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Xylella fastidiosa is a fastidious, xylem-limited, broad spectrum, bacterial plant 

pathogen native to the Americas, causing substantial economic losses to the 

viticulture, citrus, and shade tree industries.  In shade trees the disease is manifested 

as a chronic late season leaf scorch largely confined to urban areas of southeastern 

North America.  Proposed treatments include antibiotics and growth regulators.  

Recently paclobutrazol, a diastereomeric triazole with fungistatic and growth 

regulation properties has been associated with symptom remission.  Investigation into 

direct interaction of paclobutrazol with X. fastidiosa show no significant reduction in 

growth at the manufacturers recommended dosage of 20 µg ml-1; however significant 

reductions in growth were observed at a dosage of 200 µg ml-1. Therefore high levels 

of paclobutrazol may have a direct effect on X. fastidiosa while other plant 

physiological effects induced by paclobutrazol merit investigation for association in 

symptom mitigation of X. fastidiosa.
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Chapter 1: Xylella fastidiosa 

History 

Xylella fastidiosa (Wells et al. 1987) is currently recognized as an indigenous 

pathogen of the Americas and was first identified as an agronomic problem in the 

1890’s in the western United States (Pierce, 1892).  A previously unknown disease 

affecting vineyards in California prompted Newton B. Pierce, the noted USDA plant 

pathologist, to investigate the disease in the Central Valley.  The syndrome was 

dubbed the California vine disease and effectively halted vineyard establishment in 

the state south of Anaheim.  Pierce provided the first scientific characterization of the 

syndrome resulting from the disease, thereafter known as Pierce’s Disease in grape.  

Symptoms of the disease include irregular marginal necrosis or leaf scorch resulting 

in dieback and a slow systematic death of the vine (Pierce, 1892).   

Around the turn of the 20th century across the country in Georgia a different 

syndrome known as Phony Disease was affecting peach production (Hutchins, 1933).  

Symptoms included dwarfing, distorted lateral branch growth, excessive green 

foliage, and reduction in size and number of fruit (Hutchins, 1933).  Almost a century 

passed before these two distinct syndromes were positively linked. 

 Early diagnosis of the diseases favored a viral hypothesis in both syndromes 

which is reflected in the language of the early literature.  Root grafting experiments 

with Phony disease demonstrated disease transmission between scion and plant 

(Hutchins, 1939) indicating that the causal agent resided in the “woody cylinder” or 
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vasculature of the plant system.  In 1942, Hewitt confirmed insect transmission via 

xylem feeding arthropods; a more thorough analysis on the topic is presented by 

Houston et al. in 1947.  While numerous insects are confirmed vectors of the 

pathogen, sharpshooters and spittlebugs as identified in these studies are the focus 

dissemination (Houston et al. 1947). 

 The repeated failure of pathogen isolation attempts supported the viral 

hypothesis, however in 1971 tetracycline was found to suppress Pierce’s Disease 

symptoms, effectively eliminating this diagnosis (Hopkins and Mortensen, 1971).  

Electron microscopy subsequently showed that “rickettsia like” prokaryotes with 

distinct rippled cell walls inhabited the xylem vessels of symptomatic Pierce’s 

Disease and Phoney Disease specimens (Hopkins and Mollenhauer, 1972).  The 

prokaryotes associated with each syndrome were phenotypically similar and closely 

resembled rickettsia (Hopkins and Mollenhauer, 1972), a prokaryote known from 

animal systems spread via arthropods. 

The organism proved elusive and was first isolated in vitro in 1978 by Davis 

et al. at the University of California, Berkeley using a medium formulated to support 

the strict growth requirements of rickettsia organisms.  Davis was the first to 

positively associate xylem limited prokaryotes with disease by fulfilling Koch’s 

postulates thus proving a bacterium was the cause of the Pierce’s Disease syndrome.  

Prior to its positive identification and proven pathogenicity the bacterium was already 

linked to several distinct syndromes.  After publications on isolation and culture of 

the bacteria the list grew significantly (Table 1).  Subsequent analysis of 25 strains of 

the pathogen from 10 distinct hosts available in 1987 allowed Wells et al. to describe 
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and dub the organism Xylella a new genus of plant bacteria containing a single 

species denoted as Xylella fastidiosa alluding to its fastidious nature. 

 
Table 1 Agronomic Diseases Caused by Xylella fastidiosa 
Disease Reference 
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In 1993 Chang et al. identified Xylella fastidiosa as the causal agent of Citrus 

Variegated Chlorsis (CVC), which was first recognized in Brazilian citrus groves 

around Sao Paolo in 1987.  Symptoms of the disease included interveinal chlorosis 

typical of zinc deficiency, brown lesions on the underside of mature leaves, and hard 

sugary fruit.  In 1995, Xylella was confirmed in scorched coffee trees planted adjacent 

to a CVC infected citrus grove (Lima et al. 1998).  Currently grape and citrus are the 

most important agronomic crops affected by Xylella (Brown et al. 2002).    

Spurred by the economic importance of the Brazilian citrus industry and the 

severity of the problem, Xylella was the first plant pathogen to have its genome 

completely sequenced (Simpson et al. 2000).  The availability of the complete 

sequence has made Xylella the subject of intensive molecular investigations around 

the world.  In 2004 there were more than 70 publications on Xylella, the majority of 

which focused on the molecular aspects of the pathogen.  Important practical 
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experimentation remains limited due to the fastidious nature of the pathogen and the 

complexity of the system.  Currently there remains no practiced therapeutic treatment 

for Xylella although it has been recognized as a problem for over 100 years. 

 

Xylella Biology 

 

The genus Xylella forms a distinct group currently recognized in the gamma 

subgroup of eubacteria which is defined by a single species denoted as Xylella 

fastidiosa (Wells et al. 1987).  All strains, regardless of host, are phenotypically and 

genotypically similar.  Electron microscopy shows that cells are single (occasionally 

filamentous), non-motile, aflagellate straight rods (0.25 to 0.35 by 0.9 to 3.5 µm) with 

rounded or tapered ends (French et al. 1977).  Cell walls are typically furrowed and 

convoluted, often described as rippled, providing one of the phenotypic hallmarks of 

the genus when visualized with electron microscopy (Hopkins and Mollehauer 1972).  

When viewed with light microscopy bacterial bodies appear smooth and round 

displaying no characteristics reliable for identification. 

Xylella is gram negative and aerobic with optimal growing conditions at a pH 

of 6.5-7.2 and temperatures of 26-28°C (Wells et al. 1987).  Multiplication proceeds 

through the process of binary fission forming aggregations known as bio-films.  

Pathogenicity is hypothesized to result from bacterial aggregation in the xylem 

vessels effectively occluding the vessel and impeding xylem fluid movement. 

However this has not been proven and is often a point of discussion.   
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Significant differences in growth rate, aggregation, and robustness exist 

between Xylella strains which can be highly variable even within a single host range 

(Personal observation).  Broth cultures can exhibit bacterial plaque formations with 

the significance of aggregation varying by strain (Personal Observation).   Bacteria 

characteristically aggregate on the side of glass test tubes, and are easily dispersed 

upon agitation.   

When grown on solid media colonies are discrete, circular, smooth, and rather 

translucent or opalescent depending on the chosen substrate (Wells et al. 1987).  

Colonization of substrate is variable however generally slow (0.6mm diameter after 

10 days at 27°C) and limited to the region of inoculation (Wells et al. 1987).  

Colonization of solid media can take 2 weeks or may be as rapid as 4 days depending 

on the amount of inoculum present (Personal observation).  Growth on solid media 

requires sterile conditions; the fastidious nature of the bacteria requires a rich media, 

which combined with a slow growth rate, increases the susceptibility of 

contamination.  The difficulty in isolation is evident in the continued publication of 

isolation techniques employing new methods (Bextine and Miller 2004).  

Xylella induces a wide variety of symptoms and is a chronic disease that is not 

typically lethal.  In citrus, peach, and alfalfa it causes growth abnormalities while in 

grape, sycamore, oak, mulberry, maple, almond, coffee, pear, plum, and oleander a 

marginal necrosis of leaves is typical.  Disease spread is often random within a 

population due to the variability of vector transmission and possible host 

susceptibility.  The severity of symptom expression varies with prevailing annual 
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climatic conditions (McElrone et al. 2001) as well as the pathogenic variability of the 

strain. 

Insects of the subfamily Cicadellinae (sharpshooters/leafhoppers) and 

Cercopidae (spittlebugs) are the primary vectors of disease dissemination (Houston et 

al. 1947).  Pierce’s Disease is confirmed to be spread by at least 24 species of 

leafhoppers (Houston et al. 1947).  Vector efficiency is partially explained as a 

function of frequency in which a particular insect species reaches plant tissues 

susceptible to inoculation as well as length and manner of feeding on those 

susceptible tissues (Bentz and Sherald, 1999).  Additionally, Xylella has been 

confirmed in more than 30 families of monocotyledonous and dicotyledonous plants 

in natural, cultivated, and urban landscapes (Hopkins and Alderz 1988) (Table 2).  

Many of the hosts have been recognized through molecular environmental sampling 

and are asymptomatic, indicating the recognized host range is likely to increase with 

further sampling (Hopkins and Alderz 1988).  The combination of numerous vectors 

and hosts makes the pathogen difficult to control by host or vector management. 

Symptoms of X. fastidiosa infection in shade trees are most evident in the late 

summer when bacterial populations in the host are likely to have reached a high.  As 

the temperature drops it is believed Xylella populations are significantly reduced by 

cold stress, remaining viable bacterial cells are transported via negative xylem flow 

into the roots where they over winter.  In the spring as xylem pressure builds Xylella 

is transported to the mature shoots of the plant where it adheres to wall of the xylem 

and multiplies.  Insect vectors feeding on xylem fluid, uptake bacterial cells in their 

mouthparts from which it is disseminated to the next host.   
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Table 2 Asymptomatic and Economically Insignificant Hosts of X. fastidiosa in the Eastern 
United States 
Scientific name Common name 
Aesculus x hybrid Buckeye 
Ampelopsis arborea Peppervine 
Ampelopsis brevipedunculata Porcelain berry 
Artemisia spp. Mugwort 
Baccharis halimifolia Eastern baccharis 
Callicarpa americana American beautyberry 
Celastrus orbiculata Oriental bittersweet 
Cynodon dactylon Bermuda grass 
Fagus crenata Japanese beech bonsai 
Fragaria californica Wild strawberry 
Hedera helix English ivy 
Montia linearis Miner’s lettuce 
Parthenocissus quinquefolia Virginia creeper 
Parthenocissus tricuspidata Boston ivy 
Paspalum dilatatum Dallis grass 
Rhus sp. Sumac 
Rubus procerus Blackberry 
Sambucus canadensis American elder 
Solidago fistulosa Goldenrod 
Sorghum halapense Johnson grass 
Trifolium repens var. latum Landino clover 
Vitis sp. Wild grape 

Xylella Phylogenetics 

 

Xylella fastidiosa (Wells et al. 1987) is currently considered a single species 

although it occurs in distinct geographic regions and within distinct host ranges. 

Phylogenetically it is placed in the gram negative proteobacteria gamma subgroup 

with Xanthamonas as its closest relative, and Pseudomonas also recognized in the 

group.  Previous studies have attempted to differentiate isolates of X. fastidiosa 

through nutritional requirements (Hopkins, 1989), DNA homology (Kamper et al. 

1985), restriction fragment length polymorphisms (RFLP) (Chen et al. 1992), and 
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random amplified fragment polymorphisms (RAPD) (Pooler and Hartung 1995) to 

the end of proposing speciation or pathovar designation.  Currently speciation has not 

been accepted by the bacteriological community and pathovar designation is only 

sporadically used in the literature.  If significant distinction within the group can be 

recognized it could impact the development of control strategies and further our 

understanding of the biological functioning of the organism. 

Geographically Xylella isolates of Citrus Variegated Chlorosis (CVC) and 

coffee leaf scorch are isolated in Brazil, while isolates of almond, oleander, and 

maple are predominantly isolated from California specimens.  The hypothesized 

native range of the southeastern United States is the source of the elm, oak, mulberry, 

sycamore, peach and plum isolates.  Pierce’s Disease is found in both California and 

the southeastern U.S.  Xylella has also been identified in numerous asymptomatic 

plants within each geographic region through molecular sampling.   

