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The objectives of this research were to develop a [U-13C]glucose tracer approach 

establishing the pathways and substrates for milk lactose and casein synthesis, and 

determine the influence of protein intake on murine mammary gland metabolism.  

Milk samples were collected after one, three and five days of feeding tracer (as 10% 

of dextrose). 13C-Isotopic and isotopomer plateaus were attained by day three, 

establishing the time-course necessary for tracer feeding.  23% of lactose-derived 

glucose originated from sources other than blood glucose.  Six paired (intake and 

pups equal) sets of lactating mice were fed either a normal (20%) or low (10%) 

protein diet.  13C-mass isotopomer distribution (MID) in lactose-derived glucose and 

galactose did not differ, indicating common mammary metabolic pools. 13C-MID in 

blood versus casein indicated significant mammary synthesis of glutamate 

(Normal:51%, Low:50%), alanine (Normal:32%, Low:29%), and serine 

(Normal:18%, Low:37%, P < 0.05), suggesting additional requirements for glucose 

and/or EAA for NEAA synthesis.
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Chapter 1: Literature Review 

Introduction 

 Over time, milk production continues to increase as the total number of cows 

decreases (Blayney, 2002).  Dairy producers are increasingly dependent on improving 

the efficiency of milk production to reduce feed and other overhead costs.  However, 

there comes a point when total production reaches a threshold due to management, 

genetic merit, or other constraints.  In addition, as the demand for dairy products 

shifts focus to solid dairy products, byproducts, and specialty uses, emphasis is placed 

on milk components versus total production (Manchester and Blayney, 1997).   For 

reasons that will be discussed, the current desire is for milk with higher protein, but 

lower fat and lactose contents.  In addition, more attention is being placed on 

opportunities for the mammary gland to serve as a bioreactor in producing novel 

proteins (i.e. pharmaceuticals).   

These new demands require a better understanding of how specific milk 

components are synthesized within the mammary gland. The dairy industry is 

focusing less on quantity and more on specialization; likewise, nutritionists and 

animal scientists are looking at the specifics of metabolism of milk production.  

Although the American dairy industry is far from using cows for bio-farming on a 

large scale, one can picture an industry where a farm will raise cows specifically to 

produce milk for cheese production, fluid milk consumption, or as a bioreactor for 

pharmaceutical production. 
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 If the industry is to take steps towards more precise production, we must gain 

a better understanding of mammary gland metabolism; in particular, the pathways and 

substrates supporting milk component synthesis.  We must fill in the missing pieces 

of the black box that is mammary gland metabolism.  Why, for instance, does the 

mammary gland remove from the blood certain amino acids in amounts far in excess 

(i.e. essential amino acids (EAA)) of the requirement for synthesis of milk casein and 

through what metabolic pathways is this excess supply diverted?  More importantly, 

how does the gland compensate for those amino acids whose uptake does not equal 

their output (i.e. the non-essential amino acids (NEAA)) glutamate, glutamine, serine, 

aspartate, and proline)?  And finally, what are the precursors for milk lactose (glucose 

and galactose), and how might this be related to coordination involving the NEAA? 

 A unique approach that has been employed to investigate mammary gland 

metabolism involves the use of stable isotopes and gas-chromatography mass 

spectrometry (GC-MS).    This approach allows tracking of the 13C skeletons of [U-

13C]-substrates by analysis of the mass isotopomer distribution in substrates and 

products, measured by GC-MS. In the present research, [U-13C]glucose (all 6 carbons 

in glucose are as 13C) was used, and this acted as a tracer not only for glucose but also 

for dissecting pathways for NEAA and lactose synthesis, and tricarboxcylic acid 

(TCA) cycle metabolism. Furthermore, the use of stable isotopes has the advantage of 

being safer compared to the safeguards required when using radioisotopes. 

 Unique opportunities also exist to exploit molecular biology techniques.  In 

the liver, phosphoenolpyruvate carboxykinase (PEPCK) exists as two isoforms 

located in the cytosol (PEPCK-c) and in the mitochondria (PEPCK-m). The 
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distribution of the PEPCK isoforms and their expression level in the liver serves as a 

key regulatory mechanism in the control of gluconeogenesis and TCA cycle 

metabolism. The discovery that both isoforms of PEPCK are found in the murine 

(García-Ruíz et al., 1983) and bovine (Scott et al., 1975) mammary glands raises the 

possibility that these enzymes may also be involved in lactose synthesis and in TCA 

cycle balancing of carbon flows.  To date, the roles of the PEPCK isoforms in milk 

synthesis have yet to be elucidated.   What, therefore, is the balance between these 

two isoforms in the mammary gland, and does this distribution serve a role in control 

of lactose synthesis versus TCA cycle metabolism and NEAA synthesis?  Thus, 

another aim of this project was to determine the relationship between the gene 

expression (via quantitative real-time polymerase chain reaction (qRT-PCR)) of the 

two PEPCK isoforms in the murine liver and mammary gland, and how these changes 

relate to the use and flux of substrates within the mammary gland as determined by 

13C-mass isotopomer distribution analysis. By integrating metabolic flux data and 

enzyme expression in a key pace-setting step, one can obtain a more complete picture 

of mammary gland metabolomics. Thus, the combination of these two approaches 

offers a novel and groundbreaking opportunity to uncover the coordination of 

mammary gland metabolism, from gene expression to metabolic phenotype.  

 In order to study the concepts mentioned above in-vivo, an alternative to using 

the bovine species was utilized.  Milk synthesis is an eloquent example of the 

“metabolic intersection” involving glycolysis, gluconeogenesis, fat and amino acid 

synthesis.  This complexity is part of the reason that the intricacies of whole body 

metabolism still have yet to be fully uncovered (Reeds et al., 1997).  Historical 
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approaches in vitro are limited in their potential application for two reasons.  The first 

reason is due to the intersecting pathways of metabolism; changes in one pathway 

undoubtedly have ramifications in other pathways (Berthold et al., 1994; Reeds et al. 

1997).  Perturbations in one part of the system result in changes seen indirectly in 

other pathways.  Secondly, compartmentalization of these interconnected pathways 

occurs on both a cellular and whole body level (Berthold et al., 1994; Reeds et al. 

1997).  To circumvent these challenges, the application of universally labeled stable 

isotopes and mass isotopomer distribution analysis (MIDA) via GC-MS (Berthold et 

al., 1994; Reeds et al. 1997) allows for monitoring of multiple pathways 

simultaneously.  We employed a [U-13C]glucose tracer feeding approach.  Feeding 

was the desired mode of entry for the tracer because it would most closely reflect 

whole body metabolism.  In addition, manipulation of milk composition on a large 

scale will likely involve nutritional modifications due to the practicality of on-farm 

approaches.   

Feeding [U13C]glucose to dairy cattle is impractical due to the amount of 

tracer needed to reach steady state.  Therefore, the C57BL/6 mouse was chosen for 

our whole animal model.  The mouse allowed for easy management, a manageable 

lactation cycle, and interesting comparisons can be made between the bovine and 

murine mammary glands.  Additionally, at least in the case of amino acid and glucose 

metabolism, monogastrics and ruminants appear to have similar mechanisms for milk 

component synthesis (Katz and Wals, 1972; Mepham, 1982; Bequette et al., 1998; 

Rigout et al., 2002).  Any differences will allow for species comparison. Thus we 

were confident in our choice of the C57BL/6 mouse as our model. 
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 We made several hypotheses about the questions revolving around mammary 

gland metabolism.  We hypothesized that, in addition to blood glucose, amino acids 

are a significant contributor to lactose synthesis. Furthermore, amino acids taken up 

in excess (the EAA) are the ones that not only contribute to lactose synthesis, but also 

to the synthesis of those NEAA not extracted by the mammary gland in sufficient 

amounts.  PEPCK is hypothesized to play a key role in metabolic regulation of these 

processes in the mammary gland.  The desire to alter milk composition and better 

understand mammary gland metabolism required further investigation of milk 

component synthesis.  

Definition of the Problem 

The Goal of Increasing Milk Protein Content and Yield 

Between 1989 and 2002, the United States imported an average net of 23,463 

metric tons of casein and casein derivatives (Cessna, 2004).  Additionally, the 

consumption of dairy products such as cheese and cream continues to rise, while the 

consumption of fluid milk across the United States has declined (Putnam and 

Allshouse, 2003).  Increasing the total solids content of milk favors an improved 

efficiency of production of these goods.  According to Karatzas and Turner (1997), 

each increase in milk protein by 0.1% increases cheese yield by 0.164 kg.  Eighty 

percent of milk protein casein is in the form of micelles, which affect the physical and 

chemical properties of the products made from casein derivatives (Smithers et al., 

1991).  By increasing milk protein concentration, the heat stability of milk is 

improved, and the amount and composition of curd formation during fermented milk 

product processing is enhanced (Dalgleish, 1993). 
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Value is added to milk when it is used to produce other dairy products for 

direct consumption, and also when milk proteins are produced which are used to 

improve taste, texture, and nutrition of popular processed foods.  These milk 

ingredients are separated via centrifugation, membrane separation, ion exchange, 

chromatography or other means (Huffman and Harper, 1999).  Once separated, casein 

and casein derivatives may be processed into commercial products such as nutrition 

bars, powered beverages, and frozen desserts, while whey products may be used in 

bakery or soup preparations (Huffman and Harper, 1999).  Different milk proteins 

also have specific functions such as flavor-binding and texture enhancement.   

  Two-thirds of total milk calcium is associated with casein micelles (Dalgleish, 

1993).  Therefore, it is plausible that altering milk protein levels would enhance milk 

calcium content.  The increasing concern about diseases such as osteoporosis, caused 

by inadequate calcium in the diet, creates opportunity to encourage dairy product 

consumption, or potential calcium-enriched protein products (Huffman and Harper, 

1999).   

Another opportunity exists to use the bovine mammary gland as a bioreactor.  

Production of pharmaceuticals by transgenic animals, especially lactating animals, 

may serve to be more cost effective than conventional processing approaches due to 

the large production capacity and ease of harvest from the cow (Wall et al., 1997).    

Current pharmaceuticals of interest, which someday may be produced and harvested 

from milk, include blood clotting factors, antithrombin III, fibrinogen and human 

serum albumen (Wall et al., 1997). At present, although transgenic techniques have 

been used to increased production of specific proteins, the milk output of these 
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proteins is low and milk protein content remains relatively unchanged. Thus, for such 

transgenic approaches to become more efficient in terms of total milk protein 

produced, it will be necessary to define the underlying metabolic partition of amino 

acids and energy substrates towards casein versus lactose synthesis within the 

mammary gland. To date, our knowledge of substrate partition within the mammary 

gland is not yet complete. 

Opportunities also exist for production of special value-added milk products 

based on separation and isolation techniques involving specific milk proteins 

(Huffman and Harper, 1999).  The concept of value-added milk products is supported 

in part by the ability to increase milk protein, and a better understanding of milk 

protein production in the mammary gland.  As fractionation techniques continue to 

get more sophisticated, individuals will be able to tailor particular milk proteins to 

meet the demands of specific nutritional needs.  Etzel (2004) commented on the 

potential benefits of high protein diets, especially those high in EAA and branched-

chain amino acids, of which dairy products contain high amounts.  Due to the over-

abundance of high carbohydrate, low nutritional value drinks in the United States, 

emphasis should be placed on nutritionally sound beverages such as milk.  However, 

milk lactose intolerance is a major factor that contributes to lower fluid milk 

consumption. 

The Goal of Decreasing Milk Lactose 

Although the nutritional benefits to consuming dairy products are widely 

known, lactose intolerance prevents many individuals from consuming them.  

Manipulation of milk lactose content is another advantage to understanding milk 
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component production.  More than 75% of the human population has some form of 

lactose intolerance due to lactase deficiency (Vilotte, 2002).  The severity of 

intolerance varies greatly, and a study of 39 lactose intolerant individuals showed that 

many individuals illicit very little, if any, negative symptoms when they consume 

small amounts (7.0 g or less) of lactose (Vesa et al., 1996).  Therefore, producing 

dairy products with lower levels of lactose would allow lactose intolerant individuals, 

especially those with mild intolerance, to enjoy more dairy products (Hertzler et al., 

1996).   

The advantage to producing milk with lower lactose levels is two-pronged.  

While lactose intolerant individuals might be able to enjoy low lactose milk, the other 

advantage would be milk with higher solids content.  Lactose is the major osmotic 

regulator for milk and decreasing the water content of milk would decrease shipping 

costs, as well as add to the efficiency of dairy product processing (Karatzas and 

Turner, 1997; Vilotte, 2002).   

Pursuit of these avenues for increasing the value of milk requires an 

understanding of the novel aspects involved, and a broader understanding of 

mammary gland metabolism and milk synthesis.  The question now is not simply why 

we should pursue controlling mammary gland metabolism to shift component 

production, but how we should accomplish this goal.  Mechanisms of altering milk 

production will be discussed in the next section.   Overall, the ability to predictably 

alter the pathways of milk component synthesis will have an economic advantage for 

consumers, producers, and the dairy industry as a whole. 
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Historical Approaches to Altering Milk Composition 

 Although milk production has increased dramatically over the years as genetic 

selection and management have improved, the composition of milk has remained 

relatively constant.  As has been discussed, there remain potential advantages to 

altering milk composition.  Historically, approaches have involved nutritional 

supplementation, hormonal treatments, and other dietary means.  More recently, 

genetic manipulation has become an experimental approach to altering milk 

composition on a small scale.  Unfortunately, large scale use of genetics as a tool for 

altering milk composition is still a costly and inefficient answer (Wilmut et al., 1990; 

Yom and Bremel, 1993).   

In the case of milk lactose, studies attempting to produce low lactose milk via 

genetic manipulation are difficult as some expression is needed for proper milk 

synthesis (Stacey et al., 1995; Karatzas and Turner, 1997).  A way to get around this 

problem is to manipulate the gland to express a lactose-hydrolzying enzyme rather 

than blocking lactose production fully (Jost et al., 1999).  Jost et al. (1999) 

successfully produced low-lactose milk using mice expressing an intestinal lactose-

hydrolyzing enzyme in the mammary gland.    

The number of progeny needed to test these applications in dairy animals is 

large, and large degrees of inbreeding may need to take place in order to perpetuate 

the genetic effects.  Low rates of gene integration, poor embryo survival, and 

unpredictable gene behavior are some of the inefficiencies involved in genetic 

engineering of dairy cattle to alter milk composition (Wall et al., 1997).  Once an egg 

is successfully injected (only 1 out of 1,600 injections in the case of dairy cattle), 
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there is only a 50% chance that the offspring will express the transgene (Wall et al., 

1997).  While production involving genetic manipulation may become relatively 

practical for high value products such as novel proteins, it is likely a long way off for 

basic manipulation of milk components. 

Manipulation of milk production via dietary means seems to be an obvious 

suggestion, but to date, the results have been mixed. Responses in production through 

feeding of supplemental proteins or amino acids have not produced the desired milk 

protein production effects (Bequette et al., 1998).  Duodenal infusion of casein, 

however, does shift milk components and increases milk protein content and yield 

(Guinard et al., 1994).  Even higher increases in milk protein production, by 25%, are 

seen when cows are treated with an insulin clamp and supplied additional branched-

chain amino acids (Mackle et al., 2000).  Understanding how mammary gland 

metabolism is controlled in this extreme case could result in other means for the 

manipulation of milk components. 

Overview of Milk Protein and Lactose Synthesis 

Uptake of Amino Acids and Casein Synthesis by the Mammary Gland 

The amino acids that are taken up by the ruminant mammary gland can be 

divided into three distinct groups:  1) Amino acids whose uptake is not sufficient to 

account for output in milk protein,  2) Amino acids whose uptake is in excess of the 

supply needed for milk protein synthesis, and 3) Amino acids whose supply is 

roughly equivalent to milk output (Mepham, 1982).  All three groups of amino acids 

are taken up by the mammary gland via carrier systems in the basal/lateral membrane.  

The group of most interest to us is the first, which includes the NEAA glutamate, 
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glutamine, serine, aspartate, and proline.  The deficient uptake of these amino acids 

requires, in consequence, that they must be synthesized de novo by the mammary 

gland.  This most likely requires substrates that provide three to five-carbon skeletons 

such as those derived from the catabolism of several EAA and/or other sources such 

as glucose and triglyceride-glycerol.  Indeed, several EAA (i.e. the branch-chain 

amino acids, threonine, and arginine) are extracted from the blood by the mammary 

gland in amounts much greater than needed for milk casein synthesis, and these are 

the likely contributors to NEAA synthesis (Annison and Bryden, 1999).  However, 

for these EAA to contribute to the synthesis of the NEAA by the mammary gland 

requires exquisite coordination of their metabolism and proper balancing of carbon 

substrate flows.  Blood glucose, another potential substrate for NEAA synthesis, is 

thought to be primarily used for lactose synthesis.  The fate of glucose taken up by 

the mammary gland includes lactose, glycerol, and some amino acids (Katz and Wals, 

1972).  The fate of glucose for lactose synthesis will be discussed below.   

Serine, alanine, glutamate, and aspartate can be synthesized from glucose; this 

was demonstrated by Katz and Wals (1972) in the rat when they found evidence of 

radioactive carbon (the source being 14C labeled glucose) in these NEAA.  

Determining the proportion, if any, of glucose which contributes to NEAA synthesis, 

and thus milk protein synthesis, is one of the major objectives of this research.  While 

some have suggested that the mammary gland is incapable of synthesizing amino 

acids from non-carbohydrate precursors (Scott et al., 1975), preliminary work from 

our group suggests that a portion of milk lactose may be derived from catabolism of 

amino acids (Bequette et al., 2005).   Regardless of the absolute proportions of amino 
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acids being used for mammary gland hexoneogenesis (glucose, galactose) or glucose 

metabolism for amino acid synthesis, the mammary gland has the need for complex 

regulation of these processes.  Exactly how the gland accomplishes this is still under 

investigation (Sunehag et al., 2002, 2003). 

Glucose Metabolism and Milk Lactose Synthesis 

The focus in this section will be on glucose once it reaches the mammary 

gland via the blood.  Glucose is transported across the basal/lateral membrane by 

facilitated diffusion via the GLUT1 transporter.  Glucose condenses with UDP-

galactose via lactose synthetase, to form the milk sugar lactose.  Glucose uptake to 

lactose output across the bovine mammary gland is approximately 1.45:1 and 

increases to 1.63:1 with duodenal glucose infusion (Rigout et al., 2002).  The primary 

fate of mammary tissue glucose is milk lactose, while glucose may also be used for 

synthesis of some amino acids, as has already been mentioned.  The question of 

whether glucose used for milk lactose is strictly from plasma, or is synthesized de 

novo in the mammary gland remains.  The fates, in addition to lactose, of this glucose 

also remain undetermined.  Early studies in dairy cows reported that only 70% of 

lactose is derived from blood glucose (Bickerstaffe et al., 1974).  Sunehag et al. 

(2002, 2003) also reported that 80% of lactose comes from blood glucose during the 

fed state in humans.  

