAST-Net prototype with the combination of multiplexers, communica-

tion processor, and computation processor from Figure 3.8, SLOT could be implemented

using the FAST-Net optical imaging, packaging, and smart pixel array hardware.

3.5.2 Dedicated Channel Fiber WDM Architecture

One disadvantage of free-space optical systems is that they are very sensitive to align-

ment. The alignment of the optical paths described in Section 3.4.1 from each laser

transmitter to the correct photodiode receiver may be difficult and not robust under some

operating environments (due to vibration, temperature changes, etc.). Fiber-based archi-

tectures do not suffer from this problem—the VCSEL-to-fiber and fiber-to-photodiode

interface has proven to be very robust in commercial systems. Here we describe a fiber-

based implementation of SLOT.

In this implementation, we need to assign a unique wavelength to each communi-

cation channel. We define the processor graphGp as a directed graph in which the

nodes represent the processors in the system and the edges represent connections be-
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Figure 3.9: Architecture for contention-free fiber-based SLOT.

tween processors—if processori transmits data to processorj, there is an edge(i, j) in

Gp. This is essentially the WDM equivalent to the free space interconnect since there is

a dedicated channel between every pair of processors. Physical constraints will usually

place limits on the fan-out and fan-in of the processors. Fan-out of a processorp is de-

fined as the out-degree of nodep in Gp, while fan-in is defined as the in-degree of node

p inGp. We will define the maximum allowed fan-out asfout and the maximum allowed

fan-in asfin. Figure 3.9 depicts this implementation.

The advantage of this implementation is that there are no central controllers required.

This architecture allows a direct implementation of the synchronization graph. A disad-

vantage is the number of wavelengths required—for a system withn processors, there

aren2 wavelengths required, ornfout wavelengths required if we place a constraint on

the fanout.

3.5.3 One Wavelength Per Processor

In order to reduce the number of wavelengths required, we can implement a protocol in

which each processor is assigned a unique wavelength. In this system, we must ensure

that two processors do not send to a given processor at the same time—i.e., there is
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possible contention at the (single) receiver of every processor. In order to accomplish

this, we introduce a controller for every wavelength. This controller grants access to

only one processor at a time. Figure 3.10 depicts this implementation.

In this architecture, processorm receives data on its uniquely assigned wavelength

λm. In order to grantλm to processorq, the controller forλm sends thenumberq on

its grant output (which is at wavelengthλm). The controller has an acknowledgment

(ACK) receiver for every processor to which it grants access. The communication pro-

cessors must wait to be granted access to a particular wavelength before transmitting
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on that wavelength. The number of grant lines entering a communication processor is

equal tofout, since there must be a grant for eachλ, and a processor transmits on a max-

imum of fout wavelengths. When a processorp has completed transmission on a given

wavelength, sayλr, it sends an acknowledgment consisting of thenumberr on wave-

lengthλp. The number of ACK lines entering a wavelength controllerx is equal to the

fan-outfout for processorx. One advantage of this architecture is that it requires fewer

wavelengths—n wavelengths are required as opposed ton2 or nfout. One disadvantage

is that it is more complicated andn controllers are required. Also the throughput may be

lower since the system is more constrained—we have the same synchronization graph

as before with extra edges added for the grants and acknowledgments. We refer to this

architecture aswavelength division multiplexing ordered transactions(WDMOT).

We will examine the theoretical performance of the three architectures described

above in Chapter 5.
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Chapter 4

Contention Analysis in Shared Bus Systems

Utilizing the Period Graph

4.1 Contention in Shared Bus Systems

In many practical multiprocessor systems, there is contention for one or more shared

communication resources. One example of this is a shared bus, in which the processors

must first gain access to the bus before they can execute an interprocessor communi-

cation (IPC) operation. Figure 4.1 depicts a simple architecture with three processors,

a shared memory, and a shared bus. One consequence of this contention is that under

self-timed, iterative execution, there is no known method for deriving an analytical ex-

pression for the throughput of the system [101], and thus, simulation is required to get a

clear picture of application performance. However, simulation is computationally very

expensive, and it is highly undesirable to perform simulation inside the innermost op-

timization loop during synthesis. To avoid such a simulation, an accurate and efficient

estimator for throughput is required. In this chapter we will present an efficient estima-

tor for the throughput of these systems when operating in a self-timed, iterative manner.

As explained in Chapter 2, in self-timed execution the assignment of tasks to processors
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Figure 4.1: Schematic of a three processor shared bus architecture.

and the execution ordering of tasks on each processor are determined at compile-time,

and at run-time, processors synchronize with one another only based on inter-processor

communication requirements, and do not necessarily synchronize at the end of each loop

iteration.

If contention is resolved deterministically, and execution times are constant, then

self-timed evolution may lead to an initial transient state, but the execution will even-

tually become periodic. This holds because the multiprocessor may be modeled as a

finite-state system, and thus, aperiodic behavior—which implies the presence of in-

finitely many states—cannot hold. In DSP systems, although execution times are not

always constant or known precisely, they typically adhere closely to their respective

estimates with high frequency. Under such conditions, the periodic execution pattern

obtained from the estimated execution times provides an estimate of overall system

throughput based on the task-level estimates. The estimates for task execution times

can be obtained through several methods. The most straightforward is for the program-

mer to provide them while developing a library of primitive blocks, as is done in the
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Ptolemy system [21]. Analytical techniques also exist. Li and Malik [72] have proposed

algorithms for estimating the execution time of embedded software tasks in an efficient

manner. Due to the largely deterministic nature of DSP applications, such system-level

performance analysis, and optimization based on task-level estimates is common prac-

tice in the DSP design community [25, 35, 50, 68].

For self-timed systems, when we apply execution time estimates to estimate over-

all throughput, it is necessary to simulate (using the execution time estimates) past the

transient state until a periodic execution pattern (steady state) emerges. Unfortunately,

the duration of the transient may be exponential in the size of the application specifica-

tion [101], and this makes simulation-intensive, iterative synthesis highly unattractive.

We introduced the novelperiod graphmodel [9] in order to greatly reduce the rate

at which simulation must be carried out during iterative synthesis. Given an assign-

mentν of task execution times, and a self-timed schedule, the associated period graph is

constructed from the periodic, steady-state pattern of the resulting simulation. The max-

imum cycle mean (MCM) of the period graph (with certain adjustments) is then used

as a computationally-efficient means of estimating the iteration period (the reciprocal of

the throughput) as changes are explored within a neighborhood ofν. In this context, the

MCM is the maximum over all directed cycles of the sum of the task execution times

divided by the sum of the edge delays. The MCM can be computed in low polynomial

time [66].

4.2 Constructing the Period Graph

The first step in the construction of the period graph is the identification of the period

from the simulator output. This can be performed by tracing backward through the
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simulation and searching for the latest intermediate time instantta at which thesystem

stateS(ta) equals the stateS(tf ) obtained at the end of the simulation (here,tf denotes

the simulation time limit). If no match is found, then the end of the first period exceeds

tf , and thus, the simulation needs to be extended beyondtf . Otherwise, the region (often

depicted as a Gantt chart) that spans the interval[ta, tf ] constitutes a (minimal) period

of the simulated steady state.

Here, the system stateS(t) contains the execution state of each processor, which

is either “idle” or representable by an ordered pair(A, τ), whereA is the task being

executed at timet, andτ denotes the time remaining until the current invocation ofA

is completed. The stateS(t) also contains the current buffer sizes of all IPC buffers,

as well as any information (e.g., request queue status) that is used by the protocol for

resolution of communication contention. Our approach to efficiently determining the

period is as follows:

• Perform a simulation of the schedule for some timeTsim. Define a constantC,

which is an initial estimate for the number of complete cycles (invocations) of the

graph that must be simulated in order to find a period. this constant represents the

length of the initial transient, before the output becomes periodic. If this initial

estimate is too low, it will be increased during the algorithm. LetN be the number

of processors, and letnj be the number of tasks scheduled on processorj, where

j ∈ [1, N ]. Tasks include IPC tasks as well as computational tasks. Label these

tasksV1j , V2j , . . . Vnj . We consider the case where the system executes these tasks

infinitely. The invocation numberof a task is defined as the number of times a

given task has executed, and is denoted with a superscript. For example,V
b(j)
a(j)

denotes thebth invocation of taska on processorj. Define a simulation array

for each processorSimj[i] wherei ∈ [1,Mj] andMj is the number of tasks on
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processorj that were output by the simulator. The elements of the simulation

array are the tasks, and are ordered by reverse start time, so thatStart(Simj[i]) >

Start(Simj[i+ 1]).

• Create twoidle vectorsof lengthnj for each processor spanning one invocation.

Label the first idle vectorIdle11
j [k] wherek ∈ [1, nj]. Label the second idle vector

Idle21
j [k].

• Examine theIPC buffer vectorat some fixed point of each idle vector. The IPC

buffer vector consists of the numbers of tokens queued on all the IPC edges of

the graph enumerated in some order. The IPC buffer vector must be output by the

simulator at least once every graph iteration. For example, the simulator could

output an IPC buffer vector for each processor every time the processor executes

the first task scheduled on it. In this way, each idle vector would be associated with

one IPC buffer vector. Label these vectorsIPCBuf1j[q] andIPCBuf2j[q] where

q ∈ [1, E] andE is the number of edges in the IPC graph. The IPC buffer vector

represents the state of the communication buffers in the system. LetTokens(e, t)

be the number of data tokens on edgee at timet. LetTaskNumj(t) be the number

of the node that is executing on processorj at timet. Pseudo-code from [10] for

constructing the period graph is shown in Figure 4.2.

Our experience suggests that in practice, most graphs have periods spanning only a

few invocations, so the above procedure for finding the period is efficient. For a system

with a period that spansN invocations and with at mostL tasks per processor, this

method requiresLN(N + 1) comparisons.

Figure 4.3(a) illustrates an application graph, Figure 4.3(b) illustrates a self-timed

schedule, Figure 4.3(c) shows the periodic steady state that results from the schedule
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Algorithm 4.1: CALCULATE PERIOD(C, Tsim)

minc ← 0
while minc < C

do











INCREMENT(Tsim)
SIMULATE(Tsim)

minc ← min
(

b
Mj

nj
c
)

for t← 0 to Tsim

do































for j ← 1 to N

do























aj = TaskNumj(t)
invocationj [a]← invocationj [a] + 1
bj = invocationj [a]
if TaskNumj(t) > TaskNumj(t− 1)

then
{

Sim1j [i] = V b(j)a(j)
span = 0
repeat


































































span← span + 1
for k ← 1 to span ∗ n1

do



















































for j ← 1 to N

do



















if span ∗ nj > Mj

then
{

comment: error: increase C and start over

Idle1

j [k] = Finish(Simj[k])− Start(Simj [k + 1])
Idle2

j [k] = Finish(Simj[span ∗ nj + k])− Start(Simj [span ∗ nj + 1 + k])
for q ← 1 to E

do
{

IPCBuf1[q] = Tokens(q, Start(Sim1[1]))
IPCBuf2[q] = Tokens(q, Start(Sim1[span ∗ n1 + 1]))

until
∏

j(Idle1

j ≡ Idle2

j) = 1 and (IPCBuf1 = IPCBuf2)

Figure 4.2: Pseudocode for constructing the period graph.
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and execution time estimates, and Figure 4.3(d) depicts the resulting period graph. The

shaded nodes in Figure 4.3(d) correspond to idle time ranges in the period, and solid

black circles on edges represent delays, which model inter-iteration dependencies. Note

that the steady state period may span multiple graph iterations (two in this example),

and in the period graph, this translates to multiple instances of each application graph

task.

For clarity in this illustration, we have assumed negligible latency associated with

IPC. As described below, non-negligible IPC costs can easily be accommodated in the

period graph model by introducingsendandreceivetasks at appropriate points.

As illustrated in Figure 4.3, the period graph consists of all the tasks comprising the

period that was detected, with the idle time ranges between tasks (including those that

are caused by communication contention) also treated as nodes in the graph. The nodes

are connected by edges in the order that they appear in the period. An edge is placed

from the last node in the period for each processor to the first node in the period. This

edge is given a delay value of one (to model the associated transition between period

iterations), while all of the other intraprocessor edges have delay values of zero. This is

done for all the processors in the system. Our model utilizessendandreceivenodes for

IPC as described above. For each IPC point, a send node is placed on the processor that

is sending data, and a corresponding receive node is placed on the processor that will

receive the data. The period graph is completed by adding an edge from each send node

to its corresponding receive node.
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4.3 Fidelity of the Estimator

As mentioned above, the period graph can be used to estimate the system throughput of

a given self-timed schedule as the task execution times are varied. In order to make a

concrete example, we will examinevoltage scaling. Some processors have the ability

to alter their execution voltage while in operation. This allows the processor to operate

at an optimal energy/efficiency point. When the voltage on a processor is varied, the

execution time of a computational task varies according to

delay = k
Vdd

(Vdd − Vt)2
, (4.1)

whereVdd is the supply voltage,Vt is the threshold voltage, andk is a constant [24].

We use a value of0.8volts for the threshold voltage. The execution timepei of each of

these states in the original (non-scaled) period graph is referenced to a voltageVref . The

change in execution time of each computational node is found by taking the derivative:

∆pei = pei

 Vsc
Vref

[
1− Vt

Vsc

1− Vt
Vref

]2

− 1


whereVsc is the new voltage. It is not obvious, however, how one should adjust the

idle times in the period graph. We separate the idle nodes into two sets:contention

idlesanddata idles. When a node has the necessary data to execute (the necessary data

has already been produced), but is idle waiting for access to the bus, the associated idle

node is classified as a contention idle. When a node is idle waiting for its predecessors’

data, the associated idle node is classified as a data idle. By experimenting with a large

number of application graphs, we found that we could capture the effects of contention

and obtain the best fidelity by zeroing out the data idles and leaving the contention idles

constant as the computation idles are scaled. Using these rules, the fidelity is calculated

as follows:
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• Given an application graph, construct a valid schedule. We used the dynamic

level scheduling algorithm given by Sih and Lee [97]. Next, construct the period

graph as discussed earlier. GenerateN voltage vectors (assignments of voltages

to the processors in the target architecture). For each voltage vector, perform

a simulation to determine the throughput, with the execution times of the tasks

on each processor given by 4.1 according to the voltage on the processor. Also,

obtain an estimate for the throughput by calculating the MCM of the voltage-

scaled period graph, in which the execution times of the computation nodes are

given by 4.1, and the execution times of the idle nodes are as explained above.

• Calculate the fidelity according to:

Fidelity =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

fij (4.2)

where

fij =

 1 if sign(Si − Sj) = sign(Mi −Mj)

0 otherwise

sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

TheSi denote the simulated throughput values; and theMi are the corresponding

estimates from the period graph.

Figure 4.4 plotsFidelity for a six-processor system in which the voltage on the

individual processors can vary between plus or minus five percent. The x-axis represents

the sum of the absolute values of the voltage changes over all processors. Each point

on the graph is a fidelity calculation forN = 100 voltage vectors. A value of one
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is a “perfect” fidelity. It can be seen that in the range shown, the fidelity is always

greater than0.77. It is also important that the estimator have a small error at each point.

Figure 4.5 plots
N∑
i=1

[(Si −Mi)/Si] (4.3)

for a six processor system. It can be seen that the error increases as the voltage vector

moves away from the reference point, and that the estimate is slightly biased. For the

range shown in the graphs, where each processor voltage is changed by a maximum of

fifteen percent, the error is less than four percent.
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4.4 Using the Period Graph in a Joint Power/Performance

Algorithm

An effective way to reduce power consumption of a processor core in CMOS technology

is to lower the supply voltage level, which exploits the quadratic dependence of power

on voltage [24]. Reducing the supply voltage also has the effect of decreasing the clock

speed and increasing circuit delay. The circuit delay can be modeled by 4.1. The power

consumption is given by

P = αCLV
2
ddf (4.4)

wheref is the clock frequency,CL is the load capacitance, andα is the switching

activity [24]. To accommodate the possibility of putting processors in states of lower

switching activity during idle periods, our model includes a parameterαidle for the idle

states, and a parameterαnon−idle for the computational tasks, whereαidle ≤ αnon−idle.

A more detailed power analysis could assign a differentα for each computational task

if that data were available. A different power optimization technique, which can be

used in conjunction with the voltage scaling technique presented here, utilizes a nearly

complete processor shutdown during the idle periods [52, 103]. In our model, this would

correspond toαidle = 0. Our model for the power is the average energy consumption per

graph iteration period. This corresponds in a typical DSP system to the average energy

required to process one sample. Here, the energy of each node equals its power times

its execution time.

In a system consisting of multiple processors, one has the ability to choose, within

a certain range, the (fixed) operating voltage on each processor. This opens up an addi-

tional degree of freedom that can be exploited to minimize the system power consump-

tion. By choosing a lower voltage of a processor that is executing tasks that are not
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on the critical path, the throughput can remain unchanged while the overall power con-

sumption is reduced. In general, a combination of raising voltages on some processors

while lowering others can yield the most attractive power/performance solution.

When applying voltage scaling to a multiprocessor system, the valid solution space

is typically much too large to search by brute-force methods. In addition, since there

is no general analytical formula for calculating the throughput of these systems in the

presence of communication resource contention, each candidate solution must either be

simulated or estimated using some heuristic.

4.5 Genetic Algorithm Formulation

To demonstrate the general utility of the period graph based performance estimation

approach, we incorporated it into two significantly different probabilistic search tech-

niques to derive two different algorithms for systematic voltage scaling [7]. The first

algorithm presented utilizes the framework of genetic algorithms (GAs) [43]. We will

discuss GAs more in Chapter 8. The specific GA explored here consists of an inner GA

nested within an outer GA. The inner GA performs a local search around a point from

the population of the outer GA, using the MCM of the period graph in its objective func-

tion as an estimate for the throughput. A period constraintTconstraint is given as an input

to the optimization problem, where the period is the reciprocal of the throughput. The

objective function calculates the power consumption associated with each solution by

calculating the total energy per period, as discussed earlier. If the period associated with

a solution violates the period constraintTsolution > Tconstraint, the power consumption is

multiplied by a large penalty factore100(Tsolution−Tconstraint). The GA attempts to minimize

this objective function.
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In the outer loop, a population ofNouter voltage vectors is generated. A simulation

is run and a period graph constructed for each of these outer loop voltage vectors. For

each of the outer loop voltage vectors, a new inner loop population is generated such

that|Vouteri − Vinneri| < ε for i ∈ Nproc whereNproc is the number of processors,Vouteri

is the voltage on processori in the outer population,Vinneri is the voltage on processor

i in the inner population, andε is a user-defined threshold. The inner population size is

Ninner. The inner GA then performs a local search using this population for a number

of generationsGenerationsinner in an attempt to find a locally optimal voltage vector.

The inner GA uses the MCM of the period graph in its objective function. After an

invocation of the inner GA is finished, one simulation is performed using the resulting

voltage vector, and the actual throughput for this point is used to compute its fitness. The

outer loop voltage vector is then replaced with this locally-optimized voltage vector for

use in the next outer loop generation. The outer loop is run for a number of generations

Generationsouter.

4.6 Simulated Annealing Algorithm

Simulated annealing is another well-known method for searching large design spaces.

Using a standard simulated annealing package [23], we have implemented an alternative

version of period-graph-based voltage scaling optimization. The objective function here

is the same as for the genetic algorithm. The system is first simulated with an initial

voltage vectorVj = LSVj, and the period graph is built. In order to insure that the

period graph will be a good enough estimator, are-simulation threshold Tis maintained.

The difference between the current inputCVj to the objective function, and the voltage

vector LSVj corresponding to the simulation used to compute the current period, is
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calculated. If
1

N

N∑
i=1

∣∣∣∣Vi − LSVi

LSVi

∣∣∣∣ > T,

the graph is re-simulated usingCVj. The period graph is rebuilt, andCVj → LSVj.

ForT = 0, the graph will be re-simulated every time, and the period graph will offer no

speedup to the optimization. The larger the value ofT , the less often the graph will be

re-simulated, and the faster the optimization algorithm will perform. However, whenT

is too large, the fidelity of the period graph estimate will be unacceptably low and the

quality of the final result will suffer. Based on our experiments with a number of graphs,

the optimal value ofT is application-dependent, but a value ofT = 0.1 generally gives

good results.

4.7 Results of Voltage Scaling using Period Graph

Figure 4.6(a) shows an example of the reduction in power resulting from the genetic

optimization algorithm on the FFT2 application graph. The parameters of the GA were

Nouter = Ninner = 50, Generationsouter = 10, andGenerationsinner = 20. The local

search voltages were constrained to be within five percent of the corresponding outer

loop voltages. The period constraint was calculated by simulating the system with all

six processors operating at voltageVref . For this example, the system power consump-

tion was reduced by 43%, while maintaining the original throughput. To evaluate the

advantage of the period graph approach over using brute-force simulation, a second

nested GA was implemented. This algorithm was identical to the algorithm discussed

above, except that the inner loop did not use the period graph estimate for the through-

put. Instead, each voltage vector was evaluated by simulation. This algorithm consumed

21 times more CPU time, and produced similar results, as shown in Figure 4.6(b).
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Figure 4.6: Plot of (optimized power)/(initial power) vs. genetic algorithm iteration

using the period graph estimator (a) and simulation only (b). Using simulation only, the

iterations require 21 times more CPU time.
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Figure 4.7: Plot of (optimized power)/(initial power) vs. time for the simulated anneal-

ing algorithm combined with period graph on the FFT3 application.

Figure 4.7 summarizes the power reduction results for the simulated annealing algo-

rithm applied to a fast Fourier transform (FFT3) application graph, for different values

of the re-simulation thresholdT . It can be seen that asT is increased, the algorithm

progresses more quickly. The simulated annealing algorithm begins with a ‘melting’

routine, where the temperature is increased until a phase change is detected. The initial

flat part of the curves corresponds to the time spent in the melting routine. We have

found that for values ofT above 20%, the period graph is not a good enough estimator

and the algorithm does not converge.

