
ABSTRACT

Title of dissertation: EXPRESSIVE SYNDICATION ON
THE WEB USING A DESCRIPTION
LOGIC-BASED APPROACH

Franz Christian Halaschek-Wiener
Doctor of Philosophy, 2007

Dissertation directed by: Professor James Hendler
Department of Computer Science

Syndication on the Web has attracted a great amount of attention in recent years.

However, today’s state-of-the-art syndication approaches still provide relatively weak ex-

pressive power from a modeling perspective and provide very little automated reasoning

support. If a more expressive approach with a formal semantics can be provided, many

benefits can be achieved, including a rich semantics-based mechanism for expressing sub-

scriptions and published content and automated reasoning for discovering subscription

matches not found using traditional syntactic syndication approaches.

In this dissertation, I develop a syndication framework based on the Web Ontology

Language (OWL), which is the standardized language for representing the semantics of

information on the Web. One of the main advantages of the framework is its support for

formal reasoning, as the semantics of subsets of OWL are founded in description logic (a

decidable fragment of first-order logic). Therefore, the previously mentioned benefits can

be achieved using description logic (DL) reasoning.

However, the main limitation in using OWL as the underlying representation model

is related to the overhead of DL reasoning under changing data, which makes the approach

impractical for many real-world domains and publication frequencies. Given this, in this

dissertation, I develop incremental DL reasoning algorithms for the required reasoning

services in the framework. Specifically, I present incremental consistency checking tech-

niques, as well as algorithms to perform more efficient incremental query answering.

Lastly, to demonstrate the practicality of the syndication approach, I have imple-

mented a prototype of the framework and performed extensive empirical evaluations us-

ing synthetic datasets, as well as real world data from the financial domain. These results

show the effectiveness of the incremental reasoning services and the practicality of the

syndication framework in general.

EXPRESSIVE SYNDICATION ON THE WEB USING
A DESCRIPTION LOGIC-BASED APPROACH

by

Franz Christian Halaschek-Wiener

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor James Hendler, Co-Chair
Professor Jennifer Golbeck, Co-Chair
Professor Ashok Agrawala
Professor Dilip Madan
Professor Dana Nau
Professor Adam Porter

c© Copyright by
Franz Christian Halaschek-Wiener

2007

Dedication

To my family, thank you for everything.

ii

ACKNOWLEDGMENTS

I would like to acknowledge the many people that have guided and supported me in

my journey. First, James Hendler, who gave me the freedom to pursue my research and

the wisdom to stay on track. Without his mentorship this would not be possible. I would

also like to thank Jennifer Golbeck, who has gone above and beyond in all cases. Her

dedication has pushed me in my research and helped me to attain my goals. Additionally,

I would like to thank my other committee members Ashok Agrawala, Dilip Madan, Dana

Nau, and Adam Porter. Their insightful comments and feedback have been extremely

helpful.

The current and previous team at MINDSWAP has been invaluable in the growth of

my research. With the endless collaboration of MINDSWAP members my research has

flourished. Thanks to Ron and Amy Alford, Bernardo Cuenca Grau, Mike Grove, Aditya

Kalyanpur, Yarden Katz, Daniel Krech, Evren Sirin, David Taowei Wang, and any others

I may have forgotten. I would like to particularly thank Vladimir Kolovski, who has not

only served as an intellectual peer but as a friend. Through our many long discussions,

I have made it to the end. Thank you Vladimir for your hard work and all of your help.

Additionally, I would like to specially thank Bijan Parsia. It is only through his honest

dissection that my research has come so far. Thank you Bijan for pushing me in the right

direction and always supporting me in my work.

Many thanks to the Dow Jones Newswires for their contribution and collaboration.

iii

In particular, I would like to thank Alan Slomowitz, Jeb Dinsay, and Elizabeth Ciliotta.

To my family, words cannot express how grateful I am. My parents, Franz and

Janie Halaschek-Wiener, have been endless in their love and unwavering in their support

of my education. Thank you to my mother for getting me started and encouraging me

throughout all of my academic endeavors. Thank you to my father for all of his wisdom

and inspiration through the years. Thank you to my sister, Therie Halaschek-Wiener, for

always being there when I have needed support. Without them this would not be possible.

Lastly, I would like to thank my girlfriend, Dacia Ettinger. She has supported me

though the entire process and has always been there when I have needed her. Without

her love, help, and support, this truly would not have been possible and life would not be

complete.

iv

Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Contributions . 8
1.2 Organization . 9

2 Foundations 11
2.1 Syndication Systems . 11
2.2 Semantic Web . 12
2.3 Web Ontology Language . 13
2.4 Description Logics . 15

2.4.1 Syntax and Semantics of SHOIQ(D) 18
2.4.2 Description Logic Reasoning . 22
2.4.3 Tableau Algorithms . 28

2.5 Belief Base Revision . 35

3 Related Work 40
3.1 Syndication Systems . 40

3.1.1 Syntactic Approaches . 40
3.1.2 Semantic Approaches . 41
3.1.3 Discussion . 44

3.2 Stream Processing Engines . 45
3.3 Revising and Updating Logical Knowledge Bases 48

3.3.1 AGM Belief Revision Theory 48
3.3.2 Belief Base Revision . 49
3.3.3 Logical Updates . 50
3.3.4 Repairing Description Logic Knowledge Bases 51

3.4 Truth Maintenance Systems . 53
3.5 Incremental Description Logic Reasoning 54

4 Syndication Framework 56
4.1 Overview . 56
4.2 Framework Formalization . 57

4.2.1 Publishing . 57
4.2.2 Subscribing . 58
4.2.3 Matching . 59
4.2.4 Discussion . 65

4.3 Example . 66
4.4 Summary . 69

v

5 Incremental Consistency Checking 70
5.1 Introduction . 70
5.2 ABox Additions . 73

5.2.1 Approach Details . 76
5.3 ABox Deletions . 77

5.3.1 Approach Details . 79
5.3.2 Discussion . 86

5.4 Incremental Consistency Checking Algorithm 87
5.5 Empirical Results . 89
5.6 Discussion . 96

6 Incremental Query Answering 99
6.1 Main Observation . 100
6.2 Naı̈ve Approach . 102

6.2.1 ABox Additions . 103
6.2.2 ABox Deletions . 105
6.2.3 Example . 105
6.2.4 Discussion . 107

6.3 Assumptions . 108
6.4 Concept Guide . 109

6.4.1 Example . 111
6.4.2 Approach . 112
6.4.3 Discussion . 115

6.5 Summary Completion Graph . 116
6.5.1 Summary Completion Graph Properties 117
6.5.2 Using the Summary Completion Graph 119

6.6 Supporting Complex Query Patterns . 128
6.6.1 Query Impact . 130

6.7 Finding Concept Guide Paths . 134
6.8 Incremental Query Answering Algorithm 135
6.9 Empirical Results . 136
6.10 Discussion . 153

7 Maintaining Consistency at the Syndication Broker 155
7.1 Rejection-Based Approach . 156
7.2 Belief Base Revision in OWL-DL . 156

7.2.1 Overview . 157
7.2.2 Kernel Semi-Revision Operator 158
7.2.3 Semi-Revision Algorithm . 159
7.2.4 Trust-Based Incision Function 159

7.3 Discussion . 164

vi

8 Implementation and Evaluation 166
8.1 System Architecture . 167
8.2 Synthetic Datasets . 168
8.3 Real-World Financial Dataset . 173

8.3.1 News Feed Background and Overview 174
8.3.2 OWL Domain Model . 175
8.3.3 Extended System Architecture 177
8.3.4 Real-World Subscriptions . 177
8.3.5 Empirical Results . 179
8.3.6 Discussion . 184

9 Conclusions and Future Work 185
9.1 Conclusions . 185
9.2 Open Issues and Future Work . 187

9.2.1 Extending the Syndication Framework 188
9.2.2 Enhancing Incremental Reasoning Techniques 190
9.2.3 Evaluating Belief-Base Semi-Revision 192
9.2.4 Information Extraction . 193

9.3 Summary . 193

A Proofs 195
A.1 Proofs for Chapter 5 . 195

A.1.1 Lemma 1: Correctness of Modified Tableau Algorithm 195
A.1.2 Theorem 1: Completeness of SHOIQ Axiom Tracing 195
A.1.3 Theorem 2: Correctness of Algorithm 2 199

A.2 Proofs for Chapter 6 . 203
A.2.1 Theorem 3: Conditions for SHI Concept Instantiation 203
A.2.2 Theorem 4: Concept Guide Label Transfer 204
A.2.3 Theorem 5: SHI Concept Instantiation Overestimate 208
A.2.4 Lemma 2: Tree Containment in Summary Completion Graph . . . 211
A.2.5 Lemma 3: Summary Completion Graph Update 214
A.2.6 Lemma 4: Label Propagation of Summary Completion Graph . . 217
A.2.7 Lemma 5: Concept Guide Paths in Summary Completion Graph . 219
A.2.8 Lemma 6: Dependencies in Summary Completion Graph 222
A.2.9 Lemma 7: Clashes in Summary Completion Graph 224
A.2.10 Theorem 6: Completeness of Summary Completion Graph 228
A.2.11 Theorem 7: SHI Binding Requirement 229
A.2.12 Theorem 8: Completeness of Query Impact 230
A.2.13 Theorem 9: Correctness of Algorithm 4 231

A.3 Proofs for Chapter 7 . 232
A.3.1 Lemma 8: SHOIN Kernel Operator 232

Bibliography 234

vii

List of Tables

1.1 Illustration of Expressivity in OWL-based Syndication. 5

2.1 Mnemonics for Description Logic Expressivity 17

2.2 Correspondence from OWL-DL to Description Logics 18

2.3 SHOIQ Tableau Expansion Rules . 32

4.1 Sample Syndication Broker . 67

5.1 SEMINTEC Ontology Overview . 71

5.2 Consistency Checking Times for SEMINTEC Ontology 71

5.3 Sample Knowledge Base . 74

5.4 Modified SHOIQ Tableau Expansion Rules for Axiom Tracing 82

5.5 Merge Operation for Axiom Tracing . 84

5.6 Prune Operation for Axiom Tracing . 85

5.7 Test-Suite Ontology TBox Overview . 89

5.8 Test-Suite Ontology ABox Overview . 90

5.9 Distribution of Response Times for Updates of Size 50 (time in millisec-
onds) . 96

5.10 Memory Overhead . 97

6.1 Query Answering Times for SEMINTEC Ontology 100

6.2 Sample Knowledge Base . 105

6.3 Modified Tableau Expansion Rules for the Summary Completion Graph. . 121

6.4 Summary Completion Graph Initial Construction Results 139

6.5 VICODI Candidate Sizes for Different Queries and Update Sizes 141

viii

6.6 Distribution of VICODI Response Times for Updates of Size 50 (time in
milliseconds) . 143

6.7 SEMINTEC Candidate Sizes for Different Queries and Update Sizes . . . 145

6.8 Distribution of SEMINTEC Response Times for Updates of Size 50 (time
in milliseconds) . 145

6.9 LUBM Candidate Sizes for Different Queries and Update Sizes 148

6.10 Distribution of LUBM Response Times for Updates of Size 50 (time in
milliseconds) . 148

6.11 UOB Candidate Sizes for Different Queries and Update Sizes 153

6.12 Distribution of UOB Response Times for Updates of Size 50 (time in
milliseconds) . 154

8.1 Financial Ontology Overview . 176

8.2 Publication Frequency Distribution . 180

8.3 Frequency of High Publication Rates in One Second 181

8.4 Average Number of OWL Assertions per Publication 181

ix

List of Figures

1.1 Basic Syndication Architecture . 2

4.1 OWL-Based Syndication Architecture 66

5.1 (a) Initial completion graph corresponding to ABox. (b) Complete clash-
free completion graph for KB. 75

5.2 Complete clash-free completion graph for KB with ABox addition. 76

5.3 Addition Updates of VICODI datasets 91

5.4 Addition Updates of SEMINTEC datasets 92

5.5 Addition Updates of LUBM datasets . 93

5.6 Addition Updates of UOB datasets . 94

5.7 Deletion Updates of VICODI datasets 95

5.8 Deletion Updates of SEMINTEC datasets 96

5.9 Deletion Updates of LUBM datasets . 97

5.10 Deletion Updates of UOB datasets . 98

6.1 (a) Completion Graph 1. (b) Completion Graph 2. 106

6.2 Clash Satisfying Condition 1 . 107

6.3 Clashes Satisfying Condition 2: a) Clash in completion graph 1 due to
negated query concept. b) Clash in completion graph 2 due to ABox
addition. 107

6.4 Example Concept Guide . 112

6.5 Sample Query Graph . 133

6.6 (a) VICODI query 1 - additions (b) VICODI query 1 - deletions 140

6.7 (a) VICODI query 2 - additions (b) VICODI query 2 - deletions (c) VI-
CODI query 3 - additions (d) VICODI query 3 - deletions 142

x

6.8 (a) SEMINTEC query 2 - additions (b) SEMINTEC query 2 - deletions
(c) SEMINTEC query 3 - additions (d) SEMINTEC query 3 - deletions . 144

6.9 (a) LUBM query 1 - additions (b) LUBM query 1 - deletions (c) LUBM
query 2 - additions (d) LUBM query 2 - deletions (e) LUBM query 3 -
additions (f) LUBM query 3 - deletions 147

6.10 (a) LUBM query 4 - additions (b) LUBM query 4 - deletions (c) LUBM
query 5 - additions (d) LUBM query 5 - deletions (e) LUBM query 6 -
additions (f) LUBM query 6 - deletions 149

6.11 (a) UOB query 1 - additions (b) UOB query 1 - deletions (c) UOB query
2 - additions (d) UOB query 2 - deletions (e) UOB query 3 - additions (f)
UOB query 3 - deletions . 151

6.12 (a) UOB query 4 - additions (b) UOB query 4 - deletions (c) UOB query
5 - additions (d) UOB query 5 - deletions (e) LUBM UOB 6 - additions
(f) UOB query 6 - deletions . 152

8.1 Syndication System Architecture . 167

8.2 (a) VICODI subscription 1 - additions (b) VICODI subscription 2 - addi-
tions (c) VICODI subscription 3 - additions (d) VICODI subscription 1 -
deletions (e) VICODI subscription 2 - deletions (f) VICODI subscription
3 - deletions . 169

8.3 (a) SEMINTEC subscription 1 - additions (b) SEMINTEC subscription
2 - additions (c) SEMINTEC subscription 1 - deletions (d) SEMINTEC
subscription 2 - deletions . 170

8.4 (a) LUBM subscription 1 - additions (b) LUBM subscription 2 - additions
(c) LUBM subscription 3 - additions (d) LUBM subscription 1 - deletions
(e) LUBM subscription 2 - deletions (f) LUBM subscription 3 - deletions 171

8.5 (a) LUBM subscription 4 - additions (b) LUBM subscription 5 - additions
(c) LUBM subscription 6 - additions (d) LUBM subscription 4 - deletions
(e) LUBM subscription 5 - deletions (f) LUBM subscription 6 - deletions 171

8.6 (a) UOB subscription 1 - additions (b) UOB subscription 2 - additions
(c) UOB subscription 3 - additions (d) UOB subscription 1 - deletions (e)
UOB subscription 2 - deletions (f) UOB subscription 3 - deletions 172

8.7 (a) UOB subscription 4 - additions (b) UOB subscription 5 - additions
(c) UOB subscription 6 - additions (d) UOB subscription 4 - deletions (e)
LUBM UOB 5 - deletions (f) UOB subscription 6 - deletions 173

xi

8.8 Metadata Converter Architecture . 178

8.9 Finance Subscription 1 Average Matching Time 182

8.10 Finance Subscription 2 Average Matching Time 182

8.11 Finance Subscription 3 Average Matching Time 183

8.12 Finance Subscription 4 Average Matching Time 183

xii

Chapter 1

Introduction

Web-based syndication systems have attracted a great amount of attention in recent

years as the amount of streaming content on the Web has increased at dramatic rates. In

typical syndication frameworks (depicted in Figure 1.1), users register their subscription

requests with syndication brokers; similarly, content publishers register their feeds with

syndication brokers, and it is then the broker’s task to match newly published information

with registered subscriptions. As technologies have emerged, there has been a transi-

tion to more expressive syndication approaches; that is publishers (and subscribers) are

provided with more expressive means for describing their published content (respectively

interests), allowing more accurate dissemination. This has been enabled by the maturation

of technologies for sharing information on the Web and the standardization of representa-

tion languages for Web content. In particular, through the years there has been a transition

from keyword based approaches to attribute-value pairs and more recently to XML. Given

the lack of expressivity of XML (and XML Schema) as a knowledge modeling language,

there has been interest in using the Resource Description Framework (RDF) [100] and its

accompanying schema language, RDF Schema, for syndication purposes. RDF has even

been adopted as the standard representation format of RSS 1.01.

Today’s syndication approaches still provide relatively weak expressive power from

a modeling perspective (i.e., XML and RDF are comparatively inexpressive languages)

1RSS 1.0 Specification: http://web.resource.org/rss/1.0/spec

1

Figure 1.1: Basic Syndication Architecture

and provide very little automated reasoning support. However, if a more expressive syndi-

cation approach with a formal semantics can be provided, many benefits can be achieved;

these include a rich semantics-based mechanism for expressing subscriptions and pub-

lished content allowing increased selectivity and finer control for filtering, and automated

reasoning for discovering subscription matches not found using traditional syntactic syn-

dication approaches [143].

This motivation aligns with efforts over the past decade to standardize languages

for formally representing the semantics of information on the Web; this work has been

driven by both the academic and industrial research communities, as well as through ini-

tiatives within standardization organizations, such as the World Wide Web Consortium’s

(W3C) Semantic Web Activity Initiative [2]. The leading formal representation language

2

that has resulted from this work is the W3C approved Web Ontology Language, (OWL)

[118]. One of the main benefits of OWL is the support for formal reasoning in its sub-

languages OWL Lite and OWL DL, whose semantics are firmly founded in description

logic (a decidable fragment of First Order Logic). Therefore, description logic (DL) rea-

soning services can be utilized to perform various inferences over OWL ontologies which

are expressed in these sub-languages. An additional benefit of OWL is its native Web em-

bedding, in that all objects in OWL ontologies are referenced using Universal Resource

Identifiers (URIs) and that it has an XML encoding (i.e., XML/RDF). Given this, OWL

is a natural fit for the next generation of syndication frameworks, as it can clearly pro-

vide a much more expressive syndication approach that is fitting for the existing Web

architecture.

To demonstrate how an OWL-based syndication framework might work, as well as

the advantages it will provide, consider the following example: suppose we are dissemi-

nating news information in the financial domain. Also suppose that a stock trader is inter-

ested in articles that could discuss companies whose stocks are likely to become volatile;

specifically, let us assume that the trader is interested in any RiskyCompany which the

trader defines to be a company that has a product which causes an infection or allergic

reaction.

Using an XML-based approach syndication brokers can provide an XML schema

that contains an element RiskyCompany and such companies can be declared to be this

type of element. A limitation of such an approach is that companies have to be explic-

itly declared to be a RiskyCompany (i.e., we only obtain explicit, syntactic matches). If

we consider an RDF-based approach, then the syndication broker can model the finan-

3

cial domain using RDF Schema. Therefore, additional matches can be obtained as one

can logically infer that a company is a RiskyCompany. For example, if the domain of a

property hasProductWithAdverseEffect is declared to be of type RiskyCompany and we

are given that BauschAndLomb hasProductWithAdverseEffect Renu, then we would have

a (inferred) match for the subscription; such logical inference (although simplistic) is

not possible with an XML-based approach. However, in an RDF based approach, more

complex logical definitions (and therefore finer-grained control) of RiskyCompany are not

expressible.

If we now consider an OWL-based approach, such functionality is clearly provided.