Based on our preliminary work with bovine mammary explants incubated in 

various concentrations of glucose (0.67 to 27.7 mM), we observed that a variable 

proportion (33-97%) of the galactose in lactose is derived from non-glucose sources 

(Bequette et al., 2005).  It was estimated that as much as 12% of the galactose in 
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lactose was derived from EAA (Figure 1, Bequette et al., 2005).  In lactating women 

fed [U-13C]glucose or [2-13C]glycerol, Sunehag et al. (2002) reported that glucose 

accounted for 68% of galactose in lactose (in a fed state), while glycerol was also a 

contributor (20% of the remainder) to the synthesis of galactose.  In a follow-up study 

in lactating women fed [1-13C]galactose, 20% of lactose precursors derived from non-

glucose sources in fed women, a proportion which increased to 40% upon fasting 

(Sunehag et al., 2003).  In addition, they reported that different substrate pools 

account for differences in stable isotope labeling of glucose and galactose in the 

mammary gland (accounting for de novo synthesis).  However, although these studies 

found that 20% of the non-glucose contribution was derived from glycerol, they could 

not account for the remaining 80% of the non-glucose source.  Therefore, another 

objective of this project was to determine whether amino acid carbon-skeletons 

contribute to galactose and glucose in lactose, and whether dietary protein supply (i.e. 

amino acids) alters this contribution. 

Shifts in Milk Components 

The mammary gland itself shows us proof that a complex relationship 

between milk protein and lactose exists.  While the concentration of lactose remains 

relatively constant throughout lactation, milk protein gradually increases.  Milk 

protein concentration reaches its peak at approximately day 100 of lactation, while
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Figure 1.  Source of Glucose and Galactose in Bovine Mammary Explants.   

Explants were incubated with varying levels of [U-13C]glucose and mass isotopomer 
distribution is shown (Mole proportions, %) for glucose and galactose from milk 
lactose. [M+X] refers to the enrichment of molecules with X number of 13C 
molecules (versus 12C).  Mole proportions of 33-97% for [M+0] in galactose 
represent the proportion derived from non-glucose and non-TCA intermediates.   
From Bequette et al., 2005. 
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milk lactose content remains fairly invariable (Gáspárdy et al.  2004). Additionally, 

across species as well as individuals, milk protein and lactose concentrations are 

inversely related (Mepham, 1984).  Even amongst breeds there is variation in milk 

protein (i.e. 3.8% for Jersey versus 3.19% for Holstein) (Karatzas and Turner, 1997).  

Significant seasonal effects can also be seen, independent of stage of lactation, as hot, 

humid months correlate with lower milk protein percentages (Allore et al., 1997; 

Heinrichs et al., 1997).  Therefore, as illustrated in these discrepancies, there are 

differences in the use of substrates within the mammary gland and shifts in 

component production accordingly.  Having the ability to alter these shifts, by 

understanding their mechanisms, would be beneficial.   

Changes in milk components are also observed in response to hormones and 

dietary ingredients as mentioned above. For example, dairy cows subjected to a 

hyperinsulinemic-euglycemic clamp have been used to increase plasma insulin levels 

while maintaining glucose homeostasis.  Insulin infusion increases the percentage of 

protein in milk (Molento et al., 2002).  An increase in plasma insulin parallels the 

above-mentioned increase in milk protein as lactation progresses (Molento et al., 

2002).  In addition, an even greater response to insulin was seen when treatment 

included bovine somatotropin (bST) administration (Molento et al., 2002).  In dairy 

cows subjected to the insulin clamp, Mackle et al.(2000) observed a dramatic increase 

in milk protein content and yield (+28%) which appeared to be supported by an 

increase in EAA extraction by the mammary gland.  By contrast, the clamp had only 

minimal effects on milk lactose. The latter is surprising given that the clamp 

decreased (70% versus 50%) the calculated proportion of glucose used for milk 
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lactose synthesis and furthermore that milk fat synthesis was reduced by almost 50%. 

Thus, glucose extracted by the udder was used for purposes other than for lactose 

synthesis and for the generation of reducing equivalents for fatty acid synthesis.  

Again, the question of how the gland regulates these metabolic shifts to affect the 

production of greater amounts of milk protein, but not lactose, is of great interest and 

one which has yet to be fully explained.   

These latter studies and others (Griinari et al., 1997) make a strong case that 

the mammary gland of the dairy cow is not functioning at its full capacity, especially 

in regard to milk protein production.  Common amongst the latter studies involving 

the insulin clamp is the increase in blood flow, and therefore amino acid supply, to 

the mammary gland. Yet, even in those studies where amino acid supply to the 

mammary gland is increased by protein intake or by post-ruminal infusion, there are 

often small or no effects on milk protein production (Bequette et al., 1998).  Milk 

protein response is dependent upon site of delivery, stage of lactation, and basal 

dietary protein level (Bequette et al., 1998).  However, when dairy cows were given 

duodenal casein infusions, milk protein content and yield were increased with each 

level of casein infusion (Guinard et al., 1994).  In that study, casein infusion also 

increased milk lactose output (Guinard et al., 1994). Interestingly, these authors also 

observed that the uptake of NEAA increased to a greater extent (177%) with casein 

infusion than did the uptake of EAA (97%).  What role the excessive uptake of 

NEAA served, other than for casein synthesis, would be purely speculative without a 

more thorough characterization of the partition of amino acid carbon skeletons within 

the mammary gland.   
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The Role of PEPCK 

PEPCK and TCA Cycle Metabolism 

 The enzyme PEPCK may be at the center of milk protein and lactose 

synthesis.  This catalyzes the formation of phosphoenolpyruvate (PEP) from 

oxaloacetate (OAA) during hepatic gluconeogenesis.  PEPCK is a key enzyme 

involved in glucose synthesis in the liver and kidney, and triglyceride-glycerol 

synthesis (glyceroneogenesis) in white adipose tissue and the small intestine (Hanson 

and Reshef, 1997).  Two isoforms of the enzyme, cytosolic and mitochondrial, are 

expressed (Hanson and Patel, 1994).  The two isoforms are encoded by separate 

genes, and have high sequence similarity, which is conserved among species.  For 

example, there is 90% similarity among the rat, human, and mouse PEPCK-c coding 

regions (Hanson and Reshef, 1997).    

While the cytosolic PEPCK enzyme favors the use of amino acids for 

gluconeogenesis via the TCA cycle, the mitochondrial PEPCK promotes dependence 

on glycerol and lactate for gluconeogenesis, or hexogenesis in the case of the 

mammary gland.  For instance, if TCA cycle intermediates, specifically malate, are 

sequestered in the cytosol for carbon use in gluconeogenesis by high PEPCK-c 

activity, a greater proportion of amino acid carbon will be used for carbohydrate 

synthesis (Figure 2).   Furthermore, with higher PEPCK-m activity relative to 

PEPCK-c, we expect greater channeling of amino acids and other substrates that enter 

the TCA cycle at or beyond succinyl-CoA, towards α-ketoglutarate, and thus 

glutamate for casein synthesis.   
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Figure 2.  Major Metabolic Pathways and Contributors to the TCA Cycle.    

 
Amino acids within solid-line boxes are taken up in proportions less than milk output. 
 
PEP = phosphoenolpyruvate 
PC = pyruvate carboxylase enzyme 
PDH = pyruvate dehydrogenase enzyme complex 
OAA = oxaloacetate 
α-KG = α-keto glutarate 
 
Not all intermediates are shown.   
PEPCK-c favors the use of amino acids for gluconeogenesis via the TCA cycle, and PEPCK-
m promotes dependence on glycerol and lactate for gluconeogenesis, or hexogenesis.  Higher 
PEPCK-m activity relative to PEPCK-c, channels amino acids and other substrates entering 
the TCA cycle at or beyond succinyl-CoA, towards α-ketoglutarate, and thus glutamate for 
casein synthesis.   
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PEPCK-c serves as a cataplerotic enzyme in relation to the TCA cycle.  

Cataplerosis refers to the removal of TCA cycle intermediates from the system (Owen 

et al., 2002) for synthesis of glucose, glycerol and NEAA.  In addition, besides 

serving as a key regulator in the balance of TCA cycle metabolism, PEPCK serves to 

regulate the metabolic flux through the glycolytic and gluconeogenic pathways, at 

least in the liver (Magnuson et al., 2003).  We therefore asked how these observations 

are related to the potential roles of PEPCK in the mammary gland. 

PEPCK in the Mammary Gland 

 Previous work has examined the relationship of PEPCK-c and PEPCK-m 

isoforms in the liver, however, work in mammary tissue has been limited.  PEPCK 

activity has been reported in the mammary gland of several species including bovine, 

guinea pig, and rat (Baird, 1969; García-Ruíz et al., 1983; Jones et al., 1989).  Baird 

(1969) proposed that the presence of PEPCK activity in the mammary gland suggests 

that this tissue participates in carbohydrate metabolism at the level of the TCA cycle, 

and that could serve a role in the mammary gland for the synthesis of lactose from 

non-glucose precursors.   

In a study conducted in guinea pigs, PEPCK-m was found to increase 43-fold (10 

times the rate of tissue expansion) in the mammary gland at the onset of lactation 

(Jones et al., 1989), whereas PEPCK-c increased at a rate only slightly more than the 

increase in tissue size, or at a 2-fold increase per gram of mammary tissue (Jones et 

al., 1989).  Overall, as lactation progressed, the mitochondrial form of the enzyme 

became the dominant regulator of metabolism.  To date, the role(s) of the PEPCK 

isoforms in milk synthesis has not been determined.  One possibility is that higher 
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mammary gland PEPCK-m expression and activity relative to PEPCK-c serves to 

support greater shuttling of EAA carbon-skeletons towards NEAA synthesis via 

intermediates of the TCA cycle.  Interestingly, different effects are seen in rats, in 

which PEPCK-c changes most dramatically (García-Ruíz et al., 1983).   

Work on rats by García-Ruíz et al. (1983) showed that the cytosolic form of 

PEPCK in the mammary gland varies the most as demonstrated by the dramatic 

increase (40-fold) at the onset of lactation, and thus seems to have more of an 

influence on mammary gland metabolism than PEPCK-m.  In the same study, the 

activity of PEPCK-c in the rat dams decreased rapidly and dramatically (95%) after 

just 48 hours (h) of separation from the pups.  Lobato et al. (1969) suggested that this 

may be due in part to a decrease in plasma prolactin observed at weaning.  These 

results show that, unlike the guinea pig, it is the cytosolic rather than mitochondrial 

form of PEPCK that is highly regulated and whose activity changes rapidly based on 

the nutritional and/or physiological state of the rat.   

How these patterns may change in bovine mammary tissue is still unknown.  

Milk from guinea pigs has 6.3% protein on average (Oftedal, 1984).  The bovine 

mammary gland produces milk with only 3% protein, half that of the guinea pig 

(Oftedal, 1984).  Therefore, based on the enzyme activity needed to support TCA 

cycling, there should be a smaller increase in PEPCK-m in bovine tissue.  Portions of 

the nucleotide sequences for the two isoforms (cytosolic and mitochondrial) of this 

enzyme have been sequenced from a bovine mammary gland cDNA library, 

according to a recent BLAST search of the Bos Taurus gene index (http://  

compbio.dfci.harvard.etu/tgi) by E. Connor (USDA, pers. comm.).  Preliminary work 
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for this project, presented in Chapter 2, also demonstrated appreciable gene 

expression of the two isoforms of PEPCK in the bovine mammary gland.  This is the 

first report of mRNA expression of the two forms of the PEPCK enzyme in the 

bovine mammary gland.  This work suggests, given greater mRNA expression, that it 

is the mitochondrial form in the mammary gland that is responding to metabolic 

changes in dairy cows.  In fact, in support of these observations, Scott et al. (1975) 

reported that PEPCK-m represented 88% of the total PEPCK activity in bovine 

mammary tissue.  

 PEPCK  in Other Tissues, Including the Liver 

 Interestingly, PEPCK-c is expressed in white adipose tissue and this finding 

led to the demonstration that PEPCK-c serves a key role in glyceroneogenesis and 

thus fatty acid turnover and storage in adipose tissue (Hanson and Reshef, 1997).  The 

kidney cortex and small intestine also illustrate PEPCK-c activity (Hanson and 

Reshef, 1997).  PEPCK obviously also plays a critical role in glucose synthesis in the 

liver, serving as the first committed step in gluconeogenesis.  Across all tissues, it 

appears that, for the most part, PEPCK-c expression and ultimate activity varies based 

on metabolic state while PEPCK-m remains constitutively regulated (Hanson and 

Reshef, 1997).  An exception, in the guinea pig, has already been mentioned (Jones et 

al., 1989).   

Liver PEPCK-c serves a cataplerotic role in relation to the TCA cycle for the 

synthesis of glucose, glycerol and other products (Owen et al., 2002; Hanson and 

Reshef, 2003).  Unlike the guinea pig mammary gland, it seems as though rat liver 

PEPCK-c, rather than PEPCK-m, undergoes greater responses during metabolic 
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changes (Jones et al, 1989).   Again, this seems to suggest very different control of 

the two forms in each of the two tissues.  Indeed the patterns seen in the rat liver are 

more common amongst species and the guinea pig seems to be something of an 

anomaly (Jones et al., 1989).    

The balance of the role of the two forms of the enzyme in the liver is well 

characterized in birds.  PEPCK-c is not expressed in the avian liver (Hanson and 

Patel, 1997).  However, both forms are present in the kidney (Hanson and Patel, 

1997). This supports the known metabolism of birds which includes little 

gluconeogenesis from amino acids in the liver, but rather lactate as the source 

(Hanson and Patel, 1997).   The kidney, therefore, is the main site of glucose 

synthesis from amino acids in birds.  

While post-hatch birds have no hepatic PEPCK-c activity, the rat, mouse, and 

hamster livers have 90% PEPCK-c activity in relation to total PEPCK activity 

(Hanson and Patel, 1994).  Most other mammalian species have similar (close to 

50:50) PEPCK-c to PEPCK-m distribution in liver (Hanson and Patel, 1994).  Hanson 

and Patel (1994) noted that, with the exception of adult birds, the relative activities of 

the enzymes are the same in each tissue within each species.  In dairy cows, Agca et 

al. (2002) found that liver PEPCK-c gene expression increased during transition to 

lactation.  We hypothesize that a similar result would be observed for mammary 

gland PEPCK, if the bovine follows the pattern of similar tissue responses within 

species.  Greenfield et al. (2000) also noted an increase in hepatic PEPCK-c at day 28 

of lactation in dairy cows.  She et al. (2000) classified PEPCK-c as being a key 

regulator in hepatic regulation when they observed mice that were able to maintain 
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normal plasma glucose levels with decreased PEPCK-c function, but altered fat 

synthesis and raised metabolic enzyme expression (acetyl-CoA oxidase and fatty 

acetyl-CoA dehydrogenase) with complete absence of PEPCK-c.  While PEPCK-c is 

involved in gluconeogenesis and glyceroneogenesis in several tissues, it is interesting 

to propose that this enzyme functions as a regulatory point for lactose and glycerol 

synthesis in the mammary gland. 

 PEPCK Regulation 

Control of the activity of the two forms of the enzyme is dependent on the 

relative synthesis and degradation of the enzyme because there have been no 

allosteric regulators of the enzymes identified (Hanson and Reshef, 1997).  Diet and 

hormones have been shown to regulate only PEPCK-c, and not PEPCK-m 

(Chakravarty et al., 2005).  Both forms appear to use a divalent metal ion bound to 

the active site as an activator (Hanson and Patel, 1994).  While pertinent points will 

be mentioned here, full reviews of the topics of regulation of the PEPCK enzyme can 

be found in Hanson and Reshef (1997), and Chakravarty et al. (2005).   

The ratio of the two forms of the enzyme varies among species, and regulation 

is tissue-dependent.   Evidence of hormonal regulation via control of gene 

transcription rate and mRNA stability of PEPCK-c has been found in some tissues 

(Hanson and Reshef, 1997).  Of note is the inverse relationship found between plasma 

insulin concentrations and total PEPCK activity in the liver and mammary gland of 

rats (García-Ruíz, 1983).  Additional evidence shows that insulin is an inhibitor of 

PEPCK-c gene expression in the liver (Hanson and Reshef, 1997; Chakravarty et al., 
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2005).  On the other hand, acidosis increases PEPCK-c activity in the liver (Hanson 

and Reshef, 1997).   

 PEPCK-c is not active in the mammalian fetal liver but initiation of PEPCK-c 

activity is necessary post-natally for gluconeogenesis and survival, even if PEPCK-m 

activity is adequate (Hanson and Reshef, 1997).  This shows that the newborn 

requires PEPCK-c to support the metabolism of amino acids to glucose rather than 

glucose synthesis through the PEPCK-m pathway (Hanson and Reshef, 1997).  These 

observations are consistent with a decrease in insulin at birth, in consequence 

reducing the negative effects of insulin on PEPCK-c gene expression (Hanson and 

Reshef, 1997) and resultant increased capacity for gluconeogenesis.   

Lobato et al. (1985) suggested that prolactin is also a regulator of PEPCK-c in 

rats.  They demonstrated that when prolactin secretion was inhibited, PEPCK-c 

activity decreased by 50%, mimicking the effects of insulin (Lobato et al., 1985).  In 

their study, similar results were seen in liver and mammary gland PEPCK, suggesting 

similar regulatory mechanisms, and another possible route for manipulation of milk 

components (Lobato et al., 1985). 

The hyperinslinemic-euglycemic clamp causes shifts in milk production and 

milk components.  Since insulin inhibits PEPCK-c in the liver, and treatment with 

insulin and bST increase milk protein levels, then these hormones may be inhibiting 

mammary gland PEPCK-c the same as in the liver.  Evidence for this was shown in 

lactating dairy cows (Velez and Donkin, 2004) and calves (Hammon et al., 2005) 

when there was an increase in liver PEPCK upon treatment with bST.  This causes a 

shift in the TCA cycle towards use of glucose for amino acid synthesis versus lactose 
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synthesis.  By inhibiting PEPCK-c, one expects to see enhanced milk protein 

synthesis due to greater channeling of carbon from EAA (Val, Thr, Ile) towards 

glutamate and glutamine synthesis (i.e. casein synthesis) (Figure 2).   Understanding 

changes in the relative activities of PEPCK-c and PEPCK-m, will help explain the 

relationship of milk protein and lactose concentration throughout lactation.  These 

relationships form the basis for future manipulation of milk components by dietary or 

other means. 

[U-13C]Glucose Tracer Approach and MIDA 

 The use of stable isotopes has allowed for precise quantification of carbon 

flow through the numerous pathways of metabolism.  Stable isotopes (versus 

radioactive) allow one to distinguish between molecules containing 1, 2, etc. atoms of 

the isotope of interest.  These molecules are referred to as [M+n]-containing species, 

with the n referring to the number of heavy isotope atoms.  For example, isotopomers 

derived from the use of [U-13C]glucose where all 6 carbons are found as 13C, result in 

TCA cycle intermediates with one, two, or three 13C atoms ([M+1, [M+2], etc.).  The 

abundance of these molecules can be accurately measured via high-resolution nuclear 

magnetic resonance spectrometry, or GC-MS (Reeds et al., 1997).   