Table 4.1 summarizes the power reduction for the simulated annealing algorithm for
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application re-simulation threshold

- 0 2% 5% 10% 25%

FFT1(28) 0.96 0.95 0.65 0.60 1

FFT2(28) 0.97 0.90 0.71 0.97 1

FFT3(28) 1 0.77 0.59 0.59 1

mus(20) 0.89 0.71 0.67 0.82 1

meas(12) 0.77 0.73 0.81 0.82 1

qmf(14) 0.84 0.65 0.67 0.73 1

rand1(30) 0.91 0.77 0.53 0.65 1

rand2(100) 1 0.85 0.77 0.73 1

rand3(200) 1 1 1 0.94 1

Table 4.1: Ratio of optimized power to initial power for a fixed computation time using

period graph and simulated annealing.
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several additional applications using different values of the re-simulation threshold. At

the start of the optimization, all processor voltages were set at 5 volts. The throughput at

this point was used as the throughput constraint. In Table 4.1, the first three rows corre-

spond to three different FFT implementations:musrefers to a music synthesis algorithm,

qmf refers to a quadrature mirror filter bank,measis a measurement application.

We implemented a random application graph generator based on Sih’s algorithm [96].

The last three rows of Table 4.1 correspond to three random graphs generated with this

algorithm. The numbers in parentheses give the numbers of nodes in these applications.

The optimization was performed for afixed timeof 30 minutes in each case. The op-

timum re-simulation threshold was between 2% and 10% in all cases. ForT = 0.25,

the period graph is not a good estimator and none of the results returned during the op-

timization algorithm satisfied the throughput constraint. For the largest graph, the fixed

simulation time was not long enough to make much improvement, but the best result

occurred forT = 0.1, where the simulations are less frequent.

Table 4.2 summarizes the power reduction for the genetic algorithm with and without

using the period graph, with a fixed compile time (run time) of one hour. It can be seen

that, under the condition of fixed compile time, we achieve better results (lower power)

when utilizing the period graph. Also, comparing Table 4.1 with Table 4.2, we see

that the longer compile time given to the GA produced better results. We will explore

the issue of search efficiency under fixed optimization times in a systematic manner in

Chapter 8.
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application using period graph no period graph

fft1 0.54 0.74

fft2 0.69 0.86

fft3 0.57 0.78

mus 0.68 0.90

meas 0.70 0.82

qmf 0.64 0.84

rand1(30) 0.55 0.78

rand2(100) 0.70 1

rand3(200) 0.87 1

Table 4.2: Ratio of (optimized power)/(initial power) for genetic algorithm with fixed

run time.

4.8 Summary of Period Graph Work

We have developed aperiod graphmodel that can be used as a computationally effi-

cient estimator for the throughput in multiprocessor systems in which communication

contention renders exact analysis too time-consuming. This model is especially useful in

interactive synthesis techniques, such as those based on probabilistic search. We demon-

strated effective voltage scaling techniques based on incorporating the period graph into

genetic algorithm and simulated annealing formulations.
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Chapter 5

Contention Analysis in Optically Connected

Systems

We introduced the IPC graph model in Section 2.4 and showed that for systems without

contention, the maximum cycle mean (MCM) of the IPC graph can be used as an effi-

cient estimator for the system throughput. We showed in Chapter 4 that for a shared-bus

system the analysis is complicated significantly by contention for the bus among the

processors. Shared bus systems are appealing due to their simplicity and low cost. This

is the primary driver for many embedded systems applications. In Section 5.1 we will

discuss Sriram’sordered transactions strategy[102], and show that by incorporating an

additional hardware controller to a shared bus system, it is possible to remove the con-

tention that results in the difficult analysis, and to more fully optimize communication

patterns. With the hardware controller the processors still share a communication chan-

nel, namely the bus, but the contention is resolved by the controller. For systems that

require the performance, the cost of the additional hardware may be justified.

For systems with significant interprocessor communication activity and high per-

formance requirements, it may be the case that an electronic interconnect between the

processors is not appropriate. In Section 3.5.2 we introduced two system architectures
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based on fiber interconnects. In the first architecture, there is a dedicated communica-

tion channel between every pair of processors so there is no sharing of communication

resources. In the second architecture, processors share their input ports—the amount of

sharing is reduced as compared to an electronic bus because different wavelengths can

be transmitted simultaneously in the fiber. In Section 5.2 we will modify Sriram’s model

to work with this architecture.

5.1 Ordered Transactions

5.1.1 Ordered Transactions Concept

The ordered transactions strategy for multiprocessor shared bus systems consists of two

parts:

1. Determine at compile time the order in which processor communications occur.

2. Enforce that order at run time with a hardware controller.

As in the self-timed approach, a static schedule is first computed using execution time

estimates for the actors, but only the actor ordering on each processor is retained—the

actor start times are discarded. The hardware controller grants access to the processors

in the predetermined order. When a processor is granted access to the bus, it performs

its read or write operation and releases the bus back to the hardware controller. Since

the hardware controller enforces the communication order, there is no contention for

the bus, and no bus arbitration is necessary at the individual processors. The transaction

order preserves the data precedences in the algorithm, and therefore for a shared memory

system no semaphore synchronization is necessary. Also, send and receive operations
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always access the shared bus for one memory cycle—there is no polling required. This

reduces the number of shared memory accesses by at least a factor of two.

5.1.2 Synchronization Constraints

We introduced the interprocessor communication graph (IPC graph)GIPC and the syn-

chronization graphGs in Section 2.4. Initially,Gs is identical toGIPC. However, various

transformations can be applied toGs in order to make the overall synchronization struc-

ture more efficient [101]. After all transformations onGs are complete,Gs andGIPC can

be used to map the given parallel schedule into an implementation on the target archi-

tecture. The IPC edges inGIPC represent buffer activity, and are implemented as buffers

in shared memory, whereas the synchronization edges ofGs represent synchronization

constraints, and are implemented by updating and testing flags in shared memory. If

there is an IPC edge as well as a synchronization edge between the same pair of tasks,

then a synchronization protocol is executed before the buffer corresponding to the IPC

edge is accessed to ensure sender-receiver synchronization. On the other hand, if there

is an IPC edge between two tasks in theGIPC, but there is no synchronization edge be-

tween the two, then no synchronization needs to be done before accessing the shared

buffer. If there is a synchronization edge between two tasks but no IPC edge, then no

shared buffer is allocated between the two tasks; only the corresponding synchronization

protocol is invoked.

Any transformation we perform on the synchronization graph must respect the syn-

chronization constraints implied byGIPC. If we ensure this, then we only need to imple-

ment the synchronization edges of the optimized synchronization graph (in conjunction

with the IPC edges ofGIPC). If G1 = (V,E) andG2 = (V,E) are synchronization

graphs with the same vertex-set and the same set of intraprocessor edges (edges that
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are not synchronization edges), we say thatG1 preservesG2 if for all e ∈ E2 such that

e /∈ E1, we have

ρG1(src(e), snk(e)) ≤ delay(e),

whereρG(x, y) ≡ ∞ if there is no path fromx to y in the synchronization graphG, and

if there is a path fromx to y, thenρG(x, y) is the minimum over all pathsp directed from

x to y of the sum of the edge delays onp. Thus,G1 preservesG2 if for any new edge

in G2 (i.e., for any edge not inG1), there is a path inG1 directed from the source of the

edge to the sink that has a cumulative delay that is less than or equal to the delay of the

edge. The following theorem (developed in [101]) is fundamental to synchronization

graph analysis.

Theorem 1The synchronization constraints in a synchronization graph

G1
s = (V,Eint ∪ E1

s ) imply the synchronization constraints of the synchronization

graphG2
s = (V,Eint ∪ E2

s ) if the following condition holds:∀ε s.t. ε ∈ E2
s , ε /∈ E1

s ,

ρG1
s
(src(ε), snk(ε)) ≤ delay(ε); that is, if for each edgeε that is present inG2

s but not in

G1
s, there is a minimum delay path fromsrc(ε) to snk(ε) in G1

s that has total delay of at

mostdelay(ε).

Theorem 1 is the basis for a variety of useful synchronization graph transforma-

tions. One such transformation is the detection and removal ofredundantsynchroniza-

tion edges, which are synchronization edges whose respective synchronization func-

tions are subsumed by other synchronization edges, and thus need not be implemented

explicitly. Another transformation, calledresynchronization, involves inserting synchro-

nization edges in a way that the number of original synchronization edges that become

redundant exceeds the number of new edges added.
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5.1.3 Ordered Transactions Graph

Sriram’sordered transaction graph[102] is a useful data structure for analyzing ordered

transaction implementations. Given an ordering{o1, o2, . . . , op} for the communication

actors in an IPC graphGIPC = (VIPC, EIPC), the corresponding ordered transaction

graphΓ(GIPC, O) is defined as the directed graphGOT = (VOT, EOT), where

VOT = VIPC

EOT = EIPC ∪ EO

EO = {(op, o1), (o1, o2), (o2, o3), . . . , (op−1, op)}

delay(oi, oi+1) = 0 for 1 ≤ i < p

delay(op, o1) = 1

Thus, an IPC graph can be modified by adding edges (the edges ofEO) obtained from

the orderingO to create the ordered transactions graph.

A closely related data structure is thetransaction partial order graphGTPO. The

transaction partial order graph represents the minimum set of dependencies imposed

among different processors by the communication actors of the IPC graph. These de-

pendencies must be obeyed by any ordering of the communication operations. Under the

assumption that the send and receive actors are serially ordered on each processor,GTPO

can be computed fromGIPC by first deleting all edges inGIPC that have delays of one

or more, and then deleting all of the computation actors [62]. However, since we wish

to allow for the possibility of data transmission on multiple channels simultaneously we

do not make this assumption, and we must modify the algorithm [8]. Figure 5.1 gives

pseudo-code for our modified algorithm for generatingGTPO. The key difference with

our algorithm is thatGIPC may now contain computation nodes with multiple predeces-

sors and multiple successors. These nodes cannot be removed since this would require

75



Algorithm 5.1: GENERATE TPO GRAPH(GIPC)

input: IPC Graph GIPC
output: Transaction Partial Order TPO Graph

finished← FALSE
for (∀ edges e ∈ GIPC)

do
{

if (e is a feedback edge)
then

{

Delete e

while (finished = FALSE)

do
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finished = TRUE
for (∀ nodes v ∈ GIPC)

do
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if (v is a computation node)

then
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if ((indeg(v) = 0) OR (outdeg(v) = 0))

then
{

Delete v

finished = FALSE

else if (indeg(v) = 1)

then
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p← predecessor node of v

for (∀ successors s of v)
do

{

Create edge (p, s)
Delete v

finished = FALSE
else if (outdeg(v) = 1)

then























s← successor node of v

for (∀ predecessors p of v)

do







Create edge (p, s)
Delete v

finished = FALSE

Figure 5.1: Pseudo-code for generating the TPO graph from the IPC graph.
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Figure 5.2: The TPO graphGTPO derived from the IPC graph in (a) after 1 pass (b) and

2 passes (c) of the algorithm given in Figure 5.1.

imposing some additional dependencies on these nodes, and we wantGTPO to represent

the minimal set of dependencies. In each pass of the algorithm, the graph is reduced

by removing as many computation actors as possible. It terminates when no more com-

putation actors can be removed. We will see in Section 5.2.2 that there are advantages

to operating on the reduced TPO graph, since the search space of possible transaction

orders can be exponential in the size of the graph.

Figure 5.2 shows an example of a how the transaction partial order graph is derived.

The IPC graph is shown in 5.2(a). After one pass of the algorithm given in Figure 5.1, the

TPO graph contains two computation actors (Figure 5.2(b)). The algorithm terminates

after two passes with one computation actor remaining (Figure 5.2(b)).

As described earlier, when the ordered transaction strategy is implemented using
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a hardware method such as micro-controller that imposes the linear order, there is no

need for synchronization and contention for shared communication resources is also

eliminated. Therefore, if the execution time estimates for the actors are accurate or are

true worst-case values, then the maximum cycle mean (MCM) of the ordered transac-

tion graph gives an accurate estimate or worst-case bound, respectively, of the itera-

tion period of the associated application graph under the ordered transaction strategy.

Such efficient, accurate performance assessment is useful for design space exploration

in general, and it is especially useful when implementing applications that have real time

constraints.

If interprocessor communication costs are negligible, an optimal transaction order

can be computed in low polynomial time for a given self-timed schedule [102]. This

method of deriving transaction orders is called theBellman-Ford Based(BFB) method

since it is based on applying the Bellman-Ford shortest path algorithm to an intermediate

graph that is derived from the given self-timed schedule.

However, when IPC costs are not negligible, as is frequently and increasingly the

case in practice, the problem of determining an optimal transaction order is NP-hard [62].

This intractability has been shown to hold both under iterative and non-iterative execu-

tion of application graphs. Thus, under nonzero IPC costs, we must resort to heuristics

for efficient solutions. Furthermore, the polynomial-time BFB algorithm is no longer

optimal, and alternative techniques to account for IPC costs are preferable.

In the presence of non-negligible communication costs, an efficient transaction order

can be constructed with the help of the transaction partial order graphGTPO described

earlier. Thetransaction partial order algorithmis one systematic approach for using

transaction partial order graphs to construct efficient orderings of communication oper-

ations. This algorithm proceeds by considering–one by one–each vertex ofGTPO that
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has no input edges (vertices in the transaction partial order graph that have on input

edges are calledreadyvertices) as acandidateto be scheduled next in the transaction

order. Interprocessor edges are inserted from each candidate vertex to all other ready

vertices inGIPC, and the corresponding MCM is measured. The candidate whose cor-

responding MCM is the least when evaluated in this fashion is chosen as the next vertex

in the ordered transaction, and deleted fromGTPO. This process is repeated until all

communication actors have been scheduled into a linear ordering.

Khandelia [62] shows that the transaction partial order heuristic can improve the per-

formance beyond what is achievable by a self-timed schedule, even if synchronization

and arbitration costs are negligible compared to actor execution times. The performance

benefit is achieved by strategic positioning of the communication operations in ways

that do not result from the natural evolution of self-timed schedules.

5.2 WDM Ordered Transactions

In some applications, a shared electronic bus cannot handle the required communication

traffic, even if this traffic is carefully optimized by using the transaction partial order

heuristic. Moving to a faster shared medium such as optical ethernet may be a solution in

some cases, since the interprocessor communication (IPC) is faster. However, we often

cannot derive suitable solutions for highly parallel applications scheduled on multiple

processors. In this case the shared nature of the interconnect becomes a bottleneck

for the large amount of IPC required to effectively use all the processors. For these

applications, alternative interconnection topologies are required.

One such alternative is to use multiple busses. Lee and Bier [67] describe how the

ordered transaction strategy can be extended to utilize a hierarchy of multiple busses.
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In Section 3.5.2 we introduced the WDMOT architecture utilizing fiber optics which

is not a fully-connected topology (every processor pair having a dedicated channel), but

can support multiple simultaneous communications on different wavelengths. The ad-

vantage of this architecture over the fully-connected topology is that the number of

wavelengths required scales withN instead ofN2, whereN is the number of proces-

sors. In this section we will discuss a heuristic for developing good processor orderings

using this architecture, and compare the resulting system throughput with the through-

put obtained using the transaction partial order algorithm for an electrical bus and with

the throughput obtained in a fully connected system.

In the WDMOT architecture, we implement a protocol in which each processor is as-

signed a unique wavelength. We must ensure that two processors do not send to a given

processor at the same time—i.e., there is possible contention at the (single) receiver

of every processor. In order to accomplish this, we introduce a controller for every

wavelength. This controller grants access to only one processor at a time. Figure 5.3

(repeated from Figure 3.10) depicts the architecture. Three fibers are shown—one to

carry the data, one for the wavelength grant signals, and one for the wavelength release

signals. The grant and release signals indicate that the wavelength is available (wave-

length grant) or that a processor is finished using the wavelength (wavelength release or

ack). The signal for wavelengthλk being granted to processorp consists of an ID tag

for processorp transmitted onλk. A portion of the grant signal is split off the grant fiber

and distributed to each processor, where it is separated by wavelength. Processorp may

transmit onλk if it receives its own ID tag on receiverk. This is shown in more detail in

Figure 5.4 The controller for wavelengthλj is responsible for ordering all communica-

tions to processorpj (which receives data onλj) so that only one processor is attempting

to transmit onλj at a given time. In order to accomplish this, the wavelength controller
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must have a transmitter at the single wavelengthλj, as well as a receiver atλj. Each

processorpj has a single receiver atλj, and a transmitter for each processor to which it

will send data. This number may be limited by afan-outconstraint. Figure 5.5 shows

the state diagram for a controller for wavelengthλk. In Figure 5.5 there arem proces-

sors scheduled to transmit onλk, and the they are ordered[pk1, pk2, . . . , pkm]. Since the

order of grants toλk is enforced by the controller, only one processor transmits onλk at

a given time.

In Figure 5.4 we show a tunable source being used in conjunction with each pro-
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cessor. Most commercially available tunable sources today use some type of microelec-

tromechanical (MEMS) switching element, and require times of the order of millisec-

onds to tune between different wavelengths. We can consider this tuning time as an

addition to the interprocessor communication time, and would like switching times on

the order of several clock cycles, which is on the order of nanoseconds. One way to ac-

complish this (although not strictly a ‘tunable’ source) is to simply use multiple discrete

sources, which can be selected electrically, and combine them together. This is shown

in the lower portion of Figure 5.4. Several groups are currently developing fast (Gb/s)

tunable wavelength converters for optical switching applications (e.g. see [75, 89]), al-

though the number of output wavelengths demonstrated has been small. For example,

Mas̆anovíc et al. recently reported a tuning range of 22nm for an ImP tunable laser and

wavelength converter [75]. These devices may one day be suitable for the WDMOT

architecture.

Using the WDMOT architecture, any given interconnect topology that respects the

fanout constraints can be implemented. We show in Section 6.2 that the optimal in-

terconnect topology for a given application is often very irregular. We will explain in

Chapter 7 how to synthesize an optimal interconnect topology for a given application

with these fanout constraints.

5.2.1 Optical Components

The WDMOT architecture can be implemented with components developed for the

telecommunications market. The optical add/drop multiplexer (OADM) is a basic build-

ing block of many optical systems where signals with arbitrary wavelengths must be

multiplexed to, or demultiplexed from, wavelength multiplexed signals. Figure 5.6 [55]

depicts the basic configuration of an OADM using a dielectric thin film filter. OADMs
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Figure 5.6: Optical add/drop multiplexer utilizing a dielectric thin film filter.
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can be used at each processor to extract the correct wavelength for incoming data, to

separate the grant signals from the controllers, to multiplex outgoing data onto the data

fiber, and to multiplex the acknowlege signal onto the acknowledge fiber. At each con-

troller, OADMs can be used to add the grant signal onto the grant fiber, and to drop the

release signal from the acknowledge fiber.

5.2.2 Transaction Ordering

We define an ordered transaction graphGWDMOT in a similar manner to Section 5.1.3.

Let εp be the set of communication edges inGIPC whose target nodes are scheduled on

processorp, andηp be the set of nodes that are sources for edgesεp. In order to ensure

that no two processors attempt to transmit on the same wavelength at the same time, we

must determine a transaction orderingOp for the nodes inηp for p ∈ [1 . . . N ] whereN

is the number of processors. Then

Υ(GIPC, O1, . . . , ON) = GWDMOT = (VWDMOT, EWDMOT),

where

VWDMOT = VIPC, and

EWDMOT = EIPC ∪ EO1 ∪ EO2 ∪ . . . ∪ EON .

Figure 5.7 shows ordered transaction graphs for both electrical shared bus and WDMOT

architecture. For the electrical shared bus, all communications must be ordered and

four additional edges must be added toGIPC. For the WDMOT architecture only two

additional edges must be added toGIPC—nodes A and F which both send to processor

2 must be ordered, and nodes G and J which both send to processor 4 must be ordered.

Note that since the iteration cycle time (reciprocal of the throughput) of the system is

determined by the MCM of the ordered transaction graph, and since adding edges to a
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Figure 5.7: Comparison of ordered transaction graphs for shared bus (left) and WDM

architecture (right). Transaction order edges are shown dashed.

graph cannot decrease the MCM, the throughput of the WDMOT architecture cannot be

less than that of the electrical shared bus architecture. Next we address the question of

determining the orderingsOp for each wavelength.

We first note that for the ordering to be correct, we should not introduce any zero-

delay cycles into the IPC graph. Such cycles would create deadlock in the system. In

Figure 5.7 for example, an ordering beginning withF → C → D → E → A, plac-

ing E beforeA, would add the edge(E,A) to GIPC and create the cycleA → C →

D → E → A. In other words, the transaction ordering should be a topological sort

of the directed acyclic graph resulting from removing the feedback edges fromGIPC.

Equivalently, sinceGTPO preserves all the dependencies inGIPC, the transaction order-

ing must be a topological sort ofGTPO, and our goal is then to find the best topological

sort. Unfortunately, the number of possible topological sorts can be exponential in the

size of the graph. For example, for a complete bipartite graph with2n nodes, there are

(n!)2 different topological sorts. We therefore see that we can reduce the search space

substantially by reducing the IPC graph and operating on the TPO graph.
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Algorithm 5.1: CHOOSE COMMUNICATON ACTOR(

GIPC, readyList

)

input: ipc graph GIPC
input: list of actors readyList

output: communication actor ν

if readyList.size() ≡ 1
then

{

ν ← readyList.head()
for x ∈ readyList

do


























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









for y ∈ readyList

do































if x 6= y

then
{

e = GIPC.addedge(x, y)
temp.add(e)

criteria[x]← MCM(GIPC)
for e ∈ temp

do
{

GIPC.delete(e)
ν ← min(criteria[x])

Figure 5.8: Function to choose the next communication actor in the transaction or-

der [62].

