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transverse vibrations of the microresonators. The model accounts for longitudinal
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varying properties. Assuming a buckling induced non-flat equilibrium position, an
approximation for the static equilibrium position is determined and the free vibration
problem is solved. For weak damping and weak forcing, the method of multiple

scales is used to obtain an approximate frequency-response solution. Following this



work, a complete solution for the pre-buckling, critical-buckling, and post-buckling

problem for axially elastic beams is developed from the nonlinear model.

The analytical predictions are compared with experimental data and they are found to
be in good agreement. The present work provides a means for determining the spatial
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many microelectromechanical systems (MEMS). The present work provides the first

evidence for buckling influenced dynamics in microresonators.
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Chapter 1
1 Introduction and Background

Development of new technologies for affordable, lightweight, small profile, and low
power radio frequency (RF) components that do not compromise performance for
communication are necessary with the increasing technical requirements of wireless
communications, multifunction programmable receivers, frequency hopping radios,
reconfigurable antennas, and new radar architectures. In this chapter, a brief
introduction to previous work conducted in this area as well as some relevant work in
the area of nonlinear oscillations are presented along with the objectives and scope of
this dissertation work. The organization of this dissertation is also discussed within

this chapter.

1.1. Previous work

1.1.1. Microresonators and Applications

Discrete filter components such as quartz and ceramic surface acoustic wave (SAW)
resonators currently make up the bulk of the volume and weight in receivers. Quartz
resonators have the advantages of extreme frequency stability, temperature stability,
and the high quality factor (Q) value required for many clock operations. The typical
frequency range covered by quartz resonators is 1 kHz to 200 kHz. The typical range
for ceramic SAW resonators is 50 MHz to 2 GHz. Ceramic resonators tend to have
inferior Q values but they are cheaper and smaller, and they have replaced quartz

resonators in many filter applications where frequency stability and high Q



specifications have been relaxed. Typically, these resonators are as large as 1 cm?,

which is still large for communication devices like the cell phone.

The fact that ceramic resonators are still on the millimeter scale highlights the need
for new microelectromechanical systems (MEMS) RF resonator technology.
Micromachining and MEMS fabrication are technologies well suited for improving
the performance, size and cost of resonating systems. The first demonstration of
micromechanical polysilicon resonators was presented by Howe and Muller in 1984
[1]. Since then, significant progress has been reported for resonators that utilize
electrostatic transduction. For example, Nguyen, Wong and Wang [2]-[4] worked on
micromachined electromechanical filters (Figure 1.1); Roessig, Howe, and Pisano [5]
worked on MEMS accelerometers, Nguyen and Howe [6] worked on microoscillators,
and Lin, Howe and Pisano [7], as well as Wang, Nguyen and Lee [3], [8], [9] worked
on coupled resonator filters (Figure 1.2). There are also many other studies and
applications, where the dynamics of a micromachined structure is used to realize a
mechanical transfer function between the drive and sense signals in the electrical
domain. These devices have not replaced quartz and ceramic devices primarily
because of the following issues: (i) the frequency range is not high enough; (ii) the
need for vacuum conditions to attain a high Q; and (iii) impedance values higher than

those normally exhibited by macroscopic high-Q resonators [10].
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Figure 1.1: Scanning Electron Micrograph (SEM) of a 71.49-MHz free—free beam

micromechanical resonator [4].

By using concepts similar to those of the macroscale resonant sensor patented by
Weisbord [11], in 1969, Van Mullem, Blom, Fluitman, and Elwenspoek [12], Fabula,
Wagner, and Schmidt [13], and Funk, Fabula, Flik and Larmer [14] have reported on
work with bulk micromachined piezoelectric resonators, where a clamped-clamped
beam-like structure on the silicon substrate is electrostatically driven in its first
resonance mode and sensed capacitively. Prak, Elwenspoek, and Fluitman [15]
developed a method to design the input/output electrodes for selectively exciting or
sensing modes. Abdalla, Reddy, Faris and Gurdal [16] worked on the optimal design
of the thickness and width for beams with different boundary conditions for
maximum pull-in voltage. Turner, Miller, Hartwell, Macdonald, Strogartz, Adams
and Zhang [17], [18] have investigated a parametrically driven torsional oscillator
(Figure 1.3). Raskin, Brown, Khuri-Yakub and Rebeiz [19] worked on a parametric
amplifier. DeVoe [20], [21] proposed a device that was an order of magnitude smaller
than what was previously reported for bulk-micromachined devices by using surface

micromachined piezoelectric filters in a process compatible with backend CMOS



processing. In this work, the center frequencies of the resonator reached up to 1.18
MHz. In Figure 1.4, a piezoelectric resonator structure reported in this work is shown.
Kumar, Li, Calhoun, Boudreaux and DeVoe [22] fabricated piezoelectric Aly3Gag7As

microstructures.
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Figure 1.2: Scanning Electron Microscope (SEM) image of mechanically coupled

micromechanical resonator arrays with varying number of coupled free-free beams
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Figure 1.3: SEM image of a torsional oscillator [17].
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Figure 1.4: (@) SEM of a 50 um PZT microresonator [23] and (b) a schematic

showing the details of the device structure [21].

1.1.2. Nonlinearities and Phenomena in Microresonators

Nonlinearities in microscale and nanoscale resonators have long been observed and
reported with respect to variation in the drive voltage, excitation frequency, and

temperature parameters.



Husain, Hone, Postma, Huang, Drake, Barbic, Scherer and Roukes [24] reported that
a very low driving power is needed to bring a bottom-up Pt nanowire resonator into
the nonlinear regime. Piekarski et al [23] reported nonlinear Diiffing-like behavior in
an 80um clamped-clamped PZT resonator when the driving voltage exceeded a

certain value (shown in Figure 1.5).

By varying the operating temperature, Piekarski et al [23] reported that the resonant
frequency initially decreases and then increases beyond a certain threshold
temperature for an 80 um clamped-clamped PZT driven resonator, while Nguyen et al
[4] reported the reverse trend in frequency shift for electrostatic free-free and
clamped-clamped beams. Paul and Baltes [25] studied a thermomechanically buckled

plate structure.
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Figure 1.5: Effect of drive voltage on an 80um clamped-clamped PZT resonator’s

response magnitude [23].



Currano [26] reported the unusual spatial displacement pattern observed in 200 um
and 400 pum PZT clamped-clamped resonators. Li and Balachandran [27] also
observed nonlinear response spectra in the same devices for harmonic driving signals

close to the first resonance frequencies.

Shaw, Turner, Rhoads, Baskaran and Zhang [28], [29] reported the nonlinear nature
of responses in a parametrically excited resonator; they discuss the dependence of the
bandwidth on the excitation amplitude; the existence of non-trivial responses outside
of the passband; and the nonlinear input/output relationship, as well as higher order

resonances that occur in the resonator.

In clamped-clamped MEMS structures, stress could be one of the reasons. DeVoe
reported that in his PZT resonators the compressive residual stress between SiO, layer
and the wafer caused the resonator to buckle up (Figure 1.6). Vangob [30], Yang and
Kim [31], as well as Wagner, Quenzer, Hoerschelmann, Lisec and Juerss [32] also

reported residual compressive stresses leading to buckled beams or membranes.

Different from the source of nonlinearity in a clamped-clamped MEMS structure,
Postma, Kozinsky, Husain and Roukes’s work [33] revealed that for cantilevers, the
nonlinearity generally sets in at larger amplitude than in the clamped-clamped beams.
This is because the nonlinearity due to curvature has the dominant influence in the

response of the fundamental mode of the cantilever [34].
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Figure 1.6: Bowing due to high compressive stress in single-beam resonators with

SiO; layer [21].

The third-order intermodulation distortion caused by parametric excitation or
capacitive nonlinearity for electrostatically driven flexural-mode beams can also be

other sources of the nonlinearity [4], [28], [29].

Susceptibility to contamination may be one explanation offered for nonlinear
frequency-temperature relations. Nguyen et al [4] explained the observation by using
a mass-removal-based model, where the frequency initially raises by burning off
contaminants that adsorb onto the resonator surfaces and ceases to increase when all
of the contaminants are removed; due to a negative Young’s modulus temperature

coefficient, the expected decrease in frequency with temperature is observed.



1.1.3. Buckling Analysis for MEMS Devices

As mentioned in the previous section, either intrinsic or thermal stress induced
buckling phenomena has long been reported in MEMS field [30], [31], [32], [35], and

correspondingly, analysis and applications of buckling have been reported.

Qiu, Lang and Slocum [36] worked on analysis of a bistable mechanism and studied
the snap through problem of a statically buckled microbeam. Fang and Wickert [37],
[38] analytically studied the static post-buckling problem of a micromachined beam.
Chiao and Lin [39] worked on thermal stress induced self-buckling micromachined
beams. Brand, Hornung, Baltes and Hafner [40] reported the observation of a smooth
quasibuckling transition rather than a sharp Euler buckling in their micro-membrane
device. These studies on post-buckled microstructures have by and large focused on
the static case, and in all of these cases, the structures were modeled as uniform
beams. Li, Balachandran, and Preidikman [41], [42], [27] presented nonlinear
dynamic studies on piezoelectrically actuated microresonators with axially stepwise
varying properties, where the oscillations are modeled to occur around a post-buckled

position.

1.2. Objectives and Scope of this Work

The goal of this work is to develop a refined nonlinear model for a composite beam
with axially varying properties and distributed actuation and apply it to

microstructures with finite stepwise axially varying properties (FSAVP). Through this



application, it is intended to describe the nonlinear behavior of piezoelectric

microresonators. Specific objectives of this dissertation work are as follows:

1. Experimental characterization of the nonlinear behavior of Lead Zirconate

Titanate (PZT) microresonators

2. Development of a nonlinear beam model with Euler-Bernoulli assumption
that takes in to account axial elongation caused by external forces and

transverse displacement

3. Determination of solutions for free and forced vibration problems of a
FSAVP beam around a post-buckled equilibrium position, and comparisons

of the model predictions with experimental data

Experimental studies have been carried out with the 200 pm and 400 um PZT
resonators, with frequencies ranging from 100 KHz to 500 KHz. In these structures,
the microresonators are excited around their first natural frequency and the responses
of these resonators has been experimentally studied. Nonlinear Duffing-like
frequency-response behavior is observed for 200 um PZT resonators, and unusual
spatial vibration patterns and frequency response spectra are observed in the case of
the 200 um and 400 um PZT resonators. An explanation for these phenomena is

provided in this work.

The following features distinguish the current study from the previous efforts:

10



1. Development of a nonlinear beam model with a clear physical interpretation
on how the axial strain influences the system dynamics and how the strain is

also affected by external forces

2. Application of the model developed for a macroscale uniform beam to

microscale beam-like composite structures with FSAVP

3. Presentation of the first evidence for occurrence for certain phenomena in the

dynamics of microresonators can be caused by buckling

4. Development of a complete solution for static pre-buckling, critical-buckling,

and post-buckling problems for an extensible beam.

1.3. Organization of Dissertation

In the next chapter, the experimental arrangement and the experimental observations
are presented. A refined nonlinear beam model is then developed and applied to the
microresonator with FSAVP in Chapter 3. Following this, in Chapter 4, the free and
forced oscillations of such a beam about the post-buckling position are studied and
obtained the numerical results are compared with experimental data. Finally, a
complete solution for the static pre-buckling, critical-buckling and post-buckling
problems of an axially extensional Euler-Bernoulli beam is presented in Chapter 5.
Summary and suggestions for future work are included in Chapter 6. References are
included at the end of the dissertation. Appendices are also included to provide

additional details.
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Chapter 2

2 Lead Zirconate Titanate (PZT) Microresonators

In this chapter, the structure of the microresonator is discussed and data obtained in
experiments conducted with these resonators are presented. The experimental data

presented in this chapter is used for comparison with model predictions in Chapter 4.

2.1. Microresonator Structure Description

Oscillations of microelectromechanical resonators fabricated as clamped-clamped
composite structures are studied here. The resonators considered in this effort are
based on the piezoelectric effect, as shown in Figure 1.4. The dimensions of the
resonators considered in this study typically range in lengths from 50 um to 400 pum,
with a width of 20 um and a total thickness less than 3 um. The elastic substrate is
SiO;, layer, on the top of which a thin platinum electrode layer and a layer of sol-gel
piezoelectric film are deposited in that order throughout the structure’s length. To
complete the structure, a platinum electrode layer that extends over one quarter of the
length from each boundary is deposited as the top layer so that each resonator
structure has three layers in the mid-span where the top electrode layer is absent and
four layers elsewhere [21], [26]. Due to the asymmetry of the cross-section, the
position of the piezoelectric layer is offset from the neutral axis, and in addition,

residual stress may also be introduced in each layer during the fabrication process.

12



For comparisons between model predictions and the experimental results, particular
attention is paid to a 200 um long resonator. The thickness values for each layer are
provided in Table 2.1. As discussed later in Chapter 3, each resonator is modeled as a
composite beam with axial properties that vary stepwise from section to section. The
axial stiffness, the bending stiffness, and the mass per unit length values are given in

Table 2.2. Subscripts are used to indicate values associated with a particular section.

Table 2.1 - Thickness values for the 200 um composite resonator.

SiO; [um] Bottom Pt [um] PZT [um] Top Pt [um]

1.030 0.085 1.09 0.090

Table 2.2 - Axial stiffness, bending stiffness, and mass density values for the 200 um

long resonator.

EA: [N] EA2[N] EA; [N]
3.17 2.88 3.17
El; [N-m?] El, [N-m?] El; [N-m?]
1.39 x10* 0.83x10™2 1.39x10%
pA [Kg/m] pA, [Kg/m] pA, [Kg/m]
3.01x107 2.68x107 3.01x107

13



2.2. Experiments and Observations

The experimental arrangement used to study forced oscillations of the resonator is
shown in Figure 2.1 (a). The silicon wafer is first fixed in the chamber of Dessert
Cryogenics vacuum probe station in the Maryland MEMS Laboratory. Later the
resonator is electronically connected to a Hewlett Packard 4395A spectrum analyzer
and a power supply by connecting the top electrode and bottom electrode of the input
port with 2 single micro probes (Figure 2.1 (b)). The excitation signal fed into the
input port of the resonator consists of a sinusoidal component and a DC bias offset, so
that the static axial force and resonant frequency can be tuned as the resonator is
excited. A laser vibrometer is connected to the microscope of the probe station to

measure the transverse vibrations at the mid-point of the resonator (Figure 2.1 (c)).

Hewlett Packard 4395A: Hewlett Packard E3630A: | | Desert Cryogenics: (a)
Spectrum Analyzer Power Supply Vacuum Probe Station

Micro
scope

\_\

Video Monitor

L Vacuum

- B | Chamber
/4
7
I s e

-

\ f

Ve -

=
Probe Stage

Hewlett Packard 33120A:
Function Generator

Polytec OFV 3001:
Vibrometer Controller

Polytec OFV 511:
Fiber Interferometer

14



Spectrum Analyzer

Laser Doppler Vibrometer

;ﬂ' :-hu “IE-Lu_u
RS0
i A oo Son I

o o m ciw =l
| E=—= ‘e aa sos

Microresonator

Power Supply

Figure 2.1: (a) Experimental arrangement in Maryland MEMS Laboratory; (b) an
expanded view of the connection at the 200um input port; and (c) sketch of how a
laser vibrometer is positioned to examine transverse vibrations of resonator. The

resonator is excited by signals input to the drive electrode.
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The first natural frequency of a 200 um resonator is experimentally determined to be
close to 313 kHz, while the linear prediction obtained from the Euler-Bernoulli beam
model of composite structure, without considering the axial force and the non-flat

equilibrium position, is about 186 kHz.

In Figure 2.2 (a) a representative spatial response distribution of this resonator
measured by a scanning laser vibrometer is shown. Although the sinusoidal excitation
was closed to its measured first natural frequency of the resonator, the observed
spatial pattern does not resemble that of a “typical” first mode shape of a clamped-
clamped beam. Instead of a single extremum, three peaks appear in the spatial pattern
with the peak on the left larger than the other two peaks. This spatial pattern has

characteristics of a higher-order mode.

The amplitude of the vibration is typically a few hundred nanometers to 1 micrometer
depending on the excitation level (Figure 2.2 (b)). Furthermore, a hardening type
Duffing frequency amplitude response (Figure 2.2 (b)) and a nonlinear response
spectrum is also observed. In Figure 2.2 (c), the response of a resonator to a
sinusoidal input of 60mV with an excitation frequency close to the first natural
frequency is shown. Apart from the driving frequency, higher harmonics are also

observed.

16



Amplitude (nm)

400

100

€ Forward sweep, increasing frequency
O Backward sweep, decreasing frequency

330

. |
.
300 L 2 4
.
250 - 'Y 4
150 ® _
®
®
50 ¢
L ° o, |
o o
200 305 310 315 320 325
Frequency (kHz)

17



70 T T
I ‘r J — Spectrum of the resonator response ‘
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : _
| |
a 50-————————=———F - = - - - - P = === = = = = e = == = = = = = =
| |
R e —— e — e (CL)—
[ I I
T 30 - - - — — - — _ _ _ _F - Lo —
s 30 [ [
= | |
8 20— -} —— - — - e e e — - — -~ —
S I |
<< wof-----—-—-————fF-—————- k- --———-—-—=——-——-—-4- - — == = = = —
|
0 it \r
319kHz } 639kHz 960kHz2 1280kHz
05 500 1000 1500
Frequency (kHz)
-10 T
ol - - o ______ :, ,,,,,,,,,,,,,,,, ‘ —— Spectrum of the driving signal|_|
ok - - - - - b o ____ o _____ 1
— I I
o
g o ‘L —————————————————— ‘L ————————————————— —
)
[} 50f - — — — — — — — — — —F - — — — — — - - - - - - - - - - - — - - = | e —— —
'g | |
2 O0F-----=-=--=-"=-——-"F-——-—-—-- F-—— = === ="= === === F-—="="="="="="=— == — - —
= ! |
L e i Fmm e = = — Fmmm e = — —
) MU RN b b —
ol _____b______ L ______ Lo _____ _
( | |
. Y T
1005 319kHz 500 1000 1500

Frequency (kHz)

Figure 2.2: (a) Laser vibrometer measurement of a spatial pattern observed in
experiments; (b) hardening Duffing type frequency response of a 200 um PZT
resonator to a sinusoidal input signal with an amplitude of 0.398V; and (c) spectrum
of the laser vibrometer measurement at the mid-span of a 200 um resonator (upper
plot) when the excitation frequency is close to the first natural frequency. The
presence of spatial harmonics distorts the spatial pattern from the typical mode shape

associated with the fundamental mode of vibration of a clamped-clamped beam [26].
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Figure 2.3: Contour of a 400 um resonator showing a non-flat equilibrium position

(Courtesy: B. Piekarski, ARL, Adelphi).

These experimental observations and supporting evidence from the U.S. Army
Research Laboratory (ARL) (Figure 2.3) suggest that the oscillations may be taking
place around a non-flat equilibrium position. In the later chapters, a hypothesis that
the non-flat equilibrium position is caused by buckling is explored. This hypothesis is
motivated by prior work conducted with buckled microstructures [43]-[46] and large-
scale structures [47],[48]. These prior studies on electrostatically actuated micro-
structures have by and large focused on the static case, and in all of these studies, the
structures are modeled as uniform beams. The structures considered in this work,
however, are piezoelectrically actuated microresonators with axially stepwise varying

properties (Table 2.1 and Table 2.2).
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In Chapter 3, a refined nonlinear model is developed to explain the experimental
observations and to accurately predict the experimentally obtained value of the first
natural frequency. In this development, a refined model for a uniform beam is first
developed and later, this model is expanded to composite structures with stepwise
varying properties. To use this model for predictions, static buckling of such beams is
first studied. Free oscillations about a post-buckled equilibrium position and the
response of the structure to a harmonic excitation close to the first natural frequency
are then examined. This work is of general nature and it can be used to study buckling
in any composite beam with axial properties that vary in a stepwise fashion across the
structure’s length. In Chapter 4, predictions for the responses of the considered
microresonator are provided, compared with experimental observations, and

discussed.

20



Chapter 3

3 Modeling of Microresonators

3.1. Composite Structure Properties

In Figure 3.1, the composite structure of the PZT resonator is shown. In general, for
an n-layer laminate beam like structure, the effective bending stiffness El , axial

stiffness EA and the density per unit length pA of the structure along the length of a

composite structure can be determined as [49]

B’ n

EI :Dn_i’ EA:AU pA:Zpik’)\i(zi_im) (31)
where
Al = Vn Euﬁu(iu _271)
B, =2 Y EB(2-2) 82
D, =13 ER(2-2)
11_3 < i~ \ i i-1

where the subscript i represents the i layer of the composite structure, E; is the

A

Young’s modulus of the i layer, p.is the density of the i layer, Z, is the thickness of

the i" layer, and b_is the width of the i layer.
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For the 200 um microresonator studied in this effort, the density and stiffness data are

listed in Table 2.2.

(@2

Platinum PZT

L J
NS

N>
~

Sio

2 1

Figure 3.1: Sketch of the laminate structure of the PZT microresonator.
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Figure 3.2: Free-body diagram of a infinitesimal beam section. O is the center of
rotation for the deformed diagram, AX is the length of the undeformed section

and AS is the length of deformed section.
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3.2. General Governing Equations

To develop the model, the following assumption are made:
l. Structure behaves as a uniform Euler-Bernoulli beam;
Il. Axial and transverse displacements are “small”” compared to the length;

II. Structure is initially straight, free from stresses and body forces (Figure 3.2);
IV.  Axial and transverse displacements U and W satisfy U = O(W?) [50], this is
explained later in this chapter;

Proceeding along the lines of reference [50], ignoring the displacement along the j

direction in Figure 3.2, the force and moment equilibrium equations of the beam are

determined to have the form

A

(Nf) (Mi)—(l\]f) <;,f>+<fﬁ) m.)+[ft( % f)t ]As+[f ﬁ

.I’_‘
A(i,f){[azogﬁ’f)nﬁu(xt)] [62\/\7(2,{) A8W(xt) } (3.3)

ot ot ot

[T )| oy [ M ][ +[ DR D)T ]88+ [T (R D] AR+] £,(R,D)A8 | (%) ]
_ [J“ (%.0) 62.98(§,f) ]}A)‘( o4

where iandk ,and tandn are the tangential and normal unit vectors associated with

undeformed and deformed structures respectively. The carat symbol “"” has been

used to indicate a dimensional variable; X is the spatial variable, ASis the deformed
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length of an originally infinitesimal beam section AX ; N (X,1)is the axial force along
the longitudinal direction, M (%,1) andf(i,f) are respectively the bending moment
and shear force on the boundary of the infinitesimal section; U()?,f) andVV()“(,f) are
respectively the axial and transverse displacements; ﬁ()‘(,f) and fn(i,f) are the
distributed excitations along the tangential and normal directions of the deformed
beam; (X, ) is the distributed moment; J(X,f) is the mass moment of inertia,
0(%,t) is the rigid body rotation; and £AX is the distance from point A to the rotation

center O. It is assumed that the system has viscous damping for motion along

the i and k directions, and the respective damping coefficients are denoted by ¢and /z .