The 1,452 bp 16s rRNA gene is a standard sequence for bacterial phylogenetic 

positioning and provides clear distinction of X. fastidiosa from closely related species 

(Chen et al. 2000).  Currently there are 73 accessions of this sequence in Genbank 

(www.ncbi.nlm.nih.gov).  However this region does not contain enough variability to 

separate relationships within the group.  Analysis using the neighbor joining method 

with the approximately 500 bp16s-23s ITS can separate 26 Xylella accessions 

(excluding almond) into three distinct groups by hosts (i) CVC/coffee (ii) 

PD/oleander/maple (iii) peach/plum/oak (Mehta et al. 2001).  The resulting two 

clades of the phylogenetic tree are dominated by host grouping and combine groups 

(i) and (ii) which are geographically divided.  Another study using ITS in 8 North 
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American accessions (Huang and Sherald 2004) supports the host groupings and is 

unable to clearly separate the accessions geographically.   

Combining various fragment analysis methods with 16S-23S ITS using 50 

accessions from 8 distinct hosts (strictly North American) converged on the four 

groups (i) peach/plum (ii) oak (iii) oleander (iv) PD/maple with almond moving 

between groups (i) and (iv) depending on the technique analyzed (Hendson et al. 

2001).  Again the majority of the results group by host but follow geographic lines 

separating east and west, however PD is paraphyletic, grouped by host for both 

eastern and western isolates and almond is recovered as paraphyletic with 3 of 12 

isolates grouping with PD.  

Analysis of the DNA gyrase-β-subunit using 30 acessions from 9 distinct 

hosts results in phylogenetic grouping of (i) CVC/coffee (ii) PD (iii) 

Elm/plum/mulberry/periwinkle with almond moving between group (i) and (iii) 

(Rodrigues et al. 2003).  Separation by geography was upheld with the exception of 

PD which formed a monophyletic group with both eastern and western strains, and 

almond which was paraphyletic grouping with North and South American isolates. 

Unique Genetic Islands (GI) that have been found in Xylella isolates have also 

been gleaned for phylogenetic information.  Primers developed to sequence these 

unique regions were used to scan the genomes of 30 accessions from 11 distinct hosts 

(Van Sluys et al 2003).  This analysis clumped the accessions into 3 groups (i) 

CVC/coffee (ii) PD/oleander (iii) Oak/elm/plum/perwinkle again with almond 

accessions separating between groups (ii) and (iii).  This analysis supports the results 
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of Rodriguez and Hendson grouping accessions geographically and by host with 

almond being unresolved.  

Plasmids have been found in a substantial number of Xylella isolates 

numbering between 1 and 4 with a wide variance in size between ~50 - ~1 kb.  

Digests of 27 isolates from 6 distinct hosts formed 9 unique plasmid profiles that 

were host exclusive except for PD and almond (Hendson et al. 2001).  Interestingly 

the plasmid profiles could separate strains of PD from the east and west coast of 

North America (no other method was able to), but did not distinguish between some 

western PD and the almond isolates.  This method may have provided the most 

accurate results but is limited by the fact only 27 or the 44 sampled isolatess have 

plasmids (Hendson et al. 2001).   

The aforementioned studies have all based phylogenetic relationship on 

overall similarity, a simple paradigm which can be misleading.  Employing the 16S-

23S ITS region using the parsimony method both agreed with and contradicted 

previous results (Martinati et al. 2005).  This method results in the formation of two 

large clades representing (i) elm/mulberry/PD/CVC/coffee and (ii) 

Almond/PD/oleander/ maple/peach/plum /oak.  While these clades look distinctly 

different to previous results the disparity is reduced by the fact that parsimony was 

able to group most Xylella isolates into monophyletic groups by host however 

Pierce’s Disease and Plum were found to be paraphyletic while almond was found to 

be monophyletic.  The groups recovered from the analysis shared no geographic 

patterns.  The published analysis does not provide the Bootstrap values that are 
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associated with parsimony analysis so that statistical support can be judged for the 

groupings.  

While these phylogenetic analyses all trend toward host and/or regional 

separations, results remain ambiguous.  All discussed studies represent single gene or 

fragment analysis which are inherently prone to inconsistency, combinations of 

datasets can possibly resolve some of the noise.  Previous and current research has 

associated PD and almond leaf scorch (Davis 1978; Chen 2005) complicating the 

association by host (however not geographically), indeed this is most likely behind 

the inconsistency with the almond accessions in the phylogenetic analysis.  Currently 

there is no consensus on if or how Xylella strains should be differentiated. 

Knowing the phylogenetic relationships of X. fastidiosa strains will aid in the 

development of a control strategy for the pathogen.  Understanding if virulent forms 

of the pathogen are host limited would have important implications on treatment 

recommendations.   

Xylella Genomics 

 

Xylella was the first plant pathogen to have its entire genome sequenced 

(Simpson et al. 2000).  The effort was undertaken by a Brazilian team using an isolate 

of Citrus Variegated Chlorosis (strain 9a5c) isolated in 1992 in Bordeaux (France) 

from infected citrus sinensis ‘Valencia’ sampled in the environs of Sao Paolo Brazil.  

The genome is composed of a 2.7 Mb (2,679,305 bp) circular chromosome and two 

plasmids containing 51,158 bp and 1,285 bp respectively.  Subsequently, draft 

sequences (gapped genome sequences covering 95% of the genome) were produced 



12 
 

by the US DOE Joint Genome Institute (www.jgi.doe.gov) for almond and oleander 

isolates (Bhattacharyya et al. 2002) composed of a 2.4 Mb and 2.6 Mb circular 

chromosomes respectively and large plasmid of 30,270 bp in almond while the 

oleander isolate lacked a plasmid.  In 2003 a Pierce’s Disease isolate collected in 

Temecula California was completely sequenced by the Brazilian group (Van Sluys et 

al. 2003), the PD isolate is composed of a 2.5 Mb (2,519,802 bp) chromosome and a 

small 1,345 bp plasmid, the large plasmid found in the 9a5c and almond isolates is 

absent.  Plasmids have been found in 27 of 44 isolates of Xylella tested (Hendson et 

al. 2001).   

Comparative analysis of the four X. fastidiosa genomes has shown little 

genomic variability, with >90% amino acid identity in equivalent regions (Van Sluys 

et al. 2003).   The development and usage of microarrays has furthered insight into 

the genetic variation across the Xylella group.  This technique first demonstrated the 

differences in genetic composition between the completely sequenced PD and CVC 

genomes, resulting in the identification of exclusive coding sequences between strains 

(Oliveira et al. 2002), despite these results the genomes showed little divergence.  

Further microarray analyses of 12 X. fastidiosa isolates revealed a highly conserved 

“core” gene pool which contains biochemical pathways and cellular function tailored 

to xylem limited existence (Nunes et al. 2003).  Conversely there is also a large 

“flexible” gene pool composed of laterally transferred genomic elements including 

plasmids, prophages, and Genomic Islands (GI) which total up 18% of the entire 

genome, one of the largest “flexible” gene pools recorded to date.  The acquisition of 

genes through horizontal gene transfer was proposed upon the first sequencing of 
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Xylella (Simpson et al. 2000) and elaborated on with the draft sequencing of two 

more isolates (Bhattacharyya et al. 2002); it is now accepted as the method of 

acquisition of this more amorphous portion of the genome.  Essentially the 

differences between the sequenced genomes are limited to this “flexible” gene pool 

with its various phage related genes and insertion and deletion events. 

Genomic islands are identified by typical characteristics including (i) high GC 

concentration (ii) altered codon bias (iii) insertion at the 3’ end of a tRNA gene (iv) 

genes encoding an integrase at one end. Different GIs have been identified in both the 

completely sequenced isolates of Xylella, 67 kb and 15.7 kb in CVC and PD 

respectfully (Van Sluys et al. 2002).  A superset of GI’s including islets or much 

smaller laterally transferred elements in 12 isolates of Xylella was analyzed with a 

microarray and have been found to be transcriptionally active (Nunes et al. 2003) 

often coding nonessential functions thought to provide advantages in various 

environmental conditions (i.e. hosts).  Although genes possibly linked to 

pathogenicity have been found to be active within GIs which might explain the 

diverse symptoms observed from Xylella (Van Sluys et al. 2003), it is much more 

likely that pathogenicity is multidimensional and resides in the highly conserved core 

sequence.  The diseases caused by Xylella fastidiosa most likely rely on the 

expression of a common set of genes that facilitate the establishment of the bacteria in 

planta.

An interesting difference between the sequenced genomes is an in frame stop 

codon within the polygalacturonase gene in CVC that is absent in the other three 

sequences, leaving the gene intact.  This gene is considered essential for the synthesis 
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of cell wall degrading enzymes that facilitate intervessel migration.  This difference is 

hypothesized to result in the disparity between symptoms of CVC and the other 

scorch associated strains (Van Sluys et al. 2003) however this is a tenuous inference 

which is almost certainly more complex. 

 The establishment of bacterial infection typically depends on the 

successful interaction of products from an avirulence (avr) gene with its counterpart 

in the host which forms a complex initiating colonization.  This interaction is often 

the factor limiting the breadth of host range.  A Basic Logical Alignment Search Tool 

(BLAST) search with all known avr genes failed to find any genes encoding similar 

proteins in Xylella. The highly conserved nature of avr genes implies that it is simply 

absent in Xylella rather than modified which could explain its abnormally large host 

range.  This argument is supplemented by the fact that the pathogen is xylem limited 

and insect transmitted possibly eliminating the requirement of host cell interaction to 

establish infection and that Xylella is the only sequenced plant pathogenic bacteria 

that does not have a recognized homolog of the SoxRS regulon which controls the 

expression of several genes related to bacterial defense.  The SoxRS regulon is 

induced by oxidative stress resulting from a hypersensitive response expressed after 

the recognition of an avr gene by a plant. 

Comparative analyses of complete genomic sequences from a variety of 

bacteria have also provided insight into the biology of Xylella. The average size of 

the Xylella genome at 2.5 Mb is relatively small when compared to other completely 

sequenced plant pathogenic bacteria, which includes Xanthamonas 

(www.lbm.fcav.unesp.br/) at 5 Mb and Ralstonia 
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(sequence.toulouse.inra.fr/R.solanacearun) at 5.8 Mb.  This observation is theorized 

to be the result of xylem limited existence which provides relatively constant 

environmental conditions and is inherently nutrient limited, restricting metabolic 

options and promoting evolutionary specialization, thus resulting in the reduction of 

excess metabolic machinery (Van Sluys et al. 2002).  This is expressed in the 

fastidious nature of the organism which cannot exploit excess nutrients even when 

provided in growth media and requires a relatively mesic temperature and a narrow 

pH range for growth.   

 

Xylella in Shade Trees 

 

In the late 1950’s the American elm (Ulmus americana) was the dominant 

urban tree in North America.  The outbreak of Dutch Elm Disease (DED) sparked 

intensive scrutiny of elm health in urban centers around the country.  A previously 

undescribed chronic late season leaf scorch dubbed Elm Leaf Scorch was reported on 

the National Mall in 1959 which increased susceptibility to DED (Wester and Jylkka, 

1959).  Elm leaf scorch was shown to be transmitted from grafts, and showed similar 

symptoms to Pierce’s Disease.  Since no pathogen could be isolated from the trees at 

that time, the disease was thought to be viral, in line with the diagnosis for Pierce’s 

Disease.   

Observations from a variety of tree species showing scorch symptoms in 

urban environments where the symptoms were typically explained as the result of 

abiotic stress were investigated by Hearon et al. in 1980.  Using electron microscopy, 
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Hearon associated a newly discovered xylem limited bacteria of peach and grape with 

oak (Quercus), elm (Ulmus), and sycamore (Platanus) showing leaf scorch 

symptoms.  In 1983, Sherald et al. fulfilled Koch’s postulates for Sycamore and 

demonstrated that the xylem limited bacteria is responsible for the leaf scorch 

symptoms. Isolated strains of Xylella from trees (Table 3) include Oak (Chang and 

Walker 1988), Elm (Kostka et al.1986), Sycamore (Sherald et al.1983), and Mulberry 

(Kostka et al.1986).   In 1987 Sherald et al. also associated red maple (Acer) showing 

scorch symptoms with the xylem inhabiting bacterium.  The genera Acer, Quercus,

and Platanus comprise the majority of urban and landscape planted shade trees in the 

southeastern United States today.   

In most cases the syndrome of X. fastidiosa in shade trees manifests itself as a 

chronic late season leaf scorch resulting in the reduction of growth and possible 

dieback; it is commonly referred to as Bacterial Leaf Scorch (BLS).  Xylella is found 

irregularly distributed within the urban forest showing no characteristic pattern.  The 

disease is not typically lethal, however, it severely debilitates infected hosts 

increasing susceptibility to other diseases and stresses (Sherald, 1999).  Under good 

conditions infected specimens can persevere for decades however urban trees can 

become unsightly and are often removed on aesthetic and safety grounds.   