We will see in Section 5.2.3 that a random topological sort produces relatively poor

results, and we must derive heuristics to guide the sort. We use a modification of the

transaction partial order heuristic [62]. In this heuristic, edges are added between com-

munication nodes (actors) inGIPC that are contending for the bus, and the MCM of the

modifiedGIPC is measured. Actors whose corresponding MCMs are better are sched-

uled earlier in the transaction order, as discussed in Section 5.1.3. The algorithm for

choosing the next communication actor to schedule is given in Figure 5.8 while the

transaction partial order heuristic is given in Figure 5.9. For the WDMOT architecture,

we must determine an ordering for each wavelength controller. In order to do this, we

first determine a global ordering of the communication actors using the TPO heuristic,
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Algorithm 5.2: TPO HEURISTIC(

GIPC, transactionOrder

)

input: IPC graph GIPC
output: linear list of communication actors transactionOrder

compute GTPO from GIPC
for ν ∈ GIPC

do







mark[ν]← FALSE
if indegree(ν) = 0

then
{

readyList.append(ν)

complete← FALSE
first← TRUE
while (complete 6= TRUE)

do








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

ν ← CHOOSE-COMMUNICATION-ACTOR(GIPC, GTPO, readyList)
mark[ν]← TRUE
transactionOrder.append(ν)
if (first)

then
{

first← FALSE

else
{

GIPC.addedge(w, ν)
w ← ν

for u ∈ (ν, u) ∈ E

do































flag← TRUE
for s ∈ (s, u) ∈ E

do
{

if (mark(s) = FALSE)
then

{

flag← FALSE
if (flag)

then
{

readyList.append(u)
if (readyList.empty() = TRUE)

then
{

complete← TRUE

Figure 5.9: TPO heuristic [62].
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Algorithm 5.3: WDM TPO HEURISTIC(

GIPC, Ω

)

input: IPC graph GIPC
output: linear list of communication actors Ωj for each wavelength j

CALL HeuristicTPO(GIPC, transactionOrder)
for p ∈ [1 . . .N ]

do































for edges e ∈ GIPC

do
{

if proc(target(e)) = p

then
{

εp ← εp ∪ e

for edges e ∈ εp

do
{

ηp ← source(e)
Ωp ← SORT(ηp using transactionOrder)

Figure 5.10: WDM ordered transactions algorithm.

and then use this ordering to sort the actors in eachηp. Pseudocode for the algorithm is

given in Figure 5.10.

5.2.3 Experiments

We ran the WDM ordered transactions algorithms on a set of randomly generated graphs.

These graphs were generated using a modified verion of Sih’s method [96] which pro-

duces graphs with a regular structure that resembles many DSP applications. We modi-

fied Sih’s algorithm to insure that the random connections do not introduce cycles, and

added a fanout parameter which controls the amount of parallelism in the graph. Pseudo-

code for the random graph generation algorithm is shown in the Appendix. An example

of a random graph generated using this algorithm is shown in Figure 5.11.

Figure 5.12 compares the WDM ordered transaction heuristic (using the fiber-based

WDMOT architecture) to the TPO heuristic (using a shared bus architecture) and a trans-
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Figure 5.11: Two examples of random graphs generated using a modification of Sih’s

algorithm [96] with 70 nodes and fanout 5.
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action order based on a random topological sort (using a shared bus architecture) for a

set of randomly generated graphs. The y-axis in Figure 5.12 is the ratio of throughput

to the maximum possible throughput (the reciprocal of the MCM ofGIPC) (thethrough-

put ratio) that would be obtained for a full crossbar interconnect. In Figure 5.12 the

ratio of average execution time for the computation actors to the average IPC commu-

nication time (thecomputation ratio) was2.5. We observe that the throughput using

the WDMOT architecture is usually very close to this maximum in these graphs, and

generally better than that for the shared bus. We also observe a significant improvement

for the TPO heuristic over the topological sort ordering. For purposes of comparison

we assume the same communication times for both optical and electrical busses in this

experiment. In practice the communication times for the optical bus would be lower,

which would increase the relative improvement of the WDMOT results.

In Figure 5.13 we plot the average, over 50 random graphs, of the throughput ratio

as the computation ratio is varied. We see that the WDMOT architecture produces

throughput very close to the theoretical maximum for this size graph (L = 8 in Sih’s

algorithm and4 processors). Also, the relative performance of WDMOT to the shared

bus increases as the communication overhead increases (lower computation ratio on the

x-axis). The random topological sort performs significantly worse. Also, there is no

improvement as the communication overhead decreases. This is because the random

topological sort is imposing an inefficient ordering of the computation nodes as well as

the communication nodes, and this effect is dominant.

In Figure 5.14 we plot the average, over 50 random graphs, of the throughput ratio

as the number of processors is varied. Again we see that the WDMOT architecture

performs close to the theoretical maximum. We also observe that its performance is less

sensitive to the number of processors.
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Chapter 6

Scheduling for Arbitrarily Connected Systems

Scheduling for multiprocessor systems was introduced in Chapter 2. A vast range of

scheduling techniques for task graphs has been developed (e.g. see [101] for a review of

several representative approaches); however, these techniques typically assume a fixed

communication network, and do not systematically take connectivity constraints into

account. By connectivity constraints, we mean the inability of certain pairs of pro-

cessors to communicate with each other. Such constraints are desirable to impose in

optically connected multiprocessors because the power consumption of communication

is relatively independent of distance, and largely dependent instead on the number of

electrical-to-optical conversions that must be performed (this will be discussed further

in Section 6.2).

Thus, it is advantageous to configure multiprocessor schedules in such a way that

multi-hop communication is avoided, or limited to some maximum number of hops per

communication operation, and the relative abundance of communication links is used

instead to achieve the required communication flexibility. However, such connectiv-

ity constraints can cause list scheduling techniques, and related methods to deadlock.

One contribution of this thesis is to develop a general framework for extending arbitrary
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list scheduling approaches to avoid deadlock, and operate efficiently in the presence of

connectivity constraints. We will apply this framework to jointly streamline the com-

munication network and task graph mapping for a given application in Chapter 7. This

framework can be used both for minimum-cost dedicated implementations, and for re-

configurable networks, where the goal is to save power consumption by activating a

minimal subset of available laser-detector pairs.

6.1 Implications of Increased Connectivity

It has been shown that optical interconnects can provide a higher degree of connec-

tivity than electrical interconnects. For example, Li [71] claims that using technology

available in the year 2000, interconnects of up to 1000x1000 I/O elements per square

centimeter can be achieved. In this thesis we explore the implications of various levels

of connectivity for multiprocessor systems, and interconnection networks that can make

use of the unique properties of optical interconnects.

One consequence of increasing levels of connectivity between processors is that it is

easier for mapping algorithms to find good solutions. We show here that the quality and

number of solutions found by a probabilistic search algorithm is a strong function of

the level of connectivity. Connectivity can be defined in the following way for a system

with N processors{P1, P2, . . . , PN}: Let PX → PY ≡ TRUE iff there exists a direct

communication link fromPX to PY . Directionalconnectivity is defined as

∑
X

∑
Y 6=X

Ivalue(PX → PY )

Directionlessconnectivity is defined as

∑
X

∑
Y <X

Ivalue((PX → PY ) ∨ (PY → PX))
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Directional connectivity = 3

Directionless connectivity = 2

Figure 6.1: Example of directional and directionless connectivity.

whereIvalue(TRUE) = 1 and Ivalue(FALSE) = 0. An example is shown in Fig-

ure 6.1.

6.1.1 Topology Graph

We define a topology graphT (Φ, L) such that the nodes ofT correspond to the “proces-

sors”Φ in the architecture and the edgesL in T correspond to direct physical commu-

nication links between the processors. We define the set of all processors asΦ and label

the processors{p1, p2, . . . , p|Φ|}. ThenT contains an edge(pi, pj) iff the interconnection

network provides a direct (single-hop) communication link frompi to pj. If l is an edge

in T , we say thatsrc(l) is thesourcenode ofl; snk(l) is thesinknode ofl; l is directed

from src(l) to snk(l); l is anoutput edgeof src(l); andl is aninput edgeof snk(l). We

denote thedegreeof a processor by the number of incident (physical) communication

links. The degree of a nodeν in T is equal to the sum of the number of input and output

edges ofν. For example, each processor in a fully-connected system with|Φ| proces-

sors, has degree2(|Φ| − 1) (two links—one incoming and one outgoing—to each other

processor). Furthermore, apath in T (Φ, L) is a nonempty sequencel1, l2, l3, . . . ∈ L

such thatsnk(l1) = src(e2), snk(e2) = src(e3), . . . whosepath lengthequals the num-

98



ber of edges in the sequence.T is said to bestrongly connectedif for each pair of distict

nodes(p1, p2) there is a path directed fromp1 to p2 and there is a path directed fromp2

to p1.

6.1.2 Effect of Connectivity on a Simple Mapping Algorithm

We begin by experimenting with a very simple mapping algorithm in order to observe

the effects of different levels of connectivity. In this experiment, a synthetic aperture

radar application with 60 tasks was mapped onto a 9 processor heterogeneous architec-

ture with the purpose of studying the resulting connectivity patterns. The goal of the

mapping algorithm was simply to determine which tasks should be assigned to which

processors, not the relative ordering of the tasks on the processors, or the effects of inter-

processor communication or iterative execution. With these numbers, the search space

consists of approximately2 · 1057 distinct mappings. A genetic algorithm was used to

explore this space. Performance was measured as a function of connectivity constraint

(i.e., an upper limit on allowable connectivity), with 10 trials for each connectivity con-

straint point. Figure 6.2 shows the number of valid solutions found by the genetic algo-

rithm vs. connectivity. Figure 6.3 shows the best throughput obtained as a function of

the connectivity constraint. It can be seen that both the number of valid solutions and

the quality of these solutions increase with increased amounts of connectivity.

6.2 Connection Topologies

Electrically connected systems generally have a regular interconnection pattern, due

to the physical constraints imposed by two-dimensional circuit board layout. Some

examples include ring, mesh, bus, and hypercube interconnect topologies. Using these
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topologies, communication between remote processors requires multiple hops, which

increases both latency and power, and increases contention throughout the network.

In contrast, optically connected multiprocessors, particularly those utilizing free

space optics and three dimensions, are free to utilize arbitrarily irregular interconnection

networks. Once the signal is in the optical domain, there is very little attenuation, so the

energy required to transmit a unit of data is essentially independent of distance. The

required energy instead is a function of the number of electrical-to-optical conversions

that must be performed [63], which in turn is determined by the number of hops. Fur-

thermore, due to the flexibility of the communication medium, it is generally possible

to avoid multi-hop communication operations by simply activating direct communica-

tion channels between the source and destination processors. Together, these properties

make it desirable to limit the number of hops per communication operation when explor-

ing configurations (interconnection patterns and task graph mappings) for an optically

connected, embedded multiprocessor.

Irregular interconnection patterns arise naturally when scheduling task graphs under

the restriction of single-hop communication. A simple example of an irregular inter-

connection network is show in Figure 6.4. Given four processors and four bidirectional

links, there are two possible topologies shown in Figure 6.4(a) and (b). Topology (a) has

a regular interconnection pattern, with each processor connected to two others. Topol-

ogy (b) is irregular, with one processor having degree three, one processor having degree

one, and the others having degree two. Topology (b) allows a single-hop schedule, since

all required communication can take place with only one hop. In topology (a), two hops

are required for communication from taskA to taskD and fromD toE.

Task graph scheduling algorithms generally produce schedules that require an ir-

regular interconnect topology for single-hop communication. For example, Figure 6.5
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shows the application graph for an FFT application [56]. This application was sched-

uled on eight processors using the DLS algorithm [96], with no constraints made on

interconnect placement. Figure 6.6 shows the topology required to operate the result-

ing schedule using only single-hop communication operations. There are 14 directional

links out of a possible 56 for a fully connected system (the ratio of these two numbers

gives a measure of the average connectivity of each processor).

If we denote thedegreeof a processor by the number of incident (physical) com-

munication links, each processor in a fully-connectedn processor system, for example,

has degree2(n− 1) (two links—one incoming and one outgoing—for each processor).

In an arbitrary network, the relative variation in the degrees among different processors

gives a measure of the level of irregularity of the associated interconnection pattern. For

example, in the mapping of Figure 6.6, processors0 and6 have degree six, while pro-
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cessors3 and5 have degree one. This trend of highly irregular connection requirements

occurs over a wide variety of task graph structures. To illustrate this, Figure 6.7 plots

the average of these measures over 100 real and synthetic benchmark application graphs

when scheduled on different numbers of processors. The synthetic benchmarks used

in these experiments were generated using the graph generation techniques of Sih [96],

which are designed to construct task graphs that resemble the dataflow structures found

in DSP applications.

As motivated earlier, when developing automated mapping tools for optically con-
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nected systems, we have several design constraints. It is desirable to map the application

onto the architecture without requiring multi-hop communication, while satisfying con-

straints on system throughput and latency. We also have limits on the maximum I/O

fanout and degree of a single processor. In order to conserve space and power, we

would also like to minimize the total number of communication links.

6.3 Connectivity and Scheduling Flexibility

Due to the desirability of single-hop communications in optically interconnected mul-

tiprocessors, as motivated in Sections 6.1 and 6.2, it is important during co-design to

employ scheduling techniques that carefully take into account the connectivity of candi-

date interconnection patterns. In systems that are not fully connected, the consequence

of single-hop communication is that each processorp can only send data to some subset

χ(p) of the set of all processorsΦ, and only receive data from a subsetΩ(p) of Φ.

If these constraints are not considered, deadlock can easily occur during the schedul-

ing process. Consider an application graphG, two tasksν1 andν2 in G that have been

scheduled on processorsp1 andp2, respectively, and a third taskν3 that receives data

from ν1 andν2. Then ifχ1(ν1) ∩ χ2(ν2) = ∅, the scheduler is deadlocked.

We define afeasible setof processorsΨ[ν] for a taskν as the largest subset ofΦ

on whichν can be scheduled without deadlock. We would like to have an algorithm

to determine the feasible set of processorsΨ[ν] for all ν ∈ G. In general, a constraint

imposed on one task (scheduling it on a processor) may causeΨ[ν] to be updated for all

ν ∈ G. This update consists of choosing a subset of the setΨ[ν] that existed before the

constraint—new members are never added.

We define thecommunication flexibility(or simplyflexibility for short) of the system
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(a) Processor connection

(b) Application graph

Partial Schedule:
A on processor 2
B on processor 1

Constraint sets:
Ψ A[ ] 2{ }=

Ψ B[ ] 1{ }=

Ψ F[ ] 1{ }=

Ψ D[ ] 1 2,{ }=

Ψ E[ ] 1 2 3, ,{ }=

Ψ C[ ] 1 2 3, ,{ }=

(c)

1 2 3 0

A

B

D

E F

C

Figure 6.8: Example requiring constraint information propagating both forward and

backward.

at any point during the scheduling process as the sum of the sizes of the setsΨ[ν] for all

ν ∈ G. The flexibility gives some measure of the degree of constraint imposed on all

tasks by a given scheduling move. Figure 6.8 depicts a simple example of an application

graph with six tasks being scheduled on four processors. A partial schedule is shown

in Figure 6.8(c). Scheduling taskB in Figure 6.8(b) has an effect on tasksC, D, E,

andF . Figure 6.8(c) shows the constraint setsΨ for each task after schedulingB on

processor 1. The flexibility at this point is equal to 11. IfB had been scheduled on

processor 2, the flexibility would be 16. This example also demonstrates the potential

for deadlock. After taskB is scheduled on processor 1, processor 0 becomes infeasible

for taskC, since scheduling taskC on processor 0 confines taskE to processor 0. Task
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Algorithm 6.1: Rf1(S)

input: set of processors S ∈ Φ

Φ is the set of all processors
output: set of processors R that can be reached from S in zero or one hop

R← S

for all p ∈ S

do







for all z ∈ Φ

do
{

if C(p, z) ≡ TRUE
then

{

R← R ∪ {z}
return (R)

Figure 6.9: FunctionRf 1(S).

Algorithm 6.2: Rb1(S)

input: set of processors S ∈ Φ

Φ is the set of all processors
output: set of processors R that can reach at least one element in S with zero or one hop

R← S

for all p ∈ S

do







for all z ∈ Φ

do
{

if C(z, p) ≡ TRUE
then

{

R← R ∪ {z}
return (R)

Figure 6.10: FunctionRb1(S).

F is confined to processor 1 sinceB is scheduled on 1. TaskD sends data to bothE

andF , and there is no processor which can communicate with both processors 0 and 1

in a single hop. Existing scheduling algorithms are not designed to detect this deadlock

condition. Avoiding these deadlock situations is not trivial, since scheduling one task in

the graph may possibly constrain any other task in the graph.

The algorithm described in Figures 6.9, 6.10, 6.11, 6.12, and 6.13, works by prop-

agating constraint information forward and backward through the application graphG.

The inputn specifies the maximum number of hops allowed for two processors to com-

municate with each other. In this chapter we will concentrate on single-hop commu-

nication, wheren = 1. First an edge-reversed copŷG of the application graphG is
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Algorithm 6.3: BFSFORWARD(G, s, n, endNodes, bottomNodes, F )

input: application graph G

input: node s in G being considered

input: set of discovered endNodes

input: maximum hop communication allowed n

output: stack of newly discovered bottomNodes

input/output: array F of sets of feasible processors for each node in G

local variables: queue of nodes Q, array dist of distances for each node

local variables: set R of processor numbers, application graph nodes w, v

for all w ∈ G

do
{

dist[w] = −1 dist[s] = 0
Q← {s}
while (Q 6= ∅)

do















































v = head(Q)
for all w ∈ Adj[v]

do































if dist[w] < 0

then























ENQUEUE(Q, w)
dist[w] = dist[v] + 1
F [w] = F [w] ∩ Rfn(F [v])
if outdegree(w) = 0

then
{

PUSH(w, bottomNodes)

Figure 6.11: Function bfsForward().
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Algorithm 6.4: BFSBACKWARD(Ĝ, H, s, n, endNodes, topNodes, F )

input: edge-reversed application graph Ĝ

comment: for every node u ∈ Ĝ, v = Ĝ[u] gives corresponding node in G

input: array of nodes H

comment: for any node v ∈ G, u = H [v] references corresponding node in Ĝ

input: node s in G being considered

input: set of discovered endNodes

input: maximum hop communication n allowed

output: stack of newly discovered topNodes

input/output: array F of sets of feasible processors for each node in G

local variables: queue of nodes Q, array dist of distances for each node

local variables: set R of processor numbers, application graph nodes w, v, ŝ

local variables: nodes in Ĝ: ŵ, v̂

for all w ∈ Ĝ

do
{

dist[w] = −1 ŝ = H [s]
dist[ŝ] = 0
Q← {ŝ}
while (Q 6= ∅)

do































































v = head(Q)
for all w ∈ Adj[v]

do















































if dist[w] < 0

then







































ENQUEUE(Q, w)
ŵ = H [w]
v̂ = H [v]
dist[w] = dist[v] + 1
F [ŵ] = F [ŵ] ∩ Rbn(F [v̂])
if outdegree(w) = 0

then
{

PUSH(ŵ, topNodes)

Figure 6.12: Function bfsBackward().
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Algorithm 6.5: FEASIBLE(G, Ĝ, H, s, p, n, F, commit)

input: application graph G

input: edge-reversed application graph Ĝ

comment: for every node u ∈ Ĝ, v = Ĝ[u] gives corresponding node in G

input: array of nodes H

comment: for any node v ∈ G, u = H [v] references corresponding node in Ĝ

input: node s in G being considered

input: processor p being considered

input: maximum hop communication n allowed

input: boolean value commit determines if changes to F are saved

input/output: array F of sets of feasible processors for each node in G

local variables: local copy of F Flocal, set of discovered endNodes

local variables: stack of nodes topNodes, application graph nodes v, vf , bf

local variables: sets of processor numbers f and r

if p /∈ F [s]
then

{

return−1
Flocal = F
Flocal[s] = {p}
PUSH(topNodes, s)
while topNodes 6= ∅

do















































while topNodes 6= ∅

do







POP(topNodes, vf )
INSERT(endNodes, vf )
BFSFORWARD(G, s, n, endNodes, bottomNodes, Flocal)

while bottomNodes 6= ∅

do







POP(bottomNodes, vb)
INSERT(endNodes, vb)

BFSBACKWARD(Ĝ, H, s, n, endNodes, topNodes, Flocal)
if commit

then
{

F = Flocal
flexibility = 0
for all v ∈ G

do
{

flexibility = flexibility + size(Flocal)
return (flexibility)

Figure 6.13: Function feasible() determines feasibility and flexibility (degree of con-

straint) for scheduling tasks on processorp.
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created. When making a scheduling move (introducing a new constraint at a tasks), the

constraint information is propagated forward using breadth first search froms through

G. When anendnode(task with no successors) is discovered during the forward phase

for the first time, it is added to a stack (namedendNodes).

At the end of the forward phase, the backward phase begins. Each endnode is re-

moved from the stack and the constraint information is propagated backward by per-

forming breadth first search from the endnodes throughH. While propagating back-

ward, newly discovered endnodes ofH are added to a second stack. These endnodes

are removed from the stack, and search continues in the forward direction. The process

continues until there are no newly found endnodes.

We defineRf 1(S) andRb1(S) for sets of processors reachable fromS in one hop.

Then for multiple hops

Rf 2(S) = Rf 1(Rf 1(S))

Rb2(S) = Rb1(Rb1(S))

Rfn(S) = Rf 1(Rfn−1(S))

Rbn(S) = Rb1(Rbn−1(S))

We define the functionsbfsForward() andbfsBackward() which use breadth first

search to propagate constraint information for a tasks in a graphG in the forward and

backward direction.