After ignoring the mass moment of inertiaj(i,f) in Eg. (3.4), and substituting (3.4)

into (3.3), and using Taylor-series expansions, the following equation of motion

(EOM) is obtained

(3.5)

The deformed length AS is associated with the axial and transverse displacement in

the following form
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AS = 1+6LAJ + aVY AX (3.6)
OX OX

Also, from Figure 3.2, the tangential and normal vectors t and i have the form

R U ). oW -

t=—||1+ i+ k ,
asK aﬁ} & } 57)
x| W - oU .-

N=—|— i+ 1+ k
a§{ X ( aﬁ] } 38

Next, substituting Egs. (3.7) and (3.8) into (3.5), the equation of motions along the i

and k directions can be obtained as

o|~0%(, oU) oMok . |aw| (. oU) . oW
—IN—|1+— |- | ———=+m|—+ | 1+ — |- f —
OoX oS oX OX 05 OoX OoX " oX
" . (3.9)
_pAdY eV
ot’ ot
i Na—)fa—VY+ a—l\flé—)fﬂﬁ 1+8Lf Jrﬁ&\/§/+1?n l+alf
OX 0S OX OX 0S OX OX OX
" . (3.10)
o'W ~oU
= pA—+2 -
PR T

The bending moment M (%,1) and its expansion can be expressed as

25



N (%,f) = EA(%(—’E’”—Q (3.12)

After using Taylor-series expansions to expand 6X/65 and &§/0 X based on Eq. (3.6),

one can obtain

ok aU [(auY) 1(aw) (o0 3(aUd ) ow)
— =l — | - = — | = = +— = . +HOT
oS OX OX 2| OX OX 2| oXx OX

& 0 oW 10y tfad )W) oy
OX oX 2| oX 21 OX 21 oX OX

where H.O.T stands for higher order terms. On substituting (3.11), (3.12) and (3.13),

(3.13)

into (3.9) and (3.10), and neglecting terms with orders higher thanO(V\73) , one

obtains
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onlU 520 2yl (20) 1[0 ) 20 (o
2 ot oX oX 2| oX oX | oOX
A A A A A A (3.14)
O g QW W QU plq Y| OW O W
OX OX OX OX OX OX

o'W ~oU 0 ~OW 0’ o'W 0o1|1o o'W
EA —— |+ —| El — |=—=1=>=| El —;
OX OX OX OX | 2 OX OX
~ N2 A ~ N2 A A A (3.15)
oW 30 o'W [ oW . ouU ~O0W - ou
X| — | +=—| El — — | |+m| 1+ — |+ f—+f | 1+ —
OX 2 OX ox* | ox OX OX OX

where&(X,t) represents the strain in Euler description [51]

2

o0 (20, 3fo0) o
OX OX OX

For a uniform beam, pA, El , and EA are constant properties. Next, the governing

equations of motion are rewritten by using the following dimensionless variables

X gy U Lt E
I I I I 1>\ pA El
R A A ) (3.17)
flI° ml* . ul B cl?

where the characteristic lengthl is defined as the undeformed structure’s length. The

dimensionless forms of Egs. (3.14) — (3.16) can be obtained as
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0V | e u_1o)au 1w Cou(owy
ot’ ot r’ox| ox 2\ ox ox \ ox

(3.18)
6 oW oW ouU 0 oW ou oW
1- ——m—|+f|1+—|-f —
ax ox’ oOx OX OX OX OX OX
AL ﬂ_ig( ﬂjﬁ“w 10[ow (ﬂ]
ot? ot rrox\ ox x' 20x| ox \ ox
) (3.19)
+3 0 ZW m(1+—j +f%+f (1+£j
2 ox? OX OX
e(x,t)=€="—— 6U aU + 6W (3.20)
ax ax 2 ax

where r =,/EI/EAI" is the slenderness ratio.

For an Euler-Bernoulli uniform beam, the width and thickness are smaller than the
beam length, and therefore, the slenderness ratio is usually small. For the parameter

values given in Table 2.2, for the particular study of a 200 pum resonator, r for each

section is of the order of 107, It is first assumed that U = O(W ?) [50], and with this
assumption, the different quantities can be ordered as U =0W?); W =0O(r);

e=0(r").

With the above ordering, keeping terms up to orders of O(W?) in (3.20), the Euler
straineis found to have the same expression as the Green-Lagrange straing, [51];

that is
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e=1-Z| o[ B_q| oM LW (3.21)
oS OX ox 2\ ox
Thus from Eq.(3.12), one obtains

N = EAe (3.22)

For further analysis, a booking keeping parameter ¢ is introduced and the different

quatities of interest are written as

e=¢€, r=cf, W=eW, U=¢U (3.23)

After using the ordering given by (3.23), Egs. (3.18) and (3.19) become,

282U ma ouU 1 0 8U oW
€ €26 —— —| e —¢"
at2 G S o 6x{ OX { OX j }

o R R (3.24)
o| ,0W oW ou 0 oW ,o0U oW
=—|¢ —|l-e— ||-e—|m— |+ f|1+e'— |- f —
OX ox’ ox OX OX OX OX " OX
oW oW 1 o ,_0W OW _ ,10|0W(owW
€ +e2[—————|ee— |+¢ = — —
ot? ot €r? ox OX ox* 2ox| ox* | ox
(3.25)

3o |ow(awY | o .U W U
€= — | |[+—| M| 1+€ +ef —+ 1 —
2 OX*| Ox* | oOx OX ox OX OX

In Eq. (3.24), terms of O(¢’) are retained, and in (3.25) terms up to O(¢) are retained,

resulting in the following
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_%a_e =f (3.26)
r’ ox

oW _OW  1|0€EW oW | oW  am W

€ +e2ji —e—| — +€ € =—+ef —+ 1 (3.27)
ot* ot r’| ox ox oX’ ox*  oOx OX

With this ordering, the longitudinal dynamics is neglected and only the influence of

the quasi-static motion along the axial direction is considered in developing the model

for the transverse vibrations of the structure. After substituting (3.26) into (3.27), and

absorbing the ordering parameter ¢ back into the different terms, one arrives at the

following system of equations for an elastic beam

0

e —
&(Fj-i' ft(X,t) =0 (328)

62\/:/ + 24 oW —%az\/\! +64V§/ =a_m+ f (3.29)
ot ot r° ox OX OX

Here, it is important to note that (3.28) can also be written in the dimensional form

x>

ON(
2

B, f(%£)=0 (3.30)

>

For the particular case of a clamped-clamped resonator, the associated boundary

conditions are
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AW(x,t)

W(x,t)=0, =0 a x=0, x=1 (3.31)

Egs. (3.21), (3.28) and (3.29) are the equations of motion of the beam. These
equations capture the longitudinal elongation due to the axial/transverse
displacements and external force fields. The form of (3.29) is similar to that of a
classic linear model, except that the dimensionless axial force term here is replaced
by the axial strain. This strain is expressed as a second-order nonlinear quantity and
considered as a function of the position x and the time t. It is believed that Eq. (3.29)
allows for a clear physical interpretation on how the axial strain interacts with the
system dynamics. From Eqg. (3.28), one can state that the system behaves in a quasi-

static manner along the x direction.

3.3. Governing Equations for Beam with Stepwise Varying
Properties

In this section, the EOM (3.28), (3.29), and (3.31) given for a uniform beam will be

expanded to structures with finite stepwise varying properties.

Following the earlier work in the field of active structures [52], for the
microresonators studied in this effort, the external actuation is modeled as (see Figure

3.2)
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(3.32)

where p, is constant with the dimensions [N/m] and &(X) is the Dirac delta function.

In sectional form, the axially varying properties and external excitation can be written

as (see Figure 3.4)

PAR =Y PAHD),  EAR) = EAH,(),

EI(X) = ElH, (%), AR =3 AH, (R),

- o (3.33)
fD=>f &OH®, &= (ROH (R,
(%5 =M, (R OH, ()

k=1

where the subscript k represents the k™ section of the resonator. Furthermore, ﬁ(f() is
the distance between the mid-layer of piezoelectric material and the structure’s
neutral axis; pA , El, , EA , and ﬁk are constant properties of the resonator;
andH, (%) =[u(X—-%_,)—u(X-%,)], where u(%) is the unit step function. For the

particular structure considered in this study, n=3 and m=1. The structure extends

from X, =0 to X, =1.
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Figure 3.3: Sketch of the axial force increment introduced by external force along the

axial direction.

Figure 3.4: Clamped-clamped composite beam with axially varying characteristics.
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With such properties, each section of the beam is regarded as a uniform beam. The

EOM for each section can be written as

0 (e_k} £ (xt)=0

ox\ r’

oW, +2/1, W, _& oW,  OW, F cosQt,
ot’ ot r’ ox* ox'

xel[x.,,x), k=12,.,n

o _ Y, i(awk ]

©oox 2\ ox
where

~ _ . 00(X=X)

F(X)=ph——n’

(9=ph ==

(3.34)

(3.35)

(3.36)

(3.37)

Making use of Eqg. (3.32) in (3.34), it can be concluded that the axial straine, is a

constant with respect to x. Further, from Eqgs.(3.22) and (3.30), the axial force has the

form (see Figure 3.3),

EAe = N(f) = N () + p(f)

(3.38)

Here N (f) represents the part of axial strain induced by sources other than those

directly due to the external excitation, such as residual stresses and the displacement

field.
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Next, to obtain a more applicable formulation of axial straine,_, Eq. (3.36) is spatially

integrated and evaluated from x = x,_, to x, to obtain

_ Uk(xk)_Uk(Xm) 1 s 6Wk ’
K (tk) ) (Xk a kal) ’ 2(Xk - Xk—l) X.[( OX j x (339)

It is noticed that from the displacement compatibility conditions that

Uk(Xk) :Uk+l(Xk)7 Wk (Xk) :Wk+1(xk) (3-40)

Now, the following definitions are introduced

X =U(x), Y -—"CA T(amgjdx K =—EA (3.41)

‘ 2(Xk — XH) b OX < (Xk - Xk—l)

Then with the displacement compatibility condition (3.40), the force compatibility

condition (3.38) can be written for the different sections as
K. (X, = X,)+Y, =K, (X, = X))+,
K, (X, = X)+Y, =K (X, - X,)+Y,

K, (X, =X )+Y, =K (X,
Km+1(xm+1 - Xm)+Ym+1 =K (X

-X,)+Y,..+P (3.42)
- Xm+1) +Ym+

m+2 m+2 2

K (anl_Xn72)+Yn—l: Kn(xn_xnfl)_'_Yn

n-1

Writing (3.42) in matrix form, one arrives at
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(Xp=A-LfY}+{F}] (3.43)

where
— 1 0 0 -1
K, K +K, K, 0
K, K +K, -K,
A= |:AIJ:| - _Ki Ki + Km _Km (344)
0 -K., K, ,+K -K,
I 0 0 1
X, X, 0
X, Y, -Y, 0
X, Y, -V, 0
YOI L VIS B R N TIN .
K= My Ly R (3.45)
X, Y -X | 0
X X 0

By solving system (3.43), the displacement vector {X} can be obtained as

n-1

i=2

X =[ALX AL T+ AL B ALY (AL - ALY |+ ALY

k=12,..,n.

(3.46)

In a general case, the boundary conditions can be described as
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=X, =& (3.47)
where (_) means the average value. Next, after defining

— (% -x) R (x,-x,) ;

EA= ] J , E ] J ,

[11 EA } A { ,21 EA }
(3.48)

— a(x-x,) oL N |2

E A , N = EA- , N =—2

A {Z EA } =T

and substituting (3.32), (3.40), (3.41), (3.46), and (3.48) back into (3.39), the axial

straine, can be expressed as a function of transverse displacement

e (t)=r’N +r’qg pcosQt +{Akzn: j (aaﬂj dx]
- X

E (3.49)
Xe[x ,x), k=12..,n.
where

%, k<m _

EA
0=y — k= neh 3.50
_EA 2EA o
EA’
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5, =P ang o = [PA g (3.51)

El El

k k

Equation (3.35) and (3.49) are applicable to the microresonators studied in this effort.
They are different from the governing equations treated in previous work [47], [48],
since the resonator has distributed excitation as well as varying properties. The
displacement field of one section is coupled with the fields of all the sections. This
equation along with the boundary conditions represent a nonlinear model that can be
used to study transverse vibrations of beam-like structures with axially stepwise
varying properties, coupled axial and transverse excitations, and sections with “small”

slenderness ratio values, which are common in MEMS applications.
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Chapter 4

4 Nonlinear Analysis

In this chapter, the model developed in Chapter 3 is studied and nonlinear analysis is
carried out with this model. The static buckling problem is first solved with the
hypothesis that the non-flat equilibrium position is caused by buckling, then the
beam’s free vibration around a buckled position is studied and finally, the forced
oscillation case is studied. This analysis is of general nature, and at the end of this

chapter, this analysis is applied to a microresonator

4.1. Static Buckling Problem

In this section, the static buckling problem is addressed. It is assumed that the

dimensionless static buckling deflection of the resonator can be expressed as
v(x) = X0, (0H, () (4.1

where v, (X) is the transverse displacement in the k™ section of the beam. For the static
buckling analysis, the inertia, damping, and external actuation terms in (3.35) are

dropped, and the static compressive axial forces —P, and —P, are substituted for

NO and N, in (3.48) respectively. After carrying these substitutions through and
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making use of (3.49) in (3.35), the nonlinear equation governing the equilibrium of

the beam subjected to a static axial force can be written as

d4l/1< Ak 3% dou 2
gy I
n‘ =, dX

The associated boundary conditions follow from (3.31) as

2
}d k-0, k=12,..n (4.2)

o (x) =0, 31X
X

—0 at x=0, o,(X)=0, d”&(x)

=0 at x=1 (4.3)

In order to obtain the solution of (4.2), the critical buckling force must be first
calculated by solving the linear buckling problem for this composite resonator with
axially varying properties. To this end, neglecting the nonlinear term in (4.2) and

substituting for the dimensionless buckling load P, , with the critical buckling load P, , ,

the linear buckling problem associated with (4.1) — (4.3) is determined to be

(9 =Xy 00H, (9 @4)

where , (X) is governed by

q* 42
d)"(’jk +2 d)"(’gk =0 (4.5)

and
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dy, (x)

w,(x) =0, =0 at x=X,,
(4.6)
d
v, (x) =0, v (X) =0 at x=x,.
InEq. (4.5), ¢ =P, =P 1?/EI, .The general solution of (4.5) is given by
v, (X)=4a, +a, x+a, cos(S,x)+a,, sin(g,x) (4.7)

To determine the arbitrary constants a;, for 1=12,3,4 and k=12,...,n, the

following compatibility conditions are enforced [53] (see Figure 4.1)

d'//k-1(x) _ dy, (X)

Wk—l(x):Wk(X)’

)

dx dx
d’w, (X d’y, (X dyw, (X dy, (x (4.8)

@x=x_,, k=23..,n

After substituting (4.7) into (4.6) and (4.8), one obtains a set of twelve homogeneous

algebraic equations that defines an eigenvalue problem for the a;, and the

eigenvalues ¢, which are functions of the critical buckling force. For a three-section

beam model, the eigenvalue problem takes the form
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Figure 4.1: Boundary conditions and compatibility conditions for a clamped-clamped

composite beam.
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—C0s¢ X,
-¢,sing,

COS¢,

2

El¢7cos¢x,
El¢Isingx,
~¢,cos¢x,
—-sing x,
¢,cos¢,
sin g
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At this point it is convenient to introduce a new constant quantity, Q , defined as

Q =EA -e, (4.10)

e, =A, {j(%—‘ij dx} (4.11)

After determining the critical buckling force, the post-buckling problem is considered.
When the compressive axial force is larger than the critical buckling force, the linear
buckling problem given by (4.5) cannot be used to study the beam’s deformation. The
nonlinear equation given by (4.2) needs to be considered. For solving (4.2), following

reference [47], it is assumed that
v, (X) =by, (x) (4.12)

where b, is a non-dimensional factor, which is called the buckling factor. On

substituting (4.5), (4.11), and (4.12) into (4.2), the result is

(4.13)
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On substituting (4.10) into (4.13) and returning it to dimensional form, it is found that

b, is a constant with respect to X for all the sections; that is,

b = (4.14)
Q
Therefore the solution of (4.2) can be written as
v, (x) =by, (x) (4.15)

Here, it’s important to note the fact that if the beam span is X< (0, 1) at critical
buckling situation, then after buckling, the beam shall have a shorter span; that is,

xe(0,x ), where x <|. Therefore (4.12) is only an approximation to calculate the
buckling factor b based on an assumption that the actual buckling force I5O is slightly
higher than the critical buckling force I5C, so that the change of the span is negligible
and the buckling displacement v(x) can be approximately expressed as the critical

mode shape w(X) times an amplitude term, as shown in (4.12). A complete solution

for the static pre-buckling, critical-buckling, and post-buckling cases is given in

Chapter 5.
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4.2. Free Vibrations about Post-Buckling Position

Free oscillations of the undamped resonator modeled as a beam with axially varying
properties are considered in this section. The equation of motion of an undamped,

unforced beam subjected to an axial load is given by

o'W, +{p0k _A: [ij(a‘”ijdx}a W, OW g k=12,...n.  (4.16)
' r =1

. 2.\ OX ox* ox'

where w_ is the overall transverse displacement in the free vibration case. The

corresponding boundary and compatibility conditions are similar in form to those
given by (4.6) and (4.8). The solution of this system can be written as the sum of a

static component and a dynamic component [41] (see Figure 4.2)
w, (X,t,)=by, (X)+v, (Xt,) (4.17)

where v, (x,t,) is the k™ component of the dynamic deflection, v, (X) is the K™

component of the static buckling mode shape w(x), and b is the buckling level factor

defined by (4.14).
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V(%,f): Dynamic displacement W(X,t): Totaldisplacement

by (X): Static displacement

Figure 4.2: Buckled beam configuration.

Next, the natural frequencies @ and mode shapes associated with free oscillations

around the post-buckled position by (x) are examined. To find the natural
frequencies and mode shapes, (4.17) is first substituted into (4.16), it is assumed that

Vi (X,t)| <<[b w, (X)|, and the separation of variables is used to have

Ve (%,t) = g (x) e (4.18)

where ¢, (x) is the mode shape and @, is the frequency quantity associated with
section k =1,2,...,n., which is defined in the same way as (3.51). Here, it’s necessary
to keep in mind that,t, = & t . On substituting (4.5), (4.13) and (4.18) into (4.16),

the following equation is obtained:

d’g  d'¢  20°A, dy, | & ¢ (dy, dg
2 P — k k i | d
A+ e e o rZoodx 2 dx dx X (4.19)

=1 %y
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The general solution of (4.19) is composed of a homogeneous solution ¢, (x) and a

particular solution ¢, , (X)

¢ (X) = B, (X) + 6, (X) (4.20)

The homogeneous solution is given by

By () = Cy, sin (A, X)+Cy, €05 (A, X)+Cy, sinh (4, x) +C,, cosh(4,,X) (4.21)

where

Ay = \/%(Pck Ty P +4a; )’ Ao = \/%(_Pc,k Ty P + 40y ) (4.22)

The particular solution can be obtained by solving the equation obtained after

substituting (4.20) and (4.21) into (4.19), that is,

d’g, d'¢,, 2b°A, dPy, | &b (dy, A,
_a)k2¢p,k +P, g,k N i,k V/k Uy 2%
dx dx 7 i, \ dx o dx
, ) (4.23)
2b°A, dy, | < n dy, dd,;
= _— PR B ——— X
Zoodx? Lzl“le( dx dx
It follows that the solution of (4.23) can be written as
Bor = Cay | 8s COS(£,X)+a,, 5in (LX) | (4.24)
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where the C;, are constants. Making use of (4.23) and (4.24), the relations between

the constants C,,, j=1,2,..,5 are obtained as

n

Z( Bl,iCI,i + Bz,icz,i + B3,iC3,i + BA,iCA,i + Dk,iCS,i ) =0 (4.25)

i=l

where the B, sand D, ; are constant values ( j=1,2,3,4. k=1,2,...n.), which are

given by
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cos| (&, —4,)x| cos|(< +4,)x

el {sin [(g’ -4,) x] N sin [(4 +4,) XWH
. 2(¢, +

2((. _ﬂ’u

~—

l—l
U\
@
=<
L1

B,, {a cos(ﬂ x)+a CA [sm ) _Sinz[(é +/11,)XW

N
—_
'J\
}a
~

s —cos[(cji -2,) x] N cos[(;i +/1U)x]
b [ 2(¢-4,) 2(¢,+4,) }
. A, . .
B, = {azvi sinh (4, x) —%[iﬁ sin(& x)sinh (2,x)~¢, cos (¢ x)cosh (%X)] (4.26)
32 e ;2 [/1 cos(¢x)sinh(4,x)+¢ sin(¢ x)cosh (4, )}} :

64,

A+

2,

B, ={a, cosh(4,x)--2="2[ 4, sin(¢x)cosh(4,,x) ¢ cos (¢ x)sinh (4, x) ]

Lash
/12+§

[ﬂ cos(g“x)cosh(/i X)+§ sin (¢ x)sinh (/1 X)]}‘

2 2

D, = {a“z +a, cx- ;a“" ¢sin(2¢x)+a,a, cos(<x)+a,a, sin(£x)

2

a,a, Lo
+22 2 Zcos(28 X —k &
5 6.00s(26, )}x WN,

Equation (4.25) along with the associated boundary conditions and compatibility

conditions forms an eigenvalue problem for the C, ;and the natural frequencies w, .
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After determining these values forC . ., the expression for the free vibration mode

i

shape of the post-buckled beam with axially varying properties can be determined as
#(x) =D g (OH, () (4.27)
k=1

4.3. Forced Oscillations

Forced oscillations of the resonator modeled as a beam with axially varying
properties are considered in this section. The nonlinear equation of motion is given by
(3.35), and (3.49), the boundary conditions are given by (3.31), and the displacement
compatibility conditions are similar as form those given by (4.8). For solving (3.35),

it is assumed that

W, (X, t) = by, (X) + 7, (X, t,) (4.28)

where the 7, (x,t,) represent the dynamic deflection and by, (X) is the static post-

buckling position given by (4.15). On substituting (3.49), (4.5), (4.11), (4.13) and

(4.28) into (3.35), one obtains

- ' iv ZbZA o "ot " = ~ " "
i+ P+ == {Z(wi,mi}wk =[F +a,p, (bwy +n) [cosQt,

k .

i=1
~ . 2bA 0 . " A n ., ) bA n , ,
—2 [l 17, +T{Z<wi,m >i}7k HT{Z(%%%}A + rzk {Z(ﬂum ﬂwk (4.29)

k i=1 k i=1 k i=1

k=12,..n.
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From here onwards, the following notations and expressions are used for convenience:

" (a-b)dx,and <a,b>:jx"

X

()=0/at, . () =0/ox.(ab) = (a-b)dx  (4.30)

Xi1

The corresponding boundary conditions and the compatibility conditions follow the

same form as given by (4.6) and (4.8), that is,

n, =0, n,=0 at X=X,
! g ° (4.31)
n, =0, n,=0 at x=x,.
777 :77 , EI 777!: :EI 77!!,
k-1 k k-1"1k-1 k l:” (432)

My =1 El, ., =ElLn, atx=x_,, k=23..,n

Next, assuming that the system is a weakly nonlinear system with weak damping and
weak forcing, the method of multiple scales [54], [55] is used to obtain for an
approximate solution of (4.29). The basic approach follows that presented in earlier
work [56], but here, the application is directed towards a composite microscale
structure with axially varying properties. Different time scales are introduced by

using a small, dimensionless book-keeping parameter ¢ as

T =t, T,=¢t, T,=&%, . (4.33)

and correspondingly, the derivatives take the form
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0
o Dy + 6Dy + & Dy +..., Dy T (4.34)

It is noted that

5 .0
D, =1 /%Di and B, = (4.35)
k i

for the purposes of the ensuing the frequency-response derivation. To balance the
effect of nonlinearity, damping, and excitation, the following scaling is also

introduced:

P = & P Ay :gzluk (4.36)

With this scaling, the sources of secular terms will arise atO(&*) . The approximate

solution is then expanded as

7 (X, 8) = & (6 T T, T ) + 87051 (%, T Ty i)

) (4.37)
+ &5 (%, To s Ty T ) + -

Introducing (4.33)-(4.37) into (4.29), rewriting the excitation term in polar form, and
collecting terms of the same power of ¢, the following hierarchy of equations is

obtained:
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O(e):

4 4.38
L(my) = D§k77k +F, k771k +771k k {Z<‘/’u771|> } =0 ( )
i=1
0(s?):
2bA, bA, [ , (4.39)
L(17y) = 2 |:z<'//.'771|> :|771k 2 {z<771|7771|> }//k — 204, Dy
k i=1 k i=1
0o(&%):
L (113) = =24 Dy 11y — 2Dy D1y _( Dy +2Dy, Dy, )771k
ZbA 3 ! ’ 4 2bA : ! ! "
+— X |:z<l//i7771i>i:|772k +— : |:Z<l//i'772i>ij|771k
‘o Lia i Lia (4.40)
A, 2bA, y
+_|:Z<771|’771|> :|771k 2 {z<771|’772|> }'/’k
= I =
+ B Fe'% 4+ c.c}
where c.c. stands for complex conjugate of the preceding terms and
00 (X—X y
F = pnh, M"_bqk P (4.41)

The corresponding boundary conditions and compatibility conditions at all orders

follow the same form as that of (4.31) and (4.32).