 Naturally occurring “unlabelled” compounds do have a predictable amount of 

“heavy” atoms.  Fortunately, mathematical models allow for adjustment of 

abundances which take into account the naturally occurring isotope (Hachey, 1994).  

Corrections can also be made accounting for the fact that universally labeled tracers 

will not be 100% pure.  Therefore, also by mathematical means, the final enrichment 

accurately portrays the amount of labeling coming only from the tracer molecule 
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itself.  This MIDA then allows for estimation of glucose recycling, gluconeogenesis, 

and the entry points for intermediates of the TCA cycle, among other things. 

 As an example, [M+3] pyruvate can only result from the direct breakdown of 

[U-13C]glucose tracer provided.  If this [M+3] pyruvate is resynthesized to an [M+3]-

containing molecule of glucose, then the [M+3]:[M+6] glucose ratio is a minimum 

estimation of glucose that has been derived from pyruvate (Berthold et al., 1994).  

This is an underestimation because entry of unlabelled sources into the TCA cycle 

contributes to [M+1] and [M+2]-containing molecules of pyruvate, which can then 

also be synthesized to glucose.  Calculations taking into account these dilution factors 

have been developed and allow for a more accurate portrayal of TCA cycle 

metabolism (Berthold et al., 1994; Reeds et al., 1997, Pascual et al., 1997, 1998). 

 Pascual et al. (1997, 1998), Wykes et al. (1998), Haymond and Sunehag 

(2000), and Sunehag et al. (2002) are just a few who have used the above MIDA 

approach to estimate various contributors to metabolism.  It is by this approach that 

Sunehag et al. (2002) determined that not all lactose is coming from blood glucose in 

humans.  They used combinations of [U-13C]glucose molecules, [2-13C] glycerol 

molecules, and [1-13C]galactose molecules to determine that 20% of glucose in the 

human breast and 40% of galactose is synthesized de novo (Sunehag et al., 2002, 

2003).  Pascual et al. (1997) measured extensive glucose recycling in the rat liver and 

determined that lipids are the major hepatic energy source in rats.  These studies 

illustrate the power of MIDA techniques, and we have employed some of these same 

techniques and calculations for determining various relationships in murine mammary 

gland metabolism.  
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 The desire to manipulate milk composition by increasing protein and 

decreasing milk lactose, coupled with the observations that not all milk glucose and 

galactose derives from blood glucose, and that EAA may be used for milk lactose 

synthesis in the mammary gland called for application of the MIDA approach to 

explore mammary gland metabolism.  These conclusions, along with the potential 

regulatory role of PEPCK formed the basis for these experiments.   

 This project aimed to address three overall objectives:  

1) To determine the length of time (days) for feeding of the [U-13C]glucose to 

achieve isotopic plateau (steady state) in milk and tissue samples taken from 

lactating mice; 

2) To determine whether the differences in mammary gland metabolism caused 

by altering dietary protein intake are due to shifts in the partitioning of 

nutrients (glucose and EAA) within the mammary gland to support lactose 

versus casein synthesis; and 

3) To establish the role of the PEPCK isoform enzymes (cytosolic and 

mitochondrial) in the partitioning of nutrients within the mammary gland, 

specifically their involvement in the dietary protein response. 

These objectives would be met via two experiments, the first being a pilot study 

in order to validate the MIDA and PEPCK gene expression analysis techniques. 
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Chapter 2:   Development of a [U-13C]glucose feeding approach 
to examine the metabolic pathways and substrates used to 
support milk lactose and casein synthesis by lactating C57BL/6 
mice 
  

Introduction 
  
 There are a few key observations that illustrate that the coordination of milk 

synthesis is not fully understood.  First, though it seems logical that most, if not all, 

glucose in milk lactose comes from blood glucose, evidence suggests that other 

precursors may be contributing to milk lactose.  These “other” precursors have been 

shown in part to be glycerol in the case of humans (Tigas et al., 2002; Sunehag et al., 

2003) and dairy cows (Scott et al., 1975). This requires that the mammary gland 

synthesizes lactose de novo from sources other than absorbed glucose, and we suggest 

that amino acids may serve as an additional source of glucose carbon.   

 Our second observation of mammary gland metabolism is that several NEAA 

(especially glutamate/glutamine, aspartate/asparagine, serine and proline) are taken 

up by the mammary gland in quantities less than what is required for milk synthesis 

(Fleet and Mepham, 1985).  The commonsensical source for these amino acids is de 

novo synthesis in the mammary gland with EAA serving as the main precursors.  

However, the interconnectivity of glucose and amino acid metabolism requires 

intricate regulation of several pathways involved in milk synthesis.  There is the 

potential for involvement of the use of glucose for NEAA synthesis.    

 The complexity of the central pathways of carbon metabolism encompasses 

intersections of glycolysis, gluconeogenesis, and fatty acid metabolism; all 
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converging at the TCA cycle.  Furthermore, the arms of these pathways involve 

glucose carbon, as well as amino acids, triglycerides (glycerol, fatty acids), and the 

intermediates associated with the recycling (turnover) of these metabolites.  This 

“metabolic intersection” is part of the reason that the intricacies of whole body 

metabolism still have to be fully uncovered (Reeds et al., 1997).  

 Many approaches in vitro are limited in their potential application for two 

reasons.  First, because metabolic pathways intersect with great regularity within and 

between cells (tissues), changes in one pathway undoubtedly will have ramifications 

on the fluxes through other pathways (Berthold et al., 1994; Reeds et al., 1997).  

Perturbations in the system are likely to result in changes seen indirectly in other 

pathways.  Secondly, compartmentalization of these interconnected pathways occurs 

on both cellular and whole body levels (Berthold et al., 1994; Reeds et al., 1997).  A 

way to circumvent some of these challenges involves the application of universally 

labeled stable isotopes in vivo, and MIDA performed by GC-MS or another 

separation technique integrated with a mass spectrometer (Berthold et al., 1994; 

Reeds et al., 1997).   

 Unlike radio-labeled isotopes, the use of stable isotopes allows for 

measurement of isotopically labeled molecules versus single isotopic atoms (Reeds et 

al., 1997).  One of the most convenient and most commonly employed tracers is [U-

13C]glucose (Reeds et al., 1997), the tracer chosen for this study.  Through 

measurements of isotopomer enrichments, one can determine rather easily how much 

of a given molecule was derived intact from the tracer.  Any full-labeled (i.e. [M+6] 

glucose) molecule must have come directly from the fully-labeled tracer (i.e. [U-
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13C]glucose).  The advantages of MIDA are fully utilized, however, by isotopomer 

distribution analysis since molecules that are not fully labeled can only result from 

products which have been recycled from the initial tracer.  Measurement of [M+1], 

[M+2], and [M+3]-containing molecules, including adjustments made for isotopomer 

dilution via recycling, provides rich information of how the 13C atoms provided by 

the tracer have been recycled through these complex pathways of metabolism.  This 

allows for calculation of the extent of gluconeogenesis, sources of amino acid 

synthesis, and other metabolic contributions to TCA cycle metabolism. 

 The mammary gland serves as an ideal model for employment of the MIDA 

technique.  Additionally, the desire to understand mammary gland metabolism in 

order to alter milk component production within the gland makes a stronger case for 

exploitation of these techniques in this area. Feeding of the tracer is the desired mode 

of isotope delivery because it gives the most complete picture of whole body 

metabolism in relation to mammary gland metabolism.  In addition, future 

manipulation of milk production is likely to involve nutritional aspects on the basis of 

economy and management.  Therefore, from the practical standpoint, how 

metabolism is regulated from digestion, through absorption and onward, is our 

greatest interest.   

  Though the bovine is the commercial target species of interest, several aspects 

hinder the use of this species at least in a wide-scale tracer feeding approach.  Cost 

prohibits the use of feeding tracers to dairy cattle in amounts necessary for 

measurable isotopic enrichment in various components (milk, blood, tissue).  

However, mammary gland metabolism in the broadest sense is assumed to vary little 
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among species, at least in the case of lactose and amino acid metabolism.  Uptake 

versus output of amino acids for milk casein is similar for monogastrics and 

ruminants. Across species, uptake of amino acids such as glutamate, glutamine, 

serine, proline and alanine is far less than what is required for milk casein synthesis 

(Mepham, 1982; Bequette et al., 1998).  The rat mammary gland appears to convert 

65% of the glucose extracted from the blood into lipid and 25% into lactose, with 

oxidation accounting for the rest (Katz and Wals, 1972).  The bovine mammary gland 

has a net glucose balance across the gland of 1.45 g/g (uptake:output) (Rigout et al., 

2002).  The difference in milk synthesis between monogastrics and ruminants 

involves milk-fat synthesis due to ruminant incorporation of acetate from rumen 

fermentation (Katz and Wals, 1972).  Based on this information, we can safely 

assume that the aspects of mammary gland metabolism that we are specifically 

interested in will vary little between species, and any differences would allow for 

species comparisons.  Therefore, one objective of this study was to confirm the 

validity of the use of C57BL/6 mice as an appropriate model for mammary gland 

metabolism.  

 In order to utilize isotopic enrichment data to determine the contribution of 

various carbon intermediates to metabolic pools, four assumptions must be met.  First 

and foremost, the tracer must be indistinguishable from the unlabelled substrate 

(tracee) by the body during metabolism.  Second, the isotope must be delivered in 

amounts that do not alter substrate metabolism.  Thirdly, in order to measure 

metabolic flux and nutrient turnover, a steady state in isotope plateau must be 

ensured.  Finally, in order to measure rates of metabolic recycling (via glucose and 
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the TCA cycle), steady state must also be reached in lower mass isotopomers relative 

to the fully labeled molecule.  Assumptions one and two are satisfied through 

selection of a universally labeled glucose molecule as the tracer.  In order to satisfy 

assumptions three and four, the time-course required to reach isotopic and isotopomer 

plateaus in mouse tissues and milk need to be determined.  Due to the high cost of [U-

13C]glucose (the tracer chosen based on assumptions one and two), we wanted to limit 

the amount of tracer required in subsequent studies.  Our specific hypothesis, based 

on previous work in our lab, was that within three days, isotopic plateau would be 

reached in milk and tissues.  The feeding of stable [U-13C]glucose in future studies 

would be based on the findings of the pilot study.    

 Finally, we also probed for PEPCK expression in the mammary gland and 

liver of lactating mice to confirm that we could combine enzymatic gene expression 

data with the metabolism data gleaned from the MIDA approach.  PEPCK serves as 

an important regulator of metabolism, in part, because it exists in two isoforms 

(cytosolic and mitochondrial), which serve important roles in maintaining 

compartmentalization of the metabolic pathways mentioned earlier (Agca et al., 

2002).  In particular, PEPCK-c is thought to determine the flux of carbon through 

glycolytic versus gluconeogenic pathways (Magnuson et al., 2003).  Activity specific 

to both forms has been found in the guinea pig, rat, and bovine mammary glands, 

with regulatory patterns suggesting an important function in the mammary gland for 

milk synthesis (García-Ruíz et al., 1983; Lobato et al., 1985; Scott et al., 1985; Jones 

et al., 1989).  Since PEPCK-c promotes channeling of carbon out of the mitochondria 

and towards gluconeogenesis or glyceroneogeneis, while PEPCK-m promotes the use 
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of amino acid carbon for NEAA synthesis or oxidation, the balance between these 

two isoforms could hold a key to how the complex regulation of interconnecting 

metabolic pathways occurs within the mammary gland.  Simply put, our ultimate 

objective is to determine how PEPCK might be related to the use of carbon for amino 

acid or lactose synthesis.  Since our other species of interest is the dairy cow, we 

sought to confirm gene expression of both forms of PEPCK in the bovine liver and 

mammary gland.  Additionally, demonstrated presence of the isoforms in the murine 

liver and mammary gland will allow for additional comparisons between these two 

species. 

 
Materials and Methods 

Animal Care 

 The details of this experiment were reviewed and accepted by the University 

of Maryland Institutional Animal Care and Use Committee (Protocol #R-05-57).  A 

total of six C57BL/6 mice, obtained from the University of Maryland Department of 

Animal and Avian Sciences breeding colony, were used for this experiment.  For 

breeding, three females were placed in a cage with one male.  Several days prior to 

the estimated date of parturition, female mice were placed into individual plastic 

shoebox cages.  Mice were monitored daily for food intake and health status, and 

fresh water was provided every other day.  Cages were cleaned and sterilized once 

every week.  At the time of sampling for this pilot study, the four lactating mice were 

all aged three months and weighed 23.92 grams (±.99 g).   Two additional mice were 

not lactating at the time of sampling. 
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Diets and Feeding 

 Prior to parturition, mice were fed a standard lab animal diet in pelleted form 

(Lab Diet 5001 Rodent Diet, PMI Nutrition International, LLC, Brentwood, MO).  

Mice were switched to a purified, formulated diet (Table 1) within two days of 

parturition which contained adequate levels of protein (20%), energy (kJ/kg) and 

vitamins.  The lactation diet was formulated to meet the nutrient recommendations of 

the National Research Council’s Dietary Recommendations for Laboratory Animals 

(NRC, 1995).  Diet ingredients were mixed using a hand mixer, and enough water 

was added to form a soft dough.  Pellets (approximate wet weight, 8.57g) were 

formed by pressing into a tablespoon measuring spoon and left to dry at room 

temperature (at least 48 hr).  Pellets (approximate dry weight, 6.23g) were weighed 

and fed to mice ad libitum.   

Within two days of parturition, all mice were exclusively fed ad libitum the 

purified, formulated diet.  Prior to that, a mixture of purified diet and standard lab 

animal diet was fed in order to acclimate the mice to the new diet.  Mice adapted to 

the formulated diet within one day, and daily intakes were recorded.  Mice were 

monitored twice daily for pup arrival.  The day that pups were first noticed in the nest 

was considered day 1 of lactation.  On day 9 (n=3) or day 12 (n=1) of lactation, 10% 

of the diet dextrose was replaced with [U-13C]glucose tracer, and fed to the mice for 5 

days. All other ingredients in the diet remained the same.  One non-lactating mouse 

was also placed on the tracer diet and the other was fed the non-labeled diet for 

determination of background enrichments for GC-MS analysis.   
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Table 1.  Composition of Experimental Diets 

Unlabelled Diet Labelled Diet
Ingredient g/100g g/100g

Dextrose1 60.00 54.00
Vit. Free Casein1 20.00 20.00
Solka-Floc2 5.00 5.00
Soybean Oil1 9.00 9.00
AIN 93 Mineral Mix3 4.00 4.00
AIN 76 Vitamin Mix4 1.50 1.50
Methonine1 0.30 0.30
Choline Bitartrate1 0.20 0.20
[U-13C]Glucose5 - 6.00

1Source:  Dyets, Inc.
2Source:  International Fiber Corporation
3Source:  MPBio
4Source:  ICN Biomedicals, Inc.
5Source:  Cambridge Isotope Laboratories, Inc.
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Experimental Design and Sample Collection 
 
 The experimental design was longitudinal with time as the explanatory 

variable (one, three, or five days of tracer feeding).  The milk from lactating mice was 

sampled after one, three, and five days of feeding the diet containing [U-13C]glucose.  

After one, three, and five days of feeding the labeled diet, dams were separated from 

their pups for two h prior to hand-milking.  At the time of milking, mice were gently 

restrained by hand and 0.2 ml of oxytocin (1 IU/ml concentration in sterile saline) 

was given intra-abdominally.  Nipples were manually stimulated for several minutes 

(min) and then milked using a vacuum pump constructed essentially as described by 

Teter et al. (1990).  Briefly, the teat cup was constructed from a silanized glass 

Pasteur pipette end (8-mm external diameter, 6-mm internal diameter, 4-cm in 

length), which was passed through a rubber bunge into a plastic vial (50 ml volume, 

3.25cm diameter, 8.5cm in length) connected to Teflon tubing at the opposite end.  

The Teflon tubing was connected through a rubber bunge to a 1-L flask, which was 

held under vacuum by a water aspirator (Figure 3).  The mild suction created enough 

vacuum to gently draw milk from the teat canal.  Suction could be adjusted by placing 

a thumb over a hole in the side of the plastic vial.   

Once several drops of milk formed in the glass collection tube, milk was 

removed from the glass tube by capillary action into a hematocrit tube, sealed with 

Critaseal and labeled appropriately.  When milking was completed, the dams were 

returned to their pups. After the day five milking, dams were euthanized by isoflurane 

asphyxiation (approximately two h after milking).  Blood was then sampled via 
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Figure 3.  Milking System. 

System for milking mice shown is as essentially described by Teter et al. (1990). 
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the portal vein, and stored at -20°C for later analysis.  Tissues collected were stored at     

-20 °C or below (-80°C for tissues used for RNA extraction). 

For tissue collection, a mid-line incision was made through to the abdominal 

cavity to expose the visceral tissues and the mice were placed on an ice-cold marble 

tile.  Blood samples were taken fresh from the portal vein with a 21-gauge needle and 

immediately transferred to heparinized tubes prior to storage.  The whole liver, both 

kidneys and the small intestines (from the pylorus to the illeal-cecal junction) were 

immediately removed, wrapped in tin foil, and submerged into liquid nitrogen.  

Muscle tissue from the rear hind legs and only the lactating mammary glands were 

dissected and stored as above. Tissues were subsequently pulverized to a powder 

using a freezer-mill (SPEX CertiPrep 6850 Freezer/Mill), and lyophilized to dryness 

prior to processing for GC-MS analysis.   

Sample Preparation and Analysis via GC-MS 
 

GC-MS Analysis of Glucose and Galactose from Milk Lactose  
 
 Immediately following collection into capillary tubes, whole milk samples 

were placed in a microcapillary centrifuge at maximum velocity for 15 min to 

separate fat from other milk components.  Milk fat percentage was estimated using a 

hematocrit (“creamatocrit”) by measuring between the bottom and top of the fat layer.  

Tubes were then stored frozen (-20 °C).  Subsequently, the top fat layer in each 

capillary tube was separated from the nonfat layer (lactose and proteins) by scoring 

the tube at the fat-nonfat layer interface and gently breaking the tube.  The fat layer 

tube was placed into a 1.5-mL centrifuge tube and stored frozen.  The non-fat layer 

was removed from its tube section using a blunt needle attached to a 1.0-mL syringe, 
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and forcing air through to dispense the nonfat layer into a 1.5-mL centrifuge tube.  To 

separate lactose from milk proteins, 1.0 ml of distilled H2O was added to the nonfat 

layer and vortexed.  Approximately two drops of 0.1 N HCl was added to the sample 

to bring the pH to 4.0-4.5; the sample was vortexed and then centrifuged (12,000 rpm, 

10 min) to precipitate milk caseins. The supernatant (containing milk lactose) was 

transferred into another tube and 0.1 N NaOH (approximately one drop) added to 

bring the solution to pH 7.0.  The lactose-containing supernatant was then centrifuged 

again for 10 min to remove additional precipitates (debris) and the supernatant was 

transferred to another tube and stored frozen until enzymatic cleavage of lactose to 

free glucose and galactose. The remaining casein pellet was washed with 1.0 mL 

distilled H2O to remove residual free amino acids, and subsequently frozen at -20°C 

until further processing. 

 Lactose was enzymatically cleaved to glucose and galactose according to 

methods as described by Sunehag et al. (2002, 2003), but with some modification.  

