
Function-Level Power Estimation Methodology for Microprocessors

Gang Quy, Naoyuki Kawabez, Kimiyoshi Usamiz, and Miodrag Potkonjaky
y Computer Science Department, University of California, Los Angeles, CA 90095, USA

z Design Methodology Dept., Semiconductor Company, Toshiba Corporation, Kawasaki, 210, Japan

Abstract

We have developed a function-level power estimation methodology
for predicting the power dissipation of embedded software. For a
given microprocessor core, we empirically build the “power data
bank”, which stores the power information of the built-in library
functions and basic instructions. To estimate the average power of
an embedded software on this core, we first get the execution infor-
mation of the target software from program profiling/tracing tools.
Then we evaluate the total energy consumption and execution time
based on the “power data bank”, and take their ratio as the average
power. High efficiency is achieved because no power simulator is
used once the “power data bank” is built. We apply this method
to a commercial microprocessor core and get power estimates with
an average error of 3%. With this method, microprocessor vendors
can provide users the “power data bank” without releasing details
of the core to help users get early power estimates and eventually
guide power optimization.

1 Introduction

With the emergence of wireless and battery-operated devices, low-
power design is becoming increasingly popular. To meet the low-
power requirement for such designs, researchers have put intensive
efforts on power estimation, modeling, and optimization in the past
decade. As a result, numerous techniques have been proposed and
tools been implemented to help system designers get an early view
of the system’s power behavior (see [8, 11] for a survey).

Although it is generally accepted that the processor’s power
consumption highly depends on the program to be executed, most
of these efforts are on the hardware side and little attention has
been paid on software. Models at the software level are difficult
to build because of the great variety and complexity of the appli-
cation programs, whose exact execution behavior is hard to predict
until the underlying hardware configuration is determined. Tiwari
et al. [14] conduct the pioneer work on this front. In their pro-
posed instruction-level power model, each instruction and instruc-
tion pair are assigned a fixed (base) energy cost and the sum is
taken as the program’s total energy consumption. This also leads
to several software-level power minimization techniques [6, 14].

In this paper, we first present a function-level power model
which is set up by the construction of “power data bank” for a given
microprocessor core. For each built-in library function and instruc-
tion, we use a power simulator to empirically collect its power and
execution time information while considering the effects of cache
misses and pipeline stalls. Such information is stored in the “power
data bank”. We then develop a power estimation technique built on
top of this model to predict the power consumption of embedded
software. We get the program’s execution information from pro-
gram profiling and tracing tools, which includes for example how

many times each function is executed, cache miss rate and pipeline
stalls. The average power is estimated based on the “power data
bank”, without using the time consuming power simulator again.

Key Contributions
Both microprocessor vendors and users benefit from our function-
level power model:

� Vendors can packet the “power data bank” with their micro-
processor and provide users the ability to conduct power es-
timation and optimization of their embedded software. More
importantly, vendors need not to release the details of their
core, such as the RTL or gate-level netlist, for this purpose.

� Vendors can efficiently build the “power data bank”, which
is restricted to the built-in library functions and instructions.

� Vendors can build the “power data bank” with power simu-
lators at any level. This enables users to get highly accurate
power estimation without any degradation of power estima-
tion’s efficiency.

� Vendors can further make power estimation process fully au-
tomated with the help of program profiling and tracing tools.

� Users will enjoy higher efficiency to estimate their programs’
power on the given microprocessor. This is because func-
tions may consist of tens to hundreds of basic instructions.
Potentially, there could be a speedup of one or two orders of
magnitude over the instruction-level tools.

� Users are also assured of higher accuracy due to the fact that
function-level model captures the inter-instruction effects of
a sequence of instructions.

2 Related Work

Power estimation and modeling attract a lot of attention as power
becomes one of the critical constraints for system design. Exten-
sive research efforts have been put to develop efficient and accurate
algorithms and tools at all levels of the design process, from circuit
level [4], gate level [9, 10], RT level [7, 3], to system level [13, 12].
Power is measured directly or by means of circuit activities like
effective capacitances [7] and average currents[1, 6, 14]. Most of
them are simulation oriented, in which the system’s power behavior
is monitored during the simulation on the input vectors. Statistical ,
regression-based , and information-theoretic techniques have been
proposed to reduce simulation time without sacrificing much accu-
racy. In general, as the simulation platform moves from low level
to high level, the tools become more efficient but less accurate.

