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Water has been called the “most studied and least understood” of all liquids,

and upon supercooling its behavior becomes even more anomalous. One particularly

fruitful hypothesis posits a liquid-liquid critical point terminating a line of liquid-

liquid phase transitions that lies just beyond the reach of experiment. Underlying

this hypothesis is the conjecture that there is a competition between two distinct

hydrogen-bonding structures of liquid water, one associated with high density and

entropy and the other with low density and entropy. The competition between these

structures is hypothesized to lead at very low temperatures to a phase transition

between a phase rich in the high-density structure and one rich in the low-density

structure. Equations of state based on this conjecture have given an excellent ac-

count of the thermodynamic properties of supercooled water. In this thesis, I extend

that line of research. I treat supercooled aqueous solutions and anomalous behavior

of the thermal conductivity of supercooled water. I also address supercooled water

at negative pressures, leading to a framework for a coherent understanding of the

thermodynamics of water at low temperatures. I supplement analysis of experimen-



tal results with data from the TIP4P/2005 model of water, and include an extensive

analysis of the thermodynamics of this model.
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Chapter 1: Introduction

Water has been called the “most studied and least understood” of all liquids [1].

Cold water is particularly noted for its anomalous behavior, and probably the best-

known of water’s thermodynamic anomalies is the maximum in water’s density. This

maximum occurs just above the freezing point (4 ◦C at atmospheric pressure) [2]

and has proven crucial for the development of life on earth. The thermodynamic

anomalies of water become more pronounced—and new ones manifest themselves—

when water is supercooled, that is, cooled below its melting temperature while

remaining liquid.

This intriguing metastable state of water occurs in a variety of natural settings,

including clouds, where liquid water has been observed at temperatures approaching

−40◦C [3], and the bodies of insects that use supercooling to remain active in the

winter [4]. Its properties are therefore of interest to a wide range of scientists and

engineers. Supercooled water can also be created in the laboratory, and for physicists

and chemists, perhaps the greatest promise lying in the study of supercooled water

is the light that it can shed on the nature of liquid water generally.

The most striking thermodynamic anomalies in supercooled water are those

of the thermodynamic response functions. The isobaric specific heat capacity cp

1



Figure 1.1: Experimentally measured response functions in supercooled water. The for-
mulation of the International Association of the Properties of Water and Steam (IAPWS)
is shown in the stable region by way of comparison.

[5,6] and isothermal compressibility κT [7] increase dramatically upon supercooling,

as can be seen in Fig. 1.1. The correlation length characterizing fluctuations of

density increases markedly as well [8]. In 1992, Poole et al. proposed a coherent

and particularly fruitful account of the thermodynamic anomalies of water: that

below the line of homogeneous nucleation is a first-order phase transition between

two liquid states distinguished by their different densities and entropies, called the

high-density liquid (HDL) and low-density liquid (LDL). This transition line would

terminate at a critical point, and proximity to this critical point could explain the

apparent divergence of the response functions [9]. This liquid-liquid phase transition

(LLPT) and liquid-liquid critical point (LLCP) are hypothesized to lie in the region

of the phase diagram that is inaccessible to experiment due to homogeneous ice

nucleation, as shown in Fig. 1.2. It should be noted that while kinetic factors make

it impossible to carry out experiments on the liquid state in this region of the phase

diagram, the liquid state is not thermodynamically unstable there.

The hypothesized LLPT is a phase transition between two liquid states, i. e.,

it does not entail any long-range symmetry breaking. Rather, like the transition

2



Figure 1.2: A proposed phase diagram for cold and supercooled water. The melting line
and the line of homogeneous nucleation are experimentally known; the LLPT and LLCP
are hypothesized, with the positions proposed in Ref. [10] used in this figure. Figure
prepared by Vincent Holten.
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between the liquid and vapor phases of a single-component fluid, the LLPT is con-

ceptualized as a line of first-order transitions characterized by discontinuous changes

in the density and entropy of water, terminating at a (LLCP) beyond which all

thermodynamic properties vary smoothly. In order to account for this, researchers

have proposed the existence of two distinct hydrogen-bonding structures in water: a

high-density, high-energy, high-entropy structure (“structure A”) that is prevalent at

room temperature and above, and a low-density, low-energy, low-entropy structure

(“structure B”) that is favored at lower temperatures (and pressures).1 Depending

on the nature of the interactions between molecules in the different structures—

in thermodynamic terms, the non-ideality of the mixture—there could be a phase

transition at which the liquid changes discontinuously from a liquid rich in state A

(high-density liquid or HDL) to a liquid rich in state B (low-density liquid or LDL).

On the other hand, the fraction of water in each state might vary continuously

throughout the phase diagram, in which case no phase transition or critical point

would be observed.

It is now broadly agreed, based on evidence derived primarily from scattering

experiments, that two distinct local structures exist in cold and supercooled wa-

ter [13–16]. Simulation studies on a variety of simulation models yield similar find-

ings. The precise nature of the low-density structure remains a subject of debate,

1In fact, the idea of two distinct structures in liquid water is an old one: in the late 19th century
both Harold Whiting [11] and Wilhelm Roentgen [12] suggested that the density maximum in water
could be explained as a kind of “pre-freezing” effect associated with the (also anomalous) fact that
water expands upon crystallization. They each suggested that in cold water, there might be small
pockets of ice, too small to destroy the liquid nature of cold-stable water as a whole (we might
anachronistically say that no long-range symmetry-breaking has yet occurred at this stage), but
numerous enough to effect a decrease in the density upon cooling. This is not plausible if taken
literally, but it has remained useful and intriguing as a heuristic.
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but an increase in the number of molecules with four nearest neighbors, and indeed

upon local tetrahedral arrangements (without any long-range symmetry-breaking)

is seen upon cooling in the TIP4P/2005 [17], ST2 [18], and mW [19] models of water.

The existence of two competing local structures does not by itself guarantee

the existence of a phase transition, however. The ST2 [20], TIP4P/2005 [17], and

mW [21] models are all described very well by two-structure thermodynamics, and

while the LLPT and LLCP have been confirmed in the ST2 model [22, 23], they

are absent from the mW model [21]. Liquid-liquid separation in the TIP4P/2005

model continues to be debated in the literature, with this Dissertation presenting

further evidence for the existence of the LLPT and LLCP in that model in Chapter

4. Experimental evidence for the LLPT and LLCP in real water has so far been

indirect. Mishima’s finding of a phase transition in glassy water between two amor-

phous states of different density has lent further support to this thesis [24], as have

Mishima and Stanley’s intriguing experiments on the melting lines of metastable

phases of ice [25, 26]. In short, these latter experiments investigate the melting

lines of metastable phases of ice, and find kinks in those lines just below the ho-

mogeneous nucleation line in the liquid. Morevoer, equations of state based on the

two-structure model and including a liquid-liquid critical point have provided in-

creasingly accurate accounts of the thermodynamic properties of water over the last

several years [27,28], and the recent model of Holten and Anisimov shows excellent

agreement with the thermodynamic data with fewer adjustable parameters than any

model so far [10]. In 2014, Holten et al. published an extended form of this model

that fits pressures up to 400 MPa, and this version is now the basis of the most

5



recent formulation for supercooled water employed by the International Association

for the Properties of Water and Steam (IAPWS) [29].

Other hypotheses than the LLCP have been proposed to account for the

anomalies of water at low temperatures. In the singularity-free hypothesis, CP

and κT pass through finite maxima at temperatures too low to be accessed by ex-

periment, but do not diverge, and there is no first-order phase transition. Although

it lacks the sensational punch of the LLPT and LLCP, this hypothesis is in fact con-

sistent with the two-structure hypothesis, and two-structure thermodynamics might

still be invoked to explain water’s anomalies (as in the case of the mW model of

water [21]).

A very different suggestion was made by Speedy in 1982: that the absolute

limit of stability of the liquid state retraces to positive pressures, eventually acquiring

a steep negative slope and lying just below the homogeneous nucleation limit at

atmospheric pressure [30]. He proposed that the locus of temperatures of maximum

density (TMD locus) and the apparent divergences in the response functions κT and

CP were signs of an approach to this spinodal, at which κT and CP are expected to

diverge. Debenedetti and Stanley have since argued convincingly that the liquid-

vapor spinodal (LVS) does not reach a pressure above the saturation pressure at

low temperatures because the intersection of the LVS and the binodal must be a

critical point, and a second liquid-vapor critical point, occurring at a temperature far

below the triple-point temperature, is fantastically improbable [31]. However, the

related hypothesis of a line of absolute instability of the liquid state other than the

LVS (Speedy’s original work [30] did not specify the phase toward which the liquid
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might become unstable) remains a possibility as an explanation for the anomalies

of supercooled water. It is also possible that the LVS goes through a minimum

and returns to higher but still negative pressures, a prospect discussed further in

Chapter 5.

This Dissertation takes the ideas and basic structure of Holten and Anisimov’s

TSEOS to investigate a new set of anomalies in supercooled water, both dynamic

and thermodynamic. In this way, I hope that it will contribute to a coherent,

unified explanation of anomalies in liquid water at low temperatures in terms of

the conjecture of two distinct hydrogen-bonding structures in liquid water. The

Dissertation also seeks to shed light on the question, “is there a liquid-liquid phase

transition and a second critical point in supercooled water?” That question will not

be answered conclusively in this Dissertation, but the proof of the pudding is in the

eating, and the hypothesis of the liquid-liquid critical point continues its success in

explaining the anomalies of supercooled water, as shown below. After introducing

the equation of state (Chapter 2) the Dissertation presents an analysis of aqueous

solutions, showing that the TSEOS can describe even counter-intuitive behavior in

aqueous solutions with only slight modifications (Chapter 3). Chapter 4 examines

the thermodynamics of the TIP4P/2005 model and presents evidence that the LLCP

and LLPT exist in this model. Chapter 5 addresses questions surrounding water

at negative pressure. By incorporating a liquid-vapor spinodal into the TSEOS,

it presents an equation of state that matches new, negative-pressure data on the

TIP4P/2005 model and sheds light on the behavior of real water. Chapter 6 presents

calculations arguing that the anomaly in the thermal conductivity of supercooled

7



water is of thermodynamic origin, and presents simulation studies to support this

claim.
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Chapter 2: The Two-Structure Equation of State

Water is a single-component fluid in the most intuitive and important sense: it

comprises molecules of only one type, H2O. However, the two-structure hypothesis

conjectures that it is also in a certain sense a mixture. More specifically, H2O can

form two distinct supramolecular structures, and clusters of molecules in each of the

supramolecular structures are able to mix with each other. Consequently, considera-

tions on a length-scale slightly longer than the molecular but still microscopic suggest

that the thermodynamics of water will be similar to that of a binary mixture. The

research presented in this Dissertation comprises several phenomenological studies

of supercooled water. In order to model actual data, whether from experiment or

simulation, each of the studies presented here makes use of an equation of state

based on the two-structure conjecture. The basic structure of these equations of

state is the same, and that structure is described in this Chapter. Small variations

in structure are made for each study, and the values of several parameters are fitted

to best match the data at hand in each case (the values of the parameters will be

very different in a study of simulation data than in one of real water, for example).

This family of equations of state, as well as each individual version, is called the

two-structure equation of state (TSEOS).
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Because experiments on water are typically carried out at a given temperature

and pressure, it is most convenient to implement the TSEOS as an expression for

the Gibbs energy of water. The Gibbs energy is also advantageous because a field-

dependent potential lends itself easily to an analysis in terms of scaling fields, as

will be discussed in a later section.

The Gibbs energy of a binary mixture can be described (as described in, e. g.,

Ref. [32]) as the sum of the Gibbs eneries of each of the two species as a function

of temperature and pressure, weighted by the molar fraction of each species, and a

Gibbs energy of mixing. Using φ to represent the molar fraction of state B, one can

write

(1− φ)GA(T, P ) + φGB(T, P ) +Gmixing. (2.1)

Here, GA and GB are the Gibbs energy of pure state A and pure state B at (T, P ) (if

they could somehow be isolated and studied alone), and not the chemical potential

of the respective species in actual water at (T, P ). In practice, for reasons that will

become clear, it is easier to work with

GA(T, P ) + φGBA(T, P ) +Gmixing, (2.2)

where GBA is the difference in Gibbs energies GB − GA. In an ideal mixture, the

entropy of mixing takes the Lewis-Randall form [32]

SLR = φlnφ+ (1− φ)ln(1− φ), (2.3)

10



giving rise to a term

RT [φlnφ+ (1− φ)ln(1− φ)] (2.4)

in the Gibbs energy, a term which will sometimes be denoted by I. But the mixture

is not, in general, ideal. The non-ideal part of the mixture is called W , and it will

be a function W (T, P, φ). The φ-dependence of the W is modeled with a simple,

symmetric form: W = ω(T, P )φ(1− φ). In general, then, the TSEOS has the form:

G = GA(T, P )+φGBA(T, P )+RT [φlnφ+ (1− φ)ln(1− φ)]+ω(T, P )φ(1−φ). (2.5)

The Gibbs energy has so far been constructed using the thermodynamic theory

of binary mixtures as G(T, P, φ). But in order to implement the TSEOS, one must

also consider the interconvertibility of the two species. It is obvious that distinct

forms of hydrogen bonding within the same liquid are, in principle, interconvertible.

The outstanding question is the timescale over which this interconversion takes place.

Experimental evidence is clear that any relaxation timescale in supercooled water is

many orders of magnitude shorter than the experimental timescale for the measure-

ment of thermodynamic properties or transport properties [33–36]. Consequently,

φ is not a thermodynamic variable on a level with T and P . Rather, for a given

(T, P ), the possible values of φ are sampled ergodically, and the thermodynamic

value of φ at a given (T, P ) is the value that minimizes the Gibbs energy. When

applying, for example, the Gibbs phase rule to supercooled water as described by

the TSEOS, the number of intensive degrees of freedom is two, not three.
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The derivatives of the Gibbs energy with respect to temperature and pressure

provide expressions for the thermodynamic properties (let us call a generic ther-

modynamic property X) as functions X(T, P ;φ). In light of the considerations in

the previous paragraph, they must be evaluated in two steps. First, one solves the

equation (
∂G

∂φ

)
T,P

= 0 (2.6)

to find the equilibrium value of φ, φe. Next one evaluates the expression X(T, P ;φe).

In the event, Eq. (2.6) is a transcendental equation in φ and does not have a closed-

form solution, so numerical methods must be used in order to implement the TSEOS.

2.1 Phase Transition and Criticality

The first derivatives of the Gibbs energy evaluated at constant φ, i. e.,
(
∂G(T,P ;φ)

∂T

)
P,φ

and
(
∂G(T,P ;φ)

∂P

)
T,φ

, are continuous everywhere. There can, however, be discontinu-

ities in the function φe(T, P ), and a locus of such discontinuities constitutes a line

of first-order transitions, possibly terminating in a critical point. In particular, a

sufficiently strong non-ideality in the mixing term of the Gibbs energy may lead to

a function G(φ) with more than one local minimum. If this is the case, the global

minimum of course defines the value of φe. When the two minima are of equal depth,

however, two-phase coexistence is possible, which defines the LLPT. A first-order

phase transition occurs upon crossing such a point of two-phase coexistence such

that one one side, one of the minima is the global minimum and on the other side,

the other is the global minimum, leading to a discontinuity in φe(T, P ).
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The possibility of a phase transition and a critical point can be determined

from the derivatives of the Gibbs energy as a function of φ:

(
∂G

∂φ

)
T,P

=GBA(T, P ) +RT · ln
(

φ

1− φ

)
+ ω(T, P )(1− 2φ), (2.7)(

∂2G

∂φ2

)
T,P

=RT

(
1

φ(1− φ)

)
− 2ω(T, P ), (2.8)(

∂3G

∂φ3

)
T,P

=RT

(
1− 2φ

φ2(1− φ)2

)
. (2.9)

The conditions of criticality, then, are

ω = 2RT, (2.10)

GBA = 0, (2.11)

and under these conditions,

φc = 0.5. (2.12)

As discussed above, two-phase coexistence and a LLPT are possible only if the

the function G(φ) has two minima, which requires

ω > 2RT. (2.13)

Because I and W are symmetric in φ, two distinct values of φ can only yield the

same value of the Gibbs energy if condition 2.11 is also met, so GBA = 0 also locates

the LLPT. Where ω < 2RT there is no phase transition. In this region GBA = 0,
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the extension of the LLPT into the one-phase region, is the locus of points at which

φ = φc and fluctuations of φ are at a maximum, as can be seen by minimizing the

RHS of Eq. (2.8). This locus is known as the Widom line, and is discussed further

in the Section on scaling theory.