For example, the knowledge broker can define a RiskyCompany as an OWL class whose

necessary and sufficient conditions for inclusion are that it be a company that has some

product which is an AdverseEffectProduct; similarly, an AdverseEffectProduct can be de-

fined to be any product that causes some infection or allergic reaction. Using an OWL

approach, this can easily be represented by the OWL descriptions in Table 1.12. A equiv-

alent concept can additionally be represented as the following DL concept:

Company u ∃hasProduct.(Product u ∃causes.(In f ection t AllergicReaction))

Given this domain model, if we assume that it is previously known that BauschAndLomb

is a company that has product Renu, which is known to be a Product, and we receive the

publication that Renu causes some infection, then standard DL reasoning services can be

employed to automatically infer that BauschAndLomb is a RiskyCompany and thus there

is a match for the subscription.

2Note that this is expressed using standard turtle syntax (as opposed to RDF/XML) and can be easily
generated in today’s OWL ontology editors

4

:RiskyCompany a owl:Class;
owl:intersectionOf (

[a owl:Restriction; owl:onProperty :hasProduct;
owl:someValuesFrom :AdverseEffectProduct]

:Company
) .

:AdverseEffectProduct a owl:Class;
owl:intersectionOf (

[a owl:Restriction; owl:onProperty :causes;
owl:someValuesFrom [owl:unionOf (:Infection :AllergicReaction)]]

:Product
) .

:causes a owl:ObjectProperty.
:onRecommendation a owl:ObjectProperty.

Table 1.1: Illustration of Expressivity in OWL-based Syndication.

Through this discussion, it is clear that there are advantages in using the expressivity

provided by OWL, and therefore syndication techniques should be extended to use it.

Given this motivation, the main goal of this dissertation is to provide an expressive OWL-

based syndication framework that is practical for real world use. To accomplish this, I

formalize a syndication framework in which DL reasoning is used to match subscriptions

with published contents3.

While the proposed framework provides increased expressivity over an XML or

RDF-based technique, the approach suffers from scalability issues due to the inherent

complexity of description logic reasoning. In many domains (e.g., finance, military, etc.),

response times must be minimal as critical content has to be processed and delivered in

near real time (e.g., for stock trading purposes). The main scalability issue is related to

reasoning in the presence changing data; this is primarily due to the static nature of exist-

ing DL reasoning techniques. In particular, the addition of information from newly pub-

lished documents or data is a change in the underlying knowledge base (KB). In current

DL reasoning algorithms, reasoning is performed from scratch on the updated KB; that is,

3Note that in this dissertation, the content creation problem (i.e., encoding published information in
OWL) is not addressed, as it is out of scope of this work

5

the consistency of the KB must be ensured, queries must be re-evlautated, etc. While em-

pirical results in some DL-based Web service matching [94] and publish/subscribe-like

application scenarios [143] that reduce matching to concept subsumption demonstrate

acceptable performance times (∼20 ms) for matching new subscription requests with a

fixed document base, processing incoming content is still problematic due to reasoning

overhead. This problem is compounded if syndication brokers have domain knowledge

with which newly published data is integrated. While there has also been recent work

on DL-based publish/subscribe applications [61, 62] that adopts an approach similar to

that presented in this dissertation (see Chapter 3.1.2 for a details), such work suffers from

performance issues as well (response time ∼10s of seconds).

In this dissertation, I address the previously mentioned challenges related to the

overhead introduced by DL reasoning that is required for the syndication framework.

Specifically, in order to achieve a practical OWL-based syndication framework, the fol-

lowing reasoning services are addressed:

• consistency checking through updates

• query answering through updates

In order to address the first of these reasoning services, I have developed a set of

incremental consistency checking techniques for addition and deletion updates (specifi-

cally DL ABox changes). The incremental techniques demonstrate orders of magnitude

performance improvements, resulting in real time consistency checking of the syndication

broker’s knowledge base.

Similarly, to address the second reasoning task, I have developed novel techniques

6

for continuous query answering; specifically for reducing the portion of the KB that is

considered after an update. This aligns with related work on view and query maintenance

in the context of relational and deductive databases, however is geared toward a different

formalism (i.e., description logics). In the end, this provides an effective technique for

incrementally maintaining query results as the underlying knowledge base is manipulated,

and therefore, subscriptions registered with the syndication broker can be evaluated in real

time for many expressive OWL ontologies.

As the syndication broker’s knowledge base is updated with new publications, it is

likely that logical contradictions will be encountered (e.g., due to conflicting information

being published from different information sources). If this does occur, then a method for

resolving these inconsistencies is necessary. Given this, I have developed a technique to

regain consistency of the broker’s KB. Specifically, I have developed a belief base revision

algorithm for OWL DL knowledge bases, which uses the notion of trust to determine

which assertions should be retracted to regain consistency.

In order to validate the practicality of the OWL-based syndication framework, I

have implemented the incremental reasoning services and a prototype of the framework.

Further, I have performed empirical evaluations using synthetic benchmark ontologies,

simulating publications to assess the response times of the matching process; these evalua-

tions demonstrate the practicality of the proposed syndication approach over ontologies of

varying expressivity. Additionally, I have performed real-world simulations using histor-

ical news publications obtained through a collaboration with the Dow Jones Newswires4.

Given this historical data archive, the practicality of the framework is empirically demon-

4Dow Jones Newswires: http://www.djnewswires.com/

7

strated over a high frequency publication use-case using real-world subscriptions.

1.1 Contributions

This dissertation presents a more expressive syndication framework for dissemi-

nating content over the Web; my thesis is that by using an OWL-based syndication ap-

proach, a framework can be provided that is practical in a real world setting. In order to

achieve this goal, I have therefore focussed on the main performance bottlenecks of such

a framework, namely incremental DL reasoning services. The specific contributions of

this dissertation are as follows:

• Formalized an expressive syndication framework for the Web, which is based upon

the Web Ontology Language and description logic reasoning. The framework pro-

vides a syndication approach with a rich semantics-based mechanism for expressing

subscriptions and published content, allowing increased selectivity and finer control

for filtering; this also provides automated reasoning for discovering subscription

matches not found using traditional syntactic syndication approaches.

• Developed a set of incremental consistency checking techniques for expressive de-

scription logics. As new publications are integrated into the syndication broker’s

knowledge base, consistency must be guaranteed. The incremental techniques re-

duce the overhead introduced by performing this consistency check.

• Developed a set of incremental conjunctive (ABox) query answering techniques.

After each publication, all subscriptions are evaluated to determine new matches

8

given the new publications. In the framework, this reduces to DL conjunctive ABox

query answering. Given the computational complexity of DL reasoning, this task

introduces substantial overhead. The introduced techniques reduce the overhead

introduced by query answering, making such a syndication framework practical.

• Developed a technique for recovering from logical inconsistencies in DL knowl-

edge bases. Such a service is required as published information can be contradic-

tory, leading to logical inconsistencies in the broker’s knowledge base. The tech-

nique developed is a belief base semi-revision algorithm that provides a flexible

mechanism to regain consistency.

• Demonstrated the practicality of the OWL-based syndication framework. This is

achieved by performing a comprehensive evaluation of the OWL-based syndica-

tion framework using synthetic data, as well as real world data from the financial

domain. This evaluation has investigated the utility of the incremental reasoning

services for the purpose of the syndication framework and demonstrates its practi-

cality.

1.2 Organization

This dissertation is organized as follows; Chapter 2 introduces background informa-

tion related to this work. First, an overview of the Semantic Web and OWL is presented.

Following this, an overview of the field of description logics is introduced, with a focus on

the syntax and semantics of the description logic SHOIQ (which corresponds to a super-

set of OWL DL). Additionally, an overview of the field of belief revision is introduced.

9

In Chapter 3, I discuss related work. After this, I present the OWL-based syndication

framework in Chapter 4. This includes a formalization of the framework, in addition to

examples demonstrating its use. Chapter 5 introduces a set of incremental consistency

checking techniques for the descriptions logics SHIQ and SHOQ. The techniques pre-

sented support arbitrary ABox additions and deletions. Chapter 6 presents a technique

for optimizing conjunctive ABox query answering in the presence of incremental ABox

additions and deletions. The specific technique reduces the portion of the knowledge base

that is considered as potentially new (invalidated) answers after an addition (respectively

deletion). Following this, I present techniques for recovering from inconsistencies after

publications in Chapter 7. This includes a belief base revision technique for the descrip-

tion logic SHOIQ (i.e., a superset of OWL DL). In Chapter 8, I present the implementa-

tion of my proposed syndication framework. This includes various details regarding the

system architecture and specific implementation. Additionally, the results from empirical

evaluations using synthetic data, as well as real world data from the financial domain are

presented. Lastly, I conclude in Chapter 9, where a summary, general impact of the work,

and outline for future work are provided.

10

Chapter 2

Foundations

In this chapter, I present some background information; the purpose is to familiarize

the reader with the necessary concepts, terminology and definitions used throughout this

dissertation.

2.1 Syndication Systems

In the context of this dissertation, a syndication architecture refers to an architec-

tural paradigm comprised of three main components; publishers, subscribers, and syndi-

cation brokers, each of which are described below:

• Publisher: A data producer which publishes information (i.e., publications) to a

syndication broker.

• Subscriber: An entity that is interested in subsets of the publications. A subscriber’s

interest is represented as a subscription.

• Syndication Broker: An intermediary whose primary task is to match newly pub-

lished information (publications) with subscribers’ interests (subscriptions).

In literature, such architectural paradigms are additionally referred to as publish-

subscribe applications (e.g., [43]) and content/information dissemination systems (e.g.,

[150, 121]). Throughout this dissertation these terms will be used interchangeably. Note

11

that the discussion presented above is very abstract and informal; a more precise overview

of syndication frameworks investigated in literature is provided in Chapter 3.1. Addition-

ally, a formalization of the framework developed in this dissertation is presented in detail

in Chapter 4.2.

2.2 Semantic Web

The Semantic Web is an extension of the current World Wide Web, in which infor-

mation on the Web is represented in a machine processable format with a well defined

meaning (semantics) [22]. Representing the knowledge on the Web in such a manner

provides a variety of benefits, including ease of knowledge exchange and integration and

machine-automated reasoning. The standardized Semantic Web representation languages

(published as W3C recommendations) form the foundation of the Semantic Web and are

structured as a layered stack. At the bottom of this stack is the Resource Description

Framework (RDF) [100], which is a fairly simple assertional language that represents in-

formation in the form of triples: subject–predicate–object. Subjects in triples are required

to be resources, while predicates (or properties) are attributes of resources and correspond

to traditional attribute-value pairs; lastly, objects can take the form of resources or literal

values. RDF is based on the successful architecture of the Web, therefore making it de-

signed to be open, scalable and distributed. Two of its key properties are the use of the

Universal Resource Identifier (URI) as the unique identifier for classes, resources, prop-

erties and that it can be serialized in an XML format. It is important to note that RDF

is a simple modeling language, as it does not provide mechanisms for describing proper-

12

ties, support the description of relationships between properties and other resources, etc.

This is, however, provided by the next level of the layered stack by the RDF vocabulary

description language, RDF Schema (RDFS) [35].

RDFS provides mechanisms for defining classes and properties, in addition to declar-

ing subclasses (classes which subsume other classes), subproperties (properties which

subsume other properties), and domains and ranges (taking the form of classes and/or

complex datatypes) of properties. Using these RDFS constructs, simple taxonomies can

be created. Similar to RDF, all RDFS classes and properties are referenced by URIs.

2.3 Web Ontology Language

Given the relatively weak expressivety of RDFS as a knowledge modeling language,

the W3C has standardized the Web Ontology Language (OWL) [37]. OWL is a far more

expressive knowledge representation language than RDFS and is positioned on top of

both RDF and RDFS in the layered stack. Similar to RDFS, OWL provides mechanisms

to define classes and properties; however, OWL also provides constructs to define class

descriptions in terms of logical combinations of other classes, cardinality restrictions on

properties, transitive and inverse properties, etc. (see section 2.4 for additional details).

As in RDF and RDFS, OWL is based on the architecture of the Web; therefore, all named

OWL classes, properties and individuals are referenced by URIs. Additionally, OWL

provides the ability to link and import other ontologies using URIs.

The OWL language comes in three different species, each of which provide in-

creased expressivity: OWL Lite, OWL DL and OWL Full. The semantics of OWL Lite

13

and OWL DL are aligned with a family of knowledge representation languages, namely

descriptions logics, and are essentially syntactic variants of these logics (see section 2.4

for details). This implies that an OWL Lite/DL ontology is equivalent to a DL knowledge

base, and therefore traditional DL reasoning techniques can be used for processing these

OWL ontologies (see Table 2.2 for an overview of this translation). It is important to note

that OWL Lite and DL differ from OWL Full in that they define certain constraints on the

way the language constructs can be used so that this alignment exists. For example, in

OWL DL a class cannot be treated as an individual or a property, and transitive properties

cannot be used in cardinality restrictions (this additionally ensures decidability of these

languages) [37]. In contrast, OWL Full does not impose these restrictions and therefore

does not correspond to a description logic and is known to be undecidable.

It is important to note that OWL assumes an open-world semantics, making it dif-

ferent from traditional database schema languages which adopt a closed-world semantics.

More specifically, information which is not explicitly asserted in an OWL knowledge base

is assumed to be unknown instead of false (as is done under closed-world semantics). Ad-

ditionally, OWL does not make the Unique Name Assumption (UNA); that is, given two

individuals (i.e., instances) with different names, it is not assumed that they are distinct

(i.e., different names can refer to the same individual).

Lastly, it is pointed out that there has been recent interest in developing query lan-

guages for both RDF and OWL; this includes recent work on the SPARQL [122] and

RDQL [133] query languages. Details of the languages are omitted here, as in this dis-

sertation it is assumed that queries of a specific form for description logics are used (for-

mally discussed below); further, today’s DL reasoners provide translations of (subsets)

14

of standard RDF and OWL query languages (typically including SPARQL or RDQL) to

conjunctive queries for DL KBs.

2.4 Description Logics

Description logics (DLs) [16] are a family of knowledge representation formalisms

tailored for expressing knowledge about concepts and concept heirarchies. DLs are a

decidable subset of First Order Logic (FOL) and are given a well-defined, model theoretic

semantics [18]. At the most basic level, DLs can be used to describe the following objects

[16]:

• Classes of objects – correspond to 1-place predicates in FOL. An example is the set

of objects that are Companies(x)

• Roles between classes – correspond to 2-place predicates in FOL. An example is

the set of objects have a hasProduct(x,y) role

• Individuals – correspond to constants in FOL. An example is BauschAndLomb

Using these basic building blocks, DLs provide a set of constructors for building

more complex classes. Typically, the languages provide at least the standard boolean

concept constructors, namely conjunction (u), disjunction (t), and negation (¬); note

that the intersection and disjunction notation will be further described below. DLs usually

support constructors to restrict the quantification of roles, specifically universal (∀) and

existential (∃) restrictions. Additional constructors including cardinality restrictions on

15

roles and more expressive roles (e.g., inverse and transitive roles) are provided in some

DLs and will be discussed below.

DL knowledge bases (KBs) are comprised of three main components, namely a

TBox, RBox, and ABox. The TBox contains intensional knowledge (axioms about con-

cepts) in the form of a terminology. The axioms in the TBox can be built using the pre-

viously mentioned concept constructors, as well as concept inclusion axioms (v), which

state inclusion relations between DL concepts. For example, one can state that any tech-

nology company is a company via the following axiom: TechnologyCompany v Com-

pany. The RBox contains intentional knowledge about the roles in the knowledge base.

For example, one can state that any two individuals that satisfy the hasCEO role, also

satisfy the hasEmployee role by the following axiom: hasCEO v hasEmployee, where

hasCEO and hasEmployee are roles. Typically the role constructors provided in DLs are

far less expressive than the constructor for concepts. In a similar manner to the TBox, the

axioms in the RBox take the form of inclusion axioms between roles.

In contrast, the ABox contains extensional knowledge that is specific to the indi-

viduals in the domain of discourse. Assertions in the ABox take the form of concept asser-

tions (e.g., Company(BauschAndLomb)), role assertions (e.g., hasProduct(BauschAndLomb,

Renu)), and equality (Ford = FordMotorCompnay) and inequality (e.g., CitiGroup , Cap-

italCityBankGroup) assertions. Therefore, an ABox is a set of assertions of these forms.

The DL community uses a variety of mnemonics for representing the expressivity

(i.e., the supported constructs) of a given DL language [16]. This is characterized in

Table 2.11. These mnemonics will be used throughout this dissertation when referencing

1Note that A is assumed to be an atomic concept, while C,D are arbitrary concepts

16

Mnemonic Expressivity
AL Attribute Logic (A, ¬A, C u D, ∃R.>, ∀R.C)
ALC Attribute Logic with Full Complement (¬C which allows C t D and ∃R.C)
R+ Transitive Roles
S ALCR+

H Role Hierarchies
O Nominals (individuals in class expressions e.g., {BaushAndLomb})
I Inverse Roles
F Functional Roles
N Unqualified Cardinality Restrictions (> nR, 6 nR, = nR)
Q Qualified Cardinality Restrictions (> nR.C, 6 nR.C, = nR.C)
D Concrete Domains

Table 2.1: Mnemonics for Description Logic Expressivity

a particular DL.

In literature, there has been substantial work on determining the computational im-

pact of allowing various constructs in the logic (see [16, 26] for an overview). Much of

this work has focussed on determining decidability and complexity results when different

constructors and restrictions are supported or imposed on the particular DL. For example,

one such restriction is to only allow definitorial TBoxes; more specifically, only inclusion

axioms of the form A v C and A ≡ C (note that A ≡ C is an abbreviation for A v C

and C v A) are allowed, such that A is an atomic concept and the definitions are unique

and acyclic (i.e., the right hand side of an axiom cannot directly or indirectly refer to the

concept on its left hand side). It has been shown that this greatly simplifies reasoning

complexity [16, 73]. If the TBox contains an axiom of the form C v D where C is a com-

plex concept, then this axiom is referred to as a general concept inclusion axiom (GCI)

and the TBox is referred to as a general TBox.

There has additionally been extensive work on developing practical reasoning pro-

cedures for DLs [73]. Further discussion regarding this topic is presented later in sections

17

2.4.2 & 2.4.3.

As mentioned earlier, OWL Lite and OWL DL are aligned with descriptions logics.

In particular OWL Lite is a syntactic variant of SHIF , while OWL DL is a variant of

SHOIN . An overview of a subset of this correspondence is shown below in Table 2.2. In

this dissertation, incremental reasoning services are developed for large subsets of the DL

SHOIQ(D) , which in turn subsumes OWL Lite and OWL DL. Given this, an overview

of the syntax and semantics of SHOIQ(D) is presented.

Construct OWL DL
Concept Subsumption rdfs:subClassOf (C,D) C v D
Concept Equivalence owl:equivalentTo (C,D) C ≡ D

Negation owl:complementOf (C,D) C ≡ ¬D
Dijoint Concepts owl:disjointWith (C,D) C v ¬D

Conjunction owl:intersectionOf (C,D) C u D
Disjunction owl:unionOf (C,D) C t D

Nominal Disjunction owl:oneOf (a, b) {a} t {b}
Existential Restriction owl:someValuesFrom(R,C) ∃R.C
Universal Restriction owl:allValuesFrom(R,C) ∀R.C

Existential Restriction (with nominals) owl:hasValue (R,a) ∃R.{a}
Number Restriction owl:cardinality(S,n) = nS .>

At-most Number Restriction owl:minCardinality(S,n) > nS .>
At-least Number Restriction owl:maxCardinality(S,n) 6 nS .>

Table 2.2: Correspondence from OWL-DL to Description Logics

2.4.1 Syntax and Semantics of SHOIQ(D)

Let C,R,RD, I,D be non-empty and pair-wise disjoint sets of atomic concepts, ab-

stract and concrete atomic roles, individuals, and concrete datatypes respectively. The

set of SHOIQ(D) abstract roles is the set R∪{R− | R ∈ R}, where R− denotes the inverse

of the abstract atomic role R. In contrast, the set of SHOIQ(D) concrete roles is simply

RD. To avoid considering the abstract role R−−, the function Inv(R) is defined such that

18

Inv(R) = R− and Inv(R−) = R for R ∈ R. Inverses cannot be defined on concrete roles.