When the excitation frequency is close to the first natural frequency, namely

N

Q=@ +&6 ,0r Q =, +&0, (4.42)
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the solution of (4.38) can be approximated to consist of an amplitude A, (T,.T,)

with the first mode shape of the free vibrations around the post-buckled position

@, (X) ,which is given by (4.20), (4.21), and (4.24). For the sake of continuity, the

displacement at the connecting point of two sections has to be the same; that is

Ak ¢1,k (Xk ) = Ak+l¢1,k+l (Xk ) (4'43)

Also, the compatibility conditions of ¢, (x) require that

4. (x)=4..(x) (4.44)

Hence, it follows that the amplitude in (4.43) has to be independent of the section

number. Therefore, one can write the solution of (4.38) as

T = i O] ATy T )e ™ +A (T, Ty, Je v | (4.45)

where Aand A are the complex amplitude and its complex conjugate, which can be

Lo 1_
written in a polar form as, A(T,,T,,) :Eae‘ﬂ.

Next to solve Eq. (4.39), (4.45) is first substituted into (4.39), resulting in
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L) =22 [i<w;,¢1§>i (Aer™ +c.c.)}¢;; (Ae"™ +ec.)

2
rk i=1
n

+ 2 { > (g ) (Ale™ + AR+ c.c.)}u;' (449

k

- 20, [ (DA )™ —(Dy A e |

From (3.17) and (3.51), also
T, =at, neN* (4.47)
Therefore,

[ﬁ(-)iem}:[ﬁ(»ie% (4.48)

Making use of (4.48) in (4.46), the right-hand side of (4.39) can be expressed as the

summation of sources of the non-secular terms and secular terms (S.T.),

L(ny) =b¥, ()] Ale”**™ + AR +cc.|+S.T. (4.49)

where,

i=1

0= S, o+ S ), v

k e Uiz

(4.50)

S.T.=-j2w, ¢, [( Dy Ai)ejw“‘Tm‘ - ( D, /Kl) g Jenox ]
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Setting the sum of the secular terms to zero one obtains that the amplitude term is

only a function of the time scaleT, ; that is

A= AL(TZk) (4.51)

Next, to solve (4.49), it is assumed that the approximate solution for the spatial term

of 7, (x,t,) is a weighted summation of the free-oscillation mode shapes given by

(4.20), (4.21), and (4.24). This leads to

s = PAAD,, (X) +bAID,, (x)e’ ™ +cc. (4.52)

where @, (x)and ®,, (x) are defined as

Ou(0=2 T Pu(=D S @.59)

On substituting (4.52) into (4.49), one first obtains the decoupled differential

equations for @,, (x) and ®,, (x)

" iv 2b2Ak : ' ' "
Pk @y + Dy — ) Z<V/i’®1i >i w, =Y, (4.54)

k i=1

" iv 2b A
_(Za)lk)zcbzk + Pc,kq)Zk +®@,, - — |:

i( ! D, >} =¥, (4.55)

i=1

Then making use of (4.53) in (4.54) and (4.55)
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- " iv ZbZA : rogr "
ZTr{Pc,k T P — 2 « |:Z<l//i’¢rk>i:|l//k}:q’k (4.56)
r=1

k i=1

0

2 " iv 2b2Ak e 1o ”
Zsr ~Qawy ) @ + PP + Puc _r—z <Wia¢rk>i v =Y, (4.57)

r=1 k i=1

Equations (4.56) and (4.57) can be further simplified by applying (4.19), and this

leads to

ZTra)er =Yy (4.58)
=1
Z S, [a)rzk - (Za)lk)z:'¢rk =¥, (4.59)
r=1
Next, multiplying by EI"I4 on both sides of these equations, using properties given in
P
(3.51), one obtains
A El
T.o!, =— V¥
rzz; ra)r ¢rk ,DAK|4 k (460)
s, [62 - 2a) g = —k v, (4.61)
— r r Tl ,OA<I4

It is mentioned that as a stepwise function defined as in (4.27), any two functions

¢(X) and $(x) have the following property
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n

(0,9) = (0. 9), (4.62)

k=1

One can operate on this inner product in (4.58) and (4.59) with the p™ free vibration

mode shape ¢, (x) throughout x e (X,, X,) by using the partial inner product through

the k™ section X € (X4, %), and then summing up all the sections together. This

results in

n

iT,a“)f{ <¢rk,¢pk>k}= - El, (¥, 85, (4.63)

k=1

is, [ —(2@1)2][i<¢rk,¢pk>k} = Z El, (Wo ), (4.64)

4
=1 k=1 k=1 ,OAkl

Next, making use of the orthogonal prosperities of ¢(x), (4.63) and (4.64) become

TS ), 3 (), (455

k
k=1 ,OA<|4

5[ T3 60 ), =] i), (@69

k=1 k=1 pA<|4

After substituting (4.50) into (4.65) and (4.66) and changing the subscript p back to r

for consistency, the weighting factorsT,and S, are obtained as
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]S s |+

r ~2 ~ ~
r rrr

2
>

lszk <Wk’¢rk>k:|

" EX (4.67)
)3 2 ) o) 35 i, |
Sr _ k=1 — — _ Ak:l
|9 -(2a)'[(4. )
Next, to solve (4.40), substituting (4.42), (4.45) and (4.52), one arrives at
£ (1) = Ahy, (x)e*Tx 1 h, (x,T, e ™ +c.c. (4.68)
where
0= 2250 0, (0 )+ (. 00) o ' 00) s S )| (a0)

_ _ 1_
h, (X, Ty ) = AizAigk (X) -2, @y [:ukAi + DzkAi] +E Fe’ T (4.70)

0,00 =228 207,y )+ 0% (o) 265 ' )

k

(4.71)

L (D)4 2 () () g (g M

> 2b2

The solvability condition [55] requires the right-hand side of (4.68) and it’s boundary

conditions be orthogonal to every solution of the corresponding homogenous adjoint

problem from x = 0 to 1, which, from (4.18) and (4.27), is ¢, (X) eiot for the k™

section. Multiplying the right-hand side of (4.68) by 4, (x) e’ and spatially
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integrating the result from x = x, ,to x =X, , and adding all the three sections together,

the following complex-valued modulation equation is obtained after setting the sum

of the secular terms to zero:

|:kzn:< A+ Dy A a)lk¢lk'¢1k>k:|
:%{an: k’¢1k }9J6T2+A&'A&{Zn:<gk'¢1k>k:|

k=1

(4.72)

Further, substituting (3.17) and (4.35) into (4.72), and Iettingy:&'fz—ﬂ, it is found

that the approximate solution and frequency-response equation are given by

W =W, (x,t)H, (4.73)
k=1
2 %
o= _aAnnaz + (%_ 6)21&2] (474)
4o a

where

W, (xt,) = b[m ()+ba’D, (x)} +a, ()05, —7)
2 (4.75)
+% ba’®,, (x)cos[2(Qt, —»)]+...
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i<¢1k,gk>k

o = k=1 ’

" a3

n <¢1k ! I:k >k
I , (4.76)
{ 3 <¢1k ), }
Z <¢lk ! ¢1k >k
C = k=1

30 (),

k=1

4.4. Results and Discussion

In Figure 4.3 to Figure 4.5, the variations of a 200 um PZT resonator’s dynamic

behaviors are shown with respect to the buckling factor b for free oscillations about
the first, third, and fifth static buckling modes. When the resonator is oscillating
around the fifth static buckling mode shape with b equal to 1.13x107, the first natural
frequency of the resonator is determined from the model as 314.4 kHz, this is close to

the experimental result reported in Chapter 2. The corresponding deflection amplitude,
which is derived from Egs. (4.75), is b{z//(x)+%ba2d)l(x)}+a¢l(x)+%baZCD2(x), this is

shown in Figure 4.6 (a). Here it is important to note that for the same frequency value,
the corresponding value of b depends on the resonator’s stiffness and geometric
properties as well as the normalization used to define the static critical buckling mode

shape. For example, in this dissertation, the nondimensional static critical buckling
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mode shape (X) is defined to satisfyjol://2 (x)dx =1. In Figure 4.6 (a), the amplitude

value of mode shape ¢(x) is tuned to be 102, so that when turned back into

dimensional form, the resonator’s predicted dynamic displacement is of the same
order as the measured displacement at the resonator’s mid point. This forced
oscillation spatial displacement pattern looks similar to the spatial pattern
experimentally observed during forced oscillations, when the excitation frequency is
close to the first natural frequency of the resonator (see Figure 2.1 (b)). The
frequency-response curve shown in Figure 4.6 (b) resembles that of a Diffing
oscillator with a hardening spring; again, this result is consistent with the
experimental predictions. In Figure 4.7, simulations are conducted to assess the
sensitivity of the nonlinear frequency response curve to geometrical parameters, such
as the top electrode thickness. For different values of the top electrode thickness, the

numerical value of &, is found to vary, thus from Eq.(4.74) the system nonlinear

hardening behavior varies.

The agreement between the analytical predictions and experimental data suggests that
the hypothesis that the non-flat equilibrium position of the resonator is caused by
buckling can be a valid one. Along with the work reported in references [41], [42],
[27], the present study provides the first evidence of such a phenomenon in
microscale resonators. In addition, the present work can be used as a basis to study

buckling and oscillations of resonators with axially stepwise varying properties.
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(reuoisuawip-uou) ¢
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Spatial coordinate along the length of the resonator x (non-
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15

¢ (non-dimensional)

Spatial coordinate along the length of the resonator x (non-dimensional)

Figure 4.3: () The first static buckling mode shape of the 200um PZT resonator, (b)
the first and second natural frequencies versus b, (c) mode shape of free vibration at
point A (b = 1.0x10) in the frequencies versus b plot, (d) mode shape of free
vibration at point B (b = 1.0x10) in the frequencies versus b plot, and (¢) mode

shape of free vibration at point C (b = 2.0x107?) in the frequencies versus b plot.
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¢ (non-dimensional)

Figure 4.4: (a) The third static buckling mode shape of the 200um PZT resonator, (b)
the first and second natural frequencies versus b, (c) mode shape of free vibration at
point A (b = 1.0x10) in the frequencies versus b plot, (d) mode shape of free
vibration at point B (b = 4.0x107) in the frequencies versus b plot, and (e) mode

shape of free vibration at point C (b = 2.0x107?) in the frequencies versus b plot.

68



(reuoisuawip-uou)

Spatial coordinate along the length of the reasonator x (non-dimensional)

0.03

2500

H I I I l
—~ | [ | |
H H
o) H | [ | |
~ | [ | |
N | [ | |
H H
: | [ | |
H | [ | |
H H
H | [ | | 0
AN S N T 4 - - g
. | [ | | S
H | [ | |
H H
B | [ | |
H | [ | |
H | [ | |
H | [ | |
H | [ | |
H | e | | y
I [ . TTT T~ T 3
. | [ | |
H | [ | |
H | [ | |
. H
H | [ | |
H | [ | I
. | [ | |
H | [ | | °
H H
< - | g
o
H | e ] | S
S | [ | |
s | [ | |
3 | [ | |
s [ | |
¢ [ | |
s ! [ I I
. [ | ! -
O £ e — — - — - - — — — 4+ - ———=— e
. . o
. | [ | |
.| [ | |
ol [ | |
% [ I I
1°, [ | |
0 H
I % [ | |
| *. [ | |
| . e | | 2
Lt P g
| - e 3
| |8 | | °
.
| [ . | |
| e o, |
| [ | D |
.
| [ | ., <
| [ | 1° .
H .
| [ | | .
H .
| | o | | AP
8 8 8 8 e
[=] n o n
& 1

(zH) sa1ouanbai [einieN

69



(reuoisuawip-uou) ¢

rdinate along the length of the resonator x (hon-dimensional)

Spatial coo

(reuoisuawip-uou) ¢

of the resonator x (non-dimensional)

along the length

ordinate

Figure 4.5: (a) The fifth static buckling mode shape of the 200um PZT resonator, (b)

the first and second natural frequencies versus b, (c) mode shape of free vibration at

) in the frequencies versus b plot, and (d) mode shape of free
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Figure 4.7: Comparison between experimental measurements and the predicted

frequency responses. (a) top pt thickness is 90nm, £=8.0x10", b=1.13x10", and
a, =-4.98x10"; (b) top pt thickness is 94nm, 4=8.0x10", b=1.13x10", and

a, =-4.96x10". (c) top pt thickness is 140nm, £=8.0x10", b=1.13x10°, and
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a, =-5.13x10"; (d) top pt thickness is 160nm, z=8.0x10", b=1.13x10"°, and

~

a, =-537x10".

nn

4 5. Other Comments

From Eq. (4.74), one can see that the nonlinear system has a hardening type of

frequency response if ¢, <0, and a softening type of frequency response ifa,_ >0. In
Egs. (4.76) and (4.71), g(x) is a key quantity that determines the sign of & _and one

has to be careful in numerically determining this quantity. Due to an error in a
MATLAB program that was written previously to determine g(x), it was incorrectly
predicted that the system exhibits a softening behavior for certain values of the
electrode thickness (see the following article “Nonlinear Free and Forced Oscillations
of Piezoelectric Resonators,” in Journal of Micromechanics and Microengineering,
Vol. 16, 2006, pp 356-367), the error in the simulation program has been since

corrected. The current results indicate that the values of &, are negative for all the

previously considered electrode thicknesses. The frequency responses determined for
different top electrode thickness values are shown in Figure 4.7. The author of this

dissertation apologizes for this incorrect information provided earlier in the paper.
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Chapter 5

5. Analysis of Buckling for Extensional Beams

In this chapter, a uniform beam under static axial force is studied (shown in Figure
5.1). A complete solution for the transverse displacement of this system is provided

for pre-buckling, critical-buckling and post-buckling cases.

It is assume that the beam satisfies assumptions I - IV provided in Chapter 3. Then
starting from the nonlinear EOM for a uniform Euler-Bernoulli beam given by Eqgs.
(3.28) and (3.29), for the static case shown in Figure 5.1, the governing equations

become,

>

)

o
x>
) |

Figure 5.1: Sketches of a uniform beam subject to different axial forces: (a) zero axial

force; (b) critical buckling force; and (c) post-buckling axial force.
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d'v e d’
-——=0, xe(0, x 1
dx* r’dx’ e( B) (1)
e:ﬁ+1(a—u) = const. (5.2)
ox 2\ ox

where r andvare the dimensionless axial and transverse displacement for the static

case (i.e., the case given by (3.17)). Next, the following notations are introduced

(5.3)

where |_is the characteristic length to be defined later.

For the particular case of a clamped-clamped resonator, if we fix the left end and
allow the right end to slide along the x-axis freely, then the associated sliding

boundary conditions are

IO
f(6)=0, 7(x) =%~ 65

c

v(x) =0, d—U=O,at X=X, X=X
dx

B

wherel is the length of the beam without the axial force.

Furthermore, (3.22) and (5.4) indicate that
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A

or -P
e(X)=—1 =—2 55
(X) o 7 (5.5)

x=0

On substituting this relation into (5.1), the governing equation for the transverse

displacement becomes

d‘v d’v
+ 7 =0, xe(0, x 5.6
dx* J dx? e( B) (56)
, e P12
=—mg=R="F (5.7)

Note that the zero is always a solution of (5.6). The nonzero solution is given by

v(X)=a +a,Xx+a,cos(¢x)+a,sin(gx) (5.8)

where the a are constants. Making use of the boundary conditions (5.4), the

transverse displacement of the clamped-clamped uniform beam can be expressed as

v(x) = by (x) (5.9)

where b is the amplitude, namely the buckling factor, and w(x) is the buckling mode

shape corresponding to the axial force I30
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y(x) =1-cos(¢'x)
(5.10)
¢x,=2nz, neN’

Now, in Egs. (5.9) and (5.10), there are 2 unknown quantities, the buckling factor

b and the sliding end position x_. Solving for these two quantities will give the full

solution for the problem of interest. To this end, two additional equations regarding

b and X, need to be found.

First, the characteristic axial force I3 and the corresponding characteristic beam

length | are defined as follows. Let

| ={l.eR*[Il.>0}, PeR (5.11)
and

P = EA('OI_LJ

X ° (5.12)

P°—I°2—§’2 —(ZWZ)2 neN*

El 7 ’

Therefore, from (5.11) and (5.12), the initial lengthl can be expressed by using the

characteristic length|_as
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|
| = m (5.13)

From geometry, the length of the beam under axial force |50 is given by

%,

.k .5l or 1fovY | b’
ds=1{(1 dX=|1+—+=| — | |ldx=| 2x, —2>+—7 |
8 f( +e)dR I{+8x+2(ax]}°x (XB IC+4§XB)° (5.14)

> —y

Xa Xa

On the other hand, as the axial strain is a constant, according to Hooke’s Law, the
relation of axial force I30 with the length for a uniform beam can be written in

dimensionless form as

1,11

F’o=§2=—;( | *) (5.15)

Next, by introducing a new parameter
a’ 5 16
5 (5.16)

x =L (5.17)
(04

On substituting Egs. (5.13), (5.15), and (5.17) into (5.14), the buckling factorb can be

expressed with respect to the buckling force « as
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, 4 1)
b _0/(5 {a(1+1_r2§;] a’rg 2} (5.18)

0.06
0.05
0.04
0.03
0.02
o~
0

0.01

Figure 5.2: « versus b*for a beam with r =10~

As an example, in Figure 5.2 the variation of buckling factor b with respect to the

axial force is shown. In this example, the slenderness ratio is chosen to be r =10~

Physically, if the nontrivial solution (5.10) exists, the buckling amplitude b has to be
a real number. For 0 <a <1, which means0 < I30 <I5C (Eq.(5.16)), b* <0. One can

conclude that in this case, (5.6) has only the zero solution, and the beam retains the
flat position. In critical buckling case,« =1 and b* =0, the solution exists but with a
zero amplitude. For the post-buckling case, « >1 and b* >0, the beam has 3 possible

equilibrium positions: 1) a zero displacement field, which is apparently possible but
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not a stable equilibrium position, and ii) two nonzero transverse displacement fields

with the same amplitude but different signs.

81



Chapter 6

6. Summary and Suggestions for Future Work

In this chapter, the research conducted during the course of the dissertation work is

summarized, and conclusions and suggestions for future work are presented.

6.1. Dissertation Summary

In this dissertation, a study of the nonlinear behavior of PZT driven MEMS
resonators fabricated as clamped-clamped structures is presented. Chapter 1 is
composed of background information on the topics explored within this work, and the
resonator structure along with the experimentally observed nonlinear dynamic
behavior is presented in Chapter 2. In Chapters 3 and 4, a nonlinear model and the
solutions of this model are developed for free and forced oscillations of a
microresonator. Model predictions are also compared with experimental data at the
end of Chapter 4. A complete solution for the static pre-buckling, critical-buckling,

and post-buckling problems is developed for an axially elastic beam in Chapter 5.

The contributions of this research are summarized in the next three sections.
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6.1.1. Nonlinear Modeling

A classic model for of Euler-Bernoulli beam assumes a constant value of the length
and constant axial load in the beam. The refined model presented in Chapter 3 allows
for the beam to be axially-extensional due to the axial/transverse vibrations and

distribute external forces. In addition, it accounts for the axially varying properties.

Earlier work on this topic has been published by Nayfeh and Mook [50], but the
model described in this dissertation is more complete and allows a clearer
interpretation of the system behavior. This new nonlinear model includes parametric
excitation as well as transverse excitation and distributed moment terms in the
governing equations. For free vibration or forced vibration case without parametric
excitation resulting in distributed tangent axial loads, the governing equation of
motion of the beam can be simplified to the same form as the equation presented in
the work of Nayfeh et al [50]. Second, the consideration of the axial strain is carried
out in a comprehensive manner. The nonlinear axial strain is regarded as a function of
the spatial variable X and time . It is described as to how the strain affects the
system dynamics and is influenced by external force and transverse/axial
displacements. It is believed that the model gives a clearer physical interpretation of
the effect of axial strain on the system dynamics and it is believed to be the first

comprehensive effort in this direction.
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6.1.2. Model Application

Like many other MEMS devices, the microresonators studied in this dissertation are
beam-like composite structures with “small” slenderness ratio values and with
stepwise axially varying properties across the length. The laminate piezoelectric
material causes the parametric and transverse excitations of the structure to be
coupled. From Chapter 3 to Chapter 4, the presented nonlinear beam model in
Chapter 3 is applied to the microresonators by taking into account all these structural
properties together and seeking a solution for the nonlinear behavior under the

assumption of buckling.