One could construct a version of the TSEOS in which the non-ideality is never

strong enough to produce criticality or a first-order phase transition, as was done in

Ref. [21] for the mW water model. But the TSEOS was developed to explore the

idea of the LLCP and LLPT, and both real water and the TIP4P/2005 model are

best described by an equation that includes both a LLPT and a LLCP. Thus, since

the values of certain parts of the TSEOS at criticality are determined by thermo-

dynamics (to wit: Eqs. 2.10 and 2.11), it is convenient to work in dimensionless

variables that are given with respect to the critical parameters. In particular

T̂ = T/Tc, (2.14)

P̂ = P/ρcRTc, (2.15)

∆T̂ = (T − Tc)/Tc, (2.16)

∆P̂ = (P − Pc)/ρcRTc. (2.17)

In general, properties made dimensionless by the appropriate combination of the

critical parameters and the universal gas constant are represented by a circumflex,

so Ĝ = G/RTc, etc. From now on, ω will be presented in units of RTc.
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2.2 Implementation of the TSEOS

The Gibbs energy of pure structure A, GA, is treated phenomenologically:

ĜA =
∑
m,n

cmn∆T̂m∆P̂ n, (2.18)

with {cmn} as adjustable coefficients. c10 is associated with the absolute value of

the entropy at the critical point and has no physical significiance, so it is implicitly

set to zero. c01 is related to the volume at the critical point, so c01 and ρc are not

independent parameters.

As discussed in the previous section, The LLPT, the LLCP, and the Widom

line are all characterized by condition 2.11, so it is convenient also to implement

ĜBA as a power series in ∆T̂ and ∆P̂ . In the most general form that is used for the

TSEOS,

ĜBA = λ(∆T̂ + a∆P̂ + b∆T̂∆P̂ + d∆P̂ 2 + f∆T̂ 2), (2.19)

or, in some versions,

ĜBA = T̂ λ(∆T̂ + a∆P̂ + b∆T̂∆P̂ + d∆P̂ 2 + f∆T̂ 2). (2.20)

For convenience, the rest of this Dissertation will refer to Eq. (2.19) as the normative

form of GBA.

In this case, λ gives the difference in molar entropy Ŝ between the two struc-
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tures at the critical point. a gives the slope −(dP̂ /dT̂ ) of the of the LLPT and

Widom line at the critical point, and the product λa gives the difference in mo-

lar volume V̂ between the two structures at the critical point, and b, d, and f

are proportional to the difference in give the difference in thermal expansivity α̂P ,

isothermal compressibility κ̂T , and isobaric heat capacity CP at the critical point.1

In addition, b, d, and f determine the curvature of the LLPT and Widom line in

the (T, P ) plane. The parameters λ, a, b, d, and f are adjustable parameters whose

values are chosen based on the best available fit to the data. In practice, not all

of the terms may be necessary; real water and indeed aqueous solutions at posi-

tive pressures can be fitted with only λ, a, and b, as can TIP4P/2005 at positive

pressures [17]. However, extension of the equation of state to negative pressures,

especially if low-temperature data are to be considered, requires that the differences

in compressibility and heat capacity between the two states be accounted for.

As discussed above, the non-ideality of mixing between the two structures is

assigned the simiple, symmetric form

ω(T, P )φ(1− φ). (2.21)

According to Eq. (2.10), we must have ω = 2 at the critical point. In putting

the TSEOS in roughly the form that I have used in this research, Holten and Anisi-

mov conjectured that the non-ideality might take the form2 ω = T̂ (2 + ω0∆P̂ ).

1It should be clarified that these parameters give the differences in properties of each of the
pure structures A and B at the critical point. All differences in properties between HDL and LDL
vanish at the critical point.

2This is expressed according to the definition ω relative to the Gibbs energy that is used in this
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Later work found that the ST2 model of water was better matched if ω took the

form 2 + ω0∆P̂ . In the first case, the non-ideal Gibbs energy is proprotional to the

non-ideality in the entropy of mixing and there is no non-ideal enthalpy of mixing.

This has been dubbed an “entropy-driven” LLPT. In the second case, the non-ideal

Gibbs energy is equal to the non-ideal enthalpy of mixing, and there is no non-ideal

entropy of mixing. This has been dubbed an “energy-driven” LLPT. In both cases,

however, non-ideal energy and volume of mixing are both present. In a particular

implementation of the TSEOS, either form for ω, or a linear combination of the two,

can be used. In this case,

ω =
[
T̂ (1− δ) + δ

]
(2 + ω0∆P̂ ). (2.22)

2.3 Relationship to Scaling Theory of the Critical Point

For a lucid and complete treatment of critical pheonomena, in particular scal-

ing and universality, I recommend in particular Michael Fisher’s lectures, collected

in Ref. [37]. Landau’s treatment in Ref. [38] is also worthwhile. This section of

the dissertation presumes some knowledge of critical phenomena on the part of the

reader and outlines the main features of the TSEOS in terms of the scaling theory

of phase transitions.

In the theory of critical phenomena, the thermodynamic potential can be sepa-

rated into a regular background part and a critical part, the latter of which contains

dissertation. Ref [10] uses a definition of ω by a factor of RT .
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all of the singular behavior associated with the critical point. The critical part of the

potential is associated with the dependent scaling field h3, which can be expressed

in terms of two independent scaling fields: the ordering field h1 and the second,

“thermal” field h2.

h3 = Φ1dh1 + Φ2dh2, (2.23)

where Φ1 is the order parameter [38] and Φ2 is the second (weakly fluctuating)

scaling density.

Because we use the molar Gibbs energy G(T, P ) as the thermodynamic po-

tential, we start with

h3 = Ĝ− ĜA. (2.24)

Once the scaling densities have been identified, regular terms can be subtracted

from h3 so that the scaling densities are set to zero at the critical point. In a

“simple-scaling” model, each thermodynamic field is associated with one of the

scaling fields [39]. Such a model is indeed too simple for the present case. In

principle, all physical fields must be considered for a complete treatment of a fluid

critical point (“complete scaling” [40]). However, if the analysis is confined to a

mean-field approximation, then a mixture of two thermodynamic fields suffices for a

simple fluid. For the reasons of convenience mentioned in the introduction, we choose

to express the independent scaling fields in terms of T and P . This is consistent with

an intermediate approach between simple and complete scaling known as “revised
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scaling” [10,39,41]. Thus we have:

h1 = a1∆P̂ + a2∆T̂ , (2.25)

h2 = b1∆T̂ + b2∆P̂ . (2.26)

The order parameter Φ1 in this model is associated with the fraction of molecules

in the low-density state, such that

Φ1 = φ− φc. (2.27)

Condition 2.10 locates the LLPT and LLCP, and in the one-phase region gives the

locus of maximum fluctuations of the order parameter, from which we find

h1 = GBA, (2.28)

which is consistent with the condition

Φ1 =

(
∂h3

∂h1

)
. (2.29)

In practice, a linear approximation of ĜBA may be used.

The inclusion of a dependence upon pressure in the expression for ω—this

indicates non-ideality in the volume of mixing between the two species, and is a

necessary part of the TSEOS—means that the thermal field h2 includes a term

proportional to the pressure. In the athermal case, h2 = −∆P̂ , while for the regular-
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solution or a mixed case h2 is a linear combination of pressure and temperature. In

general,

h2 = −∆P̂ +
2δ

ω0

∆T̂ . (2.30)

This is a difference between the thermodynamic environments of the liquid-liquid

and the vapor-liquid critical points. In the latter case, simple scaling models have

h2 = ∆T̂ , while revised or complete scaling models include contributions from the

other fields. In particular, the lattice-gas model of the vapor-liquid critical point

has h2 = ∆T̂ [39].

From these definitions, expressions can be derived for the scaling susceptibili-

ties, χ1, χ2, and χ12, and the physical response functions can be expressed as linear

combinations of these susceptibilities, expressions that are used in the analysis of

Chapter 3. Of particular interest will be χ1 =
(
∂Φ1

∂h1

)
, the strongly divergent scal-

ing susceptibility. χ1 diverges strongly at the critical point, and κT , and CP each

contain terms proportional to χ1, which accounts for the strong divergence of these

properties.

2.3.1 The Widom Line

The definition of the Widom line deserves special consideration here. Accord-

ing to scaling theory, the Widom line corresponds to h1 = 0 and Φ1 = 0 in the

one-phase region, and the definitions of the Widom line and h1 are thus consis-

tent. In the literature, however, various definitions of the Widom line are used.

The reason for this is that in the one-phase region, κT and CP go through finite
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maxima but do not diverge, and asymptotically, the loci of these maxima approach

the line of maximum fluctuations in the order parameter. Because of the relative

ease of measuring these maxima, one or the other is often referred to as the Widom

line. In the vicinity of the liquid-vapor critical point, where the order parameter is

ρ− ρc to an excellent approximation, the locus of κT maxima is a suitable proxy for

the Widom line. The thermodynamics of the liquid-liquid critical point are more

complicated, however. Moreover, the TSEOS aims to describe water over a broad

range of temperatures and pressures. Far from the critical point the loci of CP and

κT maxima may have very different shapes, and both may differ from the locus of

maximum fluctuations in the order parameter, as is discussed in detail Chapter 5.

Consquently, neither is a suitable proxy for the Widom line. In this Dissertation,

the Widom line refers to the locus of maximum fluctuations of the order parameter,

which in the TSEOS corresponds to the condition 2.10 and P < Pc.

2.4 Conclusion

This Chapter has laid out the structure of the TSEOS and the thermodynamic

considerations that motivate it. The Chapters that follow document applications of

the TSEOS to particular systems and problems, namely: the thermal conductivity

of supercooled water, supercooled aqueous solutions, the TIP4P/2005 model in the

critical region, and the TIP4P/2005 model at negative pressures. Each project has

required at least slight modifications or extensions of the TSEOS, as documented

in the respective Chapters, most notably the addition of a liquid-vapor spinodal to
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study negative pressures in Chapter 5. The core of the TSEOS has remained the

same throughout, however.
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Chapter 3: Supercooled Aqueous Solutions

Author’s Note: this chapter incorporates large selections of text from Ref. [42],

which I published in 2014 along with my colleague Vincent Holten and my thesis

advisor Mikhail Anisimov. “We” refers to myself and these co-authors. –JWB

3.1 Introduction

With the hypothesized liquid-liquid critical point lying just out of reach of

experiment in pure water, the addition of solutes to water shows obvious promise

as a way to shed light on the question. The addition of a solute to water depresses

the freezing point, and this disruption of the freezing process also lowers the tem-

perature of homogeneous nucleation. As a result, temperature and pressures that

are inaccessible in the pure fluid due to homogeneous ice nucleation become acces-

sible in aqueous solutions. In the best-case scenario, addition of a solute would

bring the LLPT and LLCP themselves into the experimentally accessible region,

where they could be directly observed. Now, even were a LLPT to be observed

directly and incontrovertibly, a thermodynamic study would still be needed in or-

der to determine whether it emanated from a liquid-liquid transition in water, or

whether it came about due to non-ideality in the mixing between the water and the
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solute. Moreover, claims of direct observation of a liquid-liquid transition remain

controversial.

With that said, studies of solutions in which the LLPT and LLCP cannot be

observed can still shed light on the nature of water. The thermodynamics of dilute

aqueous solutions near the vapor-liquid critical point is a well-developed science, and

is easily applicable to aqueous solutions near the LLCP by the principle of critical-

point universality. In this Chapter, I will present an account of the experimental

data on NaCl(aq), showing that the response of water anomalies to the addition

of NaCl is best accounted for by two-structure thermodynamics, in particular by

the hypothesis of a LLPT and LLCP. These concepts yield a convincing qualitative

picture of the behavior of a variety of aqueous solutions. Moreover, the TSEOS can

give a striking quantitative account of the experimental density and heat-capacity

data in supercooled NaCl(aq) with only simple changes to the background terms.

This chapter also analyzes experimental claims regarding the direct observation of

LLPT in supercooled water-glycerol solutions.

3.2 Overview of the Experimental Situation in Supercooled Aqueous

Solutions

It has been known since the mid-19th century that the addition of sugars and

salts to water depresses the temperature of maximum density. Moreover, the rela-

tionship between temperature of maximum density and concentration of solute is

nearly linear, a relationship known as “Despretz’s Law”. Upon addition of NaCl,
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homogeneous nucleation moves to lower temperatures and pressures, while the ho-

mogeneous nucleation curve in the P -T plane keeps roughly the same shape.

The experimental information on the thermodynamic properties of supercooled

aqueous solutions of salts, in particular of NaCl, is very limited. The available data

are the isobaric heat capacity measurements of Archer and Carter [6], and the density

measurements of Mironenko et al. [43], both at atmospheric pressure. The density

data confirm the depression of the TMD and show an increase in density upon

addition of a solute [43]. Archer and Carter found that upon addition of NaCl, the

anomalous increase in the heat capacity moves to lower temperatures and decreases

in magnitude, practically disappearing for concentrations greater than 2 mol/kg.

In the initial publication announcing these results, Archer and Carter interpreted

them as evidence against the existence of the liquid-liquid critical point. However,

our study reaches the opposite conclusion: in light of what can be inferred about

the movement of the locus of liquid-liquid phase transitions upon addition of NaCl,

this behavior of the heat capacity is precisely what thermodynamics predicts if the

anomaly in the heat capacity is indeed associated with a liquid-liquid critical point.

In addition, Murata and Tanaka have reported direct visual observation of a

liquid-liquid transition in supercooled aqueous solutions of glycerol [44]. They have

argued that the formation of a more stable liquid phase in this solution may occur

by two alternative types of kinetics: nucleation and spinodal decomposition. They

have also claimed that the transition is mainly driven by the local structuring of

water rather than of glycerol, suggesting a link to the hypothesized liquid-liquid

transition in pure water. However, they did not observe two-phase coexistence,
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leading them to claim that the transition is “isocompositional” and the nucleation

and spinodal decomposition occurs “without macroscopic phase separation.” Murata

and Tanaka’s results have been questioned by other researchers [45], and controversy

concerning the liquid-liquid transition in supercooled water-glycerol persists. Still,

it is worthwhile to examine the observations and analysis of Murata and Tanaka in

light of two-structure thermodynamics.

3.3 Thermodynamics of Criticality in Dilute Solutions

3.3.1 Isomorphism

There is a well-developed approach to treating the thermodynamics of mixtures

near their critical points, closely related to the principle of critical-point universality,

known as “isomorphism” [46]. It has been postulated that upon the addition of

solute, the form of the equation of state remains unchanged under the condition of

constant thermodynamic fields, including chemical potentials [46–52].

The molar Gibbs energy of a binary system is expressed through the chemical

potentials of the two components, solvent and solute, µ1 and µ2 as

G = (1− x)µ1 + xµ2 = µ1 + x(µ2 − µ1), (3.1)

where x is the mole fraction of solute and δ = (∂G/∂x)T,P = µ2 − µ1 is the ther-
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modynamic field conjugate to x, and

dG = V dP − SdT + δdx. (3.2)

In the theory of isomorphism, the chemical potential of the solvent in solution,

µ1 = G − xδ, which is the same in the binary-fluid coexisting phases, replaces

the concentration-dependent Gibbs energy as the relevant thermodynamic potential

such that

dµ1 = V dP − SdT + xdδ. (3.3)

There are two alternative cases of fluid-fluid separation in a binary solution.

One is caused by non-ideality of mixing between the two species. The other is the

offspring of a transition in the pure solvent. The former case is typical for liquid-

liquid separation in weakly compressible binary solutions, while the latter case is

observed as fluid-fluid transitions stemming from the vapor-liquid transition in the

pure solvent. For the second case, the mixing of the two species in the solution does

not need to be non-ideal, as the phase separation in the solution is a continuation

of the phase-separation in the pure solvent [53]. This work models liquid-liquid

transitions in supercooled aqueous solutions as instances of this latter case.

The stability criterion in fluid mixtures can be written in a form convenient

for the latter case:

(
∂P

∂V

)
T,δ

=

(
∂P

∂V

)
T,x

+

(
∂P

∂x

)2

T,V

(
∂x

∂δ

)
T,V

≤ 0. (3.4)
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We assume that the form of the isomorphic thermodynamic potential, which

is the chemical potential of water in solution µ1, is the same as that of the Gibbs

energy of pure solvent (water) given by the TSEOS:

µ1 = µA + φµBA = µ1A + φµ1BA+

RT [φ lnφ+ (1− φ) ln(1− φ) + ωφ(1− φ)] (3.5)

where µ1A is the chemical potential of pure state A, and µ1BA = µ1B − φµ1A, is

the difference in the chemical potentials between the pure states. There are two

key differences difference from the thermodynamics of the pure solvent. One is that

is that the critical parameters, Tc and Pc, are functions of the chemical potential

difference δ = µ2−µ1. The other is that the dependence of the Gibbs energy of pure

structure A (the “background”) upon concentration is accounted for by making the

{cmn} of Eq. 2.18 dependent on the concentration x of NaCl, so that

GA =
∑
m,n

cmn(1 + βmnx+ γmnx
2)∆T̂mP̂ n. (3.6)

The {cmn} and all other parameters for pure water used in this research are un-

changed from the mean-field version of the TSEOS that is presented in Ref. [10].