The modification was that the lactose portion from milk was transferred to an 8-mL 

glass vial (Wheaton, Millville, NJ) and to this was added 50 µL (15 U) of glucose 

oxidase (Sigma, St. Louis, MO) plus 20 µL (15 U) of bovine catalase (Sigma). The 

vial was capped and the sample incubated overnight at room temperature. The 

addition of the glucose oxidase step served to convert free glucose and galactose, 

which may be derived from blood or another mammary gland compartment, to their 

corresponding lactones. On GC-MS, these compounds elute elsewhere, and do not 

interfere with measurement of lactose–derived glucose and galactose by GC-MS.   

The next morning, the solution was filtered through a minispike acrodisc syringe 
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filter (Pall Corporation, Ann Arbor, MI) to remove the glucose oxidase and catalase 

enzymes.  Next, 50 µL (7 U) of ß-galactosidase (Sigma) was added, the vial capped, 

and the sample incubated for 1 h at room temperature.  The solution was then filtered 

as above, decanted into a 3.0-mL Reacti-vial, and blown down to dryness at room 

temperature under a gentle stream of N2.  To the dried sample, two drops of distilled 

H2O were added to dissolve the dry material, followed by the addition of 1.0 mL of 

freshly made 0.38 M sulfuric acid in acetone. After incubation at room temperature 

for 1 h, the solution was transferred to a 20 × 150-mm screw cap culture tube, 2.0 mL 

of 0.44 M sodium carbonate was added and vortexed. Next, 2.0 mL of a saturated 

sodium chloride solution was added and the solution vortex mixed.  After vortex 

mixing, 3.0 mL of ethyl acetate was added, the sample vortexed vigorously for 10 

min, followed by centrifugation (2,000 × g, 15 min).  The top ethyl acetate layer, 

containing glucose and galactose, was drawn off and the extraction procedure 

repeated to ensure complete extraction of glucose and galactose. The combined ethyl 

acetate extractions were transferred to a Reacti-vial and blown down to dryness at 

room temperature under a stream of N2.  To this dried residue was added 50 µL each 

of ethyl acetate and acetic anhydride, the vial tightly capped and heated at 60 ºC for 

30 min.  This derivatization procedure converts glucose and galactose to their 

respective isopropylidene-pentaacetate forms. The derivatized samples were then 

transferred to gas chromatography vial inserts (Agilent Technologies, Palo Alto, CA) 

prior to analysis by GC-MS under electrical ionization mode (HP 5973N Mass 

Selective Detector, Agilent Technologies). The gas chromatography column (HC-5; 

30 m x 0.25 m i.d.; Alltech Associates, Inc., Deerfield, IL) conditions were as 
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follows: 100º C initial temperature, followed by a ramping rate of 10 ºC/min until 200 

ºC, followed by a rate of 30 ºC/min to a final temperature of 280 ºC and held for 1 

min.  Total run time was 13.67 min with α-galactose eluting at 9.85 min and β-

glucose at 10.35 min.   Selective ion monitoring was conducted for ions 287 to 293 

for both glucose and galactose. 

 
 GC-MS Analysis of Blood Glucose 
 
 Approximately 0.2-mL aliquots of blood were used.  To each aliquot was 

added 0.6 mL ice-cold 12% (wt/vol) sulphosalicyclic acid, and samples were 

vortexed vigorously prior to centrifugation at 13,000 rpm for 10 min.  The acid-

supernatant was applied to a neutral pH cation exchange resin (AG 50-X8, 100-200 

mesh, H+ form, Bio-Rad Laboratories, Richmond, CA), which binds positively 

charged molecules, such as amino acids, while allowing neutral glucose to pass 

through the resin.  Thus, the initial eluate plus an additional 1 mL distilled H20 wash 

were collected into an 8.0-mL Wheaton sample vial  for derivitization of glucose.  

Amino acids were eluted from the resin by addition of 2 ml of 2 M NH4OH plus 1 mL 

distilled H20 and collected into a 4 mL Wheaton vial (see below).  A 300-µL aliquot 

of the glucose portion reduced to dryness at room temperature under a gentle stream 

of N2 gas.  Glucose was converted to the isopropylidene-pentaacetate derivative prior 

to selective ion monitoring of m/z 287-293 by GC-MS as described above for lactose-

derived glucose and galactose. 
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GC-MS Analysis of Plasma NEAA 
  
 The amino acid-containing fraction from above was subsequently frozen and 

lyophilized to dryness.  The procedure for conversion of amino acids to their hepta-

fluorobutylamide derivative is based on the methods described by MacKenzie and 

Tenaschuk (1979).  The amino acids were transferred from the Wheaton vials to 0.6- 

mL Reacti-vials by rinsing twice with 150 µL water. We found that water, rather than 

0.1 N HCl resulted in more efficient hepta-fluorobutylamide formation due to the less 

acidic environment.  For esterification, 200 µL of a 10:1 ratio of ice-cold iso-butanol 

(Aldrich. St. Louis, MO) and acetyl chloride (Sigma) were added to the V-vials, 

vortex mixed, capped and heated at 90 ºC for 30 min. Note: Care was taken to keep 

the iso-butanol and acetyl chloride solutions ice-cold upon mixing to prevent 

explosive reactivity.  If large amounts of debris or precipitate formed during this step, 

the sample was centrifuged at 13,000 rpm for 10 min prior to the next steps.  After 

heating, the sample was blown down to dryness under a gentle stream of N2 gas at 40 

ºC.  To the dry reside was added 50 µL each of ethyl acetate and heptafluorobutyl 

anhydride (Sigma), vortex mixed and heated at 90 ºC on the Reacti-Therm for 15-20 

min.  After cooling to room temperature, samples were blown down to dryness at 

room temperature under a gentle stream of N2 gas. Next, the sample was taken up in 

60 µL of ethyl acetate prior to GC-MS analysis under negative chemical ionization 

conditions (HP 5973N Mass Selective Detector, Agilent Technologies). For gas 

chromatography separation, the column (30m; HP-1; 0.25-µm film thickness; Agilent 

Technologies)  conditions were: an initial temperature of 100 ºC, ramping to 190 ºC 

at 10.0 ºC/min, followed by a 30.0 ºC/min to 300 ºC, held for 2.0 min.  Table 2 shows 

the peak retention times and ions monitored for the NEAA.    
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Table 2.  Ions monitored for individual amino acids in plasma, milk casein, and liver 
tissue 

 
 
 

Amino Acid Ions Monitored1 (m/z) Retention Time (min)

Alanine 310 - 324 5.95
Glycine 307 - 310 6.14
Serine 533 - 536 8.22
Proline 347 - 350 10.08
Glutamine 361 - 364 11.10
Methionine 381 - 384 11.78
Aspartate 421 - 424 12.45
Glutamate 435 - 438 13.81

1Ions monitored were [M+0] - [M+3] for all amino acids, and represented the N(O,S)-Heptofluorobutyrl 
Isobutyryl amino acid derivatives according to MacKenzie and Tenaschuk (1979).
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 GC-MS Analysis of NEAA from Milk Casein 
 
 Analysis of NEAA from milk casein was essentially as described above for 

blood, with a few modifications. The isolated milk casein pellets were dissolved in 

200 µL of 0.1 N NaOH and vortex mixed.  One-hundred microliters of this solution 

was added to a hydrolysis tube containing 4 mL of 2 M HCl, and the sample was 

hydrolyzed for 24 h at 100 ºC.  Following hydrolysis, the sample was applied to 

cation exchange resin (AG 50-X8, 100-200 mesh, H+ form, Bio-Rad Laboratories).  

The resin was rinsed with excess (6.0 mL) water to elute the acid, followed by the 

addition of 2 × 2.0 mL of 2 M ammonium hydroxide and 1.0 mL of H20 to elute 

amino acids.  The latter fraction was collected into a glass vial, frozen, and 

lyophilized to dryness.  The lyophilized amino acids were transferred to a V-vial in 

400 µL of H20.  From this point, the samples were derivatized and analyzed for 

isotope enrichment by GC-MS as for blood amino acids.  

 
 GC-MS Analysis of Keto Acids and Lactate in Tissue 
 
 For GC-MS determination of the isotopomer labeling of TCA cycle keto-acids 

and lactate from tissues (mammary, liver, muscle, and whole intestines) the method 

of Des Rosiers et al. (1994) was employed.  Approximately 40 mg of freeze-dried, 

pulverized tissue was placed into a 12 × 77-mm borosilicate culture tube, 3 mL of ice-

cold 8% sulfosalicylic acid was added, and the sample was homogenized for 1 min 

with a VWR Powermax AHS 200 homogenizer.  Samples were then centrifuged for 

15 min at 4000 rpm (4 °C), and the supernatant was transferred to a 9.0-mL screw cap 

test tube.   The pH of the samples was adjusted to pH of 6-7 with 2 M KOH (Sigma), 
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sonicated for approximately 15 min and then incubated for 60 min at 65 ºC.  After 

incubation, the samples were acidified to pH <2.0 with 2 N HCl, followed by the 

addition 4 g of NaCl and vortex mixed.  The keto-acids and lactate were back- 

extracted (2 times) into 3 mL of ethyl acetate and the ethyl acetate extractions 

combined into an 8-ml V-vial.  The extract was dried under 2 psi N2 at 40 ºC.  To the 

dried residue was added 60 µL of a 1:1 mixture of ethyl acetate and N-methyl-N(t-

butyldimethylsilyl)triflouroraoacetamide + 1 % dichlorodimethylsilane and the 

sample was incubated at 90 ºC for 20 min.  This lead to the formation of tert-

butyldimethylsilyl derivatives of the keto-acids and lactate, which were then 

monitored under electrical ionization mode by GC-MS analysis.  TCA cycle 

intermediates were separated by gas chromatography (HP 6890; Agilent 

Technologies) using a fused silica capillary column (HC-5; 30 m x 0.25 m i.d.; 

Alltech Associates, Inc.) with helium as carrier gas (1.0 mL/min). The gas 

chromatography column was programmed as follows: an initial temperature of 100 

ºC, with ramping by 30 ºC/min to 190 ºC, followed by 10 ºC/min ramping to 270 ºC, 

and finally 30 ºC/min to a final temp of 300 ºC with a 3 min hold time.  Table 3 

shows ions monitored and retention times.  Various split modes, ranging from 1:1 to 

25:1, were used for compounds with varying concentrations.  An unknown source of 

ion contamination led to unusual labeling patterns in fumarate, preventing its 

analysis. 
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Table 3.  Ions monitored for individual TCA cycle intermediates in mammary gland, 
liver, muscle, and intestinal tissues 

 
 
 

Ions Monitored1 (m/z) Retention Time (min)

Lactate [M+0] 261 - [M+4] 265 5.85
Pyruvate [M+0] 274 - [M+3] 277 6.40
Succinate [M+0] 289 - [M+4] 293 7.44
Fumarate [M+0] 287 - [M+4] 291 7.61
Malate [M+0] 419 - [M+4] 423 10.03
Oxaloacetate [M+0] 432 - [M+4] 436 10.54
α-ketoglutarate [M+0] 446 - [M+5] 451 11.37

1Ions monitored were tert -butyldimethylsilyl derivatives of the intermediates according to 
Des Rosiers et al. (1994)
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 GC-MS Analysis of Plasma Lactate 
  
 In order to determine the labeling of blood lactate, 0.5 mL of the water eluate 

from the cation exchange resin (see above) was used. This portion was acidified (50 

µL of concentrated HCl) and lactate back extracted twice with 1.0 mL ethyl acetate.  

The combine ethyl acetate extractions were transferred to a V-vial and dried under a 

stream of N2 gas at 40 ºC.  For derivatization, 70 µL of N-methyl-N(t-

butyldimethylsilyl)triflouroraoacetamide + 1 % dichlorodimethylsilane plus 30 µL of 

ethyl acetate were added and the sample incubated for 20 min at 90 ºC.  Ions 

monitored (HP 6890; Agilent Technologies) for lactate were 261-264 with a retention 

time of 9.96 min.  The column (HC-5; 30 m x 0.25 m i.d.; Alltech, Inc.) conditions 

were as follows:  an initial temperature of 100 ºC, with ramping by 20 ºC/min to 120 

ºC, followed by 5 ºC/min ramping to 160 ºC, and finally 50 ºC/min to a final temp of 

280 ºC with a 1 min hold time.  

 
 Calculations and MIDA 
 
 Enrichments of single ions determined from GC-MS analysis were subjected 

to correction for the difference between theoretical and measured values based on 

natural isotopic abundance and the purity of our [U-13C]glucose (Hachey, 1994; 

Fernandez et al., 1995).  [M+X] refers to the enrichment of molecules with X number 

of 13C molecules (versus 12C).  For example, [M+6]glucose refers to a glucose 

molecule with all six carbons labeled as 13C.  This glucose molecule is six mass units 

heavier than a fully unlabelled glucose molecule.  Enrichments are reported as 

mol/100 mol of tracee, or tracer:tracee ratio (TTR), and means appear ± 1 standard 

deviation. 
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The following calculation was determined: 

 

 Proportion of glucose in milk lactose derived from blood glucose (Sunehag  
et al., 2002): 
 

 [M+6] lactose-glucose /  [M+6] blood-glucose           (eq. a) 

   

Sample Preparation and Analysis via qRT-PCR 
 
 RNA Extraction 
 
 Due to the sensitive nature of RNA and the potential for contamination by 

RNAses, special care was taken with tissues collected for mRNA analysis.  From the 

dissected tissues (liver and mammary) a sample of approximately 0.2 g was sub-

sampled for total RNA isolation.  Care was taken not to collect sub-sample sizes 

larger than 0.5 cm in any dimension as per the RNAlater protocol provided by 

Ambion (Ambion, Inc., Austin, TX).  Samples were submersed in 1.0 mL RNAlater 

and placed at 4 °C overnight.  Excess RNAlater was decanted off and samples were 

frozen at -20 °C until total RNA extraction.   

 Approximately 100 mg of tissue was placed in 1.0 ml of TRIzol in a 5-mL 

collection tube.  Samples were homogenized for 1 min each and then left to sit at 

room temperature for 5 min.  The probe was washed between each sample with three 

molecular grade H20 washes, three 70% ethanol washes, followed by a final TRIzol 

wash.  Following homogenization, 200 µl of chloroform was added and the samples 

were left to sit at room temperature for 10 min, vortexing occasionally.  Samples were 

then centrifuged for 15 min at 4 ºC.  The top aqueous layer (RNA- containing) was 

then placed in a 1.5-ml RNAse-free microcentrifuge tube and 0.50 ml isopropyl 
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alcohol was added for RNA precipitation at room temperature for 10 min.  Samples 

were then centrifuged for 10 min at 4 ºC to pellet the RNA.  After the supernatant was 

poured off and discarded, 1.0 ml cold 75% ethanol was used to wash the RNA pellet 

by pipetting vigorously and vortexing the sample.  The resuspended pellet was then 

centrifuged for 5 min at 4 ºC, after which the ethanol was removed carefully with a 

pipette.  Tubes were then left open under a fume hood for further evaporation of the 

ethanol.  After drying, 200 µl of molecular grade H20 was added and the samples 

were placed at 55 ºC with continuous shaking to resuspend the RNA pellet.  Some 

samples required higher dilutions and vigorous pipetting to breakup the RNA pellets.  

Samples were then heated for 5 min at 65 ºC to denature the RNA.   

 The samples were DNAse treated prior to qRT-PCR using the Turbo DNA-

free kit (Ambion, Inc.).  Concentrations of RNA were then determined on a 

NanoDrop spectrophotometer (ND-1000, Nanodrop Technologies, Wilmington, DE).  

RNA quality was assessed by running on a Bioanalyzer to look for degradation 

products (2100 BioAnalyzer, Agilent Technologies). 

 
 Primer Design 
 
 Primer3 software (Whitehead Institute/MIT Center for Genome Research) was 

used to design primers for the cytosolic and mitochondrial forms of the murine 

PEPCK enzyme.  High sequence homology between the two forms required that 

sequences fall near the 3’end of the gene.  Primers chosen can be found in subjected 

to a BLAST search in order to confirm proper gene selection.  Sequencing of 

polymerase chain reaction-amplification products confirmed amplification of the 

desired gene targets.  Sequencing was performed using a CEQ 8000 automated  
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Table 4 and were supplied by IDT, Inc. (Coralville, IA).  Primer sequences were then  

 

 

Table 4.  Forward and reverse primer sequences used for murine PEPCK-c and 
PEPCK-m qRT-PCR 

Gene Target Nucleotide Sequence
Product Size
(base pairs)

PEPCK-c Forward 5'-AAAACGCCTTGAACCTGAAA-3'
PEPCK-c Reverse 5'-GTAAGGGAGGTCGGTGTTGA-3'

PEPCK-m Forward 5'-CCAGGAGCCACACCTGTTAT-3'
PEPCK-m Reverse 5'-CTGGCTTTGGTAGCACGATT-3'

137

143
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 sequencer (Beckman Coulter, Fullerton, CA).   

 
 qRT-PCR 
 
 Reverse transcription (RT) reactions (20 µl) were done using 1000 ng of total 

RNA and the iScript cDNA synthesis kit (Bio-Rad Laboratories, Inc., Hercules, CA).  

Negative controls were also used which did not include reverse transcriptase to ensure 

no DNA contamination of samples.  Two µl of each RT reaction was used for 

subsequent qRT-PCR.  qRT-PCR was performed in a 25-µl reaction volume using 

SYBR Green iQ Supermix and an iCycler realtime detection system (Bio-Rad 

Laboratories, Inc.).  Cycle parameters included denaturation at 95.0 ºC for 3 min, 

followed by 40 cycles of 94.0 ºC for 15 seconds, 56.8 ºC for 30 seconds, 72.0 ºC for 

30 seconds, followed by melting curve analysis.  A standard curve was generated 

using known quantities of gel-purified PCR products of the desired targets ranging 

from 102 to 106 copies.  Gel purification of the products was done using the Qiagen 

gel purification kid according to kit instructions (Qiagen , Inc., Valencia, CA ).  

Linearity and amplification efficiency were calculated by the iCycler software.  A 

linearity of > 0.995 and efficiency between 85 and 108% was deemed acceptable.  

Melting curve analysis was used to indicate amplification of a single product and 

absence of primer-dimers.   

 

 Statistical Analysis 

 Statistical analysis for the effect of time (tracer feeding) on enrichment of 

isotopes and isotopomers was done via repeated measures ANOVA.  The PROC 

MIXED option of SAS (SAS Inc., Cary, NC), with the repeated option, was used.  
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Enrichments were treated as continuous, quantitative response variables and time of 

tracer feeding was the qualitative explanatory variable.  In all cases, the compound 

symmetry covariance and variance structure in SAS was used. 

 Analysis for the determination of metabolic pools was completed using PROC 

TTEST option of SAS.  Enrichment pools (i.e. blood glucose, lactose, etc.) were 

analyzed as qualitative explanatory variables with enrichments serving as continuous 

response variables.  The following model was used: 

 
 
 
 
Where: 
 

CT XX −  is the difference in the group means and 

( )CT XXSE −  is the standard error of the difference between the two group means. 