Program profiling and tracing tools are widely used in the anal-
ysis, design, and tuning of hardware and software systems. A pro-
filer counts the occurrences of an event during a program’s execu-
tion. Such events can be the beginnings of new paths, in which
case the profile counts the number of times each path executes; or
hardware events such as data cache misses, in which case the pro-
file counts the number of times each path suffered a cache miss.
However, the data references are ignored. In contrast, a program
tracer provides a complete record of instructions executed and data
reference [2, 5].Permission to make digital/hardcopy of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

810

As the first successful effort on power estimation and optimiza-
tion from software side, Tiwari et al. [14] and Lee et al. [6] de-
velop the instruction-level power modeling technique, in which the
energy cost for each instruction and each instruction pair is empiri-
cally constructed and the sum is taken as the program’s total energy
consumption. One problem for this approach is the size of instruc-
tion set. A modern microprocessor core like the MIPS R3000A
based Toshiba TX39 supports about 100 basic instructions. It takes
tremendous amount of work to determine the energy cost for all the
instruction pairs. The authors also notice that the cost for two in-
structions is usually different from their average and they propose
to measure the overhead for each instruction pair. It is obvious that,
for the same reasons, the accuracy can be improved by measuring
three or more consecutive instructions at the expense of increasing
the cost for model building.

3 Function-Level Power Modeling and Estimation

3.1 Power Measurement

Average power is the energy consumption per unit time and we
attempt to model power directly from this fundamental formula.
Suppose during the program’s execution, we observe an execution
time T and core’s energy consumption E, then the average power is
given byP = E

T
.

However, the challenge is how to measure E and T. It is ex-
pensive and impractical to apply the simulation based tools. Such
tools are either time consuming (at low level) or lack accuracy (at
high level). The instruction-level power model [14] relies on the
energy cost of each instruction and instruction pair. A typical soft-
ware package may involve tens of thousands of instructions, includ-
ing jump/branch instructions that make it very difficult to apply the
instruction-level power model [14].

Through extensive experiments, we observe that majority of the
machine code is for the implementation of the library functions and
user-defined procedures, linked by a small portion of codes in the
main program itself. For example, there are 16,349 instructions in
the compiled MPEG2 Decode code (source codes obtained from
http://www.mpeg.org/MSSG), only 161 (less than 1%) are for the
main body. In particular, we identify four key energy/time con-
sumers during the program’s execution: built-in library function
calls, user-defined functions calls, the main body, and others (e.g.,
the hardware reset program). This leads to the following power for-
mulation:

P =
E

T
=

P
i
EBFi

+

P
j
EUFj

+Emain +Eothers
P

i
TBFi

+

P
j
TUFj

+ Tmain + Tothers
(1)

where for example,EBFi
is the energy consumed by library func-

tion i, TUFj
is the time used to execute user-defined functionj, and

the sums are taken over all library and user-defined functions.

3.2 \Power Data Bank" Construction

One may view the application programs as a sequence of basic
blocks. Such blocks can be the instruction set, built-in library func-
tions, user-defined procedures, etc. At the lowest level, we can take
the basic blocks as the instruction set supported by the micropro-
cessor core. However, this does not capture the inter-instruction
effects. On the other hand, user-defined functions differ from pro-
gram to program and usually are not available until the software
package is known. Therefore, we propose to measure the power
data for each library function and basic instruction.

“Power data bank” consists of the power information, such as
energy consumption and estimated execution time, for library func-
tions and basic instructions. These data are obtained from power
simulations on a set of well-designed test codes. The power simu-
lator can be at any level from transistor level to RT level. A low-
level power simulator is able to provide high accurate data with

long simulation time. The vendor has the freedom to choose power
simulator to achieve desired level of accuracy.

“Power data bank” contains multiple entries for each function
and instruction. We know that I-cache miss, D-cache miss, or
pipeline stalls will cause different power behavior for a function.
When construct the “power data bank”, we take into account these
factors by repeatedly measuring under different circumstances.

3.3 Function-Level Power Modeling

We describe how to evaluate each term in Equation (1) by a power
simulator.

Built-in library functions
A built-in library function consists of a sequence of basic instruc-
tions from the core’s instruction set. However, its execution is
not necessarily sequential because of the jump/branch instructions.
These jumps and branches in general cannot be determined until
the run time. Taking all the possibilities into consideration will
make it hard to build the “power data bank”. We observe that these
jump/branch instructions usually jump over a small portion of, and
never go outside of, the instruction sequence.