The feasible() function described in Figure 6.13 returns an integer equal to the

sum of the sizes of the constraint sets for all nodes in the application graphG when

scheduling a taskG on a processorp, given an inputn corresponding to the maximum

number of communication hops allowed. Ifs is not feasible onp, the function returns

−1.
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(scheduling step) at specified feasible sets

point in feasible

(1) schedule A on 2: end of

feasible()

A:[2] B:[1,2,3] C:[0,1,2,3] D:[1,2,3]

E:[0,1,2,3] F:[0,1,2,3]

(2) schedule B on 1: after

bfsForward() from B

A:[2] B:[1] C:[0,1,2,3] D:[1,2,3]

E:[0,1,2,3] F:[1]

(2) schedule B on 1: after

bfsBackward() from F

A:[2] B:[1] C:[0,1,2,3] D:[1,2]

E:[0,1,2,3] F:[1]

(2) schedule B on 1: after

bfsForward() from A

A:[2] B:[1] C:[0,1,2,3] D:[1,2]

E:[1,2,3] F:[1]

(2) schedule B on 1: after

bfsBackward() from E

A:[2] B:[1] C:[1,2,3] D:[1,2]

E:[1,2,3] F:[1]

(3) schedule C on 3: end of

feasible()

A:[2] B:[1] C:[3] D:[2] E:[3] F:[1]

(3 alternate) sched C on 1: end of

feasible()

A:[2] B:[1] C:[1] D:[1,2] E:[1] F:[1]

Table 6.1: Feasible sets at various points during scheduling.
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Table 6.1 lists the constraint sets for the tasks in the example of Figure 6.8 at various

stages of thefeasiblefunction. We are schedulingA on 2,B on 1, andC on either 3

or 1. Here we can see that after scheduling taskB on processor 1, processor 0 is not a

feasible choice for taskC. In Table 6.1, the last row corresponds to the second choice

of schedulingC on processor 1.

6.4 Complexity of the Constraint Algorithm

The bfsForward function will be called once for the tasks being considered, and

once for each task inG with no predecessors (endnode in̂G). The bfsBackward

function will be called once for each task inG with no successors (endnode inG). The

complexity of breadth first search isO(v + e) for a graph withv nodes ande edges.

The bfsForward andbfsBackward functions require a set intersection of two sets

of sizeO(N) whereN is the number of processors in the system. This has complexity

O(N logN). FunctionsRbn andRfn also have complexityO(N logN). The overall

complexity is therefore

O(v(v + e)N logN) (6.1)

This is a reasonable complexity figure in the embedded systems domain, where com-

pile/synthesis time tolerance is significantly higher compared to general-purpose com-

putation (e.g., see [74]).

For interconnection graphs that are strongly connected, such as those in which all

links are bidirectional,Rfn(S) = Φ (the set of all processors) andRbn(S) = Φ after

some number of hopsh ≤ N , and the breadth first searches do not need to proceed for

distances further thanh whereh is the maximum hop constraint given beforehand. In

this case the complexity isO(vhN logN).
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6.5 Incorporating Feasibility and Flexibility into Schedul-

ing

The general class of list scheduling algorithms can easily be adapted to produce single-

hop (orn-hop) schedules by incorporating our constraint algorithm. This is advanta-

geous because it allows us to leverage a large library of useful scheduling techniques.

In list scheduling, a priority listL of tasks is constructed. The priority listL is a

linear ordering(ν1, ν2, . . . , ν|V |) of the tasks in the application graphG = (V,E) such

that for any pair of distinct tasksνi andνj, νi is to be given higher scheduling priority

thanνj if and only if i < j. Each task is mapped to an available processor as soon as

it becomes the highest-priority task according toL among all tasks that are ready. This

process is repeated until all tasks are scheduled.

The concepts of feasibility and flexibility, which where developed in Section 6.3,

can be incorporated into the general framework of list scheduling by restricting the set

of candidate processors to include only those that are feasible at the given scheduling

step, and by taking flexibility into account in designing the priority metric through which

tasks are ordered.

In the context of single-hop communication across arbitrary interconnection pat-

terns, the incorporation of feasibility considerations is required (to avoid scheduler

deadlock, as discussed in Section 6.3), while incorporation of flexibility is optional.

Furthermore, there are many possible ways to consider flexibility in the task prioriti-

zation process. We show in Section 6.6 that even simple techniques for incorporating

flexibility information can lead to large performance improvements for a targeted class

of architectures.
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6.6 Scheduling Experiments using Flexibility

As mentioned earlier, our scheduling technique operates in conjunction with a given

list scheduling strategy. In our experiments, we employed the DLS algorithm [96] as

the underlying list scheduling strategy, although, as explained in Section 6.3, any list

scheduling algorithm could have been used.

We examined a set of DSP application benchmarks and scheduled them using two

different scheduling modes, one that incorporates only feasibility information (to avoid

deadlock), and another that takes both feasibility and flexibility into account. We refer

to these as thefeasibility-onlyandfeasibility-flexibilitymodes, respectively. To evaluate

the performance across a range of connectivity levels, we scheduled the applications

onto networks with varying degrees of connectivity.

In the feasibility-only mode, the processorP considered for a given taskν at each

scheduling step was restricted to be in the feasible setΨ[ν] for ν, as described in Sec-

tion 6.3, and no modification was made to the task prioritization metric of the underlying

list scheduling strategy (DLS).

In the feasibility-flexibility mode, the processorP considered at each scheduling

step was again restricted to be in the feasible set forν; however, whenever two processor

assignments forν resulted in equal priority levelsL(ν), whereL represents the priority

metric of the original DLS algorithm, priority was given to the assignment that resulted

in a higher value of flexibility. In other words, priority was given to assignments that

offered greater flexibility for future scheduling decisions.

For each application, we chose a numberN of processors, then generated a fully

connected network withN(N − 1) links. We scheduled the application using both

feasibility-only and feasibility-flexibility modes onto this network. Next we removed

one link from the network at random, and again scheduled the application using both
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Figure 6.14: Makespans for schedules constructed using DLS plus flexibility computa-

tion with and without considering the processor flexibility metric.

scheduling modes. We continued this process of removing links until no links remained,

resulting with all the tasks scheduled on a single processor. We define the relative im-

provement of the feasibility-flexibility mode over the feasibility-only mode by compar-

ing the average makespan over all link configurations.

The result of this experiment for an FFT application is shown in Figure 6.14. If

we compare the average makespan for the schedules generated by feasibility-flexibility

mode (the top curve in Figure 6.14) with the average makespan of the schedules gen-
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Application N Improvement(%)

FFT1 7 30

Karp10 6 26

Irr 8 17

Qmf4 7 19

NN16-3-4 8 21

Sum1 6 8

Laplace 7 23

FFT2 7 15

Table 6.2: Relative makespan improvement obtained by using flexibility information in

the scheduling process.

erated without incorporating flexibility (the bottom curve in Figure 6.14) we see a 30%

relative improvement when the scheduling algorithm incorporates the flexibility metric.

Table 6.2 summarizes this relative improvement for several other DSP applications.

We performed experiments with the following application graphs: FFT1, Irr, FFT3,

Karp10, Qmf4, Laplace, Sum1, and NN16-3-4. The FFT graphs are different implemen-

tations of the fast Fourier transform from Kahn [56] and contain 28 nodes each. Karp10

refers to the Karplus-Strong music synthesis algorithm with 10 voices (21 nodes), and

Qmf4 is a quadrature mirror filter bank with 14 nodes. Laplace is a Laplace transform,

Irr is an adaptation of a physics algorithm, and sum1 is an upside down binary tree rep-

resenting the sum of products computation. A neural network classifier algorithm with

16 input nodes, 3 intermediate layers, and 4 output nodes labeled NN6-3-4 was also

tested.
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Application N Reduction in comm. energy(%)Makespan increase

for single hop

FFT1 7 16 8

Karp10 6 24 4

Irr 8 16 (2)

Qmf4 7 32 3

NN16-3-4 8 58 2

Sum1 6 1 4

Laplace 7 4 (3)

FFT2 7 12 2

Table 6.3: Reduction in communication of single hop schedule over three-hop schedule.

6.6.1 Power Reduction with Single Hop Communication

As mentioned earlier, it is advantageous to limit interprocessor communication to a low

number of hops because the energy required is proportional to the number of electrical-

to-optical conversions. In order to quantify this effect, we scheduled the benchmark

applications using our modified scheduling technique, which takes the number of hops

as an input parameter. We scheduled the benchmarks with hop constraints of one hop

and three hops, and compared the communication energy required. For our purposes,

we assumed all communication tasks transferred the same number of bits, so the energy

cost of all IPC actors was equal. With a three-hop limit, the scheduler is free to choose

any communication path that involves three or fewer hops and is thus less constrained

in its scheduling choices than with a one-hop limit. Table 6.3 shows the reduction in

the required communication energy for single-hop schedules over three-hop schedules

for the benchmark applications. We would expect that in general the schedules con-
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structed with the three-hop limit would have a lower makespan, since the scheduler is

less constrained—the set of moves available to the scheduler at any point using three

hops is a superset of the moves available when limited to one hop. For these bench-

marks, however, we found that any undesirable effect of the additional constraint for

single-hop schedules was very small, as can be seen in Table 6.3. In two of the bench-

marks (Irr and Laplace), the makespan was in fact better (lower) when we limited the

scheduler to single hops.

6.7 Summary of Flexibility Work

Optical interconnect technology is promising for global communication in embedded

multiprocessors, since the interconnection patterns can flexibly be streamlined and re-

configured to match the target applications. However, due to the power consumption

characteristics of optical links, it is useful to restrict communication across them to

low-hop transfers. We have demonstrated an effective algorithm for determining the

set of feasible processors that will avoid schedule deadlock in a single-hop schedule,

and a useful metric, called communication flexibility, for the degree to which a given

scheduling decision constrains future decisions (in the context of the given communi-

cation topology). We used this algorithm and the flexibility metric in conjunction with

the DLS algorithm to map several DSP applications across a wide range of interconnect

topologies. The results depicted in Figure 6.14 and 6.2 demonstrate both the sound-

ness of our feasibility computation techniques, and the utility of our flexibility metric in

guiding the scheduling process.
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Chapter 7

Synthesizing an Efficient Interconnect Network

Embedded systems typically run a limited and fixed set of applications. We can use

this application-specific information to optimize the interconnection network. For our

purposes, an optimal network is defined in the context of a set of applications and con-

straints. The constraints may include the latency, throughput, and power consumption

for the given applications, along with cost and area constraints of the overall system.

This problem is important for today’s system-on-chip (SoC) designs utilizing elec-

tronic interconnects as well as future designs that might utilize optical interconnects.

SoC design is moving toward a paradigm where reusable components called IP (for in-

tellectual property) from different vendors can be combined to rapidly create a design.

IP interface standards are being developed that define the services one IP component

(or IP block) is capable of delivering, and that enable IP blocks to work with on-chip

buses and other interconnection networks. The SoC designer’s task is then to choose

the appropriate IP blocks, map the application tasks onto these blocks, and to construct

a communication network and corresponding glue logic to connect these IP blocks. As

transistor density increases, more IP blocks can be placed on a single chip, and the num-

ber of possible interconnections (links) between them increases. The longest wires on
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the chip are usually due to these links. These wires contribute to delay and limit the

maximum achievable clock rate. Also, routing these interconnections is a significant

challenge for the EDA tools. Therefore, if we can minimize the number of links re-

quired in the high level design stage, placement and routing can be improved in the back

end of the design process and performance will increase.

In a system utilizing optical interconnects, cost and area constraints dictate the total

number of transmitters and receivers in the system (i.e., total number of optical links).

Routing constraints from local partitions to their associated VCSEL transmitters and

detectors dictate a maximum fanout for each local partition. An optimum interconnect

is then one that minimizes the number of links while enabling the application to meet

the power, latency, and throughput constraints.

Realistic optical networks may incorporate relatively high, but not necessarily com-

plete (fully connected), levels of connectivity. Even in fully-connected systems, such as

FAST-Net [48], it is still desirable from the viewpoint of power and heat dissipation to

have a minimal interconnect mapping, since for a given application, non-essential trans-

mitters can be turned off. In other optical processing implementations, the interconnect

network can be reconfigured between applications [54].

The freedom to optimize interconnection patterns opens up a vast design space, and

thus the design of an optimal interconnect structure for a given application or set of

applications is a significant challenge. In this chapter, we illustrate both probabilistic

and deterministic interconnection synthesis algorithms. A key distinguishing feature to

our interconnect synthesis algorithms is that they work in conjunction with a scheduling

strategy—most existing interconnect synthesis algorithms assume a given schedule.
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7.1 Greedy Interconnect Synthesis Algorithm

We developed a greedy, heuristic algorithm, which we call thetwo-phase link adjustment

(TPLA) algorithm [6], to synthesize an interconnect and an associated multiprocessor

schedule for a given application. The TPLA algorithm starts with a fully connected net-

work, and operates indownandup phases. Input to the algorithm is either a makespan

constraint for the application, or a constraint on the total number of links.

Each step of the down phase in TPLA removes one link, while each step of the up

phase adds one link. One step of the down phase consists of assigning each existing link

a score based on the schedule makespan resulting from its removal, and removing the

link with the lowest score. A history of scores is kept for each link. For the first pass

through the down phase, ties between links are broken randomly. On subsequent phases,

the link history is used to break ties. The down phase continues until all the links are

removed.

Conversely, one step of the up phase in TPLA consists of assigning a score to each

missing link based on the makespan resulting from its addition. The up phase continues

until the network is fully connected. Repeated, alternating invocations of down and up

phases are executed for some time limit (determined by the user), and the best result

found is taken. Given a makespan constraint, this best result minimizes the number of

links. Alternatively, given a constraint on the number of links, the best result minimizes

the makespan.

7.1.1 Experiments with TPLA

We evaluated the TPLA algorithm on a neural network classifier application called

RBFNN, consisting of 16 input nodes, 3 intermediate layers, and 4 output nodes. This
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Figure 7.1: Link synthesis using the TPLA algorithm.

benchmark was chosen in part since it exhibits a large amount of inter-processor com-

munication. The scheduling algorithm used was the DLS algorithm [96] modified to

incorporate the flexibility metric, as detailed in Section 6.5. The bottom curve of Fig-

ure 7.1 shows the best makespan achieved for each level of connectivity between 0 and

fully connected, after one down phase and one up phase. This gives a Pareto curve of

the trade-off between number of links and makespan for the application. For purposes

of comparison, the upper curve of Figure 7.1 shows the makespan achieved by starting

with fully connected and randomly removing one link at a time. The TPLA algorithm
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shows a significant improvement (42% relative improvement) over random removal,

and is thus a promising starting point for developing more sophisticated link synthe-

sis algorithms. More broadly, it demonstrates the effectiveness of joint scheduling and

interconnect synthesis.

7.2 Link Synthesis using Genetic Algorithm

We developed a genetic algorithm (GA) based interconnect synthesis algorithm. This

algorithm also employs the dynamic level scheduling (DLS) algorithm [5] modified for

arbitrary interconnection networks as the underlying list scheduling strategy, although

any list scheduling algorithm could have been used. The algorithm takes into account

constraints on the total number of linkslmax and a maximum fanout for each processor

fmax, as described earlier and motivated by area and cost constraints for the system.

7.2.1 Genetic Algorithm Overview

Genetic algorithms will be described in more detail in Chapter 8—we give a brief

overview here in order to explain the link synthesis algorithm. When a genetic algo-

rithm is used to solve an optimization problem, it is necessary to be able to represent a

single solution to the problem with a single data structure. This representation is often

called achromosomeor anindividual. The quality orfitnessof a given solution is eval-

uated using anobjective function. Genetic algorithms are capable of both broad search

(exploration) and local search (exploitation) of a search space. They are often preferred

than gradient search methods because they avoid local minima, and do not require a

smooth search space.

The basic steps of a genetic algorithm are shown in Figure 7.2. The genetic algo-
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Figure 7.2: Basic steps of a GA.
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parent
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Figure 7.3: Crossover operator applied to array chromosome.

rithm creates an initialpopulationof candidate solutions using an initialization operator.

Often the initial population is distributed randomly over the search space. The genetic

algorithm first selects individuals from the population and performscrossoverandmuta-

tion operations on these individuals. Traditional crossover generates twochildren from

two parentsin a population. This is depicted in Figure 7.3 for a chromosome whose rep-

resentative data structure is an array. Acrossover pointis chosen, shown by the dashed

vertical line in Figure 7.3, and the child chromosome is formed by the elements from

the first parent chromosome to the left of the crossover point and the elements from

the second parent to the right of the crossover point. The mutation operator specifies

a procedure for changing (mutating) an individual. The specifics of the mutation de-

pend on the data structure used to represent an individual. A typical mutation operator

for an individual represented by a binary string flips the bits in the string with a given

probability (themutation probability). Onegenerationof a genetic algorithm consists

of performing crossover and mutation on individuals in the population. There are many

possibilities for evolving the population. AsimpleGA uses non-overlapping popula-
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tions. Each generation creates an entirely new population of individuals. Asteady state

GA uses overlapping populations, in which a fraction of the population is replaced in

each generation. In anincrementalGA each generation consists of only one or two

children.

7.2.2 Problem representation

In our algorithm, the individuals are bit vectors corresponding to a given interconnect

topology. The fitness function for a chromosome in our interconnect synthesis algorithm

is described by

fitness= M(1 + Pf + Pl) (7.1)

whereM is the makespan (latency) calculated by the modified DLS algorithm for the

interconnect topology of the chromosome,Pf (equation 7.6) is a penalty based on vio-

lating the fanout constraintfmax, andPl (equation 7.7) is a penalty based on violating

the maximum link constraintlmax.

We define alink vector as a bit vector with one entry for each possible intercon-

nection between two processors. For a system withN processors, there areN(N − 1)

entries in the link vector. The link vector for a four processor system would be denoted

as

~l = (l01l02l03l10l12l13l20l21l23l30l31l32) (7.2)

wherelij equals one if there is a connection from processori to processorj and zero

otherwise. We definelij ≡ 0 if i = j. We also write~l as

~l = (~l0~l1 . . .~lN−1) (7.3)

where~lk describes the (outgoing) connections for processork. We will refer to the~lk as
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processor link vectors. We define the fanout of processori by

fi =
N−1∑
j=0

lij
.
= ‖~li‖ (7.4)

Then the number of links is given as

nl =
N−1∑
i=0

fi (7.5)

while the fanout penalty is given by

Pf =
N−1∑
i=0

Pi (7.6)

wherePi = max(0, (fi − fmax)). The link penalty is given by

Pl = max(0, (nl − lmax)). (7.7)

7.2.3 Fanout Constraints

In a real system, cost and area constraints will place a limit on the processor fanout.

For example, in a free-space optical system such as FAST-Net [48], each link requires a

dedicated VCSEL/photoreceiver pair. In the WDM-based system proposed in Chapter

5, a separate wavelength is required to transmit to each processor, and each processor

requires a tunable source. In this case there is a physical limit on the number of re-

solvable wavelengths, given byn = B/Γ whereB is the fiber bandwidth andΓ is the

channel spacing. Cost constraints may also limit the number of wavelengths allowed

for the tunable sources. For today’s WDM systems,Γ = 50GHz whileB u 4000GHz

corresponding to the wavelength range from1530 to 1565nm (C band) in a fiber. This

yields80 channels. In order to achieve such narrow channel spacing, the temperature of

the laser transmitter must be carefully controlled. A lower cost variant to WDM, called

coarse wavelength division multiplexing (CWDM) is being deployed in metropolitan
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networks. The latest standard proposed by the Full Spectrum CWDM Alliance is a

channel spacingΓ = 20nm (u 3600GHz) starting from 1271nm up to 1611nm. The

wider channel spacing (u 72 times greater) allows lower tolerances on the lasers, and

allows them to operate without temperature control.

In any case, it is important to have a link synthesis algorithm that can conform to

fanout constraints. Our GA is able to incorporate these constraints in a straightfor-

ward manner by implementing the initialization, crossover, and mutation operators as

described below.

7.2.4 Crossover and Mutation Operators

We first note that if an individual topology is represented as a binary string as in equation

7.2, then the typical crossover operations like array one-point crossover (Figure 7.3) or

two-point crossover will not preserve the fanout constraint. This is illustrated in Figure

7.4 where both parents obey a fanout constraintfmax = 2, but processor0 of child X

has fanoutf0X = 3. This is because the crossover point can be chosen at any point.

If we instead choose to represent the topology by the vector representation of Equation

7.3, fanout constraints are preserved in the crossover operation, since the link vectors

for individual processors~li are never altered. The crossover operation only rearranges

the relative position of these link vectors. This is illustrated in Figure 7.5.

We also must ensure that the initial population obeys the link constraint. The initial-

ization operator generates random processor link vectors which each satisfy the fanout

constraint Equation 7.4.N − 1 of these vectors are then concatenated to form the link

vector.

The mutation operator simply chooses a random bit in the link vector, and sets its

value to zero. This removes a link if one existed at this point. Since the mutation
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Figure 7.4: Crossover operation for link synthesis using the binary string representation

Equation 7.2. Link fanout constraint is not preserved for childX, where the fanout of

processor0 is f0X = 3.
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Figure 7.5: Crossover operation for link synthesis using the vector representation Equa-

tion 7.3. The fanout constraintfmax = 2 is preserved in the children.
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operator only removes links, the fanout constraint is preserved.

7.2.5 Experiments

We evaluated our GA-based interconnection synthesis algorithm on the RBFNN appli-

cation discussed above. We compared the GA-based algorithm to the TPLA algorithm.