Note that the chemical potentials of the two components, solvent and solute,

are not the chemical potentials µA and µB of two alternative structures in water; µ1

and µ2 are controlled by the concentration of solution and interactions between the
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solvent and solute molecules.

3.3.2 Implications of Constant Composition

Properties at constant composition are found from the derivatives of the Gibbs

energy. In order to obtain them, we must perform a Legendre transformation G =

µ1 +µx. In addition, we use an approximation, called the critical-line condition [52],

that requires along the critical line in solution

x = xc = eδ/RT . (3.7)

When a critical line emanates from the critical point of the pure solvent, the prin-

cipal thermodynamic property that controls the behavior of solutions at constant

composition is the so-called Krichevskii parameter defined in the dilute-solution

limit as [54]

K = lim
x→0

(
dP

dx

)
c,cxc

=
dTc

dx

[
dPc

dTc

−
(
dP

dT

)
c,cxc

]
. (3.8)

where (dP/dT )c,cxc is the slope of the line of liquid-liquid coexistence at the critical

point of pure solvent. The derivatives dTc/dx and dPc/dTc determine the initial

slopes of the critical line in the (T, P, x) space. Thus, since in the limit of the solvent

critical point (dP/dx)c,cxc = (∂P/∂x)T,V , the absolute stability limit (spinodal) can

be formulated through the Krichevskii parameter as

(
∂P

∂V

)
T,δ

=

(
∂P

∂V

)
T,x

+K2

(
∂x

∂µ

)
T,V

= 0. (3.9)
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Along the critical line the inverse compressibility at constant composition vanishes

in the pure solvent limit as

(
∂P

∂V

)
T,x

= −xK2 → 0. (3.10)

Note that if the fluid phase separation in solutions stems from the transition in pure

solvent, the stability criterion of a pure fluid smoothly transforms into the stability

criterion of a solution.

If the solute dissolves more favorably in the higher-pressure phase, then Le

Chatelier’s principle indicates that the phase transition at a given temperature will

move to lower pressures, and vice versa. The direction in which the phase transition

pressure moves at constant temperature, positive or negative, indicates the sign of

the Krichevskii parameter. This does not necessarily mean that the sign of dPc/dx

determines the sign of the Krichevskii parameter, as this derivative is influenced

both by the movement of the transition line in the P -T plane and the movement of

the critical point along that line.

In binary fluids, the critical point becomes a critical line and the phase-

transition line becomes a surface of two-phase coexistence in the “theoretical” (T, P, δ)

space. However, in the “experimental” (T, P, x) space the behavior of thermody-

namic properties evaluated at constant composition will, in general, be different

from that of the corresponding properties in the pure solvent and from that of the

isomorphic properties in solutions (evaluated at constant chemical-potential differ-

ence δ). Remarkably, the nature and magnitude of this difference depend primarily
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on the value of the Krichevskii parameter [51, 52].

In particular, the concentration gap in the (T, x) plane at constant temperature

can be found from Eq. (3.3) as

(
dP

dδ

)
T,cxc

=
∆x

∆V
, (3.11)

where ∆V is the difference in volume of the coexisting phases. In the dilute-solution

approximation, dx/dδ = x/RT , so the concentration gap at the first-order transition

and constant pressure can be evaluated through the Krichevskii parameter, ∆V , and

the slope of the transition line as

∆x ' −xK∆V

RT
, (3.12)

where x = xc in accordance with the critical-line condition (3.7). Correspondingly,

the temperature gap at constant composition can be evaluated as (see the Appendix

to this chapter)

∆T ' xK2 ∆V

RT

(
dT

dP

)
c,cxc

. (3.13)

In the solvent-critical-point limit, ∆V ∝ x and the phase diagram develops a so-

called “bird’s beak” where the concentration gap vanishes to first order in x and the

two branches of the transition merge with the same tangent [54,55].

The above-described thermodynamics explains possible phase behavior of a

supercooled aqueous solution with a critical line emanating from the pure solvent

(water) critical point, as shown in Figs. 3.1 and 3.2. Only in a special case, when
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Figure 3.1: An example of phase boundaries at constant composition in a supercooled
aqueous solution exhibiting a liquid-liquid transition between HDL and LDL. The black
curve is the liquid-liquid transition in pure water, terminated at the critical point C. The
critical line is shown by solid red with the critical point of the solution labeled C′. The
blue curve shows the appearance of the first droplet of of LDL. The green curve shows
the disappearance of the last droplet of HDL. The blue and green dashed curves are the
thermodynamic stability limits of HDL and LDL, respectively. The shaded region shows
where HDL forms by nucleation. The dotted lines labeled 1,2,3, and 4 show different
thermodynamic paths as explained in the text.
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the the critical line and the liquid-liquid transition line merge with the same slope in

the (P, T ) plane, the Krichevskii parameter is zero, and the liquid-liquid transition

in solution will be isocompositional. That case corresponds to the so-called critical

azeotrope [51, 52]. The case demonstrated in Figs. 3.1 and 3.2 corresponds to a

negative value of the Krichevskii parameter. The sign of the Krichevskii parameter

determines the partition of the solute between the coexisting phases. The negative

sign of the Krichevksii parameter means that HDL has a higher concentration of

the solute.

The existence of phase separation in two-structure thermodynamics, caused

by coupling of the order parameter with density and entropy, raises an interesting

question concerning the path dependence of the character of spinodal decomposition

in such systems. Conventionally, spinodal decomposition in fluids is observed along

the critical isochore which, asymptotically close to the critical point, merges with

the Widom line. For this path, the final equilibrium state will be the two-phase

coexistence between liquid and vapor. However, if a fluid, initially (for example) in

the gaseous state, is quenched at constant pressure to the liquid state, the forma-

tion of the new equilibrium state may occur by two alternative mechanisms, either

nucleation or spinodal decomposition, both without macroscopic phase separation.

The same will be true for the liquid-liquid transition in water. This is illustrated in

Fig. 3.1. The conventional spinodal decomposition toward macroscopic phase sepa-

ration will be observed upon quenching along paths 1 (pure water) and 3 (solution).

However, if the final equilibrium state is located in the shaded region between the

spinodal (the absolute stability limit of the high-temperature liquid) and the phase
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Figure 3.2: Schematic T -x diagram of a supercooled aqueous solution exhibiting a liquid-
liquid transition between HDL and LDL. The red line is the critical line with the critical
point of pure water labeled C and the critical point of the solution at a certain concen-
tration C’. Solid blue and green lines show the coexistence between two phases, HDL and
LDL, respectively. Blue and green dashed lines show the thermodynamic stability limits
of HDL and LDL, respectively.
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transition line, the new state will be formed by nucleation without macroscopic

phase separation. If the final state is reached beyond the spinodal, the process will

be similar to spinodal decomposition, but without macroscopic phase separation.

These events are illustrated in Fig. 3.1 by thermodynamic paths 2 and 4.

3.4 Aqueous Solutions of Sodium Chloride

The experimental information on the thermodynamic properties of supercooled

aqueous solutions of salts, in particular of NaCl, is very limited. The available data

are the isobaric heat capacity measurements of Archer and Carter [6], and the density

measurements of Mironenko et al. [43], both at atmospheric pressure. Archer and

Carter observed that for small NaCl concentrations, upon lowering the temperature,

the heat capacity increases in the supercooled region. As the salt concentration is

increased, this anomalous rise in heat capacity moves to lower temperatures and

decreases in magnitude, virtually disappearing for salt concentrations greater than

2 mol/kg. Mironenko et al. found that as the concentration of NaCl was increased,

the density of the solution increased while the density maximum moved to lower

temperatures [43]. About forty years ago, Angell observed the suppression of the

heat capacity anomaly in supercooled water upon addition of lithium chloride [56],

qualitatively similar to the effects reported by Archer and Carter for sodium chloride

[6]. In light of what can be inferred about the movement of the locus of liquid-

liquid phase transitions upon addition of NaCl, this behavior of the heat capacity is

precisely what thermodynamics predicts if the anomaly in pure supercooled water
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is indeed associated with a liquid-liquid critical point.

Homogeneous ice nucleation in solutions of NaCl is shifted to lower tempera-

tures as the concentration of salt increases [57, 58], with the lines of homogeneous

nucleation keeping nearly the same shape in the P -T plane as in pure water [58].

The kinks in the melting lines of metastable phases of ice in aqueous solutions of

LiCl, observed by Mishima, suggest that the liquid-liquid transition also moves to

lower temperatures and pressures as the salt is added, remaining just below the

temperature of homogeneous nucleation for any given concentration of solute [59].

Mishima has also observed that the transition in amorphous water between the HDA

and LDA phases moves to lower pressures upon addition of LiCl [60].

The location of the critical point in pure water along the liquid-liquid transition

is uncertain; according to the analysis of Ref. [10], one can currently only say that

the critical pressure is smaller than 30 MPa, and could even be negative. Above the

lines of homogeneous ice formation, negative pressures are experimentally accessible

and correspond to doubly metastable liquid water, with respect to both the solid

and vapor states [61]. Liquid-liquid transitions at these pressures are an intriguing

possibility [62–65].

Simulations on the TIP4P [66] and mW [67] models of water suggest that hy-

drophilic solutes dissolve more easily in HDL than in LDL, the tetrahedral structure

of which they tend to disrupt. This further corroborates the hypothesis that the

liquid-liquid transition and Widom line will move to lower pressures (at constant

temperature) and to lower temperatures (at constant pressure) as the concentra-

tion of salt increases. Corradini and Gallo examined the slope of the liquid-liquid
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phase transition line and the position of the liquid-liquid critical point in TIP4P

water at several concentrations of NaCl [66]. From these results we can estimate

the derivatives in Eq. (3.8) as follows: dTc/dx = 770 K, dPc/dTc = −13.1 MPa/K,

and (dP/dT )cxc = −3.1 MPa/K, yielding a value of -7700 MPa for the Krichevskii

parameter in this water model. Such a large magnitude of the Krichevskii param-

eter indicates that the critical anomalies will be greatly suppressed even for small

concentrations of NaCl, and its sign indicates that NaCl dissolves better in HDL

than in LDL.

As can be seen in Fig. 3.3, our equation of state is in qualitative agreement

with simulation studies on the TIP4P model of water. Both our equation of state

and the simulations of Corradini and Gallo [66] display a large, negative value of

the Krischevksii parameter, driven primarily by the movement of the critical point

to lower pressures. Corradini and Gallo also find a slight increase in the critical

temperature as NaCl is added, and they find a smaller slope for the LLPT. A re-

scaling of the transition line obtained for the TIP4P model to match the slope of

the transition line in our equation of state suggests an almost vertical critical line in

real NaCl solutions (Fig. 3.3). A vertical critical line is adopted in our equation of

state and, as shown below, is also supported by further analysis of the heat capacity

data.

Simulations, experiments on the metastable ices in aqueous LiCl, and experi-

ments on the homogeneous nucleation in NaCl are thus in agreement that the locus

of liquid-liquid transitions moves rapidly to lower temperatures and pressures upon

addition of NaCl, yielding a negative Krichevskii parameter on the order of 103 MPa.
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Figure 3.3: A comparison of our equation of state with the simulation results of Corradini
and Gallo for the TIP4P model [66]. Because the systems have very different critical pres-
sures, the features are presented in terms of difference from the critical point in variables
reduced by the critical parameters of the system, as indicated. The blue solid line and
blue dashed line show linear approximations of the LLPT and Widom line, respectively,
for our equation of state. The green solid line and green dashed line show a linear approx-
imation of the LLPT and Widom line, respectively as reported in Ref. [66] for the TIP4P
model. Green circles show the critical points calculated at different mole fractions of NaCl
in simulation with the thin green line as a guide to the eye, whle the red line shows the
critical line for our equation of state. The critical point of H2O is shown as a red circle.
Top: our data and that of Corradini et al. Bottom: data of Corradini et al. re-scaled so
that the the LLPT has the same slope as in our equation of state.

In order to form a more precise estimate for our model, we take note of Mishima’s

evidence that in solutions of LiCl, the liquid-liquid transition remains just below

the line of homogeneous ice nucleation as both move to lower temperatures and

pressures [59]. With a linear approximation for the curve comprising the locus of

liquid-liquid phase transitions and the Widom line, the Krichevskii parameter can

be calculated based on the movement of this curve, regardless how the critical point
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might move along it. Thus, taking the behavior of the line of homogeneous nucle-

ation as a proxy for that of the line of liquid-liquid phase transitions, Ref. [58] gives

a Krichevskii parameter of K = −2230 MPa and Ref. [57] gives K = −2860 MPa.

Within that range, the value that we adopt for the Krichevskii parameter makes

only a small difference in the fit of the model to the data, and the slope of the

critical line makes little difference provided that the dominant contribution to the

Krichevskii parameter comes from the movement of the critical point to lower pres-

sures, as suggested by [66]. We find that a vertical critical line and a Krichevskii

parameter of K = −2860 MPa provides the most accurate calculations of the heat

capacity, and accordingly adopt these parameters.

For dilute solutions of simple electrolytes such as NaCl, there is a linear rela-

tionship between the concentration of the solute and the depression of the tempera-

ture of maximum density of water, a relationship known as Despretz’s law [68–70].

For those salinities at which data exist, our equation of state reproduces this phe-

nomenon adequately and matches the experimental data, as shown in Fig. 3.4.
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Figure 3.4: Temperature of maximum density in aqueous solutions of supercooled water.
The black line shows the equation of state used in this work, while the red squares and
blue circles show the measurements of Refs. [68] and [71] respectively.
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To calculate the isobaric heat capacity at constant composition we use the

thermodynamic relation between this experimentally available property and the

“theoretical” (isomorphic) heat capacity CP,δ = T (∂S/∂T )P,δ :

CP,x = CP,δ − T
(∂x/∂T )2

P,δ

(∂x/∂δ)P,T
, (3.14)

yielding

CP,x
R

=
T

R

(
∂S

∂T

)
P,x

= â2 χ1

1 + x(φ1L̂+ K̂)2χ1

+B, (3.15)

where the background heat capacity B is approximated as a polynomial function of

T and x, and â = (ρcR)−1(dP/dT )c,cxc, K̂ = K/ρcRTc, χ1 is a strongly divergent

susceptibility, and L̂ = (dPc/dx) /ρcRTc The details of this calculation are provided

in the first section of the Appendix to this Chapter.

Eq. (3.15) describes the crossover of the heat capacity between two limits. In

the limit x → 0 one recovers the expression for the heat capacity of pure water,

diverging at the critical point as

Cp
R

= â2χ1. (3.16)

As the solution critical point is approached, χ1 →∞, φ→ 0, and the heat capacity

approaches a finite value, growing with decreasing concentration:

CP
R
→ â2

xK̂2
+B. (3.17)
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The large negative value of the Krichevskii parameter for this system, K̂ ' −30

is mainly responsible for the significant suppression of the heat capacity anomaly

even in dilute solutions of NaCl. The results of fitting Eq. (3.15) to the experimental

data of Archer and Carter are shown in Fig. 3.5. The agreement between the theory

and experiment is remarkable.
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Figure 3.5: Suppression of the anomaly of the heat capacity in aqueous solutions of sodium
chloride. Symbols: experimental data of Archer and Carter [6]. Solid curves: predictions
based on two-state thermodynamics. Dashed curve shows the positions of the melting
temperatures as given by the IAPWS formulation for saltwater [72]. Dashed-dotted curve
shows the temperatures of homogeneous ice formation [58].
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3.5 Liquid-Liquid Transition in Water-Glycerol

Addition of glycerol lowers the temperature of homogeneous nucleation. Glyc-

erol stabilizes the liquid state, because hydrogen bonding between water and glycerol

increases the nucleation barrier for ice formation [44]. At mole fractions of glycerol

x ≥ 0.135, Murata and Tanaka have reported phase transitions between two liq-

uid states in the solution. They observed two alternative types of kinetics in the

formation of the low-temperature liquid state: nucleation and spinodal decomposi-

tion. They also found that the transition is mainly driven by the local structuring

of water rather than of glycerol, suggesting a link to the hypothesized transition

between LDL and HDL in pure water. However, Murata and Tanaka have also

claimed that the transition between two liquids in supercooled water-glycerol solu-

tions is “isocompositional”, i. e., at the transition point, LDL and HDL have the

same concentration of glycerol. They also argue that the transition occurs without

macroscopic phase separation. Furthermore, they relate these putative features of

the phase transition to the non-conserved nature of the order parameter.