A role inclusion axiom is an expression of the form R1 v R2 or u1 v u2, where

R1,R2 ∈ R and u1, u2 ∈ RD. A transitivity axiom is an expression of the form Trans(R),

where R ∈ R. Given this, a RBox R is a finite set of role inclusion axioms and transitivity

axioms.

For ease of exposition, given an RBox R let the symbol v∗R denote the transitive

reflexive closure of v on R ∪ {Inv(R1) v Inv(R2) | R1 v R2 ∈ R and R1,R2 ∈ R}.

Additionally, R1 ≡R R2 is used as an abbreviation for R1 v∗R R2 and R2 v∗R R1. Lastly, the

function Tr(R1,R) is defined to return true if for some R2 with R1 ≡R R2, Trans(R2) ∈ R

or Trans(Inv(R2)) ∈ R; otherwise the function returns false. A role R1 is considered simple

with respect to R if Tr(R2,R) = false for all R2 v∗R R1. Note that u ∈ RD is trivially simple

roles as it cannot be transitive.

Before introducing the set of SHOIQ(D)-concepts, the notion of a concrete do-

main is briefly presented; specifically, a concrete domainD is defined to be a pair (∆D,ΦD),

where ∆D is called the domain and ΦD are the set of predicate names. Further details re-

garding the concrete domains can be found in [19, 77]. Given this, the set ofSHOIQ(D)-

concepts (concepts for short) is inductively defined to be the smallest set such that the

following holds:

• every concept A ∈ C is a concept.

• if C and D are concepts and R is an abstract role, then (C u D), (C t D), (¬C),

(∃R.C), and (∀R.C) are concepts. These constructors are referred to as conjunction,

disjunction, negation, existential restriction, and universal restriction respectively.

19

• if C is a concept, S is a simple abstract role, and n is a natural number, then (6 nS .C)

and (> nS .C) are concepts. These constructors are referred to as at-most and at-least

number restrictions.

• if a ∈ I, then the nominal {a} is a concept.

• if u is a concrete role, P ∈ ΦD is a predicate of the concrete domain, and n is a

natural number, then (∃u.P), (∀u.P), (6 nu.P) and (> nu.P) are concepts.

For concepts C,D, a concept inclusion axiom is an expression of the form C v D. A

concept equivalence axiom, denoted by C ≡ D, is an abbreviation for C v D and D v C.

Given this, a TBox T is defined to be a finite set of concept inclusion axioms.

An ABox A is a finite set of concept assertions of the form C(a) (where C can be an

arbitrary SHOIQ(D)-concept), abstract role assertions of the form R(a, b) and inequality

(equality) assertions of the form a , b (respectively a = b) for a, b ∈ I. Additionally, the

ABox can contain concrete domain predicate assertions P(x) and concrete role assertions

u(a, x), where P ∈ ΦD, a ∈ I, x ∈ D and u ∈ RD.

A KB K = (T,R,A) is triple composed of TBox T, RBox R and ABox A. When

dealing with multiple KBs or ABoxes, the set of named individuals in KB K (ABox

assertion α) are denoted as IK (respectively Iα).

Throughout this dissertation, incremental changes to a KB are performed. For ease

of exposition, given some axiom (TBox, RBox, or ABox) α, the addition (resp. deletion)

of α to its corresponding component is denoted by K + α (resp. K − α); for example, if α

is an added ABox assertion, then it is assumed to be added to the ABox by extending the

original ABox, A, such that A′ = A ∪ {α}.

20

The semantics of SHOIQ(D) is defined using interpretations I, which are com-

prised of a non-empty set ∆I (i.e., the domain of the interpretation), which is assumed

to be disjoint from the concrete domain ∆D, and an interpretation function .I. More for-

mally, an interpretation I is a pair I = (∆I, .I). The interpretation function assigns to

each atomic concept A ∈ C a subset of ∆I, to each abstract atomic R ∈ R a subset of

∆I × ∆I, and to each a ∈ I an element of ∆I. Additionally, the interpretation function

assigns to each concrete atomic role u ∈ RD a subset of ∆I×∆D, to each predicate P ∈ ΦD

a subset of ∆D, and to each x ∈ D an element of ∆D. The interpretation function is ex-

tended to complex concept descriptions as follows, where R is an abstract role, S is a

simple abstract role, u is a concrete role, and] denotes cardinality:

• (C u D)I = CI ∩ DI

• (C t D)I = CI ∪ DI

• (¬C)I = ∆I \CI

• (∃R.C)I = {a ∈ ∆I | ∃b ∈ ∆I such that (x, y) ∈ RI and y ∈ CI}

• (∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I, if (a, b) ∈ RI then b ∈ CI}

• (6 nS .C)I = {a ∈ ∆I |]{b ∈ ∆I | (a, b) ∈ S I and b ∈ CI} ≤ n}

• (> nS .C)I = {a ∈ ∆I |]{b ∈ ∆I | (a, b) ∈ S I and b ∈ CI} ≥ n}

• {a}I = {aI}

• (∃u.P)I = {a ∈ ∆I | ∃x ∈ ∆D such that (a, x) ∈ uI and x ∈ PI}

• (∀u.P)I = {a ∈ ∆I | ∀x ∈ ∆D, if (a, x) ∈ uI then x ∈ PI}

• (6 nu.P)I = {a ∈ ∆I |]{x ∈ ∆D | (a, x) ∈ uI and x ∈ PI} ≤ n}

• (> nu.P)I = {a ∈ ∆I |]{x ∈ ∆D | (a, x) ∈ uI and x ∈ PI} ≥ n}

Additionally, the interpretation function is extended to complex abstract roles as

follows, where R is an atomic abstract role:

21

(Inv(R))I = {(a, b) ∈ ∆I × ∆I | (b, a) ∈ RI}

The satisfaction of a SHOIQ(D) axiom/assertion α in an interpretation I, denoted
I |= α is defined by the following, where R denotes an abstract role, u a concrete role,
a, b ∈ I and x ∈ D:

• I satisfies R1 v R2 iff RI1 ⊆ RI2

• I satisfies u1 v u2 iff uI1 ⊆ uI2

• I satisfies Trans(R) iff for every a, b, c ∈ ∆I, if (aI, bI) ∈ RI and (bI, cI) ∈ RI,
then (aI, cI) ∈ RI

• I satisfies C v D iff CI ⊆ DI

• I satisfies C(a) iff aI ∈ CI

• I satisfies R(a, b) iff (aI, bI) ∈ RI

• I satisfies u(a, x) iff (aI, xI) ∈ uI

• I satisfies P(x) iff xI ∈ PI

• I satisfies a , b iff aI , bI

• I satisfies a = b iff aI = bI

The interpretation I is a model of a TBox T (resp. RBox R, ABox A) if it satisfies

all the axioms in T (resp. R, A). Additionally, I is a model of K, denoted by I |= K, iff I

is a model of T, R, and A.

Lastly, the following notation is additionally introduced; namely, > and ⊥ are used

to abbreviate C t ¬C and C u ¬C respectively.

2.4.2 Description Logic Reasoning

In description logics, there are a variety of basic reasoning tasks which are briefly

outlined below.

• Consistency Checking: The process of ensuring that the knowledge base does not

contain any contradictory facts.

22

• Concept Satisfiability: Given a concept C, checking if C is satisfiable with respect

to KB K is the task of determining if there exists an interpretation I of K such that

the interpretation of C is not equal to the empty set (i.e., CI , ∅).

• Concept Subsumption: Given concepts C,D, checking if C is subsumed by D rela-

tive to K, denoted K |= C v D, is the process of determining if for all interpretations

I of K, CI ⊆ DI.

• Concept Instantiation: Given concept C and indivdiual a, checking if a instanti-

ates C relative to K, denoted K |= C(a), is the process of determining if for all

interpretations I of K, aI ∈ CI.

Given these basic reasoning tasks, the following more general standard reasoning

services are typically provided in today’s state of the are DL reasoners:

• Realization: Determining the most specific concepts that each individual instanti-

ates in the KB.

• Classification: For all named concepts (A and B) in a KB, determine whether a

subsumption relation holds between the concepts in either direction; that is, whether

A v B or B v A or both.

• Retrieval: Given a concept C, retrieve all individuals which instantiate C.

It is important to note that all reasoning tasks can be reduced to ABox consistency

checking [16]. This is exemplified by the following example: suppose that we want to

check if an individual a instantiates a concept C with respect to a KB K; this is accom-

plished by checking the consistency of K ∪ {¬C(a)}. If this is not consistent, then it must

be the case that there does not exist an interpretation which satisfies ¬C(a), therefore all

interpretations must satisfy C(a).

I now provide additional details regarding conjunctive ABox queries for DLs. A

conjunctive query Q contains a non-empty set of concept and role atoms, C(x) and R(x, y)

23

respectively, where x can be a named individual (i.e., taken from I) or variable name and

y can be a named individual, concrete datatype (i.e., taken from D), or variable name.

Further, the variable names are assumed to be typed such that each variable is either

distinguished or non-distinguished; the specific difference being that the distinguished

variables must be mapped to named individuals, where as the non-distinguished vari-

ables are existentially quantified. A simple example query is (x, y) ← Company(x) ∧

hasProduct(x, y) ∧ hasComponent(y, z). In this example, x, y are the distinguished vari-

ables and are the answer variables; in general, the distinguished variables will be denoted

as the query answer variables.

Given this brief introduction, a more formal presentation is now provided. For ease

of exposition, concrete roles are disallowed as query atoms in the following discussion,

however, they can easily be supported2. Let V be a countably infinite set of query vari-

ables that is disjoint from C, R, RD, I, and D. A query atom is defined to be an expression

C(x), R(x, y) where C is a SHOIQ(D) concept, R an abstract role, x, y ∈ V ∪ I. Given

this, a conjunctive query is defined to be a triple Q = (A, X,Y) where A is a non-empty set

of query atoms, X is the set of distinguished variables and Y is the set of non-distinguished

variables. The notation Var(Q) will be used to denote the set of variables and individu-

als occurring in the query, and DVar(Q) will be used to denote the set of distinguished

variables. Additionally, when referring to an atom, at, of a given query Q, the notation

at ∈ Q will simply be used. Next we draw a simple, but important distinction between

different types of queries; specifically, a boolean conjunctive query is a query that has no

distinguished variables (i.e., X = ∅), where a retrieval query has at least one distinguished

variable (i.e., X , ∅).

Next, the semantics for conjunctive queries is introduced. First, a variable substi-

tution function π : Var(Q) → ∆I is defined, which maps query variables and individuals

to elements of the domain. Given π and an interpretation I, the following notation is

2This can be accomplished by introducing concrete role query atoms, which are interpreted over the
concrete domain.

24

introduced:

• I |=π C(x) if (π(x)) ∈ CI

• I |=π R(x, y) if (π(x), π(y)) ∈ RI

Given this, the semantics of a boolean query, Q, is presented. Specifically, an inter-

pretation I satisfies Q, denoted I |= Q, if there exists some π such that for each individual

a ∈ Var(Q), π(a) = aI and for all at ∈ Q, I |=π at. Finally, a knowledge base K entails Q,

denoted K |= Q, if for every interpretation I of K, I |= Q.

The semantics of retrieval queries (i.e., those with at least one distinguished vari-

ables) is defined in a slightly extended manner. In particular, given a retrieval query, Q,

with n distinguished variables (i.e., DVar(Q) = {d1, ..., dn}), define the answers of KB K

to Q to be those n-tuples (a1, ..., an) ∈ In such that for all interpretations I of K, I |=π K

for some π such that for all ai, π(di) = ai where 1 ≤ i ≤ n. In the remainder of this disser-

tation, when referring to the entailment of a particular substitution of named individuals

(a1, ..., an) ∈ In for a retrieval query (x1, ..., xn)← Q, the following notation will be used:

K |= Q[x1/a1, ..., xn/an]

Lastly, a special case of these two queries is introduced which is referred to as a

ground query. In this case, the query does not contains any variables (i.e., X ∪ Y = ∅).

Note however, that this does not affect the formalization previously presented.

Similar to the previously mentioned reasoning services, query answering is typi-

cally reduced to ABox consistency checking and is accomplished via a proof by refuta-

tion techniques. First, consider queries with only a single ground concept atom. As an

example, consider ()← Company(Ford); in order to check if K |= Company(Ford), K is

extended with the negation of the atom (i.e., K
′

= K∪{¬Company(Ford)}) and the consis-

tency of the extended KB is checked. If the KB is inconsistent then the entailment holds,

as there does not exists a model in which aI ∈ (¬Company)I [81, 140]. Such a technique

25

can additionally be easily extended to handle conjunctions of ground concept terms, as a

conjunction is only a logical consequence if all conjuncts are logical consequences [81].

In order to extend the previous approach to role atoms, a more complicated tech-

nique is required. The general idea is to transform each role atom in the query into

a concept atom, which is referred to as rolling-up the query [81, 140]; this rolling-up

process if often enabled via the use of nominals. For example, consider the following

query: () ← hasProduct(BauchAndLomb,Renu). It can be shown that this role term can

be transformed into the equivalent concept term ∃hasProduct.{Renu}(BauchAndLomb)

[81, 140]; this is quite intuitive because if BauchAndLomb instantiates this concept, it

must have some hasProduct role to the individual Renu, which is semantically the same as

the original query. If instead the query were () ← hasProduct(BauchAndLomb,Renu) ∧

Product(Renu), the query would be further absorbed into the rolled-up concept term, re-

sulting in ∃hasProduct.({Renu} u Product)(BauchAndLomb).

Unfortunately, many DLs do not support the use of nominals; for example the DL

SHIF (i.e., OWL Lite) does not include such expressivity. However there is a well

known workaround, in which the use of nominal can be simulated. The approach is to

substitute each nominal in the rolled-up query concept with a new concept name that does

not occur in the knowledge base [81, 140]. Additionally, an assertion is added to ensure

that each individual instantiates its representative concept. For example, the previously

rolled-up query concept ∃hasProduct.{Renu}(BauchAndLomb) would be transformed to

∃hasProduct.CRenu(BauchAndLomb) and the assertion CRenu(Renu) would be added to the

KB.

The previous technique can be extend to queries with variables as well. The case

of boolean queries (i.e., all non-distinguished variables) can be handled in a very similar

manner; however, because variables in the query can be interpreted as any element of the

domain, we cannot roll-up the query as before with the use of nominals or representative

concepts. In contrast, the concept > is used, as it is interpreted as any element of the

26

domain [81]. For example, consider the query () ← hasProduct(x, y); in this case, the

rolling up procedure would result in ∃hasProduct.>, which intuitively represents the

individuals in the domain that have a hasProduct role to some individual in the domain.

We can guarantee that the interpretation of this concept is non-empty in every model of a

KB K by extending K such that K
′

= K ∪ {> v ¬∃hasProduct.>} and then checking for

consistency [81, 140].

If the query is a retrieval query, (e.g., (x) ← hasProduct(x, y)), then the naı̈ve ap-

proach is to roll up the query and then to iterate over possible substitutions of named

individuals for distinguished variables; then for each of these substitutions, a consis-

tency check is performed [81, 140]. For example, assume that I = {Ford}; in this

case the rolled-up query would again be ∃hasProduct.>, and the consistency of K
′

=

K ∪ {¬(∃hasProduct.>(Ford))} would be checked.

Some comments are in order regarding the known limitations of the rolling-up tech-

nique. First, if the KB is expressed using the DL SHOIQ (a superset of OWL DL), then

arbitrary queries cannot be supported, due to various issues (e.g., handling cycles in the

query [51]); if however, there does not exist a cycle in the query involving only variables

or only distinguished variables are permitted, then this issue is overcome [136]. The

rolling-up techniques is also problematic for arbitrary queries for the DL SHIQ (a su-

perset of OWL Lite). However, once again if the query is restricted such that there does

not exist a cycle in the query involving only variables or only distinguished variables are

allowed, then this is not an issue [82]. Additionally, if only simple roles are allowed as

role atoms in the query, then this problem is overcome [81]; the main insight with this

restriction is that due to the tree-like model property of SHIQ, all variables in cycles

in the query must be bound to named individuals (in effect they can be considered as

distinguished variables).

There exists alternative query answering techniques when dealing with different

query types and certain DLs [52, 53, 50, 51, 105, 136]. Details are omitted here, as the

27

techniques presented in this dissertation are dependent on the ability to roll-up the query;

it is important to note however, that after the proposed technique has been used to prune

the candidate bindings (discussed in Chapter 6), any querying answering technique can

be used.

It is lastly noted that many of today’s DL reasoners provide translations of common

OWL or RDF query languages (e.g. SPARQL [122] or RDQL [133]) to conjunctive

ABox queries for DL KBs. In the remainder of this dissertation, when discussing OWL

query languages we simply refer to the subsets of the languages which can be translated

to conjunctive ABox queries.

2.4.3 Tableau Algorithms

There exists sound and complete decision procedures for various DLs, including

SHOIQ (and therefore OWL DL). Current state of the art reasoning algorithms are based

on the tableau calculus [17] and therefore the SHOIQ tableau algorithm is presented. A

more comprehensive discussion, including correctness proofs can be found in [78]. For

ease of presentation, the discussion presented does not address datatype support; however,

the tableau algorithm can easily be extended to support datatypes (e.g., see [77]).

It is first noted that reasoning with a general TBox T and role heirachry R can be

reduced to only reasoning with R. This is because the TBox can be internalized into a

single concept that is added to all individuals [78]. This process is briefly introduced3, as

the notion will be referred to later in Chapter 6.4. First, all TBox axioms in the KB are

transformed into a single concept as follows:

CT =
�

CvD∈K

¬C t D

Following this, a transitive role U is introduced that does not occur in the KB, and

the role heirarchy for the KB is extended such that U is a transitive super-role of all roles

occurring in the KB; that is, the role hierarchy is extended as follows:
3See [78] for a more detailed discussion.

28

RU = R ∪ {R v U, Inv(R) v U | R occurs in K}

Given this, it has been shown that the consistency of the KB can be reduced to

checking the consistency of simply the ABox w.r.t the role hierarchy RU by extending the

ABox with (CT u ∀U.CT)(a) for all named individuals a ∈ IK [78].

In practice however, the TBox is typically partitioned into two subsets, a general

and unfoldable TBox [75]. Then, only the general TBox is internalized and the unfoldable

TBox is taken into account during the actual tableau algorithm (discussed further later).

In the remaining discussion and when addressing tableau algorithms in this dis-

sertation, it is assumed that concepts are in negation normal form (NNF). This is done

by performing a syntactic transformation on each concept, in which a combination of de

Morgan’s rules are applied to the concept, pushing negation as far inward as possible [16].

DL tableau-based algorithms decide the consistency of an ABox A w.r.t. TBox T

and RBox R by trying to construct (an abstraction of) a model for A, T and R, called

a completion graph [78]. Each node in the completion graph represents an individual,

which is labeled with a set of concepts that it satisfies (in the particular model). Similarly,

each edge and edge label in the completion graph represents the roles satisfied by the indi-

viduals in the model. Formally, a completion graph is a directed graph G = (V,E,L, ,̇),

in which each node x ∈ V is labeled with a set of concepts L(x) and each edge e = 〈x, y〉

with a set L(e) of role names. The binary predicate ,̇ is used for recording inequalities

between nodes.

Before introducing how the completion graph is constructed, a variety of terminol-

ogy and notation is introduced, all of which can additionally be found in [78].

• R ∈ L(〈x, y〉) is used as an abbreviation for 〈x, y〉 ∈ E and R ∈ L(〈x, y〉)

• If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a predecessor or y.