The genetic algorithm has several advantages over the TPLA algorithm. The first advan-

tage is that it is able to incorporate fanout constraints, which the TPLA algorithm does

not. Cost and area considerations often dictate fanout constraints. In a free-space optical

system, as already mentioned, fanout is dictated by the number of VCSELs and photore-

ceivers that can be placed adjacent to a processor. In a WDM system, cost constraints

dictate the number of wavelengths used. The second advantage is that, in order to syn-

thesize a network for a given link constraint, the TPLA must evaluate many intermediate

topologies that do not meet the link constraint during its construction phases. This makes

it much less efficient, especially for systems with a large number of processors. Neither

of these algorithms take into account isomorphically unique link topologies, which is

the subject of the following section. Figure 7.6 shows the best latency achieved for each

level of connectivity between zero connectivity and fully connected for both algorithms.

This gives a Pareto curve of the trade-off between number of links and latency for the

application. In order to properly compare the different algorithms, the GA run time was

limited to the run time required by TPLA. The results show that the algorithm based

on the GA performs 21% better (producing lower makespan schedules), when averaged

over the different link configurations, for this benchmark.
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Figure 7.7: Example of two isomorphic graphs.

7.3 Using Graph Isomorphism

If we consider systems in which all the processors are identical (homogeneous processor

set), then we can pare the design space significantly if we only consider isomorphically

unique topology graphs.Two graphsG = (V,E) andG′(V ′, E ′) are isomorphic if we

can relabel the vertices ofG to be vertices ofG′, maintaining the corresponding edges

in G andG′. For example, the graphs in Figures 7.7(a) and 7.7(b) are isomorphic with

the vertices relabelled as follows:1→ a, 2→ b, 3→ c, and4→ d.

Consider a topology graphG with E edges andN nodes where each node corre-

sponds to a processor and each edge corresponds to a link between two processors.

The maximum number of edges inG is Emax = N(N − 1) corresponding to a fully

connected graph (full crossbar interconnect). If all links are bidirectional, the topology

graph is undirected andEmax = N(N − 1)/2. We can represent the graphs with either

an adjacency list or adjacency matrix and label each different representation. Then for a

graph withE edges the number of different labellings is given by

ng =

(
Emax

E

)
=

Emax!

E!(Emax − E)!
=

N(N − 1)!

E!(N(N − 1)− E)!
(7.8)
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which increases exponentially withN . The maximum value ofng occurs atE =

Emax/2. However, the number of isomorphically unique graphsnunique is much less

thanng. For very smallN , we can enumerate the different possibilities to show this.

Figure 7.8 depicts the different isomorphic graphs forN = 4 processors andE = 3

bidirectional links. There are20 different graph labellings, but we observe that most are

isomorphic—only3 are isomorphically unique.

For largerN , ng increases rapidly according to Equation 7.8. We enumerated the

possibilities and tested for isomorphism forN = 5 andN = 6 using Brendan McKays’s

nautyprogram [78], which is currently the fastest published graph isomorphism testing

program. The results are shown in Figure 7.9 ForN = 6 andE = 12 we observe

that there is a3 order magnitude difference between theng andnunique. Also, this ratio

increases withng. We would like to exploit this property to pare the design space for

link synthesis.

Sinceng is so large it is impractical to compute and store the isomorphic graphs

in advance. Rather, we employ an on-line isomorphic test in order to speed up our

deterministic algorithm. This is illustrated in Figure 7.10. In this algorithm we store

the topology graphs, and schedule them only if they are not isomorphic with another

topology graph previously evaluated. We begin with a connected graphG1 with e =

N − 1 edges, and define a setS of evaluated graphs. Initially,S = G1. We define a

parameterjmax which corresponds to the maximum number of graphs we will consider

at a givene, and a parameterGbest,e which corresponds to the best graph withe edges.

We construct graphG2 by adding an edge toG1. At this step, there areN(N−1)−e

possible edges to add. IfG2 is not isomorphic with a graph inS, we setS = S ∪ {G2}

and scheduleG2 using a combination of the DLS scheduling algorithm [97] and the

flexibility algorithm as described in Chapter 6. If the throughput usingG2 is higher than
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Figure 7.8: Isomorphically unique graphs containingE edges forN = 4 processors.

Here we only consider undirected graphs representing bidirectional links in order to

make the figure clearer.
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the throughput usingGbest,e then we replaceGbest,e. Next we construct a graphG3 by

removing an edge fromG2. If G3 is not isomorphic with a graph inS we scheduleG3,

setS = S∪{G3}, and updateGbest,e. If G3 = G1 then the algorithm is “stuck”—further

combinations of adding and removing edges will produce graphs already evaluated. At

this point we constructG1 by adding an edge toGbest,e and repeat the above process by

constructing a newG2 (with one more edge this iteration) by adding an edge toG1. We

continue until either the throughput constraint is met and the algorithm is successful,

or until e = emax and the algorithm fails to meet the throughput constraints withemax

edges.

The graph isomorphism test speeds up the deterministic link synthesis algorithm

only if isomorphism testing of a topology graph is faster than the scheduling the appli-

cation on the graph. The complexity of the graph isomorphism algorithm is still an open

problem—there exists no known P algorithm for graph isomorphism testing, although

the problem has also not been shown to be NP-complete. It is thought that the prob-

lem falls in the area between P and NP-complete, if such an area exists [99]. However,

McKay’s nauty[78] program has been proven to be very efficient in practice. Although

its worst case run time is exponential [81], an empirical test of a large number of ran-

domly generated graphs produced run times of1.2p2 ns on a 1 GHz Pentium III machine

wherep is the number of nodes in the graph [78] (p equals the number of processors in

our case). By comparison, the DLS scheduling algorithm has complexityO(v3p) where

v is the number of nodes in thetask graph[97]. We modify the DLS scheduling algo-

rithm by adding a flexibility calculation at each scheduling step. The complexity of the

flexibility algorithm (Equation 6.1) isO(v(v+e)p log p) wheree is the number of edges

in the graph, so the overall complexity scheduling an arbitrary graph using the modified
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DLS scheduling algorithm is

O(v4(v + e)p2 log p). (7.9)

The number of tasks in the application will be much greater than the number of pro-

cessors in practice, sov >> p ande >> p. For randomly generated graphs, the nauty

program is therefore much faster than the modified DLS scheduling algorithm and we

achieve significant speedup by detecting and exploiting graph isomorphism.
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Chapter 8

Design Space Exploration Using Simulated

Heating

8.1 Introduction

Application-specific, parameterized local search algorithms (PLSAs), in which opti-

mization accuracy can be traded off with run-time, arise naturally in many optimization

contexts, including most of the optimzation problems discussed in this thesis. For many

problems in system design, the user wishes to first quickly evaluate many trade-offs in

the system, often in an interactive environment, and then to refine a few of the best de-

sign points as thoroughly as possible. Often, an exact system simulation may take days

or weeks. In this context, it is quite useful to have optimization techniques where the

run-time can be controlled, and which will generate a solution of maximum quality in

the allotted time.

In this chapter we introduce a novel approach, which we callsimulated heating,

for systematically integrating parameterized local search into evolutionary algorithms

(EAs). Using the framework of simulated heating, we investigate both static and dy-

namic strategies for systematically managing the trade-off between PLSA accuracy and
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optimization effort. Our goal is to achieve maximum solution quality within a fixed

optimization time budget.

We show that the simulated heating technique better utilizes the given optimization

time resources than standard hybrid methods that employ fixed parameters, and that the

technique is less sensitive to these parameter settings. In Chapter 9 we apply this frame-

work to the voltage scaling optimization problem discussed in Section 4.3, a memory

cost minimization problem for embedded systems, and the well-known binary knapsack

problem. We compare our results to the standard hybrid methods, and show quantita-

tively that careful management of this trade-off is necessary to achieve the full potential

of an EA/PLSA combination. We also explain how simulated heating could be used for

the interconnect synthesis problem and for the problem of finding optimal transaction

orders. Demonstrating the use of simulated heating on these last two problems is the

subject of future work.

For many optimization problems, efficient algorithms exist for refining arbitrary

points in the search space into better solutions. Such algorithms are calledlocal search

algorithmsbecause they define neighborhoods, typically based on initial “coarse” solu-

tions, in which to search for optima. Many of these algorithms are parameterizable in

nature. Based on the values of one or more algorithm parameters, such aparameterized

local search algorithm (PLSA)can trade off time or space complexity for optimization

accuracy.

PLSAs and evolutionary algorithms (EAs) have complementary advantages. EAs

are applicable to a wide range of problems, they are robust, and are designed to sample

a large search space without getting stuck at local optima. Problem-specific PLSAs are

often able to converge rapidly toward local minima. The term ‘local search’ generally

applies to methods that cannot escape these minima. For these reasons, PLSAs can be
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incorporated into EAs in order to increase the efficiency of the optimization.

Several techniques for incorporating local search have been reported. These include

Genetic Local Search [80], Genetic Hybrids [40], Random Multi-Start [61], GRASP [38],

and others. These techniques are often demonstrated on well-known problem instances

where either optimal or near-optimal solutions are known. The optimization goal of

these techniques is then to obtain a solution very close to the optimum with acceptable

run-time. In this regard, the incorporation of local search has been quite successful.

For example, Vasquez and Whitley [106] demonstrated results within 0.75% of the best

known results for the Quadratic Assignment Problem using a hybrid approach, with all

run times under five hours. In most of these hybrid techniques the local search is run

with fixed parameter values (i.e. at the highest accuracy setting).

In this thesis, we consider a different optimization goal, which has not been ad-

dressed so far. Here we are interested in generating a solution of maximum quality

within a specified optimization time, where the optimization run time is an important

constraint that must be obeyed. Such a fixed optimization time budget is a realistic

assumption in practical optimization scenarios. Many such scenarios arise in the de-

sign of embedded systems. In a typical design process, the designer begins with only

a rough idea of the system architecture, and first needs to assess the effects of a large

number of design choices—different component parts, memory sizes, different software

implementations, etc. Since the time to market is very critical in the embedded system

business, the design process is on a strict schedule. In the first phases of the design

process, it is essential to get good estimates quickly so that these initial choices can be

made. Later, as the design process converges on a specific hardware/software solution,

it is important to get more accurate solutions. In these cases, the designer needs to have

the run time as an input to the optimization problem.
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In order to accomplish this goal, we vary the parameters of the local search during

the optimization process in order to trade off accuracy for reduced complexity. Our

optimization approach is general enough to hold for any kind of global search algorithm;

however, in this paper we test hybrid solutions that solely use an EA as the global search

algorithm. Existing hybrid techniques fix the local search at a single point, typically at

the highest accuracy. In the following discussion and experiments, we refer to this

method as afixed parameter method. We will compare our results against this method.

One of the central issues we examine is how the computation time for the PLSA

should be allocated during the course of the optimization. More time allotted to each

PLSA invocation implies more thorough local optimization at the expense of a smaller

number of achievable function evaluations (e.g., smaller numbers of generations ex-

plored with evolutionary methods), and vice-versa. Arbitrary management of this trade-

off between accuracy and run time of the PLSA is not likely to generate optimal re-

sults. Furthermore, the proportion of time that should be allocated to each call of the

local search procedure is likely to be highly problem-specific and even instance-specific.

Thus, dynamic adaptive approaches may be more desirable than static approaches.

In this thesis, we describe a technique calledsimulated heating[12, 113], which

systematically incorporates parameterized local search into the framework of global

search. The idea is to increase the time allotted to each PLSA invocation during the

optimization process—low accuracy of the PLSA at the beginning and high accuracy

at the end1. This is in contrast to most existing hybrid techniques, which consider a

fixed local search function, usually operating at the highest accuracy. Within the context

of simulated heating optimization, we consider both static and dynamic strategies for

1In contrast to [113], the time budget here refers to the overall GSA/PLSA hybrid, not only the time

resources needed by the PLSA.
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systematically increasing the PLSA accuracy and the corresponding optimization effort.

Our goals are to show that careful management of this trade-off is necessary to achieve

the full potential of an EA/PLSA combination, and to develop an efficient strategy for

achieving this trade-off management. We show that, in the context of a fixed optimiza-

tion time budget, the simulated heating technique performs better than using a fixed

local search.

In most heuristic optimization techniques, there are some parameters that must be set

by the user. In many cases, there are no clear guidelines on how to set these parameters.

Moreover, the optimal parameters are often dependent on the exact problem specifica-

tion. We show that the simulated heating technique, while still requiring parameters to

be set by the user, is less sensitive to the parameter settings.

First we will outline PLSAs for three of the optimization problems covered in this

thesis.

8.1.1 PLSA for Voltage Scaling

Background

Dynamic voltage scaling [73] in microprocessors is an important advancing technology.

It allows the average power consumption in a device to be reduced by slowing down

(by lowering the voltage) some tasks in the application. Here we will assume that the

application is specified as a dataflow graph. We are given a schedule (ordering of tasks

on the processors) and a constraint on the throughput of the system. We wish to find a

set of voltages for all the tasks that will minimize the average power of the system while

satisfying the throughput constraint. The only way to compute the throughput exactly in

these systems is via a full system simulation. However, simulation is computationally

intensive and we would like to minimize the number of simulations required during
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synthesis. We have previously demonstrated that a data structure, called theperiod

graph, can be used as an efficient estimator for the system throughput [9] and thus

reduce the number of simulations required.

Using the Period Graph for Local Search

As explained in [9] and in Chapter 4, we can estimate the throughput of the system

as voltage levels are changed by calculating the maximum cycle mean2 (MCM) [66]

of the period graph. In order to construct the period graph, we must perform one full

system simulation at an initial point—after the period graph is constructed we may use

the MCM estimate without re-simulating the system. It is shown in [9] that the MCM

of the period graph is an accurate estimate for the throughput if the task execution times

are varied around a limited region (local search), and that the quality of the estimate

increases as the size of this region decreases. A variety of efficient, low polynomial-

time algorithms have been developed for computing the maximum cycle mean (e.g.,

see [29]).

We can use the size of the local search neighborhood as the parameterp in a pa-

rameterized local search algorithm (PLSA). We call this parameter the re-simulation

threshold (r), and define it as the vector distance between a candidate point (vector of

voltages) and the voltage vectorV from which the period graph was constructed. To

search around a given pointV in the design space, we must simulate once and build the

period graph. Then, as long as the local search points are within a distancer fromV , we

can use the (efficient) period graph estimate. For points outsider, we must re-simulate

2Here the maximum cycle mean is the maximum, over all directed cycles of the period graph, of the

sum of the task execution times on a cycle divided by the sum of the edge delays (initial tokens) on a

cycle.
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and rebuild the period graph. Consequently, there is a trade-off between speed and ac-

curacy forr—asr decreases, the period graph estimate is more accurate, but the local

search is slower since simulation is performed more often.

PLSA Implementation

To solve the dynamic voltage scaling optimization problem we use a GSA/PLSA hybrid

where an evolutionary algorithm is the GSA and the PLSA is either a hill climbing [64]

or Monte Carlo [57] search utilizing the period graph. Pseudo-code for both local search

methods is shown in Figures 8.1 and 8.2. The benefit of using a local search algorithm

is that within a restricted voltage range we can use the period graph estimator for the

throughput, which is much faster than performing a simulation. The local search algo-

rithms are explained further below.

Voltage Scaling PLSA 1: Hill Climb Local Search

For the hill climbing algorithm, we defined a parameterδ, which is the voltage step, and

a re-simulation thresholdr, which is the maximum amount that the voltage vector can

vary from the point at which the period graph was calculated. We ran the algorithm for

I iterations. So for this case, the PLSAL had 3 parametersI, r, andδ. One iteration of

local search consisted of changing the node voltages, one at a time, by±δ, and choosing

the direction in which the objective function was minimized. From this, the worst case

costC(I, r, δ) for I iterations would correspond to evaluating the objective function3I

times, and re-simulating(I/dr/δe) times. For our experiments we fixedI andδ and

defined the local search parameter asp = 1/r. Then for smallerp (corresponding to

larger re-simulation threshold) the voltage vector can move a greater distance before a

new simulation is required. For a fixed number of iterationsI in the local search, a
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Algorithm 8.1: HILL CLIMB LOCAL SEARCH(

~Vin, N, I, G, Fobj, δresim, ~Vout, score

)

input: voltage vector ~Vin of size N

input: number of iterations I

input: period graph G with N tasks

input: objective function Fobj derived from maximum cycle mean of G scaled by ~V

input: δresim is the resimulation threshold distance

output: voltage vector ~Vout

LowScore←∞
δ ← δresim/100
~V ← ~Vin
for (k = 0; k < I ; k + +)

do
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for (i = 0; i < N ; i + +)

do
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V0 ← V [i]
V [i]← V0(1 + δ)

f1 ← Fobj(
~V , G)

V [i]← V0(1− δ)

f2 ← Fobj(
~V , G)

V [i] = V0

f ← Fobj(
~V , G)

if (f1 < f)
then

{

V [i]← V0(1 + δ)
else if (f2 < f)
then

{

V [i]← V0(1− δ)

D ← ‖~V − ~Vin‖
if (D < δresim)

then
{

Resimulate and rebuild G
~Vin ←

~V

score← Fobj(
~V , G)

if (score < LowScore)

then
{

LowScore← score
~Vout ← ~V

Figure 8.1: Pseudo-code for hill climb local search for voltage scaling application.
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Algorithm 8.2: MONTE CARLO LOCAL SEARCH(

~Vin, N, R, G, Fobj, D, δresim, ~Vout, score

)

input: voltage vector ~Vin of size N

input: number of random points generated R

input: D is maximum distance from ~Vin to random point

input: period graph G with N tasks

input: objective function Fobj derived from maximum cycle mean of G scaled by ~V

input: δresim is the resimulation threshold distance

output: voltage vector ~Vout

output: score

Generate a list Lrand of R random vectors uniformly distributed within
a distance no more than D from ~Vin
~Vx ← ~Vin
score←∞
for (i = 1 to R)

do
{

qr ← ‖ ~Vr − ~Vin‖
while (Lrand not empty )

do
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Pop head of list Lrand to get ~V

Scale G by ~V

q ← ‖ ~Vx − ~V ‖
if (q < δresim)

then


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

f ← Fobj(
~V , G)

if (f < score)
then

{

score← f

else
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~Vx ← ~V

Resimulate around ~V and rebuild G

for (r = 1 to size(Lrand))
do

{

qr ← ‖ ~Vr − ~Vx‖
Sort Lrand according to lowest q first

Figure 8.2: Pseudo-code for Monte Carlo local search for voltage scaling application.
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smallerp corresponds to a shorter running timeC(p) for L(p). The accuracyA(p) is

lower, since the accuracy of the period graph estimate decreases as the voltage vector

moves farther away from the simulation point.

Voltage Scaling PLSA 2: Monte Carlo Local Search

In the Monte Carlo algorithm, we generatedN random voltage vectors within a dis-

tanceD from the input vector. For all points within a re-simulation thresholdr, we used

the period graph to estimate performance. A greedy strategy was used to evaluate the

remaining points. Specifically, we selected one of the remaining points at random, per-

formed a simulation to construct a new period graph, and used the resulting estimator

to evaluate all points within a distancer from this point. If there were points remaining

after this, we chose one of these and repeated the process. For the experiments we fixed

N andD and defined local search parameterp = 1/r. As for the hill climbing local

search, smaller values ofp correspond to shorter run times and less accuracy for the

Monte Carlo local search.

8.1.2 PLSA for Interconnect Synthesis

In Section 7.1 we described a greedy heuristic algorithm, called the TPLA algorithm [6],

to synthesize an interconnect and an associated multiprocessor schedule for a given

application. Here we will describe how this algorithm can be parameterized so that it

can be used as a PLSA for simulated heating.

The TPLA algorithm starts with a fully connected network, and operates indown

andupphases. Each step of the down phase in TPLA removes one link, while each step

of the up phase adds one link. We can modify this basic idea to create a parameterized

local search for interconnect synthesis. The input to the local search is a processor
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A B C

D

A B C

D

Remove (A,B) and (B,C)

Add (B,A) and (C,D)

Input:

Output:

Figure 8.3: PLSA for interconnect synthesis. The output topology graph is one possible

topology generated from the input topology graph withρ = 2.

topology graph (Section 6.1.1)T (Φ, L) with φ processors (nodes in the topology graph)

andl links (edges in the topology graph). We first removeρ links, whereρ ≤ l. There

ared =
(
l
ρ

)
possible choices. Next we add backρ links to achieve a new topology with

l links. This effectively creates a set of topologies in a local region around the input

topology. Figure 8.3 illustrates this concept.

There areφ(φ − 1) − (l − ρ) positions where a link may be added where one does

not already exist, so there areu =
(
φ(φ−1)−(l−ρ)

ρ

)
possible choices for adding back the

ρ links. The total number of combinations for first removingρ links then adding back

ρ links is the product ofu andd. Many of these topologies may be isomorphic to one
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another, so the online graph isomorphism test (Section 7.3) can be used to avoid evalu-

ating isomorphic topologies. Each time an isomorphically unique topology is created, it

is evaluated using a scheduling algorithm utilizing the feasibility and flexibility metrics

(Chapter 6), and the topology with the best schedule is chosen as the output of the local

search.

The number of topologies generated (the local search complexity) is a rapidly in-

creasing function ofρ, andρ can be used as the PLSA parameterp. It is also possible to

place a limit on the number of combinations ofρ links removed (dmax) and the number

of combinations ofρ links added back (umax). In this case the local search parameter

p = dmaxumax can be adjusted so that the local search complexity does not increase so

fast with increasingp.