We suggest an alternative interpretation of the experiments of Murata and

Tanaka. As we have shown above, the HDL-LDL transition in aqueous solutions

stemming from the transition in pure water cannot be isocompositional, except for

the case of a special behavior of the critical line, yielding the Krichevskii parameter

to be zero. Moreover, it cannot take place without macroscopic phase separation if

there exists a coupling between the order parameter and density and concentration.

As suggested by Murata and Tanaka, in HDL glycerol molecules destabilize
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hydrogen bonding as pressure does in pure water, whereas in LDL cooperative inter-

water hydrogen bonding and the resulting enhancement of tetrahedral order promote

clustering of glycerol molecules. This suggests that the critical line emanating from

the critical point of pure water continues down to negative pressures, while the

critical temperature decreases. Therefore, the difference in interaction of glycerol

molecules with the two alternative liquid structures practically rules out the possi-

bility that the critical point moves tangent to the phase transition line (dP/dT )c,cxc.

Thus the coexisting phases will not have the same composition and the Krichevskii

parameter will not be zero. Adopting the extrapolation of Murata and Tanaka for

atmospheric pressure, the critical point of the solution is found at x ' 0.05 and

T ' 225 K, and locating the critical point of pure water at 13 MPa and 227 K as

suggested in Ref. [10], we obtain from Eq. (3.8) the Krichevskii parameter to be

K ' −600 MPa. The temperature gap for the transition at constant concentration,

e. g. x = 0.165 and atmospheric pressure can be evaluated from Eq. (3.13). The

difference in the molar volumes ∆V/Vc of the coexisting phases can be estimated as

about 0.05 based on the distance between the transition at atmospheric pressure and

the critical point at the same concentration of glycerol. Then we find ∆T ' 5 K.

In light of this, it is unsurprising that Murata and Tanaka observed the for-

mation of LDL alternatively by spinodal decomposition and by nucleation without

observing macroscopic phase separation at x = 0.165. As illustrated in Fig. 3.1, the

transition should occur through spinodal decomposition if it takes place below the

absolute stability limit of the HDL phase, and by nucleation and growth if it takes

place between the point where the last drop of HDL vanishes in the metastable state
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and the absolute stability limit. The slow kinetics in supercooled water-glycerol and

the narrow width ∆T of the two-phase region make this scenario worthy of consid-

eration. However, available experimental data on the phase behavior of supercooled

glycerol-water solutions are still inconclusive. Other interpretations of the results

reported by Murata and Tanaka [44], in particular involving partial crystallization,

have been proposed by researchers in recent years [45, 73, 74] and the discussion is

ongoing in the literature.

3.6 Appendix to Chapter 3

3.6.1 Heat Capacity at Constant Composition

Eq. (3.14) in the main text of this Chapter is an expression for the isobaric heat

capacity at constant composition. Eq. (3.15) expresses the same property in terms

of scaling susceptibilities, so that the reader can more easily see the suppression of

the heat-capacity anomaly upon the addition of solute. This Appendix shows the

derivation of Eq. (3.15) from Eq. (3.14) and the principles of the scaling theory of

the critical point.

As discussed in Chapter 2, in this model the independent scaling fields can

be expressed in linear approximation as combinations of the temperature T and

pressure P , expressed as [10,41]

h1 = a1∆P + a2∆T, (3.18)

h2 = b1∆T + b2∆P. (3.19)
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For pure water in this version of the TSEOS, we find:

a1 =
1

ρcRTc

a2 = − 1

ρcRTc

(
dP

dT

)
c,cxc

, (3.20)

b1 = 0 b2 =
1

ρcRTc

, (3.21)

where (dP/dT )c,cxc is the slope of the phase transition line at the critical point. The

condition b1 = 0 corresponds to an entropy-driven phase separation [10].

In a two-component mixture there is an additional thermodynamic degree of

freedom to consider, and the scaling fields should be generalized to [51,52]

h1 = a1∆P + a2∆T + a3∆δ, (3.22)

h2 = b1∆T + b2∆P + b3∆δ. (3.23)

According to the principle of critical-point universality, the dependent scaling

field h3 must depend on the independent scaling fields h1 and h2 in the same way

for a mixture as for a pure fluid. Our approximation that the isomorphic Gibbs

energy µ1 = G− xδ retains the same form in mixtures as in pure water entails that

the coefficients in the scaling fields, a1, a2, b1, and b2 remain unchanged.

With respect to an arbitrary point on the critical line, the scaling fields can
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be expressed to linear order as

h1 = a1∆P + a2∆T −
(
a1
dPc

dδ
∆δ + a2

dTc

dδ
∆δ

)
, (3.24)

h2 = b2∆P −
(
b2
dPc

dδ
∆δ

)
. (3.25)

So we can approximate

a3 = −
(
a1
dPc

dδ
+ a2

dTc

dδ

)
, (3.26)

b3 = −b2
dPc

dδ
. (3.27)

The critical-line condition [52] implies that (∂δ/∂x)T,P = RTc/x, therefore

a3 = − x

ρc(RTc)2

[
dPc

dx
−
(
dP

dT

)
c,cxc

dTc

dx

]
, (3.28)

b3 = − x

ρc(RTc)2

(
dPc

dx

)
. (3.29)

Thus a3 is associated with the Krichevskii parameter in accordance with Eq. (3.8);

b3 is associated with the parameter K2 = dPc/dx, which plays a secondary role in

the behavior of response functions at constant composition.

We now evaluate the response functions entering Eq. (3.14). The critical parts

of these response functions can be expressed in terms of the scaling susceptibilities,
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which are defined as follows in the mean-field approximation:

χ1 =

(
∂2h3

∂h2
1

)
h2

, (3.30)

χ2 =

(
∂2h3

∂h2
2

)
h1

= Φ2
1χ1, (3.31)

χ12 =

(
∂2h3

∂h1∂h2

)
= Φ1χ1. (3.32)

With b1 = 0, the critical parts of the response functions, denoted with a superscript

c, read:

1

RTc

(
∂S

∂T

)c

P,δ

= a2
2χ1, (3.33)

1

ρcRTc

(
∂x

∂T

)c

P,δ

= a2a3χ1 + a2b3χ12, (3.34)

1

ρcRTc

(
∂x

∂δ

)c

P,T

= a2
3χ1 + 2a3b3χ12 + b2

3χ2. (3.35)

We approximate the the regular parts of the response functions, denoted by a su-

perscript r, as

(
∂x

∂T

)r

P,δ

= 0, (3.36)(
∂x

∂δ

)r

P,T

=
x

RTc

, (3.37)(
∂S

∂T

)r

P,δ

=

(
∂S

∂T

)r

P,x

. (3.38)

Then, from Eq. (3.14) we have
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CP,x
R

=
Cr
P,x

R
+ â2 χ1

1 + x(Φ1L̂+ K̂)2χ1

. (3.39)

3.6.2 Width of the Two-Phase Region at Constant Composition

This section of the Appendix gives the derivation of Eq. (3.13) in the main

text. This is a first-order expression for the difference in temperatures between the

appearance of the first drop of LDL and the disappearance of the last drop of HDL

as an aqueous solution is cooled through the LLT.

A linear approximation of the coexistence surface,

P −
(
P 0

c +
dPc

dδ
∆δ

)
=

(
dP

dT

)
c,cxc

(
T −

(
T 0

c +
dTc

dδ
∆δ

))
, (3.40)

gives

(
dP

dδ

)
T,cxc

=
dPc

dδ
−
(
dP

dT

)
c,cxc

dTc

dδ
(3.41)

' x

RTc

[
dPc

dx
−
(
dP

dT

)
c,cxc

dTc

dx

]
(3.42)

' x

RTc

K, (3.43)

where here and below x = xc, as follows from the critical-line condition (3.7). Thus

from Eq. (3.11),

∆x ' −xK∆V

RT
. (3.44)
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To a first approximation, the width of the two-phase region can be estimated as

∆T ' ∆x

(
dT

dx

)
P,x

, (3.45)

where (dT/dx)P,x is the slope of the line of symmetry (along the average concentra-

tion x) of the two-phase region in a (T, x) plane. The approximate slope of this line

is (
dT

dx

)
P,x

=
x

RTc

(
dT

dδ

)
P,cxc

. (3.46)

From Eq. (3.40), (
dT

dx

)
P,x

' K
(
dT

dP

)
c,cxc

. (3.47)

Therefore,

∆T ' xK2 ∆V

RT

(
dT

dP

)
c,cxc

. (3.48)
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Chapter 4: The LLCP in TIP4P/2005

Author’s Note: This Chapter incorporates large selections of text from Ref. [17].

The simulations were carried out by Rakesh Singh at Princeton University. I am

primarily responsible for the thermodynamic analysis presented here. “We” refers

to myself and Mikhail Ansimov (my thesis advisor), and Rakesh Singh and Pablo

Debenedetti of Princeton University (the four authors of Ref. [17].)

4.1 Introduction

Several computer simulation studies directly or indirectly suggest the existence

of a metastable LLPT for some molecular models of water [9,20,22,23,75–80] and for

tetrahedral network-forming models [64, 81–84]. Recent state-of-the-art free-energy

computations convincingly confirm the LLPT for the ST2 model [23, 80, 85] and

some coarse-grained water-like network-forming models [83]. Of special relevance is

the work of Smallenburg and Sciortino [85]: these authors showed that the LLPT in

the ST2 model persists upon making the crystal phase metastable with respect to

the liquid by tuning the hydrogen bond angular flexibility. This disproves interpre-

tations according to which the LLPT is generically a misinterpreted crystallization

transition [86–89]. On the other hand, metastable liquid-liquid separation is not
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observed in the coarse-grained mW model [21, 86, 90, 91], a re-parametrized version

of the Stillinger-Weber (SW) model [92]. Placing phenomenological (equation of

state) calculations on firmer theoretical [20] and computational ground [80], under-

standing the molecular basis underlying the existence [80] or absence [91] of a LLPT

in specific models, and elucidating the model-dependent time and length scales over

which a metastable LLPT can be observed [93–95] are current objects of activity

and robust discussion.

The main focus of this Chapter is the TIP4P/2005 water model [96]. This

model reproduces satisfactorily the thermodynamics of liquid water and the com-

plex, experimentally observed phase diagram of water in its numerous crystalline

phases, and is considered to be one of the most accurate classical molecular models of

liquid water. The existence of a LLPT in the TIP4P/2005 model is still a subject of

debate. Abascal and Vega [77] reported the existence of a LLPT with critical param-

eters T = 193 K, ρ = 1012 kg/m3 and P = 135 MPa from molecular dynamics (MD)

simulations in the NPT ensemble. The more recent study of Sumi and Sekino [97] in

the NPT ensemble also suggests a LLPT for the TIP4P/2005 model, but the critical

parameters (T ≈ 182 K, ρ ≈ 1020 kg/m3 and P = 1580−1620 bar) were found to be

significantly different than those proposed by Abascal and Vega [77]. An equation of

state based on the concept of the presence of two different local structures, proposed

by Russo and Tanaka [18], also suggests the existence of a metastable LLPT for this

model. Recently, Yagasaki et al. [79] have carried out MD simulations in the NV T

ensemble and have observed a spontaneous low- and high-density liquid-liquid phase

separation in three models: ST2, TIP5P, and TIP4P/2005. The critical tempera-
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ture and density of TIP4P/2005 reported by Yagasaki et al. [79] are in agreement

with the predictions of Sumi and Sekino [97]. These authors also observed a clear

separation of time scales between LLPT and crystallization. However, studies of

Limmer and Chandler [87, 88] and Overduin and Patey [94, 95] found no evidence

for two metastable liquid phases around the temperature-pressure range suggested

by Abascal and Vega [77]. Overduin and Patey [94] also argued that the simulations

of Abascal and Vega [77] are too short to obtain converged results. In recent studies,

Limmer and Chandler [88] and Overduin and Patey [95] have also challenged the

results of Yagasaki et al.

Specifically, for TIP4P/2005 [96] and TIP5P [98], Overduin and Patey [95]

show that the spontaneous liquid-liquid phase separation reported by Yagasaki

et al. [79] exhibits a strong system-size dependence. For a system size of 4000

molecules, both studies, Ref. [79] and Ref. [95], observe regions of different densi-

ties separated by well-defined planar interfaces. However, Overduin and Patey [95]

also observed that the density difference between these regions was sharply reduced

with increasing system size, and disappeared for a system size of 32000 molecules.

These authors further argue that, as the appearance of regions of low density is

always accompanied by an excess of local ice-like molecules, the regions of different

densities observed by Yagasaki et al. [79] are likely associated with appearance and

coarsening of local ice-like structures, rather than with liquid-liquid phase separa-

tion. This argument supports the conclusion of Limmer and Chandler [88], who also

argued that the density differences observed by Yagasaki et al. [79] are due to ice

coarsening.
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There is another aspect of the physics of supercooled water that is closely

related to the discussion of the possibility of a metastable LLPT. This has to do

with the physical nature of the thermodynamic anomalies, in particular, the trend

toward diverging response functions. Currently, there is broad consensus based on

the experimental [13–16, 99, 100] and simulation [16, 18, 101–103] studies, that in

supercooled water two competing local structures indeed exist. Could this competi-

tion, which is assumed to be responsible for the thermodynamic anomalies, be sharp

enough to trigger a metastable LLPT? This is the central question. Definitely, this

possibility is strongly model-dependent and could also depend on specific experi-

mental/simulation conditions.

In this work, we have carried out extensive computer simulations in order to

explore the nature of the thermodynamic anomalies and, consequently, the possibil-

ity of a metastable LLPT in TIP4P/2005. To describe the computed properties, we

have applied two-structure thermodynamics, viewing water as a non-ideal mixture

of two interconvertible local structures. The thermodynamic behavior of the model

in the one-phase region is fully consistent with the existence of an energy-driven

LLPT in this model (at least for the simulated length and time scales). We have

compared the behavior of TIP4P/2005 [96] with the mW [90] and ST2 [104] models,

and with real water.
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4.2 Computational Model and Simulation Details

We performed molecular dynamics (MD) simulations of 216 water molecules

interacting via the TIP4P/2005 pair potential [96] in a cubic box at constant tem-

perature and volume (NV T ensemble). We computed the properties of liquid water

at approximately 200 state points at densities ranging from 1120 − 960 kg/m3 in

steps of 20 kg/m3 and temperatures ranging from 300 K down to 185− 180 K (de-

pending on the density of the system) in steps of 5 K. This choice of ensemble was

partly motivated by the possibility of observing van der Waals loops in the two-

phase region (below LLCP), in case they exist. It turned out that we were not able

to relax the system in the region where one would expect to observe van der Waals

loops. However, using many state points in the NV T ensemble enables us to follow

different isochores throughout the one-phase region, and to extrapolate them into

the region where the slow relaxation of the system impedes reliable computation.

We may thus distinguish between a system with a LLPT, in which the isochores

are projected to cross, and a system with competition between two structures but

without a LLPT, in which the isochores do not cross.

We have also performed MD simulations in the NPT ensemble with 512 water

molecules at 0.1 MPa and temperatures ranging from 300 K to 200 K. All simula-

tions were performed with use of GROMACS 4.6.5 molecular dynamics simulation

package [105]. In all cases, periodic boundary conditions were applied, and a time

step of 2 fs was used. The short-range interactions were truncated at 8.5 Å for

216 water molecule system and 9.5 Å for 512 water molecule system. Long-range
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electrostatic terms were computed by particle mesh Ewald with a grid spacing 1.2 Å.

Long-range corrections were applied to the short-range Lennard-Jones interaction

for both energy and pressure. Bond constraints were maintained using the LINCS

algorithm [106]. To maintain constant temperature we used a Nosé-Hoover thermo-

stat [107, 108] with 0.2 ps relaxation time. Constant pressure was maintained by a

Parrinello-Rahman barostat [109] with 2 ps relaxation time.

Molecular models of water are notorious for extremely slow structural relax-

ation in the superooled state. This slow structural relaxation often leads to con-

troversy over thermodynamic behavior of supercooled water observed in computer

simulation studies [22, 86, 87, 94]. In this work, in order to ensure the relaxation of

the system at each state point, we computed and carefully monitored the decay of

the self part of the intermediate scattering function (Fs(k, t)) [110] with time t. To

ensure the relaxation of the system at each thermodynamic condition investigated in

this work, MD trajectories are at least 400 times as long as the structural relaxation

time (defined as the time at which Fs(k
∗, t) = 1/e, k∗ is the wavenumber corre-

sponding to the first peak of structure factor). Depending on the thermodynamic

condition, MD trajectory lengths vary between 20 ns and 15 µs.