 

 Significance was set at P < 0.05 with P < 0.10 considered a trend. 
 

Results 
 

 Growth and Production 

Figure 4 shows pup growth rate over the five days of feeding [U-13C]glucose.  

Average daily intake of the lactating dams over the period of tracer feeding was 8.09 

(± 1.73) g.  This corresponded to an average daily tracer intake of 0.59 (± 0.20) g.  

Dam weights also tended to increase over this time period (Figure 4).  No health 

issues arose during the study and all dams and pups were in good health at the time of 

tissue sampling on day five. 

( )CT

CT

XXSE
XX
−

−
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Pup and Mother Weights Over 5 Days of Feeding [U-13C]Glucose1,2
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Figure 4.  Pup and dam weights. 

 
Weights were recorded at the time of milk collection after one, three, and five days of feeding 
[U-13C]glucose as 10% of the dietary carbohydrate 
 
1Pup weight was recorded as the total litter weight (g)/number of pups and an average taken 
for all four litters on each day 
2Dam weights are the average weight for all four dams on each day of sampling 
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Milk production is difficult to monitor in lactating mice. However, given that 

we saw an increase in average pup weight over the five days, as well as a trend for an 

increase in dam weights, we can assume good nutritional status for the mice on this 

study.  Pup weights were similar to results seen in previous studies (Teter et al., 

1992).  The diet seemed to be meeting or exceeding all needs for growth and 

lactation. 

Labeling of Blood Glucose and Milk Lactose and Casein 
 

During the feeding of [U-13C]glucose, isotopic (i.e. [M+6]) and isotopomer 

(i.e. [M+3]:[M+6]) plateau were determined in blood glucose and in milk lactose-

derived glucose and galactose.    Enrichments (TTR) were monitored over days one 

through five of tracer feeding.  Using the MIDA approach explained in the previous 

section, the portion of fully 13C-labeled ([M+6]) glucose and galactose in milk lactose 

was monitored, as well as the ratio [M+3]:[M+6] in each (Figure 5 and Figure 6, 

respectively).   

In addition, NEAA from milk casein were monitored for changes in [M+3] for 

glutamate, alanine, and serine (Figure 7).  The ratio of [M+2]/[M+3] in glutamate 

from casein was also monitored (Figure 8).  No significant differences based on time 

of feeding tracer were found for any of the above mentioned measurements (P>0.10).  

[M+3] demonstrates isotopic plateau and [M+2]/[M+3] demonstrates the isotopomer 

plateaus.  For both the hexoses and the NEAA, the demonstration of isotopomer 

steady state indicates equilibrium of 13C skeletons throughout the major metabolic 

pathways.  
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Glucose From Milk Lactose Labelling Over Time
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Galactose From Milk Lactose Labelling Over Time
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Figure 5.  Enrichments of [M+3] and [M+6] in glucose and galactose from milk lactose. 

Bars represent averages from milk of four mice; samples taken after one, three, and five days 
of feeding [U-13C]glucose as 10% of the dietary carbohydrate.  Error bars represent ± 1 
standard deviation from the mean. No significant difference based on time of tracer feeding 
was found for any of the enrichments (P > 0.1). 
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Glucose and Galactose From Milk Lactose [M+3]/[M+6] 
Over Time
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Figure 6.  Relative enrichments of [M+3] and [M+6] glucose and galactose in lactose 

Milk was collected after one, three, and five days of feeding [U-13C]glucose at 10% of the 
dietary carbohydrate.  Each bar represents the averages from milk of four mice. Error bars 
represent ± 1 standard deviation from the mean. No significant differences between days 
were observed (P>0.1). 
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[M+3] Labelling in Milk Casein Amino Acids

-0.50
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 3 5

Days [U-13C]Glucose Fed

m
ol

 is
ot

op
om

er
/1

00
 m

ol
 tr

ac
e

Ala Glu Asp
 

 

 
 

Figure 7.  Enrichments of [M+3] in Alanine (Ala), Glutamate (Glu), and Aspartate 
(Asp) in milk casein 

Milk was sampled after one, three, and five days of feeding [U-13C]glucose at 10% of the 
dietary carbohydrate.  Each line represents the averages from milk of four mice.  Error bars 
represent ± 1 standard deviation from the mean. No significant difference based on time of 
tracer feeding was found for any of the enrichments (P > 0.1).  
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[M+2]/[M+3] in Casein Glutamate Over Time
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Figure 8.  Ratios of enrichment of [M+2]/[M+3] Glutamate (Glu) in milk casein 

Milk was sampled after one, three, and five days of feeding [U-13C]glucose at 10% of the 
dietary carbohydrate.  The line represents the averages from milk of four mice. Error bars 
represent ± 1 standard deviation from the mean. No significant differences between days 
were observed  
(P > 0.1). 
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Proportion of lactose-glucose from blood glucose 

The proportion of lactose-glucose derived from blood glucose was determined 

by comparing [M+6] glucose in lactose to that in blood [M+6] glucose (Figure 9).  On 

average, the enrichment of [M+6] glucose in lactose was 3.75 (± 1.07) TTR compared 

to 4.89 (± 0.84) TTR in blood glucose.  Therefore, 76.7% (3.75/4.89) of glucose in 

lactose derived from blood glucose, or 23.3% of glucose in lactose was synthesized 

from carbon substrates other than blood glucose. 

 Metabolic pools for glucose and galactose in milk lactose 
 

By comparing [M+6] in glucose and galactose from milk lactose, we can 

determine whether glucose and galactose were derived from the same metabolic pool 

within the mammary gland.  The enrichment of [M+6]galactose (3.72 ± 1.07 TTR) 

did not differ from [M+6]glucose (3.75 ± 1.07 TTR) (P = 0.8779), indicating that 

synthesis of galactose in the mammary gland derives from the same metabolic pool as 

glucose in lactose (Figure 9). 

Preliminary Data on Expression of PEPCK in Bovine Mammary Gland and 
Liver Tissues by qRT-PCR 

 
 Our preliminary work confirmed the presence of both isoforms of PEPCK in 

the bovine mammary gland and liver (Figure 10).  PEPCK-c in the liver appears to be 

the primary form, while PEPCK-m seems to dominate expression in the mammary 

gland of the bovine.  It is noted that mRNA expression of PEPCK-c in the bovine 

mammary was at levels (69 molecules mRNA/100 ng total RNA) below the lowest 

expression measured on the linear standard curve (100 molecules mRNA/100 ng total 
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Plasma Glucose as a Source for Glucose and Galactose 
From Milk Lactose
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Figure 9.  Enrichments of [M+3] and [M+6] in glucose and galactose from milk lactose 
and blood glucose. 

 
 
Samples were taken after five days of feeding [U-13C]glucose as 10% of the dietary 
carbohydrate. Bars represent averages from milk of four mice.  Error bars represent ± 1 
standard deviation from the mean. The [M+3] and [M+6] labeling of glucose and galactose 
from milk lactose were not statistically different (P > 0.1). 
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Figure 10.  Preliminary data for the presence of PEPCK-c and PEPCK-m in the bovine 
mammary  gland and liver. 

Data shown for the two isoforms isolated from liver and mammary tissue of a lactating dairy 
cow.  (Bequette et al., unpub.)  
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RNA).  qRT-PCR efficiency for PEPCK-c analysis was 102.9% with an r2 of 0.999.  

Efficiency for PEPCK-m was 101.1% with an r2 of 0.996. 

qRT-PCR of two PEPCK isoforms in murine liver and mammary gland 

Despite individual variation, PEPCK-c gene expression in the murine liver 

was over 5,000-fold greater than PEPCK-m (n = 3 mice).  By contrast, PEPCK 

isoform gene expressions in the mammary glands were similar (Figure 11) and 

significantly lower than in the liver.   

Analysis confirmed amplification of a single product, as well as a lack of 

amplification of genes in reactions not including a reverse transcriptase.  qRT-PCR 

amplification efficiency for PEPCK-c analysis was 107.1% with an r2 of 0.995.  

Efficiency for PEPCK-m was 107.6% with an r2 of 0.997. 

Discussion 

Time-course for isotopic enrichment 
 

There are four assumptions that must be met when performing studies 

involving universally labeled stable isotopes. First, the tracer must be 

indistinguishable from the tracee during metabolism. Herein, [U-13C]glucose was fed 

in the diet, and at a level (10% of diet dextrose) that will not lead to metabolic 

discrimination between labeled and unlabelled (natural) glucose.  An exchange of 

10% of the dietary hexose was also successfully utilized by Pascual et al. (1997). 

Second, the stable isotope must be delivered in amounts that do not lead to a   
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Figure 11.  Gene expression for PEPCK-c and PEPCK-m in the murine liver and 
mammary gland determined by qRT-PCR  

Values are the means from 3 lactating (day 11 of lactation, on average).  Error bars represent 
± 1 standard deviation from the mean. 
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substrate effect.  This assumption was satisfied in the current study as the [U-

13C]glucose was added to the diet, replacing a portion of the natural dietary dextrose. 

Third, measurements of flux and nutrient turnover require that isotopic steady state or 

plateau in isotope enrichment is achieved.  Based on previous studies, we 

hypothesized that isotopic plateau upon feeding of tracer in the diet would be reached 

after one day of tracer feeding.  Pasqual et al. (1997) reached isotopic steady state in 

mouse blood isotopes within 12 h of feeding [U13C]glucose.  In the current study, 

isotopes (i.e. [M+6]glucose in blood and lactose) attained plateau by day three of 

feeding the labeled diet. 

However, although steady state isotopic enrichment in [M+n] molecules (n = 

number of carbon atoms), the entire metabolic system may not be in equilibrium.  The 

fourth requirement, if measurements of metabolic cycling (glucose carbon recycling, 

TCA cycle metabolism) are required, is that steady state must also be achieved for 

lower mass isotopomers (e.g. M+(n-1)) relative to the fully labeled molecule.  In 

other words, as recycling occurs (via the TCA cycle, for example), shifts in the 

relative enrichments of [M+2], [M+3], etc. can occur.  For example, during the 

administration of [U-13C]glucose, the relationship [M+3]:[M+6]glucose must achieve 

a steady state to avoid underestimated glucose carbon recycling and in consequence 

underestimation of gluconeogenesis. Similarly, isotopomer steady state is also 

necessary for measurement of substrate fluxes into and out of the TCA cycle.  Indeed, 

Pascual et. al. (1997) found that blood [M+1] glucose and [M+3] alanine did not 

reach plateau until after one day of feeding labeled glucose.  Thus, sufficient time 

must be given for 13C-carbon skeletons to cycle through the metabolic intermediates 
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of the TCA cycle and other connected pathways (i.e. glycolysis, NEAA synthesis, and 

catabolism).  It is important, therefore, to also examine ratios for steady state as well.  

In the current study, isotopomer steady state was achieved by day three for 

whole body and mammary tissue glucose (lactose) metabolism as well as NEAA 

metabolism in the mammary gland. For example, the ratio [M+2]:[M+3] in aspartate, 

alanine and glutamate in casein all achieved steady state by day three of feeding 

labeled glucose.     

Since no significant differences in either isotopic enrichments or ratios of 

molecules derived from recycling were observed, we are confident that complete 

steady state had been achieved.  That glucose, and also NEAA, had reached steady 

state was confirmed.  That this is attained means that these data can be used to 

quantify the fluxes into and out of the major pathways by comparison of the labeling 

patterns.   To ensure steady state in future studies, and to allow for adequate labeling 

of metabolites for measurement via GC-MS, it was determined that a tracer feeding 

schedule of three days would be adequate, and would facilitate accurate calculation of 

subsequent metabolic cycling relationships and(or) nutrient turnover rates.  In this 

regard, all four requirements for the use of stable isotope tracers in predicting 

precursor:product relationships were met.   

Mammary gland metabolism 
 
The first question regarding general mammary gland metabolism that we 

sought to answer was how much of the glucose in lactose is derived from blood 

glucose versus other sources.  Using the approach of Sunehag et al. (2002), the 

unequal [M+6] labeling in glucose from lactose compared to blood glucose suggests 
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that not all glucose in lactose is derived from blood glucose (Figure 9).  Since [M+6] 

glucose in lactose can realistically only derive from [M+6] in the diet, the source of 

this glucose for the mammary gland must be from the diet via blood uptake.  In the 

fed state in lactating women, Sunehag et al. (2002) found that a majority (almost 

100% in the fed state) of the glucose in lactose derived from blood glucose.  In the 

current study, blood [M+6] glucose was higher (by 30%, though not significantly so 

(P = 0.1585)) than glucose found from hydrolysis of lactose glucose.  Although not 

statistically significant, a greater sampling size would be needed to substantiate this 

numerically larger value as significant.  The difference in enrichment between blood 

glucose and lactose-glucose suggests that 23.3% of glucose in lactose is derived from 

sources other than blood glucose.  In addition, since the enrichment was lower in 

lactose, the additional sources must be unlabelled (dilution).  Furthermore, these 

conclusions hold true for galactose from lactose because it is derived from the same 

metabolic pool as lactose glucose in the mammary gland. A potential unlabelled 

source for mammary gland hexogenesis found in previous studies includes glycerol in 

the case of humans (Sunehag et al., 2002) and cows (Wood et al., 1958).  Although 

not yet validated, other unlabelled sources could include amino acids and lactate.   

By comparison of the enrichments observed in glucose and galactose from 

milk lactose, it is possible to determine their metabolic precursor pools.  For example, 

if the enrichments (M+3, M+6) are the same for the two hexoses, then they must be 

derived from the same metabolic pool.  In the present study, the labeling patterns of 

glucose and galactose in lactose were identical (Figure 9).  That means then that the 
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unlabelled pool, separate from blood glucose, is contributing equally to glucose and 

galactose in milk lactose.   

Presence of PEPCK Isoforms 
 
In the present study, we also assayed gene expression of the PEPCK isoforms 

in the bovine and mouse liver and mammary gland to further verify the similarities of 

their metabolism. In addition, verifying the gene expression of the PEPCK isoforms 

was important to demonstrating the roles of these pivotal enzymes in mammary gland 

hexoneogenesis versus TCA cycle flux. Though activities of both forms have been 

suggested in the bovine mammary gland (Scott et al., 1975), no one to date has 

measured PEPCK at the level of gene expression in this tissue.  Our preliminary 

findings in the bovine appear to be similar to the rat in that, as far as the liver is 

concerned, the cytosolic form of PEPCK is dominant (97% of total expression) 

(Figure 10).  We can assume that this relative hepatic expression should correlate 

closely with actual activity based on the work of Agca et al. (2002), but questions 

about potential differences in translational efficiency and mRNA stability of the two 

isoforms weaken these assumptions.  Possibilities do exist, however, to make parallel 

comparisons between the two species with regards to relative PEPCK gene 

expression in the liver.  We can also combine the gene expression data with fluxes 

seen in metabolism based on MIDA results to further quantify changes in PEPCK 

activity. 

On the other hand, gene expression of PEPCK-m seems to dominate PEPCK-c 

in the bovine mammary gland (Figure 11).  We found that PEPCK-m in the bovine 

mammary gland was 96% of total PEPCK gene expression, comparing well to the 



 

 68 
 

activity measurements of Scott et al. (1975) where PEPCK-m accounted for 88% of 

total activity in bovine mammary tissue.  The low level of mRNA expression for 

bovine PEPCK-c requires further investigation into the presence of this isoform in the 

bovine mammary gland.  Above all it seems that the relative abundance of the two 

PEPCK isoforms are opposite in the bovine liver versus mammary gland (the same 

isoform does not dominate in both tissues).  Jones et al. (1989) saw similar results in 

guinea pig mammary gland PEPCK activity; as the mitochondrial form dominated 

(and was highly regulated during lactation).  What this might mean metabolically is 

not clear.  It is interesting to note that if indeed the bovine and guinea pig show 

different proportions of PEPCK isoform gene expression (or activity) in the 

mammary gland versus liver, this contradicts previous suggestions that the proportion 

of activity is generally the same in all tissues in a given species (Hanson and Patel, 

1997).  One must also be cautious to compare enzyme gene expression and activity as 

regulation could be occurring (though not yet proven for PEPCK) beyond the level of 

gene expression.   

The relative gene expression of the PEPCK isoforms in the lactating mouse 

liver was similar to those that we observed in the bovine liver.  Agca et al. (2002) 

found greater proportions of PEPCK-c:PEPCK-m gene expression in bovine liver 

tissue at various stages of lactation.  Unlike in the bovine, PEPCK-c is the dominant 

form in the liver in mouse and PEPCK-c and PEPCK-m seem to have similar gene 

expression patterns in the murine mammary gland (Figure 11).  García-Ruíz et al. 

(1983) measured PEPCK-c (only) in rat mammary gland and liver and found that 

activity developed rapidly in the mammary gland and liver at the onset of lactation.  
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Unfortunately, in our case, we have no base measurement (pre-partum) to compare 

increases in PEPCK that occur due to lactation.  Our data does corroborate with the 

García-Ruíz et al. (1983) work in that they also saw a much larger relative activity of 

PEPCK-c in the liver versus mammary gland.  It is still unclear what this may mean 

in relation to mammary gland metabolism, and how different responses amongst 

species (bovine, guinea pig, murine) and tissues (liver versus mammary gland) may 

relate to metabolic function.      

Conclusions and Future Implications 

 
 In conclusion, we have substantiated the use of C57BL/6 mice as a model for 

mammary gland metabolism.  Furthermore, we confirmed that the use of a [U-

13C]glucose tracer in the diet, at a level of 10% of the dietary carbohydrate, allows for 

accurate measurement of various aspects of metabolism via the MIDA approach.  

Three days of feeding the [U-13C]glucose tracer was adequate to reach steady state in 

isotopes and isotopomers measured in milk and tissues, as well as to label 

intermediates in proportions large enough to be accurately measured via GC-MS.  We 

also confirmed the presence of the two PEPCK isoforms in the bovine (although 

PEPCK-c requires further examination) and murine mammary gland and liver, 

allowing for future investigation of these isoforms and their role in mammary gland 

metabolism. 

 This study also provided opportunities to make estimates directly related to 

milk synthesis.  The discovery that 23% of glucose in milk lactose is derived from 

sources other than blood glucose is interesting, as is the finding that glucose and 

galactose in milk lactose seem to be derived from the same precursor pool.  These 
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results lead to several follow-up questions:  What are the sources, other than blood 

glucose, that are contributing to milk lactose synthesis?  How are glucose and 

galactose synthesis regulated if they are derived from the same precursor pool?  What 

is the role of PEPCK in the regulation of these and other metabolic pathways in the 

mammary gland?  In addition, questions also remain regarding the contribution of 

NEAA to glucose carbon in the mammary gland. 

