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Abstract. It has been recently reported that minimax eigenvalue problems can be for- .
mulated as nonlinear optimization problems involving smooth objective and constraint
functions. This result seems very appealing since minimax eigenvalue problems are known
to be typically nondifferentiable. In this paper, we show however that general purpose
nonlinear optimization algorithms usually fail to find a solution to these smooth problems
even in the simple case of minimization of the maximum eigenvalue of an affine family of
symmetric matrices, a convex problem for which efficient algorithms are available.
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1. Introduction

In many optimization problems arising from engineering considerations, such as ro-
bustness or sensitivity analysis (see, e.g., [1-4]), one has to deal with objective or constraint
functions involving the spectral radius, the maximum singular value, or the maximum real
part of the eigenvalues of a matrix depending on a parameter vector. These functions are
generally not differentiable but merely directionally differentiable in the presence of eigen-
values of multiplicity larger than 1 {5]. Special purpose algorithms have been proposed
[6-10] for solving such problems. Recently Goh and Teo [11] showed that minimax eigen-
value problems (minimization of the maximum real part of the eigénvalues of a matrix) are
equivalent to constrained optimization problems involving only differentiable functions. In
this paper, we study some of the features of the problem obtained in [11] for the simplified
case of minimization of the maximum eigenvalue of a symmetric matrix. We show that,
although this problem involves only smooth functions, it generally cannot be solved by

general purpose nonlinear optimization algorithms.
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In Section 2, we recall briefly the nonlinear formulation in [11] for the case of mini-
mization of the largest eigenvalue of a symmetric matrix depending on a parameter vector.
The constrained optimization problem thus obtained is studied in Section 3. Numerical

results support the analysis. Finally, concluding remarks are presented in Section 4.

2. Background

Throughout this paper, we will consider a family of symmetric matrices Q(z) € R"*"
depending on a parameter vector z € R™. The eigenvalues of any matrix Q(z) in the
family will be denoted by A;(z) > Aa(z) > ... > Ap(z). We will study the nondifferentiable

optimization problem

(P)  min (o).

z€

In this particular context, Goh and Teo’s [11] basic idea consists in rewriting Problem
(P) as

min

(z,1,0)eER™xRxR"
st. pi<ly, 1=1...,n
pi =Ai(z), i=1,...,n.
A necessary and sufficient condition for the quantities p; to be equal to the eigenvalues
Ai(z) is that the two polynomials in A, det(A — Q(z)) and [[i-;(X — pi) be equal. Since
these two polynomials are monic and of degree n, they will be equal if, and only if, their

values at any n distinct points Ap,..., An coincide. Based on this observation, Goh and

Teo conclude that the solution to (P) can be obtained by solving instead

min ~

(z,7,0)€eR™ xRxIR"
(P) st. pi<ly, 1=1,...,n
fi(z,p)=0, k=1,...,n

where

n

fi(z,p) = detQI = Q(2)) = [[Cx —pi), k=1,...,n

1=1



and 1y,..., A, are some arbitrary distinct values. Although this is not explicit in [11],
it can be easily seen that Problems (P) and (P) are equivalent in the following slightly

stronger sense.

Fact.

z* is a local solution for Problem (P) if, and only if, (z*,v*, p*) is a local solution for

Problem (P) for some v*, p*.
O

While the objective function in Problem (P) is usually nondifferentiable in the presence

of a multiple maximum eigenvalue, Problem (15) involves only smooth functions.

3. Analysis

Using standard techniques for solving Problem (P) instead of tackling directly Prob-
lem (P) seems very appealing. However, we show in this section that the most common
nonlinear optimization algorithms will usually fail to find a local (a fortiori a global) solu-

tion for Problem (P).

We first show that at any feasible point for Problem (P) at which two eigenvalues are
equal, the gradients (vectors of partial derivatives with respect to z and p) associated with

the equality constraints are linearly dependent.

Observation 3.1.

Let z* € R be such that A.(z*) = A41(z*) for some r € {1,...,n — 1} and let
p* = (A1(z*),-.., An(2*))T. Then, the vectors V fr(z*,p*), k=1,...,n, defined by,

* * 6 * * a * *
VA7) = (G ) G )

are linearly dependent.

Proof.