8.1.3 PLSA for Ordered Transactions

The ordered transactions strategy was covered in Chapter 5, where it was shown that the

problem of finding optimal transaction orders is NP-complete. In this section, we outline

how a PLSA could be constructed for this problem. Recall that the ordered transactions

graph (Section 5.1.3)Γ(GIPC, O) is created from an IPC graphGIPC and a transaction

orderO, and that the MCM ofΓ gives the throughput of the system. A PLSA for the

ordered transactions problem takes an input orderingOin and evaluates permutations

aroundOin to produce a better orderingOout. The permutation method we propose is

a pair swap—we swap the positions of a pair of nodes in the transaction ordering. If

the swapping does not create any zero-delay cycles, we can calculate the MCM of the

new ordered transaction graph. If the pair swap has produced a lower MCM, we keep

this ordering and attempt to swap another pair of nodes. This continues for a numberp

of iterations, wherep is the local search parameter. Pseudo-code for this local search is
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Algorithm 8.3: ORDERED TRANSACTIONS LOCAL SEARCH(

Oin, GIPC, Oout

)

input: transaction ordering Oin of length n

input: IPC graph GIPC

output: new transaction ordering Oout

i← n

Oout ← Oin
bestScore← MCM(Γ(GIPC, Oin))
count← 0
while (i > 0) ∧ (count < pn)

do
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j = −1
i = i− 1
while (j < i) ∧ (count < pn)

do
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j ← j + 1
if Oout[i] 6= Oout[j]

then
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temp← Oout[i]
Oout[i]← Oout[j]
Oout[j]← temp
if zero-delay cycles in Γ(GIPC, Oout)

then
{

score←∞
else

{

score← MCM(Γ(GIPC, Oout))
if score < bestScore

then
{

bestScore← score

else







temp← Oout[i]
Oout[i]← Oout[j]
Oout[j]← temp

Figure 8.4: Pseudo-code for PLSA for ordered transactions strategy.

given in Figure 8.4

8.2 Hybrid Global/Local Search Related Work

In the field of evolutionary computation, hybridization seems to be common for real-

world applications [43] and many evolutionary algorithm/local search method combi-

nations can be found in the literature, e.g., [30, 53, 80, 92, 111]. Local search tech-

niques can often be incorporated naturally into evolutionary algorithms (EAs) in order

to increase the effectiveness of optimization. This has the potential to exploit the com-
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plementary advantages of EAs (generality, robustness, global search efficiency), and

problem-specific PLSAs (exploiting application-specific problem structure, rapid con-

vergence toward local minima). Below we list some hybrid methods in the literature, and

suggest how they could potentially be adapted to use our simulated heating technique.

One problem to which hybrid approaches have been successfully applied is the

quadratic assignment problem (QAP), which is an important combinatorial problem.

Several groups have used hybrid genetic algorithms that are effective is solving the QAP.

The QAP concernsn facilities, which must be assigned ton locations at minimum cost.

The problem is to minimize the cost

C(π) =
n∑
i=1

n∑
j=1

aijbπ(i)π(j), π ∈ Π(n)

whereΠ(n) is a set of all permutations of{1, 2, . . . , n}, aij are elements of a distance

matrix, andbij are elements of a flow matrix representing the flow of materials from

facility i to facility j.

Merz and Freisleben [80] presented a Genetic Local Search (GLS) technique, which

applies a variant of the2-optheuristic as a local search technique. For the QAP, the 2-opt

neighborhood is defined as the set of all solutions that can be reached from the current

solution by swapping two elements of the permutationπ. The size of this neighborhood

increases quadratically withn. The 2-opt local search employed by Merz takes the first

swap that reduces the total costC(π). This is done to increase efficiency.

Fleurent and Ferland [40] combined a genetic algorithm with a local Tabu Search

(TS) method. In contrast to the simpler local search of Merz, the idea of the TS is to

consider all possible moves from the current solution to a neighboring solution. Their

method is called Genetic Hybrids. They improved the best solutions known at the time

for most large scale QAP problems.

By comparison, simulated heating for QAP might be formulated as a combination
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of the above two methods. One could consider the best ofm moves found that reduce

C(π), wherem is the PLSA parameter.

Vasquez and Whitley [106] also presented a technique, which combines a genetic

algorithm with TS, where the genetic algorithm is used to explore in parallel several

regions of the search space and uses a fixed Tabu local search to improve the search

around some selected regions. They demonstrated near optimal performance, within

0.75% of the best known solutions. They did not investigate their technique in the

context of a fixed optimization time budget.

Random multi-start local search has been one of the most commonly used tech-

niques for combinatorial optimization problems [61, 91]. In this technique, a number

of solutions are generated randomly at each step, local search is repeated on these solu-

tions, and the best solution found during the entire optimization is output. Several im-

provements over random multi-start have been described. Greedy randomized adaptive

search procedures (GRASP) combine the power of greedy heuristics, randomization,

and conventional local search procedures [38]. Each GRASP iteration consists of two

phases—a construction phase and a local search phase. During the construction phase,

each element is selected at random from a list of candidates determined by an adaptive

greedy algorithm. The size of this list is restricted by parametersα andβ, whereα is

a value restriction andβ is a cardinality restriction. Feo et al. demonstrate the GRASP

technique on a single machine scheduling problem [39], a set covering problem, and a

maximum independent set problem [38]. They run the GRASP for several fixed values

of α andβ, and show that the optimal parameter values are problem dependent. In sim-

ulated heating,α andβ would be candidates for parameter adaptation. In the second

phase of GRASP, a local search is applied to the constructed solution to find a local

optimum. For the set covering problem, Feo et al. define ak, p exchange local search
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where all k-tuples in a cover are exchanged with a p-tuple. Here,k was fixed during

optimization. In a simulated heating optimization,k might be used as the PLSA param-

eter, with smaller tuples being exchanged at the beginning of the optimization and larger

tuples examined at the end. A similar k-exchange local search procedure was used for

the maximum independent set problem.

Kazarlis et al. [60] demonstrate a microgenetic algorithm (MGA) as a generalized

hill-climbing operator. The MGA is a GA with a small population and a short evolution.

The main GA performs global search while the MGA explores a neighborhood of the

current solution provided by the main GA, looking for better solutions. The main advan-

tage of the MGA is its ability to identify and follow narrow ridges of arbitrary direction

leading to the global optimum. Applied to simulated heating, MGA could be used as the

local search function with the population size and number of generations used as PLSA

parameters.

He and Xu [49] describe three hybrid genetic algorithms for solving linear and par-

tial differential equations. The hybrid algorithms integrate the classical successive over

relaxation (SOR) with evolutionary computation techniques. The recombination opera-

tor in the hybrid algorithm mixes two parents, while the mutation operator is equivalent

to one iteration of the SOR method. A relaxation parameterω for the SOR is adapted

during the optimization. He and Xu observe that is very difficult to estimate the optimal

ω, and that the SOR is very sensitive to this parameter. Their hybrid algorithm does not

require the user to estimate the parameter; rather, it is evolved during the optimization.

Different relaxation factors are used for different individuals in a given population. The

relaxation factors are adapted based on the fitness of the individuals. By contrast, in

simulated heating all members of a given population are assigned the same local search

parameter at a given point in the optimization.
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When employing PLSAs in the context of many optimization scenarios, however, a

critical issue is how to use computational resources most efficiently under a given opti-

mization time budget (e.g., a minute, an hour, a day, etc.). Goldberg and Voessner [44]

study this issue in the context of a fixed local search time. They idealize the hybrid as

consisting of steps performed by a global solverG, followed by steps by a local solver

L, and a search space as consisting of basins of attraction that lead to acceptable targets.

Using this, they are able to decompose the problem of hybrid search, and to characterize

the optimum local search time that maximizes the probability of achieving a solution of

a specified accuracy.

Here, we consider both fixed and variable local search time. The issue of how to

best manage computational resources under a fixed time budget translates into a prob-

lem of appropriately reconfiguring successive PLSA invocations to achieve appropriate

accuracy/run-time trade-offs as optimization progresses.

8.3 Simulated Heating

From the discussion of prior work we see that one weakness of many existing ap-

proaches is their sensitivity to parameter settings. Also, excellent results have been

achieved through hybrid global/local optimization techniques, but they have not been

examined carefully for a fixed optimization time budget. In the context of a limited time

budget, we are especially interested in minimizing wasted time. One obvious place to

focus is at the beginning of the optimization, where many of the candidate solutions

generated by the global search are of poor quality. Intuitively, one would want to evalu-

ate these initial solutions quickly and not spend too much time on the local search. Also,

it is desirable to reduce the number of trial runs required to find an optimal parameter
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setting. One way to do this is to require only that a goodrange for the parameter be

given. These considerations lead to the idea of simulated heating.

8.3.1 Basic Principles

A general single objective optimization problem can be described as an objective func-

tion f that maps a tuple ofm parameters (decision variables) to a single objective

y. Formally, we wish to either minimize or maximizey = f(~x) subject to~x =

(x1, x2, . . . , xm) ∈ X where~x is called thedecision vector, X is theparameter space

or search space, andy is the objective. A solution candidate consists of a particular

(y0, ~x0) wherey0 = f( ~x0).

We will approach the optimization problem by using aniterative search process.

Given a setX, and a functionF , which mapsX onto itself, we define an iterative search

process as a sequence of successive approximations toF , starting with anx0 from X,

with xr+1 = F (xr) for r = (0, 1, 2, . . .). One iteration is defined as a consecutive

determination of one candidate from another candidate set using someF . For an evolu-

tionary algorithm, one iteration consists of the determination of one generation from the

previous generation, withF consisting of the selection, crossover, and mutation rules.

The basic idea behind simulated heating is to vary the local search parameterp

during the optimization process. This is in contrast to the more commonly employed

technique of choosing a single value forp (typically that value producing highest ac-

curacy of the local searchL(p)) and keeping it constant during the entire optimization.

Here, we start with a low value forp, which implies a low costC(p), and accuracyA(p)

for the local search, and increasep at certain points in time during the optimization,

which increasesC(p) andA(p). This is depicted in Figure 8.5, where the dotted line

corresponds to simulated heating, and the dashed line corresponds to the traditional ap-
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Figure 8.5: Simulated heating vs. traditional approach to utilizing local search.

proach. The goal is to focus on the global search at the beginning and to find promising

regions of the search space first; for this phase,L(p) runs with low accuracy, which in

turn allows a greater number of optimization steps of the global searchG. Afterwords,

more time is spent byL(p) in order to improve the solutions found or to assess them

more accurately. As a consequence, fewer global search operations are possible during

this phase of optimization. SinceA(p) is systematically increased during the process,

we use the termsimulated heatingfor this approach by analogy to simulated annealing

where the ‘temperature’ is continuously decreased according to a given cooling scheme.

8.3.2 Optimization Scenario

We assume that we have a global search algorithm (GSA)3 G operating on a set of

solution candidates and a PLSAL(p), wherep is the parameter of the local search

3In this thesis, we focus on an evolutionary algorithm as the global search algorithm, although the

approach is general enough to hold for any global search algorithm.
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procedure4. Let

• Cfix define the maximum (worst-case) time needed byG to generate a new

solution that is inserted in the next solution candidate set,

• C(p) denote the complexity (worst-case run-time) ofL for the parameter choice

p,

• A(p) be the accuracy (effectiveness) ofL with regard top, and

• R denote the set of permissible values for parameterp. Typically,R may be

described by an interval[pmin . . . pmax] ∩ < where< denotes the set of reals and

C(pmin) ≤ C(pmax).

Furthermore, suppose that for any pair(p1, p2) of parameter values we have that

(p1 ≤ p2) =⇒ (C(p1) ≤ C(p2)) and (A(p1) ≤ A(p2)) (8.1)

That is, increasing parameter values in general result in increased consumption of compile-

time, as well as increased optimization effectiveness.

Generally, it is very difficult, if not impossible, to analytically determine the func-

tionsC(p) andA(p), but these functions are useful conceptual tools in discussing the

problem of designing cooperating GSA/PLSA combinations. The techniques that we

explore in this thesis do not require these functions to be known. The only requirement

we make is that the monotonicity property 8.1 be obeyed at least in an approximate

sense (fluctuations about relatively small variations in parameter values are admissible,

but significant increases in the PLSA parameter value should correspond to increasing

cost and accuracy). Consequently, a tunable trade-off emerges: whenA(p) is low, re-

finement is generally low as well, but not much time is consumed (C(p) is also low).

4For simplicity it is assumed here thatp is a scalar rather than a vector of parameters.
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Conversely, higherA(p) requires higher computational costC(p). We define simulated

heating as follows:

Definition 1: [Heating scheme]

A heating schemeH is a tripleH = (HR, Hit, Hset) where:

• HR is a vector of PLSA parameter values withHR = (p1, . . . , pn),

pi ∈ [pmin, . . . , pmax], andp1 ≤ p2 ≤ . . . ≤ pn,

• Hit is a boolean function, which yields true if the number of iterations performed

for parameterpi does not exceed the maximum number of iterations allowed for

pi, and

• Hset is a boolean function, which yields true if the size of the solution candidate

set does not exceed the maximum size forpi and iterationt of the overall

GSA/PLSA hybrid.

The meanings of the functionsHit andHset will become clear in the global/local

hybrid algorithm of Figure 8.6, which is taken as the basis for the optimization scenario

considered in this thesis.

The GSA considered here is an evolutionary algorithm (EA) that is

1. Generational, i.e., at each evolution step an entirely new population is created.

This is in contrast to a non-generational or steady-state EA that only considers a

single solution candidate per evolution step;

2. Baldwinian, i.e., the solutions improved by the PLSA are not re-inserted in the

population. This is in contrast to a Lamarckian EA, in which solutions would be

updated after PLSA refinement.
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Algorithm 8.1: Global/Local Hybrid()

Input: H = ((p1, . . . , pn), Hit, Hset) (heating scheme)

Tmax (maximum time budget)

Output: s (best solution found)

Step 1: Initialization: SetT = 0 (time used),t = 0 (iterations performed), and

i = 1 (current PLSA parameter index).

Step 2: Heating: Setp = pi.

Step 3: Next iteration: Create an empty multi-set of solution candidatesSt = ∅.

Step 4: Global search: If t = 0, create a solution candidates at random. Otherwise,

generate a new solution candidate usingG based on the previous solution

candidate setSt−1 and the associated quality functionFt−1.

Step 5: Local search:Apply Lwith parameterp to s and assign it a quality (fitness)

Ft(s).

Step 6: Termination for candidate set: SetSt = St + s andT = T +Cfix +C(p).

If the conditionHset is fulfilled andT ≤ Tmax then go to Step 4.

Step 7: Termination for iteration: Sett = t + 1. If the conditionHit is fulfilled

andT ≤ Tmax then go to Step 3.

Step 8: Termination for algorithm: If i < n incrementi. If T ≤ Tmax then go to

Step 2.

Step 9: Output: Apply L with parameterpmax to the best solution in
⋃

1≤i≤t St

regarding the corresponding quality functionsFi; the resulting solutions is

the outcome of the algorithm.

Figure 8.6: Global/Local Search Hybrid.
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8.4 Simulated Heating Schemes

We are interested in exploring optimization techniques in which the overall optimization

time is fixed and specified in advance (fixed time budget). During the optimization

and within this time budget, we allow a heating scheme to adjust three optimization

parameters per PLSA parameter value:

1. the number of GSA iterationstp,

2. the size of the solution candidate setNi, and

3. the maximum optimization time using this parameter valueTi.

We distinguish between static and dynamic heating based on how many of the pa-

rameters are fixed and how many are allowed to vary during the optimization. This is

illustrated in Figure 8.7. In our experiments, we keep the size of the solution candidate

(GA population) fixed, and thus only consider the FIS, FTS, and VIT strategies. For the

sake of completeness, however, we outline all these strategies below.

8.4.1 Static Heating

Static heating means that at least two of the above three parameters are fixed and iden-

tical for all PLSA parameter values considered during the optimization process. As a

consequence, the third parameter is either given as well or can be calculated before run-

time for each PLSA parameter value separately. As illustrated in Figure 8.7 on the left,

there are four possible static heating schemes.
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Figure 8.7: Illustration of the different types ofi) static heating andii) dynamic heating.

For static heating, at least two of the three attributes are fixed. (FIS refers tofixed

iterations and population size per parameter;FTS refers tofixed time and population

sizeper parameter;FIT refers tofixed iterations and fixedtime per parameter.) For

dynamic heating, at least two attributes are variable. (VIT refers tovariable iterations

and time per parameter;VIS refers tovariable iterations and populationsize; VTS

refers tovariable time and populationsize. In our experiments, we will only consider

the FIS, FTS, and VIT strategies.
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PLSA Parameter Fixed — Standard Hybrid Approach

Fixing all three parameters is identical to keepingp constant. Thus, only a single PLSA

parameter value is used during the optimization process. This scheme represents the

common way to incorporate PLSAs into GSAs and is taken as the reference for the

other schemes as actually no heating is performed.

Number of Iterations and Size of Solution Candidate Set Fixed Per PLSA Param-

eter (FIS)

In this strategy (FIS), the parameterpi is constant for exactlyti = tp iterations. The

question is, therefore, how many iterationstp may be performed per parameter within

the time budgetTmax. Having the constraint

Tmax ≥ tpN(Cfix + C(p1)) + tpN(Cfix + C(p2)) + . . .+ tpN(Cfix + C(pn))

we obtaintp with

tp =

⌊
Tmax

N
∑n

i=1(Cfix + C(pi))

⌋
(8.2)

as the number of iterations assigned to eachpi.

Amount of Time and Size of Solution Candidate Set Fixed Per PLSA Parameter

(FTS)

For the FTS strategy, the points in time wherep is increased are equi-distant and may

be simply computed as follows. Obviously the time budget, when equally split between

n parameters, becomesTp = Tmax/n per parameter. Hence, the number of iterationsti

that may be performed using parameterpi, i = 1, . . . , n is restricted by

tiN(Cfix + C(pi)) ≤ Tp , ∀i = 1, . . . , n
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Thus, we obtain

ti =

⌊
Tmax

nN(Cfix + C(pi))

⌋
(8.3)

as the maximum number of iterations that may be computed using parameterpi in order

to stay within the given time budget.

Number of Iterations and Amount of Time Fixed Per PLSA Parameter (FIT)

With the FIT scheme the size of the solution candidate set is different for each PLSA pa-

rameter considered. The time per iteration for parameterpi is given byTi = Tmax/tmax

and is the same for allpi with 1 ≤ i ≤ n. This relation together with the constraint

Ti ≥ Ni(Cfix + C(pi))

yields

Ni =

⌊
Tmax

tmax(Cfix + C(pi))

⌋
(8.4)

as the maximum size of the solution candidate set forpi.

8.4.2 Dynamic Heating

In contrast to static heating, dynamic heating refers to the case in which at least two of

the three optimization parameters are not fixed and may vary for different PLSA param-

eters. The four potential types of dynamic heating are shown in Figure 8.7. However,

the scenario where all three optimization parameters are variable and may be different

for each PLSA parameter is more hypothetical than realistic. This approach is not in-

vestigated in this thesis and only listed for reasons of completeness. Hence, we consider

three dynamic heating schemes where only one parameter is fixed. One of the vari-

able parameters is determined dynamically during run-time according to a predefined

criterion. Here, the criterion is whether an improvement with regard to the solutions
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generated can be observed during a certain time interval (measured in seconds, num-

ber of solutions generated, or number of iterations performed). The time constraint is

defined in terms of the remaining variable parameter.

Number of Iterations and Size of Solution Candidate Set Variable Per PLSA Pa-

rameter (VIS)

With the VIS strategy, the timeTi = Tmax/n per PLSA parameter value is fixed (and

identical for all pi). If the time constraint is defined on the basis of the number of

solutions generated, the hybrid works as follows: As long as the timeTi is not exceeded,

new solutions are generated usingpi and copied to the next solution candidate set—

otherwise, the next GSA iteration withpi+1 is performed. If, however, the time elapsed

for the current iteration is less thanTi andnone of the recently generatedNstag solutions

achieves an improvement in fitness, the next iteration withpi is started.

It is not practical to consider a certain number of iterations as the time constraint—

since the time per iteration is not known, there is no condition that determines when the

filling of the next solution candidate set can be stopped.

Amount of Time and Size of Solution Candidate Set Variable Per PLSA Parameter

(VTS)

There are two heating schemes possible when the number of iterationsti per PLSA

parameter is a constant valueti = tmax/n. One scheme we call VTS-S, in which the next

solution candidate set is filled with new solution candidates until, forNstag solutions, no

improvement in fitness is observed. In this case the same procedure is applied to the

next iteration using the same parameterpi. If ti iterations have been performed forpi,

the next PLSA parameterpi+1 is taken.
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In the other heating scheme, which we call VTS-T, the filling of the next solution

candidate set is stopped if, forTstag seconds, the quality of the best solution in the

solution candidate set has stagnated (i.e. has not improved).

Number of Iterations and Amount of Time Variable Per PLSA Parameter (VIT)

Here again there are two possible variations. The first, called VIT-I, considers the num-

ber of iterations as the time constraint. The next PLSA parameter value is taken when

for a numbertstag of iterations the quality of the best solution in the solution candidate

set has not improved. As a consequence, for each parameter a different amount of time

may be considered until the stagnation condition is fulfilled.

The alternative VIT-T is to define the time constraint in seconds. In this case, the

next PLSA parameter value is taken when, forTstag seconds, no improvement in fitness

was achieved. As a consequence, for each parameter a different number of iterations

may be considered until the stagnation condition is fulfilled.

In the next chapter we will describe some experiments to verify the simulated heating

technique.
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Chapter 9

Simulated Heating Experiments

Hybrid global/local search techniques are most effective in problems with complicated

search spaces, and problems for which local search techniques have been developed that

make maximum use of problem-specific information. We investigate the effectiveness of

the simulated heating approach on the voltage scaling problem for embedded multipro-

cessors described in Section 4.3, as well as a memory compaction problem in embedded

systems. These problems are very different in structure, but both have vast and com-

plicated solution spaces. In addition, the parameterized local search algorithms (PLSA)

for these applications exhibit a wide range of accuracy/complexity trade-offs. To fur-

ther illustrate the utility of simulated heating, we demonstrate its use on the well-known

binary knapsack problem.