Affected trees may foliate late in the spring and have sparse or uneven 

canopies when in full leaf and prematurely defoliate in the autumn.  The extent of the 

symptomatic severity within the canopy is partially a function of the climatic 

conditions of the particular year, with drought years showing greater symptoms 

(McElrone et al. 2001).  Xylella moves systematically through the xylem of the tree, 
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so symptomatic regions will appear in the crown adjacent to infected regions or 

dieback from previous seasons; however infection of the entire canopy is not 

uncommon.  Identification of the disease in the field is aided by observing the entire 

individual from afar taking into account the trees position and overall health (Figures 

1-2). 
Table 3 Shade Tree Hosts of X. fastidiosa 

Scientific name Common name 
Acer rubrum Red maple 
A. negundo Boxelder 
A. saccharum Sugar maple 
Cornus florida Flowering dogwood 
Celtis occidentalis Hackberry 
Liquidambar stryraciflua Sweet gum 
Morus alba White mulberry 
Platanus occidentalis American sycamore 
P. x acerifolia London plane 
Quercus velutina Black oak        
Q. incana Bluejack oak        
Q. macrocarpa Bur oak        
Q. prinus Chestnut oak        
Q. laurifolia Laurel oak        
Q. virginiana Live oak        
Q. rubra Northern red oak        
Q. palustris Pin oak        
Q. stellata Post oak        
Q. coccinea Scarlet oak        
Q. imbricaria Shingle oak        
Q. shumardii Shumard oak        
Q. falcata Southern red oak        
Q. bicolor Swamp white oak        
Q. laevis Turkey oak        
Q. nigra Water oak        
Q. alba White oak        
Q. phellos Willow oak 
Ulmus americana American elm 

An irregular marginal leaf necrosis or scorch is visible in late summer, often 

there are several different regions of necrotic tissue on a single leaf (notably in elm, 
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Figures 3-4), and other times symptoms can be entirely marginal (notably in oak, 

Figure 5).   The disease displays slightly different symptoms depending on the 

specific host including branch dieback and a chlorotic halo separating healthy tissue 

from the necrotic margin (Figure 6).  Confirmation of BLS infection is best done with 

Enzyme Linked Immonusorbent Assay (ELISA) (Sherald and Lei, 1991) or PCR 

based identification methods (Pooler and Hartung, 1995).   

Symptoms are difficult to associate with X. fastidiosa due to the similarity in 

appearance with abiotic stresses such as drought, salt/chemical damage or root 

disturbances and soil compaction.  Furthermore disease symptoms are exacerbated by 

drought and stressful conditions (McElrone et al. 2001), both typical in urban settings 

where Xylella is primarily diagnosed in shade trees.  Increasingly, BLS has been cited 

as a problem in the urban settings of southeastern North America (Sherald, 1999).  

This is due in part to the increased awareness of the pathogen in the region.  

The economic impact of BLS is difficult to gauge since metrics for urban tree 

value are controversial largely due to the inherent difficulty of assigning monetary 

value.  This problem is compounded by the fact that Xylella significantly reduces 

carbon sequestration, which is typically calculated by the diameter breast height of 

the specimen assuming a normal growth rate.  Incorporation of Xylella into the 

algorithm is not a simple proposition due to the erratic spread and difficulty of 

diagnosis of the pathogen as well as the physiological alterations.  Xylella reduces the 

productivity of trees within the urban canopy such that it is difficult to accurately 

gauge the productivity of an urban canopy suffering with the disease.   
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Management of X. fastidiosa has encompassed a variety of strategies, 

including host removal, vector management, and antibiotic treatment.  While host 

removal and vector management are important components of an integrated 

management scheme their efficacy is limited by the high number of possible vectors 

and hosts.  Treatment of individual specimens with antibiotics has been shown to be 

effective (Kostka et al. 1985), however not curative, and the continued usage of 

antibiotics for horticultural purposes is currently under question.  Recently 

Paclobutrazol, a diastereomeric triazole possessing fungistatic and plant growth 

regulation properties has been associated with the remission of symptoms from the 

disease (Personal communication Bruce Frederich, Barlett Tree Labs Charlotte, North 

Carolina).  The mechanism by which paclobutrazol is able to achieve symptom 

remission is currently hypothesized to result from plant physiological changes 

induced by the chemical (Personal Communciation Bruce Frederich). 
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Figure 1 X. fastidiosa symptoms in August 2005, on a mature Ulmus americana specimen located 
on the National Mall, Washington D.C.  surrounding trees are also Ulmus americana 
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Figure 2 X. fastidiosa symptoms in late August 2005, on Quercus palustris in Washington D.C., 
the tree on the right is infected and symptomatic the tree on the left is not infected   
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Figure 3 X. fastidiosa symptoms on a leaf sampled from an Ulmus americana specimen in July 
2005 

Figure 4 X. fastidiosa symptoms on a twig sampled from an Ulmus americana specimen in July 
2005 
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Figure 5 Marginal scorch symptoms of X. fastidiosa on a Querucs palustris leaf sampled in 
August 2005 

Figure 6 Leaf scorch symptoms and associated chlorotic halo of X. fastidiosa infection on an 
Ulmus americana leaf sampled in July 2005 
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Research Goals 

 
The goals of this research are 

1. Locate Ulmus americana specimens infected with X. fastidiosa in Washington 

D.C. using GIS technology and molecular tools 

2. Isolate the bacterium from Ulmus americana specimens using a recently 

adapted protocol, pressure chamber (Bextine and Miller, 2004). 

3. Test the growth of X. fastidiosa isolates from shade trees on Xylella Defined 

Media (Alameida et al. 2004).  

4. Determine whether paclobutrazol has a direct inhibitory effect on X. fastidiosa 

in vitro.
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Chapter 2: Location and Isolation of Xylella fastidiosa 

 

Introduction 

Washington D.C. is home to a significant population of Ulmus americana 

specimens (~10,000, including the National Mall) and was the first region to identify 

X. fastidiosa as a problem within this population (Watson and Jylkka, 1959).  In 2002, 

the Casey Tree Foundation (www.caseytrees.org) conducted an exhaustive Global 

Information System (GIS) inventory of the street trees of the city, compiling a 

database of more than 120,000 individual specimens.  The inventory captured a 

variety of information including species, size and condition.  This database is publicly 

available (www.dcgis.dc.gov), and is compatible with ESRI software systems 

ARCGIS and ArcView.  The disease resulting from X. fastidiosa (Wells et al. 1987) 

is a chronic late season leaf scorch resembling abiotic stress that is primarily 

diagnosed on but not limited to Quercus, Platanus, and Ulmus genera (Sherald, 

1999).  The disease is essentially limited to urban and suburban communities where it 

has been increasingly diagnosed over the past decade (Sherald, 1999).   

Initial isolation of X. fastidiosa was achieved by expressing sap from the 

petiole of symptomatic grape leaves and plating the fluid directly onto a media 

designed for culture of rickettsia organisms (Davis et al. 1978).  Isolation from tree 

specimens was first achieved by excising xylem cells from symptomatic branches of 

sycamore specimens and incubating them in broth media (Sherald et al. 1983).  

Isolation of the bacteria remains difficult and a variety of techniques have been 
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published (Davis et al. 1978; Wells et al. 1981; Sherald et al. 1983; Bextine and 

Miller 2004).  The most commonly used techniques for isolation of X. fastidiosa 

involve crushing or grinding plant tissue.  This practice dependant on the ratio of 

plant cells to bacterial cells and can prove difficult in samples that contain a low 

bacterial titer.  The process of isolation is further complicated by the slow growth of 

X. fastidiosa which makes culturing susceptible to contamination.  A high yield 

isolation technique is needed to facilitate practical experimentation with the 

organism. 
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Materials and Methods 
 

Sampling and Scouting Methodology 

The Casey Trees database was queried using ARCGIS 9.0 (ESRI) to display 

the Ulmus americana population of the city.  The city was broken into parcels by zip 

code, and a sampling region was randomly selected.  This region was scouted twice 

monthly for the duration of the 2004 and 2005 growing seasons.  Scouting was done 

on foot and canopies were examined from the sidewalk by eye.  Sampling of 

symptomatic tissue was done using a pole pruner, symptomatic specimens that could 

not be reached with pole pruner were noted and skipped.   

 

Molecular Identification 

Collected samples were tested by an Enzyme Linked Immunosorbet Assay 

(ELSA) Pathoscreen kit specific for X. fastidiosa detection following the 

manufacturer’s instructions (Sherald and Lei, 1993) (Agdia Inc., Elkhart, IN).  Plates 

were read by eye and at 492 nm in FLUOstar Galaxy microplate reader (BMG 

Labtechnologies, Inc., Durham, NC).  Collected samples were also subjected to X. 

fastidiosa DNA extraction using a DNeasy tissue kit according to the manufacturer’s 

instructions (Qiagen Inc., Valencia CA).  Specific detection of X. fastidiosa was 

achieved by Polyermase Chain Reaction (PCR) using specific primers 272-1-int (5’-

CTGCACTTACCCAATGCATCG-3’) and 272-2-int (5’-

GCCGCTTCGGAGAGAGCATTCCT-3’) (Pooler and Hartung 1995). 
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Xylem Vessel Excision 

 Stem samples from symptomatic regions of confirmed X. fastidiosa hosts 

were taken with pole pruners.  Samples were rinsed in 70% ethanol and flamed.  The 

bark and phloem was removed and wood chips containing xylem vessels were 

excised with a sterile blade (Sherald et al. 1983).  The wood chips containing the 

xylem vessels were placed in Periwinkle Wilt broth media (Table 4) and incubated 

for 20 days at 28ºC. 

 

Petiole Technique 

Symptomatic leaves from confirmed hosts were sampled.  Petioles were 

excised and surface sterilized in 10% bleach for 1 min and subsequently washed 3 

times in deionized water.  Petioles were squeezed with sterile forceps and pliers to 

express sap.  Petioles were also macerated with a mortar and pestle and re-suspended 

in 1ml of PW broth.  This suspension was vortexed and put through a 1/10 dilution 

series.  Aliquots of 100 µl from each dilution were plated on PW, XfD, and BCYE 

media and incubated for 20 days at 28ºC. 

 

Pressure Chamber 

Twig samples were taken from symptomatic regions of confirmed hosts with 

pole pruners.  The cut end of the sample was immersed in water and cut with sterile 

pruners prior to processing.  The cut end of the twig was surface sterilized in 10% 



29 
 

bleach for 1 min, then washed 3 times in deionized water.  The bark and phloem was 

excised with a sterile blade from the cut end to 1 cm distal.  The sample was then 

placed in a pressure chamber and pressure applied with nitrogen gas.  The resulting 

xylem fluid expressed from the sample was drawn off with a micropipette and plated 

directly on PW, XfD, and BCYE media and incubated for 20 days at 20ºC. 

 



30 
 

Results 
 

Sampling Region 

 The 20003 S.E. Capitol Hill/Lincoln Park parcel was selected as the sampling 

region, which represented 50 unique species with 5,790 individual specimens (Figure 

7, trees represented in green), including 720 American Elm specimens (Figure 8, elms 

represented in brown).  A focused population of 240 American Elms was found on 

North Carolina Ave, South Carolina Ave, Kentucky Ave, 11th St, and East Capitol 

Street. 

 
Figure 7 GIS map representing the total street tree inventory (5,790 individual specimens) of the 

sampling region (Capitol Hill/Lincoln Park SE 20003 Washington DC), trees are 
represented by green dots 
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Figure 8 GIS map representing the Ulmus americana population (brown dots, 240) within the 
total tree inventory (green dots, 5,790) of the sampling region (Capitol Hill/Lincoln Park 
SE 20003 Washington DC) 

 

Disease Incidence 

The scouting operation identified 120 symptomatic Ulmus americana trees in 

the sampling region.  Identification of 23 (approximately 10%) of the 240 total 

specimens was confirmed.  Condition of the trees found to be positive ranged from 

mild to severely symptomatic.  These results were subsequently mapped using 

ArcGIS (ESRI, Redlands CA) software to visually assess disease incidence within the 

sampling region (Figure 9).   