 This study has laid the groundwork for the work to be discussed in Chapter 3, 

as well as countless other possibilities.  Chapter 3 will test similar hypotheses as 

mentioned in this study, as well as examine the effects of altered dietary protein level 

on mammary gland metabolism and milk synthesis.  Since nutritional manipulation of 

milk components is a viable option commercially, the effects of nutrition will first be 

tested using the mouse and MIDA techniques developed here.  Besides nutritional 

regulation, the effects of hormone regulation could be examined using similar 

approaches.  More intricate gene technologies such as the incorporation of gene 

knock-out mice or small interfering RNA will provide greater opportunities to 

examine the role of PEPCK in the future.   
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Chapter 3: Effect of dietary protein and carbohydrate level on 
mammary gland metabolism in C57BL/6 mice 
 

Introduction 
 

The mammary gland is a unique model for the study of the intersecting 

pathways of metabolism.  Milk synthesis requires complex regulation of the pathways 

involving glucose, protein, and fat metabolism.  In addition, the precursors supplied, 

and their relationship to output demands, is not only constantly changing, but often 

limiting.  Therefore, further knowledge of these complex relationships is required. 

 A few key observations illustrate that the coordination of milk synthesis is not 

fully understood.  First, though it seems logical that most, if not all, glucose in milk 

lactose comes from blood glucose, evidence suggests that other precursors may be 

contributing to milk lactose.  These “other” precursors have been shown in part to be 

glycerol in the case of the humans (Tigas et al., 2002; Sunehag et al., 2003) and dairy 

cows (Scott et al., 1975). This requires that the mammary gland synthesize lactose de 

novo from sources other than blood glucose, and we suggest that amino acids may 

serve as an additional source of glucose carbon.  Our hypothesis is that this de novo 

synthesis also occurs in the murine mammary gland, and the use of non-glucose 

precursors for lactose synthesis will vary with dietary protein (amino acid) treatment.  

Our mouse model, along with the application of the MIDA techniques described in 

detail in Chapter 2, allow us to quantify the amount of de novo mammary gland 

synthesis of lactose. We hypothesize that under conditions of lower dietary protein, a 

reduction in amino acid supply will result in impaired ability of the mammary gland 

to support casein and lactose synthesis.   
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Use of non-glucose precursors (i.e. amino acids and glycerol) for lactose 

synthesis would require greater relative activity of PEPCK-c versus PEPCK-m.  

PEPCK-c promotes the channeling of amino acids out of the mitochondria towards 

gluconeogenesis (or glyceroneogenesis) (Hanson and Reshef, 2003).  Thus, PEPCK 

activity is likely to be associated with the regulation of the use of amino acids for 

lactose synthesis, and it is important to quantify the relative expression of the two 

isoforms in the murine mammary gland and liver.  With reduced amino acid supply 

from the diet, PEPCK-m should promote the use of amino acids for casein synthesis. 

 Our second observation of mammary gland metabolism is that several NEAA 

(especially glutamate/glutamine, aspartate/asparagine, serine and proline) are taken 

up by the mammary gland in quantities less than what is required for milk synthesis 

(Fleet and Mepham, 1985).  The logical source for these amino acids is de novo 

synthesis in the mammary gland with EAA serving as the main precursors.  However, 

as has been discussed already in more detail in Chapter 2, the interconnectivity of 

glucose and amino acid metabolism requires intricate regulation of several pathways 

involved in milk synthesis.  There is potential for involvement of the use of glucose 

for NEAA synthesis.   In this case, PEPCK-m activity would exceed PEPCK-c and 

regulate the recycling of amino acid carbon within the mitochondria and towards 

amino acid synthesis (Hanson and Reshef, 2003).  This scenario would hold when 

dietary amino acids are limiting. 

 We were able to substantiate the use of the mouse whole animal model for 

investigating mammary gland metabolism in Chapter 2, and the [U-13C]glucose tracer 

approach was validated.  The following experiment will test the hypothesis that not 
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all lactose is derived from blood glucose, and that glucose carbon may also contribute 

to NEAA within the mammary gland.  The effect of dietary protein on these 

relationships will be examined, and the relationship of this regulation to relative 

PEPCK isoform gene expression will also be investigated.  

Materials and Methods 

Animal Care 

 The details of the animal care protocol were reviewed and accepted by the 

University of Maryland Institutional Animal Care and Use Committee (Protocol #R-

05-57).  All procedures were followed as in Chapter 2, with a few exceptions detailed 

below.  A total of 12 C57BL/6 mice, obtained from the University of Maryland 

Department of Animal and Avian Sciences breeding colony, were used for this 

experiment.  At the time of milk sampling, mice ranged in age from three to seven 

months and weighed 27.14 (± 2.46) g (n = 12).   For breeding, three females at a time 

were placed in a cage with one male.  Several days prior to predicted parturition date, 

females were placed into individual plastic shoebox cages.  Mice were checked daily 

for food, water, and health status.  Cages were cleaned once weekly. 

Diets and Feeding 

 Prior to parturition, mice were fed a standard lab animal diet in pelleted form 

(Lab Diet 5001 Rodent Diet, PMI Nutrition International, LLC, Brentwood, MO).  

Mice were placed on experimental diets within four days of parturition.  In all cases, 

the diets were based on recommendations of the National Research Council Dietary 

Recommendations for Laboratory Animals (NRC, 1995).  Each mouse was fed either 

a normal (20%) or low (10%) protein diet.  Compositions of diets are shown in Table 



 

 74 
 

5.  Diet ingredients were mixed as described in Chapter 2.  During the three days of 

tracer feeding (three days prior to sampling), [U-13C]glucose replaced 10% of the 

total dietary dextrose.   

 Experimental Design and Sample Collection  

 A randomized paired experimental design was used to test the effect of dietary 

protein (categorical explanatory variable with two levels, normal (N) and low (L)) on 

metabolic responses measured via [U-13C]glucose tracer methodology employing 

GC-MS, and PEPCK isoform gene expression using qRT-PCR.  

Dams were monitored twice daily for parturition, and the day that pups were 

first present in the nest was considered day one of lactation.  Within four days of 

parturition, dams were assigned randomly to either the low (L) or normal (N) protein 

groups.  In addition, dams on the N diet were paired with an L counterpart such that 

the N dam was offered the amount of feed consumed by the L individual the previous 

day (within approximately 0.3 g).  The L mice were fed ad libitum. Pairs were also 

adjusted for number of pups, and additional pups were euthanized via submersion in 

isoflurane gas so that each individual in the pair had the same number of pups.  Daily 

intakes were recorded.   

Mice averaged day 15 (day 13-16) of lactation at sampling. The unlabelled 

diets (both normal and low protein levels) were exchanged with diets containing [U-  
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Table 5.  Composition of Experimental Diets 

 

Unlabelled Diet Labelled Diet Unlabelled Diet Labelled Diet
Ingredient g/100g g/100g g/100g g/100g

Dextrose1 60.00 54.00 70.00 63.00
[U-13C]Glucose5 - 6.00 - 7.00
Vit. Free Casein1 20.00 20.00 10.00 10.00
Solka-Floc2 5.00 5.00 5.00 5.00
Soybean Oil1 9.00 9.00 9.00 9.00
AIN 93 Mineral Mix3 4.00 4.00 4.00 4.00
AIN 76 Vitamin Mix4 1.50 1.50 1.50 1.50
Methonine1 0.30 0.30 0.30 0.30
Choline Bitartrate1 0.20 0.20 0.20 0.20

1Source:  Dyets, Inc.
2Source:  International Fiber Corporation
3Source:  MPBio
4Source:  ICN Biomedicals, Inc.
5Source:  Cambridge Isotope Labratories, Inc.

Normal Protein (20%) Low Protein (10%)
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13C]glucose three days prior to sampling, based on previous results (Chapter 2).    

Collections proceeded as described in Chapter 2.    

Sample Preparation and Analysis via GC-MS 
 

GC-MS analysis was performed on galactose and glucose hydrolyzed from 

milk lactose, blood glucose, amino acids derived from milk casein, liver and 

mammary tissue, blood amino acids, and TCA cycle intermediates from liver, 

mammary gland, muscle and intestinal tissue as described in Chapter 2. 

 

Calculations and MIDA 
 
 Calculations were as described in Chapter 2 with the following additions: 

 Glu = Glutamate 
 Ala = Alanine 
 Glc = Glucose 
 

 Proportion of milk casein NEAA derived from blood NEAA: 

 [M+3]NEAA from blood / [M+3]NEAA from casein                              (eq. b) 

 

 Proportion of milk casein NEAA derived from sources other than blood  
NEAA (theoretical maximum for mammary gland de novo synthesis): 
 

 (1 – eq. b)                                                                                                   (eq. c) 

 
 De novo synthesis in the mammary gland, assuming no contribution of  

blood NEAA (Glu or Ala): 
 
Glu:    
(2 × [M+3]Glu ) /  ((0.5 × [M+3]Glc) + [M+6]Glc))                                (eq. d) 
 
Ala:  
[M+3]Ala /  ((0.5 × [M+3]Glc) + [M+6]Glc))                                          (eq. e) 
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De novo NEAA synthesis in the mammary gland, correcting for the  
potential contribution of blood NEAA: 
 
([M+3]NEAA in casein – [M+3]NEAA in blood)  
           ((0.5 × [M+3]Glc) + [M+6]Glc)) 
                                                                                                                    (eq. f) 
  
 
 
NEAA synthesized de novo from glucose: 
 
(eq. c × eq. f)                          (eq. g) 
 
 
 
NEAA synthesized de novo from other amino acids: 
 
eq. c × (1 – eq. f)              (eq. h) 
 
 
Minimum fractional gluconeogenesis, for either liver (whole-body) or 
mammary gland pools (Pascual et al., 1997) : 
 
                ([M+1]Glc + (2 × [M+2]Glc) + (3 × [M+3]Glc))                      (eq. i) 
  ([M+1]Glc + (2 × [M+2]Glc) + (3× [M+3]Glc) + (6 × [M+6]Glc) 
 
 
 
3-carbon dilution factor (Pascual et al., 1997): 
 
([M+1]Glc + (2 × [M+2]Glc) + (3 × [M+3]Glc) + (6 × [M+6]Glc)          (eq. j) 
           2 × ([M+1]Ala + (2 × [M+2]Ala) + (3 × [M+3]Ala)) 
 
 
 
TCA cycle dilution factor (Pascual et al., 1997): 
 
     3 × ([M+1] Glc + [M+2]Glc + [M+3]Glc)                                           (eq. k) 
([M+1]Glc + (2 × [M+2]Glc) + (3 × [M+3]Glc)) 
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Fractional gluconeogenesis (Pascual et al., 1997): 
  
 (eq.i × eq. j × eq. k)                                     (eq. l) 
  
 
  

Acetyl-CoA from pyruvate (Pascual et al., 1998): 
  
     [M+2]Glu – (2 × [M+3]Glu)                                                                (eq. m) 
    [M+3]Ala + (0.5 × [M+2]Ala) 
 
  
 

Acetyl-CoA from glucose (Pascual et al., 1998): 
  
                  [M+3]Ala                            ×    eq. m                       (eq. n) 
                 [M+6]Glc + (0.5 × [M+3]Glc) 
  
  
 

Glycolysis versus OAA to PEP: 
 
[M+3]Ala / [M+2]Ala                         (eq. o) 
 
 
 
Pyruvate recycling: 
 
          [M+1]Ala + [M+2]Ala                                                                    (eq. p) 
[M+1]Ala + [M+2]Ala + [M+3]Ala 

 
  
  

Glutamate from Alanine (Pascual et al., 1998): 
 
2 × [M+3]Glu                          (eq. q) 
   [M+3]Ala  
 
 
 
Glutamate from Pyruvate (Pascual et al., 1998) 
 
[M+1]Glu + [M+2]Glu + [M+3]Glu                        (eq. r) 
[M+1]Ala + [M+2]Ala + [M+3]Ala 
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Pyruvate dehydrogenase activity verssu pyruvate carboxylase activity: 
 
[M+2]Glu                                      (eq. s) 
[M+3]Glu 
 

 

Sample Preparation and Analysis via qRT-PCR 
 
 RNA Extraction  

RNA was extracted using the RNAeasy Lipid Tissue Midi Kit (Qiagen , Inc.) 

according to kit instructions.   On average, 0.151 (+/- 0.01) g of tissue was placed in 

3.0 ml of Qiazol.  Tissue samples were homogenized for one min each using a 

conventional Rotor-Stator homogenizer and left to sit at room temperature for five 

min.  Between samples, the probe was washed three times each with molecular grade 

H20 and 70% ethanol, followed by a final wash with Qiazol.  Following 

homogenization, 600 µl chloroform was added, the sample shaken vigorously by 

hand for 15 seconds, and left to sit at room temperature for three min.  Next, samples 

were centrifuged for 15 min at 4ºC and 5,000 × g.  The top aqueous layer (RNA-

containing) was then placed into a new collection tube and one volume 

(approximately 1300 µl) of 70% ethanol was added.  Samples were then transferred 

to an RNAeasy Midi Spin Column placed in a 15-mL collection tube.  The column 

and tube were centrifuged for five min at 25 ºC (5,000 x g) and the flow through in 

the collection tube was discarded.  The buffer RW1 (2.0 ml) (supplied) was added to 

the top of the column and the column was once again centrifuged for 5 min at 25 ºC 

(5000 x g).  Flow through was discarded. 
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In order to DNAse treat the samples for qRT-PCR, an additional DNAse 

treatment was employed (RNase-Free DNase Set, Qiagen, Inc.).  For preparation, 20 

µl DNase 1 stock solution was added to 140 µl buffer RDD and gently mixed.  The 

160 µl of solution was applied directly to the column and left to sit for 15 min at 

room temperature.  Two ml of buffer RW1 was applied to the column and again 

centrifuged at 5,000 × g for five min at 25 ºC. Next, 2.5 ml of RPE buffer was added 

to the column and centrifuged at 5,000 × g for two min at 25 ºC.  The effluent flowing 

through the column was discarded.  Again, 2.5 ml of RPE buffer was added to the 

column and centrifuged as before.  Flow through was once again discarded and the 

column spun dry for two min at 25 ºC (5000 × g).  Finally, a fresh 15-ml collection 

tube was used and 150µl of RNase-free water was added directly to the column and 

left to stand at room temperature for one min.  The column was then centrifuged for 

three min at 25 ºC (5000 x g).  The sample, containing RNA, was then transferred to a 

clean nuclease-free microcentrifuge tube and placed in a wet bath at 65ºC for five min 

to remove RNA secondary structure.  RNA concentrations and purity of the samples 

were then determined using a NanoDrop spectrophotometer.   

Primer Design 

Primer design was as described in Chapter 2. 

qRT-PCR  
 

qRT-PCR continued essentially as described in Chapter 2.  A standard curve 

was generated using known quantities of gel-purified PCR products of the desired 

targets ranging from 101 to 106 copies.  Gel purification of the products was done 

using the Qiagen gel purification kid according to kit instructions (Qiagen , Inc.).  
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Linearity and amplification efficiency were calculated by the iCycler software.  A 

linearity of > 0.995 and efficiency between 85 and 109% was deemed acceptable.  

Melting curve analysis was used to indicate amplification of a single product and 

absence of primer-dimers.   

Statistical Analysis 
  
 Statistical analysis for the effect of dietary protein on continuous response 

variables (enrichment, fractional gluconeogenesis, etc.) was conducted using the 

PROC MEANS option of SAS (SAS Inc., Cary, NC) with the test of difference 

between paired individuals.  Dietary protein was treated as a qualitative explanatory 

variable, with two levels.  The following model was used: 

 
 
 
 
 
Where: 
 

CT XX −  is the difference in the group means and 

( )CT XXSE −  is the standard error of the difference between the two group means. 

 

 Significance was set at P < 0.05 with P < 0.10 considered a trend. 

Results 

 Growth and Production 

 Pup numbers for each pair-fed set of dams remained equal throughout the 

study. Dams fed the L diet consumed the same amount of diet as their pair-fed N diet 

( )CT

CT

XXSE
XX
−

−
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counterpart (L diet: 9.48 ± 1.63 g/d, N diet: 9.33 ± 1.63 g/d).  On the day of milk 

sampling and tissue collection (d 13-16 of lactation) dams on the N diet (n = 6) 

weighed 28.67 (± 2.17) g while dams fed the L diet (n = 6) weighed significantly (P = 

.0007) less at 25.3 (± 1.22) g.  Weight per pup was also significantly (P = 0.018) 

lower for the L diet-fed litters (5.86 ± 0.66 g/pup) compared to the N diet-fed litter 

(7.27 ± 0.73 g/pup).  Dam weight and pup weight average were only available for five 

mice on the L diet; values were not recorded for one mouse. 

 Mammary Gland Metabolic Pools for Lactose Synthesis 
 
 The [M+6] in glucose and galactose from milk lactose were compared to 

determine the similarities in their metabolic precursor pools.  The results of this study  

were in agreement with those in Chapter 2 in that glucose and galactose had the same 

[M+6]-labeling patterns (Figure 12).  No significant differences were observed 

between the [M+3] and [M+6] enrichments in glucose and galactose. The ratio 

[M+6]glucose:[M+6]galactose in lactose tended (P = 0.0662) to be higher for dams 

fed the N diet (1.04 ± 0.05) compared to those fed the L diet (0.99 ± 0.05). The 

[M+6] in glucose and galactose from lactose had a lower enrichment for the N group 

(N: 4.21 ± 0.27 TTR versus L: 5.66 ± 0.77 TTR;  P = 0.0065). 

Labeling in Glucose from Lactose as a measure of glucose recycling 

Since all of the [M+6] in glucose from milk lactose must be derived from the 

diet (via blood glucose taken up by the mammary gland), the ratio of [M+3]:[M+6] in 

glucose from lactose is a rough measure of the amount of glucose carbon recycling.  
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Figure 12.  The enrichments of [M+6] in glucose and galactose from milk lactose. 

Bars represent averages from pair-fed mice (n=5 for Low group, 10% dietary protein, n=6 for 
Normal group, 20% dietary protein); samples taken after 3 days of feeding [13C]glucose at 
10% of the dietary carbohydrate.  Normal group was fed 20% dietary protein;  Error bars 
represent ± 1 standard deviation from the mean.  
*Indicates a significant difference (P= 0.0065). 
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This ratio was higher for the N group (0.91 ± 0.1) than the L group (0.64 ± 0.13; P = 

0.0052; Figure 13).  In addition, [M+3] in glucose from lactose was higher overall 

than the [M+3] in blood glucose for both treatments (Lactose-Glucose: 3.69 ± 0.29 

TTR; Blood Glucose: 2.00 ± 0.71 TTR; P = <.0001).  There was a trend for [M+3] in 

lactose-glucose to be higher for the N group than the L group (N:  3.82 ± 0.32 TTR; 

L: 3.53 ± 0.31 TTR; P = 0.0989, Figure 14), but no significant difference in [M+3] in 

blood.   

Potential for mammary gland de novo synthesis of NEAA 

Comparing the [M+3] in NEAA from blood and milk casein allows us to 

estimate the total potential casein NEAA synthesis from blood or other sources.  

Approximately 50% of casein glutamate appears to be derived from blood glutamate 

for both treatments (P = 0.8791), while 27-32% appears to be derived from sources 

other than the blood for alanine (P = 0.7400).  A treatment effect exists for serine in 

that 82% of casein serine is derived from blood serine for the N group, while 62% is 

derived from blood serine for the L group (P = 0.0332) (Figure 16).  Further 

calculations allow us to determine what proportion of the NEAA synthesized within 

the mammary gland (de novo, or not derived from blood NEAA) is derived from 

glucose (Table 6).   