9.1 Simulated Heating for Voltage Scaling

The problem of dynamic voltage scaling for multiprocessors was introduced in Sec-

tion 4.3 and two different PLSAs for the problem were presented in Section 8.1.1. In

this section we explain how we used simulated heating to solve this problem. Experi-

mental results are given in Section 9.4.
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9.1.1 Voltage Scaling Problem Statement

We assume that a schedule has been computed beforehand so that the ordering of the

tasks on the processors is known. The optimization problem we address consists of find-

ing the voltage vectorV = (ν1, ν2, . . . , νn) for then tasks in the application graph, such

that the energy per computation period (average power) is minimized and the through-

put satisfies some pre-specified constraint (e.g., as determined by the sample period in

a DSP application). For each task, as its voltage is decreased, its energy is decreased

and its execution time is increased, as described in [9]. The computation period is de-

termined from the period graph. A simple example is shown in Figure 9.1. Here we can

see that by decreasing the voltage on taskB, the average power is reduced while the

execution time is unchanged. There is a potentially vast search space for many practical

applications. For example, if we consider discrete voltage steps of 0.1 Volts over a range

of 5 Volts, there aren50 possible voltage vectorsV from which to search. The number

of tasksn in an application may be in the hundreds.

9.1.2 GSA: Evolutionary Algorithm for Voltage Scaling

Each solutions is encoded by a vector of positive real numbers of sizeN representing

the voltage assigned to each of theN tasks in the application. The one-point crossover

operator randomly selects a crossover point within a vector then interchanges the two

parent vectors at this point to produce two new offspring. The mutation operator ran-

domly changes one of the elements of the vectors to a new (positive) value. At each

generation of the EA an entirely new population is created based on the crossover and

mutation operators. The crossover probability was0.9, the mutation probability was0.1,

and the population size was50.
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Figure 9.1:(a) Period Graph before voltage scaling. The numbers represent execution

times (t) and energies (e) of the tasks. The execution period is determined by the longest

cycle,A → B → C, whose sum of execution times is 4 units. The energy of each task

is 4 units. the average power is 4 units (16 total energy divided by period of 4).

(b) After voltage scaling. The voltage on taskB has been reduced, increasing its execu-

tion time from 1 unit to 2 units and decreasing its energy consumption from 4 units to 2

units. The overall execution period is still 4 units since both cyclesA → D → C and

A → B → C now have execution time of 4. The average power is 3.5 units (14 total

energy divided by period of 4).
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9.2 Simulated Heating for Memory Cost Minimization

In order to further demonstate the simulated heating technique, we apply it to another op-

timization problem in electronic design automation that has a complicated search space.

This section will explain both the PLSA and the GSA for this problem. Experimental

results are given in Section 9.4.

9.2.1 Background

Digital signal processing (DSP) applications can be specified as dataflow graphs [17].

As explained in Chapter 2,in dataflow a computational specification is represented as a

directed graph in which vertices (actors) specify computational functions of arbitrary

complexity, and edges specify FIFO communication between functions. Aschedulefor

a dataflow graph is simply a specification of the order in which the functions should

execute. A given DSP application can be accomplished with a variety of different

schedules—we would like to find a schedule which minimizes the memory requirement.

A periodic schedulefor a dataflow graph is a schedule that invokes each actor at least

once and produces no net change in the number of data items queued on each edge. A

software synthesis tool generates application programs from a given schedule by piecing

together (inlining) code modules from a predefined library of software building blocks

associated with each actor. The sequence of code modules and subroutine calls that is

generated from a dataflow graph is processed by a buffer management phase that inserts

the necessary target program statements to route data appropriately between actors.

The scheduling phase has a large impact on the memory requirement of the final

implementations, and it is this memory requirement we wish to minimize in our opti-

mization. The key components of this memory requirement are the code size cost (the
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sum of the code sizes of all inlined modules, and of all inter-actor data transfers). Even

for a simple dataflow graph, the underlying range of trade-offs may be very complex We

denote aschedule loopwith the notation(nT1T2 . . . Tm), which specifies the successive

repetitionn times of a subscheduleT1T2 . . . Tm, where theTi are actors. A schedule that

contains zero or more schedule loops is called alooped schedule, and a schedule that

contains exactly zero schedule loops is called aflat schedule(thus, a flat schedule is a

looped schedule, but not vice-versa).

Consider two schedulesS1 = (8Y Z)(2Y Z) andS2 = X(10Y Z) which repeat for

the actorsX, Y , andZ the same number of times (1, 10, 10, respectively). Thecode size

for schedulesS1 andS2 can be expressed, respectively, asκ(X) + κ(Y ) + κ(Z) + Lc,

whereLc denotes the processor-dependent, code size overhead of a software looping

construct, andκ(A) denotes the program memory cost of the library code module for

an actorA. The code size of scheduleS1 is larger because it contains more “actor

appearances” than scheduleS2 (e.g., an actorY appears twice inS1 vs. only once in

S2), andS1 also contains more schedule loops (2 vs. 1). Thebuffering costof a schedule

is computed as the sum over all edgese of the maximum number of buffered (produced,

but not yet consumed) tokens that coexist one throughout execution of the schedule.

Thus, the buffering costs ofS1 andS2 are 11 and 19, respectively. Thememory costof a

schedule is the sum of its code size and buffering costs. Thus, depending on the relative

magnitudes ofκ(X), κ(Y ), κ(Z), andLc, eitherS1 orS2 may have lower memory cost.

9.2.2 MCMP Problem Statement

Thememory cost minimization problem(MCMP) is the problem of computing a looped

schedule that minimizes the memory cost for a given dataflow graph, and a given set of

actor and loop code sizes. It has been shown that this problem is NP-complete [17]. A

173



tractable algorithm calledCDPPO(code size dynamic programming post optimization),

which can be used as a local search for MCMP, has also been described [16, 111, 112].

In this work the CDPPO was applied uniformly at “full strength” (maximum accu-

racy/maximum run-time), and as conventionally done with local search techniques, did

not explore application of its PLSA form. As explained below, the CDPPO algorithm

can be formulated naturally as a PLSA with a single parameter such that accuracy and

run-time both increasemonotonicallywith the parameter value.

9.2.3 Implementation Details for MCMP

To solve the MCMP we use a GSA/PLSA hybrid where an evolutionary algorithm is the

GSA and CDPPO is the PLSA. The evolutionary algorithm and parameterized CDPPO

are explained below.

9.2.4 GSA: Evolutionary Algorithm for MCMP

Each solutions is encoded by an integer vector, which represents the corresponding

schedule, i.e., the order of actor executions (firings). The decoding process that takes

place in the local search/evaluation phase (step 5 in Figure 8.6) is as follows:

• First a repair procedure is invoked, which transforms the encoded actor firing

sequence into a valid flat schedule.

• Next the parameterized CDPPO is applied to the resulting flat schedule in order

to compute a (sub)optimal looping, and afterward the data requirement (buffering

cost)D(s) and the program requirement (code size cost)P (s) of the software

implementation represented by the looped schedule are calculated based on a

certain processor model.
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Finally, bothD(s) andP (s) are normalized (the minimum valuesDmin andPmin and

maximum valuesDmax andPmax for the distinct objectives can be determined before-

hand) and a fitness is assigned to the solutions according to the following formula:

F (s) = 0.5
D(s)−Dmin

Dmax−Dmin
+ 0.5

P (s)− Pmin

Pmax− Pmin
(9.1)

Note that the fitness values are to be minimized here.

9.2.5 PLSA: Parameterized CDPPO for MCMP

The “unparameterized” CDPPO algorithm was first proposed in [16]. CDPPO computes

an optimal parenthesization in a bottom-up fashion, which is analogous to dynamic pro-

gramming techniques for matrix-chain multiplication [28]. Given a dataflow graphG =

(V,E) and an actor invocation sequence (flat sequence)f1, f2, . . . , fn, where eachfi ∈

V , CDPPO first examines all 2-invocationsub-chains(f1, f2), (f2, f3), . . . , (fn-1, fn) to

determine an optimally-compact looping structure (subschedule) for each of these sub-

chains. For a 2-invocation sub-chain(fi, fi+1), the most compact subschedule is eas-

ily determined: iffi = fi+1, then(2fi) is the most compact subschedule, otherwise

the original (unmodified) subschedulefifi+1 is the most compact. After the optimal

2-node subschedules are computed in this manner, these subschedules are used to de-

termine optimal 3-node subschedules (optimal looping structures for subschedules of

the formfi, fi+1, fi+2); and the 2- and 3-node subschedules are then used to determine

optimal 4-node subschedules, and so on until then-node optimal subschedule is com-

puted, which gives a minimum code size implementation of the input invocation se-

quencef1, f2, . . . , fn.

Due to its high complexity, CDPPO can require significant computational resources

for a single application—e.g., we have commonly observed run-times on the order of
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30-40 seconds for practical applications. In the context of global search techniques,

such performance can greatly limit the number of neighborhoods (flat schedules) in

the search space that are sampled. To address this limitation, however, a simple and

effective parameterization emerges: we simply set a thresholdM on the maximum sub-

chain (subschedule) size to which optimization is attempted. This threshold becomes

the parameter of the resultingparameterized CDPPO(PCDPPO) algorithm.

In summary, PCDPPO is a parameterized adaptation of CDPPO for addressing the

schedule looping problem. The run-time and accuracy of PCDPPO are both monotoni-

cally nondecreasing functions of the algorithm “threshold” parameterM . In the context

of the memory minimization problem, PCDPPO is a genuine PLSA.

9.3 Simulated Heating for Binary Knapsack Problem

In order to further illuminate simulated heating, we begin by demonstrating the tech-

nique on a widely known problem, namely the binary (0-1) knapsack problem (KP).

This problem has been studied extensively, and good exact solution methods for it have

been developed (e.g. see [88]). The exact solutions are based on either branch-and-

bound or dynamic programming techniques. In this problem, we are given a set ofn

items, each with profit∆j and weightwj, which must be packed in a knapsack with

weight capacityc. The problem consists of selecting a subset of then items whose total

weight does not exceedc and whose total profit is a maximum. This can be expressed

formally as:

maximizez =
n∑
j=1

∆jxj (9.2)

subject to
n∑
j=1

wjxj ≤ c (9.3)
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xj ∈ 0, 1 , j ∈ 1, . . . , n (9.4)

wherexj = 1 if item j is selected, andxj = 0 otherwise.

Balas and Zemel [4] first introduced the “core problem” as an efficient way of solv-

ing KP, and most of the exact algorithms have been based on this idea. Pisinger [87]

has modeled the hardness of the core problem and noted that is is important to test at a

variety of weight capacities. He proposed a series of randomly generated test instances

for KP. In our experiments we generate test instances using the test generator function

described in appendix B of [87]. We compare our results to the exact solution described

in [88], for which the C-code can be found in [110].

9.3.1 Implementation

To solve the KP we use a GSA/PLSA hybrid as discussed in Section 8.3 where an evolu-

tionary algorithm is the global search algorithm (GSA) and a simple pairwise exchange

is the parameterized local search algorithm (PLSA). The evolutionary algorithm and

local search are explained below:

GSA: Evolutionary Algorithm

Each candidate solutions is encoded as a binary vector~x, wherexj are the binary

decision variables from equation 9.4 above. The weight of a given solution candidates

is ws =
∑n

j=1 xjwj, and the profit ofs is ∆s =
∑n

j=1 xj∆j. The sum of the profits of

all items is defined as∆t =
∑n

j=1 ∆j. We define a fitness function which we would like

to minimize:

F (s) =

 ∆t −∆s if ws ≤ c

∆t + ws if ws > c
(9.5)

Thus we penalize solution candidates whose weight exceeds the capacity, and seek
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to maximize the profit. The∆t term was added so thatF (s) is never negative. For

the KP experiments we used a standard simple genetic algorithm described in [43]

with one point crossover, crossover probability0.9, non-overlapping populations of size

popsize= 100, and elitism.

Parameterized Local Search for Knapsack Problem

At the beginning of the optimization algorithm, the items are sorted by increasing

profit, so that∆i ≤ ∆j for all i < j. Given an input solution candidates, the local

search first computes its weightws. If ws > c, items are removed (xi set to zero)

starting ati = 0 until ws ≤ c. For local search parameterp = 1, this is the only

operation performed. Forp > 1, pair swap operations are also performed as explained

in Figure 9.2, where we attempt to replace an item from the solution candidate with a

more profitable item not included in the solution candidate. The number of such pair

swap operations isp. Thus the local search algorithm requires more computation time

and searches the local area more thoroughly for higherp. These are the monotonicity

requirements expressed in Equation 8.1. We define parameterp = 0 as no local search–

i.e. the optimization is an evolutionary algorithm only, and no local search is performed.

9.4 Experiments

In this section we present experiments designed to examine several aspects of simu-

lated heating for the two embedded systems applications. We would like to know how

simulated heating compares to the standard hybrid technique of using a fixed parameter

(fixed p). We summarize the fixedp results for all problems for different values ofp.

We examine how the optimal value ofp for the standard hybrid method depends on the

application.
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Algorithm 9.1: PAIR SWAP LOCAL SEARCH(

sin, F, sout

)

input: solution candidate sin of size n

input: fitness function F

output: new solution candidate sout

i← n

sout ← sin
bestScore← F (sin)
count← 0
while (i > 0) ∧ (count < pn)

do
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j = −1
i = i− 1
while (j < i) ∧ (count < pn)

do
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j = j + 1
if sout[i] 6= sout[j]

then
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temp = sout[i]
sout[i] = sout[j]
sout[j] = temp
score = F (sout)
if score < bestScore

then










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
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





bestScore = score

else







temp = sout[i]
sout[i] = sout[j]
sout[j] = temp

Figure 9.2: Pseudo-code for pair swap local search for binary knapsack problem.
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Next we compare both the static and dynamic heating schemes to the standard ap-

proach, and to each other. For the static heating experiments, we utilize the FIS and

FTS strategies. Recall thatFIS refers tofixed number ofiterations and populationsize

per parameter, andFTS refers tofixed time and populationsizeper parameter. For the

dynamic heating experiments, we utilize the two variants of theVIT strategy (variable

iterations andtime per parameter). We also examine the role of parameter range and

population size on the optimization results.

9.4.1 PLSA Run-Time and Accuracy for Voltage Scaling and MCMP

Recall that there is a trade-off between accuracy and run-time for the PLSA. Lower

values of local search parameterp mean the local search executes faster, but is not as

accurate. Figure 9.3 shows how the run-time of the PLSA varies withp for the two

applications. It can be seen that the monotonicity property, Equation 8.1, is satisfied for

the PLSAs.

9.4.2 Standard Hybrid Approach for Voltage Scaling and MCMP

The standard approach to hybrid global/local searches is to run the local search at a fixed

parameter. We present results for this method below. It is important to note that, for a

fixed optimization run-time, the optimal value of local search parameterp can depend on

the run-time and data input and cannot be predicted in advance. Figure 9.4 shows results

for the MCMP optimization using fixed values ofp (standard approach–no heating), for

11 different initial populations, for population sizesN = 100 andN = 200. The y-

axis on these graphs corresponds to the memory cost of the optimized schedule so that

lower values are better. The x-axis corresponds to the fixedp value. For each value

of p, the hybrid search was run for a time budget of 5 hours with a fixed value ofp.
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Figure 9.3: Local search run times vs.p for MCMP application (a) and voltage scaling

application (b).
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Figure 9.4: Standard hybrid approach to MCMP application using fixed PLSA param-

eterp. Hybrid was run for 5 hours at each value ofp. Population size for GA was

N = 100 in 9.4(a) andN = 200 in 9.4(b). Median, lower quartile, and upper quartile of

11 different runs shown in the three curves for eachp. (Lower memory cost is better).
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The same set of initial populations was used. From these graphs, it can be seen that the

local search performs best for values ofp around 39. Figure 9.5 shows the number of

iterations (generations in the GSA) performed for each value ofp. Asp increases, fewer

generations can be completed in the fixed optimization run time.

Figure 9.6 shows results for the voltage scaling application on6 different input

dataflow graphs, for fixed values ofp (no heating), for11 different initial populations,

using both hill climb and Monte Carlo local search methods. For each value ofp, the

hybrid search was run for a time budget of20 minutes with a fixed value ofp. The

y-axis on the graph corresponds to the ratio of the optimized average power to the initial

power, so that lower values are better. For eachp, the same set of initial populations was

used. From these graphs, it can be seen that the best value ofp may also depend on the

specific problem instance.

9.4.3 Static Heating Schemes for Voltage Scaling and MCMP

For the MCMP application, the run-time limit for the hybrid was set toTmax = 5 hours.

Two sets of PLSA parameters were used,R1 = [1, 153, 305, 457, 612] and

R2 = [1, 39, 77, 116, 153]. The value ofp = 612 corresponds to th total number of actor

invocations in the schedule for the MCMP application and is thus the maximum (highest

accuracy) possible. The parameter setR2 was chosen so that it is centered around the

best fixedp values. Figure 9.7 summarizes the results for the MCMP application with

GSA population sizeN = 100. In Figure 9.7, eleven runs were performed for each

heating scheme and for each parameter set. The box plot1 Figure 9.7(a) corresponds

1The ‘box’ in the box plot stretches form the25th percentile (‘lower hinge’) to the75th percentile

(‘upper hinge’). The median is shown as a line across the box. The ‘whisker’ lines are drawn at the10th

and90th percentiles. Outliers are shown with a ‘+’ character.
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Figure 9.6: Standard hybrid approach using fixed PLSA parameters, voltage scaling

application, with Monte Carlo local search in 9.6(a) and hill climb local search in 9.6(b).

Hybrid was run for 20 minutes at each value ofp. Median of 11 runs for eachp. Lower

values of power are better. We see that the optimal value ofp is different for the six

different input dataflow graphs.
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Figure 9.7: Static heating for MCMP with the local search parameterp varied in two

different ranges—the first range covers all possible values(1 − 612), while the second

range(1− 153) is concentrated around the best fixedp value. (a)[FIS,R1], (b)[FIS,R2],

(c)[FTS,R1], (d)[FTS,R2]. The solid curve depicts the standard hybrid approach for

different values ofp. Lower values of cost are better. The box plots display the static

heating results. The solid line across the box represents the median over all calculations.

The lowest cost is obtained for the standard hybrid approach withp = 39. The best static

heating scheme is (d), corresponding to FTS operating in the restricted parameter range

which includesp = 39. We note that this value ofp could not be determined in advance,

and could only be found by running the standard hybrid solution for all values ofp.
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Heating scheme Iterations per parameter p

type range 1 39 77 115 153 305 457 612

FIS [1,612] 4 x x x 4 4 4 4

FIS [1,153] 33 33 33 33 33 x x x

FTS [1,612] 176 x x x 14 4 2 2

FTS [1,153] 175 94 42 23 14 x x x

Table 9.1: Iterations performed per parameter value for four different heating schemes

for MCMP. The numbers correspond to a single optimization run. For the other ten runs

they look slightly different.

to FIS with parameter setR1. Figure 9.7(b) corresponds to FIS with parameter setR2.

Figure 9.7(c) corresponds to FTS with parameter setR1. Figure 9.7(d) corresponds to

FTS with parameter setR2. The solid curves in Figure 9.7 are the results for fixedp.

Table 9.1 summarizes the iterations performed for each parameter for both FIS and FTS

with both parameter ranges.

For the voltage scaling application, we ran the static heating optimization for a run-

time ofTmax minutes. For FIS and FTS, the parameter sets used wereR3 = [1, 2, 3, 4, 5]

andR4 = [2.25, 2.50, 2.75, 3.00, 3.25]. The parameter setR3 was chosen by examining

the fidelity of the period graph estimator. Recall that the PLSA parameterp is related to

the re-simulation threshold. It is observed that forp < 1 the fidelity of the estimator is

poor. Forp greater than5, with the voltage increments used, the re-simulation threshold

is so small that simulation is done almost every time. This corresponds to the highest

accuracy setting. The parameter setR4 was chosen to center around the best fixedp

values. Results for FIS and FTS on the FFT2 application using the Monte Carlo local

search are shown in Figure 9.8. The box plot in Figure 9.8(a) corresponds to FIS with
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Figure 9.8: Static heating for voltage scaling with different parameter ranges—

(a)[FIS,R3], (b)[FIS,R4], (c)[FTS,R3], (d)[FTS,R4] (shown in the four box plots) com-

pared with the standard hybrid method results (fixed values ofp shown in the solid line).

Here the static heating schemes all perform better than the standard hybrid approach.

The first parameter range includes all values ofp, while the second range is centered

around the best fixedp value. This is shown in more detail in 9.8(b).
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parameter rangeR3. Figure 9.8(b) corresponds to FIS with parameter rangeR4. Figure

9.8(c) corresponds to FTS with parameter setR3. Figure 9.8(d) corresponds to FTS with

parameter rangeR4. The solid curves in the figure are the results for fixedp.

9.4.4 Dynamic Heating Schemes for Voltage Scaling and MCMP

We performed the dynamic heating schemes VIT.I and VIT.T for both the MCMP and

voltage scaling applications. Recall that VIT stands for variable iterations and time per

parameter; during the optimization the next PLSA parameter is taken when, for a given

numbertstagof iterations (VIT.I) or a given timeTstag(VIT.T), the quality of the solution

candidate has not improved.

For the MCMP application, the run-time limit for the hybrid was set toTmax =

5 hours and the same two sets of PLSA parameters were used as in the static heating

case. Eleven runs were performed for all cases. Results for dynamic heating on the

MCMP application are shown in Figure 9.9 For the voltage scaling application, the run

time wasTmax = 20 minutes. Results for voltage scaling with VIT.I and VIT.T using the

Monte Carlo local search are shown in Figure 9.10. For the dynamic heating schemes,

the search algorithm operates with a given PLSA parameter until the quality of the best

solution has not improved for eithertstag iterations (VIT.I) orTstagseconds (VIT.T). It is

therefore interesting to observe the amount of time spent on each parameter during the

optimization. This is illustrated in Figure 9.11.