 
Figure 9 GIS map representing disease incidence within the sampling region (Capitol 

Hill/Lincoln Park SE 20003 Washington DC).  Red dots (23) represent Ulmus americana 
trees that are confirmed to be infected with X. fastidiosa, brown dots (240) represent 
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Ulmus americana trees that are not confirmed to be infected, and green dots represent 
the remainder of the street trees that are species other than Ulmus americana 

 

Xylem Vessel Excision 

Isolation attempts using wood chips containing xylem vessels incubated in 

Periwinkle Wilt broth media proved successful on three separate hosts.  This 

technique required high replication due to significant problems with contamination.  

Bacterial aggregation on the sides of glass test tubes was visible after 18 days of 

incubation, while contamination was visible within 3-5 days of attempted isolation. 
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Petiole Technique 

Isolation attempts using the petiole did not provide any successful isolates.  

The petiole of Ulmus americana in general tends to be small and no fluid can be 

expressed with forceps or pliers.  When the tissue was macerated and plated, plates 

were either contaminated or completely sterile; indicating surface sterilization of this 

tissue was problematic.  Attempted to modifications of this procedure using ethanol 

instead of bleach and as well as varying the time of exposure did not change the 

results.   

 

Pressure Chamber 

Isolation attempts with the pressure chamber did not provide any successful 

isolates.  Pressures as high as 40 Bars were applied resulting in limited xylem fluid 

expression.  The cut end of the sample tended to bubble under pressure, with minimal 

fluid flow.  Asymptomatic tissue used in the pressure chamber performed better, 

providing minimal accumulation of xylem fluid, however significantly less than 

reported by Bextine and Miller et al 2004. 
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Discussion 

 The sampling region used in this study contained 720 Ulmus americana 

specimens 83% of which were mature (>12” diameter breast height).  Specimens 

ranged from 20-50 feet in height which complicated the sampling procedure that 

employed the usage of 20 foot pole pruner.  The situation was exacerbated by the 

location of the trees on frequently traveled urban streets.  Additionally, all the 

specimens had been pruned to a height of 15 feet to allow traffic to pass, making 

sampling more difficult.  Symptomatic regions were at times high in the canopy and 

inaccessible with the available equipment.  Therefore the 10% disease incidence 

reported in this study may underestimate the actual infection rate in the sampling 

region.  Equipment such as a bucket truck would increase the ability to sample 

symptomatic regions within a specimen however this equipment would also 

significantly increase the cost of such a survey. 

 The identification of symptomatic specimens was done by eye which was at 

first subjective, however after repeated scouting and testing visual identification of X. 

fastidiosa became more accurate.  The two year length of the study period aided in 

the identification of infected specimens, trees that were perennially scorched by early 

August were able to be identified as likely candidates.  While the 2004 season saw 

adequate rain, the 2005 season suffered an acute drought beginning in early August 

which facilitated the identification of infected specimens since symptoms are 

exacerbated by drought conditions.  The combination of all these factors increases the 

confidence that the reported 10% infection rate is a representative estimate. 
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The isolation procedure is largely dependent on the quality of the material that 

is being used.  The petiole and pressure chamber techniques use small amounts of 

material, single leaves or twigs, and success is predicated on the material containing 

enough bacterial titer for isolation.  The sampling issues previously described may 

have contributed to failure in isolation of X. fastidiosa using these two techniques.  In 

contrast the xylem vessel excision technique employs the usage of large amounts of 

material (branchs approximately 0.5-1” in diameter) which is more destructive to 

sample, however may provided higher bacterial titer.  Further experimentation with 

both the petiole and pressure chamber technique should be pursued due to the 

advantages they present including the reduced destruction in sampling, and the 

possibility of higher yields of isolates. 



36 
 

Chapter 3:  Evaluation of the Defined Medium XfD 

 

Introduction 

 
Fastidious is defined by the Oxford English Dictionary as ‘difficult to please 

in matters of taste’.  This term is applied to bacteria that have evolved to survive in 

niche environments with restrictive dietary and cultural conditions which require 

specific media to grow in vitro. Xylella fastidiosa is a fastidious bacterial plant 

pathogen native to the Americas.  While X. fastidiosa was recognized as a problem in 

the 1890’s and bacterial cells were visualized in infected tissue by electron 

microscopy in 1972 (Hopkins and Mollenhauer 1972) it was not isolated until 1977 

(Davis et al. 1978).  The initial difficulty in isolation and cultivation is attributed to 

the bacteria’s fastidious nature. Comparative genomic analysis has shown Xylella to 

have a relatively compact genome that is hypothesized to code for a limited set of 

metabolic pathways that manifest into the fastidious nature of the organism (Van 

Sluys et al. 2002). 

 The initial isolation medium formulation was named JD-1 and contained 

PPLO broth, Hemin Chloride, Bacto-Agar, and Bovine Serum Albumin (BSA) this 

media was reported to require two to three weeks in aerobic conditions before 

colonization was visible.  A variant in the same series (JD-3) reduced the incubation 

period by half (Davis et al. 1978).  This medium was modified further to support 
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consistent primary isolations and continuous sub-culturing of the bacteria, and 

became known as PD2 (Davis et al. 1980). 

 The Phony Disease pathogen of Prunus persica, which would later be found 

to be caused by X. fastidiosa, initially could not be isolated with the PD2.  A rich 

medium originally intended to culture Legionella pneumophila, a fastidious bacterium 

causing Legionnaires disease in humans, was the first medium to be successful in the 

isolation of Phony Disease and Plum Leaf Scald (Wells et al. 1981).  This is a distinct 

and simple media composed of five components, activated charcoal, L-cysteine, ferric 

pyrophosphate, yeast extract, and ACES buffer and is known as Buffered Charcoal 

Yeast Extract (BCYE)      (Table 5).    A different complex medium variant of PD2 

was also developed and shown to work with Phony Disease in the same year (Davis 

et al. 1980) known as Periwinkle Wilt medium (PW) after the Xylella strain it was 

used to isolate (Table 4).   

Variations of the original JD media series (Davis et al.1978) include PD2 

(Davis et al.1980), PW (Davis et al.1983), PWH (Lee et al. 1993), SPW (Hartung et 

al. 1994), and PWG (Hill et al. 1995) of which PW has become most accepted and 

has been shown to support the growth of all known X. fastidiosa strains.  None of 

these media are fully autoclavable.  They all employ peptone as the primary nutrient 

source, include an iron source (Hemin Chloride), and a supplemented amino acid 

(Glutamine).  The BCYE medium, which is fully autoclavable, also supplements iron 

(Ferric pyrophosphate) and an amino acid (Cysteine) but uses yeast extract as the 

nutrient source. 
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All aforementioned media contain undefined constituents; phytone and yeast 

extract which serve as the primary nutrient source.  A chemically defined medium 

required for the elucidation of nutritional requirements, metabolic pathways, and 

biosynthetic capabilities of X. fastidiosa was first formulated by Chang and 

Donaldson in 1992 and is known as XF-26.  This formulation is comprised of 17 

amino acids, 2 tricarboxylic acids, and inorganic salts.  This defined media yielded 

growth rates of X. fastidiosa that were statistically similar to PD2.  Through a 

systematic process of elimination this media formulation was truncated to 

components essential for growth (Chang and Donaldson, 2000).  The sequencing of 

the X. fastidiosa genome by Simpson et al in 2000 invigorated interest in the 

pathogen and provided opportunities for new approaches to media development.  The 

previously formulated defined media was re-examined considering the newly 

available genetic information and has been further truncated (Almeida et al 2004) and 

defined as minimal for the investigation of metabolic pathways. 

Research on X. fastidiosa isolates affecting shade trees has traditionally used 

PW media, however all shade tree strains have been shown to grow on PW and 

BCYE.  Early arguments proposing speciation focused on media specificity, noting a 

degree of selectivity among strains possibly corresponding to host (Hopkins, 1989).  

Studies have not been conducted to confirm the growth of shade tree isolates of X. 

fastidiosa on the recently published XfD medium.   
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Materials and Methods  

 

Bacterial strains and conditions  

All experiments were conducted using X. fastidiosa isolates Elm, Oak, 

Sycamore, Mulberry, and Pierces Disease on PW plates provided by Dr. Huang at the 

USDA ARS Beltsville MD.  The Elm and Sycamore isolates were isolated by Dr. Jim 

Sherald in Washington D.C. in the 1980’s and held in cryogenic storage at the USDA, 

while the Oak and Mulberry isolates were isolated by Dr. Huang in 2000 and held in 

cryogenic storage at the USDA ARS in Beltsville, MD.  All strains were transferred 

to and maintained on BCYE solid media and in PW broth cultures at 28°C and sub-

cultured every 30 days. 

 

Media 

Periwinkle Wilt (PW) media was prepared according to Davis et al. 1983 

(Table 4).  Ingredients were autoclaved and allowed to cool to 40°C in a heated water 

bath.  When the media temperature stabilized Bovine Serum Albumin (BSA) was 

filter sterilized with .25 µm Millipore membrane and added to the media.        
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Table 4 Perwinkle Wilt Media Formulation, 1 Liter 
 
Periwinkle Wilt Media Grams 
Phytone peptone   4 
Trypticase peptone   1 
KH2PO4 1
K2HPO4 1.2 
MgSO2*7H2O 0.4
Bovine Serum Albumin   6 
L-Glutamine   4 
Hemin Chloride 10 ml 
Phenol Red 10 ml 

The BCYE media was prepared according to the formulation from Feeley et 

al. 1979 (Table 5) and autoclaved.   
Table 5 Buffered Charcoal Yeast Extract Formulation, 1 Liter 
 
Buffered Charcoal Yeast Extract Grams 
Yeast Extract 10 
L-Cysteine   0.4 
Activated Charcoal   2 
Ferric iron pyrophosphate   0.25 
ACES buffer 10 

The XfD media was prepared according to Almeida et al. 2004 (Table 6). 
Table 6 Xylella Defined Media Formulation, 1 Liter 
 
Xylella Minimal Defined Medium Grams 
L-glutamine   3.0 
L-aspargine   1.0 
L-cysteine   0.5 
Trisodium citrate   1.5 
Disodium succinate   1.5 
Potato Starch   3.0 
KH2PO4 1.0 
K2HPO4 1.5 
MgSO2*7H2O 0.5
Hemin Chloride 10 ml 
Phenol Red 10 ml 
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Media formulations were adjusted to pH 7.2 using 1M KOH and were stored 

at 28°C.   Solid media preparations were prepared with the addition of 10g l-1 Gelrite.  

No pH indicator was added to media preparations to be analyzed by 

spectrophotometry.  Media was held for one day prior to inoculation and visually 

inspected for signs of contamination. 

 

Spectrophotmeter CFU Relationship 

 A spectrophotometer (Spectronic Genesis 5) was used to measure the 

absorption at 600nm of X. fastidiosa cells in PW broth cultures.  Broth cultures with 

varying degrees of X. fastidiosa cell densities were measured in the 

spectrophotometer and subsequently put through a logarithmic series of dilutions to 

allow direct calculation of bacterial Colony Forming Units (CFU’s) from each 

sample.  Dilution series were executed by plating a 100 µl aliquot of each sample 

followed by a 10 fold dilution; this was repeated until the 1x1010 dilution was 

achieved.  The resulting points were graphed and evaluated by regression analysis 

using Statistical Analysis Software (SAS) to determine the best fit model.   

 

Growth on Solid Media 

 To determine whether a media supported the growth of a particular Xylella 

fastidiosa isolate a randomized complete block design (in blocks of time) with a 5 x 3 

factorial treatment structure was established.  Solid plates of PW, BCYE and XfD 

were inoculated and monitored for colonization.  The inoculum of X. fastidiosa was 
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prepared by scraping solid PW plates of the respective X. fastidiosa isolates (Oak, 

Sycamore, Elm, Mulberry, Pierce’s Disease) and suspending cells in 5 ml of PW 

broth and incubating for 5 days at 28°C.  Cultures were prepared in triplicate and 

inspected visually for signs of contamination.  The broth cultures were agitated by 

hand and 100 µl aliquots of inoculum were dripped on plates of the three respective 

media types (BCYE, PW, XfD) in triplicate.  Determination of Colony Forming Units 

(CFU) was done by dilution series on each respective media. The plates were 

incubated at 28°C for 10 days after which visible colonies were counted.  Randomly 

selected colonies from randomly selected plates of each respective media were 

subjected to Enzyme Linked Immunosorbent Assay (ELISA) and Polymerase Chain 

Reaction (PCR) tests to confirm X. fastidiosa identity.  Data were analyzed to 

determine significant effects of media and isolates. 