First, the equation of motion is treated on a section by section basis for the

microresonator. The form for the axial strain é(X,t) is then simplified from a

function of both the transverse displacement V\7k(>2,f) and axial displacement ij(i,f)

to a function of only the transverse displacement.

Next, proceeding along the lines of previous work [47], an approximate solution of
the static buckling problem is developed. The buckling factor b is proved to be
independent of the number of sections, allowing the post-buckling displacement to be
expressed as the product of the whole critical buckling mode shape and a constant

amplitude term.

Next, free and forced oscillation problems are solved for this composite stepwise
distributed microsystem. This study is different from the previous works ([47], [48])
in that the resonator has axial excitation as well as varying beam properties causing

the displacement field of one section to be coupled with other sections. Predictions
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from this model are found to compare well with experimental data. This agreement
provides the first evidence that buckling can be a reason for the non-flat equilibrium
position of the microscale resonators. The model presented in Chapters 3 and 4 can be
used as a basis to study various static and dynamic problems of beam structures with
various excitations and beam properties. In addition, the unusual dynamic behavior is
reported in Chapter 4 that within the same static buckling mode of the 200 um long

resonator, the same dynamic mode shape is different for different buckling factors b.

6.1.3. Static Buckling Problem

In Chapter 5, the limitation of the static post-buckling solution given in Chapter 4 is
discussed. A modified model is then presented for the static buckling problem and a
complete solution is developed for a uniform axially-extensible beam. This work
addresses the pre-buckling, critical-buckling, and post-buckling problem at the same
time. This effort to solve a buckling problem for extensional beams has not been

previously carried out.

6.2. Suggestions for Future Work

Based on the analytical and experimental investigations conducted thus far, the

following suggestions are made for future research work:

1. Itis suggested that additional work be carried out to extend the work reported
in Chapter 3 to give the model more generality. For example, modified
models are needed for beam structures with continuously changing beam
properties, as the recent experimental measurements show that residual

stresses in the PZT microresonators cause not only the non-flat equilibrium
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state lengthwise but also widthwise; the lengthwise varying warp of cross
section makes the resonator bending stiffness a function of the spatial

coordinate x.

Further studies are needed to justify the static buckling solution given in
Chapter 5. Experimental data is needed from beams subject to different
compressive axial forces. New issues are also brought up by the sliding
boundary condition of this model, and we need to determine whether to use

the Lagrangian description or Eulerian description in this problem.

Further research is needed to explore the reason for the 5th static buckling
mode of the resonator determined in the predictions. A possible direction for
this question might be to investigate the stability of a parametrically excited
buckled beam with sliding boundary conditions. The analysis of the Kapitza
pendulum by Kapitza [57] and a complete understanding of the question

raised in the previous point might be useful for this study

Another suggestion for future research is the modeling of the piezoelectric
layer of the resonator to predict the change in system dynamics and natural
frequencies by tuning the axial strain through the application of a DC bias to

the driving electrode
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Appendices
MATLAB Programs and Subroutines

Free_Vib
clc;clear all; close all;

ti = cputime;

Beam_name =1, %PZT=1, AlGaAs=2
Wafer_name = 6;

Apply_V =0;
BucklingFactor = 0.00113;
1

Static_Mode_No = 5;
Dynamic_Mode_No =1;
Image_Resol = 1000;

StaticBucklingLock = 1;
FreeVibrationLock =1;
ForceVibrationLock = 1;

fprlntf( '*********************************************************\n' )
)

fprintf( ** Free Vibrations of a MEMS Clamped-Clamped Resonator **\n');
fprintf( *** Version 6.1 by He Li **\n');

fprintf( '*********************************************************\n' )
’

fprintf( \n\n");

S
%---- Data Preparation ~  --------
S
D Beam Data --------=-==s=msmmmeemem oo

fprintf(‘*********  Resonator Geometry/Material/Stress Information

**********\n\n ')
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[Beam] = beam_structure ( Beam_name, Wafer_name, Apply_V);
PO_dim = Beam.AxF_dim;

El = Beam.El,

EA = Beam.EA,

pA = Beam.rho;

Length_dim = Beam.Length;

fori=1:1Image_Resol+1 % every point in X-axis
x_cord(i) = (i-1)/Image_Resol;
end

D Non-Dimensionalize Data ~ ---------------------

PO = P0_dim * Length_dim(4)"2 ./ El, %non-dim form of axial force

Lngth = Length_dim(1:3) / Length_dim(4); %length of each section
Beam.AxF_nondim = PO;

Beam.Node = [0; Lngth(1); sum(Lngth(1:2)); sum(Lngth)]; % non-dim x position of
each node

Beam.NondimSection = Beam.Length(1:3)/Beam.Length(4); %Non-dim Section
Length

fprintf('Length of the Resonator:  %g [um]\n\n',Length_dim(4)*1e6)

fprintf('Density/UnitLength : %e  %e  %e [kg/m]\n\n',pA’)
fprintf('Bending Stiffness: %e  %e  %e [Nm"2]\n\n',EI")
fprintf(Axial Stiffness : %e %e  %e [N]\n\n',EA")
fprintf('‘Axial Stress: %e  %e  %e [N]\n\n\n\n',PO_dim")
0 mm === m e e e

%----  Calculate the Static Critical Buckling Mode Shape ~ --------
0= m === m e e e e

% To calculate the static critical buckling modeshape of a E-U beam

if StaticBucklingLock ==

fprintf(' -—-STATIC BUCKLING--\n\n")
[P_cr W_st, static_eigVector] =Staticbuckleshape(Beam, Static_Mode_No,
Image_Resol);

%P_cr is the critical buckling force, lamata’*2

%W _st is the normalized critial buckling mode shape

Beam.Pcr_nondim = P_cr;

Beam.Pcr_dim = P_cr.*El/Length_dim(4)*2;  %dim form of P_critical [N]

fprintf('The %gth/nd/st Static Bcukling Equlibrium Position\n\n', Static_Mode_No);

fprintf(  Kesai=%g %g %g \nPcr_nondim=9%g 9%g %g \n\n\n\n',...
sgrt(P_cr),P_cr);
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end

if FreeVibrationLock == 1 & ForceVibrationLock ~=1

fprintf(' --- Dynamic Mode Shape upon PostBuckling Position ---\n\n’);

YorHHHHHHTHE DYNAMIC BUCKLED MODE SHAPE##H#HHHHHHHH

% clmnumber=12: FOR THE HOMOGENOUS EQUAT ION#####H#HHHHH#

% clmnumber=15: FOR THE NONHOMUGENOUS EQUATION ###HH#H

[ W1_dy, wk, Beam] = dynamicdeflc( Beam, Dynamic_Mode_No,
BucklingFactor, Image_Resol, static_eigVector ) ;

freq = wk*sgrt(E1(2)/pA(2))/Length_dim(4)"2/(2*pi);%wKk is dimensionless
angular frequency

ampl = 1e-003;

W(displl = BucklingFactor*W_st + ampl*W1_dy;

W(displ2 = BucklingFactor*W_st - ampl*W1_dy;

fprintf('The %g Natural Frequency f = %g Hz\n\n', Dynamic_Mode_No, freq),
end

if ForceVibrationLock ==
fprintf(' --- Amplitude Calculation ---\n\n");
%----calculation dynamic modeshape 1 ~ 10----
w_drive = 300;
Fil=0; Fi2=0;
formode=1:3
[ Ws_dyn(mode,:), wm(mode), Beam] = dynamicdeflc( Beam, mode,
BucklingFactor, Image_Resol, static_eigVector ) ;
% WSs_dyn is a mxn matrix, representing modeshape from 1 -- m
end
W1_dy = Ws_dyn(1,:);
wk =wm(1,1);
forr=1:mode
S(r) = Sm(W_st, Ws_dyn, wm, Beam, r);
T(r) = Tm(W_st, Ws_dyn, wm, Beam, r);
Fil=Fil + T(r)*Ws_dyn(r,:);
Fi2 = Fi2 + S(r)*Ws_dyn(r,:);
end
g_Xx = gx(Beam, W_st, W1_dy, BucklingFactor, Fil, Fi2);
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F = 40E-2;
mu = 80E-3;
i=0;

for a = 40e-6 : 3e-6 : 460e-5
i=i+1;
A(l) = g;
sgma(i,:) = Frequency_Response( Beam, W_st, W1 _dy, g_x, F, a, mu, wk,
BucklingFactor );
end
% truncate the vector to keep values without image part
m=0;
%Ampl =0;
%Sgma =0;
for k =1 : length(A)
if imag(sgma(k,:)) ==
m = m+1;
Sgma(m,:) = sgma(k,:);
Ampl( m,:) = A(k);

end
end
maxAmpl = max(abs(W1_dy))*Beam.Length(4); %max value of W_dy in [m]
Ampl = Ampl*maxAmpl*1E+009; % change Ampl in [nm]
Sgma= Sgma/(2*pi)/1E+003; % change rad/s to kHz
excit_freq = Sgma + 313;
end
/)= mmmmmm e m oo m e e m e mm i mm e m e mm
%----- Graph Ploting -
/)= mmmmmm e m oo m oo m e e mm

if StaticBucklingLock == 1 & ForceVibrationLock ~= 1
plot(x_cord,W _st, 'linewidth’,3) %, x_cord, 0.2*(1-cos(2*pi*x_cord)));
grid,xlabel('Spatial coordinate along the length of the reasonator x (non-
dimensional)','fontsize’,16)
ylabel("{\it{\psi}} (non-dimensional)','fontsize',16);
title("1st Static Critical Buckling Mode Shape', fontsize',18)
end

if FreeVibrationLock == 1 & ForceVibrationLock ~=1

figure(2)

plot( x_cord,W1_dy, 'linewidth',3)

grid,xlabel('Spatial coordinate along the length of the resonator x (non-
dimensional)','fontsize’,16)

ylabel("{\it{\phi}} (non-dimensional)','fontsize',16)
end
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if ForceVibrationLock ==
compare_w_exp_200(Ampl, excit_freq)

end
tf = cputime;
el = tf - ti;

fpri ntf( '************************************************\n' ) .
1

fprintf(* Elapsed CPU time (in seconds): %g\n', el );

fpri ntf( '************************************************\n' ) .
l

function [Adyn, kesai, Lamatal, Lamata2, w2, a, Beam]=A_dynamic(wn,Beam,
C, b)

%%%%%%%%%%%% THIS PROGRAM IS TO CALCULATE THE
EIGENVALUE AND EIGENVECTOR OF THE DYNAMIC BUCKLING BEAM
%%%%%%%

% the dynamic displacement is on the basis of a not-straight equilibrium
% position.
% the equations of B1 ~ B5 are based on those from the appendix of Journal paper

%PURPOSE : solve AX=0

% pl/p2 --------- the density of the material

% Al/A2 --------- area of the cross section of the beam

% E1/E2 -------- the effective young's modulous of different section

% L --------- the length of the beam, in this problem, L/4 are the electrod

% B1 -------- beital B1.A=(w1./2)*p1*Al/(E1*11)

% B2 -------- beita2

% a --------- the non=dimensional value at the junction point of different
beam section, a=a/L

% A --------- the 8x8 matrix that we are going to deal with

% wl/w2 ----- corresponding to the natural frequencies of different section of

the beam, these are what we want in this problem

El = Beam.El; %EI of each section, 3x1 vector
EA = Beam.EA; %EA of each section, 3x1 vector
pA = Beam.rho; %L.ine Densities of each section, 3x1 vector

SectionLength = Beam.NondimSection;%non-dim length of each section of the
resonator, 3x1 vector

P_cr = Beam.Pcr_nondim;

SectionNo = length(SectionLength);

L = Beam.Length(4);  %over all non-dim length of the resonator, usually = 1

x(1) =0;
for i =1 : length(SectionLength)
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x(i+1) = x(i) + SectionLength(i); %[0 .25 .75 1]

end

kesai = sqrt(P_cr); %eigenvalues of the static buckling position
wk = sqrt(pA./El)*sqrt(EI(2)/pA(2))*wn;

w2 = wk(2);

Lamatal = sqrt(1/2*( P_cr+sqrt(P_cr. 2+4*wk."2)));
Lamata2 = sqrt(1/2*(-P_cr+sqrt(P_cr.*2+4*wk."2)));

N = length(C); %divide C into al~a4

al = C(1:4:N); %C=[ala2a3a4|ala2a3ad4|ala2a3a4|..]
a2 = C(2:4:N);

a3 = C(3:4:N);

a4 = C(4:4:N);

a =[ala2a3ad]; % parameters of static displacment
delta = eye(SectionNo);

%--- construct gk & Nik = A(ik) ----

K = EA ./ SectionLength;

EA_avg = sum(K.A-1)"-1; % average stiffness EA of the whole 3 sections
EA avgl=sum(K(1:1).~-1)"-1; % average stiffness EA of the 1st section
EA_avg2=sum(K(2:3).M-1)"-1; % average stiffness EA of the last 2 sections

q(1l) = EA_avg/EA_avgz;
q(2:3)=- EA_avg/EA avgl;

for k = 1 : SectionNo
A(k) = EA avg./(2*EA(K));
end
Yottt THE PARAMETER OF B1--BS#HHHHHHHHHIHHHHHHH
D = zeros(SectionNo);
r2 = EL/(EA*L"2);
fori=1: SectionNo % from the 1st section to the last section
[bbl, bb2, bb3, bb4, bb5] = Bk( x(i+1),a(i,:), kesai(i), Lamatal(i), Lamata2(i));
[b1, b2, b3, b4, b5] = BK( x(i),a(i,:), kesai(i), Lamatal(i), Lamata2(i));
B(1,i) = (bbl-bl);%Parameter(k)*(bbl - bl);
B(2,i) = (bb2 - b2);
B(3,i) = (bb3 - b3);
B(4,i) = (bb4 - b4);
B(5,i) = (bb5 - b5);%/Parameter(k);
for k = 1: SectionNo
D(k,i) = B(5,i) - delta(i,k)*r2(k)*(wk(k)*2)/(2*b"2*P_cr(k)*A(K));
end
end

Yo#t###H## THE EXPRESSION OF THE PARTICULAR SULUTION Fip####H
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%%%% THE EXPRESSION of MATRIX A(ij) FOR THE DYNAMIC
BUCKLING%%%%

Adyn=zeros(15,15);

%w(0)

Adyn(1,1)=sin(Lamatal(1)*x(1));
Adyn(1,2)=cos(Lamatal(1)*x(1));
Adyn(1,3)=sinh(Lamata2(1)*x(1));
Adyn(1,4)=cosh(Lamata2(1)*x(1));
Adyn(1,5)=a3(1)*cos(kesai(1)*x(1))+ad(1)*sin(kesai(1)*x(1));
%w(0)'

Adyn(2,1)= Lamatal(1)*cos(Lamatal(1)*x(1));
Adyn(2,2)=-Lamatal(1)*sin(Lamatal(1)*x(1));

Adyn(2,3)= Lamata2(1)*cosh(Lamata2(1)*x(1));

Adyn(2,4)= Lamata2(1)*sinh(Lamata2(1)*x(1));
Adyn(2,5)=-a3(1)*kesai(1)*sin(kesai(1)*x(1))+a4(1)*kesai(1)*cos(kesai(1)*x(1));
%w1l = w2

Adyn(3,1)= sin(Lamatal(1)*x(2));

Adyn(3,2)= cos(Lamatal(1)*x(2));

Adyn(3,3)= sinh(Lamata2(1)*x(2));

Adyn(3,4)= cosh(Lamata2(1)*x(2));
Adyn(3,5)=a3(1)*cos(kesai(1)*x(2))+a4(1)*sin(kesai(1)*x(2));
Adyn(3,6)=-sin(Lamatal(2)*x(2));
Adyn(3,7)=-cos(Lamatal(2)*x(2));
Adyn(3,8)=-sinh(Lamata2(2)*x(2));
Adyn(3,9)=-cosh(Lamata2(2)*x(2));
Adyn(3,10)=-a3(2)*cos(kesai(2)*x(2))-a4(2)*sin(kesai(2)*x(2));
%wl' = w2'

Adyn(4,1)= Lamatal(1l)*cos(Lamatal(1)*x(2));
Adyn(4,2)=-Lamatal(1)*sin(Lamatal(1)*x(2));

Adyn(4,3)= Lamata2(1)*cosh(Lamata2(1)*x(2));

Adyn(4,4)= Lamata2(1)*sinh(Lamata2(1)*x(2));
Adyn(4,5)=-a3(1)*kesai(1)*sin(kesai(1)*x(2))+a4(1)*kesai(1)*cos(kesai(1)*x(2));
Adyn(4,6)=-Lamatal(2)*cos(Lamatal(2)*x(2));

Adyn(4,7)= Lamatal(2)*sin(Lamatal(2)*x(2));
Adyn(4,8)=-Lamata2(2)*cosh(Lamata2(2)*x(2));
Adyn(4,9)=-Lamata2(2)*sinh(Lamata2(2)*x(2));
Adyn(4,10)=a3(2)*kesai(2)*sin(kesai(2)*x(2))-a4(2)*kesai(2)*cos(kesai(2)*x(2));
%EIL wl" = EI2 w2"
Adyn(5,1)=-(Lamatal(1).”2)*sin(Lamatal(1)*x(2))*EI(1);
Adyn(5,2)=-(Lamatal(1)."2)*cos(Lamatal(1)*x(2))*EI(1);
Adyn(5,3)= (Lamata2(1).*2)*sinh(Lamata2(1)*x(2))*El(1);
Adyn(5,4)= (Lamata2(1).~2)*cosh(Lamata2(1)*x(2))*El(1);
Adyn(5,5)=(-a3(1)*kesai(1).~2*cos(kesai(1)*x(2))-
ad(1)*kesai(1).~2*sin(kesai(1)*x(2)))*EI(1);

Adyn(5,6)= (Lamatal(2).”2)*sin(Lamatal(2)*x(2))*El(2);
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Adyn(5,7)= (Lamatal(2).”2)*cos(Lamatal(2)*x(2))*El(2);
Adyn(5,8)=-(Lamata2(2).”2)*sinh(Lamata2(2)*x(2))*EI(2);
Adyn(5,9)=-(Lamata2(2).”2)*cosh(Lamata2(2)*x(2))*El(2);
Adyn(5,10)=(a3(2)*kesai(2)."2*cos(kesai(2)*x(2))+a4(2)*kesai(2).2*sin(kesai(2)*x
(2))*EI(2);

%EIL wl™ = EI2 w2"
Adyn(6,1)=-(Lamatal(1).”3)*cos(Lamatal(1)*x(2))*EI(1);
Adyn(6,2)= (Lamatal(1).~3)*sin(Lamatal(1)*x(2))*EI(1);
Adyn(6,3)= (Lamata2(1).”3)*cosh(Lamata2(1)*x(2))*EI(1);
Adyn(6,4)= (Lamata2(1).~3)*sinh(Lamata2(1)*x(2))*EI(1);
Adyn(6,5)= (a3(1)*kesai(1).~3*sin(kesai(1)*x(2))-
ad(1)*kesai(1)."3*cos(kesai(1)*x(2)))*EI(1);

Adyn(6,6)= (Lamatal(2).”3)*cos(Lamatal(2)*x(2))*El(2);
Adyn(6,7)=-(Lamatal(2).”~3)*sin(Lamatal(2)*x(2))*EI(2);
Adyn(6,8)=-(Lamata2(2).*3)*cosh(Lamata2(2)*x(2))*EI(2);
Adyn(6,9)=-(Lamata2(2).”3)*sinh(Lamata2(2)*x(2))*EI(2);
Adyn(6,10)=(-
a3(2)*kesai(2).~3*sin(kesai(2)*x(2))+a4(2)*kesai(2)."3*cos(kesai(2)*x(2)))*EI(2);
%w2 = w3

Adyn(7,6)= sin(Lamatal(2)*x(3));

Adyn(7,7)= cos(Lamatal(2)*x(3));

Adyn(7,8)= sinh(Lamata2(2)*x(3));

Adyn(7,9)= cosh(Lamata2(2)*x(3));

Adyn(7,10)= a3(2)*cos(kesai(2)*x(3))+a4(2)*sin(kesai(2)*x(3));
Adyn(7,11)=-sin(Lamatal(3)*x(3));
Adyn(7,12)=-cos(Lamatal(3)*x(3));
Adyn(7,13)=-sinh(Lamata2(3)*x(3));
Adyn(7,14)=-cosh(Lamata2(3)*x(3));

Adyn(7,15)= -a3(3)*cos(kesai(3)*x(3))-a4(3)*sin(kesai(3)*x(3));
%ow2' = w3'

Adyn(8,6)= Lamatal(2)*cos(Lamatal(2)*x(3));
Adyn(8,7)=-Lamatal(2)*sin(Lamatal(2)*x(3));

Adyn(8,8)= Lamata2(2)*cosh(Lamata2(2)*x(3));

Adyn(8,9)= Lamata2(2)*sinh(Lamata2(2)*x(3));
Adyn(8,10)=-a3(2)*kesai(2)*sin(kesai(2)*x(3))+a4(2)*kesai(2)*cos(kesai(2)*x(3));
Adyn(8,11)=-Lamatal(3)*cos(Lamatal(3)*x(3));

Adyn(8,12)= Lamatal(3)*sin(Lamatal(3)*x(3));
Adyn(8,13)=-Lamata2(3)*cosh(Lamata2(3)*x(3));
Adyn(8,14)=-Lamata2(3)*sinh(Lamata2(3)*x(3));

Adyn(8,15)= a3(3)*kesai(3)*sin(kesai(3)*x(3))-a4(3)*kesai(3)*cos(kesai(3)*x(3));
%EI2 w2" = EI3 w3"
Adyn(9,6)=-(Lamatal(2).”2)*sin(Lamatal(2)*x(3))*El(2);
Adyn(9,7)=-(Lamatal(2)."2)*cos(Lamatal(2)*x(3))*EI(2);
Adyn(9,8)= (Lamata2(2).*2)*sinh(Lamata2(2)*x(3))*El(2);
Adyn(9,9)= (Lamata2(2)."2)*cosh(Lamata2(2)*x(3))*El(2);
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Adyn(9,10)=(-a3(2)*kesai(2)."2*cos(kesai(2)*x(3))-
ad(2)*kesai(2).72*sin(kesai(2)*x(3)))*EI(2);