Ancestor is the transitive closure of predecessor, and descendant is the transitive

closure of successor. A node y is called a R-successor of a node x if for some R
′

29

with R
′

v∗ R, R
′

∈ L(〈x, y〉). Lastly, a node y is called a neighbor (R-neighbor) of a

node x if y is a successor (R-successor) of x or if x is a successor (Inv(R)-successor)

of y.

• A completion graph G is said to have a clash if one of the following holds:

1. for some concept name A ∈ C and node x of G, {A,¬A} ⊆ L(x)

2. for some role S and node x of G, (6 nS .C) ∈ L(x) and there are n + 1 S -

neighbors y0, ..., yn of x with C ∈ L(yi) for each 0 ≤ i ≤ n and yi,̇y j for each

0 ≤ i < j ≤ n

3. for some o ∈ I, there are nodes x, y s.t. x,̇y with o ∈ L(x) ∩ L(y)

• A node x is defined to be a nominal node if L(x) contains a nominal (i.e., o ∈ I and

o ∈ L(x)); that is, the node corresponds to a named individual. A node that is not a

nominal node is defined to be a blockable node. A nominal o ∈ I is said to be new

in G if no node in G has o in its label. In the remainder of this dissertation, nominal

nodes will additionally be refereed to as root nodes.

• A node is said to be label blocked if it has ancestors x′, y, and y′ such that

1. x is a successor x′ and y is a successor of y′

2. y, x and all nodes on the path from y to x are blockable

3. L(x) = L(y) and L(x′) = L(y′)

4. L(〈x′, x〉) = L(〈y′, y〉)

In this case, we say that y blocks x. Further, a node is blocked if it is label blocked

or it is blockable and its predecessor is blocked; if the predecessor of a safe (defined

next) node x is blocked, then x is said to be indirectly blocked

• A R-neighbor y of a node x is safe if 1) x is blockable or 2) x is a nominal node and

y is not blocked

30

• During the tableau algorithm some nodes are merged into another node. Intuitively,

when a node y is merged into a node x, L(y) is added to L(x), all edges leading to

y are moved so that they lead to x, and all edges leading from y to some nominal

node are moved so that they lead from x to the same nominal node. Additionally,

y is pruned from the completion graph by removing y and all blockable sub-trees

below y. The merging process is denoted by Merge(y, x) and the pruning process is

denoted by Prune(y). A formal presentation of these operations is omitted here as

an extension of them is provided in Chapter 5.3, where they are discussed in detail.

Additionally, the original operations can be found in [78].

The tableau algorithm starts by initializing a completion graph G with a forest of

nodes and edges, each corresponding to the nominals and nominal roles in the initial

ABox. Each node label initially includes its corresponding nominal name, as well as

the concept assertions for the specific nominal in the ABox. Similarly, the initial edges

correspond to the role assertions between the nominals and are be labeled with the role

names from explicit role assertions in the ABox.

The completion graph is then further constructed by repeatedly applying a set of

tableau expansion rules, which add new structures (nodes, edges, and labels) to the com-

pletion graph when necessary. The SHOIQ tableau expansion rules are provide in Ta-

ble 2.3. It can be seen that the expansion rules explicate the structure implied by concepts

in node labels. For example, if a conjunction C u D is in the label of a node, the u-rule

ensures that both conjuncts are in the label as well.

The expansion rules are applied until a clash occurs or no other rules are applicable.

If a clash occurs, then the algorithm will attempt backtrack to a non-determinstic choice

that the clash is dependent on; this non-determinsm is introduced by the a variety of the

expansion rules (e.g., the disjunction rule), and searching these non-determinstic choices

is the cause of intractability in tableau algorithms.

If a clash-free completion graph can be built in which no further expansion rules

31

u-rule: if 1) C1 uC2 ∈ L(x), x is not indirectly blocked and
2) {C1,C2} * L(x)

then set L(x) = L(x) ∪ {C1,C2}

t-rule: if 1) C1 tC2 ∈ L(x), x is not indirectly blocked and
2) {C1,C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪C for some C ∈ {C1,C2}

∃-rule: if 1) ∃S .C ∈ L(x), x is not blocked and
2) x has no S -neighbor y with C ∈ L(y)

then create a new node y with L(〈x, y〉) = S and L(y) = C

∀-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) there is an S -neighbor y of x with C < L(y)

then set L(y) = L(y) ∪C

∀+-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) there is some R with Trans(R) and R v∗ S ,
3) there is an R-neighbor y of x with ∀R.C < L(y)

then set L(y) = L(y) ∪ {∀R.C}

choose-rule: if 1) (6 S .C) ∈ L(x), x is not indirectly blocked and
2) there is an S -neighbor y of x with {C,¬C} ∩ L(y) = ∅

then set L(y) = L(y) ∪ {E} for some E ∈ {C,¬C}

>-rule: if 1) (> nS .C) ∈ L(x), x is not blocked and
2) there are not n safe S -neighbor y1, ..., yn of x with

C ∈ L(yi) and yi , y j for 1 ≤ i < j ≤ n
then create n new nodes y1, ..., yn with L(〈x, yi〉) = {S },
L(yi) = {C}, and yi,̇y j for 1 ≤ i < j ≤ n

6-rule: if 1) (6 nS .C) ∈ L(x), x is not indirectly blocked and
2) x has more than n S -neighbors and there are two S -neighbors

y, z of x with C ∈ L(y) ∩ L(z) and z,̇y
then 1) if y is a nominal node, then Merge(z, y)

2) else if z is a nominal node or ancestor of y, then Merge(y, z)
3) else Merge(y, z)

O-rule: if for some o ∈ I there are 2 nodes x, y with o ∈ L(x) ∩ L(y) and not x,̇y
then then Merge(x, y)

NN-rule: if 1) (6 nS .C) ∈ L(x), x is a nominal node and there is a blockable
S -neighbor y of x such that C ∈ L(y) and x is a successor of y,

2) there is no m such that 1 ≤ m ≤ n, (6 mS .C) ∈ L(x), and
there exists m nominal S -neighbors z1, ..., zm of x with C ∈ L(zi)
and zi,̇z j for all 1 ≤ i < j ≤ m

then 1) guess m with 1 ≤ m ≤ n and set L(x) = L(x) ∪ {6 mS .C}
2) create m new nodes y1, ..., ym with L(〈x, yi〉) = {S },
L(yi) = {C, oi} for each oi ∈ I new in G and yi,̇y j for 1 ≤ i < j ≤ m

Table 2.3: SHOIQ Tableau Expansion Rules

32

are applicable then the algorithm returns that the KB is consistent; otherwise, the KB is

inconsistent. In the remainder of this dissertation, the notation Comp(K) will be used to

denote the set of all complete and clash free completion graphs that can be built by the

tableau algorithm; therefore, Comp(K) corresponds to all models of K.

In order to ensure termination, a set of blocking conditions (introduced earlier) are

used, as well an expansion rule application ordering. The blocking conditions essentially

guarantee that cycles are detected, and these blocking conditions differ depending on the

particular DL (e.g., see [12, 76]).

Next, an overview of the specific expansion rule application order for theSHOIQ tableau

algorithm are as follows [78]:

1. the O-rule is applied with highest priority

2. next, the 6 and NN-rules are applied (see [78] for further ordering on the applica-

tion of these rules)

3. all other rules are applied with a lower priority

However, if the KB is expressed in eitherSHIQ orSHOQ (or one of their sub-languages),

then this expansion rule ordering is unnecessary [78] and the algorithm proceeds in a sim-

ilar manner as the original tableau algorithms for SHIQ [80] and SHOQ [77].

It is important to point out that the complexity of reasoning directly depends on the

expressivity of the DL. For example, inALC it has been shown that worst case complex-

ity of consistency checking is PSpace-Complete [15] . However, for more expressive DL

such as SHOIQ , the worst case complexity is 2NExpTime [141].

Given the obvious worse case performance of DL reasoning, various optimizations

have been investigated [73]. These include, but are not limited to, absorption [75], lazy

unfolding [13], and domain/range tableau expansion rules [142]. A brief description of

these optimizations is provided below.

33

• Absorption: This process performs syntactic transformation on the TBox before the

tableau algorithm is run. The intuition behind the approach is to safely transform

GCIs into primitive concept definitions [75]. This can reduce the portion of the

TBox that must be internalized, and therefore these primitive concept definitions

can be taken into account during the actual tableau algorithm (discussed next).

• Lazy Unfolding: Given a definitorial TBox T and ABox A, it is possible to eliminate

the TBox by recursively substituting the concept names in the ABox with primitive

concept names (those on the right hand side of the definitions in the TBox) [13];

this process is referred to as unfolding and avoids the internalization of the TBox.

Lazy unfolding is a slight modification to this procedure, in which the unfolding is

done on the fly during the tableau algorithm. In this case, a new tableau expansion

rule (unfolding-rule) is considered, which will unfold a concept into its definition

if one exists. As noted earlier, in practice the TBox is partitioned into two com-

ponents, namely a general TBox and unfoldable TBox. While the general TBox is

internalized, the unfoldable TBox is typically taken into account during the tableau

algorithm using lazy unfolding.

• Domain and Range Expansion Rules: One very common construct used in OWL

ontologies is that of specifying the domain and/or range of a property. When con-

verting these OWL axioms to DL TBox axioms, they are converted to GCIs. For

example, if an OWL ontology contains a property hasProduct and the range of

this property is defined to be a Product, the resulting DL TBox axiom is > v

∀hasProduct.Product. An alternative technique to handling domain and range con-

straints has been proposed in which two additional tableau expansion rules for do-

main and ranges are introduced [142]. Intuitively, whenever a new edge is added to

the completion graph, these rules add the concept corresponding to the domain and

range to the appropriate nodes.

34

2.5 Belief Base Revision

Belief revision is the process of modifying existing beliefs (i.e., entailments) in

a knowledge base with new information in a manner such that the resulting knowledge

base is still consistent. Typically, the basic structure of beliefs assumed in belief revision

models is a belief set, which is a deductively closed (and hence in general infinite) set of

formulae. In the following discussions, a set of beliefs will be denoted by B, and the set

of deductively closed consequences will be denoted by Cn(B).

The most influential work in belief revision theory is the AGM model, in which

three main change operations on belief sets are defined; namely, expansion (expanding a

belief set with a new belief with no guarantee of consistency after the operation), contrac-

tion (retracting a belief) and revision (expansion with consistency after the operation) [7].

Only the expansion operation is uniquely defined; specifically, the expansion of B with

belief α, denoted B + α is defined as follows:

B + α = Cn(B ∪ {α})

In contrast, the revision and contraction operations are constrained by a set of pos-

tulates. The postulates proposed in the AGM model [7] are widely accepted for deciding

if a revision operation is rational. Unfortunately, various issues are encountered when

attempted to apply the AGM model to description logics; details can be found in Chapter

3.3.1.

Due to the difficulty of computing with belief sets, there has been substantial work

on using belief bases as an alternative structure (e.g., [106, 48, 66, 107, 109]). Belief

bases are not closed under logical consequence and are usually interpreted as basic beliefs

from which additional beliefs (the belief set) can be derived. Similar to the AGM model,

the three change operations have been adapted to belief bases, and the contraction and

revision operations are not uniquely defined, rather constrained by a set of postulates.

However, unlike the AGM model, different constructions for proposed contraction and

35

revision operators for belief bases are not equivalent [106]. In the AGM model, as well as

most constructions for belief base operations, revision operations are defined in terms of

contraction and expansion operations using the Levy identity [93], where ∗, −, and + are

used to denote revision, contraction, and expansion respectively:

B ∗ α = (B − ¬α) + α

For the purpose of revision in description logics, this is important because in many DLs

(e.g., SHIF and SHOIQ) negation is not supported in arbitrary expressions (e.g. role

axioms). This is discussed in more detail in Chapter 3.3.2.

The notion of semi-revision has additionally been investigated [68, 69], which dif-

fers from the traditional belief base revision model in that the added belief may or may

not be accepted (this is because it may be later retracted in order to regain consistency).

In the remainder of this chapter, the topic of belief base semi-revision is more formally

introduced. First, the notation of kernel contraction is presented. Assume that we want

to retract the belief α; the general idea behind the kernel contraction operator is that if

at least one element from each minimal subset of a belief base that implies α is removed

from the belief base, then the base will no longer imply α [68]. Given this insight, the

notion of a kernel operator is defined as follows (originally defined in [68]):

Definition 1 (Kernel Operation) The kernel operation y is defined such that for any set

B of formulas and any formula α, X ∈ B y α iff:

1. X ⊆ B

2. X |= α, and

3. for all Y, if Y ⊂ X, Y 6|= α

B y α is a referred to as a kernel set, and its elements are referred to as α-kernels.

Note that in general, there are arbitrarily many ways to resolve inconsistencies be-

tween new information and the current knowledge base. For example, if one holds the

36

beliefs that (i) Every TechnologyCompany is a Company and (ii) Apple Inc. is a Technol-

ogyCompany, and the knowledge base is revised with (iii) Apple Inc. is not a Technolo-

gyCompany, there are a few options: one could either retract (i), (ii), or (iii); therefore a

choice must be made. Given this, an incision function, defined below (originally defined

in [68]), determines the choice in such cases; that is, it selects the formula to be removed

from every α-kernel when we contract α.

Definition 2 (Incision Function) An incision function for B is a function σ such that for

any formula α:

1. σ(B y α) ⊆
⋃

(B y α), and

2. If X ∈ B y α and X , ∅, then X ∩ σ(B y α) , ∅

Kernel semi-revision is then defined as follows (originally defined in [69]):

Definition 3 (Kernel Semi-Revision) The kernel semi-revision operator of B based on an

incision function σ is denoted by ?σ and defined such that for all sentences α:

B?σα = B ∪ {α} \ σ((B ∪ {α}) y ⊥)

This can be thought of as a two-step process: first add α to B, and second, remove

inconsistencies in B if there are any. The name “semi-revision” comes from the fact that

in the revision process, the formula α that we revise our knowledge with may not be

accepted. In other words, α might be removed as part of the second step.

Lastly, the following postulates must be satisfied for any operator to be considered

a kernel semi-revision operator (originally defined in [69]).

Proposition 1 An operator ? is a kernel semi-revision operator if and only if for all set B

of sentences it satisfies the following postulates:

1. ⊥ < Cn(B?α) (consistency)

37

2. B?α ⊆ B ∪ {α} (inclusion)

3. If β ∈ B \ B?α, then there is some B′ ⊆ B ∪ {α} such that ⊥ < Cn(B′) and ⊥ ∈

Cn(B′ ∪ {β}) (core-retainment)

4. (B + α)?α = B?α (pre-expansion)

5. If α, β ∈ B, then B?α = B?β (internal exchange)

Justification for Description Logic Knowledge Bases

In this dissertation, a belief base revision algorithm for OWL-DL is developed (see

Chapter 7.2). From the discussion presented above, it is clear that it is necessary to

determine the set of assertions in a DL knowledge base that cause the inconsistency. In

DL literature, this task has been investigated in the context of computing all extension

of default theories [14]. More recently, this work has been extended for the purpose of

debugging and repairing OWL ontologies [131, 85]. The set of axioms responsible for an

arbitrary entailment is commonly referred to as a justification and can be formally defined

as follows (defined in [85]):

Definition 4 (Justification) Let K |= α where α is a sentence. A fragment K′ ⊆ K is a

justification for α in K if K′ |= α, and K′′ 6|= α for every K′′ ⊂ K′.

It has been shown that a single justification can be provided by slightly modifying

the tableau algorithm to track the propagation of structures in the tableau completion

graph, which is referred to as axiom tracing (see Chapter 5 for a detailed discussion).

Further, it is possible to find all justifications [85, 130, 129] by coupling axiom

tracing with the Reiter’s Hitting Set Tree (HST) algorithm [123] (a similar approach is

used in [147] for propositional calculus). The intuition behind the usage of the HST

algorithm relies on the fact that, in order to remove an inconsistency from a KB, one needs

to remove from KB at least one axiom from each justification for that inconsistency. The

38

approach starts by adding the negation of α and finds an initial justification (subset of K)

using axiom tracing [85]. Following this, a hitting set tree is initialized with the initial

justification as its root; then it selects an arbitrary axiom (call it a) in the root and generates

a new node with an incoming edge whose label corresponds to the removed axiom. The

algorithm then tests for consistency with respect to the K \ {a}. If it is inconsistent, then

we obtain another justification for α w.r.t K \ {a}. The algorithm repeats this process,

namely removing an axiom, adding a node, checking consistency and performing axiom

tracing until the consistency test turns positive. Further, details can be found in [85]. In

the remainder of this dissertation, the set of all justifications for the entailment of α in

a SHOIQ knowledge base K will be denoted as Just(K, α). For purpose of this work,

we are only concerned with ABox assertions, therefore it is assumed Just(K, α) simply

contains the ABox assertions in the justification.

39

Chapter 3

Related Work

This dissertation brings together the fields of knowledge representation languages

and syndication systems for the Web. In this chapter, related work in both of these fields

is presented.

3.1 Syndication Systems

In the following discussion, an overview of syndication frameworks previously in-

vestigated is presented. The overview demonstrates the recent trend toward more expres-

sive syndication approaches.

3.1.1 Syntactic Approaches

Early syndication systems primarily relied on subject-based keywords in order to

match user interests with published documents/data [113, 150]. In such an approach,

publishers associate some number of predefined keywords with publications, and sim-

ilarly, subscriptions are represented using keywords. Therefore, matching publications

with subscriptions requests reduces to keyword matching. The main limitation of such an

approach is its simplistic use of keyword matching.

Following this, there were efforts to capture more detailed user interests by allowing

attribute-value pairs to be associated with published content [5, 43, 33, 28, 29, 43]. In

such an approach users are allowed to provide values for certain attributes, and matching

reduces to determining the satisfaction of attribute values with associated publications.

While this provides further filtering capabilities and more accurate dissemination, the

approach is still limited by the predefined attributes and the simple matching of attribute

40

values. In order to address the scalability of both of these two approaches, distributed

architectures have also been investigated (e.g., [21, 150]).

Over the past few years there has been substantial interest in utilizing XML for

filtering purposes in syndication systems (e.g., see [8, 30, 60, 91, 38]). In such an ap-

proach, published documents/data are represented in XML and subscription requests are

specified using an XML query/path language (e.g., XPath [30]). This approach provides

a variety of benefits including the enables the ability to enforce published content valida-

tion (using XML Schema) and provides richer subscription requests (via XML path query

languages), etc. The popularity of such approaches is exemplified by the number of RSS

2.0 [95] and Atom 1.0 [112, 57] feeds (both of which are XML based), which are growing

at ever increasing rates. Recently, there has also been work addressing the scalability of

such approaches by proposing distributed XML-based syndication architectures (e.g., see

[38, 151]).

3.1.2 Semantic Approaches

Given the limited expressivity of XML (and XML Schema) as a knowledge model-

ing language and the fact that it does not have inferential capability, there has been interest

in using formal knowledge representation languages for representing published contents.

One such approach is provided in the event-based dissemination platform CREAM [33];

in this platform, the syndication model is attribute-value pair based, however attributes

can be associated with semantic information described in an ontology. This allows the

definition of concept hierarchies and therefore simple inferencing to determine subscrip-

tion matches.

Given the recent standardization of the knowledge representation language RDF

(and RDFS), there has been increased interest in using RDF [100] for syndication pur-

poses; RDF is the underlying representation format of RSS 1.0. A variety of architectures

have been proposed (e.g., [120, 121, 145]), all of which use RDF the representation lan-

41

guage for publications. In such approaches, RDF graph-based query languages (typically

triple patterns) are used to represent subscription requests and matching publications with

subscriptions reduces to triple pattern matching. Additionally, in most approaches RDFS

is also utilized to describe domain ontologies which the published RDF content adheres

to. This allows simple semantic inferences (e.g., via subclass relationships) to be made

over publications, similar to the approach adopted in CREAM.