Therefore we measure each function’s power behavior for a
number of times, extract the statistical information and store them
in the “power data bank” while factors like cache misses and pipeline
stalls are considered. For instance, both the energy consumption
and execution time of a function without cache misses can be very
different from the case when a cache miss occurs. The cache miss
rate usually depends on the cache specifications (cache size, asso-
ciativities, replace algorithm, cache line size, etc.). We can use the
well-documented cache memory design techniques to make cache
misses exactly predictable, and thus their impact measurable.

Many reasons can cause cache misses and pipeline stalls. In-
stead of treating these effects explicitly and separately[6, 14], we
embed them into the power data for each library function and ba-
sic instruction. In particular, we provide data of different level of
precision in the “power data bank”. Accurate data can be used if
sufficient information from the program profiler/tracer is available.
To get such more detailed information about the execution, the pro-
filer/tracer needs additional specification and this again leads to the
trade-off between efficiency and accuracy.

User-defined function
It is possible to decompose a user-defined function/procedure to a
combination of library functions and basic instructions. Then we
can use the associated data from “power data bank” to approxi-
mate the user-defined procedure. The problem for this approach is
that the error for each individual procedure may be small, but the
accumulated effect could have a large impact on the final result.
For example, in the case when a procedure makes many calls to
other user-defines function calls. We suggest to measure each user-
defined function, at least those being frequently used, separately
based on the structure of the function and the “power data bank”.
For a heavily used procedure, we calculate its power data while
paying special attention, for example, all the basic instructions be-
ing used will be considered, and the most detailed power data for
the library functions from the “power data bank” will be used. This
complementary method considers the locality of the user-defined
function and thus makes a more accurate estimation.

main()
The main() part of the program that we refer here is the remain-
der of the program after excluding all the library and user-defined
function implementations. This part of the machine code is usu-
ally separated by the library and user-defined function calls. As we
discussed earlier, it contributes very little to the total energy con-
sumption and execution time. However, if themain() part is not
negligible, (in cases like intensive computation involving only the
instruction set, which is performed insidemain()), then we treat it

811

in as a user-defined function and measure its power behavior di-
rectly from the “power data bank”.

Others
Besides the above three key components, there exist other parts that
support the program’s execution and consume power as well. For
instance, the boot program, which initializes the registers, assigns
addresses for the user program and stack pointer, and sets flags
upon the program’s termination; instructions that save the infor-
mation when the program starts and restore them whenmain() is
completed. In our experience, these depend on the execution of the
program, but the variations are so small that we can model them as
constants.

3.4 Function-Level Power Estimation

Figure 1 shows the global flow of power estimation at function-
level for a given microprocessor core.

Target Microprocessor Core

Power
Data Bank

Execution
Information

Function Level
Power Model

Power
Simulator

Program

Data

Pr
og

ra
m

 P
ro

fili
ng

 a
nd

/o
r T

ra
cin

g
To

ol
s

Compiler Test Codes

Power Estimate

Power Estimation Tool

Figure 1: Global flow for the function-level power estimation.

The components connected by the dotted edges depict the pro-
cedure of building the “power data bank”. This will be executed
only once for a fixed hardware configuration (microprocessor core,
I-cache and D-cache set up, hardware reset program, etc.) without
any information about the application programs to be executed on
the core. The power estimation tool is shown in the shaded area.
It takes the user’s program and test data as input, and predicts the
power behavior of the execution of such program on the given mi-
croprocessor core. Figure 2 illustrates the three major steps of this
estimation process.

Notice that the time consuming power simulator is not involved
in the power estimation tool, so this method conceptually outper-
forms all the simulation-based approaches in terms of efficiency.
This estimation technique is also more efficient than the instruction-
level power model for collecting power data and evaluating a pro-
gram’s power for obvious reasons. The accuracy has been demon-
strated by extensive experiments and part of the results are reported
in the next section.

4 Experimental Results

4.1 Toshiba TX39 Microprocessor Core

The TX39 processor core is a high-performance 32-bit micropro-
cessor core based on the R3000A RISC microprocessor. Toshiba
develops application specific standard products using the TX39 core
and provides the TX39 as a processor core in embedded array or
cell-based ICs. Figure 3 shows the block diagram of the TX39
processor core, which includes the CPU core, an instruction cache
and a data cache. The CPU core comprises CPU registers, CP0
registers, the computational unit ALU/Shifter, the unit MAC for
multiply/add, memory management unit, and bus interface unit.