Adyn(9,11)= (Lamatal(3).*2)*sin(Lamatal(3)*x(3))*EI(3);
Adyn(9,12)= (Lamatal(3).2)*cos(Lamatal(3)*x(3))*EI(3);
Adyn(9,13)=-(Lamata2(3)."2)*sinh(Lamata2(3)*x(3))*EI(3);
Adyn(9,14)=-(Lamata2(3)."2)*cosh(Lamata2(3)*x(3))*EI(3);
Adyn(9,15)=( a3(3)*kesai(3)."2*cos(kesai(3)*x(3))+a4(3)*kesai(3).”2*sin(kesai(3)*
X(3)))*El(3);

%EI2 w2" = EI1 wl"

Adyn(10,6)= -(Lamatal(2).”3)*cos( Lamatal(2)*x(3))*EI(2);
Adyn(10,7)= (Lamatal(2)."3)*sin( Lamatal(2)*x(3))*EI(2);
Adyn(10,8)= (Lamata2(2)."3)*cosh( Lamata2(2)*x(3))*EI(2);
Adyn(10,9)= (Lamata2(2)."3)*sinh( Lamata2(2)*x(3))*El(2);
Adyn(10,10)= (a3(2)*kesai(2)."3*sin(kesai(2)*x(3))-
a4(2)*kesai(2).~3*cos(kesai(2)*x(3)))*EI(2);

Adyn(10,11)= (Lamatal(3).3)*cos( Lamatal(3)*x(3))*EI(3);
Adyn(10,12)=-(Lamatal(3).*3)*sin( Lamatal(3)*x(3))*EI(3);
Adyn(10,13)=-(Lamata2(3).*3)*cosh(Lamata2(3)*x(3))*EI(3);
Adyn(10,14)=-(Lamata2(3).*3)*sinh(Lamata2(3)*x(3))*EI(3);
Adyn(10,15)=(-
a3(3)*kesai(3).23*sin(kesai(3)*x(3))+a4(3)*kesai(3).*3*cos(kesai(3)*x(3)))*EI(3);
%w3(1) =0

Adyn(11,11)= sin(Lamatal(3)*x(4));
Adyn(11,12)=cos(Lamatal(3)*x(4));
Adyn(11,13)=sinh(Lamata2(3)*x(4));
Adyn(11,14)=cosh(Lamata2(3)*x(4));
Adyn(11,15)=a3(3)*cos(kesai(3)*x(4))+ad(3)*sin(kesai(3)*x(4));
%w3(1)'=0

Adyn(12,11)= Lamatal(3)*cos(Lamatal(3)*x(4));
Adyn(12,12)=-Lamatal(3)*sin(Lamatal(3)*x(4));
Adyn(12,13)=Lamata2(3)*cosh(Lamata2(3)*x(4));
Adyn(12,14)=Lamata2(3)*sinh(Lamata2(3)*x(4));
Adyn(12,15)=-a3(3)*kesai(3)*sin(kesai(3)*x(4))+a4(3)*kesai(3)*cos(kesai(3)*x(4));

Adyn(13:15,1) = B(1,1);
Adyn(13:15,2) = B(2,1);
Adyn(13:15,3) = B(3,1);
Adyn(13:15,4) = B(4,1);
Adyn(13:15,5) = D(1:3,1);
Adyn(13:15,6) = B(1,2);
Adyn(13:15,7) = B(2,2);
Adyn(13:15,8) = B(3,2);
Adyn(13:15,9) = B(4,2);
Adyn(13:15,10)= D(1:3,2);
Adyn(13:15,11)= B(1,3);
Adyn(13:15,12)= B(2,3);
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Adyn(13:15,13)= B(3,3);
Adyn(13:15,14)= B(4,3):
Adyn(13:15,15)= D(1:3,3);

%----- Normalize each row to avoid ill-conditioned matrix ---------------
fori=1:size(Adyn,1)

Ampl = norm(Adyn(i,:));

Adyn(i,:) = Adyn(i,:)/Ampl;
end

%%%%%% EXPRESSION Adyn ENDED%%%%%
y=det(Adyn);

Beam.EA_avg = EA _avg;

Beam.EA_avgl=EA avgl,;

Beam.EA_avg2=EA avgz;

Beam.Bk = B;

Beam.Dk = D;

Beam.Aik = A;

Beam.q =q;

function [determinantA, A] = A_static(lamata2, El, x, Length)
%9%%%%%%%%%%% THIS PROGRAM IS TO CALCULATE THE
EIGENVALUE AND EIGENVECTOR OF THE STATIC BUCKLING BEAM
%%%%%%%

%PURPOSE : solve AX=0

% pl/p2 --------- the density of the material

% A1/A2 --------- area of the cross section of the beam

% E1/E2 -------- the effective young's modulous of different section

% L --------—- the length of the beam, in this problem, L/4 are the electrod

% B1 -------- beital B1.M=(w1./2)*p1*A1l/(E1*I1)

% B2 -------- beita2

% a --------- the non=dimensional value at the junction point of different
beam section, a=a/L

% A --------- the 8x8 matrix that we are going to deal with

% wl/w2 ----- corresponding to the natural frequencies of different section of

the beam, these are what we want in this problem
%%%% GIVE THE BASIC PARAMETER OF THE BEAM%%%%

lamatal=lamata2 * sqrt(EI2/El1);

lamata3=lamata2 * sqrt(EI2/EI3);

Op-mmmmmmmmmmmmmmen THE EXPRESSION of MATRIX A(ij) ----------==mmmm---
A=zeros(12,12);

% boundary conditions at x=0, x=L
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A(1,1)=1;

%W(0)=0

A(1,2)=x(1);

A(1,3)=cos(lamatal*x(1));
A(1,4)=sin(lamatal*x(1));

A(2,1)=0;

%W'(0)=0

A(2,2)=1,

A(2,3)=-lamatal*sin(lamatal*x(1));
A(2,4)=lamatal*cos(lamatal*x(1));

A(3,1)=1;

%W1(a)=W2(a)

A(3,2)=x(2);

A(3,3)=cos(lamatal*x(2));
A(3,4)=sin(lamatal*x(2));

A(3,5)=-1;

A(3,6)=-x(2);

A(3,7)=-cos(lamata2*x(2));
A(3,8)=-sin(lamata2*x(2));

A(4,1)=0;

%W1'(a)=W2'(a)

A(4,2)=1,;

A(4,3)=-lamatal*sin(lamatal*x(2));

A(4,4)= lamatal*cos(lamatal*x(2));

A(4,5)=-0;

A(4,6)=-1;

A(4,7)= lamata2*sin(lamata2*x(2));
A(4,8)=-lamata2*cos(lamata2*x(2));

A(5,1)=0; %EIT*W1" = EI2*W2"
A(5,2)=0;
A(5,3)=-(lamatal."2)*cos(lamatal*x(2));
A(5,4)=-(lamatal.”~2)*sin(lamatal*x(2));
A(5,5)=0;

A(5,6)=0;

A(5,7)= (lamata2.”2)*cos(lamata2*x(2))*EI2/EI1;
A(5,8)= (lamata2.”2)*sin(lamata2*x(2))*EI12/EI1,
A(6,1)=0; %EIT*W1™ = EI2*W2™
A(6,2)=0;
A(6,3)=(lamatal.”3)*sin(lamatal*x(2));
A(6,4)=-(lamatal."3)*cos(lamatal*x(2));
A(6,5)=0;

A(6,6)=0;
A(6,7)=-(lamata2."3)*sin(lamata2*x(2))*EI2/EI1,;
A(6,8)=(lamata2.”3)*cos(lamata2*x(2))*EI2/EI1,
A(7,5)=1,

A(7,6)=x(3);
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A(7,7)=cos(lamata2*x(3));
A(7,8)=sin(lamata2*x(3));

A(7,9)=-1;

A(7,10)=-x(3);

A(7,11)=-cos(lamata3*x(3));
A(7,12)=-sin(lamata3*x(3));

A(8,5)=0;

A(8,6)=1,;

A(8,7)=-lamata2*sin(lamata2*x(3));
A(8,8)=lamata2*cos(lamata2*x(3));

A(8,9)=0;

A(8,10)=-1;

A(8,11)=lamata3*sin(lamata3*x(3));
A(8,12)=-lamata3*cos(lamata3*x(3));

A(9,5)=0;

A(9,6)=0;
A(9,7)=-(lamata2."2)*cos(lamata2*x(3))*EI2/EI3;
A(9,8)=-(lamata2.”2)*sin(lamata2*x(3))*EI2/EI3;
A(9,9)=0;

A(9,10)=0;
A(9,11)=(lamata3.*2)*cos(lamata3*x(3));
A(9,12)=(lamata3.”2)*sin(lamata3*x(3));
A(10,5)=0;

A(10,6)=0;
A(10,7)=(lamata2.”3)*sin(lamata2*x(3))*EI2/EI3;
A(10,8)=-(lamata2.”3)*cos(lamata2*x(3))*EI2/EI3;
A(10,9)=0;

A(10,10)=0;
A(10,11)=-(lamata3.”3)*sin(lamata3*x(3));
A(10,12)=(lamata3.”3)*cos(lamata3*x(3));
A(11,9)=0; %W3'(x4) =0
A(11,10)=1;
A(11,11)=-lamata3*sin(lamata3*x(4));
A(11,12)=lamata3*cos(lamata3*x(4));

A(12,9)=1; %W3(x4)=0
A(12,10)=x(4);

A(12,11)=cos(lamata3*x(4));
A(12,12)=sin(lamata3*x(4));

determinantA = det(A);

function [Adyn, Lamatal, Lamata2] = Adyn_flat(wn,Beam)

%THIS PROGRAM IS TO CALCULATE THE EIGENVALUE AND
EIGENVECTOR OF THE

%STATICIALLY STRAIT BEAM WITH STRETCHING/COMPRESSING AXIAL
FORCE, IN CASE
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%THE AXIAL FORCE IS COMPRESSING, THE FORCE SHOULD NOT
EXCEED THE BEAM'S

%CRITICAL BUCKLING FORCE

%PURPOSE : solve AX=0

% pl/p2 --------- the density of the material

% A1/A2 --------- area of the cross section of the beam

% E1/E2 -------- the effective young's modulous of different section

% L --------- the length of the beam, in this problem, L/4 are the electrod
% B1 -------- beital B1.=(w1./2)*p1*Al/(E1*I1)

% B2 -------- beita2

% a --------- the non=dimensional value at the junction point of different
beam section, a=a/L

% A --------- the 8x8 matrix that we are going to deal with

% wl/w2 ----- corresponding to the natural frequencies of different section of
the beam, these are what we want in this problem

El = Beam.EI; %EI of each section, 3x1 vector

EA = Beam.EA; %EA of each section, 3x1 vector

pA = Beam.rho; %L.ine Densities of each section, 3x1 vector

Lngth = Beam.NondimSection;%non-dim length of each section of the resonator, 3x1
vector

P = Beam.AxF_nondim; %the axial force of the beam,not be used in this program,
3x1 vector

L = sum(Lngth); %over all non-dim length of the resonator, usually = 1
x = Beam.Node; %[0 .25 .75 1]
%kesai = sqrt(P); %eigenvalues of the static buckling position

wk = sqrt(pA./El)*sqrt(EI(2)/pA(2))*wn; %non-dim natural freq of each section
Lamatal = sqrt(1/2*(-P+sqrt(P.A2+4*wk."2)));
Lamata2 = sqrt(1/2*( P+sqrt(P.*2+4*wk."2)));
%%%% THE EXPRESSION of MATRIX A(ij) FOR THE DYNAMIC
BUCKLING%%%%

Adyn=zeros(12,12);
Adyn(1,1)=sin(Lamatal(1)*x(1));
Adyn(1,2)=cos(Lamatal(1)*x(1));
Adyn(1,3)=sinh(Lamata2(1)*x(1));
Adyn(1,4)=cosh(Lamata2(1)*x(1));

Adyn(2,1)= Lamatal(1)*cos(Lamatal(1)*x(1));
Adyn(2,2)=-Lamatal(1)*sin(Lamatal(1)*x(1));
Adyn(2,3)= Lamata2(1)*cosh(Lamata2(1)*x(1));
Adyn(2,4)= Lamata2(1)*sinh(Lamata2(1)*x(1));
Adyn(3,1)= sin(Lamatal(1)*x(2));

Adyn(3,2)= cos(Lamatal(1)*x(2));

Adyn(3,3)= sinh(Lamata2(1)*x(2));

Adyn(3,4)= cosh(Lamata2(1)*x(2));
Adyn(3,5)=-sin(Lamatal(2)*x(2));
Adyn(3,6)=-cos(Lamatal(2)*x(2));
Adyn(3,7)=-sinh(Lamata2(2)*x(2));
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Adyn(3,8)=-cosh(Lamata2(2)*x(2));

Adyn(4,1)= Lamatal(1)*cos(Lamatal(1)*x(2));
Adyn(4,2)=-Lamatal(1)*sin(Lamatal(1)*x(2));

Adyn(4,3)= Lamata2(1)*cosh(Lamata2(1)*x(2));

Adyn(4,4)= Lamata2(1)*sinh(Lamata2(1)*x(2));
Adyn(4,5)=-Lamatal(2)*cos(Lamatal(2)*x(2));

Adyn(4,6)= Lamatal(2)*sin(Lamatal(2)*x(2));
Adyn(4,7)=-Lamata2(2)*cosh(Lamata2(2)*x(2));
Adyn(4,8)=-Lamata2(2)*sinh(Lamata2(2)*x(2));
Adyn(5,1)=-(Lamatal(1).~2)*sin(Lamatal(1)*x(2))*EI(1)/EI(2);
Adyn(5,2)=-(Lamatal(1).”2)*cos(Lamatal(1)*x(2))*EI(1)/EI(2);
Adyn(5,3)= (Lamata2(1)."2)*sinh(Lamata2(1)*x(2))*EI(1)/EI(2);
Adyn(5,4)= (Lamata2(1).”2)*cosh(Lamata2(1)*x(2))*EI(1)/EI(2);
Adyn(5,5)= (Lamatal(2).~2)*sin(Lamatal(2)*x(2));

Adyn(5,6)= (Lamatal(2).”2)*cos(Lamatal(2)*x(2));
Adyn(5,7)=-(Lamata2(2).”2)*sinh(Lamata2(2)*x(2));
Adyn(5,8)=-(Lamata2(2).”2)*cosh(Lamata2(2)*x(2));
Adyn(6,1)=-(Lamatal(1).”3)*cos(Lamatal(1)*x(2))*EI(1)/EI(2);
Adyn(6,2)= (Lamatal(1).*3)*sin(Lamatal(1)*x(2))*EI(1)/EI(2);
Adyn(6,3)= (Lamata2(1).”3)*cosh(Lamata2(1)*x(2))*EI(1)/EI(2);
Adyn(6,4)= (Lamata2(1).*3)*sinh(Lamata2(1)*x(2))*EI(1)/EI(2);
Adyn(6,5)= (Lamatal(2)."3)*cos(Lamatal(2)*x(2));
Adyn(6,6)=-(Lamatal(2).”3)*sin(Lamatal(2)*x(2));
Adyn(6,7)=-(Lamata2(2).”3)*cosh(Lamata2(2)*x(2));
Adyn(6,8)=-(Lamata2(2).”3)*sinh(Lamata2(2)*x(2));
Adyn(7,5)= sin(Lamatal(2)*x(3));

Adyn(7,6)= cos(Lamatal(2)*x(3));

Adyn(7,7)= sinh(Lamata2(2)*x(3));

Adyn(7,8)= cosh(Lamata2(2)*x(3));
Adyn(7,9)=-sin(Lamatal(3)*x(3));
Adyn(7,10)=-cos(Lamatal(3)*x(3));
Adyn(7,11)=-sinh(Lamata2(3)*x(3));
Adyn(7,12)=-cosh(Lamata2(3)*x(3));

Adyn(8,5)= Lamatal(2)*cos(Lamatal(2)*x(3));
Adyn(8,6)=-Lamatal(2)*sin(Lamatal(2)*x(3));

Adyn(8,7)= Lamata2(2)*cosh(Lamata2(2)*x(3));

Adyn(8,8)= Lamata2(2)*sinh(Lamata2(2)*x(3));
Adyn(8,9)=-Lamatal(3)*cos(Lamatal(3)*x(3));

Adyn(8,10)= Lamatal(3)*sin(Lamatal(3)*x(3));
Adyn(8,11)=-Lamata2(3)*cosh(Lamata2(3)*x(3));
Adyn(8,12)=-Lamata2(3)*sinh(Lamata2(3)*x(3));
Adyn(9,5)=-(Lamatal(2).*2)*sin(Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(9,6)=-(Lamatal(2)."2)*cos(Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(9,7)= (Lamata2(2).”2)*sinh(Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(9,8)= (Lamata2(2)."2)*cosh(Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(9,9)= (Lamatal(3).”2)*sin(Lamatal(3)*x(3));
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Adyn(9,10)= (Lamatal(3).”2)*cos(Lamatal(3)*x(3));
Adyn(9,11)=-(Lamata2(3)."2)*sinh(Lamata2(3)*x(3));
Adyn(9,12)=-(Lamata2(3).*2)*cosh(Lamata2(3)*x(3));
Adyn(10,5)= -(Lamatal(2).”3)*cos( Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(10,6)= (Lamatal(2)."3)*sin( Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(10,7)= (Lamata2(2).”3)*cosh( Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(10,8)= (Lamata2(2)."3)*sinh( Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(10,9)= (Lamatal(3)."3)*cos( Lamatal(3)*x(3));
Adyn(10,10)=-(Lamatal(3).*3)*sin( Lamatal(3)*x(3));
Adyn(10,11)=-(Lamata2(3).*3)*cosh(Lamata2(3)*x(3));
Adyn(10,12)=-(Lamata2(3).*3)*sinh(Lamata2(3)*x(3));
Adyn(11,9)= sin(Lamatal(3)*x(4));
Adyn(11,10)=cos(Lamatal(3)*x(4));
Adyn(11,11)=sinh(Lamata2(3)*x(4));
Adyn(11,12)=cosh(Lamata2(3)*x(4));
Adyn(12,9)= Lamatal(3)*cos(Lamatal(3)*x(4));
Adyn(12,10)=-Lamatal(3)*sin(Lamatal(3)*x(4));
Adyn(12,11)=Lamata2(3)*cosh(Lamata2(3)*x(4));
Adyn(12,12)=Lamata2(3)*sinh(Lamata2(3)*x(4));
%------ De- ill condition of the matrix by normalize each row -------
fori=1:size(Adyn,1)

Ampl = norm(Adyn(i,:));

%Adyn(i,:) = Adyn(i,:)/Ampl,
end
%%%%%% EXPRESSION Adyn ENDED%%%

function [ Beam ] = AlGaAs_beam (wafer_No, Apply_V)

%*********** Mate”al Properties *khhkkkkhkkkhkkhkkhkkikkikkiikk

E(1,:)=85e9; d(1,:)=4.88e3;  thickness(1,:) = [2e-6]; thickness1(1,:) =
thickness(1,:); % AlGaAs : Si
E(2,:)=85e9; d(2,:)=4.88e3; thickness(2,:) = [1e-6];
thickness1(2,:) = thickness(2,:); % AlGaAs
E(3,:)=85e9; d(3,:)=4.88e3; thickness(3,:) = [0.5e-6];
thickness1(3,:) = thickness(3,:)*0;  %AIlGaAs : Si
nu=0.3;
Qp****xkxkxk Stress and Applied Voltages ****x*xkxkx
% layer1l layer2 layer 3
stress = [ -80, -80, -80 ]' * 1e6; % stress of each layer

d3l =]0,1.13e-12,07]; % d31 is the piezoelectric coefficient of AlGaAs
Beam_angle = 39; % angle in Degree!!