There has also been work on addressing the scalability of an RDF-based approach

by leveraging distributed syndication archictectures. For example, [32] present a dis-

tributed RDF publish/subscribe approach, in which a peer-to-peer (P2P) architecture is

utilized. Specifically, a super-peer [34, 110] architecture is proposed, where super-peers

in the network are responsible for transfering publications to the correct subscribers,

which are regular peers in the network.

Description Logic Approaches

Over the past few years, there has additionally been work on using description

logics for a variety of application scenarios which are directly or indirectly related to syn-

dication systems. In the following discussions an overview of this work is presented.

Concept-Based Approaches. In [143, 94] the authors use a DL-based approach for Web

service matching and information syndication respectively, in which DL concepts (pos-

sibly complex concepts) are used to represent both subscription requests as well as pub-

lished documents/data. In such an approach, matching published content with subscrip-

tion requests reduces to determining if published concepts and subscriptions are logi-

cally equivalent, subsume one another, or are not compatible (discussed below). More

specifically, [94, 115] define there to be a match between a subscription S and published

document D if one of the following holds (in order of match strength):

• Exact (S ≡ D): The subscription and the published concepts are equivalent con-

42

cepts, and it is referred to as an Exact match.

• PlugIn (S @ D): The subscription is a sub-concept of the published concept, and it

is referred to as a PlugIn match.

• Subsume (D v S): The subscription is a super-concept of the published concept,

and it is referred to as a Subsume match.

• Intersection (¬(S uD v ⊥)): The intersection of the subscription and the published

concept is satisfiable, and it is referred to as an Intersection match.

Matching subscription requests is therefore accomplished by two reasoning tasks;

namely classifying the KB when either subscription requests or new data is received and

by performing concept satisfiability tests for the intersection of each subscription and pub-

lished concept. While empirical results demonstrate accepted performance times (∼20

ms) for matching new subscription requests with a fixed set of published documents, pro-

cessing a large amount of incoming published content is still problematic (∼10s of sec-

onds) [143, 94]. This is due to the cost of repeatedly reclassifying the published concepts;

this problem is compounded if syndication brokers have domain knowledge (potentially

very large) with which newly published data must be integrated.

Query-Based Approach. [61, 62] presents an agent-based document retrieval system

(which is essentially a publish/subscribe application) in which published contents are

represented as ABox assertions and subscription requests as a DL concept (viewed as an

instance retrieval query). Therefore, matching is reduced to instance retrieval of the sub-

scription concept. Given the performance issues of using such an approach (i.e., response

times in the 10s of seconds), the authors introduce two optimizations for more effective

incremental instance retrieval, both of which are discussed below:

• Query Ordering: In query ordering, a partial ordering is induced upon all regis-

tered subscription concepts based on their subsumption relations; these subsump-

43

tion relations are determined by classifying the atomic subscription concepts. In

the approach more general subscriptions are answered first, thereby reducing the

number of individuals that must be considered for more specific queries (due to the

subsumption relation).

• Candidate Individual Reduction: Candidate individual reduction is the process of

not considering previous individuals which satisfied registered queries; that is, once

an individual has satisfied the subscription concept, it does not need to be recon-

siders when new data is published. This holds, due to the monotonicity of the DLs

considered in the work and the fact that deletions are not supported.

3.1.3 Discussion

In this dissertation, a more expressive means is investigated for representing pub-

lished contents. This allows the use of automated reasoning procedures to infer matches

not found using syntactic approaches (keyword, attribute-value pair, and/or XML) and

simpler semantic approaches (e.g., RDF/S). While there has been work on application

scenarios which are related to DL-based publish-subscribe systems, the related techniques

either take a different approach for representing published contents and subscriptions re-

quests (e.g., [143, 94]) or assume a simpler subscription format with only atomic concepts

(e.g., [61, 62]). Further, in the syndication framework proposed in this dissertation, it is

assumed the publications are encoded in OWL, which provides additional benefits (dis-

cussed in Chapter 1).

Another general distinction between the syndication framework developed in this

dissertation and a majority of those presented above is that the developed approach allows

for publications to persist at the syndication broker for varying time frames; this in turn

allows composite subscription matches, in which the information contained in multiple

publications comprises a publication match (see Chapter 4 for details).

It is lastly noted that there has been additional work on determining optimal sub-

44

scription evaluation orders for syndication systems. For example, in [98] a generic pub-

lish/subscribe architecture is proposed, in which expensive filters (i.e, subscriptions) can

be used to filter published contents; an example of these expensive filters are pattern

recognition operations over streaming video feeds. One of the main contributions of

[98] is an approximation algorithm for finding the (near) optimal subscription evalua-

tion ordering, which exploits the overlap of registered subscriptions. In contrast, in this

dissertation the scalability of an OWL-based syndication framework is addressed by de-

veloping optimized incremental DL reasoning services. This focus was taken as even a

single subscription in an OWL-based syndication can take 10s of seconds to evaluate.

3.2 Stream Processing Engines

In the following discussion, related work on stream processing engines is presented.

This discussion additionally addresses work on continuous query answering for various

data models/representation formats.

Relational Model

In the relational database field, there has been substantial work on incremental

maintenance of database views and queries. Much of this work initially focussed on

developing more efficient techniques for incrementally updating materialized database

views and integrity constraints (e.g., [23, 138]). There has additionally been substan-

tial work on providing more effective continuous query answering techniques, in which

queries are assumed to persist for long periods of time [139, 132, 11, 97, 99]. Continu-

ous queries in this context are reminiscent of registered subscriptions at the syndication

broker, in that they persist for varying time periods. Given the overhead of reissuing such

queries after each update to the database, the focus of this work has been on optimizing

this process. For example, in [99] an approach for sharing the necessary processing of

45

relational operations across multiple continuous queries is presented.

More recently, there has been increased interest in stream processing engines, in

which streams are composed of relational tuples and relational operators can be placed at

various points of the stream to filter/join tuples [27, 3, 20, 148]. Further, various types

of relational stream operators have been introduced, including sliding windows that allow

operations to be performed on varying sized subsets of the current stream contents.

While similar in some aspects, continuous query answering and stream processing

in the context of relational databases/streams is inherently different from continuous query

answering in the syndication framework proposed in this dissertation; this is because

a more expressive formalism is assumed for representing published information. This,

in turn allows the use of logical inferences when determining subscription matches in

the developed syndication systems, which are not possible by directly using a relational

model. Importantly, this impacts reasoning complexity; specifically, reasoning algorithms

for OWL Lite and OWL DL are not polynomial, which is generally the complexity of

relational database query languages.

XML

There has additionally been substantial work on XML stream processing and con-

tinuous query answering (e.g., [31, 111]). Similar to the work done in the context of the

relational model, the focus of this work is also on developing more effective techniques

for evaluating continuous queries as the underlying XML database or stream changes.

For example, [31] proposes various approaches for grouping continuous XML queries,

thereby reducing the overhead of re-evaluating them as the underling data changes. As in

the relational context, the work done in this dissertation addresses a different knowledge

representation formalism.

46

Deductive Databases

There has been substantial work on incremental view maintenance in deductive

database systems (e.g., [40, 41, 9, 89, 59, 71, 144, 137]). Much of this work has pro-

posed approaches in which only the ground facts in the database can change, whereas

the rules are assumed to be fixed [9, 89, 59, 71]. The techniques investigated have ranged

from maintaining dependencies for derived facts [9], to computing the difference between

consecutive database states [89]. Further techniques have been investigated in which the

propagation of changed (added/removed) facts is determined via a delete, re-derive and

insert approach [59, 144, 137, 71]. The underlying idea is to first select an overestimate of

the intentional facts that should be deleted, as they are dependent on a deleted fact. This

is an over-estimate as these facts can potentially be re-derived by additional facts in the

database, and therefore the second step takes this into account. Lastly, the insertion step

adds new facts to the database.

There has been recent work on extending incremental view maintenance to support

changes to the rules in the database as well [144]. This work can be seen as an extension

of the delete, re-derive and insert approach, in which the changes to the rules are taken

into account; this is accomplished by updating the materialization of predicates that must

be maintained in the view and by updating the original maintenance programs used to

update the views (see [144] for additional details).

The techniques proposed in this dissertation are similar to some of the approaches

discussed above; for example, the incremental consistency checking approach (discussed

in Chapter 5) tracks the dependencies of structures in tableau completion graphs which

intuitively correspond to inferred facts. In general, however, the approaches developed in

this dissertation are in applicable to a different knowledge representation formalism.

47

Generalized Approaches

I lastly note that there has also been recent work on developing more generalized

stream processing frameworks, which do not impose a particular representation frame-

work on stream elements (e.g., [1]). In contrast, the focus of this dissertation is scoped to

addressing the challenges in achieving a practical syndication framework with an explicit

OWL representation format. However, the contributions in the dissertation will be clearly

usable within the context of a more generalized syndication framework, if one chooses to

utilize an OWL (or DL) based representation.

3.3 Revising and Updating Logical Knowledge Bases

There have been numerous approaches investigated in literature for revising and

updating logical knowledge bases. Recently, there have been attempts to apply these ap-

proaches to description logic knowledge bases, and an overview of some key approaches

is now presented.

3.3.1 AGM Belief Revision Theory

Belief revision is the process of modifying existing beliefs in a knowledge base to

take into account new pieces of information. This revision process is typically only nec-

essary when the new information is inconsistent with existing knowledge. The most influ-

ential work in belief revision is the AGM model [7], in which the authors introduce three

main change operations on belief states, which are represented by logically closed sets

of sentences (referred to as belief sets). As discussed in Chapter 2.5, the three operations

of change are expansion (expanding a belief set with a new belief with no guarantee of

consistency after the operation), contraction (retracting a belief) and revision (expansion

with consistency after the operation). Additionally, the authors define a set of postulates

for both contraction and revision, which specify the properties a contraction/revision op-

48

erator must meet in order to be rational; these postulates are widely accepted and assumed

in many belief revision approaches.

There has recently been interest in applying traditional belief revision approaches

based on the AGM postulates to description logic knowledge bases [47, 46, 45] (including

those corresponding to OWL Lite and OWL DL). Specifically, in [45, 46] the authors de-

fine a class of AGM-compliant logics, which can satisfy the AGM postulates for contrac-

tion. Additionally, the authors show that the description logics SHIF and SHOIN do

not fall in the AGM-compliant class of logics; this negative result implies that the tradi-

tional AGM belief revision theory cannot be applied to OWL Lite or OWL DL. Given this

result, additional sets of postulates have been introduced to replace the AGM-postulates,

such that the approach can be applied to a larger class of logics (including OWL Lite and

OWL DL) [47, 126].

3.3.2 Belief Base Revision

It is documented in literature that one of the main problems with the AGM model

of belief revision is related to the difficulty of computing with belief sets. Given this,

there has been substantial work on using belief bases as an alternative structure [106, 48,

66, 107, 109]. Belief bases are not closed under logical consequence and are usually

interpreted as basic beliefs from which additional beliefs (the belief set) can be derived.

In [48, 67, 70] the traditional AGM change operators are defined in terms of belief bases.

There has been recent work on applying traditional belief base revision algorithms

to description logics. In [44], the author follows the base revision approach presented

in [48] and again finds negative results, in that SHIF and SHOIN cannot satisfy the

belief base revision postulates originally presented in [48].

Given these negative results, there has been recent interest in applying belief base

semi-revision [69] to DL KBs. Semi-revision differs with the traditional belief base revi-

sion model in that the added belief may or may not be accepted (this is because it may be

49

later retracted in order to regain consistency). In literature, semi-revision has successfully

been applied to propositional logic. For example, [147] presents an algorithm for belief

base semi-revision for propositional logic based on the construction presented in [69], and

the author shows how the diagnosis problem as described by [123] can be used to provide

a semi-revision algorithm for propositional logic.

As stated above, there has been recent work on applying semi-revision techniques to

description logics. In fact, the algorithm presented in Chapter 7.2 is such an approach and

is an extension of the work presented in [147]. Additionally, [125] presents two different

constructions based on semi-revision, both of which aim to ensure that the new belief is

entailed by the revised KB. In the first approach, it is guaranteed that the new belief will

be entailed by the knowledge base, unless that new belief is inconsistent. In the second

construction, the new belief will always be entailed after revision, however if the new

belief is inconsistent then the revised knowledge base is inconsistent as well. The main

distinction with the approach presented in this dissertation is that while it is ensured that

the KB is consistent after the revision, the new belief may not be entailed by the revised

KB. It is argued in this dissertation that this is in fact a desirable effect for syndication

systems (see Chapter 7.2 for a more detailed discussion).

3.3.3 Logical Updates

In literature, there is a distinction between belief update and belief revision; specif-

ically, belief revision is the task of changing ones beliefs about a static world in light of

new information, where as belief update is the task of incorporating new information into

a changing work [119]. Historically, determining the choice of which semantics to adopt

is largely application dependent and often debatable.

Over the past two decades, there have been a variety of update semantics proposed

in the context of logical databases [149, 124, 88, 4] and in first order logic (for example,

situation calculus [102] can be adapted to first order logic). Recently, there has been work

50

in addressing updates in expressive DLs [96, 127, 49]. In [96], the authors provide an

approach for updating DL ABoxes under simple ABox updates, which are restricted to

assertions of the form A(a) or R(a, b), where A is an atomic concept. Further, the authors

adopt the standard model based update semantics, as described in literature [149, 124,

128], in which models of the KB are minimally changed.

One very interesting finding in [96] is that in DLs which are less expressive then

ALCO@, updates are not representable; more specifically the authors show that in or-

der to respresent updates in a variety of DLs, nominals and the “@” operator from

hybrid logic [10] must be included in the logic. This implies that both SHIF and

SHOIN (and therefore OWL Lite and OWL DL) cannot represent minimal model change

updates without the “@” operator. Additionally, the authors show that an exponential in-

crease in the size of input (original ABox and the update) cannot be avoided. It is also

shown that under these update semantics, even in propositional logic, an exponential in-

crease in size of the whole input cannot be avoided. I do note that the authors show that if

additional concepts can be introduced into an acyclic TBox, the updates are polynomial

in size of the original ABox.

[49] additionally investigates the minimal model change update semantics, however

considers a less expressive DL, referred to DL-Lite [25]. Due to the limited expressivity of

the language (e.g., disjunctions are not allowed), reasoning can be shown to be tractable.

[49] is able to show that in this DL, the minimal model change update semantics can in

fact be represented. However, in the syndication framework presented in this dissertation,

I aim to support more expressive DLs corresponding to larger portions of OWL.

3.3.4 Repairing Description Logic Knowledge Bases

There has been recent work on debugging and repairing description logic knowl-

edge bases. In [131], the author presents an approach to identify the minimal set of

(base) axioms (i.e., a justifcation) that cause an unsatisfiablie concept in KBs expressed

51

in ALC. The authors continue this work and utilize Reiter’s HST algorithm to compute

repair plans, given the conflicting sets [129, 130].

Recently, this work has been extended to more expressive DL KBs, effectively cov-

ering all of OWL DL [85]. In order to detect the set of axioms responsible for unsatisfiable

concepts (and arbitrary entailments), [85] extends work on axiom tracing [14], in which

dependencies for inferences made during tableau algorithms are effectively traced. Lever-

aging this technique, [85] employs Reiter’s HST algorithm to find all justifications for the

entailment (see Chapter 2.5 for a more detailed discussion). [85, 86] additionally devel-

ops techniques for ranking axioms in order to develop repair plans which are found using

a slightly modified HST algorithm. In order to repair unsatisfiable concepts (or inconsis-

tencies in general), [86] introduces the following ranking metrics which contribute to the

generated repair plans:

• Axioms frequency in justifications

• Impact on the ontology when the axiom is removed (i.e., number of entailments

which are lost)

• User specified entailments which should be less likely to be lost

• Axiom relevance to the ontology in terms of usage

• Provenance information about the axiom (e.g., author)

There are a variety of similarities between this work and the belief base revision al-

gorithm presented in Chapter 7.2. Specifically, the technique presented in this dissertation

leverages the technique for finding all justifications presented in [85]. However, in this

dissertation the problem is formalized in the context of belief base revision; additionally,

the notion of trust is exploited to select which assertions should be removed from the set

of justifications which lead to the inconsistency.

52

3.4 Truth Maintenance Systems

Over the past few decades, there has been extensive work in Truth Maintenance

Systems (TMSs) for logical theories (see [101] for a survey). As the name implies, TMSs

are used to more efficiently maintain beliefs through changes caused by the introduction of

new information. Generally, TMSs are geared toward propositional logic and approaches

for both monotonic and non-monotonic constructs have been investigated.

Many TMSs are justification-based [42], and in such an approach, the dependencies

for beliefs are maintained in the system. Then, in the event of a deletion, the invalidated

beliefs can be determined using the sets of justifications (by checking if the justification

includes a deleted sentence). In order to overcome some of the performance issues with

justification-based TMSs, there has additionally been substantial work on assumption-

based TMSs (ATMS) [36]. One of the main differences with ATMSs is that rather than

maintaining the entire justification, only the assumptions which an inferred statement is

dependent on is stored. An additional distinction is that ATMSs typically provide support

for multiple contexts, meaning the consistency of the knowledge base is considered with

respect to only a subset of the fact maintained (i.e., the context).

When comparing the contributions of this dissertation with TMSs, it can be seen

that there are various similarities. In particular, the notion of justifications is used for

incrementally maintaining tableau completion graphs (see Chapter 5). One important

distinction is that traditionally TMSs only support propositional logic; however, in this

dissertation a more expressive formalism is supported. Additionally, in the approach

presented in this dissertation, all justifications are not maintained, rather only the de-

pendencies for occurrences of structures in a single model (which the completion graph

corresponds to). It is noted that only monotonic DLs are addressed in this dissertation.

53

3.5 Incremental Description Logic Reasoning

While there has been substantial work on optimizing reasoning services for descrip-

tion logics (see [73] for an overview), the topic of reasoning through evolving DL knowl-

edge bases remains relatively unaddressed. There are a few notable exceptions which are

introduced here.

As mentioned earlier, [62] presents a DL-based publish/subscribe system in which

the subscriber registers queries (restricted to single, named concepts) that model their

interests and published data is modeled as ABox assertions. [62] also presents two op-

timizations, namely inducing a partial ordering upon all registered queries (i.e., atomic

concepts) and disregarding previous individuals that satisfy registered queries when data

is published. This is directly related to the techniques presented in this dissertation. How-

ever, I additionally address incremental consistency checking and present novel tech-

niques to prune the individuals in the KB that must be considered for queries after updates

are developed; further, the approach supports conjunctive queries.

There has been recent work on optimizing classification of DL KBs in the presence

of arbitrary TBox and ABox changes [56, 116]. In [116], the authors present set of tech-

niques for avoiding subsumption tests when re-classifiying concepts in DL KBs expressed

in SHOIN (i.e., OWL DL). For example, in the presence of additions, due to monoton-

icy of the DL considered, previous sumbsumption tests can be avoided. Additionally, the

authors propose caching portions of tableau completion graphs (in literature referred to as

pseudo models) built during the previous subsumption checks; after an addition, if these

pseudo models have not changed, then subsumption checks can be avoided.

[56] exploits the notion of ontology modularity to localize the portions of the KB

which must be considered for re-classiciation after changes. Specifically, modules for

concepts in the KB are maintained through updates, and the authors are able to show

that it suffices to only reclassify the axioms contained in the affected modules, which

generally are very small in comparison to the entire KB (see [56] for additional details).

54

The techniques presented in this dissertation address different reasoning services, as they

are necessary to make the developed syndication framework practical.

55

Chapter 4

Syndication Framework

4.1 Overview

In this chapter, I present a novel OWL-based syndication framework. As in typical

syndication systems, I assume that a collection of information producers publish content

to a syndication broker, and similarly a collection of subscribers registers their interests

with the broker. Therefore, it is the syndication broker’s task to disseminate relevant

information to the appropriate subscribers, based on their subscription requests.