4.3 Description of thermodynamic properties of TIP4P/2005 water

In Fig. 4.1, we present the results of our NV T simulations (open circles) along

with isochores predicted by the TSEOS (solid lines). The densities range from

960 to 1120 kg/m3 in steps of 20 kg/m3 and the temperatures range from 300 K
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down to 180− 190 K (depending on the density) in steps of 5 K. The error bars of

the simulation data points are approximately equal to the size of the circles. The

shape of the isochores in the supercooled region strongly suggests the existence of

a LLCP for this model as predicted by the TSEOS. In Fig. 4.2, we have compared

TSEOS predictions for the densities along isobars with the previously reported data

by Sumi and Sekino [97] as well as by Abascal and Vega [77] obtained by NPT

simulations. We observe quantitatively good agreement between predictions of the

TSEOS and simulation data for T > 200 K. However, for very low temperatures,

the densities predicted by the TSEOS deviate significantly from previously reported

data [97]. This discrepancy most likely arises due to the approximations used in

the current form of the TSEOS. In any case, both the new simulation data and the

TSEOS strongly imply the existence of a liquid-liquid critical point near 182 K and

170 MPa, consistent with the recent simulation studies by Yagasaki et al. [79] and

by Sumi and Sekino [97].

In Fig. 4.1, and Fig. 4.2 we show the TSEOS prediction for the LLPT and

LLCP in the P -T and ρ-T planes, respectively. The TSEOS parameters are reported

in Table 4.1.

In order to gain deeper insight into the thermodynamic behavior of the TIP4P/2005

model in the supercooled state, in Fig. 4.3(a) and Fig. 4.3(b) we demonstrate the

behavior of the isothermal compressibility(κT ) and the corresponding predictions of

the TSEOS. The isothermal compressibility, defined as, κT = −(1/V )(∂V/∂P )T =

〈(δV )2〉/kBTV (kB is Boltzmann’s constant, V is the volume), is a measure of the

mean-square volume fluctuations 〈(δV )2〉 at constant temperature. The compress-
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Figure 4.1: Isochores in the P -T plane for the TIP4P/2005 model. The open circles
indicate simulation data, while the solid lines show the same iscohores according to the
TSEOS. The LLPT line, the LLCP, and the Widom line are shown as the solid black line,
large red circle, and black dashed line, respectively. The thin dotted line is the melting
line of TIP4P/2005 as reported in Ref. [77].

57



160 180 200 220 240 260 280 300
T (K)

950

1000

1050

1100

1150

ρ
(k

g
m

−
3 )

Figure 4.2: Densities along isobars computed by Sumi and Sekino [97] (open squares),
Abascal and Vega [77] (open diamonds), in this work (open circles; 0.1 MPa), and fits by
the TSEOS (solid lines). The black dashed line bounds the two phase region as predicted
by the TSEOS, and the red circle shows the predicted location of the critical point. Isobars
shown, from top to bottom, are 300, 200, 175, 150, 125, 120, 100, 70, 40, and 0.1 MPa.
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Table 4.1: Parameters for the two-structure equation of state

Parameter Value Parameter Value

Tc 182 K c20 −5.3481
Pc 170 MPa c12 0.000493
ρc 1017 kg/m3 c21 0.1094
λ 1.407 c30 1.3293
a 0.171 c22 −0.02129
b −0.100 c31 −0.02446
ω0 0.0717 c40 −0.13173
c01 0.8617 c23 0.003687
c02 −0.003412 c32 0.01229
c11 0.01351 c33 −0.003513

ibility as a function of density along isotherms, shown in Fig. 4.3(a), is computed

from the simulation data. In Fig. 4.3(b)) we show the compressibility data along the

isobars reported by Abascal and Vega [77] to compare with the predictions of the

TSEOS. The results presented in these figures show that the two-structure thermo-

dynamics successfully describes the observed anomalous behavior of thermodynamic

response functions in the supercooled region.
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Figure 4.3: (a) Isothermal compressibility along isotherms. Symbols are simulation data
and the curves are predictions of the TSEOS (this work). (b) Isothermal compressibility
along isobars. Symbols are simulation data by Abascal and Vega [77] (open circles) along
with our work at 0.1 MPa (open squares). The curves are the predictions by the TSEOS.
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In Fig. 4.4, we demonstrate the temperature dependence of the heat capac-

ity at constant volume, CV , along different isochores. The isochoric heat capacity

CV , defined as (∂E/∂T )V = 〈(δE)2〉/kBT
2, is a measure of the total energy (E)

fluctuations of the system. We observe excellent agreement between two-state ther-

modynamics and computer simulation predictions for higher densities (greater than

1040 kg/m3) and reasonably good agreement (considering the larger uncertainties in-

volved in computing energy fluctuations) at lower densities and temperatures. From

the figure, it is evident that unlike κT , CV does not show any significant anomaly on

supercooling down to 185 K. This is not surprising, as the anomaly of the isochoric

heat capacity near the critical point is very weak. It originates solely from fluctu-

ation effects associated with the divergence of the correlation length and does not

exist in the mean-field approximation. According to scaling theory [37], the weak

divergence of CV should only be noticeable in the close vicinity of the critical point

(practically, within 1-2 degrees, i. e. at (T − Tc)/Tc < 10−2 [50]). Moreover, in a

finite-size system, the correlation length cannot exceed the size of the box, and so

the critical anomalies are rounded. Our system contains only 216 molecules, which

is too small for weak (fluctuation-induced) anomalies to be observed. A crossover

TSEOS that incorporates fluctuation effects upon approaching the critical point has

recently been applied for the description of the ST2 model [20], and it was shown

that within the accuracy of simulation data for that model, fluctuation effects are

negligible.

60



4000

4500

5000

5500

6000

C
V

(J
kg

−
1

K
−

1 )

ρ = 960 kg m−3 ρ = 980 kg m−3 ρ = 1000 kg m−3

4000

4500

5000

5500

6000

C
V

(J
kg

−
1

K
−

1 )

ρ = 1020 kg m−3 ρ = 1040 kg m−3 ρ = 1060 kg m−3

200 220 240 260 280 300
T (K)

4000

4500

5000

5500

6000

C
V

(J
kg

−
1

K
−

1 )

ρ = 1080 kg m−3

200 220 240 260 280 300
T (K)

ρ = 1100 kg m−3

200 220 240 260 280 300
T (K)

ρ = 1120 kg m−3

Figure 4.4: Temperature dependence of the specific heat capacity at constant volume
(CV ) along different isochores. Symbols are simlutation data computed from total energy
fluctuations and solid lines show the predictions of the TSEOS.

61



4.4 Water-Like Models versus Real Water

Our study, together with three previously published simulation results [77,79,

97], shows that the TIP4P/2005 model in the range of pronounced thermodynamic

anomalies behaves similarly to the ST2 model. This is clearly seen from the equally

sharp behavior of isobars in the vicinity of the projected critical point as demon-

strated in Figs. 4.5(a) and 4.2. Even without computational data obtained for

the two-phase region, such van der Waals-like behavior of the isobars suggests the

proximity of the critical point. Contrary to the ST2 and TIP4P/2005 models, in

the mW model of water the isobars, shown in Fig. 4.5(b), only weakly change with

changing pressure and never become steep enough to suggest criticality. Indeed, the

presence of a LLPT is model-dependent. While in the mW model the non-ideality

in mixing of the two structures never becomes strong enough to cause a metastable

LLPT, the thermodynamics of the ST2 and TIP4P/2005 models strongly implies

the existence of a metastable LLPT.

The thermodynamics of real supercooled water is more ambiguous. Properties

of bulk supercooled water in the experimentally accessible region are well described

by two-structure thermodynamics (for example, density data and theoretical pre-

dictions along isobars are presented in Fig. 4.6(a)). However, the projected phase

separation is located so far below the homogeneous ice nucleation limit that the

location of a LLPT and even its very existence becomes uncertain [10]. This prob-

lem with real water is clearly illustrated by comparison of Fig. 4.1, showing the

convergence of isochores in TIP4P/2005 at a point that is interpreted as the LLCP,
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Figure 4.5: Simulated data from the ST2 and mW model (symbols) are compared with
the predictions (curves) of two-structure thermodynamics, as adapted for the respective
models. (a) Temperature-dependent density (ρ) along different isobars computed for (a)
the ST2(II) model. The thick black curve indicates two-phase coexistence (dashed: mean
field equation, solid: crossover equation) and black dots represent the critical point. The
isobar pressures vary from 100 MPa to 200 MPa in steps of 10 MPa. Figure adapted
with permission from Ref. [20], c© 2014, American Institute of Physics. (b) Temperature-
dependent density (ρ) along different isobars (from the top: 1013, 810, 507, 228, 159, 57,
0.1 MPa) computed for the mW model. Figure adapted with permission from Ref. [21],
c© 2013, American Institute of Physics.
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Figure 4.6: (a) Density of cold and supercooled water as a function of temperature along
different isobars (black lines are the predictions of an extended version of the TSEOS [29]).
Symbols are experimental data reported in Refs. [111] (crosses), [112] (open red circles),
and [113] (filled blue diamonds). TH indicates the homogeneous nucleation line. The data
from Ref. [112] have been adjusted by at most 0.3% to correct for small systematic errors,
as explained in Ref. [41]. (b) Isochores of cold and supercooled water computed with an
extended version of the TSEOS [29]. The dashed curve is the homogeneous nucleation
line and the blue curve is the TMD locus.
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and Fig. 4.6(b) for real water in which such convergence is in principle allowed

but far from certain. Obviously, the real-water dilemma cannot be resolved with

the experimental data that are currently available. Future studies will need to ei-

ther penetrate into “no-man’s land” or bring the critical point into experimentally

accessible conditions by adding a solute [42,74,114].

4.5 Discussion: Does a Metastable LLPT Exist in TIP4P/2005?

We have investigated the thermodynamic behavior of the TIP4P/2005 water

model in the supercooled region. The convergence of the isochores around a density

of about 1020 kg/m3 at about 180 − 185 K suggests the presence of a metastable

LLPT in the TIP4P/2005 model.

Our results are supported by the data of Sumi and Sekino [97] and consistent

with the conclusions of Yagasaki et al. [79]. The substantiation of this viewpoint

will require free-energy calculations such as those that have yielded unambiguous

evidence [80,85] of a liquid-liquid transition in the ST2 model of water. Because the

phenomenon under scrutiny is metastable, the question of how sampling time and

system size constrain the possibility of observing a liquid-liquid transition arises

in addition to the question of its existence in a free-energy or equation-of-state

calculation.

However, the most recent extensive study of the TIP4P/2005 and TIP5P mod-

els by Overduin and Patey [95], which reported simulations in the projected two-

phase region for systems ranging in size from 4000 to 32000, found density differences
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between the regions of low and high densities to decrease with increasing system size.

The difference finally disappeared for a system composed of 32000 molecules. Over-

duin and Patey further argued that, as the appearance of regions of low density is

always accompanied by small ice-like crystallites, the regions of different densities

observed by Yagasaki et al. [79] might be associated with the appearance and coars-

ening of local ice-like structures, rather than with liquid-liquid phase separation.

This argument is similar to that of Limmer and Chandler [88], who also argued that

the density differences observed by Yagasaki et al. [79] are due to ice coarsening,

rather than to spontaneous liquid-liquid phase separation.

This argument deserves serious consideration. However, we must note that

separated liquid states observed in NV T simulations are always metastable with

respect to ice formation. Consequently, as Overduin and Patey note [95], the mere

presence of ice-like crystallites (6 − 8% for TIP4P/2005 model at the lowest tem-

perature studied by Overduin and Patey [95]) having finite lifetime in the system

does not provide unambiguous proof for the ice-coarsening hypothesis proposed by

Limmer and Chandler [86–88]. Also, the computed fraction of ice-like particles or

crystallites is very sensitive to the definition adopted for classifying a water molecule

as ice-like. On the contrary, the observed excess local density of ice-like crystallites

and strong correlations among them in low-density regions can also be understood

without invoking the ice-coarsening hypothesis. Liquid-liquid phase separation leads

to spatial heterogeneity in water, and it is to be expected that the ice-like fluctu-

ations or crystallites will be more stable in the low-density regions due to a lower

surface free-energy cost. In this context, the recent simulations of Smallenburg and
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Sciortino [85] have clearly demonstrated that the liquid-liquid transition in the ST2

model is not a misinterpreted crystallization transition, as had been claimed [86,87].

Moreover, the fact that phenomena observed in the metastable region depend

on the system size and on the duration of observation time is not surprising. This is,

in fact, an essential characteristic of metastability. A metastable phase separation

cannot exist at all in the thermodynamic limit (infinite size and infinite time). If

we denote by τrelax the internal reaxation time in the metastable state, and τout the

time it takes for the system to exit the metastable state and form the stable phase

(i. e. a characteristic crystallization time in our case), then the metastable state is

well defined if τrelax << τout. When this condition is met, thermodynamics can be

applied to a metastable state. As Overduin and Patey note, there are several reasons

why the metastable LLPT might not be manifested in large enough systems [95]. In

particular, as has been emphasized by Binder [115], the divergence of the correlation

length at the critical point causes the relaxation time to diverge, an effect known as

critical slowing-down. Increasing the system size, on the other hand, decreases the

lifetime of metastability, and thus at certain conditions prevents the manifestation

of metastable phase separation.

The formation of two liquid phases can also be impeded by the unfavorable

interfacial energy between them. Consequently, the extent of phase separation not

only depends on the choice of initial density of the system but also on the aspect

ratio of the simulation box. Due to the large surface energy cost for the formation of

well-defined stable interfaces, phase separation is not observed in cubic boxes, even

in systems far below the LLCP. In order to observe phase separation one always

66



simulates rectangular boxes (1 : 1 : 4 in case of Yagasaki et al. [79] as well as

Overduin and Patey [95] for 4000 molecules) to minimize interfacial free energy

cost for formation of the LDL-HDL interface. It is thus very plausible that the

observation of two different metastable liquid densities in water-like models, such

as TIP4P/2005 and TIP5P, would involve length and time scale constraints that

would also influence the pathway to homogeneous ice nucleation.

As explained above, attempts to directly observe metastable liquid-liquid sep-

aration in NV T simulations are subject to non-trivial limitations. We have used an

alternative approach to evaluate the hypothesis of the metastable LLPT in super-

cooled water. We have studied a relatively small system of hundreds of molecules

and performed a series of simulations (about 200) to obtain reliable information

on the thermodynamic surface. Our study does not support one of the scenarios

discussed by Overduin and Patey [95] in which “liquid-liquid coexistence is simply

not a possibility” for the TIP4P/2005 water model. On the contrary, the clear con-

vergence of the isochores around 1020 kg/m3 and the behavior of thermodynamic

properties demonstrate the tendency to criticality. Furthermore, the equation of

state that is built on the assumption of the existence of LLPT fits the simulation

data very well.

An alternative hypothesis to the competition between two liquid structures

would be to attribute supercooled water anomalies (the sharp increases of the re-

sponse functions) to pre-crystallization effects [88,95]. Indeed, the theory of so-called

“weak crystallization”, which accounts for translational-order fluctuations, describes

the properties of the supercooled mW model as well as two-structure thermodynam-
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ics does [21]. However, pre-crystallization effects cannot explain the convergence of

isochores that is clearly observed in the ST2 and TIP4P/2005 models.

There is another puzzling result of Overduin and Patey [95] that requires fur-

ther studies. The correlation length characterizing fluctuations of density increases

sharply upon supercooling in real water [8, 116]. In Ref. [95], Overduin and Patey

examine this correlation length in both TIP5P and TIP4P/2005 and claim that it

apparently diverges along the critical isochore in TIP5P, but does not exhibit such

an anomaly in TIP4P/2005. We note that in our simulations the isothermal com-

pressibility increases by an order of magnitude along the critical isochore, which is

a strong effect, especially in view of a relatively small size of the system (about 2

nm). The correlation length of density fluctuations is approximately proportional

to the square root of the compressibility. Accordingly, the correlation length should

increase by about three times, the effect indeed observed for TIP5P [95].

In conclusion, the results of our study strongly support the presence of a

liquid-liquid critical point in the TIP4P/2005 model, and are consistent with the

possiblity of a liquid-liquid phase transition for this model. Our study does not

answer the questions regarding conditions under which the metastable LLPT can

or cannot be observed in the region below the projected critical point. Systematic

studies at various simulation conditions are required to further our understanding of

this deep and important problem. As far as the one-phase metastable liquid region

is concerned, investigation of finite-size effects on the shape of the thermodynamic

anomalies would be highly desirable.
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Chapter 5: Negative Pressures

5.1 Introduction

The strong intermolecular forces in water enable it to exist as a liquid not

only at temperatures below the freezing point, but also at pressures far below the

saturation pressure, and indeed at negative pressures. Water that is both stretched

and supercooled is thus doubly metastable—metastable against both the vapor and

the crystal. Recent experimental breakthroughs have greatly expanded the exper-

imentally accessible region of the phase diagram by probing supercooled water at

greatly negative pressures [61].