Input: a program with input data
Output: power estimate for the execution of the input program on

a specific microprocessor core.
Phase I: preparation
� compile the source program

- denote the built-in library functions byBF1; BF2; � � � ; BFn;
- denote the user-defined functions byUF1; UF2; � � � ; UFm;

� build the function-denpendency graph G
- for each functionUFi, introduce a new nodevi;
- for each nodevi

for each functionUFj being called byUFi
add a direct edge fromvj to vi;

� find a topological order of G:fv0
1
; v0

2
; � � � ; v0mg;

Phase II: program tracing
� run the program profiler and tracer;
� collect the execution information;
Phase III: power estimation
� for i = 1 � � �m

calculate the power data for nodev0
i

from the “power data bank”
and the power data of nodesv0

1
; v0

2
; � � � ; v0

i�1
;

� return power data of nodev0m;

Figure 2: Pseudo-code for the function-level power estimation.

4.2 Experimental Platform

We illustrate how the “power data bank” is built for the Toshiba
TX39 microprocessor core through a cross-architecture compiler
for the MIPS microprocessor architecture from the Green Hills
Software, Inc.(http://www.ghs.com). We use power simulation and
analysis tools provided by Sent´e, Inc.(http://www.senteinc.com).

We have developed, as the first step, a set of C/C++ codes each
targeting one or more specific built-in library functions of the mi-
croprocessor core. For example, the function that performs integer
comparison will be frequently used in any integer sorting program.

The source codes are then compiled by the cross-architecture
compiler and all the library functions that might be used during the
execution can be easily identified from the symbol table at compi-
lation time. However, not all such functions will be actually called
at the run time. Whether a function will be used or not, and how
many times, depend on the real input data. We estimate this run-
time information by tracing the software’s execution using program
profiling/tracing tools.

Next is the key procedure to build the “power data bank”. Our
goal is to get the power data (e.g. the average power and execution
time) for each library function. This requires effective and effi-
cient methodologies to monitor the execution of such functions. In
practice, simulated execution time is obtained by inserting break-
points at the beginning and the end of each library function while
running the simulator. Then we use Sent´e’s Watt Watcher to con-
duct the power analysis for the particular function by specifying the
start/finish time and the average power consumption is gathered.

Finally, the previous three steps are repeated and the statistical
power information for each library function is stored in the “power
data bank”.

CPU Register
CP0 Register
ALU/Shifter
 MAC

 Memory
 Management Unit

 Bus Interface Unit

 I-Cache D-Cache

CPU Core

Figure 3: Block Diagram of the TX39 Processor Core[15].

812

4.3 Model Validation

For a test program, we conduct full power simulation to get its
power consumption; we also trace the program’s execution and cal-
culate its power from the function-level power model. These two
power estimates are then compared for the model validation.

test1 program with 200 floating-point additions
test2 program with 200 floating-point subtractions
test3 program with 200 mixed integer/floating-point additions
test4 program with 200 mixed integer/floating-point subtractions
test5 program with 80 integer/floating-point additions/subtractions
test6 program with 196 integer/floating-point additions/subtractions

Table 1: Description of the test programs.

Table 1 describes six test codes. They have called six library
functions: fcmp (comparison of two floating-points), dcmp (com-
parison of two integers), ftod (convert floating-point to double),
fadd (addition of two floating-points), fsub (subtraction of two
floating-points), and itof (convert integer to floating-point).

We first use power simulator to simulate the full execution of
each program and the obtained average power and execution time
are used as reference. Then we trace the execution of the program
and collect the number of times each function has been called, and
the number that cache miss occurs. These results are shown in
Table 2, where the first call of each function is considered as an I-
cache miss, and the rest as I-cache hits due to the fact that the 4KB
I-cache is large enough to hold the instructions for these test pro-
grams. Now, for each of the function blocks being used, we fetch
its power information from the pre-calculated “power data bank” ,
which includes the simulated energy consumption and execution
time (in simulator ticks) per execution, and apply our model to get
the average power and execution time as reported in the last two
rows in Table 2.

test1 test2 test3 test4 test5 test6
fcmp / 200 100 200 / 98
dcmp 201 1 101 1 1 1
ftod 201 1 101 1 1 1
fadd 200 / 200 / 80 158
fsub / 200 / 200 / 38
itof / / 100 100 40 98

P 94.65% 94.48% 96.82% 97.71% 100.36% 98.76%
T 88.99% 85.07% 85.28% 86.24% 72.28% 82.94%

Table 2: Numbers of library function calls, and power estimates.
(P and T are the program’s average power consumption and esti-
mated execution time. These values are calculated from the power
model and have been normalized by the respective results from full
simulation.)