We proceed to show that there exist some scalars B¢, k=1,...,n, not all zero, such

that, for any (i) in Rm+",

& * * d
(O BeVii(z*, "), (a)> =0
k=1
where (-,-) represents the Euclidian scalar product in R™™. It will therefore hold,
> BV fi(a*,p*) = 0.
k=1

The functions A\i(z), ¢=1,...,n, admit a directional derivative at z* in the direction d

(see [5]) that we will denote below by (A,-)'(a:*; d), t=1,...,n. Now, by definition,

fk(-"faP) = H(;\k _At(x))_H(:\k_pl), k=1,...,n
=1 =1
Differentiating and evaluating the derivatives at (z*, p*) in the direction ( i) gives

(Vfila*,0%), ( j)> == > ) @D TGN N+ a5 [[Ge=AG™), k=1,....m.

i#; i=1 i#j

Letting &1 = — H#j(:\k —Xi(z*)) 7, k=1,...,n, we obtain |
(10 (8 )) = L) @D = as)esn, b=Lmn. M
j=1

Now, since A (z*) = A.41(z*), the vectors (€1 k,...,€n k)T, k = 1,...n, have identical
rth and » + 1th components so that they are linearly dependent. Therefore, there exist
some values B, k =1,...,n, not all zero, such that, > 7_, Be€jr =0, Vji=1,...,n.

But this yields, in view of (1),



(; BV fr(z*, p*), (i)) =0.

0O .

Although some methods may be less sensitive then others (see, e.g., REQP (Recursive
Equality Quadratic Programming ) [12] vs. SQP (Sequential Quadratic Programming)
[13]), in view of Observation 3.1, numerical difficulties may arise when the iterate is close
to a feasible point for Problem (13) corresponding to multiple eigenvalues. Also, standard
nonlinear optimization algorithms may converge to such a point, at which the gradients of

the equality constraints are dependent, instead of a stationary point for Problem (f’)

An even more serious problem can be seen from the next observation.
Observation 3.2.

Let o* € R™ and p* € R" with p} = p} for some [, r € {1,...,n}. Then,

afk * % _6fk * % _
Bor 5, p*) = apr(w 05, k=1,...,n.

0

In view of the above, it can be easily checked that if ¢ 4 1 values p} are equal, with ¢ > m,
then the vectors V fi(z*,p*), k = 1,...,n, are linearly dependent even when the values
p¥ do not correspond to eigenvalues at z*. In this case, an SQP algorithm may fail to
find a search direction. Such a situation is likely to occur when we have matrices of big

dimension depending on a few parameters only.

A more important consequence of Observation 3.2 is that Problem (}5) is symmetrical
in all the variables p; so that, if two values p; and p, are identical at some time within a
usual optimization process (see, e.g., SQP or penalty methods), they will remain identical
thereafter. In that case, the algorithm will never be able to detect a solution at which

the eigenvalues are simple. We give below an illustration of that phenomenon. In that

5



example, the matrices Q(z) are affine in z. It is well known (see, e.g., [8] Theorem A.1)
that, in that case the objective function of Problem (P) is convex (although not necessar-
ily differentiable). All local solutions for (P) are therefore global solutions and efficient

algorithms for such problems do exist (see, e.g., [7,9]).

Let
1 =z 0
Qiz)=|z -1 0
0 0 2z

The characteristic polynomial associated with any element Q(z) in the family is det(A) =
(A% — (1+2?))(A — 2z) so that the eigenvalues are v/1 + z2, 2z and —v/1 + 2. The largest
eigenvalue is minimized at £ = 0. Notice that, at that point, the eigenvalues are distinct so
that, locally, the objective function in Problem (P) is differentiable. At z = 1/+/3 (resp.
z = —1/+/3), the eigenvalues are 2/v/3, 2/v/3, —2/v/3 (resp. 2/V3, —2/v3, —2/V3).
Therefore, in view of Observation 3.1, at the points (2, p)1 = (1/v/3,2/v3,2/v/3,—-2//3)
and (z,p)2 = (=1/+/3,2/v3,-2/v/3,—2/V/3), the gradients of the active constraints are
dependent. These points are also local solutions for the problems

min ~

(z,v,p)eR" xRxR"

st. pi <7y, 1=1,...,n
fk(flf,p)':O, k=1,...,n

p1=p2 (resp. pz = p3).

(but not for Problem (P)) since they are isolated feasible points. Problem (P) (as well as
all the examples presented in this Section) has been tested using the routine VF02AD of
the Harwell library [14]. We report below the final iterates obtained starting from different
initial points. These results show that the iterates can be trapped at the isolated points
(z,p)1 and (z, p)2. For these tests, we chose the values X1 =0, X\, =1, X3 = 3. The final
accuracy in VF02AD was taken as 1-107° (i.e., the calculation ended when the objective

function plus suitably weighted multiples of the constraint functions were predicted to
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differ from their optimal values by at most 1-107°).