The failure of extrapolations of current equations of state to account for these

new data (discussed in Refs. [61] and [117]) highlights the need for a new equation

of state based on theoretical considerations relevant to low pressures. In particular,

current equations of state do not include a liquid-vapor spinodal (LVS), and so are

ipso facto inaccurate at very low pressures. Moreover, the behavior of stretched wa-

ter could shed light on questions surrounding the anomalies in supercooled water at

ambient and high pressures, including the relevance of two-structure thermodynam-

ics and the hypothesis of the LLCP. Of particular interest are the loci of minima

and maxima in various thermodynamic properties. The TMD locus is perhaps the
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signature anomaly of cold water and is a key to understanding the thermodynamics

behind water’s odd behavior. The shape of this line as it continues to lower pres-

sures can help distinguish among the various scenarios that have been proposed to

explain the anomalies of supercooled water. It is also hoped that other maxima and

minima that are predicted by two-structure thermodynamics will emerge into the

experimentally accessible region at negative pressures, confirming these predictions

and allowing, among other things, a more precise location of the Widom line. Al-

ready, a minimum in the speed of sound—predicted by the TSEOS to occur just

out of the reach of experiment at ambient pressures—has been observed along n

isochore at negative pressure [61]. Furthermore, a series of papers by D’Antonio

and Debenedetti [118–120], building on [30], has laid out necessary thermodynamic

relationships among the lines of extrema in various thermodynamic properties and

between them and the LVS. These relationships clarify the important role that the

behavior of LVS plays in the thermodynamics of supercooled water and highlight

that it must be included in a complete understanding of the subject.

As yet, however, the experimental data at large negative pressures are too

sparse to form the basis for a reliable equation of state. Consequently, I have

examined a wide range of simulation data for the TIP4P/2005 model, with the goal

of constructing an extended version of the TSEOS. With the inclusion of a liquid-

vapor spinodal, this new equation of state matches the data in TIP4P/2005 over

a very broad range of temperatures and pressures without sacrificing the quality

achieved in the fit to the critical region by the Equation of State in Chapter 4.

Moreover, patterns characterizing the lines of minima and maxima that one
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finds in TIP4P/2005—and that this extension of the TSEOS reproduces so well—also

appear in other water models, both with and without a LLPT or LLCP. Thus it

seems likely that the often anomalous behavior of cold and supercooled water can be

explained by two key concepts: the interconversion of alternative hydrogen-bonding

structures, and the liquid-vapor spinodal. It is my hope that as more experimental

data become available in real water, this most recent extension of the TSEOS can

be used to give a comprehensive picture of the thermodynamic behavior of water at

low temperatures.

5.2 Experimental Situation

There is fairly extensive literature on cavitation and the cavitation limit in

stretched water, which is reviewed well in Ref. [117]. Experimental data on the

thermodynamic properties, however, is more sparse: Henderson and Speedy have

measured the TMD at pressures down to -20.3 MPa (where it is found to occur at

281.45 K) [121, 122], Davitt et al. have measured the density and speed of sound

down to -26 MPa at 296.45 K [123]. In recent years, much greater tension has

been achieved by cooling inclusions of water in quartz at constant density. Azouzi

et al. measured the TMD at a pressure near -120 MPa [124]. Doubly metastable

water—both supercooled and stretched—was first observed practically as a nov-

elty (only down to -0.02 MPa, and reported on comically) by Hayward [125]. The

moderate-tension measurements of Ref. [122] include supercooling to 255.15 K. The

experimental phase diagram was greatly expanded by measurements of Pallares et
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al. along two isochores: they measured density and speed of sound in water down

to 258 K and pressures of around -100 MPa. Their density data supported the

conclusion that the TMD locus remains monotonic down to -100 MPa. The speed

of sound results were more surprising: their measured values of cs were nearly dou-

ble the extrapolations of the IAPWS equation of state, and they observed a clear

minimum in the speed of sound along the isochore ρ = 933kg/m3.

The handful of isochores that have yielded usable data on the thermodynamic

properties in the doubly metastable region are both intriguing and informative, but

they are far from adequate to the task of constructing an equation of state. For

this reason, I have returned to the TIP4P/2005 model. As part of a collaboration

between the University of Maryland, Université Claude Bernard Lyon-1 in France,

and Universidad Complutense de Madrid, the research group of J. L. F. Abascal

and C. Valeriani carried out extensive simulations on this model, including data at

deep supercooling and negative pressures.

The experimental data on this topic are intriguing to say the least, but as

yet they are too sparse to permit the construction of reliable equation of state. In

order to proceed with this project while experimental data remain unavailable, J.

L. F. Abascal and C. Valeriani’s group at the Universidad Complutense de Madrid

carried out simulations of the TIP4P/2005 model over a wide range of pressures.

M. A. González, at that time a student at UCM, carried out additional simulations

along isotherms in an attempt to locate the LVS of the model. At the time of

this submission, these authors, together with F. Caupin, have published data as

Ref. [126]. A journal article by them is pending review. I have combined this data
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with the data that were analyzed in the previous chapter and published in Ref. [17]

so that a broad picture of the EOS can be seen.

5.3 Equation of State

In order to fit this broad range of data, I found it necessary to extend the

TSEOS in two ways. First, by the inclusion of terms proportional to ∆T̂ 2 and ∆P̂ 2

in the expression for GBA, so that it reads

GBA = λ
(

∆T̂ + a∆P̂ + b∆T̂∆P̂ + f∆T̂ 2 + d∆P̂ 2
)
. (5.1)

Physically, these terms account for the difference in heat capacity and compress-

ibility between the two structures, respectively. One would speculate that both the

heat capacity and the compressibility of the low-density structure would be smaller

than those of the high-density structure, and the results of the fitting support this

speculation: all good fits to the data had positive values for both d and f .

The second addition to the equation of state, and one which proved crucial for

the fitting of data at negative pressures, was the explicit addition of a liquid-vapor

spinodal to the equation of state. In order to implement the LVS, I took my cue

from Ref. [30]. In that work, Speedy argues that because (∂P/∂ρ)T must vanish at

the LVS, P in the vicinity of the LVS can be expanded as a function of ρ in a Taylor

series whose first non-vanishing, non-constant term will be second-order in ρ, such

that

P = Ps +B(ρ− ρs)2 + ..., (5.2)
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where Ps and ρs are the pressure and density of the liquid at the LVS, and B is

identified as

B =
1

2

(
∂2P

∂ρ2

)
. (5.3)

The original application of this expansion in Ref. [30] was to locate the LVS in real

water. It does not seem to be up to that task: the predicted location of the spinodal

depends heavily on the choice of the choice of ρ vs. V as an expansion variable and

on the range of data that is used for the fit. However, if the position of the spinodal

can be located by other means, such an expansion can be used to implement its

effect on the thermodynamic properties, as it is in this work. This work uses V

rather than ρ as an expansion variable, so that

lim
P→Ps

(
∂P

∂V

)
T

= 0, (5.4)

and, asymptotically,

P − Ps ∼ (V − Vs)2 (5.5)

This work meets those conditions in its implementation of the spinodal by

adding term of the form

Gσ(T, P ) = A(T )(P − Ps(T ))3/2 (5.6)

in the expression for the Gibbs energy of structure A. It must be noted here that

the expression for GB, i. e., the Gibbs energy of pure structure B, does not appear
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explicitly in the equation of state, and must be calculated from the expression

GB = GBA +GA. Therefore, since there is no compensating term in the expression

for GBA, this form of the spinodal term entails that the effects of the LVS appear

equally in the Gibbs energy of each species–or to put it another way, that the effects

of the spinodal occur irrespective of the fraction φ. The presence of the spinodal does

not directly affect φ nor, as a result, does it affect the position or shape of the LLPT

or Widom line. Note also that the contribution of the spinodal to a thermodynamic

property X is denoted by Xσ, while the value of that thermodynamic property on

the spinodal is denoted by Xs.

From this expression we find the contributions to the thermodynamic proper-

ties as follows.

V σ =
3

2
A(P − Ps)

1/2 (5.7)(
∂V

∂P

)σ
=

3

4
A(P − Ps)

−1/2 (5.8)

−
(
∂S

∂T

)σ
=

3

4
A

(
dPs

dT

)2

(P − Ps)
−1/2 + 3

(
dA

dT

)(
dPs

dT

)
(P − Ps)

1/2 (5.9)

+

(
d2A

dT 2

)
(P − Ps)

3/2

(
∂V

∂T

)σ
=

3

4
A

(
dPs

dT

)
(P − Ps)

−1/2 +
3

2

(
dA

dT

)
(P − Ps)

1/2 (5.10)

From these expression it can be seen that κT will diverge as (P −Ps)
−1/2, and

we can identify

A =
2
√

2

3

(
∂2P

∂V 2

)−1/2

T ;P=Ps

, (5.11)

and CP and αP will diverge with the same exponent. The exception is an extremum
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in the spinodal pressure as a function of temperature, where (dPs/dT ) = 0, and

therefore CP and αP do not diverge. In fact, as Ref. [30] has shown, αP = 0 at such

a point, and therefore if the spinodal pressure goes through a minimum, the LMD

terminates at that minimum.

For this work, A(T ) takes the form

A(T ) = A0 + A1∆T̂ , (5.12)

where A0 and A1 are optimized to fit the data on thermodynamic properties.

It is likely that the variation of the thermodynamic properties as the spinodal

is approached—in other words, the “range” and “strength” of the pre-spinodal

effects—differs between structure A and structure B. However, I did not find that

the data were fit any better when such an explicit dependence was built into A, so I

continued to use a linear temperature dependence as a phenomenological approach

that implicitly incorporates this effect inter alia.

As explained in [30], if the LVS retraces to higher pressures, then there must

exist a TMD locus terminates terminate at the minimum of the LVS. Moreover,

αp must have the same sign as the slope of the LVS in the (P, T ) plane in the

neighborhood of the LVS itself. For TIP4P/2005 water, this means that the points

of minimum density observed along isobars by Abascal and Valeriani’s group is

inconsistent with a retracing spinodal except in the improbable event that there is a

completely separate TMD locus of which no sign has yet been seen. Consequently,

a monotonic LVS is used to model TIP4P/2005.
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The position of the LVS, Ps(T ), is given a quadratic dependence on tempera-

ture:

Ps(T ) = S0 + S1∆T + S2∆T 2. (5.13)

The parameters {Sn} are derived from a least-squares fit to the cavitation data of

M. A. González. S1 and S2 have exactly the values derived from the least-squares

fit. In practice, though, one always observes cavitation in simulations before the

LVS can be reached, so S0 is adjusted down by 25 MPa. Thus the spinodal has the

same shape in the (T, P ) plane as the cavitation line, but lies at somewhat lower

pressures. This shift yields a superior fit to the thermodynamic properties.

5.4 Results and Discussion

Fig. 5.1 shows PV T data along isochores along with the corresponding iso-

chores plotted from the TSEOS. These are the same data that were used for the

previous chapter. However, that fit, which did not include a LVS, was unable to

account either for the two lowest-density isochores of 920 and 940 kg/m3 or the two

highest of 1140 and 1160 kg/m3. These isochores are now matched very well with-

out any sacrifice of quality in the critical region. Density data are also shown along

isobars (Fig. 5.2) and isotherms (Fig. 5.3). Data from Ref. [97] were not included

in the fitting process, but they are shown in Fig. 5.2 nonetheless for the purpose

of comparison. The pre-spinodal effects are most clearly visible in the behavior of

the higher-temperature isotherms, and the extended TSEOS accounts well for these

isotherms. However, the improvement of the extended TSEOS over previous models
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Figure 5.1: Symbols represent simulation data of Abascal’s group on the minima and
maxima of various thermodynamic properties as shown in the legend. Solid lines of the
same color represent the predictions of the extended TSEOS. The solid black line, open
red circle, and dashed black line are the LLPT, LLCP, and Widom line, respectively.

is especially noticeable in the low-pressure, low-temperature region. This region is

further from the LVS and its behavior is less directly affected by pre-spinodal effects,

but the inclusion of an explicit LVS in the model is necessary in order to fit it. This is

probably because previous attempts to model the behavior at higher temperatures

and very low pressures ignored the LVS and relied on polynomial “background”
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Figure 5.2: Density along isobars, from Ref. [97] (squares), this work (diamonds), and fits
by the extended TSEOS (solid lines).

terms, which led to over-fitting in that region and poor predictions elsewhere. A

more theoretically grounded approach to the higher-temperature region, incorporat-

ing an LVS, solves this problem.

The effects of the two key features that the extended TSEOS aims to capture–

the LVS and the LLCP–can both be seen clearly in the κT data along isotherms:

the compressibility goes through a maximum in the vicinity of the Widom line,
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Figure 5.3: Density along isotherms, simulated for this work (symbols) compared with fits
by the extended TSEOS (solid lines).

decreases and then begins to increase once again as the LVS is approached. This

effect is captured beautifully by the extended TSEOS, as is shown in Fig. 5.5. Fig.

5.4 shows κT along isobars.

The isobaric heat capacity CP is also strongly affected by the presence of the

spinodal at low temperatures, and is matched well by the TSEOS, with the exception

of a few data points at very low T and P, as shown in Figs. 5.6 and 5.7.

The immediate goal of the extended TSEOS has been to give a complete pic-

ture of the anomalous thermodynamics of supercooled TIP4P/2005 water. With

that in mind, the most concise demonstration of its success is its striking agreement

with the simulation data concerning the lines of thermodynamic maxima and min-
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Figure 5.4: Isothermal compressibility along isobars, simulated for this work (symbols)
compared with fits by the extended TSEOS (solid lines).

ima, as shown in Fig. 5.8. The implications of these lines of extrema for the shape

of the LVS and more generally the underlying causes of water’s anomalies deserve

further comment. The stability-limit hypothesis [30] explains the thermodynamic

anomalies of water as the result of a “re-entrant spinodal”. In the experimentally

accessible region of the phase diagram, the LVS in water goes monotonically to

lower pressures as the temperature is decreased. But the negative slope of the TMD
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Figure 5.5: Isothermal compressibility along isotherms, simulated for this work (symbols)
compared with fits by the extended TSEOS (solid lines).
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Figure 5.6: Isobaric heat capacity along isotherms, simulated for this work (symbols)
compared with fits by the extended TSEOS (solid lines).

locus and positive slope of the LVS put them on course to intersect, and Speedy

demonstrated [30] that such an intersection could only occur where the pressure of

the stability limit of the liquid phase goes through a minimum. Approach to such a

stability limit upon deep supercooling would explain the increase in κT and CP , (κT

must diverge at the spinodal and CP contains a term proportional to κT ) without
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Figure 5.7: Isobaric heat capacity along isobars, simulated for this work (symbols) com-
pared with fits by the extended TSEOS (solid lines).

the necessity of postulating a LLCP or LLPT. Such a hypothesis is not consistent

with the data in TIP4P/2005 water, however. If the stability limit of the liquid

does retrace to higher pressures upon deep supercooling, then (1) a TMD locus

must emanate from the point of its minimum pressure, and (2), in the neighbor-

hood of a negatively sloped stability limit, αP must be negative. The TMD locus in

TIP4P/2005 water, however, does not terminate at the LVS or any other stability

limit. Rather, it bends back to lower temperatures, avoiding the LVS, and joins a

locus of minimum density at a point where each locus has zero slope, as can be seen

in Fig 5.8. Furthermore, κT is expected to diverge at the stability limit. However,
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Figure 5.8: Symbols represent simulation data of Abascal’s group on the extrema of various
thermodynamic properties as shown in the legend. Solid lines of the same color represent
the predictions of the extended TSEOS. The solid black line, open red circle, and dashed
black line are the LLPT, LLCP, and Widom line, respectively. The red dashed line is the
LVS, and the red stars show the points at which cavitation was observed in the simulations
of M. Angel.

in TIP4P/2005, κT decreases monotonically upon cooling for pressures lower than

-102 MPa, and for pressures above this, a finite maximum is observed for pressures

up to 120 MPa [77]. A retracing spinodal, therefore, would also entail the existence

of an additional TMD locus and an additional locus of minima in the isothermal
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compressibility, occurring at extremely low temperatures. Therefore, while techni-

cally possible, the hypothesis of a retracing spinodal is extraneous to the analysis of

the observed anomalies of TIP4P/2005, and cannot explain the anomalies of any liq-

uid whose thermodynamic properties show a qualitatively similar pattern of minima

and maxima.