A high power accuracy (an error within 3.5% in average)is
achieved. We can further improve this by fine tuning the param-
eters. The error on simulated execution time comes from the ig-
nored part of the program, which includes most of the instructions
in main() that connect these built-in library function blocks and oth-
ers. If we model this part and add its effect into the execution time,
we are able to restrict the error to within 4%.

We further validate our assumption on the I-cache miss/hit by
simulating the single execution of each individual function. The
results demonstrate that, for each function block, the first execu-
tion takes long while all the rest run much faster and roughly at the
same speed. Moreover, the power data for the first execution co-
incide with those when we disable the I-cache using the cache test
function.

In [14], the impact of the different input data has been studied
in terms of the numbers of 1’s in the data’s binary representation,
and they conclude that such impact is small (less than 5%). Under

our experimental platform, it is hard to observe such phenomena
because estimation is at function-level instead of instruction-level,
the impact of input data to a single instruction is shadowed by the
relatively long execution time of the entire instruction sequence,
the divisor when evaluating average power.

5 Conclusions and Future Work

Power is one of the concerns when users select hardware to per-
form their programs. For the microprocessor core vendors, it helps
if they can provide users tools to estimate the program’s power con-
sumption on the target core. However, the power estimation usu-
ally requires a detail description of the core, which most vendors
are reluctant to release. We propose a power model and estimation
methodology at function level to bridge this gap. The efficiency
and accuracy of this method have been discussed and validated on a
commercial microprocessor core. Future work includes fine-tuning
the power model, extending it to DSPs, superscalar processors, and
our ultimate goal is to use this to provide guidance for power opti-
mization of embedded software at compilation time.

References

[1] D.T. Blaauw, A. Dharchoudhury, R. Panda, S. Sirichotiyakul, C. Oh,
and T. Edwards. Emerging power management tools for processor de-
sign. International Symposium on Low Power Electronics and Design,
pp. 143-148, 1998.

[2] B. Cmelik and D. Keppel. Shade: A Fast Instruction-Set Simulator for
Execution Profiling. SIGMETRIC’94, 1994.

[3] C.T. Hsieh, Q. Wu, C.S. Ding, and M. Pedram. Statistical Sampling
and Regression Analysis for RT-Level Power Evaluation. ICCAD’96,
pp. 583-588, 1996.

[4] C.X. Huang, B. Zhang, An-Chang Deng, and B. Swirski. The design
and implementation of PowerMill. Proceedings. 1995 International
Symposium on Low Power Design, pp. 105-108, 1995.

[5] J.R. Larus. Efficient Program Tracing. IEEE Computer, Vol. 26, No.
5, pp. 52-61, May 1993.

[6] M. T.-C. Lee, V. Tiwari, S. malik, and M. Fujita. Power Analysis and
Minimization Techniques for Embedded DSP Software. IEEE Trans-
actions of Very Large Scale Integration Systems, Vol.5, No.1, pp. 123-
135, 1997.

[7] D. Liu and C. Svensson. Power Consumption Estimation in CMOS
VLSI Chips. IEEE Journal of Solid-State Circuits, Vol.29, No.6, pp.
663-670, 1994.

[8] E. Macii, M. Pedram, and F. Somenzi. High-Level Power Modeling,
Estimation, and Optimization. IEEE Transactions on Computer-Aided
Desigh of Integrated Circuits and Systems, Vol.17, No.11, pp. 1061-
1079, 1998.

[9] R. Marculescu, D. Marculescu, and M. Pedram. Adaptive Models for
Input Data Compaction for Power Simulations. Proceedings of ASP-
DAC’97, pp. 391-396, 1997.

[10] F.N. Najm. Transition Density: A New Measure of Activity in Digital
Circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.14, No. 1, pp. 310-323, 1993.

[11] F.N. Najm. A Survey of Power Estimation Techniques in VLSI Circuits.
IEEE Transactions of Very Large Scale Integration Systems, Vol.2,
No.4, pp. 446-455, 1994.

[12] J.M. Rabaey. Exploring the Power Dimension. IEEE Custom Inte-
grated Circuits Conference, pp. 215-220, 1996.

[13] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago. Evaluation of
Architecture-Level Power Estimation for CMOS RISC Processors.
ISLPE’95, pp. 44-45, 1995.

[14] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization. IEEE
Transactions of Very Large Scale Integration Systems, Vol.2, No.4,
pp. 437-445, 1994.

[15] 32-Bit TX System RISC TX39 Family Architecture, Toshiba Corp.
1999

813