 

Growth in Broth Media 

 To determine the efficacy of XfD and PW media in cultivation of X. fastidiosa 

a randomized complete block design in time with a 5 x 2 factorial treatment structure 

was established.   Growth curves were produced by measuring absorbances of 

samples with a spectrophotometer and calculating the CFU’s using the regression 

equation developed for the study (Figure 10).  The nature of the BCYE medium is not 

conducive to usage as a broth due to the incorporation of activated charcoal which is 

insoluble and dark in color making visual analysis impossible and so was omitted 

from the study.  Inoculum was prepared by scraping solid PW plates of respective X. 

fastidiosa isolates (Oak, Elm, Mulberry, Sycamore and Pierce’s Disease) and 
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suspending cells in 3 ml of PW and XfD and incubated for 5 days at 28°C.  The 

inoculum was vortexed for 10 sec. and added to 30 ml of its respective media.  The 

resulting suspension was vortexed for 10 sec. and portioned into 1 ml aliquots in 

autoclaved microcentrifuge tubes.  Duplicate reference tubes of pure media from the 

same batch were also portioned in microcentrifuge tubes and incubated.   

Three randomly selected tubes of each combination of media and isolate were 

analyzed in random order by a spectrophotometer at 600 nm at the same time each 

day for ten days to quantify bacterial colonization using two samples of the respective 

uninoculated media as references. References were used in duplicate to ensure 

consistency and accuracy.   Randomly selected tubes from each isolate were sampled 

and plated to ensure cultures were not contaminated. 
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Results 
 

Spectrophotometer CFU Relationship 

A linear model, represented by the regression equation [y=0.0199x -0.0939] 

resulted from the calibration measurements.  The absorption is dependent on the 

CFU’s in the broth culture therefore inverse regression was employed to caluculate 

CFU’s from absorbance measurements.  Inverse regression was done regressing on 

CFU’s, resulting in the equation [x=50.25y + 4.7186].  
Figure 10 Regression analysis and equation of the relationship between absorbance of a 

Perwinkle Wilt broth sample measured by a spectrophotometer and amount of X. 
fastidiosa Colony Forming Units (CFU’s) within the sample as determined by dilution 
plating. 
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Solid Media 

All three solid growth media formulations were successful in cultivation for 

the X. fastidiosa isolates Oak, Elm, Sycamore, Pierce’s Disease, Mulberry (Elm 

isolate in Figures 11-13).  Data analyzed for colonization on solid media showed 

statistically significant difference between media (P<0.01) as well as between isolates 

(P<0.01).  There were no differences between the undefined media, BCYE and PW 

(P=0.59).  However, both undefined media were found to be significantly different 

from the minimal medium XfD (P<0.01) (Figure 14).  Differences in calculated 

colonization of isolates on all media were found to be significantly different and are 

reported in Table 7.   
Figure 11 Buffered Charcoal Yeast Extract Plate (BCYE) showing growth of X. fastidiosa 

isolated from an Ulmus americana specimen after 14 days of incubation 
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Figure 12 Perwinkle Wilt (PW) media showing growth of X. fastidiosa isolated from an Ulmus 
americana specimen after 14 days of incubation 

Figure 13 Xylella Defined Medium (XfD) showing growth of X. fastidiosa isolated from an Ulmus 
americana specimen after 14 days of incubation 
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Table 7 Means and statistical significance of X. fastidiosa isolates Pierce’s Disease, elm, oak, 
mulberry, and sycamore growth after 10 days on Solid PW Media.  Colony Forming 
Units (CFU’s) determined by dilution plating. 

 
Strain Mean Log CFU / ml
Pierce’s Disease 4.48a
Elm 4.36a 
Mulberry 3.40b 
Sycamore 3.60b 
Oak 3.27b 
*means with identical letters are not significantly different at the .05 level by SED = .069 

 
Figure 14 Growth of X. fastidiosa isolates Elm, Mulberry, Oak, Sycamore, and Pierce’s Disease 

on Buffered Charcoal Yeast Extract (BCYE), Perwinkle wilt meida (PW) and Xylella 
Defined Media (XfD) .  Bars represent mean growth in Log of Colony Forming Units 
(CFU’s) and their associated standard errors. 

*means with symbol are significantly different at the .05 level by SED = .054 
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Broth Media 

Broth media of PW and XfD were compared for efficacy of growth using 5 

isolates of X. fastidiosa (Elm, Mulberry, Oak, Sycamore, and Pierce’s Disease).  Both 

tested broth media formulations were successful in cultivation of all the selected X. 

fastidiosa strains.  No significant differences (P=0.95) in colonization could be 

determined between PW and XfD media formulations (Figures 15-16).  Mean 

colonization of isolates was found to be significantly different and are reported in 

table 8. 

Table 8 Means and statistical significance of X. fastidiosa isolates Pierce’s Disease, elm, oak, 
sycamore, and mulberry growth measured with a spectrophotometer for 10 days.  
Absorbance readings were converted to Colony Forming Units (CFU’s) using the 
regression equation determined in this study (Figure 10).  

 
Strain Mean Log CFU / ml
Pierce’s Disease 8.79a
Elm 7.40b 
Mulberry 7.04c 
Oak 6.95cd 
Sycamore 6.75d 
*means with identical letters are not significantly different at the .05 level by SED = .041 
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Figure 15 Growth curve of X. fastidiosa isolates Pierce’s Disease, Mulberry, Oak, Elm, and 
Sycamore in Perwinkle Wilt (PW) broth over a period of ten days measured with a 
spectrophotometer.  Absorbance readings were converted to Colony Forming Units 
(CFU’s) using the regression equation determined in this study (Figure 10).  Means 
are plotted with associated standard errors. 
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Figure 16 Growth curve of X. fastidiosa isolates Pierce’s Disease, Oak, Elm Mulberry, and 
Sycamore in Xylella Defined Media (XfD) broth measured with a spectrophotomer 
over 10 days.  Absorbance readings were converted to Colony Forming Units (CFU’s) 
using the regression equation determined in this study (Figure 10).  Means are plotted 
with associated standard errors. 
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Discussion 

 
Xylella is fastidious and requires strict adherence to the pH range (6.8 – 7.2) 

and incubation temperature (28ºC) for optimal growth (Wells 1987).  The pH 

requirement varies slightly between strains of the pathogen and experimentation is 

required with each individual strain in order to achieve optimal growth (Personal 

Observation).  There is significant variability in growth rate and plaque formation 

even within strains of the same host. The pathogen is quite resilient despite its 

fastidious nature; it appears to become latent in sub-optimal conditions, returning to 

robust growth once optimal conditions are restored (Personal Observation).  Honing 

the skill of consistent optimal cultivation is essential before growth studies can be 

undertaken. 

In the extensive usage of all the media during experimentation BCYE was 

preferred due to its simplicity and overall efficacy.  The black color of the media also 

aided in the visualization of bacterial colonization.  The PW media is difficult to work 

with due to the addition of the BSA protein which must be added after autoclave 

sterilization increasing the potential for contamination.  Pouring plates of PW must be 

done in small batches (no more than 500 ml at a time) because plating must be done 

following the addition of BSA at temperatures below 40ºC, close to the temperature 

at which the media will begin to solidify.  Furthermore, the BSA tends to create 

“bubbles” in the media complicating the plating procedure.  

Results from the broth media trial showed no difference between XfD and PW 

(P<0.95), while results from the solid media trials showed greater colonization on the 
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undefined BCYE and PW as compared to the minimal XfD media (P<0.01).  The 

results of the solid media trial are in contrast to Almedia 2004, who found no 

differences between X. fastidiosa colonization of PW or XfD using Pierce’s Disease 

isolates.  This may be due in part to the inherent differences in the parameters of 

broth and solid media cultivation that often affect bacterial growth (i.e. aeration).   

Although the statistical results show highly significant differences, looking at 

the raw data puts the differences in context (Figure 14); the minimal media lags 

behind the two rich media by a single log unit in almost every case.  Additionally the 

broth study required the usage of the CFU regression equation which increases the 

expected experimental error; it is possible that the spectrophotometer was not able to 

detect the differences in growth considering the magnitude of the difference and the 

sensitivity of the equipment combined with the experimental error.   

The study was halted at 10 days for consistency among all tests, however 

when let grow indefinitely X. fastidiosa will completely colonize each media 

formulation (Figures 11-13).  This point highlights the difficulty in development of 

effective media for Xylella and explains the impetus behind the high number of media 

variations that have been developed (more than a dozen).  The slow growth of the 

pathogen is a major obstacle to practical experimentation with the Xylella and while a 

variety of media have been shown to support growth, there have been limited to no 

improvement of colonization rate since the initial isolation media formulation.  The 

small disparity between undefined and defined media shown in this study is not 

surprising due to the fact that Xylella seems unable to exploit excess nutrients when 
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provided; therefore the minimal media is essentially no different from the undefined 

media. 

 In separate isolation tests conducted using broth media during 

experimentation no successful isolations were ever obtained using XfD broth, while 

PW broth proved successful.  Possibly, this is due to the inability of the media to 

sufficiently support the growth of a low cell density of X. fastidiosa. The availability 

of all essential components is critical for supporting growth of the organism when 

bacterial titer is low.  Alternatively, this could be simply due to poor execution of the 

isolation procedure; however the high number of replicates required for isolation 

reduces this possibility.  However, this result is not surprising when the history or X. 

fastidiosa isolation is considered. The initial isolation of Plum leaf scald was 

accomplished using BCYE after the PD2 media developed for Pierce’s Disease 

isolation was found ineffective (Wells et al. 1981), subsequently all isolated strains of 

X. fastidiosa have been found to grow on PD2 (Wells et al.1987).  Furthermore, 

nutritional requirements were considered a possibility for separation in the group 

(Hopkins, 1989) essentially based on the fact that different isolates require different 

media, however significant variation has not been able to be demonstrated.   

It is possible that this is due to the genetics of the bacteria, which can change 

after continual sub-culturing, adjusting to their current growth environment.  The 

plasticity of the genomic sequence of X. fastidiosa is evident from examining the 

available sequence data which reveal a “flexible” gene pool due to horizontally 

transferred elements (Nunes et al. 2003).  This is apparent in the variations of 

“minimal” media produced (Chang and Donalson, 2000; Almeida et al. 2004), which 
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demonstrate the inability to clearly define what is minimally required by the organism 

for growth.  All X. fastidiosa strains tested in this evaluation were thoroughly sub-

cultured on PW media, which is close in composition to XfD, while isolations from 

the environment are plated on XfD directly from the xylem of the host.  The variation 

in previous environmental conditions might explain the failure of XfD as an isolation 

media, but success when used in sub-culturing.   

While the XfD medium is considered “minimal” it might be more appropriate 

to simply designate it as defined.  It contains 5 of the 8 ingredients of the PW media 

(Tables 4 and 6), essentially substituting a defined nutrient (Trisodium citrate and 

Disodium succinate) for an undefined (Phytone peptone and Tryticase peptone), 

supplementing more amino acids (Aspargine and Cystiene) and eliminating the BSA 

protein making it autoclavable.  Evaluations into the efficacy of this media in 

isolation or growing freshly isolated material would substantiate the minimal claim. 

Clearly a medium designed to optimize the growth of Xylella is needed as 

well as formulations that are designed to elucidate the biochemical pathways of the 

organism.  The recently available sequence data for the pathogen has renewed interest 

in media development (Campanharo et al. 2003; Lemos et al. 2003; Almeida et al. 

2004) and will certainly lead to further advancement in the effective cultivation of the 

organism.   
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Chapter 4: Effect of Paclobutrazol on Bacterial Colonization 

 

Introduction 

In the Mid Atlantic and Southeastern region of the United States the syndrome 

resulting from X. fastidiosa is commonly referred to as Bacterial Leaf Scorch 

(BLS)(Hearon et al.1980).  Bacterial Leaf Scorch is a debilitating disorder that 

primarily affects urban specimens of Quercus, Platanus, and Ulmus genera (Sherald, 

1999).  Recognition and diagnosis of the disorder has increased in urban localities 

across the Southeast of the United States over the past decade (Sherald, 1999). 
Figure 17 Chemical structure of Oxytetracycline 

 

Researchers initially 

investigated treatment of the disorder 

with an antibiotic, oxytetracycline, via 

microinjections directly into the xylem 

of the tree (Kostka 1985).  Oxytetracycline was discovered in the 1940’s and was 

among the first tetracyclines to be described, it is a naturally occurring product of 

Streptomyces rimosus. Due to its relatively early discovery and its low cost this 

antibiotic has been extensively used for human, animal and plant disorders.  