The success of a version of the TSEOS that incorporates a LVS in matching the

lines of extrema in the thermodynamic functions is particularly significant in light

of the current state of research into other models. Poole et al. have investigated the

lines of thermodynamic minima and maxima in the ST2 model at low temperatures

for a wide range of pressures [75]. A figure from their publication is reproduced

here as Fig. 5.9. The similarity of these results to those found in TIP4P/2005 is

suggestive to say the least, and Fig. b5.10 shows a direct comparison between the

two models. In that figure, the temperatures and pressures are shifted according

to the critical parameters of the model, and then re-scaled empirically. Upon such

a re-scaling, the patterns of loci of minima and maxima are remarkably similar.

Furthermore, private communications with the Author show similar patterns in

other water models, both with and without a LLPT and LLCP. It seems likely,

therefore, that the extended TSEOS can be fit to these models as well, with similar

success. A project implementing this is currently being planned.

Moreover, if such behavior is indeed ubiquitous in water models, one may spec-

ulate that it is also a feature of real water. In this case, it will be possible to create

a comprehensive picture of the anomalous thermodynamics of low-temperature wa-

ter based on two essential concepts: the interconversion of two alternative liquid
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structures and the liquid-vapor spinodal. The extended TSEOS can then hopefully

be adapted to give a comprehensive equation of state for real water at low temper-

atures, especially in the metastable region. However, this project must await the

availability of further experimental data at negative pressures.

Figure 5.9: Lines of thermodynamic minima and maxima in the ST2 model. This figure
is reproduced from Ref. [75], with that reference’s notation intact. Temperatures of max-
imum and minimum density are thick and thin black lines, respectively. Temperatures
of maximum and minimum isothermal compressibility are thick and thin blue lines, re-
spectively. Pressures of maximum and minimum isobaric heat capacity are thick and thin
green lines, respectively. Red diamonds indicate the estimated position of the LVS. The
open blue circle is the LLCP, and the up and down blue triangles are the spinodals of the
LDL and HDL phases, respectively.
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5.5 Appendix: Fitting Parameters

The values of the parameters used in the TSEOS are reported in Tables 5.1 and

5.2. The critical parameters are the same as those used in Chapter 4: Tc = 182 K,

Pc = 170 MPa, ρc = 1017 kg/m3.

Table 5.1: Background Parameters

c02 -0.00261876 c30 2.18819
c11 0.257249 c13 -0.000994166
c20 -6.30589 c22 -0.00840543
c03 0.000605678 c31 0.0719058
c12 0.0248091 c40 -0.256674
c21 -0.0400033

Table 5.2: Special Parameters

λ 1.55607 S0 -5.40845
a 0.154014 S1 0.0305542
b 0.125093 S2 -7.61× 10−5

d 0.00854418 A0 -0.0547873
f 1.14576 A1 -0.0822462
ω0 0.03

The value of c01 is not provided because it is not a separate parameter, but is

specified by specifying ρc. It should be noted, however, that the formula used for

c01 in previous versions of the TSEOS is no longer valid. Rather, the spinodal term

must be taken into account when evaluating c01. This is done as follows.

Because properties are reduced by critical temperature and critical volume (or

density), is is obvious that

V̂c = 1. (5.14)

We can also evaluate the general formula for volume at the critical point, where
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∆T̂ = 0, ∆P̂ = 0, and xe = 0.5 and find that

V̂c = c01 + 0.5λa+ 0.25ω0 + 1.5A0

√
Pc − S0

ρcRTc
, (5.15)

so

c01 = 1− 0.5λa− 0.25ω0 − 1.5A0

√
Pc − S0

ρcRTc
. (5.16)

For the values of the parameters used in this work, c01 = 1.09621.
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Chapter 6: Thermal Conductivity and its Relationship to Thermo-

dynamics

Author’s Note: This section quotes extensively from two published papers, Refs.

[127] and [128]. In the section concerning simulations of the TIP4P/2005 model, the

simulations were performed by Fernando Bresme at Imperial College, London (the

first author of Ref. [128]). I am primarily responsible for the theoretical analysis.

–JWB

6.1 Introduction

While most of the phenomenology surrounding two-structure models generally

and the liquid-liquid critical point in particular has focused on thermodynamics,

there are important implications for dynamics as well. To take one example, the

viscosity of water decreases upon compression, which is anomalous. A suggested

explanation for this anomaly is that compression forces a greater fraction of water

into the HDL state, which has greater mobility than the tetrahedrally ordered LDL

state [31]. Furthermore, the dispersion of sound at high frequencies seems likely to

reflect viscoelastic behavior associated with a structural relaxation in supercooled

water [129].
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This Chapter examines the thermal conductivity of supercooled water in light

of the two-structure conjecture, and examines the possible effects that critical fluc-

tuations might have on thermal conductivity. According to our calculations, any

effect of critical fluctuations associated with the virtual liquid-liquid critical point

on the thermal conductivity would be too small to be measured at experimentally

accessible temperatures. Remarkably, the behavior of thermal conductivity can be

fully explained by the anomalies of the thermodynamic properties. The difference

between the behavior of the thermal conductivity in the vapor-liquid and in the

hypothesized liquid-liquid critical regions is the result of differences in both the

dynamic and thermodynamic environments in the respective regions.

6.2 Thermal Diffusivity and Thermal Conductivity

The thermal diffusivity a of water has been measured by Taschin et al. down

to 256 K [36] and by Benchikh et al. down to 250 K [130], and it decreases steadily

with decreasing temperature, as shown in Fig. 6.1. Thermal conductivity λ can be

calculated from these data by means of the formula λ = ρCPa, since isobaric specific

heat capacity CP and mass density ρ are both known experimentally in the relevant

temperature range. The heat capacity changes little in the range for which thermal-

diffusivity data are available (Fig. 6.2), so in that temperature range the thermal

diffusivity and thermal conductivity are nearly proportional. At atmospheric pres-

sure, thermal conductivity decreases with temperature, from the boiling point to

the lowest temperatures at which thermal conductivity has been measured [131].

91



Water’s behavior in this regard is unique among non-metallic liquids of low molec-

ular weight, as all other such liquids show an increase in thermal conductivity upon

cooling [132].
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Figure 6.1: Thermal-diffusivity data of Benchikh et al. [130] and Taschin et al. [36], com-
pared with the thermal diffusivity calculated from Bridgman’s and Eyring’s formulae. We
use the TSEOS to evaluate the thermodynamic properties in these formulae [10]. The
inset shows simulation results of Kumar and Stanley for the TIP5P model [133].

Benchikh et al. have noted a strong correlation between the thermal con-

ductivity of both supercooled and stable liquid water at low temperatures and the

thermodynamic speed of sound c (in the limit of zero frequency) [130]. We find

excellent agreement between the experimental data and two classical formulations

for the thermal conductivity of liquids, as shown in Fig. 6.3. The first is Bridgman’s
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Figure 6.2: Heat-capacity data of Archer and Carter [6] and Angell et al. [134]. The solid
curve shows the prediction of the TSEOS [10].

formula [135] as adapted for polyatomic molecules:

λ = 2.8kBv
−2/3c, (6.1)

where kB is Boltzmann’s constant and v is the molecular volume of the liquid, that

is, the molecular mass divided by the mass density ρ. The second formulation is

due to Eyring, with a correction from Eucken [136]:

λ = 2.8kBv
−2/3γ−1/2c, (6.2)

where γ is the ratio of the isobaric heat capacity to the isochoric heat capacity,
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CP/CV . The speed of sound can be related to the adiabatic compressibility κS and

the isothermal compressibility κT as follows:

c =

(
1

ρκS

)1/2

=

(
CP
CV

1

ρκT

)1/2

, (6.3)

allowing us to re-write Bridgman’s formula in terms of thermodynamic properties

as

λ = 2.8kBv
−2/3

(
1

ρκS

)1/2

, (6.4)

and Eyring’s formula as

λ = 2.8kBv
−2/3

(
1

ρκT

)1/2

, (6.5)

To evaluate these expressions, we have used the version of the TSEOS in [10], with

the published values for all parameters.

Bridgman’s and Eyring’s formulae differ little in the region where experimental

data are available. According to two-structure thermodynamics, both the isothermal

and the adiabatic compressibilities show maxima associated with the existence of a

virtual liquid-liquid critical point. These maxima are located close to the Widom

line, defined as the locus of maximum fluctuations of the order parameter, a con-

tinuation of the liquid-liquid transition line into the one-phase region [10,27,28,41].

We note that the magnitudes of these maxima are strongly dependent on the value

of the critical pressure, the value of which (possibly ranging from 10 to 40 MPa) is

difficult to determine. In conclusion, while the observed behavior of thermal conduc-
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tivity is anomalous inasmuch as it decreases upon cooling, it tracks the anomalous

behavior of the adiabatic and isothermal compressibilities as shown in Fig. 6.3.
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Figure 6.3: Thermal conductivity calculated from thermal diffusivity [36, 130] and the
TSEOS [10]. The formulations due to Bridgman (4) and Eyring (5) are both shown, as
is the IAPWS correlation for thermal conductivity (which is only guaranteed down to
273 K) [131]. The inset shows the simulation data of Kumar and Stanley for the TIP5P
model [133], and the dashed curve on the inset is a quadratic fit to the simulation data.
TW refers to the Widom temperature in both the main graph and the inset.

Recently, Kumar and Stanley [133] reported evidence of a thermal conductiv-

ity minimum in a simulation of the TIP5P model of water. The simulation results

indicated that the thermal conductivity of this model at first decreases upon cooling

as has been observed experimentally in real water; it then reaches a minimum at

approximately 255 K, and increases as the temperature is further decreased [133].

The latter increase might seem at first to conflict with experimental data for real
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water. However, Kumar and Stanley’s simulation locates the Widom temperature

for the TIP5P model at roughly 245 K at atmospheric pressure, while thermo-

dynamic equations of state place the Widom temperature for real water close to

228 K [10, 27, 28, 41]. Rescaling the temperatures in the simulation results so that

the Widom temperature occurs at 228 K places the predicted minimum at 237 K,

several degrees below the lowest-temperature measurements of the thermal conduc-

tivity, so there is no real contradiction between simulation data and the predicted

behavior of thermal conductivity in real water. Moreover, one can expect the mini-

mum of thermal conductivity observed in this model to be smoothed by finite-size

effects, as is typical for simulations. As can be seen in Fig. 6.3, both the Bridgman

formula (4) and the Eyring formula (5) indicate that thermal conductivty should go

through a minimum. We shall return to this topic in more detail in the discussion.

Next, we address the possible effects of critical fluctuations on the thermal

conductivity of supercooled water. It is well documented that the thermal conduc-

tivity of water diverges at its vapor-liquid critical point, and the associated anomaly

affects the thermal conductivity noticeably throughout the critical region [137]. We

investigate the possibility of such a divergence of the thermal conductivity near

the liquid-liquid critical point of H2O, and any effects that this might have on the

measurable behavior of the thermal conductivity in supercooled water.
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6.3 Predictions of Mode-Coupling Theory

In the vicinity of a critical point, couplings among the various hydrodynamic

modes of a system become increasingly significant as fluctuations in the system

become long ranged. This leads to anomalous behavior of the thermal conductivity

in the critical region, including a divergence of the thermal conductivity at the

vapor-liquid critical point. This divergence has been observed in striking agreement

with the mode-coupling theory in many molecular fluids near their respective liquid-

vapor critical points [137, 138]. (This mode-coupling theory describes dynamics in

the vicinity of a critical point and should not be confused with the mode-coupling

theory of the glass transition). Due to a mode-coupling contribution to the thermal

diffusivity, which arises in molecular fluids from a coupling between the heat mode

and the viscous mode, thermal conductivity can be expected to diverge near any

critical point at which the isobaric heat capacity diverges more strongly than the

correlation length ξ [138]. Such a strong divergence of the isobaric heat capacity

is a feature of the TSEOS [10], as well as other related scaling models [27, 28, 41];

this prompted us to investigate the possibility that a critical enhancement to the

thermal conductivity might be experimentally observable.

In order to carry out our mode-coupling calculations we once again made use

of the TSEOS [10] for thermodynamic properties. This formulation is renormalized

by critical fluctuations, and asymptotically close to the critical point it is identical

to the scaling models referred to above [27, 28, 41]. For the background value of

the thermal conductivity we used the IAPWS formulation [131]. IAPWS provides
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a formulation for the viscosity of water at atmospheric pressure that is valid for

temperatures as low as 253.15 K [139, 140]. Extrapolating below that value is a

more subtle task. Data taken by Osipov et al. [141] from 238 K to 273 K show

a clear super-Arrhenius dependence on temperature (“fragile” behavior in Angell’s

nomenclature [142]). Some researchers [143] have found evidence of Arrhenius tem-

perature dependence (“strong” behavior) close to the glass transition, and thus of

a fragile-to-strong crossover in water; such a crossover has been observed to occur

at 228 K in confined water [144]. Other measurements, however, have found super-

Arrhenius behavior at the glass transition [145]. Starr et al. have used Adam-Gibbs

theory to estimate the viscosity in the experimentally inaccessible region [146], and

this extrapolation includes a fragile-to-strong crossover as well. We have fit a super-

Arrhenius equation to the experimental data of Osipov et al. (see Fig. 6.4), and

in making the fit we have chosen a hypothetical temperature of structural arrest so

that our extrapolation agrees well that of Starr et al. in the portion of the unsta-

ble region for which we make predictions. In our calculations we use the IAPWS

formulation for viscosity at atmospheric pressure [139, 140] for temperatures above

254 K and our extrapolation for temperatures below 254 K.

Mode-coupling theory gives a pair of coupled equations for the critical enhance-

ments to viscosity and thermal diffusivity, and these equations should in principle

be solved by iteration [147]. However, the viscosity anomaly associated with crit-

ical fluctuations is very weak, so we work only to one-loop order in the iteration

and simply use the background value of viscosity, which is strongly temperature-

dependent (see Fig. 6.4). The anomaly of the thermal diffusivity is additive in
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Figure 6.4: Viscosity data taken by Osipov et al. at atmospheric pressure (dots) [141]. The
solid curve shows the IAPWS formulation for viscosity at atmospheric pressure [139,140],
while the dashed curve is a fit to the data of a super-Arrhenius or Vogel-Fulcher-Tamman
law: η = 0.0885 exp [220/(T − 197)], with T in K. The inset shows the product of viscosity
and thermal conductivity. The increase in the viscosity completely dominates the decrease
in the thermal conductivity, so it is clear that the decrease in thermal conductivity is not
a result of the increase in viscosity.

nature, meaning that the thermal diffusivity can be split into a background and a

critical contribution [137]:

a = ab + ∆a, (6.6)

and the thermal conductivity can be treated similarly:

λ = ρCPa = λb + ∆λ. (6.7)
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Even to one-loop order the integral for the thermal diffusivity enhancement

cannot be solved exactly except in the asymptotic limit ξ →∞. Our approximation

strategy for treating the crossover from critical to mean-field behavior is based on

the model put forward by Olchowy and Sengers [148, 149]. It yields an expression

of the form

∆λ = ρCP∆a = ρCP
RDkBT

6πηξ
(Ω− Ω0) , (6.8)

where RD is a universal amplitude very close to unity (experiments by Burstyn et

al. [150] find RD = 1.02± 0.06). In the limit ξ →∞, we have (Ω− Ω0)→ 1. If we

adopt RD = 1, this expression tends to the well-known limit of a Stokes-Einstein

law for thermal diffusivity in which the correlation length of the critical fluctuations

replaces the hydrodynamic radius of Brownian particles:

∆a =
kBT

6πηξ
. (6.9)

Due to the effects of long-time tails on the hydrodynamic modes, mode-coupling

effects do not completely vanish far from criticality [148, 151]. These long-time

effects are already present in the background, and so the phenomenological term

Ω0 is introduced to subtract these effects from our expression so that it represents

only the critical enhancement. Further details of the approximation scheme can be

found in the appendix to this Chapter.

The path along atmospheric pressure is not the critical isobar, and along this

path properties may exhibit finite anomalies but they do not diverge. We find
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that at atmospheric pressure, the critical enhancement to the thermal conductivity

would reach its maximum in the vicinity of the Widom temperature and at a value

close to ∆λ = 6 × 10−6 Wm−1K−1 (see Fig. 6.5). This effect is certainly too

small to be measurable, either in the experimentally accessible regime or in the

region of the phase diagram below the homogeneous nucleation line (predictions for

this region appear in Fig. 6.5 as a dashed curve). Figure 6.5 shows experimental

data as well as the IAWPS prediction for thermal conductivity [131]. Any effect

from the critical enhancement is far too small to be visible on such a graph; it is

shown in the inset, magnified by a factor of a million. We note further that error

bars on thermal-conductivity measurements in water are typically of the order of

10−2 Wm−1K−1, several orders of magnitude larger than any possible effect induced

by critical fluctuations at atmospheric pressure. Even at the critical pressure (for

which the TSEOS uses 13.1 MPa [10]), and even if one could somehow carry out

measurements in “no man’s land”, any critical enhancement would be undetectable,

as it would be confined to to small a range of temperatures.