In the framework, all publication are encoded in the OWL representation language,

specifically as OWL individual assertions (i.e., type, property, equality, and inequality as-

sertions). Further, the syndication broker maintains an OWL ontology with which newly

published content is integrated. The broker has a fixed schema and initial set of instance

assertions that encode background domain knowledge and can therefore be used to further

process publications (e.g., via inferences enabled by the intensional information defined

in the class and property axioms). In order to represent subscribers’ interests in published

content (i.e., OWL instance assertions), subscription requests are represented as conjunc-

tive instance queries (specified using standard OWL query languages, such as SPARQL

[122] or RDQL [133]), which are registered with the syndication broker. This is intuitive

as subscriptions are intended to ask for information matching a set of parameters. Given

this, matching subscription requests with newly published information reduces to OWL

query answering.

In order to allow automated inferences using decidable OWL reasoners during the

matching process, the usage of OWL constructs within the framework (i.e., in the syndi-

cation brokers local KB and published information) is assumed to fall within one of the

56

DL sub-languages of OWL: OWL Lite, OWL DL, or some subset of these languages. In

order to enable the use of DL reasoners for the actual matching process via OWL query

answering, it is assumed that the registered subscriptions can be translated into conjunc-

tive ABox queries (as described in Chapter 2.4.2). This assumption is realistic as today’s

OWL reasoners perform this translation automatically.

Intuitively, this OWL-based syndication framework can be reduced to a DL-based

syndication framework, in which conjunctive query answering over DL KBs (specifically

the brokers local KB) is the means for determining subscription matches; given this, the

formalization of the framework is presented in terms of DLs. It is important to note that

due to the alignment of OWL with DLs, this can analogously be viewed as an OWL-based

syndication framework.

4.2 Framework Formalization

4.2.1 Publishing

In the framework, a publisher is defined to be identified by a unique identifier:

Definition 5 (Publisher) A publisher Pub is defined to be composed of and identified by

a unique identifier i.

As discussed above, a publication is a set of ABox assertions (which correspond to a

set of OWL instance assertions); as discussed in Chapter 2.4, ABox assertions can take the

form of individual type, property, equality and inequality. In the framework, a publication

is also associated with a number of time units in which the publication is valid; after the

specified time units have passed, the publication is discarded from the syndication brokers

KB (discussed below). Additionally, a boolean value is associated with a publication,

denoting if the assertions should be added (or retracted) to (respectively from) the brokers

KB. Retractions are supported as in many realistic syndication applications, revisions

57

to previous publications are sometimes necessary; such a revision can be viewed as a

deletion followed by an addition. Lastly, a publication is associated with an identifier of

the publisher that produced the information. Given this, a publication is formally defined

as follows:

Definition 6 (Publication) A publication P is defined as a tuple (β, t, v, p), where β is a

set of DL ABox assertions that expire after t time units (t > 0), v is a boolean value that

is true in the event of an addition and false for retractions, and p is the identifier of the

publisher that produced the publication.

Given a publication P, we denote the set of ABox assertions as P(β), the expiration time

as P(t), the boolean addition/retraction value as P(v), and the publisher that produced the

publication as P(p) .

4.2.2 Subscribing

Within this framework, the main component of a subscription is a conjunctive ABox

query, which represents the subscribers interests. In the framework, subscriptions are

represented as retrieval queries (see Chapter 2.4.2 for a distinction between retrieval and

boolean queries); this assumption is made for a variety of reasons, which are discussed

in section 4.2.4. Additionally, a subscription is composed of the number of time units

that the subscription is valid. Intuitively, the subscription query can be thought of as a

continuous conjunctive query (defined below) that should be evaluated for the specified

number of time units. Therefore, the query is issued once over a changing KB and the

answer set of the query is continuously updated as the ABox changes.

A continuous conjunctive query is denoted by Qc and is syntactically equivalent

to conjunctive ABox retrieval queries (introduced in Chapter 2.4.2). The answer set of

a continuous conjunctive retrieval query at time t is the set of all distinguished variable

substitutions entailed by the KB at time t:

58

Definition 7 (Continuous Conjunctive Retrieval Query) Given a continuous conjunction

ABox retrieval query Qc with n distinguished variables (i.e., DVar(Qc) = {d1, ..., dn}),

define the answers of K at time t, denoted Kt, to Qc to be those n-tuples (a1, ..., an) ∈ In
Kt

such that the following holds:

Kt |= Qc[d1/a1, ..., dn/an]

In the remainder of this dissertation, when referring to a continuous conjunctive retrieval

query, “continuous” or “incremental” query will be used. Given a continuous query,

denote the set of answer tuples at time t by Qc(t).

A subscription is assumed to be composed of a continuous query, in addition to a

number of time units which the query should be evaluated:

Definition 8 (Subscription) A subscription S is defined as a pair (Qc, t), where Qc is a

continuous query that is evaluated for t time units (t > 0).

The continuous query of a subscription is denoted as S(Qc) and the expiration time is

denoted as S(t). Next, a subscriber is be introduced and intuitively is composed of a set

of subscriptions and a unique identifier:

Definition 9 (Subscriber) A subscriber Sub is defined to be a pair (s, i), where s is a set

of subscriptions and i is a unique identifier.

Similar to publishers and subscriptions, Sub(s) and Sub(i) denotes a subscriber’s set of

subscriptions and identifier respectively.

4.2.3 Matching

A syndication broker maintains a local DL KB, in which newly published infor-

mation is integrated. In the framework this KB can initially contain a fixed TBox and

ABox providing background domain information. Additionally, the syndication broker

59

maintains the currently registered subscribers, which have associated subscriptions, and

publishers. This is formally defined as follows:

Definition 10 (Syndication Broker) A syndication broker B is defined as a triple (S , P,K),

where S is a set of subscribers, P is a set of publishers, and K is the broker’s local DL

KB.

A syndication broker’s subscribers, publishers, and KB are denoted as B(S), B(P), and

B(K) respectively. If it is clear from the context of the discussion, the broker’s KB (resp.

KB at time t) will simply be referred to as K (resp. Kt). Additionally, the notation B(KP)

will be used to denote the set of ABox assertions present in the broker’s KB that are

included in a non-expired publication.

After a new publication is received, it is the broker’s task to determine the sub-

scribers for which this new information is relevant. Prior to doing this, the new publi-

cations must be integrated in the broker’s KB. As discussed in Chapter 3.3, there have

been a variety of semantics investigated related to how this new information can be taken

into account. Further, as pointed out previously, there have been various negative results

regarding the application of the most common theories for belief revision and update

semantics to OWL knowledge bases (and the DLs that they correspond to).

In this framework a slightly different approach is utilized; specifically, a syntac-

tic change/update of ABox assertions is adopted, referred to as Syntactic Updates. By

syntactic, we refer to the explicitly asserted ABox facts; this is similiar to the distiction

between belief bases and belief sets in belief revision literature [108]. Intuitively, Syntac-

tic Updates can be described as an update in which all new ABox assertions are directly

added (or removed) to the asserted (base) axioms; therefore the only changes that occur

are those explicitly stated in the ABox update. Using this approach to add new assertions

can lead to an inconsistency; this issue is not addressed here, however Chapter 7 presents

a variety of approaches to regain consistency. Further, removing an assertion from the

60

ABox under these semantics does not guarantee that the removed assertion will not be

entailed anymore. Formally, this type of update is defined as follows:

Definition 11 (Syntactic Updates) Let A be the ABox of DL KB K. Then under syntactic

updates, updating K with an ABox addition (resp. deletion) β, written as K+β (resp. K−β),

results in an updated set of ABox axioms A′ such that A′ = A ∪ {β} (resp. A′ = A \ {β}).

If the update type (i.e., addition or deletion) is clear from the context of the dis-

cussion, K ⊕ β will simply be used to denote the syntactic update of K with β. This type

of change to the broker’s KB is adopted in this dissertation for various reasons. First,

it is fitting for the syndication application. Additionally, it is representable in the repre-

sentation languages considered in this dissertation, while many other leading theories of

change have been shown to be inapplicable to OWL Lite and OWL DL. Further, as will

be shown the remainder of this dissertation, adopting this type of semantics leads to a

practical syndication framework which is empirically shown to be scalable.

Due to the fact that the syndication broker can have initial ABox assertions in its

knowledge base prior to any publications, under these update semantics an ambiguity can

arise if a retraction publication is received by the broker which contains an assertion that

is present in the initial ABox; namely, one could choose to remove this assertion or decide

to leave it as it is assumed to be fixed background domain knowledge. In the remainder

of this dissertation, it is assumed that this retraction will not remove this assertion as it

is considered background information. In general this decision is application dependent

and should be decided depending on the syndication use case.

Let us now consider subscription matches. As information is published from mul-

tiple publishers and can remain valid in the broker’s local KB for varying time periods,

a match for a subscription can be a composition of the information from multiple pub-

lications; that is, the information provided in multiple publications collectively forms a

match for the query. Further, the broker’s local knowledge base could additionally con-

tain background knowledge which can attribute to subscription matches as well. Recent

61

approaches have not investigated such functionality; rather, only information from indi-

vidually published documents form a match for a given subscription. Such a capability

is beneficial, as information can be considered collectively and form matches not found

otherwise (examples are discussed later).

A distinction between two types of subscription matches is made in this formal-

ization, namely information and publication matches. Intuitively, an information match

refers to the individuals bound to the distinguished variables of a continuous query rep-

resenting a subscription; that is, the result returned to the subscriber is actually the query

answer rather than the publication(s) responsible for the answer. This type of match aligns

with recent work in XML-based syndication literature, in which the actual information is

filtered and the query answers are returned to the user (e.g., [91]).

In contrast, a publication match refers to the collection of publications that satisfy

a subscription; that is, given an information match for a registered subscription, it is all

minimal sets of publications that cause this match (i.e., entailment) to occur. This aligns

with the task of selective content-based filtering of publications (e.g., [38]). Given a

information match, there is a corresponding set of publication matches.

The distinction between these two match types is made as the type of match re-

quired is application dependent; for example, in OWL-based syndication of news feeds,

publication matches are needed. In contrast, in the financial domain, analysts are gener-

ally interested with the actual information rather than the documents themselves. If we

consider our previous example involving the concept RiskyCompany, one can observe

that analysts are likely to be more interested in the actual instances of RiskyCompany,

rather than the publications that discuss them; this is intuitive, as the actual query answer

is the actionable information for their purposes (e.g., stock trading).

Given this distinction, an information match is defined as follows:

Definition 12 (Information Match) Define a n-tuple of individuals (a1, ..., an) ∈ In
Kt

to

be an information match, denoted MI , at broker B for subscription S at time t, if the

62

following condition holds:

Kt |= S(Qc[x1/a1, ..., xn/an])

Due to the fact that publications can persist at the syndication broker for varying

time periods, answer tuples may remain valid for varying time periods as well. Given

this, there are various ways in which the broker could maintain these answers and notify

subscribers. For example, the broker could maintain a list of all current bindings and

only forward new information matches. However, this will have some ramifications with

respect to the space that it takes to store the answer sets. In contrast, in some applica-

tions it may be better to pass all current bindings to the subscriber; however, yet again,

there are performance impacts due to such an approach related to the transmission cost

of transferring all bindings (including those already transfered) to a subscriber. Given the

fact that this is application dependent, in the formalization it is not dictated how an actual

instantiation of this framework should proceed with respect to this issue; rather it is left

to the individuals deploying such a framework.

Related to this issue is that a previous information match may be invalidated in the

event of a retraction publication (or the expiration of a publication). Once again, there

are various notification strategies that can be adopted. Specifically, a subscriber could be

notified if a previous information match is invalidated due to a retraction publication; in

contrast, such a notification may not be necessary in some scenarios. Therefore, such a

decision is not imposed here. When discussing examples, specific decisions regarding

these issues will be made if it is not clear from the context of the discussion.

As discussed previously, a publication match is the collection of publications that

satisfy a subscription. It is important to note that given an information match, additional

computation is needed to derive all the minimal sets of publications responsible for an

entailment. Clearly, in the event of a new information match for a subscription, the most

recent (addition) publication which is received at the broker contributes to a publication

63

match. However, we must determine the other publications which contribute to the match.

For this purpose, the notion of minimal justifications for an entailment in DLs is utilized.

As discussed in Chapter 2.5, this topic has been formally investigated in literature [85,

130, 129] and techniques have been developed to solve this problem. As noted in Chapter

2.5, the set of all minimal ABox justifications for the entailment of an axiom α by KB K

is denoted by Just(K, α). Given this discussion, the definition of a publication match is

provided; note that α denotes an ABox assertion.

Definition 13 (Publication Match) Let a n-tuple of individuals (a1, ..., an) ∈ In
Kt

be an

information match, MI , at broker B at time t for subscription S, where S(Qc) has n

distinguished variables (i.e., DVar(S(Qc)) = {d1, ..., dn}). Additionally, let J be the set of

minimal justifications forMI such that:

J = Just(Kt,S(Qc[d1/a1, ..., dn/an]))

Define a set of publications P to be a publication match, denotedMP, at broker B

for subscription S at time t if there exists j ∈ J such that the following holds:

• for all P ∈ P, there exists some α ∈ j such that α ∈ P(β) and

• for all α ∈ j one of the following holds:

– there exists some P ∈ P and α ∈ P(β)) or

– α < B(KP)

The last two conditions of Definition 13 state that for a publication match to occur, there

must be some justification for the entailment such that there is at least one assertion from

each publication in the publication match that is in the justification; further, each assertion

in the justification must be present in at least one of the publications or the assertion is

background information in the KB.

64

As in the case for information matches, there are various ways to proceed related

to the manner in which subscribers should be notified about publications matches (e.g.,

in the event of a retraction publication, subscribers could be notified about invalidated

publication matches). Again, due to the application dependence of such a decision, a

choice is not imposed here.

Lastly, Figure 4.1 presents an overview of the framework. The figure is an extension

of the basic syndication architecture presented in Chapter 1. To reiterate the main points

of the framework, note that all publications are represented as OWL instances (ABox

assertions) and are integrated into the brokers (evolving) ABox. Additionally, subscrip-

tions are assumed to be represented as conjunctive queries which are evaluated over the

broker’s knowledge base.

4.2.4 Discussion

In the formalization of the OWL-based syndication framework, conjunctive queries

representing subscriber’s interests are retrieval queries (queries that have at least one dis-

tinguished variable and return some tuple of named individuals). As stated in Chapter

2.4.2, queries which do not contain at least one distinguished variable are referred to as

boolean queries. Boolean queries are not supported in the framework as there is no notion

of an information match when subscription interests are represented as boolean queries

(as there is not an answer tuple for the query). Additionally, in many real world appli-

cations investigated in OWL and DL literature, including publish/subscribe applications

[62], queries typically have some number of distinguished variables. In general, it is easy

to extend the framework to support boolean queries and it should be possible to extend the

techniques to support boolean queries as well (see Chapter 9.2 for a discussion). However,

given the previously mentioned points, in the remainder of this dissertation only retrieval

queries are addressed.

It is important to note that this framework could easily be extended to support dif-

65

Figure 4.1: OWL-Based Syndication Architecture

ferent types of update semantics. However, given the discussion presented earlier related

to this topic, investigating alternative semantics is out of the scope of this dissertation and

syntactic updates are assumed.

4.3 Example

This concluding example demonstrates a composite match (both information and

publication matches) and the framework in general. Let us assume that a syndication

broker B is aware of two subscribers, S 1 and S 2, and two publishers, P1 and P2. Also,

assume that the broker contains existing background information in its knowledge base;

specifically, let the KB contain the axioms defined previously in Table 1.1, in addition to

66

the type assertions that BauschAndLomb is a Company and FusariumEyeInfection is an

Infection. A summary of the components of the syndication broker are shown in Table

4.1 (denoted in DL notation for ease of exposition).

Component Value
Subscribers { S 1, S 2 }

Publishers { P1, P2 }

{ RiskyCompany ≡ Company u ∃hasProduct.AdverseEffectProduct,
Knowledge Base AdverseEffectProduct ≡ Product u ∃causes.(Infection t ImparedState),

Company(BauschAndLomb), Infection(FusariumEyeInfection) }

Table 4.1: Sample Syndication Broker

Additionally, assume that subscriber S 1 is interested in information about risky

companies. Given this interest, S 1 registers a non-expiring subscription with the broker

that is composed of a continuous query for all individuals of type RiskyCompany; formally

the subscription is represented as follows:

((x)← RiskyCompany(x),∞) ∈ S 1(s)

where∞ indicates that the subscription does not expire. On the other hand, let us assume

that subscriber S 2 is interested in products that have some adverse effect. Therefore, S 2

registers the following subscription:

((x)← AdverseEffectProduct(x),∞) ∈ S 2(s)

Next, suppose that P1 publishes an addition publication which expires in 24 hours

which contains the assertions that BauschAndLomb has a product named Renu and that

Renu is a Product. Assume that P2 publishes an addition publication that also expires in

24 hours, however it contains the assertion that Renu causes the FusariumEyeInfection.

These publications can be formally represented as:

PP1 = ({ hasProduct(BauschAndLomb,Renu), Product(Renu)}, 24h, true, P1)

PP2 = ({ causes(Renu,FusariumEyeInfection) }, 24h, true, P2)

67

where 24h indicates that the publications expire in 24 hours. For ease of exposition,

assume that PP1 and PP2 arrive at the broker at time 1 and 2 respectively.

When PP1 arrives at the broker, PP1(β) is integrated into B(K), resulting in a updated

broker KB K′. At this time the individual BauschAndLomb will not satisfy the subscrip-

tion, as it cannot be inferred that Renu is an AdverseEffectProduct; therefore, there will

not be a match for S 1 or S 2 at time 1.

However, when PP2 is published at time 2 and integrated into K′, there will be new

information matches for both registered subscriptions, as the broker’s KB now entails that

Renu is an AdverseEffectProduct and that BauschAndLomb is a RiskyCompany. This is

fairly straightforward given the domain model and assertions in the syndication broker’s

KB; specifically, Renu is inferred to be a AdverseEffectProduct because it was known to

be a product and PP2 has provided the information that Renu causes a particular infection

(i.e., the fusarium eye infection). Given this, it is inferred that BauschAndLomb is a

RiskyCompany because it is a company that has a product that is an AdverseEffectProduct

(i.e., Renu).

There is additionally a composite publication match {PP1 , PP2} for both subscrip-

tions. Let us consider the subscription from S 1; first, we must determine the justifications

for the entailment that BauschAndLomb is a RiskyCompany. In this case, there is only

one justification:

Company(BauschAndLomb)

Product(Renu)

hasProduct(BauschAndLomb,Renu)

causes(Renu,FusariumEyeInfection)

Collectively PP1 and PP2 form a publication match, as PP1 contains the assertions

hasProduct(BauschAndLomb, Renu) and Product(Renu), while PP2 contains causes(Renu,

FusariumEyeInfection). Note that Company(BauschAndLomb) was originally contained

68

in the brokers KB independent of any publications (i.e., it is background information);

therefore, {PP1 , PP2} satisfies the definition of a publication match.

In a similar manner, there is one justification for the entailment that Renu is a Ad-

verseEffectProduct:

Product(Renu)

hasProduct(BauschAndLomb,Renu)

causes(Renu,FusariumEyeInfection)

Therefore, {PP1 , PP2} constitutes a publication match for S 2’s subscription.

4.4 Summary

In this chapter, an OWL-based syndication framework has been formalized in which

matching newly published information with subscription requests is reduced to DL query

answering. This framework provides a rich semantics-based mechanism for expressing

published content allowing finer control for filtering. Additionally, given OWL’s align-

ment with DL’s, automated reasoning is provided for discovering subscription matches

not found using traditional syntactic syndication approaches.