%********** Structure DlmenSIOI’lS *kkkhkkhkkikkkhkkhkkkikhkkikk

L = 200e-6; % the length of the beam, dimension is meter [m]
width = 15e-6; % the width of the beam, [m]

Electr_posit = 0.25;

L1 =L * Electr_posit; % Length of the 1st section
L2 =L * (1 - 2*Electr_posit); % Length of the 2nd section
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L3 =L * Electr_posit; % Length of the 3rd section
%*************************************************
%Stress information
if wafer_No <= length( thickness(1,:)); % if the wafer we choose is a valid
wafer
resid_stress=stress( :,wafer_No )*(1-nu);%* cos((90-Beam_angle)/180*pi)"2;
% Pa
thick = [ thickness(:,wafer_No)  thickness1(:,wafer_No)
thickness(:,wafer_No)];
Length = [L1; L2; L3; L];
Width = width;
density = d;
else disp ('Wafer Number Exceeds the Number of Fabricated’)
end
Beam.ResidualStress = resid_stress;
Beam.d31 =d31;
Beam.E = E;
Beam.Thickness = thick;
Beam.Width = Width;
Beam.LayerRho = density;
Beam.Length = Length;
Beam.nu = [nu; nu; nu];

function F = Average_F (residual_F, EA, Length)
% this function is to get the averaged axial force using a linear method
% without changing the dimensions
%residual_F  Axial force before the averaging,, Colummn Vector
%EA Stiffness of each section in the beam, Colummn Vector
%Length The length of each section, Colummn Vector;
K1 = EA(1)/Length(1);
K2 = EA(2)/Length(2);
K3 = EA(3)/Length(3);
K=[-1 K1l 0
-1 K2 K2

-1 0 -K3];
U =-K~1*residual F;  %U ={P_average, U1, U2} = {[N], [m], [m] }'
F=U(1);

function [Beam] = beam_structure( Beam_Name, wafer_No, Apply V)
function [Beam] = beam_structure( Beam_Name, wafer_No, Apply V)

%%%% GIVE THE BASIC PARAMETER OF THE BEAM%%%

% pl/p2 --------- the density of the material

% A1/A2 --------- area of the cross section of the beam

% E1/E2 -------- the effective young's modulous of different section

% L --------—- the length of the beam, in this problem, L/4 are the electrod
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7Y = — beital B1.A=(w1./2)*p1*AL/(E1*I1)

% B2 -------- beita2

% a --------- the non=dimensional value at the junction point of different
beam section, a=a/L

% A --------- the 8x8 matrix that we are going to deal with

% wl/w2 ----- corresponding to the natural frequencies of different section of
the beam, these are what we want in this problem

% Lamata the lamata in dynamic mode

%*********** Materlal Properties *khkhkkkhkkhkkkhkkhkhkkhkhkhkkhkiikkx

[ Beam ] = Choose_beam( Beam_Name, wafer_No , Apply_V);

ResidStress=Beam.ResidualStress;
d31=Beam.d31;

E=Beam.E ;
Thickness=Beam.Thickness;
Width=Beam.Width;
density=Beam.LayerRho;
Length=Beam.Length;

%%%%% CALCULATE THE 'Els' AND 'pAs' OF EACH SECTION OF THE
BEAM%%%%%%%%%%

[EI1,pAl]=getEI(E, density, Thickness(: , 1), Width);
[EI2,pA2]=getEI(E, density, Thickness(: , 2), Width);
[EI3,pA3]=getEI(E, density, Thickness(: , 3), Width);
El =[ EI1; EI2; EI3 ];

pA = [ pAl; pA2; pA3T;

EAL = get_EA(E, Thickness(:, 1), Width);

EA2 = get EA(E, Thickness(:, 2), Width);

EA3 = get_EA(E, Thickness(:, 3), Width);

EA =[ EAL; EA2; EA3];

n = size(Length,1);

rk = sqrt(EI./EA/Length(n)"2);

P1 = ResidStress' * Thickness(:,1) * Width;

P2 = ResidStress' * Thickness(:,2) * Width;

P3 = ResidStress' * Thickness(:,3) * Width;

P00 = (P1+P2+P3)/3;

PO = [ POO; POO; POO ];

% __________________________________________________________________________
Beam.AxF_dim =P0;

Beam.EIl = El,

Beam.EA = EA;

Beam.rho = pA;

Beam.r = rk;

% __________________________________________________________________________
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function [B1k, B2k, B3k, B4k, B5k] = Bk(x, a, kesai, Lamatal, Lamata2)

al =a(:,1);
a2 =a(:,2);
a3 = a(:,3);
ad = a(:,4);

B1k =a2*sin(Lamatal*x)+a3*kesai*Lamatal*(cos((kesai-Lamatal)*x)/2/(kesai-
Lamatal)
+cos((kesai+Lamatal)*x)/2/(kesai+Lamatal))+ad*kesai*Lamatal*(sin((kesai-
Lamatal)*x)/2/(kesai-Lamatal) + sin((kesai+Lamatal)*x)/2/(kesai+Lamatal));

B2k =a2*cos(Lamatal*x)+a3*kesai*Lamatal*(sin((kesai-Lamatal)*x)/2/(kesai-
Lamatal) -sin((kesai+Lamatal)*x)/2/(kesai+Lamatal))+ad*kesai*Lamatal*(-
cos((kesai-Lamatal)*x)/2/(kesai-Lamatal) +
cos((kesai+Lamatal)*x)/2/(kesai+Lamatal));
B3k=a2*sinh(Lamata2*x)a3*kesai*Lamata2/(Lamata2"*2+kesai*2)*(Lamata2*sin(ke
sai*x)*sinh(Lamata2*x)-kesai*cos(kesai*x)*cosh(Lamata2*x))+a4*kesai*Lamata2
/(Lamata2”2+kesai”2)*(Lamata2*cos(kesai*x)*sinh(Lamata2*x)+kesai*sin(kesai*x)
*cosh(Lamata2*x));
B4k=a2*cosh(Lamata2*x)-a3*kesai*Lamata2/(Lamata2”2+kesai"2)
*(Lamata2*sin(kesai*x)*cosh(Lamata2*x)-kesai*cos(kesai*x)*sinh(Lamata2*x))
+ad*kesai*Lamata2/(Lamata2”2+
kesai*2)*(Lamata2*cos(kesai*x)*cosh(Lamata2*x)+
kesai*sin(kesai*x)*sinh(Lamata2*x));

B5k = (a3"2+a4"2)/2*kesai"2*x + a2*a3*cos(kesai*x)+a2*ad*sin(kesai*x) - (a3"2-
ad"2)/4*kesai*sin(2*kesai*x) + a3*ad/2*kesai*cos(2*kesai*x);

function CharacteristicofAdyn_buckle(wl, w2, Beam, C, P_cr, b,n)
El = Beam.El,
pA = Beam.rho;
Length_dim = Beam.Length;
i=0; m=0; wO=[]; zero_frequency =];
step = (w2-wl)/n;
[A, kesai, Lamatal, Lamata2,wk, a]J=A_dynamic(wl,Beam, C, P_cr, b);
s1 = sign(det(A));
s2=0;
forwn =wl : w2
i=i+1;
[A, kesai, Lamatal, Lamata2,wk, a]=A_dynamic(wn,Beam, C, P_cr, b);
w(i) =wn;
detA(i) = det(A);
detB(i) = detAdynamic(wn,Beam, C, P_cr, b);
s2 = sign(detA(i));
if s1 ~=s2
m=m+ 1,
wO(m) = wn;
sl =s2;
end
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end

freq = w .* sqrt(E1(2)/pA(2))/Length_dim(4)"2/(2*pi);

freq = freq/1e+003;

zero_frequency = w0 .* sqrt(EI(2)/pA(2))/Length_dim(4)"2/(2*pi);
zero_frequency = zero_frequency / 1e+003;

plot(freq, detA, freq, detB)

grid on

xlabel(‘frequency kHz")

ylabel("Value of the Characteristic Equation’)

function CharacteristicofAdyn_flat(wl, w2, Beam)
i=0;
for wn =wl : w2
i=i+1;
[ A, Lamatal, Lamata2 | = Adyn_flat(wn,Beam);
w(i) =wn;
detA(i) = det(A);
end
plot(w, detA, 'linewidth',3)
grid on
xlabel('Angular Speed {\omega}')
ylabel("Value of the Characteristic Equation’)

function [ Beam ] = Choose_beam ( Beam_Name, wafer_No, Apply_V)
if Beam_Name ==
fprintf('PZT Resonator, Wafer Number = %g \n\n', wafer_No)
[ Beam ] = PZT_beam ( wafer_No, Apply V);
else if Beam_Name ==
fprintf( AlGaAs Resonator, Wafer Number = %g \n\n', wafer_No)
[ Beam ] = AlGaAs_beam (wafer_No, Apply_V);
end
end

function compare_w_exp_200(Ampl, frequency)

CC1 =1.0e+006 * [1.88495559215388;1.89123877746106;1.89752196276823;
1.90380514807541;1.91008833338259;1.91637151868977;1.92265470399695;
1.92893788930413;1.93522107461131;1.94150425991849;1.94778744522567;
1.95407063053285;1.96035381584003;1.96663700114721;1.97292018645439;
1.97920337176157;1.98548655706875;1.99176974237593;1.99805292768311;
2.00433611299029;2.01061929829747;2.01690248360465;2.02318566891183,;
2.02946885421901;2.03009717274972;2.03072549128044;2.03135380981116;
2.03198212834188;2.03261044687260;2.03323876540331;2.03386708393403;
2.03449540246475;2.03512372099547;2.03575203952619;2.03638035805690;
2.03700867658762;2.03763699511834;2.03826531364906;2.03889363217978;
2.03952195071049;2.04015026924121;2.04077858777193;2.04140690630265;
2.04203522483337;2.04831841014055;2.05460159544772;2.06088478075490;
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2.06716796606208;2.07345115136926];

DD1 = 1.0e-006 * [0.01386378928688;0.01503269022391;0.01643032903585;
0.01801816564693;0.02011544386515;0.02293260361173;0.02601847135848;
0.03035042858619;0.03677498355694;0.04598802134789;0.06113522429240;
0.08444283679584;0.11618059858010;0.15242066994150;0.18722056677019;
0.22028384578511;0.24930794625231;0.27661067821285;0.30308614489284;
0.32684550803011;0.34889377870104;0.37021854641074;0.39100952056369;
0.41025669908810;0.41317234562073;0.41504659147304;0.41630583600001;
0.41903296328561;0.41998513452375;0.42150690235431;0.42411682769243;
0.42488985268825;0.01440927917347;0.01440649037811;0.01405802051281;
0.01430837102674;0.01405905905035;0.01379978620778;0.01371003307713;
0.01359266733680;0.01364805974871;0.01327660954420;0.01337221936481;
0.01328984276486;0.01208608386966;0.01129549976976;0.01065318232845;
0.00983348151575;0.00944146231109];

CC2 =1.0e+006 * [2.07345115136926;2.06716796606208;2.06088478075490;
2.05460159544772;2.04831841014055;2.04203522483337;2.03575203952619;
2.02946885421901;2.02318566891183;2.01690248360465;2.01061929829747;
2.00433611299029;1.99805292768311;1.99176974237593;1.98548655706875;
1.98485823853803;1.98422992000731;1.98360160147660;1.98297328294588;
1.98234496441516;1.98171664588444;1.98108832735372;1.98046000882301;
1.97983169029229;1.97920337176157;1.97857505323085;1.97794673470013;
1.97731841616942;1.97669009763870;1.97606177910798;1.97543346057726;
1.97480514204654;1.97417682351583;1.97354850498511;1.97292018645439;
1.96663700114721;1.96035381584003;1.95407063053285;1.94778744522567;
1.94150425991849;1.93522107461131;1.92893788930413;1.92265470399695;
1.91637151868977;1.91008833338259;1.90380514807541;1.89752196276823;
1.89123877746106;1.88495559215388];

DD2 = 1.0e-006 * [0.00945342675922;0.00989366738567;0.01054458179475;
0.01193315965282;0.01216285708183;0.01332508054152;0.01461026837421;
0.01595514228059;0.01764198026891;0.02010935640405;0.02302519014775;
0.02594851570952;0.03124827757358;0.03859170279310;0.05189985220328;
0.05369125776467;0.05602618848994;0.05774024493379;0.06108241638724;
0.06319807356950;0.06613654671667;0.07021489212735;0.07453958919010;
0.07998430961482;0.08575661890701;0.21554380394747;0.21221128738419;
0.20996236732973;0.20557934851050;0.20260378473822;0.19989902061808;
0.19663862226473;0.19289768827929;0.19033570598905;0.18623167767482;
0.15117113234691;0.11523876880656;0.08332547819206;0.06035197820465;
0.04501888394590;0.03666928882568;0.02877496660235;0.02535897976970;
0.02113992121200;0.01828435396265;0.01771579210585;0.01557206689685;
0.01464322407468;0.01396149576732];

beam_length = 2.0000e-004;

VA =0.3980;

figure;

set(gcf,'Color',[1,1,1]);

plot(CC1/(2000*pi),DD1*1e9,*',CC2/(2000*pi),DD2*1e9,'0', ...
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frequency(:,1),Ampl, frequency(:,3), Ampl)%, frequency(1:90,2),Ampl(1:90),
frequency(90:609,2), Ampl(90:609), linewidth’,3);
title(['Frequency-Response Curve of ',num2str(beam_length*1e6),' \mum PZT
Resonator at ',num2str(VA),' VAC');
xlabel('Excitation Frequency, kHz');
ylabel('Response Amplitude, nm’);
legend('Increasing Frequency','Decreasing Frequency',2);

function determinantA = detAl(lamata2, El, x)
[determinantA, A] = A_static(lamata2, El, x);

function y=detAdyn(wn,BeamProperties, C, P_cr, b)
El = BeamProperties(:,1);
EA = BeamProperties(:,2);
Lngth = BeamProperties(:,3);
P = BeamProperties(:,4);
L(1) = Lngth(2);
L(2) = Lngth(1) + Lngth(2);
Lamatal=zeros(1,3);
Lamata2=zeros(1,3);
lamatal = sqrt(P_cr(1));
lamata2 = sqrt(P_cr(2));
lamata3 = sqrt(P_cr(3));
for j =1 : length(P)
Lamatal(j)=(1/2*( P()+(P(j)."2+4*wn."2).”0.5)).”0.5; %wn is the frequency of
nth mode, that's what we want to know
Lamata2(j)=(1/2*(-P(j)+(P(j).*2+4*wn."2).70.5))."0.5;
end
Yot THE PARAMETER OF C1--CO#tHHHHHHHHHHIHHIH
C11=C(2)*sin(Lamatal(1)*0)+(1-(lamatal/Lamatal(1)).*2).~(-1)*(-
C(3)*(sin(lamatal*0)*sin(Lamatal(1)*0)*lamatal+(lamatal.*2/Lamatal(1))*cos(la
matal*0)*cos(Lamatal(1)*0))+C(4)*(cos(lamatal*0)*sin(Lamatal(1)*0)*lamatal-
(lamatal.”2/Lamatal(1))*sin(lamatal*0)*cos(Lamatal(1)*0)));
C12=C(2)*sin(Lamatal(1)*L(1))+(1-(lamatal/Lamatal(1)).”2).M(-1)*(-
C(3)*(sin(lamatal*L(1))*sin(Lamatal(1)*L(1))*lamatal+(lamatal."2/Lamatal(1))*c
os(lamatal*L(1))*cos(Lamatal(1)*L(1)))+C(4)*(cos(lamatal*L(1))*sin(Lamatal(1)
*L(1))*lamatal-(lamatal.”2/Lamatal(1))*sin(lamatal*L(1))*cos(Lamatal(1)*L(1))));
C13=C(6)*sin(Lamatal(2)*L(1))+(1-(lamata2/Lamatal(2)).”2).M(-1)*(-
C(7)*(sin(lamata2*L(1))*sin(Lamatal(2)*L(1))*lamata2+(lamata2.”2/Lamatal(2))*c
os(lamata2*L(1))*cos(Lamatal(2)*L(1)))+C(8)*(cos(lamata2*L(1))*sin(Lamatal(2)
*L(1))*lamata2-(lamata2.”2/Lamatal(2))*sin(lamata2*L(1))*cos(Lamatal(2)*L(1))));
C14=C(6)*sin(Lamatal(2)*L(2))+(1-(lamata2/Lamatal(2)).”2).M(-1)*(-
C(7)*(sin(lamata2*L(2))*sin(Lamatal(2)*L(2))*lamata2+(lamata2.”2/Lamatal(2))*c
os(lamata2*L(2))*cos(Lamatal(2)*L(2)))+C(8)*(cos(lamata2*L(2))*sin(Lamatal(2)
*L(2))*lamata2-(lamata2.”2/Lamatal(2))*sin(lamata2*L(2))*cos(Lamatal(2)*L(2))));
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C15=C(10)*sin(Lamatal(3)*L(2))+(1-(lamata3/Lamatal(3)).”2).~(-1)*(-
C(11)*(sin(lamata3*L(2))*sin(Lamatal(3)*L(2))*lamata3+(lamata3.2/Lamatal(3))*
cos(lamata3*L(2))*cos(Lamatal(3)*L(2)))+C(12)*(cos(lamata3*L(2))*sin(Lamatal(
3)*L(2))*lamata3-
(lamata3.~2/Lamatal(3))*sin(lamata3*L(2))*cos(Lamatal(3)*L(2))));
C16=C(10)*sin(Lamatal(3)*1)+(1-(lamata3/Lamatal(3)).”2).~(-1)*(-
C(11)*(sin(lamata3*1)*sin(Lamatal(3)*1)*lamata3+(lamata3.*2/Lamatal(3))*cos(la
mata3*1)*cos(Lamatal(3)*1))+C(12)*(cos(lamata3*1)*sin(Lamatal(3)*1)*lamata3-
(lamata3.~2/Lamatal(3))*sin(lamata3*1)*cos(Lamatal(3)*1)));
C1=(C12-C11)+(C14-C13)+(C16-C15);
C21=C(2)*cos(Lamatal(1)*0)+(1-(lamatal/Lamatal(1))."2).M-1)*(C(3)*(-
sin(lamatal*0)*cos(Lamatal(1)*0)*lamatal+(lamatal.*2/Lamatal(1))*cos(lamatal*
0)*sin(Lamatal(1)*0))-C(4)*(-cos(lamatal*0)*cos(Lamatal(1)*0)*lamatal-
(lamatal.~2/Lamatal(1))*sin(lamatal*0)*sin(Lamatal(1)*0)));
C22=C(2)*cos(Lamatal(1)*L(1))+(1-(lamatal/Lamatal(1)).”2).~(-1)*(C(3)*(-
sin(lamatal*L(1))*cos(Lamatal(1)*L(1))*lamatal+(lamatal.*2/Lamatal(1))*cos(la
matal*L(1))*sin(Lamatal(1)*L(1)))-C(4)*(-
cos(lamatal*L(1))*cos(Lamatal(1)*L(1))*lamatal-
(lamatal.~2/Lamatal(1))*sin(lamatal*L(1))*sin(Lamatal(1)*L(1))));
C23=C(6)*cos(Lamatal(2)*L(1))+(1-(lamata2/Lamatal(2)).”2).~(-1)*(C(7)*(-
sin(lamata2*L(1))*cos(Lamatal(2)*L(1))*lamata2+(lamata2.”2/Lamatal(2))*cos(la
mata2*L(1))*sin(Lamatal(2)*L(1)))-C(8)*(-
cos(lamata2*L(1))*cos(Lamatal(2)*L(1))*lamata2-
(lamata2.~2/Lamatal(2))*sin(lamata2*L(1))*sin(Lamatal(2)*L(1))));
C24=C(6)*cos(Lamatal(2)*L(2))+(1-(lamata2/Lamatal(2)).*2).~(-1)*(C(7)*(-
sin(lamata2*L(2))*cos(Lamatal(2)*L(2))*lamata2+(lamata2.”2/Lamatal(2))*cos(la
mata2*L(2))*sin(Lamatal(2)*L(2)))-C(8)*(-
cos(lamata2*L(2))*cos(Lamatal(2)*L(2))*lamata2-
(lamata2.~2/Lamatal(2))*sin(lamata2*L(2))*sin(Lamatal(2)*L(2))));
C25=C(10)*cos(Lamatal(3)*L(2))+(1-(lamata3/Lamatal(3)).”2). (-1)*(C(11)*(-
sin(lamata3*L(2))*cos(Lamatal(3)*L(2))*lamata3+(lamata3.”2/Lamatal(3))*cos(la
mata3*L(2))*sin(Lamatal(3)*L(2)))-C(12)*(-
cos(lamata3*L(2))*cos(Lamatal(3)*L(2))*lamata3-
(lamata3.~2/Lamatal(3))*sin(lamata3*L(2))*sin(Lamatal(3)*L(2))));
C26=C(10)*cos(Lamatal(3)*1)+(1-(lamata3/Lamatal(3)).”2).M(-1)*(C(11)*(-
sin(lamata3*1)*cos(Lamatal(3)*1)*lamata3+(lamata3.*2/Lamatal(3))*cos(lamata3*
1)*sin(Lamatal(3)*1))-C(12)*(-cos(lamata3*1)*cos(Lamatal(3)*1)*lamata3-
(lamata3.~2/Lamatal(3))*sin(lamata3*1)*sin(Lamatal(3)*1)));
C2=(C22-C21)+(C24-C23)+(C26-C25);
C31=C(2)*sinh(Lamata2(1)*0)+(1+(lamatal/Lamata2(1)).”2)."(-1)*(-
C(3)*(sin(lamatal*0)*sinh(Lamata2(1)*0)*lamatal-
(lamatal.~2/Lamata2(1))*cos(lamatal*0)*cosh(Lamata2(1)*0))+C(4)*(cos(lamatal*
0)*sinh(Lamata2(1)*0)*lamatal+(lamatal.*2/Lamata2(1))*sin(lamatal*0)*cosh(La
mata2(1)*0)));
C32=C(2)*sinh(Lamata2(1)*L(1))+(1+(lamatal/Lamata2(1))."2).M-1)*(-
C(3)*(sin(lamatal*L(1))*sinh(Lamata2(1)*L(1))*lamatal-
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(lamatal.~2/Lamata2(1))*cos(lamatal*L(1))*cosh(Lamata2(1)*L(1)))+C(4)*(cos(la
matal*L(1))*sinh(Lamata2(1)*L(1))*lamatal+(lamatal.”2/Lamata2(1))*sin(lamatal
*L(1))*cosh(Lamata2(1)*L(1))));
C33=C(6)*sinh(Lamata2(2)*L(1))+(1+(lamata2/Lamata2(2))."2).M-1)*(-
C(7)*(sin(lamata2*L(1))*sinh(Lamata2(2)*L(1))*lamata2-
(lamata2.~2/Lamata2(2))*cos(lamata2*L(1))*cosh(Lamata2(2)*L(1)))+C(8)*(cos(la
mata2*L(1))*sinh(Lamata2(2)*L(1))*lamata2+(lamata2.”2/Lamata2(2))*sin(lamata2
*L(1))*cosh(Lamata2(2)*L(1))));
C34=C(6)*sinh(Lamata2(2)*L(2))+(1+(lamata2/Lamata2(2))."2).M(-1)*(-
C(7)*(sin(lamata2*L(2))*sinh(Lamata2(2)*L(2))*lamata2-
(lamata2.~2/Lamata2(2))*cos(lamata2*L(2))*cosh(Lamata2(2)*L(2)))+C(8)*(cos(la
mata2*L(2))*sinh(Lamata2(2)*L(2))*lamata2+(lamata2.*2/Lamata2(2))*sin(lamata2
*L(2))*cosh(Lamata2(2)*L(2))));
C35=C(10)*sinh(Lamata2(3)*L(2))+(1+(lamata3/Lamata2(3))."2).M(-1)*(-
C(11)*(sin(lamata3*L(2))*sinh(Lamata2(3)*L(2))*lamata3-
(lamata3.”2/Lamata2(3))*cos(lamata3*L(2))*cosh(Lamata2(3)*L(2)))+C(12)*(cos(la
mata3*L(2))*sinh(Lamata2(3)*L(2))*lamata3+(lamata3.*2/Lamata2(3))*sin(lamata3
*L(2))*cosh(Lamata2(3)*L(2))));
C36=C(10)*sinh(Lamata2(3)*1)+(1+(lamata3/Lamata2(3)).”2).~(-1)*(-
C(11)*(sin(lamata3*1)*sinh(Lamata2(3)*1)*lamata3-
(lamata3.~2/Lamata2(3))*cos(lamata3*1)*cosh(Lamata2(3)*1))+C(12)*(cos(lamata3
*1)*sinh(Lamata2(3)*1)*lamata3+(lamata3.”"2/Lamata2(3))*sin(lamata3*1)*cosh(La
mata2(3)*1)));