Gluconeogenesis 

Potential gluconeogenesis for various pools (liver, mammary tissue) was 

calculated.  Acetyl-CoA from glucose, acetyl-CoA from pyruvate, the balance of 

glycolysis versus conversion of oxaloacetate to phosphoenolpyruvate, a measure of  
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Figure 13.    The ratios of enrichments of [M+3]/[M+6] in glucose from milk lactose. 

Bars represent averages from pair-fed mice (n=5 for Low group, n=6 for Normal group); 
samples taken after three days of feeding [U-13C]glucose as 10% of the dietary carbohydrate.  
Normal group was fed 20% dietary protein; Low group was fed 10% dietary protein.  Error 
bars represent ± 1 standard deviation from the mean.  
*Indicates a significant difference (P = 0.0052). 
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Figure 14.  Enrichments of [M+3]glucose in blood and in milk lactose. 
Bars represent averages from pair-fed mice (n=5 for Low group, n=6 for Normal group); samples taken 
after three days of feeding [U-13C]glucose as 10% of the dietary carbohydrate.  Normal group was fed 
20% dietary protein; Low group was fed 10% dietary protein.  Error bars represent ± 1 standard 
deviation from the mean. 

*Indicates a trend (P = .0989). 
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Figure 15.  Enrichments of [M+6]glucose in blood and in milk lactose. 
Bars represent averages from pair-fed mice (n=5 for Low group, n=6 for Normal group); samples taken 
after three days of feeding [U-13C]glucose as 10% of the dietary carbohydrate.  Normal group was fed 
20% dietary protein; Low group was fed 10% dietary protein.  Error bars represent ± 1 standard 
deviation from the mean. 
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Figure 16.  Minimum proportions of Alanine (Ala), Glutamate (Glu), and Serine (Ser) 
synthesized in the mammary gland. 
Calculated as: 

 
   1   -       [M+3] enrichment (mol isotopomer/100mol tracee) of NEAA in blood                    x 100   
                [M+3] enrichment (mol isotopomer/100mol tracee) of NEAA in milk casein 
 
Bars represent averages from pair-fed mice (n=6 for both Low and Normal group); samples taken after 
three days of feeding [U-13C]glucose as 10% of the dietary carbohydrate.  Normal group was fed 20% 
dietary protein; Low group was fed 10% dietary protein.  Error bars represent + 1 standard deviation 
from the mean.  
*Indicates a significant difference (P = 0.0332). 
 
 

 *
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Table 6.  Estimates of de novo synthesis by the mammary gland of glutamate and alanine for milk casein for mice fed normal (20%) and 
low (10%) dietary protein1 

 
 
 

Normal Low
Protein
Effect Normal Low

Protein
Effect

Total potential de novo  synthesis2 0.51 ± 0.07 0.50 ± 0.08 NS 0.32 ± 0.22 0.27 ± 0.29 NS
De novo  synthesis assuming no blood Glu3 0.49 ± 0.05 0.61 ± 0.08 P  = 0.0249 0.84 ± 0.04 0.82 ± 0.06 NS
Corrected de novo  synthesis within the MG4,5 0.25 ± 0.06 0.30 ± 0.09 NS 0.55 ± 0.36 0.31 ± 0.37 NS

1Values are means within treatment (n=6) for the pair-fed mice ± 1 standard deviation; NS = not significant, P > 0.05
2Calculated from equation b
3Calculated from equation d, e
4Calculated from equation f
5MG =Mammary gland

Glu Ala
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pyruvate recycling, the proportion of glutamate synthesized from alanine, the 

proportion of glutamate from pyruvate, and the relative activities of pyruvate 

dehydrogenase (PDH) versus pyruvate carboxylase (PC) were also calculated (Table 

7).  Data for all six mice was available for the N group, and data for one mouse in the 

L group was not used due to inability to measure blood glucose and lactose-derived 

glucose.  Of note is the significantly higher proportion of glutamate from OAA (Ala) 

in the mammary gland for the L group (0.74 versus 0.59 for N; P=0.0038), and the 

higher proportion of acetyl-CoA derived from pyruvate for the L group (0.98 versus 

for N 0.88; P=.0027).  Pyruvate recycling was higher for the N group (0.60 vs. 0.55 

for L; P=0.005), as was the relative activities of PDH versus PC (5.85 for N, 5.3 for 

L; P=.027). 

PEPCK Gene Expression 

The relative expression of the two PEPCK isoforms showed similar patterns 

as in Study 1 (Figure 17).  Liver gene expression of PEPCK-c was significantly 

higher than for PEPCK-m, and the relative expression was not different in dams for 

the L diet versus those fed the N diet.  As observed previously, expression of the two 

isoforms in the mammary gland were not different (P = 0.2226). By contrast, in the 

liver, gene expression of PEPCK-c was considerably higher than PEPCK-m (P < 

0.0001).  For both tissues, dietary protein did not affect PEPCK isoform gene 

expression.  Though this indicates no treatment effect, large individual variation was 

noted which may explain the inability to detect a difference.   qRT-PCR efficiency for 

PEPCK-c analysis was 107.3% with an r2 of 0.999.  Efficiency for PEPCK-m was 

103.8% with an r2 of 0.997. 
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Table 7.  Estimates of fractional gluconeogenesis and other various entry rates of metabolism from mammary tissue, liver and blood pools 
of mice fed normal (20%) and low (10%) levels of dietary protein1. 

Normal Low
Protein
Effect Normal Low

Protein
Effect Normal Low

Protein
Effect

Fractional Gluconeogenesis2 0.95 ± 0.11 0.69 ± 0.10 P = 0.0019 0.96 ± 0.44 0.68 ± 0.39 NS 0.81 ± 0.35 0.58 ± 0.30 NS
Acetyl-CoA from Glucose3 0.50 ± 0.16 0.65 ± 0.13 NS 0.59 ± 0.20 0.76 ± 0.37 NS 0.69 ± 0.23 0.75 ± 0.36 NS
Acetyl-CoA from Pyruvate4 0.88 ± 0.03 0.98 ± 0.03 P = 0.0027 0.90 ± 0.23 1.05 ± 0.57 NS 0.96 ± 0.30 1.05 ± 0.49 NS

Glycolysis vs. OAA to PEP5 1.83 ± 0.08 2.05 ± 0.14 P = 0.0132 2.13 ± 0.74 3.30 ± 1.14 P = 0.0743 1.82 ± 0.52 2.20 ± 0.70 NS
Pyruvate Recycling6 0.60 ± 0.02 0.55 ± 0.02 P = 0.0050 0.62 ± 0.10 0.49 ± 0.12 NS 0.65 ± 0.11 0.60 ± 0.10 NS

Glu from Ala7 0.59 ± 0.05 0.74 ± 0.06 P = 0.0038 0.36 ± 0.08 0.52 ± 0.26 NS 0.47 ± 0.15 0.60 ± 0.32 NS
Glu from Pyruvate8 1.47 ± 0.06 1.84 ± 0.10 P = 0.0005 1.32 ± 0.12 1.98 ± 0.58 P = 0.0456 1.45 ± 0.08 1.76 ± 0.31 P = 0.0476

PDH vs. PC9 5.85 ± 0.35 5.3 ± 0.28 P = 0.0270 8.20 ± 0.81 6.72 ± 0.58 P = 0.0376 7.38 ± 0.41 6.50 ± 0.45 P = 0.0418

1Values are means within treatment (L, n=5; N, n=6) for the pair-fed mice ± 1 standard deviation; NS = not significant, P >0.05
2Calculated from equation l 
3Calculated from equation n 
4Calculated from equation m 
5Calculated from equation o 
6Calculated from equation p 
7Calculated from equation q 
8Calculated from equation r 
9Calculated from equation s 

Mammary Liver Blood
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PEPCK mRNA Expression in the Murine Liver and
Mammary Gland
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Figure 17.  Gene expression level for both PEPCK isoforms in the murine liver and 
mammary gland. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gene expression was determined by qRT-PCR for mice fed normal (20%) or low (10%) 
protein diets.  Values are molecules /100 ng total RNA, averaged for each treatment (n=5 in 
each treatment for liver, n=6 in each treatment for mammary tissue).  Error bars represent ± 1 
standard deviation from the mean. 
*Indicates a significant difference (P < 0.0001). 
**Indicates a significant difference (P < 0.0001). 
 

***
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Discussion 

 Milk Production 

 Since milk production and composition data are unavailable, we used growth 

(in the form of live-weight) data to assess milk production by the dams on the L and 

N treatments.  That pups nursing from L dams weighed less, even though their dam 

counterpart was eating the same amount as the other in the pair, suggests that either 

milk production or quality was compromised on the L diet.  No correlation with the 

amount of milk available to collect was noticed at the time of sampling (the L group 

did not seem to be producing less milk), but it cannot be assumed that there were no 

differences in milk production.  It is possible, however, that mice on the L diet were 

producing milk of lower milk protein content.  Future analysis of milk samples from 

these experiments will shed more light on these conclusions.   

Finally, since the dams on the L diet also weighed less, these dams partitioned 

more dietary nutrients towards lactation rather than growth.  Homeorhetic 

adjustments are occurring to support lactation, especially for those dams who are 

dealing metabolically with a lower protein diet (Bauman and Currie, 1980).  The 

decrease in dietary protein of 10% was adequate to illicit a response.  At the expense 

of their own body reserves, the L treatment dams are supporting lactation; but as 

evidenced by the difference in pup and dam weights, the N group is able to support 

lactation and growth to a greater extent. 

  



 

 94 
 

Sources of Glucose in Milk Lactose 

Results from Chapter 2 indicated that 23% of glucose and galactose in milk 

lactose are derived from a source other than blood glucose. Chapter 2 results 

suggested that the mammary gland of the lactating mouse was capable of synthesizing 

both glucose and galactose, which was in agreement with previous observations in 

lactating women (Sunehag et al., 2002). Sources of carbon for de novo mammary 

gland synthesis of these hexoses could be glycerol, as demonstrated by Sunehag et al. 

(2002), and/or amino acids taken up by the mammary gland from the blood. In the 

current study, lactating dams were fed either a low or normal protein diet to test 

whether amino acids serve as a source for mammary gland de novo hexoneogenesis. 

Moreover, if there is an obligate requirement for use of amino acids for mammary 

gland synthesis of lactose, we expected to observe reduced lactose synthesis in 

addition to reduced protein synthesis in mice fed the L diet.  Since lactose is the 

major osmotic regulator of milk, and subsequently determines overall milk yield, 

decreased lactose synthesis would be expected to affect total milk production.  The 

reduced pup and dam weights observed support this conclusion.  Additionally, if the 

mammary gland metabolizes amino acids for milk lactose synthesis we should 

observe dilution of the enrichment in lactose-glucose due to the introduction of 

unlabelled carbon skeletons arising from essential amino acids.  Therefore, we would 

expect to see reduced enrichment of lactose-glucose from mice fed the L diet as well. 

  Lower [M+6] in lactose glucose (and galactose) in the L group indicates that 

dilution of fully labeled isotopomer is occurring.  Higher [M+6] in lactose-glucose for 

the L group indicates that less dilution from unlabelled sources, or rather, decreased 
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synthesis from unlabelled (not from [U-13C]glucose) is occurring.  The [M+6] may be 

diluted by amino acids, glycerol, or contributions from the pentose phosphate 

pathway (Katz and Wals, 1972; Tigas et al., 2002).  The low protein diet could also 

be described as a higher carbohydrate diet since dietary protein was replaced with 

carbohydrate.  For both diets, tracer was exchanged for 10% of the dietary 

carbohydrate, Therefore, even though mice consuming the L diet (high carbohydrate, 

low protein) absorbed greater amounts of [13C]glucose (and thus [M+6]glucose), the 

proportion of labeled to unlabelled remained the same for the two diets.  Thus, since 

the only measurable source of [M+6] is from the label in the diet, then the [M+6] in 

blood and lactose glucose (or galactose) in lactose is being diluted by metabolism of 

other unlabelled compounds (amino acids).  This confirms our hypothesis that plasma 

glucose is not the single contributor to lactose synthesis.   

 As the [M+6]glucose from the tracer is absorbed and metabolized, it gets 

broken down into [M+3]-containing compounds.  Specifically, [M+6]glucose 

produces [M+3]pyruvate.  This [M+3]pyruvate then has four fates:  reduction to 

lactate, transamination to alanine, decarboxylation to acetyl-CoA and carboxylation 

to OAA (Pascual et al., 1997).  Eventually, [M+n]glucose is resynthesized as the 

result of the breakdown of the [M+6]glucose and eventual recycling of [M+1]-[M+3] 

metabolites through PEP.  This also accounts for PEPCK-c activity.  [M+3]glucose 

gives us a minimum measurement for glucose that has been recycled from OAA via 

pyruvate (Pascual et al., 1997).  The chance that two full labeled [M+3]PEP 

molecules find each other and are resynthesized to a “new” [M+6]glucose molecule is 

very rare, and this chance is limited by the rate of tracer feeding.  Therefore, 
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[M+6]glucose enrichment is derived directly from the diet (tracer) via digestion and 

absorption.   

If we compare the [M+3]/[M+6] ratios in glucose (or galactose) from lactose, 

we can get a rough measure of the amount of glucose recycling occurring.  It makes 

sense, then, that the amount of recycling occurring was higher for the N group than 

the L group.  Again, since the low protein diet has more carbohydrate, there is less 

glucose recycling required and the contribution of amino acids to lactose synthesis 

will be less.  The N group has less total glucose available and so you will see more 

recycling to support glucose metabolism.  It is worth mentioning that this 

[M+3]/[M+6] is a crude ratio of glucose recycling (or gluconeogenesis from 

pyruvate) and actually underestimates the contribution of this recycling (Reeds et al., 

1997).  Calculated fractional gluconeogenesis within the mammary gland also was 

38% higher for the mice on the N diet. 

 The fact that the [M+3] in glucose from lactose is higher than the [M+3] in 

blood also suggests glucose metabolism and recycling.  Again, this means that there 

are additional contributions to glucose in lactose besides direct incorporation from 

blood glucose.  We calculated a very wide and variable range of lactose glucose 

derived from blood glucose, including values greater than 100%.  This suggests to us 

that sampling of blood glucose in Study 2 was not consistent, most like due to 

collection of mixed proportions of arterial and venous blood.  In the future, more 

controlled collection of blood, perhaps via the tail vein prior to tissue collection, 

would help to substantiate the results found in Chapter 2.  Regardless, the [M+3] 

ratios shown here lend further evidence that not all glucose in lactose is derived 
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directly from blood glucose, and that complex coordination of carbon metabolism is 

occurring.  

The above conclusions (that not all lactose is derived from blood glucose, and 

that there is extensive recycling of glucose occurring) confirms that the substrates for 

lactose synthesis are somehow coordinated with dietary protein.  More glucose 

recycling is occurring in the N group, and the L group is seeing less dilution of 

glucose in lactose by sources other than dietary glucose.  This means the L group is 

seeing less contribution of unlabelled sources (potentially amino acids) to glucose in 

lactose.  By examining potential de novo synthesis of NEAA in the mammary gland, 

we can begin to understand whether one source of this “other” glucose may be EAA 

(which must generate NEAA), and to what extent shifts in NEAA synthesis may be 

directing metabolism in the gland. 

 

 Mammary gland de novo synthesis of NEAA 

 Since the extraction of NEAA across the mammary gland does not meet 

output demands in milk casein (Fleet and Mepham, 1985), this deficit must be met via 

de novo synthesis by the mammary gland.  As has been suggested, this de novo 

synthesis potentially involves glucose as a precursor.  The [M+3] of a NEAA in blood 

over the [M+3] of the same NEAA from milk casein estimates the amount of that 

NEAA derived directly from the blood via absorption.  Therefore, one minus this 

ratio is the amount that is derived from sources other than blood, or potential de novo 

synthesis within the gland.  We can then make some assumptions about the amount of 

the “other” pool that comes from glucose or other amino acids.  See Materials and 
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Methods for the calculations of these estimates.  In summary, approximately 50% of 

glutamate, 70% of alanine, and 83% (for N group) or 63% (for L group) of serine 

seems to be derived directly from blood uptake.  These results are almost identical to 

the percentage of amino acid uptake versus output in milk from dairy cows reported 

by Fleet and Mepham (1985).  This suggests that, at least in the case of amino acid 

metabolism, the mouse mammary gland is acting similarly to the bovine, further 

confirming the use of our animal model for the study of milk protein and lactose 

synthesis. 

By examining these relationships more closely in mice, we see that 49% of 

glutamate in casein derived directly from blood NEAA while 13% derived from de 

novo synthesis from glucose and approximately 38% derived from other amino acids 

(Figure 18).  Trottier et al. (1996) observed large retention rates for glutamate and 

alanine across the mammary gland of sows, and suggested that this might lead to 

significant transamination limiting milk protein synthesis.  It would be interesting to 

observe these retention rates in mice since 38% of glutamate seems to be derived 

from other amino acids.  If similar retention was seen in mice, it is not know how or 

why a large portion of glutamate would be derived from other amino acids, but in our 

case it seems as though it is.  Again, we hypothesize that one fate of these amino 

acids not taken up in amounts sufficient to account for milk casein could be 

hexogenesis in the mammary gland. 
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Sources of Glutamate in Milk Casein

Total source from 
blood1

Mammary synthesis 
from other amino 

acids3

Mammary synthesis 
from glucose2

 
 

Figure 18.  Proportions of glutamate (Glu) in milk casein derived from blood, and de 
novo synthesis from glucose or other amino acids. 

Pie sections are averages for 6 mice on the normal (20%) protein diet. 
 
[M+3]Glu from blood   =  A 
[M+3]Glu from casein 
 
[M+3]Glu from blood                                                   = B 
(([M+3]Glu from casein)-([M+3]Glu from blood))  
 
 
1Calculated as A 
2Calculated as (1 – A) x B 
3Calculated as (1 – A) x (1 – B) 
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Metabolism of glucose and gluconeogenesis 

 Greater [M+3]:[M+6] for the N group in and of itself suggests greater 

contribution of glucose recycling.  Further calculations allow for quantification of 

contributions of various TCA intermediates to metabolism.  We employed the 

calculations of Pascual et al. (1997) and others (Wykes et al., 1998; Haymond et al., 

2000) and applied them to our own precursor: product relationships involving the 

metabolic pools of the mammary gland and liver.  Two approaches to the “whole 

body” calculations were used.  In one (“blood”) blood amino acids were used as the 

pool.  In the other (“liver”), liver amino acids were used.  In both of these cases, 

blood glucose was used as the pool.  For the mammary gland, the glucose pool used 

was glucose from lactose.  This pool is much steadier and slower to respond to 

metabolic perturbations, unlike the blood values, which could vary wildly based on 

time of last feeding, and other variables including the proportion of the blood from 

venous, arterial, or mixed sources. 