Oxytetracycline molecules are composed of a tetracylic nucleus with both 

dimethylamino and carboxaminde functional groups (Figure 17). 
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It has been established that tetracyclines inhibit bacterial protein synthesis by 

preventing the association of aminoacyl-tRNA with the bacterial ribosome 

(Schnappinger et al. 1996).  Oxytetracycline must enter the cytoplasm via the single 

membrane of the gram-negative Xylella bacterium in order to disrupt protein 

synthesis (Schnappinger et al.1996).  Entry is achieved as a positively charged cation-

tetracycline complex (Schnappinger et al. 1996).  This chemical has been tested in 

Ulmus americana infected with Xylella achieving a variable degree of symptom 

remission (Kostka et al.1985).  There is speculation that the efficacy of the chemical 

is highly dependant on the severity of symptoms and the size of the specimen treated.  

The treatment is not curative and must be repeated annually (Kostka et al. 1985).  

Furthermore, the associated problems with the over usage of antibiotics is increasing 

pressure to discontinue their use in the environment and seek alternatives. 

Plant growth regulators were first employed to overcome Phony Disease in 

peach, a stunting disorder induced by Xylella (French and Stassi, 1978).  The 

application of gibberellic acid, a plant growth regulator responsible for cell 

elongation, was effective in reversing the stunting induced by the pathogen; however 

the treatment did not affect the bacterial population of the treated plants when 

assessed by light microscopy (French and Stassi, 1978).  A separate study 

investigated a series of growth regulators applied to grape varieties with varying 

degrees of resistance to Pierce’s Disease, a leaf scorching disorder caused by X. 

fastidiosa, yielding mixed results (Hopkins et al. 1985).  The foliar application of 

growth regulators Kinetin (synthetic cell division regulator) and Indole-3-acetic acid 

(naturally produced auxin) improved resistance to Pierce’s Disease in Vitis 
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rotundifolia ‘Carlos’ a moderately resistant variety, reducing bacterial concentrations 

measured in the petiole and reducing visible symptoms.  However these growth 

regulators were not effective when used on Vitis vinifera varieties susceptible to 

Pierce’s Disease (Hopkins et al. 1985).   

Paclobutrazol, a gibberellin biosynthesis inhibitor, was first used by arborists 

in the 1970’s to control the height of trees under power line right-of-ways and was 

initially applied as a trunk injection (Chaney, 2004).  The low solubility of 

paclobutrazol in water favored formulations that employed alcohol based solvents 

which with repeated usage proved problematic causing cambial cracks, weeping 

injection wounds, and wood discoloration (Chaney, 2004).  These issues favored the 

reformulation of the chemical for usage as a root drench. 
Figure 18 Chemical Structure of paclobutrazol 

 

Paclobutrazol is structurally classified in 

the triazole group of chemical compounds 

(Sugavanam, 1984), which includes members 

widely used for their fungistatic properties 

(Radenmacher, 2000).  It was initially classified as 

a multi-protector due to its ability to inhibit growth 

from five distinct fungi as well as confer tolerance to drought, chilling, and other 

stresses (Fletcher and Hofstra, 1986).  Paclobutrazol disrupts terpenoid biosynthesis, 

inhibiting the catalytic activity of cytochrome P450 dependent monooxygenases 

(Miki et al. 1990).  The molecule has two chiral centers, asymmetric carbon atoms, 

thus it can exist as two pairs of enantiomers in two optically inactive 
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diastereoisomeric forms (Burden et al. 1987).  The name paclobutrazol specifically 

applies to the 2RS,3RS diastereoisomer.  The 2R,3R enantiomer is active in the 

disruption of sterol biosynthesis and is similar in structure to lanosterol (Sugavanam, 

1984).  The 2S,3S enantiomer is active in the disruption of gibberellin biosynthesis 

and is similar in structure to ent-kaurene (Sugavanam, 1984).  These enantiomers 

exist as a racemic mix in the 2RS,3RS disastereoisomer that is commercially 

available.  In general, relatively high rates of the chemical which induce extreme 

growth reductions are required to achieve fungistatic effects, however this is species 

specific (Radenmacher et al. 1987). 

 The fungistatic effect of paclobutrazol is due to its disruption of sterol 

metabolism, specifically by blocking the oxidation of 14α-demethylation during 

ergosterol biosynthesis (Miki et al. 1990).  The growth regulation and subsequent 

conference of stress tolerance is due to the inhibition of oxidative steps from ent-

kaurene to ent-kaurenoic acid, which is hypothesized to shunt resources to the 

production of abscisic acid (Chaney, 2004).  Additionally the requisite oxidative steps 

for abscisic acid breakdown are also disrupted by the chemical (Chaney, 2004). 

 The properties of triazoles and their horticultural applications have been 

intensively examined resulting in the proposal that modulations of Gibberellin (GA) 

levels, initiate a cascade of processes subsequently leading to stress protection 

(Vettakkaormakankav et al. 1999).  This sequence of events includes increased 

biosynthesis of photosynthetic pigments, altered root to shoot ratios, and increased 

levels of antioxidant enzymes (Kraus et al.1994).  It has been demonstrated that the 

stress protective and morphological effects of triazoles can be reversed by the 
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application of GA3 (Gilley et al. 1998), demonstrating the relationship between PBZ 

and GA. 

Experimentation with Olea europaea treated with this chemical and exposed 

to drought, demonstrated an increase in leaf water potential, decreased stomatal 

conductance, and a reduction in number of xylem vessels elements as compared with 

controls (Frakulli and Voyiatzis, 1999).  Paclobutrazol has also been found to 

increase the density of stomata on leaves of treated Prunus persica, however leaf gas 

exchange appears unaffected presumably due to induction of stomatal closure (Blanco 

et al. 1998).  There are conflicting reports on the effects of paclobutrazol to xylem 

vessels Frankulli and Voyiatzis 1999, reports no change in diameter of the vessels but 

rather a reduction in the total number in Olea europaea, while Prioetti et al.1998, 

reports distinct alterations in vessels shape and function in total xylem vessel area 

compared to control in Castanea sativa.

Paclobutrazol has been marketed in North America by the Rainbow Tree 

Company under the name Cambistat essentially as a multi-protector although it is 

registered as a Plant Growth Regulator.  Paclobutrazol has been associated with 

symptom remission of Bacterial Leaf Scorch at the Barlett Tree Laboratories, 

Charlotte N.C.  There is no data on any direct effect of paclobutrazol on X. fastidiosa.

Establishing a direct effect would represent the first logical step in elucidating the 

mechanism(s) by which symptom reduction is achieved.  This study investigates the 

effects of paclobutrazol on X. fastidiosa growth in vitro. 
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Materials and Methods 
 

Bacterial strains and conditions  

All experiments were conducted using X. fastidiosa isolates Elm, Oak, 

Sycamore, Mulberry, and Pierces Disease on PW plates provided by Dr. Huang at the 

USDA ARS Beltsville MD.  The Elm and Sycamore isolates were isolated by Dr. Jim 

Sherald in Washington D.C. in the 1980’s and held in cryogenic storage at the USDA, 

while the Oak and Mulberry isolates were isolated by Dr. Huang in 2000 and held in 

cryogenic storage at the USDA ARS in Beltsville, MD.  All strains were transferred 

to and maintained on BCYE solid media and in PW broth cultures at 28°C and sub-

cultured every 30 days. 

 

Broth Media 

Periwinkle Wilt (PW) media was prepared according to Davis et al 1981 

(Table 4) excluding the indicator Phenol Red.  Ingredients were autoclaved and 

allowed to cool to 40°C in a water bath.  When the temperature stabilized Bovine 

Serum Albumin was filter sterilized with 0.25 µm Millipore membrane and added to 

the media.  Liquid media was inspected the day following production for 

contamination.  One liter of PW broth was partitioned into 10-100 ml aliquots to 

which treatments were randomly assigned. 
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Inoculum 

Cells of X. fastidiosa strains Elm and Pierces Disease grown for 10 days on 

BCYE medium were scraped and suspended in PW broth.  The cultures were 

incubated for 5 days at 28°C and standardized to ~ 1x104 CFU’s using a 

spectrophotometer (Spectronic Genesis 5).     

 

Treatments 

 A 10 ml aliquot of PW broth was drawn from a randomly selected 100 ml PW 

stock broth and used to dissolve 5 mg of oxytetracycline.  The solution was filter 

sterilized through a .25 µM Millipore membrane and added back to the PW broth 

from which it was drawn resulting in a 50 µg ml-1 oxytetracycline treatment.   

 Three 10 ml stock solutions of paclobutrazol (PBZ) dissolved in 95% ethanol, 

2000 µg ml-1, 200 µg ml-1, and 20 µg ml-1, were produced and stored at room 

temperature in the laboratory.  Aliquots of 100ul from each respective stock were 

randomly applied to 100ml PW broth stock solutions creating 200 µg ml-1, 20 µg ml-1 

and 2 µg ml-1 paclobutrazol treatments respectively.     

 Growth studies were conducted using 1.5 ml sterile microcentrifuge tubes.  

Nine hundred µL aliquots of each treatment (Control PW, 50 µg ml-1 oxytetracycline, 

200 µg ml-1 PBZ, 20 µg ml-1 PBZ, 2 µg ml-1 PBZ) were added to 40 tubes each. 

Subsequently all treatments received 100 µL of X. fastidiosa inoculum, were sealed, 
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labeled, and placed in an incubator at 28°C.  Thirty 1ml standards from each 

respective treatment were also produced to serve as references in spectrophotometry.   

 

Spectrophotmeter CFU Relationship 

 A spectrophotometer (Spectronic Genesis 5) was used to measure the 

absorption at 600nm of X. fastidiosa cells in PW broth cultures.  Broth cultures with 

varying degrees of X. fastidiosa cell densities were measured in the 

spectrophotometer and subsequently put through a logarithmic series of dilutions to 

allow direct calculation of bacterial Colony Forming Units (CFU’s) from each 

sample.  Dilution series were executed by plating a 100 µl aliquot of each sample 

followed by a 10 fold dilution; this was repeated until the 1x1010 dilution was 

achieved.  The resulting points were graphed and evaluated by regression analysis 

using Statistical Analysis Software (SAS) to determine the best fit model.   

 

Growth Study 

 Growth studies were executed in autoclaved microcentrifuge tubes for ten 

days.  A logarithmic series of dilutions in autoclaved water was prepared for a 

randomly selected sample from each treatment every day.  Dilution plating served to 

directly quantify bacterial colony forming units (CFU’s).   Dilutions were plated each 

day for 5 days on BCYE, incubated for 10 days and resulting colonies counted.  

Additionally three randomly selected microcentrifuge tubes of each respective 

treatment were removed and measured for bacterial growth in a spectrophotometer 
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each day for 10 days.  References of each respective media from the same media 

batch were used in duplicate, to ensure consistency and accuracy.  During the course 

of the study randomly selected tubes were sampled and plated to ensure purity of the 

cultures.     
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Results 

 

Spectrophotometer CFU Relationship 

A linear model, represented by the regression equation [y=0.0199x -0.0939] 

resulted from the calibration measurements.  The absorption is dependent on the 

CFU’s in the broth culture therefore inverse regression was employed to caluculate 

CFU’s from absorbance measurements.  Inverse regression was done regressing on 

CFU’s, resulting in the equation [x=50.25y + 4.7186] (Figure 10).  
 

Evaluation of Paclobutrazol with Spectrophotometery 

Analysis of variance (ANOVA) performed on the data for the growth of        

X. fastidiosa in broth media treated with oxytetracycline at 50µg ml-1and 

paclobutrazol at 200 µg ml-1, 20 µg ml-1 and 2 µg ml-1 analyzed by a 

spectrophotometer showed significant interaction between strain and treatment 

(P<0.01) indicating one strain responded differently to the treatment(s). 

Although data trends were similar (Figures 19 and 20) the interaction term 

implies only simple means for each treatment may be confidently reported and 

discussed.  When the data sets for X. fastidiosa Elm and Pierce’s Disease are analyzed 

separately they display a similar pattern in the simple means (Table 10). The analysis 

showed no differences (P=0.99) between the oxytetracycline (Figure 21) at 50 µg ml-1 

and paclobutrazol at 200 µg ml-1 (Figure 22) in Elm or Pierce’s Disease strains.  Both 

treatments effectively controlled bacterial growth, however no reduction in bacterial 
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colonization is observed with the spectrophotometer.  There were no differences in 

growth when X. fastidiosa was exposed to paclobutrazol at 2 µg ml-1 (Figure 23) and 

20 µg ml-1 (Figure 24) from the control (Figure 25) in either Elm or Pierce’s (P=0.76, 

P=0.89) and (P=0.84, P=0.88) respectively, showing the treatments provided no 

reduction in bacterial growth.  