9.4.5 Knapsack PLSA Run-Time and Accuracy

To test the binary knapsack problem, we generated1000 pseudo-random test instances

for each technique as suggested in [87]. The weights and profits in these instances

were strongly correlated. The weight capacityci of the ith instance is given byci =
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Figure 9.9: Dynamic heating for MCMP with different parameter ranges depicted by the

four box plots—(a)[VIT.I,R1], (b)[VIT.I,R2], (c)[VIT.T,R1], (d)[VIT.T,R2]. The solid

line represents the standard hybrid technique withp fixed at different values from 1 to

612. The solid lines across the boxes represents the median over all calculations. The

lowest cost is obtained for the standard hybrid approach withp = 39. The best dy-

namic heating scheme is (d), corresponding to VIT.T operating in the restricted parame-

ter range which includesp = 39. We note that this value ofp could not be determined in

advance, and could only be found by running the standard hybrid solution for all values

of p.
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Figure 9.10: Dynamic heating for voltage scaling with different parameter

ranges depicted by the four box plots—(a)[VIT.I,R3], (b)[VIT.I,R4], (c)[VIT.T,R3],

(d)[VIT.T,R4]. VIT.T refers to variable iterations and time per parameter, with the next

parameter taken if, for a given time, the solution has not improved. The solid curve

depicts results for the standard hybrid approach. All the dynamic schemes outperform

the standard hybrid (fixedp) approach, with the lowest average power obtained for (a)

VIT.I which utilizes the broader parameter range.
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Figure 9.12: Local search run times vs.p for binary knapsack problem.

b(iW )/1001c whereW is the sum of the weights of all items. For each test instance we

compared the hybrid solution with an exact solution to the problem using the method

given in [88]. We defined an error sum over all the problem instances as a figure of merit

for the hybrid solution technique:

ε =
1000∑
i=1

(αi − βi) (9.6)

whereαi is the profit given by the exact solution andβi is the profit given by the hybrid

solution.

Figure 9.12 shows how the run-time of the pair swap PLSA increases withp. Fig-

ure 9.13 depicts the sum of errors (Equation 9.6) for the binary knapsack problem for

different values ofp with the number of generations fixed at10. We can see that higher

values ofp produce smaller error, at the expense of increased run time. Thus the pair

swap PLSA satisfies the monotonicity requirement from Equation 8.1.

193



p=0 p=1 p=2 p=5
0

0.5

1

1.5

2

2.5

3
x 10

4

su
m

 o
f e

rr
or

s 
ov

er
 1

00
0 

in
st

an
ce

s

Binary Knapsack fixed parameter 10 generations (variable runtime)

27010 

19532 

2557 2445 

Figure 9.13:Standard hybrid approach for binary knapsack (fixedp, no heating) using

a fixed number of generationsand not fixing overall hybrid run time.Cumulative

error shown for hybrids utilizing differentp. Higherp is more accurate but requires

longer run times.
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9.4.6 Knapsack Standard Hybrid Approach

The standard hybrid approach to hybrid global/local searches is to run the local search

at a fixed parameter. This is shown in Figure 9.14 for different values ofp and for two

different run times. Here the y-axis corresponds to the sum of errors over all test cases

(Equation 9.6). We see that, for a fixed optimization run-time, the optimal value of local

search parameterp using the standard hybrid approach can depend on the run-time and

data input—for a run time of 2 seconds, the best value ofp is 2, while for a run time of

5 seconds, the best value ofp is 5. We note here and with the other applications studied

that this value ofp cannot be predicted in advance.

9.4.7 Knapsack Static Heating Schemes

The static heating schemes FIS and FTS were performed for the binary knapsack prob-

lem. Results are shown in Figure 9.15 for run times of1 and5 seconds, and compared

with the standard hybrid approach for different values ofp. It can be seen that the static

heating scheme outperformed the standard hybrid approach, and that this improvement

is greater for the shorter run times.

9.4.8 Knapsack Dynamic Heating Schemes

The dynamic heating schemes VIT.I and VIT.T were performed for the binary knap-

sack application. Recall that VIT stands for variable iterations and time per parameter;

during the optimization the next PLSA parameter is taken when, for a given number

of iterations (VIT.I) or a given time (VIT.T), the quality of the solution candidate has

not improved. Figure 9.16 shows results for these dynamic schemes. Results for static

heating schemes are shown on the right for comparison. We observe that the dynamic
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Figure 9.14: Standard hybrid approach applied tobinary knapsack for different

values ofp, wherep is fixed throughout. Y-axis is sum of errors. Run time is 2 seconds

in (a) and 5 seconds in (b).
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Figure 9.15:Static heating(2 bars on right) applied tobinary knapsack compared to

the standard hybrid approach (4 bars on left). Y-axis is sum of errors over all 1000

problem instances. The 4 bars on left correspond to the standard hybrid approach. Run

time is 1 second in 9.15(a) and 5 seconds in 9.15(b).
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Figure 9.16:Dynamic heating for binary knapsack (two bars on right)compared to

static heating(two bars on left). VIT refers to variable iterations and time per parame-

ter, with the next parameter taken if, for a given number of iterations (VIT.I) or a given

time (VIT.T), the solution has not improved. Run time is 1 second in 9.16(a) and 5 sec-

onds in 9.16(b). Y-axis is cumulative error over all problem instances (note the different

y scales for the two plots).
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heating schemes outperform the static heating schemes significantly, and that the amount

of improvement is greater for shorter run times.

9.5 Comparison of Heating Schemes

The results indicate that the choice of parameterp does affect the outcome of the opti-

mization process. For the MCMP application, there is a pronounced region for fixedp

values aroundp = 39 where the hybrid (withp fixed) performs best. This is illustrated

in Figure 9.4(a) (also shown as the solid curves in Figures 9.7 and 9.9). This is due

to the trade-offs in accuracy and complexity withp. For smaller values ofp, a larger

number of iterations can be performed. (cf. Figure 9.5). It seems that there is a point

beyond which increasingp decreases the performance of the hybrid algorithm. As il-

lustrated in Figure 9.17, continuously increasingp starting fromp = pmin also increases

the accuracyA(p) of the PLSA and therefore the effectiveness of the overall algorithm.

However, when a certain runtime complexityC(popt) of the PLSA is reached, the benefit
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of higher accuracy may be outweighed by the disadvantage that the number of iterations

that can be explored is smaller. As a consequence, values greater thanpopt may reduce

the overall performance as the number of iterations is too low. Figure 9.6 depicts the

performance of the hybrid withp fixed for the voltage scaling application on six differ-

ent applications. It can be seen that the region of best performance is not as pronounced

as in the MCMP application, and that this optimal value ofp is different for different

applications.

The observation that certain parameter ranges appear to be more promising than

the entire range of permissiblep values leads to the question of whether the heating

schemes can do better when using the reduced range. One would expect that the static

heating schemes, for which the number of iterations at each parameter is fixed before-

hand, would benefit the most from the reduced range, since the hybrid would not be

“forced” to run beyondpopt. The dynamic heating schemes, by contrast, will continue to

operate on a given parameter as long as the quality of the solution is improving. For the

MCMP application, rangeR2 = [1, 39, 77, 116, 153] is centered around the best fixed

p values. Figures 9.7 through 9.10 compare the performance over the two parameter

ranges. For the static heating optimizations in Figures 9.7 and 9.8, the performance is

improved by using the reduced parameter ranges. The dynamic heating optimization in

Figure 9.9 shows a smaller relative improvement. The dynamic heating optimization

in Figure 9.10 actually shows a benefit to using the expanded parameter range. It is

important to note that in practice one would not know about the characteristics of the

different parameter ranges without first performing an optimization at each value. This

would take much longer than the simulated heating optimization itself, so in practice the

broader parameter range would probably be used. The data for fixedp for the MCMP

problem (Figure 9.4(a) and 9.4(b)) demonstrate that it can be difficult to find the optimal
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p value and that this optimum may be isolated, i.e.p values close (e.g. 100) to optimum

yield much worse results. If we calculate the median over allp values tried, the mean

performance of the constantp approach is worse than the median performance of the

FTS and VIT methods.

Figure 9.18 compares the results of the different heating schemes for the MCMP

application with population sizeN = 100, 200, 50 and parameter rangeR1. Figure 9.19

compares the heating schemes for the voltage scaling application on different graphs for

both types of local search.

Comparing the heating schemes across all different cases, we see that the dynamic

heating schemes performed better in general than the static heating schemes. For all

cases, the best heating scheme was dynamic. For the binary knapsack problem and the

voltage scaling problem, simulated heating always outperformed the standard hybrid

approach.

For the MCMP problem, there was one PLSA parameter where the standard hybrid

approach slightly outperformed the dynamic, simulated heating approach. We note that

in practice, one would need to scan the entire range of parameters to find this optimal

value of fixedp, which is in fact equivalent to allotting much more time to this method.

Thus, we can say that the simulated heating approach outperformed the standard hybrid

approach in the cases we studied.

9.5.1 Effect of Population Size

Figure 9.20 shows the effect of the population size for MCMP for the static heating

schemes. Figure 9.21 shows the effect of population size on the dynamic heating

schemes for MCMP.

For FIS, smaller population sizes seem to be preferable. The larger number of itera-
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Figure 9.18: Comparison of heating schemes for MCMP withN = 100. The two

box plots on left correspond to the static heating schemes. The two box plots on the

right correspond to dynamic heating schemes. The best results (lowest memory cost)

are obtained for the VIT.T dynamic heating scheme. This refers to variable iterations

and time per parameter, where the parameter is incremented if the overall solution does

not improve after a pre-determined time, called the stagnation time. The solid curve

represents the standard hybrid approach applied at different values of fixedp. The point

p = 39 slightly outperforms the VIT.T scheme.
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(b) Hill climb local search.

Figure 9.19: Comparison of heating schemes for voltage scaling with (a) Monte Carlo

and (b) hill climb local search. The two box plots on left correspond to the FIS and

FTS static heating schemes, while the two box plots on the right correspond to dynamic

heating schemes VIT.I and VIT.T. The line across the middle of the boxes represents

the median over the runs, while the ‘whisker lines’ are drawn at the 10th and 90th

percentiles. The solid curve represents the standard hybrid approach applied at different

values of fixedp. In this application, all the simulated heating schemes outperformed

the standard hybrid approach. The best results were obtained for the dynamic VIT.T

scheme.
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Figure 9.20: Static heating with different population sizes—9.20(a) FIS and 9.20(b)

FTS.
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Figure 9.21: Dynamic heating with different population sizes—9.21(a) VIT.I and

9.21(b) VIT.T.
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tions that can be explored forN = 50 may be an explanation for the better performance.

In contrast, the heating scheme FTS achieves better results when a larger population

n = 200 is used. For the dynamic heating schemes, the results seem to be less sensitive

to the population size.

9.6 Discussion

Several trends in the experimental data are summarized below:

• The dynamic variants of the simulated heating technique outperformed the stan-

dard hybrid global/local search technique.

• When employing the standard hybrid method utilizing a fixed parameterp, an

optimal value ofp may be isolated and difficult to find in advance.

• Such optimal values ofp depend on the application.

• When performing simulated heating, our experiments show that choosing the pa-

rameter range to lie around the best fixedp values yields better results than using

the broadest range in most cases. However, using the broader range still produces

good results, and this is the method most likely to be used in practice.

• The dynamic heating schemes show less sensitivity to this parameter range.

• Overall, the dynamic heating schemes performed better than the static heating

schemes.

• The dynamic heating schemes were also less sensitive to the population size of

the global search algorithm.
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9.7 Conclusions

Efficient local search algorithms, which refine arbitrary points in a search space into

better solutions, exist in many practical contexts. In many cases, these local search algo-

rithms can be parameterized so as to trade off time or space complexity for optimization

accuracy. We call these parameterized local search algorithms (PLSAs). We have shown

that a hybrid PLSA/EA (parameterized local search/evolutionary algorithm) can be very

effective for solving complex optimization problems. We have demonstrated the impor-

tance of carefully managing the run-time/accuracy trade-offs associated with EA/PLSA

hybrid algorithms, and have introduced a novel framework of simulated heating for this

purpose. We have developed both static and dynamic trade-off management strategies

for our simulated heating framework, and have evaluated these techniques on the binary

knapsack problem and two complex, practical optimization problems with very different

structure. These problems have vast solution spaces, and underlying PLSAs that exhibit

a wide range of accuracy/complexity trade-offs. We have shown that, in the context of a

fixed optimization time budget, simulated heating better utilizes the time resources and

outperforms the standard fixed parameter hybrid methods. In addition, we have shown

that the simulated heating method is less sensitive to the parameter settings.
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Chapter 10

Conclusions and Future Work

In this thesis we explored the implications of varying degrees of connectivity and con-

tention in multiprocessor embedded systems for digital signal processing applications.

A trade-off exists in such systems between cost/complexity and reduced resource con-

tention (leading to higher performance). We presented techniques for analyzing these

trade-offs, for making the most efficient use of available resources at a given design

point, and for streamlining the system for a targeted set of applications.

The simplest and cheapest systems utilize a shared electrical bus. As explained in

Chapter 4, the shared bus precludes an analytic expression for the system throughput,

and simulation is required to get an accurate performance measurement. However, simu-

lation is computationally expensive and it is undesirable to perform repeated simulations

during an optimization. We developed aperiod graphmodel that can be used as a com-

putationally efficient estimator for the throughput in these systems. We demonstrated

the utility of this estimator by using it in a genetic algorithm and a simulated annealing

algorithm for a voltage scaling application to reduce power.

With the additional expense of a hardware bus controller that imposes a global order-

ing of all communications, it is possible to remove the contention that results in the diffi-
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cult analysis and to more fully optimize communication patterns in an application. This

has been demonstrated to increase the performance and to be a useful cost/performance

trade-off for several applications [101]. For highly parallel applications with more se-

vere real-time constraints, however, the single bus becomes a bottleneck for communica-

tion between processors. In Chapter 5 we introduced a system architecture that utilizes

optical fiber interconnects over multiple wavelengths. This enables multiple, simulta-

neous communications and increases the system throughput. In this architecture there

is a controller for each communication wavelength, and we introduced a modification

of the TPO heuristic [62] for determining optimal communication orderings for all the

wavelengths. We quantified the performance improvement over the single bus controller

for several applications.

A wide range of scheduling techniques for multiprocessor systems have been de-

veloped. However, these techniques typically assume a fixed communication network

and do not systematically incorporate connectivity constraints. Connectivity constraints

may be dictated by cost, area, or power constraints. Due to the power consumption char-

acteristics of optical links, it is useful to restrict communication across them to low-hop

transfers. Connectivity constraints cause existing multiprocessor scheduling methods to

deadlock. In Chapter 6 we demonstrated a polynomial complexity algorithm for deter-

mining the set of feasible processors that will avoid schedule deadlock in a limited-hop

schedule. We also introduced a useful metric, called communication flexibility, for the

degree to which a given scheduling decision constrains future scheduling decisions (in

the context of the given communication topology). We used this algorithm and the

flexibility metric in conjunction with a standard dynamic list scheduling algorithm to

effectively map several DSP applications across a wide range of interconnect topolo-

gies.
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In Chapter 7 we explored the problem of deriving an interconnect network for a

given application that minimizes the number of links required and maintains fanout

constraints, while also satisfying the throughput or latency requirements of the appli-

cation. This problem is important in today’s system-on-chip (SoC) designs as well as

future SoC designs that might utilize optical interconnects. We described probabilistic

and deterministic algorithms for interconnect synthesis. A key distinguishing feature

of our technique is that we perform scheduling and interconnect synthesis together—

existing interconnect synthesis algorithms assume a given application mapping exists

before performing the interconnect synthesis. We demonstrated how the design space

can be greatly reduced by considering graph isomorphism, and utilized an efficient graph

isomorphism tests in our deterministic algorithm.

Most optimization problems that arise in hardware-software co-design are highly

complex. The scheduling, interconnect synthesis, memory, and voltage scaling opti-

mization problems investigated in this thesis all involve searching vast design spaces. In

Chapter 8 we demonstrated that a hybrid PLSA/EA (parameterized local search/evolutionary

algorithm) can be very effective for solving these complex optimization problems. We

presented PLSAs for the voltage scaling, interconnect synthesis, and ordered transac-

tions problems.

We demonstrated the importance of carefully managing the run-time/accuracy trade-

offs associated with EA/PLSA hybrid algorithms, and introduced a novel framework of

simulated heating for this purpose. We developed both static and dynamic trade-off

management strategies for our simulated heating framework, and in Chapter 9 evaluated

these techniques on the voltage scaling problem, a memory cost minimization problem,

and the binary knapsack problem. Simulated heating experiments with the interconnect

synthesis problem and the ordered transactions problem are two directions for future
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work.

The PLSAs underlying these problems exhibit a wide range of accuracy/complexity

trade-offs. We have shown that, in the context of a fixed optimization time budget, sim-

ulated heating better utilizes the time resources and outperforms the standard fixed pa-

rameter hybrid methods. In addition, we have shown that the simulated heating method

is less sensitive to the parameter settings.
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Appendix

.1 Random Graph Generation Algorithm

Sih’s random graph generator [96] produces graphs with characteristics similar to those

of many DSP benchmarks. We made several modifications to this algorithm to generate

the random graphs used in this thesis.

First, before we add a random edge we first check (using Warshall’s algorithm for

transitive closure) that the edge will not introduce a cycle in the graph. Second, we

input the number of nodes in the graph instead of the graph length. Third, we make

the maximum fanout from each node an explicit input. This controls the amount of

parallelism in the graph. Pseudo-code for the algorithm is given in Figures 1, 2, and 3.
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Algorithm A.1: GENRANDOMGRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowIPCcost, highIPCcost

)

procedure CREATENODE(low, high)
comment: Create and return a new node with random execution time ∈ [low, high]

Create new node n
n.execTime← UNIFORMRANDOM(low, high)
return (n)

procedure CONNECTNODES(src, snk, adjM)
comment: Connect src node to snk node in adjacency matrix

adjM[src][snk]← 1

procedure EXTENDNODE(oldEndNode,endNodes,fanout)
comment: Connect a newly created node to one of the endNodes

r← UNIFORMRANDOM(1,fanout)
for (i← 1 . . . r)

do















m← CREATENODE(lowExecTime, highExecTime)
CONNECTNODES(oldEndNode, m)
endNodes.delete(oldEndNode)
endNodes.add(m)

procedure CONVERGE(nodesToConverge,endNodes)
comment: Cause some endNodes to all converge to a single node

p← CREATENODE(lowExecTime, highExecTime)
for i← 1 . . . nodesToConverge.size()

do







nodesToConverge.deleteHead(h)
endNodes.delete(h)
CONNECTNODES(h,p)

endNodes.add(p)

procedure DIVERGE(endNodes, num, V, divergedNodes)
comment: randomly chosen endnode diverges out

for i← 1 . . . num

do







n← CREATENODE(lowExecTime, highExecTime)
CONNECTNODES(V, n)
divergedNodes.add(n)

endNodes.delete(V)

Figure 1: Pseudo-code for procedures used in the random graph algorithm.
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Algorithm A.1: GENRANDOMGRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowIPCcost, highIPCcost

)

procedure DIVERGECONVERGE(endNodes, V, W, L, numAdded)
comment: Attach a structure which diverges and then converges to an endnode

w← UNIFORMRANDOM(2, W)
nodeList← ∅
DIVERGE(endNodes, w, V, divergedNodes)
len← choose randomly from [0 . . . L]
for i← 1 . . . w

do







divergedNodes.deleteHead(h)
n← EXTENDNODE(h,endNodes,len)
nodeList.add(n)

CONVERGE(nodeList,endNodes)
numAdded ← w(len + 1) + 1

procedure PICKRANDOMLY(nodeList, n)
comment: Create a random list of n nodes from nodeList

S← ∅
while (nodeList.size() < n)

do







































p← nodeList.firstPtr
r← UNIFORMRANDOM(0, nodeList.size)
for i ∈ [1 . . . r]

do
{

p← p.next
if p /∈ S

then
{

S← S ∪ {p}
nodeList.insert(p)

procedure RANDOMCONNECTION(adjM)
comment: Add a random edge that doesn’t create a cycle

ok← FALSE
while (ok = FALSE)

do























h← PICKRANDOMLY(allNodes, 1)
t← PICKRANDOMLY(allNodes, 1)
TRANSITIVECLOSURE(adjM)
if (PATH(h,t) = 0)

then
{

ok← TRUE
CONNECTNODES(h,t,adjM)

Figure 2: Pseudo-code for the random graph algorithm (continued from Figure 1).
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Algorithm A.1: GENRANDOMGRAPH(

startNodes, numNodes, fanout, lowExecTime, highExecTime, lowIPCcost, highIPCcost

)

main
for i← 1 . . . startNodes

do
{

u← CREATENODE(lowExecTime, highExecTime)
endNodes.add(u)

n← startNodes
while (n < numNodes)

do















































































































































actionNumber← UNIFORMRANDOM(0, 100)
if (actionNumber < 20)

do







v ← PICKRANDOMLY(endNodes, 1)
EXTENDNODE(v, endNodes, 1)
n← n + 1

else if (actionNumber < 40)

do















c← UNIFORMRANDOM(1, fanout)
convNodes← PICKRANDOMLY(endNodes, c)
CONVERGE(convNodes, endNodes)
n← n + 1

else if (actionNumber < 80)

do















d← UNIFORMRANDOM(1, fanout)
u← PICKRANDOMLY(endNodes, 1)
DIVERGE(endNodes, d, u, divergedNodes)
n← n + d

else if (actionNumber < 100)

do















u← PICKRANDOMLY(endNodes, 1)
e← UNIFORMRANDOM(1, fanout)
DIVERGECONVERGE(endNodes, u, d, e, numAdded)
n← n + numAdded

for i← 1 . . . numRandomConnections
do

{

RANDOMCONNECTION(adjM)

Figure 3: Pseudo-code for the random graph algorithm (continued from Figure 2).
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