Given the performance overhead of DL reasoning, the next two chapters in this

dissertation provide more efficient techniques for the reasoning services required in this

syndication framework. In particular, the next chapter introduces an algorithm for effi-

cient incremental consistency checking.

69

Chapter 5

Incremental Consistency Checking

5.1 Introduction

In the OWL-based syndication framework presented in the previous chapter, two

reasoning services are required in order to incorporate new publications into the syndica-

tion broker’s KB and match them with registered subscriptions. The first of these reason-

ing tasks is checking the consistency of the broker’s knowledge base after a new publica-

tion has been integrated into it. As noted in Chapter 2.4.2, checking the consistency of a

DL KB (or OWL ontology) is the task of ensuring that the KB does not contain any con-

tradictory facts. An example of an inconsistency is demonstrated as follows: assume that

in our domain model, it is stated that TechnologyCompanies and AutomobileCompanies

are disjoint classes. This can be accomplished via the DL TBox axiom1:

TechnologyCompany v ¬ AutomobileCompany

If our KB additionally includes the ABox assertions TechnologyCompnay(AppleInc) and

AutomobileCompany(AppleInc), stating that AppleInc is both a technology and automo-

bile company, then the KB would be inconsistent, as this is a logical contradiction. Un-

fortunately, if the KB is inconsistent, reasoning cannot be performed because everything

is trivially entailed. Therefore, upon the integration of a new publication into the broker’s

KB, consistency must be ensured.

As discussed in Chapter 2.4.3, DL reasoners typically use tableau algorithms for

checking the consistency of the KB. Unfortunately, if one attempts to use off-the-shelf

DL reasoners today, scalability issues are immediately encountered related to this rea-

soning task for the syndication framework. To illustrate this issue further, let us consider
1Note that this can similarly be accomplished in OWL using the disjointWith constructor.

70

current consistency checking response times using today’s tableau-based reasoners for a

publicly available OWL ontology from the financial domain developed within the SEM-

INTEC project2. The ontology3 is expressed using a subset of OWL Lite, namely the

DL ALCIF and specifically includes subclass axioms, disjoint classes, functional and

inverse properties, property restrictions, and domain/range constraints. Table 5.1 presents

additional details related to the ontology, including the number of classes, properties,

individuals and triples (which corresponds to the number of ABox assertions).

Ontology Expressivity] Classes] Properties] Individuals] Triples
SEMINTEC ALCIF 59 16 17,941 65,723

Table 5.1: SEMINTEC Ontology Overview

Let us assume that this ontology represents the broker’s KB, which consists of per-

sistent publications and background information. When a new publication is received at

the broker, it is integrated into the KB and then consistency is checked. Table 5.2 presents

the consistency checking times using two of today’s state-of-the-art tableau-based OWL

reasoners, Pellet4 and RacerPro5. The experiments were run on a Linux machine with

2Gb of RAM and a 3.06GHz Intel Xeon CPU; consistency checking times were averaged

over 50 iterations and Pellet v1.5 and RacerPro v1.9.0 were used. It can be observed that

response times using these reasoners will not be practical for the syndication framework.

Reasoner Response Time (sec)
Pellet 2.137
Racer 8.16

Table 5.2: Consistency Checking Times for SEMINTEC Ontology

Tableau algorithms check the consistency of a KB by trying to construct an ab-

straction of a model, called a completion graph, for the knowledge base. With respect to

2SEMINTEC project homepage: http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
3Available at http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
4Pellet Project Homepage: http://pellet.owldl.com/
5RacerPro is commercially supported by Racer Systems GmbH & Co. KG: http://www.racer-

systems.com/index.phtml

71

the syndication framework, one of the main performance issues related to this reasoning

service in today’s tableau-based OWL reasoners is that the entire completion graph is re-

built from scratch in the event of an update to the KB. If the KB was consistent prior to

the update, there was a compete, clash-free completion graph corresponding to a model

of the KB; when an update is received, this completion graph is discarded entirely and

then rebuilt. In the presence of reasonably sized updates to the KB, their impact on the

completion graph will be very small. Therefore, one would expect that a more effective

technique can be developed in which the completion graph from a previous consistency

check is not discarded.

In this chapter, I present a more effective incremental consistency checking ap-

proach, in which a previously constructed completion graph is updated instead of build-

ing a new completion graph after each update. This exploits the intuition that incremental

changes to the KB will only affect a small portion of the previous completion graph, and

therefore, maintaining it through changes will be much more effective. It is noted that in

today’s reasoners, the completion graph built during the initial consistency check is not

discarded immediately after the reasoning service; this is because the structure is used

for additional optimization techniques (e.g., pseudo model merging [72, 63]) during other

reasoning services (assuming there has not been a change to the KB). Therefore, as we

will see, maintaining the completion graph introduces manageable memory overhead.

Within the syndication framework, publications are sets of ABox assertions; given

this, the techniques developed are scoped to ABox changes to the KB. Additionally, as

both addition and deletion publications are supported in the syndication framework, ap-

proaches for incremental checking under both ABox additions and deletions are provided.

The approach developed is applicable to the DLs SHIQ and SHOQ. OWL Lite

is aligned with the DL SHIF (which is a subset of SHIQ), while OWL DL is aligned

with SHOIN (not subsumed by SHIQ or SHOQ). Therefore, the technique presented

is applicable to ontologies expressed in OWL Lite; OWL DL ontologies are supported,

72

with the restriction that nominals and inverse cannot both be used. While the approach is

applicable to SHIQ and SHOQ, in the remainder of this chapter, the tableau algorithm

for SHOIQ will simply be assumed, as it is applicable to these DLs as well.

Lastly, it is noted that the original definition of the SHOIQ tableau algorithm [78]

does not include an ABox . This is because in the presence of nominals, ABox assertions

can be transformed into semantically equivalent TBox axioms. However, in the remainder

of this chapter, it is assumed this transformation is not performed and therefore ABoxes

are considered. The SHOIQ algorithm with an ABox is not formally presented as it is

a straightforward extension of the SHOIQ algorithm, which can be accomplished in a

similar manner as the modification of SHIQ tableau algorithm [74] to include ABoxes

[80].

5.2 ABox Additions

The overall goal of the approach is to incrementally update a completion graph from

a previous consistency check (i.e., to take into account the assertions contained in the up-

date). The main insight in the approach for addition updates follows from the observation

that the expansion rules can be applied to the completion graph in an arbitrary order in

the SHOIQ tableau algorithm when the TBox contains either nominals or inverses, but

not both (i.e., it is expressed in SHIQ, SHOQ, or one of their sub-languages).

Lemma 1 Let K be a SHIQ or SHOQ KB. Then performing the SHOIQ tableau al-

gorithm for K without imposing the tableau expansion rule application ordering is sound,

complete, and terminating.

Proof See Appendix A.1.1 for the proof of this lemma. �

This means that the tableau algorithm has incremental properties, as any expansion

rule ordering can be assumed when performing the tableau algorithm. This critical obser-

vation implies that given a complete and clash-free completion graph for the KB prior to

73

the update, new ABox assertions can be added to the KB even after previous expansion

rules have been fired for existing nodes and edges in the graph. This is accomplished

via a two step process, assuming a previously consistent KB; first, the structures (nodes,

edges, labels, and inequality relations) induced from the addition are added to the comple-

tion graph. Then, the necessary tableau expansion rules are applied for the newly added

nodes, edges and labels.

To illustrate this, consider the KB shown in Table 5.3. When checking the consis-

tency of this KB, an initial completion graph corresponding to the ABox is created. In par-

ticular, nodes corresponding to the individuals BauschAndLomb and Renu are created, as

well as an edge between these two nodes; additionally, the concept name RiskyCompany

is added to the label of the node corresponding to BauschAndLomb and the role name

hasProduct is added to the edge label between the two nodes in the completion graph.

This initial completion graph is depicted in Figure 5.1 (a).

Knowledge Base
RiskyCompany ≡ Company u ∃hasProduct.AdverseEffectProduct,

EyeCareProduct ≡ Product u ∃cures.EyeProblem,
RiskyCompany(BauschAndLomb), hasProduct(BauschAndLomb,Renu)

Table 5.3: Sample Knowledge Base

The tableau algorithm then proceeds to repeatedly apply the expansion rules, un-

til a complete, clash-free completion graph is constructed. For illustration purposes,

lazy unfolding is used (see Chapter 2.4.3 for a discussion). Due to the first axiom in

the KB, the label RiskyCompany will be unfolded into the concept name Company u

∃hasProduct.AdverseEffectProduct. Following this, the u-rule will apply to this newly

added label, thereby adding both Company and ∃hasProduct.AdverseEffectProduct to the

label of this node. Lastly, the ∃-rule will create a new node and edge to be added to the

completion graph, followed by setting the appropriate labels for these new structures. The

74

(a) (b)

Figure 5.1: (a) Initial completion graph corresponding to ABox. (b) Complete clash-free
completion graph for KB.

resulting completion graph depicted in Figure 5.1 (b)6.

Let us now consider adding an ABox assertion to this KB stating that Renu is

an EyeCareProduct; therefore, we need to check the consistency of the original KB K

extended with the assertion EyeCareProduct(Renu) (i.e., K ∪ {EyeCareProduct(Renu)}).

Rather than discarding the completion graph depicted in Figure 5.1 (b), the label of the

node corresponding to Renu can simply be extended with the concept name EyeCare-

Product and then the necessary expansion rules can be applied to the completion graph

(note the rule applications proceed in a similar manner as previously for the concept name

RiskyCompany); this will result in the complete and clash-free completion graph depicted

in Figure 5.2.

In this case, this is precisely the completion graph which would have been con-

structed if the tableau algorithm were run from scratch for K ∪ {EyeCareProduct(Renu)}

and the unnecessary reconstruction of the structure of the completion graph has been

avoided.
6Note that there are no non-determinstic choices when applying the expansion rules, therefore there is

only one complete and clash-free completion graph.

75

Figure 5.2: Complete clash-free completion graph for KB with ABox addition.

5.2.1 Approach Details

Various details related to this approach are now presented. As just illustrated, the

general idea of the approach for additions to the KB is to first add the structure from the

update to a complete, clash-free completion graph for the KB prior to the update, and then

to apply the necessary expansion rules and let the tableau algorithm run as usual.

The actions that must be performed for a given addition are now presented via a

case by case analysis of the form of the ABox addition. The notation xa is used to denote

the node in the completion graph corresponding to the named individual a (i.e., a will be

mapped to node xa if a ∈ L(xa)).

• Type assertion C(a): if a node corresponding to the individual a does not exist in

the completion graph, then it is added (i.e., if x < V such that a ∈ L(x), then

V = V ∪ {x}). Then, if C is not in L(xa), it is added.

• Role assertion R(a, b): if a node corresponding to the individuals a or b does not

exist in the completion graph, then it is added. If there is not an edge between

the nodes xa and xb, then the edge is added; formally, if 〈xa, xb〉 < E then E =

E ∪ {〈xa, xb〉}. Lastly, the edge label is added if necessary (i.e., if R < L(〈xa, xb〉)

then L(〈xa, xb〉) = L(〈xa, xb〉) ∪ {R}).

76

• Inequality relation a , b: similar to the case for role assertions, if nodes corre-

sponding to the individuals a, b do not exist in the completion graph, then they are

added. Additionally, if not xa,̇xb, then it is added.

• Equality relation a = b: similar to the case for inequality assertions, if nodes corre-

sponding to the individuals a, b do not exist in the completion graph, then they are

added. Additionally, b is added to L(xa) and a is added to L(xb).

After the structure introduced from the addition has been added to the previous

completion graph, the expansion rules are reapplied to the completion graph and the al-

gorithm runs as usual; this is necessary as the update may cause additional expansion

rules to be fired. If the initial structure introduced from the update introduces any clashes

or if a clash is encountered when re-applying the expansion rules, standard back-jumping

techniques must be used to revert the completion graph to the non-deterministic choice

points (e.g., a disjunction) that the clash is dependent on.

5.3 ABox Deletions

Supporting ABox deletion updates proceeds in a similar manner as additions. How-

ever, rather than adding the structure for the update to a previous completion graph, all

structures dependent on the deleted assertions need to be removed. Following this, the ex-

pansion rules are re-applied to the resulting completion graph and the tableau algorithm

proceeds as usual.

When performing ABox deletion updates, structures (nodes, edges, labels, etc.) in

the previous completion graph that correspond to the removed assertion cannot be simply

removed. This is because as expansion rules are applied, newly added portions of the

graph are dependent on the presence of the original assertions in the KB. For example,

consider the sample KB depicted earlier in Table 5.3 and the deletion of the assertion

RiskyCompany(BauschAndLomb); in this case, one cannot simply remove the concept

77

name RiskyCompany from the label of the node corresponding to BauschAndLomb; the

additional concept names in the label of this node, in addition to the node x and its in-

coming edge and labels, were added as a result of the deleted assertion.

Therefore, the components of the completion graph that are dependent on the deleted

assertion need to be updated as well. In order to account for this, I leverage and extend

previous work on axiom tracing [14, 85, 87]. In such approaches, the dependencies of

completion graph structures (and the events that manipulate them) on original source ax-

ioms from the KB are tracked through the tableau expansion rule application process.

Further details regarding the tracing approach will be discussed in detail later, however

the general idea is to utilize axiom tracing in order to track the dependencies of parts of

the completion graph, so that the effects of deleted ABox assertions can be rolled-back.

In general, the update algorithm for deletion works as follows: when an ABox

assertion is removed, the algorithm determines all of the change events in the previous

completion graph whose axiom traces include the deleted axiom and these events are

rolled-back. By roll-back, we refer to simply undoing the event (e.g., rolling back an

event that adds the concept name C to the label of node x would be the process of re-

moving C from L(x)). Following this, the tableau expansion rules are re-applied to the

resulting completion graph and the tableau algorithm runs as usual. The expansion rules

must be re-applied as the deleted structures may be re-added due to subsequent rule appli-

cations. For example, if the sample KB depicted in Table 5.3 additionally contained the

assertion Company u RiskyCompany(BauschAndLomb), then even if the ABox assertion

RiskyCompany(BauschAndLomb) were removed, the RiskyCompany label would need to

be re-added to the label of the node corresponding to BauschAndLomb due to the assertion

Company u RiskyCompany(BauschAndLomb).

It is also important to note that the previous exploration of a non-determinstic choice

in the tableau algorithm that resulted in a clash dependent on a removed assertion must

be re-explored; this is because the clash may have been invalidated due to the deletion.

78

In contrast to the approach for additions, the approach for deletions is applicable to a

completion graph corresponding to the previous KB that contains a clash.

5.3.1 Approach Details

As stated previously, axiom tracing [14, 85, 87] is extended in order to account for

the dependency of completion graph structures on deleted assertions. More specifically,

[85] presents an algorithm in which the application of the tableau expansion rules triggers

a set of events, denoted EV , that change the state of the completion graph. A summary of

the change events presented in [85] is as follows:

• Add(C,L(x)) represents the action of adding a concept C to L(x)

• Add(R,L(〈x, y〉)) represents the addition of a role R to L(〈x, y〉)

• E(x, y) is the action of merging the nodes x, y.

• NE(x, y) is the action of adding of an inequality relation x,̇y.

In order to record the changes to the completion graph, [85] introduces a tracing

function, τ, which keeps track of the asserted axioms responsible for changes events;

more specifically, τ maps each event e ∈ EV to a set containing a fragment of the KB that

cause the event to occur, and this tracing function is maintained throughout the application

of tableau expansion rules.

In order to provide axiom tracing for the purpose of ABox deletions, the original

set of change events is now extended to include all possible events that can occur during

the application of expansion rules; this is necessary as in the presence of a deletion, all of

the effects of the removed assertions need to be rolled-back. The new change events are

as follows:

• Add(x,V) represents the action of adding a node x toV

79

• Add(〈x, y〉,E) represents the action of adding a edge 〈x, y〉 to E

• Remove(x,V) represents the action of removing a node x fromV

• Remove(〈x, y〉,E) represents the action of removing an edge 〈x, y〉 from E

• Remove(C,L(x)) represents the removal of a concept C from L(x)

• Remove(R,L(〈x, y〉)) represents the removal of a role R from L(〈x, y〉)

Collectively, these change events account for all possible changes that can occur during

the application of SHOIQ tableau expansion rules [78].

For purpose of ABox deletions, the change events necessary for creating the initial

completion graph corresponding to the initial ABox need to be taken into account as well.

This is because the structures that are dependent on these concept and role assertions may

need to be retracted due to a deletion. The initialized tracing function τ for a completion

graph corresponding to an initial ABox is shown in Algorithm 17. It can be observed that

these events directly align with those that occur when the initial completion graph is con-

structed from the ABox. However, because edges between nodes corresponding to named

individuals can be added due to any role assertion involving the two indvidiauls, a special

condition in the definition of τ is also introduced; specifically, assuming that R(a, b) ∈ A,

then R(a, b) ∈ τ(Add(〈xa, xb〉,E)) if and only if there does not exist some role S , where

S , R, such that S (a, b) ∈ A. This states that an edge involving named individuals is only

dependent on an ABox assertion if there does not exist another role assertion involving

those individuals. Such a condition is not necessary for nodes corresponding to named

individuals, as a node is always created for each named individual (i.e., it is independent

of an ABox assertion).

The SHOIQ tableau expansion rules extended with axiom tracing are introduced

in Table 5.4. For simplicity, τ(C, x), τ(R, 〈x, y〉), τ(x,V), and τ(〈x, y〉,E) are used as
7Again given a named individual a, the notation xa is used to denote the node in G corresponding to a.

80

Algorithm 1 initialize tracing(A,G)
Input:

A: ABox
G: Initial completion graph corresponding to A

Output:
τ: Initialized tracing function

1: for all α ∈ A do
2: if α of the form C(a) then
3: τ(Add(C,L(xa)))← {C(a)}
4: else if α of the form R(a, b) then
5: τ(Add(R,L(〈xa, xb〉)))← {R(a, b)}
6: else if α of the form a = b then
7: τ(Add(b,L(xa)))← {a = b}
8: τ(Add(a,L(xb)))← {a = b}
9: else if α of the form a , b then

10: τ(NE(xa, xb))← {a , b}
11: end if
12: end for
13: return τ

abbreviations for τ(Add(C,L(x)), τ(Add(R,L〈x, y〉)), τ(Add(x,V)), and τ(Add(〈x, y〉,E))

respectively. Additionally, given a role S , concept C, and node x in completion graph G,

S G(x,C) is defined such that:

S G(x,C) = {y | y is a S -neighbor of x and C ∈ L(x)}

which represents all S -neighbors of x that satisfy the concept C. For ease of exposition,

an abbreviation for the edges and edge labels that satisfy the S -neighbor relation is also

used. Specifically, if x has S -neighbors {y1, ...ym}, denote the actual edge and edge label

between x and yi in the completion graph as S e(x, yi) and S l(x, yi) respectively. This

notation will also be used when referring to a single S -neighbor (e.g., for the ∀-rule).