 
Table 9 Means and statistical significance of X. fastidiosa isolates elm and Pierce’s Disease 

growth in Perwinkle Wilt (PW) broth supplemented with chemical treatments of 
oxytetracycline (antibiotic) and paclobutrazol measured with a spectrophotometer and 
converted to Colony Forming Units (CFU’s) using the regression equation determined in 
this study (Figure 10) 

 
Treatment and Dosage Mean Log CFU / ml (Elm, PD)
Oxytetracycline 50 µg ml-1 4.97, 4.95a
Paclobutrazol 200 µg ml-1 5.00, 4.99a
Paclobutrazol 20 µg ml-1 7.23, 8.31b
Paclobutrazol 2 µg ml-1 7.18, 8.27b
Periwinkle Wilt Media 7.38,8.61b
*means with identical letters are not significantly different at the .05 level by  SED = .028, 0.52 SED 
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Figure 19 Growth curve of X. fastidiosa isolate elm in Perwinkle Wilt (PW) broth supplemented 
with chemical treatments of oxytetracycline (antibiotic) and paclobutrazol measured 
over ten days with a spectrophotometer.  Absorbance readings were converted to 
Colony Forming Units (CFU’s) using the regression equation (Figure 10) determined 
for this study.  Means and associated standard errors are plotted. 
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Figure 20 Growth curve of X. fastidiosa isolate Pierce’s Disease in Perwinkle Wilt (PW) broth 
supplemented with chemical treatments of oxytetracycline (antibiotic) and 
paclobutrazol measured over ten days with a spectrophotometer.  Absorbance 
readings were converted to Colony Forming Units (CFU’s) using the regression 
equation (Figure 10) determined for this study.  Means and associated standard errors 
are plotted 
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Figure 21 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with oxytetracycline at a dosage of 50 µg ml-1 measured with a 
spectrophotometer.  Absorbance readings were converted to Colony Forming Units 
(CFU’s) using the regression equation (Figure 10) determined for this study.  Means 
are plotted with associated standard errors. 

Figure 22 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with paclobutrazol at a dosage of 200 µg ml-1measured with a 
spectrophotometer.  Absorbance readings were converted to Colony Forming Units 
(CFU’s) using the regression equation (Figure 10) determined for this study.  Means 
are plotted with associated standard errors. 
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Figure 23 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Perwinkle Wilt (PW) broth 
supplemented with paclobutrazol at a dosage of 2 µg ml-1 measured with a 
spectrophotometer.  Absorbance readings were converted to Colony Forming Units 
(CFU’s) using the regression equation (Figure 10) determined for this study.  Means 
are plotted with associated standard errors 

Figure 24 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with to paclobutrazol at a dosage of 20 µg ml-1 with a 
spectrophotometer.  Absorbance readings were converted to Colony Forming Units 
(CFU’s) using the regression equation (Figure 10) determined for this study.  Means 
are plotted with associated standard errors 
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Figure 25 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth measured with a spectrophotometer.  Absorbance readings were converted to 
Colony Forming Units (CFU’s) using the regression equation (Figure 10) determined 
for this study.  Means are plotted with associated standard errors 

Broth Media Evaluation by Dilution Plating 

 Analysis of Variance performed on the resulting colony counts from the 

executed treatments showed a significant interaction between treatments and strains 

of X. fastidiosa (P=0.02).  The mean estimates show a magnitude interaction 

indicating differing sensitivities of the strains to the treatment(s). 
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Table 10 Means and statistical significance of X. fastidiosa isolates elm and Pierce’s Disease 
growth in Perwinkle Wilt (PW) broth supplemented with chemical treatments of 
oxytetracycline (antibiotic) and paclobutrazol, Colony Forming Units (CFU’s) 
determined by dilution plating 

 

*means with identical letters are not significantly different at the .05 level by Tukey SED = .040, 0.37 SED 

 

When the data sets for X. fastidiosa Elm and Pierce’s Disease are analyzed separately 

they display a similar pattern (Table 11) in the simple means.  The data shows that 

oxytetracycline at 50 µg ml-1 (Figure 28) severely reduced the growth of the Pierce’s 

Disease isolate and effectively eliminated growth of the Elm isolate.  Paclobutrazol at 

a 200 µg ml-1 (Figure 29) dose reduced growth of the pathogen on both isolates 

however was not as effective as oxytetracycline.  The other treatments of 

paclobutrazol at 2 µg ml-1 (Figure 30) and 20 µg ml-1 (Figure 31) could not be 

differentiated from the control (Figure 32) (P=0.9, P=0.9) respectively in elm and 

(P=0.6, P=0.9) respectively in Pierce’s Disease and were ineffective in the control of 

X. fastidiosa growth. 

Treatment and Dosage Mean Log CFU / ml (Elm, PD) 
Oxytetracycline at 50 µg ml-1 0.15, 2.19a 
Paclobutrazol at 200 µg ml-1 2.66, 3.64b 
Paclobutrazol at 20 µg ml-1 7.35, 7.48c 
Paclobutrazol at 2 µg ml-1 7.33, 7.67c 
Perwinkle Wilt Media 7.61, 7.98c 
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Figure 26 Growth curve of X. fastidiosa isolate elm in Perwinkle Wilt (PW) broth supplemented 
with Chemical treatments of oxytetracycline (antibiotic) and paclobutrazol measured 
over five days.  Colony Forming Units (CFU’s) were determined by dilution plating.  
Means and associated standard errors are plotted 
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Figure 27 Growth curve of X. fastidiosa isolate Pierce’s Disease in Perwinkle Wilt (PW) broth 
supplemented with Chemical treatments of oxytetracycline (antibiotic) and 
paclobutrazol measured over five days.  Colony Forming Units (CFU’s) were 
determined by dilution plating.  Means and associated standard errors are plotted 
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Figure 28 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with oxytetracycline at a dosage of 50 µg ml-1. Colony Forming 
Units (CFU’s) were determined by dilution plating.  Means are plotted with associated 
standard errors. 

 
Figure 29 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 

broth supplemented with paclobutrazol at a dosage of 200 µg ml-1. Colony Forming 
Units (CFU’s) were determined by dilution plating.  Means are plotted with associated 
standard errors  
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Figure 30 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with paclobutrazol at a dosage of 2 µg ml-1. Colony Forming 
Units (CFU’s) were determined by dilution plating.  Means are plotted with associated 
standard errors  

Figure 31 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth supplemented with paclobutrazol at a dosage of 20 µg ml-1. Colony Forming 
Units (CFU’s) were determined by dilution plating.  Means are plotted with associated 
standard errors  



76 
 

Figure 32 Growth of X. fastidiosa isolates elm and Pierce’s Disease in Periwinkle Wilt (PW) 
broth.   Colony Forming Units (CFU’s) were determined by dilution plating.  Means 
are plotted with associated standard errors  
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Discussion 
 

Industry data show that paclobutrazol can be effective in reducing symptom 

development at a dosage of 20 mg ml-1 on mature shade trees (Barlett Tree Lab).  

Currently symptom remission is hypothesized to be the result of induced 

physiological changes within the tree induced by paclobutrazol such as the alteration 

in the size and/or confirmation of the xylem vessel elements or reduced stomatal 

conductance rather than a bacteriostatic or bacteriocidal effects.  These physiological 

alterations could ease or reduce the necessity of water movement through the xylem 

resulting in less acute drought stress.  Indeed, if the full suite of physiological changes 

including increased root/shoot ratio, increased spongy leaf mesophyl, and increased 

diameter of xylem vessels associated with paclobutrazol were realized the treated 

specimen would have a distinct advantage over untreated specimens, especially in 

drought periods when X. fastidiosa symptoms are most evident.     

 In this study the data clearly shows that oxytetracycline and paclobutrazol are 

effective in vitro at suppressing X. fastidiosa growth when applied in high enough 

dosage.  The diastereomeric nature of paclobutrazol explains its dual function as both 

a growth regulator and fungicide; however this is the first report of possible 

bacteriostatic effects.  The enantiomeric pair found in the commercially available 

paclobutrazol is the 2RS, 3RS diastereomer which exists as a racemic mixture 

including the 2R,3R enantiomer which has been found to disrupt sterol biosynthesis 

(Sugavanam, 1984; Burden et al. 1989).  This enantiomer is currently not isolated and 
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exploited for its fungicidal properties, possibly due to the added expense and 

availabilities of alternatives. 

 Analysis of proposed biosynthetic pathways inferred from genomic data of    

X. fastidiosa shows a complete pathway for sterol biosynthesis including lanosterol, 

the intermediary identified as disrupted by the presence of paclobutrazol   

(www.genome.ad.jp/dbget-bin/get_pathway?org_name=xft&mapno=00100).  The 

most simplistic explanation for the observed results of this study would be to 

implicate paclobutrazol in the disruption of this pathway in line with previous studies 

of alternate systems (Radenmacher, 2000).  When this is considered with the general 

observance of a relatively high dosage of the compound to disrupt sterol biosynthesis 

as compared to growth regulation (Radenmacher et al. 1987) the results of the tests 

are predictable. 

 Alternatively, the observed results may be explained by the high dosage of 

Paclobutrazol altering the environmental conditions of the media such that the 

fastidious bacteria were unable to thrive.  This could be achieved by the sequestration 

of a vital element, such as iron, required for X. fastidiosa growth.  Paclobutrazol is an 

active molecule with electron pairs situated at the periphery facilitating the 

establishment of complexes with other elements, especially those which bond readily 

such as iron.   There is also the remote possibility that the ethanol used to dissolve the 

chemical could remain in abundance sufficient to cause bacterial dieback, however 

this was considered in the experimental design and mitigated as much as possible by 

allowing the ethanol to volatize with standing in a laminar flow hood for 24 hours.  

Furthermore, the relatively slow reduction of bacterial colonization observed in the 
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study does not support a dieback scenario, which would likely take effect 

immediately resulting in no bacterial growth.  However, the fastidious and therefore 

extremely sensitive nature of the pathogen must be considered at all times, and 

caution must be exercised when interpreting any experimental results.   

 When taking into consideration the dual nature of paclobutrazol and the 

possible synergistic effects of its enantiomers on X. fastidiosa infected specimens, it 

may not be desirable to separate the enantiomers of the diastereomer for treatment of 

X. fastidiosa. It is possible that a dosage of the racemic mixture could be identified 

where bacteriostatic effects are observed as well as possible beneficial physiological 

changes within the specimen.  This would prove to be the ideal circumstance for 

usage of the chemical and certainly merits further investigation.  However, the dosage 

issue is not easily resolved, it is likely a species specific effect as well as dependent 

on bacterial concentration within the plant which is difficult to gauge.  Furthermore, 

estimating the ultimate dilution of the chemical in planta is also not easily achieved.  

The establishment of dosage guidelines will require significant field investigation on 

mature trees, a resource which is scarce in the research field. 

 The differing statistical results from the two methods used to determine the 

efficacy of each treatment is explained by the inherent inability of the 

spectrophotometer to detect reduction in viability of bacterial cells compounded by 

the sensitivity of detection limitations of the instrument.  While the spectophotmeter 

readings for the oxytetracycline at 50 µg ml-1 and paclobutrazol at 200 µg ml-1 appear 

to be stable (Figure 19-20), inspection of the standard deviation of the readings 

(Figure 21 and 22) reveal the readings were simply within the error range of the 
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instrument. Comparison with the dilution plating data (Figure 26-27) shows the 

inability of the spectrophotometer to account for the loss of cell viability. While the 

spectrophotometer readings indicated a complete secession in growth of X. fastidiosa 

in the two respective treatments, the dilution plating method showed even the direct 

effect of oxytetracycline at 50µg ml-1 was ineffective at completely stopping growth 

of X. fastidiosa Pierce’s Disease.  Additionally, the dilution plating method clearly 

displayed that although paclobutrazol at 200 µg ml-1 was effective at reducing the 

growth of X. fastidiosa it was not as effective as oxytetracycline and did not result in 

complete control of Pierce’s Disease.   
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Chapter 5:  Conclusions 

 

Introduction 

Xylella fastidiosa (Wells et al. 1987) is a broad spectrum fastidious bacterial 

pathogen that significantly affects viticulture, citrus, and shade tree industries in the 

Americas (Brown et al. 2002).  The bacterium is xylem limited and is disseminated 

by a variety of suctorial insects (i.e. leafhoppers, sharpshooters) (Houston et al.1947) 

and is harbored by a wide range of hosts in more than 30 families including both 

monocots and dicots (Hopkins and Alderz, 1988).  The disease of Xylella fastidiosa in 

shade trees is referred to as Bacterial Leaf Scorch (Hearon et al. 1980); it is a chronic 

late season leaf scorch concentrated in urban environments that debilitates infected 

specimens, however it is rarely if ever lethal.  While the pathogen has been recovered 

from a variety of shade tree species the most severely affected genera include 

Quercus, Platanus, and Ulmus (Sherald, 1999).  Urban trees infected with the disease 

become unsightly and lose the aesthetic qualities they were intended to provide, often 

leading to their removal.  Bacterial Leaf Scorch incidence has been increasingly 

identified and reported as a significant problem in landscapes across the mid-Atlantic 

and southeastern United States (Sherald, 1999).  Recently, the plant growth regulator, 

paclobutrazol has been associated with disease symptom remission in shade trees 

infected with X. fastidiosa.
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The goals of this research were 

1. Locate Ulmus americana specimens infected with X. fastidiosa in Washington 

D.C. using GIS technology and molecular tools 

2. Isolate the bacterium from Ulmus americana specimens using a recently 

adapted protocol, pressure chamber (Bextine and Miller, 2004). 