The proportion of glutamate derived from the three-carbon pool (via OAA 

(Ala)) is higher for the L group, though only statistically significant for the mammary 

gland (Table 7).  These results are parallel with Pasqual et al. (1997) who saw a 

higher proportion derived from OAA when feeding a high carbohydrate diet.  Again, 

our low protein diet can also be considered a higher carbohydrate diet.  Similar results 

also hold true for the proportion of acetyl-CoA derived from three-carbon precursors 

(pyruvate) (Table 7).  The proportion of acetyl-CoA derived from this pool is higher 

for mice on the L diet (or in the case of Pascual et al. (1997), high carbohydrate).   
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The measure of a metabolite’s contribution to energy production can be 

measured via its contribution to acetyl-CoA (Pasqual et al., 1997).  Glucose made a 

numerically larger, though not statistically significant, contribution to acetyl-CoA in 

the L group across all pools (mammary gland (Figure 19), liver, and blood (Table 7)).  

A larger sample size may be needed to detect a significant difference.  It makes sense 

that as the proportion of carbohydrate increases (and amino acids decrease), more 

glucose will be utilized metabolically.  This is also seen in the fractional 

gluconeogenesis rates, which are higher for the animals on the N diet.  Bizeau et al. 

(2001) also observed increased gluconeogenesis in hepatic incubations from rats fed a 

high sucrose diet.  Less glucose available means that these animals are synthesizing 

more glucose from recycled intermediates from the TCA cycle and/or amino acids.  

In addition, this means that more amino acids are available for potential 

gluconeogenesis from these sources.  The mammary gland is the only pool in which 

there was a significant difference in gluconeogenesis (hexoneogenesis of glucose and 

galactose).  This suggests, as we suspected, that the mammary gland is adjusting 

glucose synthesis based on available substrates and potentially using amino acids as 

precursors for lactose synthesis.  

Of all of these measures, the ones most closely related to PEPCK activity 

would be pyruvate recycling and the balance of glycolysis versus conversion of OAA 

to PEP.  These values exhibit an inverse relationship:  pyruvate recycling is lower for 

the L group and relative glycolysis is higher for the L group.  Pyruvate recycling is 

higher for the N group because amino acids are not limiting and thus there is potential 

for greater shuttling out of the mitochondria through PEPCK-c (Figure 2).  In a sense, 
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Figure 19.  Estimates for entry rates of metabolism in the murine mammary gland. 

Values are averages for mice fed a 20% (N, n=6) protein diet or 10% (L, n=5) protein diet for 3 days with 10% of the dietary carbohydrate exchanged with [U-
13C]glucose.   1Calculated from equation n; 2Calculated from equation m; 3Calculated from equation q;4Calculated from equation r 
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pyruvate recycling would serve to counteract glycolysis via PEP synthesis.  PEPCK is 

involved in conversion of OAA to pyruvate via PEP in both the cytosol and 

mitochondria.  Since there is no difference seen in the relative expression of PEPCK-

c versus PEPCK-m in the mammary gland, we can assume based on these 

observations that these isoforms must contribute equally to pyruvate recycling.  In the 

liver, however, the much greater expression of PEPCK-c leads us to believe that 

shuttling out of the mitochondria via malate and to OAA and eventually PEP plays a 

larger role.  Though we did not see any treatment differences in PEPCK expression, it 

is possible that regulation is occurring beyond translation, that individual variation is 

obscuring a treatment effect, or that a larger sample size is needed to detect an effect.   

There was a difference, however, in PDH versus PC activity as estimated by 

the crude entry rate of acetyl-CoA into the TCA cycle.  The ratio of PHD activity to 

PC activity was larger for the N group, indicating a greater contribution of pyruvate 

to acetyl-CoA (versus OAA).  These observations are further substantiated by the 

proportion of Glu derived from OAA.  Less Glu is derived from OOA for the N 

group, and thus more is derived from the acetyl-CoA pool provided by pyruvate.  

This suggests that besides further investigation of PEPCK as a metabolic regulator in 

the mammary gland, there is potential for PDH and PC to be targets as well.  This 

comes as no surprise considering all of the enzymes involved in the TCA cycle and 

all contributing metabolic pathways deserve mention as potential regulators.  There 

certainly is great potential for unlocking the specifics behind this very complex 
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interlocking of carbohydrate and amino acid metabolism.  One cannot simply mention 

one without involving the other. 

Conclusions and Future Implications 

In conclusion, we were correct in our assumption that not all glucose in milk 

lactose is derived from blood glucose.  Of the 23% of lactose-glucose derived from 

sources other than blood glucose, amino acids have the potential to be one of these 

substrates.  Above all, the additional contributor to lactose synthesis is unlabelled.  It 

is possible that, like in humans, glycerol is serving as a contributor as well.  Use of a 

glycerol tracer would expose whether glycerol is serving as a substrate for glucose 

synthesis in the murine mammary gland.  In addition, it would be interesting to 

observe whether differences exist in the contribution of glycerol to glucose versus 

galactose.  Sunehag et al. (2002) found a dissimilar contribution to the glucose and 

galactose moieties in lactose (glycerol contributed only to galactose synthesis).  

However, in our case, glucose and galactose appear to be derived from the same 

metabolic pool.  It is hypothesized then that if glycerol contributes to lactose 

synthesis in the murine mammary gland, then equivalent labeling would be observed 

in glucose and galactose from milk lactose.  Potential also exists for the use of labeled 

amino acids to further quantify the contribution of carbon skeletons derived from 

amino acids to glucose synthesis.   

Decreasing dietary protein decreased fractional gluconeogenesis in the 

mammary gland, and increased the contribution of fully labeled glucose from the diet 

to blood glucose and glucose in lactose.  Thus, dietary protein (and/or carbohydrate) 

does have an effect on mammary tissue metabolism and regulation of milk 
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component synthesis.  Future plans involve analysis of milk samples from this study.  

The difficulty in quantifying milk protein and lactose is in the limited sample quantity 

for analysis.  Development of the use of fully labeled lactose and amino acids to 

quantify milk protein and lactose in mouse milk via GC-MS techniques is currently 

underway in our laboratory.  We suspect that this analysis will confirm that mice on 

the L diet were producing milk with lower levels of protein and lactose. 

In the current study, the large individual variation observed in the 

quantification of PEPCK mRNA proved to be troubling.  Though the experiment was 

tightly controlled and the pair-feeding setup limited the amount of individual 

variation, on the molecular level there seems to still be large individual variation.  

One way to circumvent this problem would be to take multiple samples from an 

individual over the time-course of a treatment in order to compare baseline levels 

with potential treatment effects.  Obviously this would be difficult in the case of the 

mouse where the total mass and structure of the mammary gland makes multiple 

sampling from the same animal difficult.  In an animal like the dairy cow, however, 

large and isolated mammary glands (as in the case of four single glands) would allow 

for easy sampling at multiples times and locations. Furthermore, it is also possible 

that significant treatment effects were not seen in PEPCK isoform expression because 

regulation is occurring beyond mRNA expression.  Unlimited possibilities exist if one 

examines opportunities for the use of PEPCK isoform knockout mice in conjunction 

with MIDA techniques.  She et al. (2003) and Burgess et al. (2004) have successfully 

used liver-specific PEPCK-c knockout mice as a model for diabetes research.  In 

addition, small interfering RNA also provides opportunity for tissue-specific 
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regulation of PEPCK isoforms at the gene expression level.  By employing these 

techniques, one can measure the effect of changing PEPCK activity versus the 

responses in activity based on outside modulations. 

 The combination of these studies has paved the way for future opportunities in 

this area.  Many questions still remain to be answered, several of which involve 

confirming and improving the accuracy of the estimations of amino acid carbon used 

for lactose synthesis, and glucose carbon use for amino acids within the mammary 

gland.  The synergistic approach of combining enzyme expression data with the 

quantification of metabolism via the MIDA approach offers an enticing avenue for 

further exploration of mammary gland metabolism.  Future studies will no doubt 

allow for potential practical applications for the manipulation of milk components for 

the benefit of producers and the dairy industry.  Cross species comparisons alluded to 

here also provide opportunity for further work.  Differences in monogastric versus 

ruminant mammary gland metabolism can be further investigated.  Additional 

research involving PEPCK will also have far reaching effects in whole body 

metabolism as the function of PEPCK in several tissues has yet to be fully explained. 
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Appendix A 
 
 
 
 
 
 
 
 
 
Molar tracer:tracee ratios of amino acids obtained from blood, milk casein, and liver 
tissue of C57BL/6 mice; Study 1, Chapter 21 
 

Amino Acid Source M+1 M+2 M+3
Blood 3.39 ± 0.11 1.62 ± 0.23 4.94 ± 1.14
Casein 2.34 ± 0.47 1.44 ± 0.07 2.90 ± 0.39
Liver 2.99 ± 0.22 1.42 ± 0.16 5.58 ± 0.99
Blood 4.55 ± 1.35 1.71 ± 0.55 0.47 ± 0.08
Casein 3.30 ± 1.15 1.10 ± 0.10 1.32 ± 0.20
Liver 6.43 ± 0.80 2.02 ± 0.36 0.69 ± 0.15
Blood 6.93 ± 0.52 4.96 ± 0.53 0.61 ± 0.08
Casein 5.01 ± 0.66 4.72 ± 0.50 0.69 ± 0.24
Liver 5.66 ± 0.60 4.30 ± 0.73 0.54 ± 0.17
Blood 2.68 ± 0.34 0.66 ± 0.10 1.04 ± 0.13
Casein 1.28 ± 0.96 0.23 ± 0.16 1.12 ± 0.36
Liver 1.67 ± 0.10 0.64 ± 0.00 0.14 ± 0.02

1Values are means ± standard deviation for 4 mice; casein values are for milk collected
after 5 days of feeding tracer

mol isotopomer/100 mol tracee

Serine

Aspartate

Alanine

Glutamate
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Appendix B 
Molar tracer:tracee ratios of TCA intermediates obtained from various tissues and blood of C57BL/6 mice; Study 1, Chapter 21 

Tissue
Source M+1 M+2 M+3 M+4 M+5 M+6
Mammary 9.30 ± 0.86 7.09 ± 1.13 0.90 ± 0.20 0.16 ± 0.05 0.03 ± 0.01 -
Liver 5.37 ± 2.91 3.72 ± 0.64 0.46 ± 0.15 0.20 ± 0.07 0.11 ± 0.04 -
Mammary 4.71 ± 0.67 2.27 ± 0.39 4.27 ± 1.11 - - -
Liver 2.69 ± 0.31 1.34 ± 0.19 4.39 ± 0.78 - - -
Intestine 1.86 ± 1.25 0.93 ± 0.38 3.94 ± 0.99 - - -
Muscle 1.61 ± 0.71 0.87 ± 0.18 4.83 ± 0.62 - - -
Blood 2.61 ± 0.14 1.36 ± 0.08 4.29 ± 0.93 - - -
Mammary 3.24 ± 1.19 1.23 ± 0.56 0.76 ± 0.43 0.06 ± 0.02 - -
Liver 7.85 ± 1.13 2.46 ± 0.56 0.71 ± 0.19 0.07 ± 0.03 - -
Intestine 4.60 ± 0.52 2.18 ± 0.14 0.40 ± 0.12 -0.02 ± 0.03 - -
Muscle 6.67 ± 0.62 2.51 ± 0.55 0.54 ± 0.16 0.02 ± 0.02 - -
Mammary 4.55 ± 0.59 2.30 ± 0.36 4.23 ± 1.09 - - -
Liver 2.51 ± 0.33 1.36 ± 0.31 4.07 ± 0.64 - - -
Intestine 2.78 ± 0.35 0.88 ± 0.15 3.39 ± 1.15 - - -
Muscle 2.09 ± 0.44 0.76 ± 0.15 4.89 ± 0.56 - - -
Mammary 5.14 ± 0.94 4.33 ± 1.04 0.39 ± 0.15 0.10 ± 0.03 - -
Liver 4.32 ± 0.71 2.21 ± 0.56 0.45 ± 0.04 0.04 ± 0.03 - -
Intestine 3.61 ± 0.46 1.62 ± 0.21 0.21 ± 0.06 0.04 ± 0.02 - -
Muscle 4.18 ± 0.69 1.76 ± 0.37 0.41 ± 0.07 0.08 ± 0.04 - -

1Values are means ± standard deviation for 4 mice after 5 days of feeding [U-13C]glucose as 10% of the dietary carbohydrate

mol isotopomer/100 mol tracee

Succinate

Lactate

Malate

α-ketoglutarate

Pyruvate
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Appendix C 
 
Molar tracer:tracee ratios of amino acids obtained from blood, milk casein, and liver 
tissue of C57BL/6 mice; Study 2; Chapter 31 
 
 

Amino Acid
Treatment2

(Normal/Low) Source M+1 M+2 M+3
Blood 4.52 ± 1.12 1.88 ± .016 3.45 ± 1.04
Casein 4.94 ± 0.25 2.81 ± 0.06 5.13 ± 0.28
Liver 3.61 ± 0.56 1.48 ± 0.14 3.11 ± 0.92
Blood 4.38 ± 0.61 2.00 ± 0.32 4.48 ± 1.80
Casein 4.62 ± 0.39 2.98 ± 0.18 6.12 ± 0.48
Liver 2.80 ± 0.54 1.41 ± 0.35 4.85 ± 2.36

Casein 6.40 ± 0.31 2.26 ± 0.20 2.31 ± 0.12
Liver 5.01 ± 0.78 1.73 ± 0.17 0.45 ± 0.11

Casein 8.06 ± 0.49 2.84 ± 0.24 3.13 ± 0.26
Liver 7.37 ± 1.60 2.54 ± 0.47 0.90 ± 0.28
Blood 8.08 ± 0.34 5.44 ± 0.16 0.74 ± 0.06
Casein 8.58 ± 0.39 8.81 ± 0.51 1.51 ± 0.16
Liver 5.88 ± 0.54 4.37 ± 0.27 0.54 ± 0.06
Blood 10.17 ± 0.65 7.29 ± 0.55 1.13 ± 0.15
Casein 11.03 ± 0.64 11.99 ± 0.84 2.27 ± 0.26
Liver 8.87 ± 1.09 6.75 ± 0.88 1.01 ± 0.20

Casein 0.97 ± 0.42 0.56 ± 0.30 0.09 ± 0.05
Liver 0.45 ± 0.12 0.16 ± 0.07 0.11 ± 0.05

Casein 0.97 ± 0.56 0.79 ± 0.43 0.13 ± 0.07
Liver 0.72 ± 0.17 0.45 ± 0.10 0.19 ± 0.05
Blood 4.53 ± 0.52 1.06 ± 0.38 1.82 ± 0.29
Casein 3.51 ± 0.46 1.17 ± 0.16 2.21 ± 0.22
Liver 1.06 ± 0.17 0.46 ± 0.07 0.13 ± 0.02
Blood 4.85 ± 0.36 1.13 ± 0.39 1.78 ± 0.19
Casein 4.01 ± 0.22 1.53 ± 0.07 2.86 ± 0.24
Liver 1.76 ± 0.26 0.79 ± 0.07 0.21 ± 0.06

2Normal (N) treatment was 20% dietary protein; Low (L) treatment was 10% dietary protein

N

L

Proline
N

L

Glutamate

N

1Values are means ± standard deviation for each treatment group (n=6); mice were pair fed [U-13C]glucose as 10% 
of the dietary carbohydrate for 3 days

L

mol isotopomer/100 mol tracee

Alanine

Aspartate
N

L

L

N

Serine
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Appendix D 
 

Molar tracer:tracee ratios of TCA intermediates obtained from various tissues and 
blood of C57BL/6 mice; Study 2, Chapter 31 
 
 

Treatment2

(Normal/Low)
Tissue
Source M+1 M+2 M+3 M+4

Mammary 4.68 ± 0.72 1.98 ± 0.24 3.41 ± 1.08 -
Liver 3.33 ± 0.66 1.32 ± 0.14 2.55 ± 0.74 -
Intestine 3.28 ± 1.07 1.25 ± 0.25 4.19 ± 1.38 -
Muscle 2.19 ± 0.75 0.85 ± 0.24 2.72 ± 0.55 -
Blood 3.93 ± 0.62 1.67 ± 0.15 3.07 ± 0.73 -
Mammary 4.37 ± 0.58 2.00 ± 0.24 4.29 ± 1.60 -
Liver 2.48 ± 0.58 1.19 ± 0.39 3.93 ± 2.08 -
Intestine 3.36 ± 0.86 1.48 ± 0.35 5.14 ± 1.53 -
Muscle 1.67 ± 0.46 0.69 ± 0.18 3.02 ± 0.71 -
Blood 3.24 ± 0.59 1.55 ± 0.34 3.99 ± 1.57 -
Liver 4.76 ± 2.22 2.01 ± 0.93 0.38 ± 0.14 0.06 ± 0.02
Intestine 6.62 ± 1.04 2.50 ± 0.58 0.41 ± 0.08 0.01 ± 0.03
Muscle 7.49 ± 0.56 1.92 ± 0.45 0.54 ± 0.13 0.04 ± 0.02
Liver 9.23 ± 1.86 4.13 ± 0.59 0.99 ± 0.43 0.10 ± 0.03
Intestine 9.79 ± 1.40 3.89 ± 0.54 0.54 ± 0.09 0.05 ± 0.03
Muscle 8.66 ± 2.53 2.26 ± 0.52 0.48 ± 0.11 0.04 ± 0.02
Mammary 3.95 ± 0.44 1.93 ± 0.19 3.41 ± 1.04 -
Liver 1.89 ± 0.36 0.91 ± 0.08 2.28 ± 0.53 -
Intestine 3.20 ± 0.51 1.08 ± 0.13 3.60 ± 1.21 -
Muscle 4.95 ± 7.13 1.26 ± 1.40 2.84 ± 1.01 -
Mammary 3.44 ± 0.56 1.69 ± 0.22 3.80 ± 1.34 -
Liver 1.76 ± 0.57 0.97 ± 0.34 3.40 ± 1.52 -
Intestine 3.73 ± 0.57 1.31 ± 0.28 4.36 ± 1.29 -
Muscle 4.37 ± 5.81 1.11 ± 1.23 3.12 ± 1.30 -
Mammary 4.60 ± 1.50 3.81 ± 0.64 0.49 ± 0.17 0.05 ± 0.02
Liver 5.48 ± 0.96 2.89 ± 0.39 0.47 ± 0.19 0.04 ± 0.01
Intestine 5.04 ± 0.68 2.55 ± 0.33 0.27 ± 0.06 0.01 ± 0.01
Muscle 4.28 ± 0.56 2.35 ± 0.44 0.29 ± 0.14 0.01 ± 0.01
Mammary 5.02 ± 2.37 3.58 ± 1.54 0.67 ± 0.61 0.07 ± 0.04
Liver 7.87 ± 2.26 4.13 ± 1.06 0.89 ± 0.47 0.07 ± 0.03
Intestine 8.15 ± 1.04 3.94 ± 0.54 0.45 ± 0.07 0.03 ± 0.03
Muscle 5.44 ± 1.31 2.55 ± 0.56 0.36 ± 0.15 0.02 ± 0.01

2Normal (N) treatment was 20% dietary protein; Low (L) treatment was 10% dietary protein

Lactate

N

L

1Values are means ± standard deviation for each treatment group (n=6); mice were pair fed [U-13C]glucose as 10% of the 
dietary carbohydrate for 3 days

mol isotopomer/100 mol tracee

Succinate

N

L

N

L

Pyruvate

N

L

Malate
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