C3=(C32-C31)+(C34-C33)+(C36-C35);
C41=C(2)*cosh(Lamata2(1)*0)+(1+(lamatal/Lamata2(1))."2).~(-1)*(-
C(3)*(sin(lamatal*0)*cosh(Lamata2(1)*0)*lamatal-
(lamatal.”2/Lamata2(1))*cos(lamatal*0)*sinh(Lamata2(1)*0))+C(4)*(cos(lamatal*
0)*cosh(Lamata2(1)*0)*lamatal+(lamatal.”2/Lamata2(1))*sin(lamatal*0)*sinh(La
mata2(1)*0)));
C42=C(2)*cosh(Lamata2(1)*L(1))+(1+(lamatal/Lamata2(1))."2).~(-1)*(-
C(3)*(sin(lamatal*L(1))*cosh(Lamata2(1)*L(1))*lamatal-
(lamatal.”2/Lamata2(1))*cos(lamatal*L(1))*sinh(Lamata2(1)*L(1)))+C(4)*(cos(lam
atal*L(1))*cosh(Lamata2(1)*L(1))*lamatal+(lamatal.”2/Lamata2(1))*sin(lamatal*
L(1))*sinh(Lamata2(1)*L(1))));
C43=C(6)*cosh(Lamata2(2)*L(1))+(1+(lamata2/Lamata2(2)).2)."(-1)*(-
C(7)*(sin(lamata2*L(1))*cosh(Lamata2(2)*L(1))*lamata2-
(lamata2.~2/Lamata2(2))*cos(lamata2*L(1))*sinh(Lamata2(2)*L(1)))+C(8)*(cos(lam
ata2*L(1))*cosh(Lamata2(2)*L(1))*lamata2+(lamata2.”2/Lamata2(2))*sin(lamata2*
L(1))*sinh(Lamata2(2)*L(1))));
C44=C(6)*cosh(Lamata2(2)*L(2))+(1+(lamata2/Lamata2(2)).*2).~(-1)*(-
C(7)*(sin(lamata2*L(2))*cosh(Lamata2(2)*L(2))*lamata2-
(lamata2.~2/Lamata2(2))*cos(lamata2*L(2))*sinh(Lamata2(2)*L(2)))+C(8)*(cos(lam
ata2*L(2))*cosh(Lamata2(2)*L(2))*lamata2+(lamata2.”2/Lamata2(2))*sin(lamata2*
L(2))*sinh(Lamata2(2)*L(2))));
C45=C(10)*cosh(Lamata2(3)*L(2))+(1+(lamata3/Lamata2(3)).2).M(-1)*(-
C(11)*(sin(lamata3*L(2))*cosh(Lamata2(3)*L(2))*lamata3-
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(lamata3.”2/Lamata2(3))*cos(lamata3*L(2))*sinh(Lamata2(3)*L(2)))+C(12)*(cos(la
mata3*L(2))*cosh(Lamata2(3)*L(2))*lamata3+(lamata3."2/Lamata2(3))*sin(lamata3
*L(2))*sinh(Lamata2(3)*L(2))));
C46=C(10)*cosh(Lamata2(3)*1)+(1+(lamata3/Lamata2(3))."2).M(-1)*(-
C(11)*(sin(lamata3*1)*cosh(Lamata2(3)*1)*lamata3-
(lamata3.~2/Lamata2(3))*cos(lamata3*1)*sinh(Lamata2(3)*1))+C(12)*(cos(lamata3
*1)*cosh(Lamata2(3)*1)*lamata3+(lamata3.2/Lamata2(3))*sin(lamata3*1)*sinh(La
mata2(3)*1)));

C4=(C42-C41)+(C44-C43)+(C46-C45);
C51=C(2)*C(3)*cos(lamatal*0)+C(2)*C(4)*sin(lamatal*0)+C(3). 2*(lamatal."2/2*
0-
sin(2*lamatal*0)*lamatal/4)+C(3)*C(4)*lamatal*cos(2*lamatal*0)/2+C(4).”2*(la
matal.*2/2*0+sin(2*lamatal*0)*lamatal/4);
C52=C(2)*C(3)*cos(lamatal*L(1))+C(2)*C(4)*sin(lamatal*L(1))+C(3).”2*(lamatal
A2/2*%L(1)-sin(2*lamatal*L(1))*lamatal/4)+C(3)*C(4)*lamatal
*cos(2*lamatal*L(1))/2+C(4).2*(lamatal."2/2*L (1)+sin(2*lamatal*L(1))*lamatal/
4);
C53=C(6)*C(7)*cos(lamata2*L(1))+C(6)*C(8)*sin(lamata2*L(1))+C(7).”2*(lamata2
A2/2*%L(1)-sin(2*lamata2*L(1))*lamata2/4)+C(7)*C(8)*lamata2*
cos(2*lamata2*L(1))/2+C(8).~2*(lamata2.”2/2*L (1)+sin(2*lamata2*L(1))*lamata2/4
);
C54=C(6)*C(7)*cos(lamata2*L(2))+C(6)*C(8)*sin(lamata2*L(2))+C(7)."2*(lamata2
A2[2*L(2)-sin(2*lamata2*L(2))*lamata2/4)+C(7)*C(8)*lamata2
*cos(2*lamata2*L(2))/2+C(8).2*(lamata2./2/2*L (2)+sin(2*lamata2*L (2))*lamata2/
4);
C55=C(10)*C(11)*cos(lamata3*L(2))+C(10)*C(12)*sin(lamata3*L(2))+C(11)."2*(l
amata3.”2/2*L(2)-sin(2*lamata3*L(2))*lamata3/4)+C(11)*C(12)*lamata3
*cos(2*lamata3*L(2))/2+C(12).#2*(lamata3.2/2*L(2)+sin(2*lamata3*L(2))*lamata
3/4);
C56=C(10)*C(11)*cos(lamata3*1)+C(10)*C(12)*sin(lamata3*1)+C(11).A2*(lamata3
A2/2*1-sin(2*lamata3*1)*lamata3/4)+C(11)*C(12)*lamata3*cos(2*lamata3*1)/2
+C(12).~2*(lamata3.*2/2*1+sin(2*lamata3*1)*lamata3/4);
C5=(C52-C51)+(C54-C53)+(C56-C55);

YorHHHHHHHH# THE EXPRESSION OF THE PARTICULAR SULUTION
Fipt#tii

%%%% THE EXPRESSION of MATRIX A(ij) FOR THE DYNAMIC
BUCKLING%%%%

Adyn=zeros(15,15);

Adyn(1,1)=sin(Lamatal(1)*x(1));

Adyn(1,2)=cos(Lamatal(1)*x(1));

Adyn(1,3)=sinh(Lamata2(1)*x(1));

Adyn(1,4)=cosh(Lamata2(1)*x(1));
Adyn(1,5)=C(3)*cos(lamatal*x(1))+C(4)*sin(lamatal*x(1));
Adyn(2,1)=Lamatal(1)*cos(Lamatal(1)*x(1));
Adyn(2,2)=-Lamatal(1)*sin(Lamatal(1)*x(1));
Adyn(2,3)=Lamata2(1)*cosh(Lamatal(1)*x(1));
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Adyn(2,4)=Lamata2(1)*sinh(Lamatal(1)*x(1));
Adyn(2,5)=-C(3)*lamatal*sin(lamatal*x(1))+C(4)*lamatal*cos(lamatal*x(1));
Adyn(3,1)= sin(Lamatal(1)*x(2));

Adyn(3,2)= cos(Lamatal(1)*x(2));

Adyn(3,3)= sinh(Lamata2(1)*x(2));

Adyn(3,4)= cosh(Lamata2(1)*x(2));
Adyn(3,5)=C(3)*cos(lamatal*x(2))+C(4)*sin(lamatal*x(2));
Adyn(3,6)=-sin(Lamatal(2)*x(2));
Adyn(3,7)=-cos(Lamatal(2)*x(2));
Adyn(3,8)=-sinh(Lamata2(2)*x(2));
Adyn(3,9)=-cosh(Lamata2(2)*x(2));
Adyn(3,10)=-C(7)*cos(lamata2*x(2))-C(8)*sin(lamata2*x(2));
Adyn(4,1)= Lamatal(1l)*cos(Lamatal(1)*x(2));
Adyn(4,2)=-Lamatal(1)*sin(Lamatal(1)*x(2));

Adyn(4,3)= Lamata2(1)*cosh(Lamata2(1)*x(2));

Adyn(4,4)= Lamata2(1)*sinh(Lamata2(1)*x(2));
Adyn(4,5)=-C(3)*lamatal*sin(lamatal*x(2))+C(4)*lamatal*cos(lamatal*x(2));
Adyn(4,6)=-Lamatal(2)*cos(Lamatal(2)*x(2));

Adyn(4,7)= Lamatal(2)*sin(Lamatal(2)*x(2));
Adyn(4,8)=-Lamata2(2)*cosh(Lamata2(2)*x(2));
Adyn(4,9)=-Lamata2(2)*sinh(Lamata2(2)*x(2));
Adyn(4,10)=C(7)*lamata2*sin(lamata2*x(2))-C(8)*lamata2*cos(lamata2*x(2));
Adyn(5,1)=-(Lamatal(1).”2)*sin(Lamatal(1)*x(2));
Adyn(5,2)=-(Lamatal(1).”2)*cos(Lamatal(1)*x(2));

Adyn(5,3)= (Lamata2(1).”2)*sinh(Lamata2(1)*x(2));

Adyn(5,4)= (Lamata2(1).”2)*cosh(Lamata2(1)*x(2));
Adyn(5,5)=(-C(3)*lamatal."2*cos(lamatal*x(2))-
C(4)*lamatal.~2*sin(lamatal*x(2)));

Adyn(5,6)= (Lamatal(2).”2)*sin(Lamatal(2)*x(2))*EI(2)/EI(1);
Adyn(5,7)= (Lamatal(2).”2)*cos(Lamatal(2)*x(2))*EI(2)/EI(1);
Adyn(5,8)=-(Lamata2(2)."2)*sinh(Lamata2(2)*x(2))*EI(2)/EI(1);
Adyn(5,9)=-(Lamata2(2).*2)*cosh(Lamata2(2)*x(2))*EI(2)/EI(1);
Adyn(5,10)=(C(7)*lamata2.”2*cos(lamata2*x(2))+C(8)*lamata2.”2*sin(lamata2*x(2
N)*EI2)/EI(D);
Adyn(6,1)=-(Lamatal(1)."3)*cos(Lamatal(1)*x(2));

Adyn(6,2)= (Lamatal(1).”3)*sin(Lamatal(1)*x(2));

Adyn(6,3)= (Lamata2(1).~3)*cosh(Lamata2(1)*x(2));

Adyn(6,4)= (Lamata2(1).*3)*sinh(Lamata2(1)*x(2));

Adyn(6,5)= (C(3)*lamatal.~3*sin(lamatal*x(2))-
C(4)*lamatal.~3*cos(lamatal*x(2)));

Adyn(6,6)= (Lamatal(2)."3)*cos(Lamatal(2)*x(2))*EI(2)/EI(1);
Adyn(6,7)=-(Lamatal(2).”3)*sin(Lamatal(2)*x(2))*EI(2)/EI(1);
Adyn(6,8)=-(Lamata2(2)."3)*cosh(Lamata2(2)*x(2))*El(2)/EI(1);
Adyn(6,9)=-(Lamata2(2).*3)*sinh(Lamata2(2)*x(2))*El(2)/EI(1);
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Adyn(6,10)=(-
C(7)*lamata2.”3*sin(lamata2*x(2))+C(8)*lamata2.3*cos(lamata2*x(2)))*EI(2)/EI(1
);

Adyn(7,6)= sin(Lamatal(2)*x(3));

Adyn(7,7)= cos(Lamatal(2)*x(3));

Adyn(7,8)= sinh(Lamata2(2)*x(3));

Adyn(7,9)= cosh(Lamata2(2)*x(3));
Adyn(7,10)=C(7)*cos(lamata2*x(3))+C(8)*sin(lamata2*x(3));
Adyn(7,11)=-sin(Lamatal(3)*x(3));
Adyn(7,12)=-cos(Lamatal(3)*x(3));
Adyn(7,13)=-sinh(Lamata2(3)*x(3));
Adyn(7,14)=-cosh(Lamata2(3)*x(3));
Adyn(7,15)=-C(11)*cos(lamata3*x(3))-C(12)*sin(lamata3*x(3));
Adyn(8,6)= Lamatal(2)*cos(Lamatal(2)*x(3));
Adyn(8,7)=-Lamatal(2)*sin(Lamatal(2)*x(3));

Adyn(8,8)= Lamata2(2)*cosh(Lamata2(2)*x(3));

Adyn(8,9)= Lamata2(2)*sinh(Lamata2(2)*x(3));
Adyn(8,10)=-C(7)*lamata2*sin(lamata2*x(3))+C(8)*lamata2*cos(lamata2*x(3));
Adyn(8,11)=-Lamatal(3)*cos(Lamatal(3)*x(3));

Adyn(8,12)= Lamatal(3)*sin(Lamatal(3)*x(3));
Adyn(8,13)=-Lamata2(3)*cosh(Lamata2(3)*x(3));
Adyn(8,14)=-Lamata2(3)*sinh(Lamata2(3)*x(3));

Adyn(8,15)= C(11)*lamata3*sin(lamata3*x(3))-C(12)*lamata3*cos(lamata3*x(3));
Adyn(9,6)=-(Lamatal(2).”2)*sin(Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(9,7)=-(Lamatal(2).”2)*cos(Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(9,8)= (Lamata2(2).”2)*sinh(Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(9,9)= (Lamata2(2).”2)*cosh(Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(9,10)=(-C(7)*lamata2."2*cos(lamata2*x(3))-
C(8)*lamata2.”2*sin(lamata2*x(3)))*EI(2)/EI(3);

Adyn(9,11)= (Lamatal(3).2)*sin(Lamatal(3)*x(3));

Adyn(9,12)= (Lamatal(3).*2)*cos(Lamatal(3)*x(3));
Adyn(9,13)=-(Lamata2(3)."2)*sinh(Lamata2(3)*x(3));
Adyn(9,14)=-(Lamata2(3)."2)*cosh(Lamata2(3)*x(3));
Adyn(9,15)=(C(11)*lamata3.*2*cos(lamata3*x(3))+C(12)*lamata3.2*sin(lamata3*
x(3)));

Adyn(10,6)= -(Lamatal(2).3)*cos( Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(10,7)= (Lamatal(2)."3)*sin( Lamatal(2)*x(3))*EI(2)/EI(3);
Adyn(10,8)= (Lamata2(2)."3)*cosh( Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(10,9)= (Lamata2(2)."3)*sinh( Lamata2(2)*x(3))*EI(2)/EI(3);
Adyn(10,10)=(C(7)*lamata2.*3*sin(lamata2*x(3))-
C(8)*lamata2.”3*cos(lamata2*x(3))) *EI(2)/EI(3);

Adyn(10,11)= (Lamatal(3).*3)*cos( Lamatal(3)*x(3));
Adyn(10,12)=-(Lamatal(3).”3)*sin( Lamatal(3)*x(3));
Adyn(10,13)=-(Lamata2(3).*3)*cosh(Lamata2(3)*x(3));
Adyn(10,14)=-(Lamata2(3).”3)*sinh(Lamata2(3)*x(3));
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Adyn(10,15)=(-
C(11)*lamata3.”3*sin(lamata3*x(3))+C(12)*lamata3.*3*cos(lamata3*x(3)));
Adyn(11,11)= sin(Lamatal(3)*x(4));
Adyn(11,12)=cos(Lamatal(3)*x(4));
Adyn(11,13)=sinh(Lamata2(3)*x(4));
Adyn(11,14)=cosh(Lamata2(3)*x(4));
Adyn(11,15)=C(11)*cos(lamata3*x(4))+C(12)*sin(lamata3*x(4));
Adyn(12,11)= Lamatal(3)*cos(Lamatal(3)*x(4));
Adyn(12,12)=-Lamatal(3)*sin(Lamatal(3)*x(4));
Adyn(12,13)=Lamata2(3)*cosh(Lamata2(3)*x(4));
Adyn(12,14)=Lamata2(3)*sinh(Lamata2(3)*x(4));
Adyn(12,15)=-C(11)*lamata3*sin(lamata3*x(4))+C(12)*lamata3*cos(lamata3*x(4));
Adyn(13,1)=C1,

Adyn(13,2)=C2;

Adyn(13,3)=C3;

Adyn(13,4)=C4;

Adyn(13,5)=C5-wn.*2/parameterl*lamatal."2;

Adyn(14,6)=C1,

Adyn(14,7)=C2;

Adyn(14,8)=C3;

Adyn(14,9)=C4;

Adyn(14,10)=C5-wn."2/parameterl*lamata2.”2;
Adyn(15,11)=C1,

Adyn(15,12)=C2;

Adyn(15,13)=C3;

Adyn(15,14)=C4;
Adyn(15,15)=C5-wn."2/parameterl*lamata3.”2;

%%%%%% EXPRESSION Adyn ENDED%%%%%
y=det(Adyn);

function y = detAdyn1(wn,Beam)
[Adyn, Lamatal, Lamata2] = Adyn_flat(wn,Beam);
y = det(Adyn);

function y=detAdynamic(wn,Beam, C, P_cr, b)
[Adyn, kesai, Lamatal, Lamata2,wk, a]=A_dynamic(wn,Beam, C, b);
y = det(Adyn);

function y = dfdx(f,x)

% this function is to give df/dx

% fisanx1(or1xn) vector, represent n values of f(x)
% X is the x-axis span

n = length(f)-1;

dx = x/n;
fori=1:n;
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df = f(i+1)-f(i);
y(i) = df/dx;
end
y(n+1) = 2*y(n)-y(n-1); % linearize the curve to calculate the last element

function [Wbk,wn, Beam]=dynamicdeflc(Beam, Mode_No, BucklingFactor,
resolution, static_eigVector)
options = optimset;%( 'Display’, 'final’, "TolX', 1.0E-17);
%0---------m-mm-m-- Calculate wn = ------m-mmmmm oo
if BucklingFactor ~=0
wn =1E003;i=1; wO0(1)=1E-002;
walksteps = 1E-002;%(wn - w0(1))/1000;
s1 = sign(detAdynamic(wO0(1), Beam, static_eigVector, BucklingFactor));
for w =wO0(1) : walksteps : wn %looking for O point by looking for sign change
if i <= max(Mode_No)
s = sign((detAdynamic(w, Beam, static_eigVector, BucklingFactor)));
ifsl~=s %if change sign
i =i+1;
wO(i) = w;
sl=s;
end
end

Mode_min = min(Mode_No);
Mode_max = max(Mode_No);
Mode_now = Mode_min;
for j = 1: ( Mode_max-Mode_min+1)
wn(j) =fzero('detAdynamic’,[wO(Mode_now),w0(Mode_now+1)],options, Beam,
static_eigVector, BucklingFactor);
wnl =fzero('detAdynamic',[w0(Mode_now +1),w0(Mode_now)],options, Beam,
static_eigVector, BucklingFactor);

if wn(j) ~=wnl
‘Calculation needs refining, the region includes more than 2 zero values'
else

[Adynamic, kesai, Lamatal, Lamata2, wn(j), a, Beam] =
A_dynamic(wn(j),Beam, static_eigVector, BucklingFactor);
al =a(:,1);
a2 =a(:,2);
a3 = a(:,3);
a4 = a(:,4);
Mode_now = Mode_now + 1;
end
end
end
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[V,D]=eig(Adynamic); %D is the eigenvector and V is the eigenvalue

e DRAW THE MODE SHAPE =~ --------mmemmmmeeeeeeee
clmnumber=length(V); % clmnumber is the max colume nunber of the matrix,
% 12 is the homogenious case and 15 is the nonhomogenious case
%--- CHOOSE THE SMALLEST EIGENVALUE, AND THE CORRESPONDING
EIGENVECTOR ---
DD = diag(D);
[Dmin cIm]=min(abs(DD)); %the eigenvector closest to 0
%fprintf(‘at dynamicdeflc.m line 93, eigenvalue = %g\n\n', DD(clm))
% CONSTRUCT THE MODE SHAPE%
mm=0;
kk=resolution;
Length = Beam.NondimSection;
xX = Beam.Node;
VORI TR
if BucklingFactor==
if clmnumber==12
C1l=V(1:4:12,clm); %the corresponding eigenvector V(:,clm)
C2=V(2:4:12,clm);
C3=V(3:4:12,clm);
C4=V(4:4:12,clm);
for x = xx(1) : 1/kk : xx(2)
mm=mm-+1;
Whbk(mm) = C1(1) * sin(Lamatal(1)*x)...
+C2(1) * cos(Lamatal(1)*x)...
+C3(1) * sinh(Lamata2(1)*x)...
+C4(1) * cosh(Lamata2(1)*x);
end
for x = xx(2)+1/kk : 1/kk : xx(3)
mm=mm-+1;
%y=x-1/2;
y=X
Wbk(mm) = C1(2) * sin(Lamatal(2)*y)...
+C2(2) * cos(Lamatal(2)*y)...
+C3(2) * sinh(Lamata2(2)*y)...
+C4(2) * cosh(Lamata2(2)*y);
end
for x = xx(3)+1/kk : 1/kk : xx(4)+1/kk
mm=mm-+1;
%z=x-1;
Z=X,;
Whbk(mm) = C1(3) * sin(Lamatal(3)*z)...
+C2(3)* cos(Lamatal(3)*z)...
+C3(3)*sinh(Lamata2(3)*z)...
+C4(3)*cosh(Lamata2(3)*z);

115



end
[Wbk ampl] = normalization(Whbk, 1);
C1 = Cl/ampl,
C2 = C2/ampl,;
C3 = C3/ampl,
C4 = C4/ampl;
end
end
VoRHHH R R
if BucklingFactor~=0
if clmnumber==15

C1=V(1:5:15,clm); %the corresponding eigenvector V(:,clm)

C2 =V(2:5:15,clm);

C3 =V(3:5:15,clm);

C4 =V(4:5:15,clm);

C5 =V(5:5:15,clm);

for x = xx(1) : 1/kk : xx(2)

mm=mm-+1,;

Wbk(mm) = C1(1) * sin(Lamatal(1)*x)...
+C2(1) * cos(Lamatal(1)*x)...
+C3(1) * sinh(Lamata2(1)*x)...
+C4(1) * cosh(Lamata2(1)*x)...
+C5(1) * (a3(1)*cos(kesai(1)*x)+ad(1)*sin(kesai(1)*x));

end
for x = xx(2)+1/kk : 1/kk : xx(3)
mm=mm-+1;

%y=x-1/2;

y=X

Wbk(mm) = C1(2) * sin(Lamatal(2)*y)...
+C2(2) * cos(Lamatal(2)*y)...
+C3(2) * sinh(Lamata2(2)*y)...
+C4(2) * cosh(Lamata2(2)*y)...
+C5(2)* (a3(2)*cos(kesai(2)*x)+ad(2)*sin(kesai(2)*x));

end
for x = xx(3)+1/kk : 1/kk : xx(4)
mm=mm-+1;

%z=x-1;

Z=X;

Whbk(mm) = C1(3) * sin(Lamatal(3)*z)...
+C2(3) * cos(Lamatal(3)*z)...
+C3(3) * sinh(Lamata2(3)*z)...
+C4(3) * cosh(Lamata2(3)*z)...
+C5(3) * (a3(3)*cos(kesai(3)*x)+ad(3)*sin(kesai(3)*x));

end
[Wbk ampl] = normalization(Whbk, 1);
C1 = Cl/ampl,
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C2 = C2/ampl,
C3 = C3/ampl;
C4 = C4/ampl,
C5 = C5/ampl;
end
end

function Free_Vib_Loop

Yo THE DYNAMIC BUCKLED MODE SHAPE##H#HH#HH#HH#H#

% clmnumber=12: FOR THE HOMOGENOUS EQUAT ION#H#HHHHH#HHH

% clmnumber=15: FOR THE NONHOMUGENOUS EQUATION #####H###

[ W1 _dy, wk, Beam] = dynamicdeflc( Beam, Dynamic_Mode_No, BucklingFactor,
Image_Resol, static_eigVector ) ;

freq = wk*sqrt(E1(2)/pA(2))/Length_dim(4)"2/(2*pi)/1E3;%wk is dimensionless
angular frequency

ampl = 1e-003;