6.4 Discussion

While thermal transport near the vapor-liquid critical point is dominated by a

Stokes-Einstein law for thermal diffusivity, near the hypothesized liquid-liquid crit-

ical point thermal transport will continue to be governed by the thermodynamic

properties. We can identify two immediate reasons for this striking difference be-

tween the two critical regions. First of all, mode-coupling theory predicts that the
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Figure 6.5: The main figure shows thermal conductivity in water, both from experimental
data [36,130] and from Eyring’s formula (Eq. (6.5)) evaluated with the TSEOS [10]. The
inset shows the critical enhancement in the same units, but magnified by a factor of one
million (106). The curves change from solid to dashed at the temperature of homogeneous
nucleation. The critical effect is several orders of magnitude smaller than the background
and will be completely undetectable.

critical enhancement to the thermal conductivity will be inversely proportional to

the viscosity. The viscosity of supercooled water increases dramatically as the tem-

perature decreases: Osipov et al. [141] found an increase of a factor of 10 between

273 K and 238 K in their experiment. Our extrapolation predicts that the viscosity

at the Widom temperature will be yet another order of magnitude larger than at

238 K; this means that the viscosity of water at the Widom temperature for the

hypothesized second critical point is between two and three orders of magnitude

larger than at the liquid-vapor critical point, which greatly suppresses any critical
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enhancement to the thermal conductivity.

The second physical reason why any measurable anomaly will be confined to

such a tiny region of the phase diagram in supercooled water is that while tem-

perature is (to a good approximation) the thermal field for the vapor-liquid phase

transition, for the hypothesized liquid-liquid phase transition in water it very nearly

plays the role of the ordering field [27, 28, 41]. Near the critical point, the ordering

field is related to the order parameter according to a power law φ ∼ h
1/δ
1 , with

δ ≈ 4.8 for the Ising-model universality class [37, 38]. Thus, asymptotically close

to the critical temperature, small variations in the temperature correspond to large

variations in the order parameter, and so for practical purposes a small deviation

from the Widom temperature moves the system far from criticality.

6.5 Simulations

To further investigate the anomalous behavior of the thermal conductivity as

a function of temperature T and pressure P and its possible relation to the speed of

sound, we have performed molecular dynamics simulations of the TIP4P/2005 water

model. [96] The TIP4P/2005 model is currently the most accurate non-polarizable

water model available [152], and yields adequate representations of densities and

compressibilities of real supercooled water [153], and of the speed of sound in the

cold-stable region [154]. Working with a rigid non-polarizable model enables us to

cover long time scales, tens of ns, which are essential to obtain convergent results,

particularly at temperatures near the glass transition. The existence of the LLCP
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Figure 6.6: Density, compressibility, and speed of sound of TIP4P/2005 at 0.1, 70, and
120 MPa as a function of temperature. The symbols indicate the simulated values: squares
(with error bars) obtained in this work and circles (without error bars) obtained previously
by Abascal and Vega. [77] The curves represent values calculated from the TSEOS.

in TIP4P/2005 is the subject of Chapter 4 of this Dissertation.

The speed-of-sound minimum that is predicted by two-structure thermody-

namics should move to lower temperatures as the pressure increases. If our analysis

of the thermal conductivity of supercooled water is correct for the TIP4P/2005

model, then simulations of this model along several isobars should yield the follow-

ing results: speed-of-sound minima at temperatures that decrease as the pressure

is raised, and thermal-conductivity minima occurring at temperatures that track

those of the minima in the speed of sound. With this goal in mind, the thermody-

namic properties at three different pressures, namely at 0.1, 70, and 120 MPa, were

determined by performing equilibrium molecular dynamics simulations in the NPT

ensemble. We employed cubic simulation boxes with full periodic boundary condi-

tions. A sample consisting of 878 molecules was simulated at each desired pressure

and temperature by using the isotropic Parrinello-Rahman barostat [155, 156] and

the Nosé-Hoover thermostat. [108,157] The compressibility for the barostat coupling

was set to 5×10−4 MPa−1. The time constants for the thermostat and the barostat

were set to 0.2 ps and 1 ps, respectively, while the equations of motion were inte-
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grated with a time step of 2 fs. The molecular interactions were truncated at 1 nm.

Long-range corrections for the pressure P and the energy E were included in our

computations and the electrostatic interactions were handled with the particle-mesh

Ewald method. To obtain convergent results, our simulations covered times from

0.5 to 0.7 µs. The equations of state were obtained from equilibrium simulations

performed in parallel with Gromacs 4.5.5. [105] Figure 6.6 shows the simulated val-

ues obtained for the density, isothermal compressibility, and the speed of sound at

the three pressures as a function of temperature. Speed of sound was calculated

from heat capacities and compressibilities, which were obtained from analysis of the

fluctuations. Our equilibrium properties supplement and agree with previous com-

putations of Abascal and Vega, [77] also shown in Fig. 6.6 at the pressures considered

in this work. We note that TIP4P/2005 in the supercooled regime reaches the diffu-

sive regime at short times (10−8 s) compared to our sampling time (7×10−7 s); thus

we are confident that we obtained equilibrium properties. We represent the simu-

lated thermodynamic properties by the same type of TSEOS that was previously

used by Holten et al. to describe the experimental thermodynamic properties of real

water, [10] as well as the properties of the mW and ST2 models. [20,21] The curves

in Fig. 6.6 represent the values calculated from the TSEOS. The TSEOS generally

represents the simulated data to within their accuracy, except for some data points

at very low temperatures. Our TSEOS implies a critical temperature Tc = 183 K,

in good agreement with a recent estimates of Tc = 185 K [79] and Tc = 182 K [97].

We computed the thermal conductivity of TIP4P/2005 at the same thermo-

dynamic states for which the thermodynamic properties were obtained. All simu-
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lations were performed in a microcanonical NV E ensemble with 500 molecules in

cubic boxes with full periodic boundary conditions. The electrostatic interactions

were computed by using the particle-particle particle-mesh Ewald (PPPM) method

with a 1 nm cutoff for the dispersion interactions. A time step of 1 fs was employed

for all the thermal-conductivity simulations. The computations were performed

with the parallel code LAMMPS. [158] Equilibrated configurations obtained from

the NPT simulations were employed as starting points for the microcanonical sim-

ulations. The thermal conductivity was computed with the aid of the Green-Kubo

(GK) correlation function: [159]

λ =
V

3kBT 2

∫ tm

0

dt 〈Jq(t) · Jq(0)〉 , (6.10)

Jq =
1

V

[∑
i

viei +
1

2

∑
i 6=j

(fij · vi)rij
]
. (6.11)

In these equations V is the sample volume, Jq the heat flux, ei the energy

(kinetic + potential) of atom i, vi the velocity of atom i, and fij the force between

atoms i and j. The summations in Eq. (6.11) run over all atoms in the system,

and include non-bonded and bonded interactions (see ref. [160]). The computation

of the heat flux with the electrostatic interactions has been discussed previously,

both for the Ewald-summation approach [161] and for the PPPM approach [160].

We have chosen the GK method, since it is more effective for resolving the ther-

mal conductivities of thermodynamic states with similar temperatures. The slow

dynamics associated with the supercooled states means that the computation of
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MPa. The labels 1 to 8 indicate temperatures: 270.8, 250.5, 240.8, 229.9, 220.7, 211.6
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the thermal conductivity requires significant sampling for very long times. Since

the thermal conductivity exhibits a weak dependence on the temperature near a

minimum, the simulations at low temperatures needed trajectories of the order of

80 ns. Only with these long time scales were we able to resolve the minima of the

thermal conductivity. Averages obtained from short trajectories, e.g., 2 ns, yielded

thermal-conductivity values that were too noisy for us to resolve the presence of a

minimum. The heat-flux correlation function in the integrand of Eq (6.10) (Fig.

6.7) exhibits enhanced oscillations at low temperatures requiring short time steps

of 1 fs in the evaluation of the integral. With the choice t = 5 ps for the upper
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Figure 6.8: Thermal conductivity of TIP4P/2005 at 0.1, 70, and 120 MPa as a function
of temperature.

limit, good convergence was found for all the integrations; longer correlation times

(up to 10 ps) gave no evidence for decay in the correlation functions. The results

of our simulations of the thermal conductivity for the three pressures are shown in

Fig. 6.8.

We see that the thermal conductivity at each pressure does exhibit a mini-

mum as a function of temperature. The temperature Tmin, at which the thermal

conductivity exhibits a minimum, decreases with increasing pressure. Within com-

putational accuracy, the location of this minimum temperature Tmin is correlated

with the temperatures of the maximum of the compressibility and with the mini-

mum of the sound velocity, either directly or through the Bridgman equation (6.4),
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as shown in Fig. 6.9.

A simple scale transformation produces a universal curve for the thermal con-

ductivity of the water model in the supercooled state. This is shown in Fig. 6.10,

where we have plotted the thermal conductivity as a function of T −Tmin, while ac-

counting for a small linear dependence of the thermal conductivity on the pressure.

This indicates that the depth of the minimum changes only slowly with pressure, in

contrast to the anomaly of the sound velocity. It also means that unlike the inverse

compressibility, which vanishes at the critical point, the thermal conductivity likely
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Figure 6.10: Thermal conductivity, corrected for a small linear pressure dependence (d =
0.564 mW m−1 K−1 MPa−1), as a function of T − Tmin.

remains finite. Therefore, the thermal conductivity in supercooled water is only

partially controlled by thermodynamics. As speed of sound decreases, one should

expect other mechanisms of heat transfer, such as particle diffusion, to become more

significant. [162]

While our results convincingly demonstrate that the anomalous behavior of

the thermal conductivity is of a thermodynamic origin, the values obtained for its

magnitude from the simulations are significantly larger that the experimental ther-

mal conductivities of real water. In Fig. 6.11 we show a comparison between the

simulated values of the thermal conductivity (Fig. 6.11a) and the experimental

thermal conductivity data of real water [36,130] (Fig. 6.11b) at P = 0.1 MPa. The
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Figure 6.11: Thermal conductivity of TIP4P/2005 at 0.1 MPa (a) and thermal conduc-
tivity of real water [36, 130] (b) at 0.1 MPa. The curves represent values calculated from
the Bridgman equation (6.4) for TIP4P/2005 (a) and for real water (b). The Bridgman
formula in each case was evaluated with the TSEOS; in (a) we used our optimization for
TIP4P/2005 as elsewhere in this work, while in (b) we used the parameters for real water
as presented in Ref. [10].

simulated thermal conductivities of Kumar and Stanley [133] for TIP5P are even

larger (∼ 1.2-1.5 W m−1 K−1) than those found by us for TIP4P/2005. The discrep-

ancies between simulated and experimental thermal conductivities are much less at

higher temperatures. [163] While the Bridgman equation (6.4) yields a good quan-

titative representation of the thermal conductivity of real water, and the Bridgman

equation for the model yields values close to the experimental thermal conductivity

values in real water, the simulated thermal conductivities of TIP4P are much larger

than the values estimated from the Bridgman equation for the model. Hence, it

appears that in the supercooled state simulations of thermal conductivity suggest

additional heat transport that is not present in real water. A study of the origin of

this discrepancy is highly desirable.
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6.6 Conclusion

At high temperatures, density fluctuations associated with the vapor-liquid

critical point noticeably affect the thermal conductivity over a fairly broad tem-

perature range. Our calculations suggest, however, that this will not be the case

for the hypothesized liquid-liquid critical point in supercooled water. The effect of

density fluctuations on the liquid-liquid critical point is too small to be measurable.

The Stokes-Einstein law that describes thermal transport in the vapor-liquid critical

region will not be applicable to the thermal diffusivity in the liquid-liquid critical

region.

On the other hand, the thermal conductivity and thermal diffusivity of su-

percooled water are strongly correlated with the anomalies of the thermodynamic

properties associated with the existence of a liquid-liquid transition. The minimum

of the thermal conductivity, found in simulations of the TIP5P model by Kumar

and Stanley [133], and now confirmed for the TIP4P/2005 model, should also ex-

ist in real water. This effect is associated with associated with the maximum of

compressibility and with the minimum of the speed of sound.

The anomalous behavior of the thermal conductivity in water, then is not a

distinct anomaly. It is rather the result of classical dependence anomalous thermo-

dynamics. Two-structure thermodynamics gives an elegant account of these phe-

nomena.
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6.7 Appendix: Details of the Mode Coupling Calculations

Starting from the mode-coupling integral as given in ref. [149]:

∆a =
kBT

(2π)3

∫ qD

0

dk
CP (k)

CP (0)

k−2sin2(θ)

η(k)(1 + a(k)ρ/η(k))
. (6.12)

The Olchowy-Sengers approximation [151] reasons that close to the critical point

the term aρ/η is negligible. As noted, we use the background value of the viscosity

in our approximation, so after carrying out the angular integrals the integral to

evaluate is as follows:

∆a =
kBT

3π2η

∫ qD

0

dk
CP (k)

CP (0)
. (6.13)

In the TSEOS the isobaric heat capacity can be expressed in terms of the

relevant scaling variables and a few parameters of the system as follows:

CP = −λ(1 + b∆P̂ )T̂ (φ+ 1) + CA
P +

1

2
λ2(1 + b∆P̂ )2T̂ 2χ1, (6.14)

where λ and b are parameters from the TSEOS with the values given in the sup-

plement to ref. [10]. CA
P is a background term representing the dimensionless heat

capacity of pure HDL. The strongest divergence in the isobaric heat capacity is in

the strong scaling susceptibility χ1, so for our third approximation we separate the

term containing χ1 from the rest of the heat capacity, and treat the remaining terms

(the sum of which we shall call A) as having no wave-number dependence. We then
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use the Ornstein-Zernike approximation for the wave-number dependence of χ1:

χ1(k) =
χ1(0)

1 + k2ξ2
, (6.15)

where ξ is the correlation length characterizing the fluctuations of the order param-

eter.

Henceforth CP without any explicit wave-number dependence will refer to the

hydrodynamic value, CP (k → 0). With that notation, the integral that we must

evaluate for the thermal diffusivity takes the form

∆a =
kBT

3π2η

∫ qD

0

dk

[
CP − A
CP

1

1 + ξ2k2
+

A

CP

]
, (6.16)

which yields the modified Stokes-Einstein law

∆a =
kBT

6πηξ

2

π

[
CP − A
CP

arctan(qDξ) +
A

CP
qDξ

]
. (6.17)

For convenience we define

Ω =
2

π

[
CP − A
CP

arctan(qDξ) +
A

CP
qDξ

]
. (6.18)

This result is still not entirely satisfactory because in the limit of vanishing correla-

tion length, that is, far from criticality, it does not vanish. In fact:

lim
ξ→0

kBT

6πηξ

2

π

[
CP − A
CP

arctan(qDξ) +
A

CP
qDξ

]
=
kBTqD

3π2η
. (6.19)
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The physical reason for this as summarized by Olchowy and Sengers in refs. [148,151]

is that mode-coupling is also responsible for the “long-time-tail effects on transport

properties” [148]. These effects are not critical effects and will be observed in the

background, so if we want to find the effects due to critical fluctuations we should

subtract off this remnant. For this reason we subtract the following term from Ω:

Ω0(qDξ) =
2

π

{
1− exp

[
− qDξ

1 + (1− A/CP ) (qξ)4

]}
. (6.20)

This phenomenological expression has the following limiting behavior:

lim
x→0

Ω(x) =
2

π
, (6.21)

lim
x→∞

Ω(x) = 0, (6.22)

so that we have

lim
ξ→0

∆a = 0. (6.23)

The complete expression, using the above definitions, is

∆a =
kBT

6πηξ
(Ω− Ω0) . (6.24)

Because we are interested only in the critical enhancement to the thermal

conductivity, for the correlation length we should use only the critical enhancement

to the correlation length. We estimate the “background” correlation length ξb by

observing the correlation length at a temperature Tref far from any critical point
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and assuming that the background correlation length in the system is proportional

to the space between molecules. So we have

ξb(T ) =
ξ(Tref)

v(Tref)1/3
v(T )1/3. (6.25)

For the correlation length in our calculations we use

ξc = ξ − ξb, (6.26)

where ξ is the correlation length predicted by the TSEOS [10].

For the wave-number cutoff qD, we used a correlation identified by Perkins et

al. between the wave-number cutoff and the amplitude ξ0 of the correlation length

anomaly [149]:

q−1
D = 3.683ξ0 − 1.336× 10−10 m. (6.27)
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Annales de Chimie et de Physique, 70:296–310, 1839.

[70] M. Despretz. Troisième mémoire sur le maximum de densité des liquides.
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