3. Test the growth of X. fastidiosa isolates from shade trees on Xylella fastidiosa 

Defined Media (Alameida et al. 2004).  

4. Investigate any direct effects of paclobutrazol on X. fastidiosa growth in vitro 

as compared to oxytetracyline.

Location  

In this study a sampling area for Ulmus americana specimens was identified 

and defined using the publicly available GIS database (www.dcgis.dc.gov) of street 

trees in Washington D.C.  Ulmus americana specimens were surveyed for infection 

of X. fastidiosa using the ELISA (Sherald and Lei, 1991) and PCR (Pooler and 

Hartung 1995) molecular identification techniques.  The sampling region contained 

240 Ulmus americana specimens of which 23 (approximately 10%) were found to be 

infected with X. fastidiosa. Confirmed hosts within the sampling region were mapped 

resulting in an irregular disease distribution.  This study represents the first usage of 

GIS technology to visually assess X. fastidiosa distribution. 

 Replicating this technique in several randomly selected regions within an 

urban center would provide a citywide assessment of X. fastidiosa infection, an 

important piece of data that is currently missing.  Data collected over successive years 
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would show the disease dissemination within the urban forest allowing for predictive 

modeling as well as mitigation planning.  Additionally, confirmed hosts could be 

assessed annually with digital photographs and condition ratings which could be 

incorporated into the database providing a tool to assess symptom severity over a 

long term.  There is great potential for using GIS to track and manage a variety of 

pest and disease problems that affect urban forests including Dutch Elm Disease, the 

Emerald Ash Borer, and the Japanese Long Horn Beetle among others.  This study 

has demonstrated how this can be executed.  

 

Isolation 

 The inherent difficulty of isolating a fastidious organism such as X. fastidiosa 

limits practical experimentation on the organism.  I attempted to use three distinct 

methods to isolate X. fastidiosa from Ulmus americana, a pressure chamber (Bextine 

and Miller 2004), a petiole technique (Chang et al. 1988), and a xylem vessel excision 

technique (Sherald et al. 1983).  I was able to isolate X. fastidiosa from three Ulmus 

americana specimens using the xylem vessel excision technique, however the other 

techniques were unsuccessful. 

 The pressure chamber is an attractive technique since it results in the 

expression of xylem fluid, which X. fastidiosa is immersed in.  This method requires 

an unbroken water column, thus cutting samples is best done underwater, which is not 

easily achieved when sampling mature trees.  While there are difficulties with this 

method, I believe further experimentation can overcome these challenges, possibly 
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resulting in a high yield isolation technique.  The petiole technique seems more 

appropriately used with other species such as oak and grape which have more 

significant petioles; the petiole of elm is small in comparison and difficult tissue to 

work with when macerated.  While the xylem excision technique provided the only 

successful isolates in the study it required large amounts of material and high 

replication.  Further experimentation in this area is needed in the future. 

 

Xylella Defined Growth Media 

 Currently the genus Xylella is composed of a single species (X. fastidiosa)

lacking pathovar designation despite four completely sequenced genomes from 

distinct hosts; Grape (Van Sluys et al. 2003), Oleander (Bhattacharyya et al. 2002), 

Citrus (Simpson et al. 2000) and Almond (Bhattacharyya et al. 2002) and reports of 

failure in reciprocal transmission (Sherald,1993).  A variety of diversity studies 

employing environmental sampling show that the amount of variability in X. 

fastidiosa is surprisingly low despite its wide host range (Van Sluys et al. 2002; 

Rodrigues et al. 2003; Van Sluys et al. 2003; Koide et al. 2004). Initial attempts to 

separate groups were based on nutritional requirements (Hopkins, 1989).  In this 

study X. fastidiosa isolates from oak, elm, mulberry, and sycamore were shown to 

grow on a minimal defined medium developed for Pierce’s Disease (Alameida et al. 

2004) 

 The development of defined media that support the growth of X. fastidiosa is a 

positive step in understanding the biology of the organism.  The ability of X. 

fastidiosa isolates from shade trees to grow a defined media developed for Pierce’s 
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Disease demonstrates the similarities between the organisms further complicating 

efforts to break up the Xylella group.  Future studies will likely employ the XfD 

medium since it has no undefined constituents and has now been shown to support the 

growth of 5 isolates from 5 distinct hosts.  The XfD media is particularly attractive 

for usage in chemical remitting agent tests due to its defined nature.   

 

Paclobutrazol Evaluation 

 While X. fastidiosa has been recognized as a problem for over a century there 

are currently no practiced therapeutic treatments for the disease.  This research 

focused on the usage of paclobutrazol (Sugavanam, 1984) a gibberellin biosynthesis 

inhibitor with demonstrated antifungal properties (Jacobs and Berg, 2000) as a 

chemotherapeutic treatment.  This study investigated the effect of paclobutrazol on X. 

fastidiosa in vitro and demonstrated that at a relatively high dose of 200 µg ml-1 of 

the chemical resulted in significant suppression of bacterial growth.  However, doses 

of 20 µg ml-1 (the manufacturer’s recommended dose) and below proved ineffective 

and could not be differentiated from the control.  Paclobutrazol exists as a racemic 

mixture of two enantiomers, the 2R,3R enantiomers is structurally similar to 

lanosterol and is associated with the disruption of sterol biosynthesis while the 2S,3S 

enantiomer is structurally similar to ent-kaurene and is associated with the disruption 

of gibberellin biosynthesis (Rademacher, 2000).  This study is the first to propose a 

hypothesis that paclobutrazol has bacteriostatic effects via disruption of sterol 

biosynthesis of X. fastidiosa in line with the fungistatic mode of action. 
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While the separation of the enantiomers followed by investigation into their 

individual effect on the pathogen would test this hypothesis, and possibly result in a 

reformulation of the chemical mixture to be more effective, it should also be 

considered that optimal disease suppression could be achieved by exploiting both the 

growth regulating properties as well as the bacteriostatic properties of paclobutrazol.  

An alteration in the ratio of enantiomers may result in synergistic effects between the 

enantiomers; however simply increasing the dosage given to trees may also achieve 

this end.    Limitations of this approach include the low solubility of paclobutrazol in 

water, which initially forced the reformulation of the product as a root drench rather 

than an injectible due to the associated issues of injecting alcohol based solvents into 

trees. 

An increase in the recommended dosage of the chemical will require 

reconsideration of the environmental impact and therefore chemical application, 

possibly returning to an injectible format. The dosage question presents a significant 

problem for treatment of X. fastidiosa in general, the level of infection and volume of 

xylem fluid within a tree are two factors that are difficult to accurately estimate.  The 

development of a representative estimate of infection is needed if guidelines are to be 

set.  This could be achieved by the sampling multiple regions within the canopy, both 

symptomatic and asymptomatic and analyzing the samples with ELISA followed an 

optical density assessment to determine severity of infection.   

If the mode of action proposed in the study is correct, other members of the 

triazole group currently registered as fungicides may also provide bacterial growth 

suppression based on their similar chemical structure and association with sterol 
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biosynthesis.  While the particular chemical structure of paclobutrazol may be suited 

to the disruption of the sterol biosyntheis pathway in X. fastidiosa it is also possible 

that any compound containing a tetracyclis ring with and sp2 hybridized nitrogen 

atom on the periphery of the molecule may sufficiently interfere with the function of 

monooxygenase and reduce bacterial growth.  

However if the alternative hypothesis of an indirect effect altering the 

environment such that X. fastidiosa ceases to thrive (i.e. iron sequestration or pH 

change) proves to be the mode of action novel treatments could be devised to exploit 

that fact.  It has been suggested that the alteration of xylem pH via the injection of a 

conjugate acid or conjugate base at a precise moment in the disease cycle could 

effectively reduce viable bacterial populations (Personal communication Jay Stipes, 

Virginia Polytechnic Institute).  The possibility of limiting iron availability with a 

chelating agent injected into the xylem is also a possibility; however the requirement 

of the iron by the plant counters the logic of such an approach.  It is likely that such 

treatments will not be curative however it may mitigate the severity of the infection 

and are environmentally benign.  The extreme balance in environmental conditions 

required by the organism, favors future experimentation with this approach. 

While no treatments tested to date are likely curative the chronic nature of the 

organism provides ample time for treatment, which may employ multiple strategies.  

Recommended treatments may be altered by disease severity as well as over all health 

of the specimen.  Under the current paradigm of integrated pest management it is 

likely that a single treatment will not be found to be effective but a rather a concerted 
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approach of vector control, host removal, as well as chemical treatment will provide 

the best results.   

While the potential for paclobutrazol usage as a chemotherapeutic treatment 

for X. fastidiosa was shown in this study, several key questions remain.  Some of 

these include: 

1. Does paclobutrazol affect bacterial concentration in planta? At what 

dose? 

2. Will trees tolerate a higher dosage of the chemical? 

3. Can synergistic effects be achieved by increasing the dosage? 

4. Does the 2R3R enantiomer of Paclobutrazol show a high degree of 

activity in direction interaction with X. fastidiosa?

5. Does the 2R3R enantiomer have deleterious effects on the specimen 

being treated? 

Finding the answers to these questions would help clarify the direct effect of 

paclobutrazol on X. fastidiosa and the operative mechanism(s) for its effect.  This 

could lead to more efficient use of paclobutrazol as a chemotherapeutic agent for 

management of X. fastidiosa in shade trees. 
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Appendices 
 

SAS Code used for statistical analysis 
Title XfD vs. PW broth study; 
 
proc print data=broth; 
quit;

proc mixed data=broth; 
class media strain date; 
model CFU=media strain media*strain; 
random date; 
lsmeans strain / pdiff adjust=tukey; 
quit;

Title PW vs. XfD vs. BCYE solid media; 
 
proc print data=solid; 
quit;

proc mixed data=solid; 
class date media strain; 
model CFU=media strain media*strain; 
random date; 
lsmeans media strain / pdiff adjust=tukey; 
quit;

Title Paclobutrazol Broth; 
 
proc print data=pbzborth; 
quit;

proc mixed data=pbzbroth; 
class date strain trt; 
model CFU=strain trt strain*trt; 
random date; 
lsmeans strain*trt / pdiff adjust=tukey; 
quit;

Title Paclobutrazol Solid; 
 
proc print data=pbzsolid; 
quit;

proc mixed data=pbzsolid; 
class strain trt date; 
model CFU=strain trt strain*trt; 
random date; 
lsmeans strain*trt / pdiff adjust=tukey; 
quit;

Title Elm Paclobutrazol Broth; 
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proc print data=elmpbzbroth; 
quit;

proc mixed data=elmpbzbroth; 
class date trt; 
model CFU=trt; 
random date; 
lsmeans trt / pdiff adjust=tukey; 
quit;

Title Elm Paclobutrazol solid; 
 
proc print data=elmpbzsolid; 
quit;

proc mixed data=elmpbzsolid; 
class date trt; 
model CFU=trt; 
random date; 
lsmeans trt / pdiff adjust=tukey; 
quit;

Title PD Paclobutrazol Broth; 
 
proc print data=pdpbzbroth; 
quit;

proc mixed data=pdpbzbroth; 
class date trt; 
model CFU=trt; 
random date; 
lsmeans trt / pdiff adjust=tukey; 
quit;

Title PD Paclobutrazol Solid; 
 
proc print data=pdpbzsolid; 
quit;

proc mixed data=pdpbzsolid; 
class date trt; 
model CFU=trt; 
random date; 
lsmeans trt / pdiff adjust=tukey; 
quit;
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