W(displl = BucklingFactor*W_st + ampl*W1_dy;

W(displ2 = BucklingFactor*W_st - ampl*W1_dy;

function freq_vs_b_general

clc;clear all; close all; ti = cputime;
Beam_name =1, %PZT=1, AlGaAs=2
Wafer_name = 6;

Image_Resol = 1000;

StaticBucklingLock = 1;
FreeVibrationLock =1;
ForceVibrationLock = 0;

m =0;

bl =1E-3; %BucklingFactor start value

b2 = 20E-3;  %BucklingFactor ends value
Dynamic_Mode_No =[1, 4]; %f# of dynamic mode calculated
Static_ Mode_No =1;

n=10; %Resolution

steps = (b2 - b1)/n;

0= mm m -
%---- Data Preparation ~  --------

0= mm m -
Y0---=mmmmmmemee Beam Data ---------=-=--msmmmmmmemm oo
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fprintf("********* Resonator Geometry/Material/Stress Information
**********\n\n-)
[Beam] = beam_structure ( Beam_name, Wafer_name, Apply_V);
PO_dim = Beam.AxF_dim;
El = Beam.El;
EA = Beam.EA;
pA = Beam.rho;
Length_dim = Beam.Length;
fori=1:1Image_Resol+1 % every point in X-axis
x_cord(i) = (i-1)/Image_Resol;
end
D Non-Dimensionalize Data ~ ---------------------
PO = PO_dim * Length_dim(4)"2 ./ El, %non-dim form of axial force
Lngth = Length_dim(1:3) / Length_dim(4); %length of each section
Beam.AxF_nondim = PO;
Beam.Node = [0; Lngth(1); sum(Lngth(1:2)); sum(Lngth)]; % non-dim x position of
each node
Beam.NondimSection = Beam.Length(1:3)/Beam.Length(4); %Non-dim Section
Length
fprintf('Length of the Resonator:  %g [um]\n\n',Length_dim(4)*1e6)

fprintf('Density/UnitLength : %e  %e  %e [kg/m]\n\n',pA)
fprintf('Bending Stiffness: %e  %e  %e [Nm"2]\n\n',EI")
fprintf(Axial Stiffness : %e %e  %e [N]\n\n',EA")
fprintf('‘Axial Stress: %e  %e  %e [N]\n\n\n\n',PO_dim")
/)= mmmmmmmm oo mm oo oo mmmmmmmmmm e mmmmmmmm e mmmmmmmm e

%----  Calculate the Static Critical Buckling Mode Shape =~ --------
/= mmmmmm o mmmmmm oo mmmmmmmmmmmmmmmmmmmmmmmmmmmm

% To calculate the static critical buckling modeshape of a E-U beam
if StaticBucklingLock ==

fprintf(' ~--STATIC BUCKLING--\n\n")
[P_cr W_st, static_eigVector] =Staticbuckleshape(Beam, Static_Mode_No,
Image_Resol);

Beam.Pcr_nondim = P_cr;
Beam.Pcr_dim = P_cr.*El/Length_dim(4)"2; %dim form of P_critical [N]
fprintf('"The %gth/nd/st Static Bcukling Equlibrium Position\n\n', Static_Mode_No);
fprintf( Kesai=%g %g %g \nPcr_nondim=%g %g %g \n\n\n\n',...
sqrt(P_cr),P_cr);
end

fprintf(' --- Dynamic Mode Shape upon PostBuckling Position ---\n\n");
m =0;
for BucklingFactor = bl : steps : b2
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m=m+1,

fprintf(‘Calculation Cycle Number = %g \n', m)

Free_Vib_Loop;

b(m) = BucklingFactor;

Frquency(:,m) = freq;
End
plot(b,Frquency,'linewidth’,3)%,b,Frquency2*1e3,'*")%,b,Frquency3*1e3,™*")
grid on
xlabel('b','fontsize’,16)
ylabel('Natural Frequencies (kHz)','fontsize’,16)
title('Free Vibration of 400{\it{\mu}m} Around The 1st Static Buckling
Mode','fontsize’,16)

function [sigma] = Frequency_Response( Beam, W_st, W_dy, gx, F, a, mu, wn,b )
g = Beam.q;
El = Beam.El,
m = Beam.rho;
n = length(Beam.r);
L = Beam.Length(n+1);
X = Beam.Node;
w_dim = sqrt(EI(2)/m(2))/L"2*wn;
mu_dim=sqrt(E1(2)*m(2))/L"2*mu;
N = round((length(W_st)-1)*x + 1); % the node number at the end of each
section
dW_st = dfdx(W_st,1);
ddW_st= dfdx(dW_st,1);
%Force = F*b*dW_st(N)-b*gk*F*ddW _st;
nom1l = 0;
nom2 = 0;
nom3 = 0;
dnom = 0;nom = 0;
fork=1:n
Force( N(K):N(k+1) ) = b*q(k)*F*ddW _st( N(k):N(k+1) ); % double check with
this expression
end
fork=1:n
noml =noml + innerproduct(W_dy, Force,x(k),
nom2 = nom2 + innerproduct(W_dy, W_dy, x(k), x(k+1),1)*L"4/EI(k);
nom3 = nom3 + innerproduct(W_dy, gx, x(k), x(k+1),1);
dnom = dnom + innerproduct(W_dy, W_dy, x(k), x(k+1),1)*L"4*m(k)/EI(k);
end
f = noml/dnom;
C = nom2/dnom;
alpha = 1/(8*w_dim)*nom3/dnom;
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sigma(1) = -alpha*a”2 - sqrt( f*2/4/w_dim"2/a"2-C"2*mu_dim”2 ); % curve of the
left

sigma(2) = -alpha*a”2; % curve of the center

sigma(3) = -alpha*a”2 + sqrt( f*2/4/w_dim~2/a"2-C"2*mu_dim”2 ); % curve of the
right

function F = get_Axial_F( resid_stress, thick, Width, EA, Length)
% this function is to get the averaged axial force using a linear method
% without changing the dimensions
residual_F = (resid_stress' * thick * Width)'’;
K1 = EA(1)/Length(1);
K2 = EA(2)/Length(2);
K3 = EA(3)/Length(3);
K=[-1 K1l 0
-1 -K2 K2

-1 0 -K3];
U =-K7-1*residual_F; %U ={P_average, U1, U2} ={[N] [m] [m]}
F=U();

function [ e, K] =get_e K( E, density, thickness, width, D31,appl_V)
% this function is to calculate the {strain, curvature} vector of a composite f-f
BEAM, using Euller-Bernoulli assumption

%E is the Young's Modulus matrix

%density is the density matrix

%thickness is the thickness of different layer

%width is the width of the beam

%D31 is the d31 vector of each layer

%h is the coordinates of different layers in the
composite beam

%appl_V is the voltages applied for each layer

%v=[0.27 0.35 0.3 0.35];
%E=E.*((1-2*V)./((1-v."2).*(1-v)."2))
nlayer = length( density(:,1));
mclm = length( density(1,:));
h = zeros( nlayer+1 , mclm);
lamata = ((D31) .* appl_V) ./ thickness;
for j =1 : nlayer

h(j+1,:) =h(, :) + thickness(j , :);

end
EA = zeros(1 , mclm); ES = zeros(1 , mclm); El = zeros(1 , mclm);
F = zeros(1, mclm); M = zeros(1 , mclm);

for j =1 : nlayer
EA=EA+EQ)*(h(+1,:) -h(,:))™*> width;
ES=ES+E() *(h(+1,:)."2-h(, :)."2)/2 * width;
EI =EI +E@) * (h(j+1,:)."3-h(j, :).*3)/3 * width;
end
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h_NeuturalAxis = ES / EA,;
h = h - h_Neutural Axis;
EA = zeros(1 , mclm); ES = zeros(1 , mclim); El = zeros(1 , mclm);
for j =1 : nlayer
EA=EA+E()*(h(j+1,:) -h(,:))*> width;
ES=ES+E() * (h(+1,:)."2-h(, :)."2)/2 * width;
EI =EI + E@j) * (h(+1, :)."3-h(, :)."3)/3 * width;
F =F +E(j) * lamata(j) * (h(j+1,:) - h(j, :) ) * width;
M =M -E() *lamata(j) * (h(j+1,:).”2 - h(j, :).2)/2 * width;
end
Result=[EA -ES; -ES EI|"1*[F; M],
e = Result( 1);
K =Result(2);

function y=get _EA(E,thick,b)
% To get the aixal stifness information of the beam structure

% E Young's modulus of each layer, a vector

% thick thickness information of each layer

% the structure of E and thick should be 1 to 1
% width width of the beam, a scaleer

for No_of_column =1 : length(thick(1,:));
EA(No_of _column)=E"*thick(:,No_of column)*b;

end

y=EA;

function [y,x]=getEI(E,d,t,width)

%E is the Young's Modulus matrix

%d is the density matrix

%ot is the thickness of different layer

%width is the width of the beam

%h is the coordinates of different layers in the composite beam

v=[0.27 0.35 0.3 0.35];
%E=E.*((1-2*Vv)./((1-v.*2).*(1-v)."2))
nlayer=length(t(:,1));
mclm=length(t(1,:));
h=zeros(nlayer+1,mclm);
for j=1:nlayer
h(j+1,:)=h(j,:) + t(,:);
end
pA=zeros(1,mclm);
All=zeros(1,mclm); B11=zeros(1,mclm);
D11=zeros(1,mclm);
for j=1:nlayer
All= A1l + E(j) * (h(j+1,:)-h(j,:))*width;
B11=B11 + E(j) * (h(j+1,:)."2-h(j,:).*2)/2 * width;
D11= D11 + E(j) * (h(j+1,:)."3-h(j,:).*3)/3 * width;
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pA = pA +d(j) * t(j,:)* width;
end
y=D11-(B11.72)./A11;
Y=y,
X=pA;

function g = gx(Beam, W_st, W_dy, b, Fil, Fi2)
% W_st the static post buckling modeshape, 1 x n vector
% W_dy the dynamic modeshape, 1 x n vector
dFil = dfdx(Fil1,1);
dFi2 = dfdx(Fi2,1);
dW_st = dfdx(W_st, 1);
dwW_dy = dfdx(W_dy,1);
ddFil = dfdx(dFil,1);
ddFi2 = dfdx(dFi2,1);
ddW_st = dfdx(dW_st, 1);
ddw_dy = dfdx(dwW_dy, 1);
n = length(Beam.r); % number of sections in the beam
x = Beam.Node; % coordinate of the ends of each section
r = Beam.r; % slenderness ratio of each section
Aik = Beam.Alk;
cmpntl = innerproduct(dW_st, dW_dy, x(1), x(n+1), 1);
cmpnt2 = innerproduct(dW_st, dFil, x(1), x(n+1), 1);
cmpnt3 = innerproduct(dW_st, dFi2, x(1), x(n+1), 1);
cmpnt4 = innerproduct(dW_dy, dFil, x(1), x(n+1), 1);
cmpnt5 = innerproduct(dW_dy, dFi2, x(1), x(n+1), 1);
cmpnt6 = innerproduct(dW_dy, dW_dy, x(1), x(n+1), 1);
g=0;
N = round((length(W_st)-1)*x +1); % the element# corresponding to x(k)
fork=1:n
gg = zeros(1,N(k+1)-N(k)+1);
gg =gg + ( 2*ddFi1(N(k):N(k+1)) *cmpntl ...
+ ddFi2(N(k):N(k+1)) *cmpntl ...
+2*ddW_dy(N(K):N(k+1))*cmpnt2 ...
+ ddW_dy(N(k):N(k+1))*cmpnt3 ...
+2*ddW_st(N(k):N(k+1))*cmpnt4 ...
+ ddW_st(N(K):N(k+1))*cmpnt5 ...
+1.5/b"2*ddW_dy(N(k):N(k+1))*cmpnt6);
g(N(k):N(k+1)) = gg * 2*b"2*Aik(K)/r(k)"2;
end

function ampl = innerproduct(X1, X2, x1,x2,L)

% This function does innerproduct calculation in the given x span, vector

% X1 and X2 are values of function f1 and f2 in the full span x = [a, b],

% the caluculated span is given as x = [x1, x2], the program identifies the

% coressponding element of X1 and X2 first, then do inner product within
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% this given area;
%X  the vector with full length
%x1,x2 the span of the inner prodcut intergration, dimensional or non-dim form
%L  over all length of the whole span, for non-dim case, L =1
%ampl the amplitude of X
%non-dim span
x1 = x1/L;
X2 = x2/L;
N = length(X1)-1, % N is the number of sections between [x1, x2]
N1=round(N*x1)+1; % N1 is the element# corresponding to x1
N2=round(N*x2)+1; % N2 is the element# corresponding to x2
dx = L/N;
ampl =0;
fori=N1:N2
ampl = ampl + X1(i)*X2(i)*dx; % inner product <X1,X2> @[x1~x2]
end

function [Y, ampl] = normalization (X, L)
%X  the vector to be normalized
%L  the length of the inner prodcut intergration, for nondim case, L =1
%Y  the vector being normalized
%ampl the amplitude of X
N = length(X);
dx = L/N;
ampl =0;
fori=1:N
ampl = ampl + X(i)"2*dx; % inner product <X,X> @[0~L]
end
ampl = sqrt(ampl);
Y = X/ampl;

function [ Beam ]= PZT_beam (wafer_No, appV)

% This function is to give the basic material properties and dimensions of the PZT
E}SE’TC********** Matel’la| PI’OpertIeS *hkhkkkhkhkkkhkhkhkhkhkhhikikkx
E(4,:)=160e9; d(4,:)=18762; %Pt

E(3,:)=25e9; d(3,:)=8800; %PZT

E(2,:)=160e9; d(2,:)=17839; % Pt

E(1,:)=100e9; d(1,:)=2200; % SiO2

d31=[0 0 -50e-12 07; % d31 is the piezoelectric coefficient of PZT, for a thin
film of 0.5um, d31=190~250 pC/N

applied_V =[0 appV 0 0];

v=[0.27 0.35 0.3 0.35];

nu=0.3;

%************* Geometry PrOpertIES *khkhkhkkhkhkhkhkkkhkhikiiiiikx
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% Thickness of each layer [m]

thickness(4,:)=[200e-9, 190e-9, 168e-9, 166e-9, 92e-9, 90e-9, 90e-9, 90e-9];
thickness(3,:)=[0.53e-6, 1.04e-6, 0.55e-6, 1.06e-6, 0.52e-6, 1.09e-6, 0.52e-6, 1.01e-6];
thickness(2,:)=[135e-9, 135e-9, 170e-9, 170e-9, 85e-9, 85e-9, 85e-9, 85e-9];
thickness(1,:)=[1.06e-6, 1.08e-6, 2.13e-6, 2.12e-6, 1.03e-6, 1.03e-6, 1.97e-6,1.99e-6];

%Thickness information of Section I, Il, and Il
thicknessl = thickness;

thicknessll = thickness;
thicknessll(4,:)=thickness(4,:)*0;

thicknesslll = thickness;

%Stress information Pa=[N/m"2]

stress = [55, -13.5, 0.5, 1.1, 31.9, 24.1, -52.9, 21
1677, 1682, 1733, 1803, 2590, 2520, 2572, 3350
184, 153, 139, 158, 318, 260, 325, 224
24, 26, 66, 28, 178, 126, 29, 100]*1e6;

% Dimension information  [m]

width = 20e-6; % the width of the beam, [m]
L = 200e-6; % overall length
Electr_posit = 0.25; % position of the electrode / Length
L1 =L * Electr_posit; % Length of the 1st section
L3 =L * Electr_posit; % Length of the 3rd section
L2=L-L1-L3; % Length of the 2nd section

if wafer_No <= size(thickness,2) % if the wafer we choose is a valid wafer
resid_stress = stress( :,wafer_No ).*(1-v); % Pa
thick = [ thicknessl(:,wafer_No) thicknessll(:,wafer_No)
thicknessllI(:,wafer_No)];
Length = [L1; L2; L3; L];

Width = width;

density = d; % density of each layer
else disp (‘i Wafer Number Exceeds the Number Fabricated, check the
DAtabase in "PZT_beam.m" Iy
end

Beam.ResidualStress = resid_stress;
Beam.d31 =d31;

Beam.E = E;

Beam.Thickness = thick;
Beam.Width = Width;
Beam.LayerRho = density;
Beam.Length = Length;

function S = Sm(W_static, W_dyn, wm, Beam, m);

% this function is to calculate the constant parameter of Sm appears in the
% 3rd order dynamic deflection
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% wm is non-dimensional angular frequency of mode 1 -- m
% W_dyn is the dynamic mode shape from mode 1 -- m
EA = Beam.EA,
rho= Beam.rho;
Aik= Beam.Aik;
EA_avg = Beam.EA _avg;
W_dy =W _dyn(1,:);
W st =W _static;
dW_st = dfdx(W_st, 1);
dW_dy = dfdx(W_dy,1);
ddW_st = dfdx(dW_st, 1);
ddW_dy = dfdx(dW_dy, 1);
x = Beam.Node; % record the position of the end of each section
n = length(rho);
L = Beam.Length(n+1);
S =0;
wm_dim = sqrt(EA(2)/rho(2)/L"4)*wm; % dimensional angular frequency
elementl = innerproduct(dW_st,dW_dy,x(1),x(n+1),1);
element2 = innerproduct(dW_dy,dW_dy,x(1),x(n+1),1);
element3 = innerproduct(W_dyn(m,:), W_dyn(m,:), x(1),x(n+1),1);
S m=0;
fork=1:n
increamentl = innerproduct(ddW_dy, W_dyn(m,:), x(k),x(k+1),1);
increamentl = EA_avg/rho(k)*increamentl;
increament2 = innerproduct(ddwW_st, W_dyn(m,:), x(k),x(k+1),1);
increament2 = EA_avg/(2*rho(k))*increament2;
S m=S_m + elementl*increamentl + element2*increament2;
end
S m=S_m/((wm_dim(m)"2-4*wm_dim(1)"2)*element3*L"2);

function [P, W, C]=Staticbuckleshape(Beam, Mode_No, steps)
El = Beam.El,;
EA = Beam.EA;
pA = Beam.rho;
Length = Beam.NondimSection;
x = Beam.Node;
%EI(2)=EI(1); EA(2)=EA(1); pA(2)= pA(1);
D Estimate Frequency Range  --------------------------
PickupData =[5 10 14 18 23 26 29 32 36]; % Data for PickupPoint
if Mode_No <= length(PickupData)
PickupPoint = PickupData(Mode_No); %for c-c critical buckling uniform beam,
lamata = n*pi
else
PickupPoint = pi * (Mode_No+1);
fprintf(' Please Manually Choose Pickup Range at Staticbucklesahp.m
\n\n’)
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option = optimset;

zeropoint =fzero('detAl’, PickupPoint, option, El, X);

[ determinA, A ] = A_static(zeropoint, El, x);

clmnumberl=length(A);

lamata2=zeropoint;

lamatal=lamata2 * sqrt(EI(2)/EI(1));

lamata3=lamata2 * sqrt(EI1(2)/EI(3));

P=[lamatal”~2 lamata2”2 lamata3”2]’; %Pi is used to calculate the Lamatas in the
dynamic model. It's also the Non_dim critical buckling force

%%%%%%%%% %% %% % %% %%%%%%% %% %% %%
[V1,D1]=eig(A); %V is the eigenvector and D is the eigenvalue
%------ Choose the eigenvector corresponding to the 0 eigenvalue -------
eigenvalue=max(diag(D1)); % reference eigenvalue, the largest one.
clm=0;
for counter = 1 : clmnumberl %Choose the smallest eigenvalue (0 in this case)

if abs(real(eigenvalue)) > abs(real(D1(counter, counter)))

if abs(imag(eigenvalue))>=abs(imag(DZ1(counter,counter)))
eigenvalue=D1(counter, counter);

clm=counter;
end
end
end
C=V1(;,clm); % The eigenvector of 0 eigenvalue
%o--=-=-nmnmmm- Calculate the ModeShape =~ --------------m-m-mmmm
xX = Beam.Node; %[0 .25 .75 1]

mm=0; kk=steps;

for x = xx(1) : 1/kk : xx(2)

mm=mm-+1;

W(mm)=C(1) + C(2)*x + C(3)*cos(lamatal*x) + C(4)*sin(lamatal*x);
end
for x = xx(2)+1/kk : 1/kk : xx(3)

mm=mm-+1;

W(mm)=C(5) + C(6)*x + C(7)*cos(lamata2*x) + C(8)*sin(lamata2*x);
end
for x = xx(3)+1/kk : 1/Kk : xx(4)

mm=mm-+1;

W(mm)=C(9) + C(10)*x + C(11)*cos(lamata3*x) + C(12)*sin(lamata3*x);
end

Yp---mmmmmmmmmmm normalize static bcukling mode shape W = -------=------

[W, ampl] = normalization(W, 1); %normalize the static buckling modeshape

C = Clampl, %maodify the corresponding parameters of the modeshape
Pdms =1;
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function S = Tm(W _static, W_dyn, wm, Beam, m);
EA = Beam.EA,
rho= Beam.rho;
Aik= Beam.Alik;
EA_avg = Beam.EA _avg;
W_dy =W _dyn(1,:);
W st = W._static;
dW_st = dfdx(W_st, 1);
dW_dy = dfdx(W_dy,1);
ddW_st = dfdx(dW_st, 1);
ddW_dy = dfdx(dW_dy, 1);
x = Beam.Node; % record the position of the end of each section
n = length(EA);
L = Beam.Length(n+1);
S =0;
wm_dim = sqrt(EA(2)/rho(2)/L"4)*wm; % dimensional angular frequency
elementl = innerproduct(dW_st,dW_dy,x(1),x(n+1),1);
element2 = innerproduct(dW_dy,dW_dy,x(1),x(n+1),1);
element3 = innerproduct(W_dyn(m,:), W_dyn(m,:), x(1),x(n+1),1);
T m=0;
fork=1:n
increamentl = innerproduct(ddW_dy, W_dyn(m,:), x(k),x(k+1),1);
increamentl = EA_avg/rho(k)*increamentl;
increament2 = innerproduct(ddwW_st, W_dyn(m,:), x(k),x(k+1),1);
increament2 = EA_avg/(2*rho(k))*increament2;
T _m=T_m + elementl*increamentl + element2*increament2;
end
T m=T_m/((wm_dim(m)*2-4*wm_dim(1)"2)*element3*L"2);

function P = V_F( max_strain, EA, Length)
% this function is to get the averaged axial force generated by tha applied voltage
K1 = EA(1)/Length(1);
K2 = EA(2)/Length(2);
K3 = EA(3)/Length(3);
K =[1+K2/K3 K2
1 -K1];
F = [0 EA(1)*max_strain]’;
PP =K"-1*F; P =PP(1);
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