No. (z,p)init (z, p) final

1 (2,1,2,3) (—3.362962 - 10~%, —0.9999997, —6.757097 - 10~5,0.9999994)
2 (-2,—-2.5,-2,1) (—1.501202 - 10—%, —1.000000, —2.997826 - 10~¢, 1.000000)

3 (=4,1,-2,-3) (0.5773497, 1.154700, —1.154700, 1.154700)

4 (—0.5,-25,—2,—4) (0.5773498,1.154700, —1.154700, 1.154700)

o (0.55,-0.8,-0.8,1) (—0.2603311 - 103, —1.000000, 1.000000, —0.131790 - 10™°)
6  (—0.5,—1.6,—1.7,1.9) (—0.5400000, —1.13628, —1.08026, 1.13646).

In tests number 1 and 2, convergence to a solution occurred. In tests number 3 and 4,
the iterate first hit the subspace p; = p3. From then on, it remained in that subspace
progressing toward the point (z,p);. Surprisingly, in test number 5, while we start with
an iterate in the subspace p; = pz, there is convergence to the solution of Problem (P),
corresponding to simple eigenvalues. Although such a result was not expected in view of
Observation 3.2, the components p; and p2 became distinct due to roundoff error. The
perfect symmetry between p; and p; was probably destroyed due to the order in which
operations are performed in VF02AD. Also, it took 1934 iterations of that program before
obtaining convergence. Finally, in test number 6 the algorithm exited due to inconsistency
in the search direction computation due to near dependence of the gradients associated
with the equality constraints. This could not have been predicted by either Observation

3.1 or 3.2.

Another example is
2
T
o= "7 20,

It is still a convex problem so that every local solution for Problem (P) is global. Again,
convergence may occur to nonstationary points. Indeed, using the values M =0 =1

and starting with the iterate (z, p)inie = (0.5,1.9,2.05) we got the final point (z, p) finat =
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(1.000000, 2.000000, 2.000000). As may be expected, due to the dependency of the gradi-

ents associated with the equality constraints, convergence was very slow.
The next example shows that, even if the eigenvalues are distinct for all z, the suc-
cessive iterates may be trapped again by the subspace p1 = p2. Let
z24+1 0
am =" 3]
With the parameter values A; = 0, A\; = 1 and the initial iterate (z, p)init = (0.2,1.05,1.03)

the optimization process stopped at the iterate (z, p) finar = (0.1997500, 0.5399000, 0.5399000)

at which the gradients of the equalities are dependent.

Finally, we tested the first example given in [11] with values M =0, A =1 and
5\3 = 2. For that example,

2+ 22 + (21 —22)? (21 —22)(1 — x3) ToZ3
Q(z) = | (71— 22)(1 — z3) z? + 22 4 323 123 ,
Tox3 T T3 2+ (z123)?

the minimum of the maximum eigenvalues is equal to 2, and any parameter vec-
tor £ such that z; = zo < 1 and z3 = 0 is optimal. Starting with imtial
values (z,p)init = (0.5,0.5,0.5,1.5,1.5,1.5), we get the final iterate (z,p)fina =
(0.9998771,0.9995843,0.2011660 - 10~°,1.998848, 2.000075, 2.000000), consistent with [11].
The algorithm is again successful if we start with (z,p)inie = (0.5,0.5,0.5,0,2,3),
in which case convergence occurs to (z,p)finar = (0.3588680,0.3588784,0.3604587 -
1073,0.2575800,2.000000 2.000000). But if we now take (z, p)init = (1,2,3,0,0.5,1.5) the
optimization stops at the infeasible point for Problem (15), (2, p) finat = (0.3455119,0.6681274,
—0.7033917,6.193530, 8.168414, 0.1767469-10%?) at which the gradients of the equality con-
straints are linearly dependent. Different tests have been performed on that same example

with different starting points. In many instances, convergence to a solution failed to occur.



4.

Conclusion

While it is true that minimax eigenvalue problems can be formulated as nonlinear

optimization problems involving only smooth functions, nonlinear optimization algorithms

cannot be applied blindly for solving them. Indeed, they have a special structure that is

not taken into account by general purpose algorithms.
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