Lastly, given S G(x,C) = {y1, ..., ym}, τ(S G(x,C)) is used an abbreviation for the union of

all axiom traces for the node x, edges S e(x, yi), edge labels S l(x, yi), nodes yi, and concept

labels C ∈ L(yi); that is τ(S G(x,C)) is a abbreviation for the following:

τ(x,V) ∪ τ(S e(x, y1),E) ∪ ... ∪ τ(S e(x, ym),E) ∪ τ(S l(x, ym),L(S e(x, y1))) ∪ ... ∪

τ(S l(x, ym),L(S e(x, ym))) ∪ τ(C, y1) ∪ ... ∪ τ(C, ym) ∪ τ(y1,V) ∪ ... ∪ τ(ym,V)

In Table 5.4, the merge operation has not been addressed. The updated Merge

function is provided in Table 5.5. It is noted that the merge function is called from two

81

u-rule: if 1) C1 uC2 ∈ L(x), x is not indirectly blocked and
2) {C1,C2} * L(x)

then set L(x) = L(x) ∪ {C1,C2} and
τ(C1, x)← τ((C1 uC2), x) ∪ τ(x,V) and τ(C2, x)← τ((C1 uC2), x) ∪ τ(x,V)

t-rule: if 1) C1 tC2 ∈ L(x), x is not indirectly blocked and
2) {C1,C2} ∩ L(x) = ∅

then set L(x) = L(x) ∪C for some C ∈ {C1,C2} and
τ(C, x)← τ((C1 tC2), x) ∪ τ(x,V)

∃-rule: if 1) ∃S .C ∈ L(x), x is not blocked and
2) x has no S -neighbor y with C ∈ L(y)

then create a new node y with L(〈x, y〉) = {S } and L(y) = {C} and
τ(y,V)← τ((∃S .C), x) ∪ τ(x,V) and τ(〈x, y〉,E)← τ((∃S .C), x) ∪ τ(x,V) and
τ(C, y)← τ((∃S .C), x) ∪ τ(x,V) and τ(S , 〈x, y〉)← τ((∃S .C), x) ∪ τ(x,V)

∀-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) there is an S -neighbor y of x with C < L(y)

then set L(y) = L(y) ∪ {C} and
τ(C, y)← τ((∀S .C), x) ∪ τ(x,V) ∪ τ(y,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E)

∀+-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) there is some R with Trans(R) and R v∗ S ,
3) there is an R-neighbor y of x with ∀R.C < L(y)

then set L(y) = L(y) ∪ {∀R.C} and
τ(∀R.C, y)← τ((∀S .C), x) ∪ τ(x,V) ∪ τ(y,V) ∪ τ(Rl(x, y),L(Re(x, y))) ∪ τ(Re(x, y),E)

choose-rule: if 1) (6 nS .C) ∈ L(x), x is not indirectly blocked and
2) there is an S -neighbor y of x with {C,¬C} ∩ L(y) = ∅

then set L(y) = L(y) ∪ {E} for some E ∈ {C,¬C} and
τ(E, y)← τ((6 S .C), x) ∪ τ(x,V) ∪ τ(y,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E)

>-rule: if 1) (> nS .C) ∈ L(x), x is not blocked and
2) there are not n S -neighbor y1, ..., yn of x with

C ∈ L(yi) and yi,̇y j for 1 ≤ i < j ≤ n
then create n new nodes y1, ..., yn with L(〈x, yi〉) = {S },
L(yi) = {C}, and yi,̇y j for 1 ≤ i < j ≤ n and
τ(yi,V)← τ((> nS .C), x) ∪ τ(x,V) and τ(〈x, yi〉,E)← τ((> nS .C), x) ∪ τ(x,V) and
τ(C, yi)← τ((> nS .C), x) ∪ τ(x,V) and τ(S , 〈x, y〉)← τ((> nS .C), x) ∪ τ(x,V) and
τ(NE(yi, y j))← τ((> nS .C), x) ∪ τ(x,V)

6-rule: if 1) (6 nS .C) ∈ L(z), z is not indirectly blocked and
2) S G(z,C) = {y1, ..., ym} such that m > n, and there are two S -neighbors

x, y of z with not x,̇y and C ∈ L(x) ∩ L(y)
then 1) if x is a nominal node, then Merge(y, x)

2) else if y is a nominal node or an ancestor of x, then Merge(x, y)
3) else Merge(y, x)

O-rule: if for some o ∈ I there are 2 nodes x, y with o ∈ L(x) ∩ L(y) and not x,̇y
then Merge(x, y)

NN-rule: if 1) (6 nS .C) ∈ L(x), x is a nominal node and there is a blockable
S -neighbor y of x such that C ∈ L(y) and x is a successor of y,

2) there is no m such that 1 ≤ m ≤ n, (6 mS .C) ∈ L(x), and
there exists m nominal S -neighbors z1, ..., zm of x with C ∈ L(zi)
and zi,̇z j for all 1 ≤ i < j ≤ m

then 1) guess m with 1 ≤ m ≤ n and set L(x) = L(x) ∪ {6 mS .C} and
τ((≤ mS .C), x)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E)

2) create m new nodes y1, ..., ym with L(〈x, yi〉) = {S } and
τ(yi,V)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) and
τ(〈x, yi〉,E)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) and
τ(S , 〈x, yi〉)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) and
L(yi) = {C, oi} for each oi ∈ I new in G and
τ(C, yi)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) and
τ(oi, yi)← τ((≤ nS .C), x) ∪ τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) and
yi,̇y j and τ(NE(yi, y j)) = τ(x,V) ∪ τ(S l(x, y),L(S e(x, y))) ∪ τ(S e(x, y),E) for 1 ≤ i < j ≤ m

Table 5.4: Modified SHOIQ Tableau Expansion Rules for Axiom Tracing

82

different expansion rules: the 6-rule and the O-rule. The dependencies differ depending

on which rule calls the function. For example, if the 6-rule calls the merge function,

then all events are dependent on the existence of more than n S -neighbors; this is not the

case for the O-rule. In order to avoid presentation of two different versions of the merge

function, the following notation is used: let M represented the following set of assertions

depending on the expansion rule that calls the merge function:

M =


6-rule: τ(S G(x,C)) ∪ τ((≤ nS .C),L(x))

O-rule: τ(x,V) ∪ τ(y,V) ∪ τ(o, x) ∪ τ(o, y)

Some problematic cases related to rolling back change events through node merges

can occur when a label (or edge) exists in both of the nodes being merged. For example,

if y is merged into x and both nodes are labeled with D, then the tracing function for the

dependency of D ∈ L(x) will only include the dependency of the events which added D

to the label of x. Therefore, if an assertion is removed that is included in this dependency,

D would be removed from the label of x even though it should still exist because y was

merged into x.

To overcome this and similar cases, all events which occur during the merge oper-

ation are dependent on all edges (incoming and outgoing), labels (both edge and node),

and inequality relations for both x and y. This ensures that if one of these assertions

is removed, the entire merge operation will in turn be rolled-back; then, when the ex-

pansion rules are re-applied to the completion graph after the roll-back, the merge can

be re-performed correctly. Clearly, this is an overestimate for the dependencies of the

events that occur during the merge; however, it is still complete (shown in Theorem 1).

Further, this approach allows us to effectively recover from the merge operation even in

problematic cases. The variable T is introduced to denote this dependency set. First, let

P denote the set of incoming and outgoing edges of both x and y (which are the nodes to

be merged), let Nx,Ny denote the set of node labels for x, y, and Ex Ey denote the set of

inequality relations for x, y. Then T can be defined as follows:

T =

(⋃
〈m,n〉∈P

τ(m,V) ∪ τ(n,V) ∪ τ(〈m, n〉,E) ∪ τ(l,L(〈m, n〉)) for all

83

l ∈ L(〈m, n〉)
)
∪

(⋃
l∈Nx

τ(l, x)
)
∪

(⋃
l∈Ny

τ(l, y)
)
∪

(⋃
e∈Ex

τ(NE(e))
)
∪

(⋃
e∈Ey

τ(NE(e))
)

Finally, the prune function that is called from the merge function is addressed in Table

5.6.

Merge(y, x) :
1. for all nodes z such that 〈z, y〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈z, x〉 to E and set L(〈z, x〉) = L(〈z, y〉), and
τ(〈z, x〉,E)← M ∪ T and
τ(l, 〈z, x〉)← M ∪ T for each l ∈ L(〈z, y〉)

(b) if 〈z, x〉 ∈ E, then
τ(l, 〈z, x〉)← M ∪ T for each l ∈ L(〈z, y〉) and l < L(〈z, x〉) and
set L(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉)

(c) if 〈x, z〉 ∈ E, then
τ(Inv(S), 〈x, z〉)← M ∪ T for each S ∈ L(〈z, y〉) and Inv(S) < L(〈x, z〉) and
set L(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈ L(〈z, y〉)}

(d) remove 〈z, y〉 from E
τ(Remove(〈z, y〉,E))← M ∪ T
τ(Remove(l,L(〈z, y〉)))← M ∪ T for all l ∈ L(〈z, y〉)

2. for all nominal nodes z such that 〈y, z〉 ∈ E
(a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add 〈x, z〉 to E and set L(〈x, z〉) = L(〈y, z〉), and

τ(〈x, z〉,E)← M ∪ T and
τ(l, 〈x, z〉)← M ∪ T for each l ∈ L(〈y, z〉)

(b) if 〈x, z〉 ∈ E, then
τ(l, 〈x, z〉)← M ∪ T for each l ∈ L(〈y, z〉) and l < L(〈x, z〉) and
set L(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉)

(c) if 〈z, x〉 ∈ E, then
τ(Inv(S), 〈z, x〉)← M ∪ T for each S ∈ L(〈y, z〉) and Inv(S) < L(〈z, x〉) and
set L(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈ L(〈y, z〉)}

(d) remove 〈y, z〉 from E
τ(Remove(〈y, z〉,E))← M ∪ T
τ(Remove(l,L(〈y, z〉)))← M ∪ T for all l ∈ L(〈y, z〉)

3. τ(l, x))← M ∪ T for each l ∈ L(y) and l < L(x) and
set L(x) = L(x) ∪ L(y)

4. τ(NE(x, z))← M ∪ T for each z ∈ y,̇z and not x,̇z and
add x,̇z for all z such that y,̇z

5. Prune(y).

Table 5.5: Merge Operation for Axiom Tracing

The modifications of the expansion rules do not impact the correctness of the orig-

inal SHOIQ tableau algorithm; this is a direct consequence of the fact that the original

events caused by expansion rule applications are not modified. Importantly, it can also

be shown that if an event is caused during the application of the expansion rules that is

dependent on an ABox assertion, then the tracing function captures the dependency of

84

Prune(y) :
1. for all successors z of y

remove〈y, z〉 from E and
τ(Remove(l,L(〈y, z〉)))← M ∪ T for all l ∈ L(〈y, z〉) and
τ(Remove(〈y, z〉,E))← M ∪ T and
and if z blockable, Prune(z)

2. remove y fromV and
τ(Remove(l,L(y))← M ∪ T for all l ∈ L(y) and
τ(Remove(y,V))← M ∪ T

Table 5.6: Prune Operation for Axiom Tracing

this event; this implies that the tracing function is complete.

Let ψ be the dependency function that is constructed from τ, which maps an ABox

assertion α to a set of events E, where E contains all e such that α ∈ τ(e).

Theorem 1 Let K be a SHOIQ KB, G be a completion graph for K resulting from some

sequence of application of tableau expansion rules defined in Table 5.4. Also let E be

the sequence of events that occur during the tableau algorithm and ψ be the dependency

function constructed from τ for G. If an event e ∈ E is dependent on ABox assertion

α ∈ K, then e ∈ ψ(α).

Proof See Appendix A.1.2 for the proof of this theorem. �

It is a consequence of this theorem that the tracing function can be used to roll-

back all change events that are dependent on a removed assertion. Therefore, the update

algorithm for deletions proceeds as follows: when an ABox assertion is removed, the

algorithm performs a lookup in the previous completion graph for all change events whose

axiom traces include the deleted assertion. These events are rolled-back if and only if their

axiom trace contains the deleted assertion. Following this, the tableau expansion rules are

re-applied to the resulting completion graph and the tableau algorithm proceeds as usual.

In the event of a deletion update, previously explored branches which had a clash must be

re-explored because the deletion could have removed the assertion which contributed the

clash. Given this, in the event of a deletion, all non-determinstic choice points are simply

reconsidered if back-jumping occurs when the expansion rules are reapplied.

85

To illustrate the approach for deletions, assume that K is the KB shown in Table

5.3 with the additional ABox assertion EyeCareProduct(Renu). In this case, the initial

complete, clash-free completion graph will be identical to the one shown in Figure 5.2.

Next, consider the deletion of the assertion EyeCareProduct(Renu); the events that are

dependent on this assertion are as follows:

Add(EyeCareProduct, xRenu)
Add(Product u ∃cures.EyeProblem, xRenu)

Add(Product, xRenu)
Add(∃cures.EyeProblem, xRenu)

Add(y,V)
Add(EyeProblem, L(y))

Add(〈xRenu, y〉, E)
Add(cures,〈xRenu, y〉)

Given this axiom trace, if EyeCareProduct(Renu) is deleted, then all of these events

would be rolled-back. Therefore, all of these structures would be removed from the com-

pletion graph. After this, the expansion rules would not be applicable to any more labels

and the algorithm would result in the same completion graph as depicted in Figure 5.1

(b).

Lastly, it is pointed out that axiom tracing requires a small modification to the up-

date approach for ABox additions in order to maintain axiom traces; specifically, the

tracing function must be updated to take into account the new structures added to the

completion graph. This is addressed in the next chapter, in which the pseudo-code for the

incremental consistency checking algorithm is provided.

5.3.2 Discussion

As only ABox updates are allowed, only dependencies on ABox assertions are

maintained in the approach just presented. Additionally, only the standard tableau ex-

pansion rules have been addressed. It is important to note that the technique described in

the previous section can be easily extended to trace dependencies for TBox axioms and

86

support known optimizations which introduce additional tableau expansion rules (e.g., the

lazy-unfolding rule). The interested readers is referred to [65] for a discussion of these

topics.

5.4 Incremental Consistency Checking Algorithm

Algorithm 2 presents the incremental consistency checking algorithm for ABox

additions and deletions. The update algorithm takes as input a SHIQ or SHOQ KB K,

a completion graph for K, the axiom tracing and dependency functions for the completion

graph, a set of ABox assertions, a boolean value indicating if the assertions should be

added or removed, and it returns a completion graph. As noted earlier, if the update is

an addition, the previous KB must be consistent, implying that G is complete and clash-

free. Given a named individual a, xa is used to denote the node in the completion graph

corresponding to a.

Next, the correctness of the algorithm is shown for checking ABox consistency

under syntactic updates.

Theorem 2 Let K be a SHIQ or SHOQ KB, G be a completion graph for K, τ and ψ

be the tracing and dependency functions respectively for G, β be a set of ABox assertions,

and υ be some boolean value. Then Algorithm 2 terminates and returns a complete and

clash-free completion graph if and only if a complete and clash-free completion graph

can be constructed by the tableau algorithm for K ⊕ β.

Proof See Appendix A.1.3 for the proof of this theorem. �

The complexity of Algorithm 2 is now addressed. As stated in Chapter 2.4.3, the

known complexity of the SHOIQ tableau algorithm is 2NExpTime [141]. The axiom

tracing modifications to the tableau expansion rules occur in either constant or linear time.

Additionally, lines 1–37 of Algorithm 2 run in linear time. Thus, the worst case complex-

ity of Algorithm 2 is 2NExpTime as well. However, in the next section, empirical results

87

Algorithm 2 Inc Consistency(K,G, τ, ψ, β, υ)
Input:

K: SHIQ KB
G: Completion graph for K
τ: Axiom tracing function for G
ψ: Axiom dependency function for G
β: Set of ABox assertions
υ: Boolean value indicating if β is an addition or deletion

Output:
G: If K ⊕ β is consistent, then a complete and clash-free completion graph for K ⊕ β,

otherwise a completion graph containing a clash
1: if there exists a ∈ Iβ s.t. a < IK then
2: Add new node xa toV that corresponds to a and set L(xa) = {a}
3: end if
4: for all α ∈ β do
5: if υ = true then
6: if α ∈ K then
7: continue
8: end if
9: K = K + α

10: if α of the form C(a) then
11: Set L(xa)← L(xa) ∪ {C}
12: Set τ(Add(C,L(xa)))← {C(a)}
13: Set ψ(C(a))← {Add(C,L(xa))}
14: else if α of the form R(a, b) then
15: if 〈xa, xb〉 < E then
16: Add 〈xa, xb〉 to E
17: end if
18: Set L(〈xa, xb〉)← L(〈xa, xb〉) ∪ {R}
19: Set τ(Add(R,L(〈xa, xb〉)))← {R(a, b)}
20: Set ψ(R(a, b))← {Add(R,L(〈xa, xb〉))}
21: else if α of the form a = b then
22: Add a to L(xb) and b to L(xa)
23: Set τ(Add(a,L(xb)))← {a = b}
24: Set τ(Add(b,L(xa)))← {a = b}
25: Set ψ(a = b)← {Add(a,L(xb)), Add(b,L(xa))}
26: else if α of the form a , b then
27: Add xa,̇xb

28: Set τ(NE(xa, xb))← {a , b}
29: Set ψ(a , b)← {NE(xa, xb)}
30: end if
31: else
32: K = K − α
33: E ← ψ(α)
34: ψ(α)← ∅
35: for all e ∈ E do
36: τ(e)← ∅
37: Roll-back e
38: end for
39: end if
40: end for
41: If G contains a clash perform standard back-jumping
42: Apply expansion rules to nodes in G and proceed with tableau algorithm
43: return G

88

will demonstrate dramatic performance improvements over re-checking consistency from

scratch.

5.5 Empirical Results

A prototype of the incremental consistency checking approach as been implemented

as an extension to an open source OWL-DL reasoner, Pellet [117]. Pellet is a highly

optimized tableau-based DL reasoner that implements the SHOIQ tableau algorithm

[78]. As assumed in the previous discussions, Pellet does not transform ABox assertions

in the TBox axioms, therefore the correctness of the algorithm holds.

In order to evaluate the algorithm for the purpose of OWL-based syndication, an

empirical evaluation has been performed using various OWL KBs with large ABoxes.

This allows the simulation of background information and publications which persist in

the broker’s KB for a long period of time. Table 5.7 presents an overview of the ontologies

have been used in the experiments. They have been selected as a test suite because they

are expressed in the DLs that the algorithm supports and provide a range of expressivity.

The constructs used in these ontologies align with common usage of OWL constructs

that have been observed in a recent comprehensive survey of publicly available OWL

ontologies on the Web [146].

Ontology Expressivity] Classes] Properties
VICODI ALHI 194 29

SEMINTEC ALCIF 59 16
LUBM SHI 43 63
OUBM SHIF 51 77

Table 5.7: Test-Suite Ontology TBox Overview

The VICODI ontology covers the domain of European history and was created

within the VICODI project8. The ontology is one of the least expressive ontologies in the

test suite and is expressed in the DLALHI. In particular, it has class and role inclusion
8VICODI project homepage: http://www.vicodi.org/

89

axioms, as well as domain and range constraints. The TBox is quite large, including 194

concepts and 29 roles.

The SEMINTEC ontology models the financial services domain and has been cre-

ated within a project called SEMINTEC9. The SEMINTEC ontology is more expressive

than VICODI and is expressed inALCIF ; it additionally utilizes functional roles, nega-

tion and universal property restrictions.

LUBM is a benchmark ontology developed at Lehigh University [58]. LUBM mod-

els the university domain and is commonly used in literature for performing scalability

testing of DL reasoning systems. The ontology is expressed in SHI and the TBox is of

moderate size.

UOB is an extension of the LUBM benchmark ontology; the extension has been de-

veloped by IBM and is available through their Integrated Ontology Development Toolkit

(IODT)10. UOB extends LUBM with more complex modeling and includes functional

roles; its expressivity is SHIF .

Ontology] Individuals] Triples
VICODI1 16,942 54,081
VICODI2 33,884 107,734

SEMINTEC1 17,941 65,560
SEMINTEC2 17,941 65,723

LUBM1 35,882 130,800
LUBM2 37,450 225,095
UOB1 25,272 246,266
UOB2 51,762 423,031

Table 5.8: Test-Suite Ontology ABox Overview

As mentioned earlier, each of these ontologies has large ABoxes, which have been

manually created11 or are automatically generated using dataset generators accompanying

the ontologies. In the experiments, different sized ABoxes have been used to investigate

9SEMINTEC project homepage: http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
10IODT project homepage: http://www.alphaworks.ibm.com/tech/semanticstk
11We would like to acknowledge Boris Motik for his creation of the larger VICODI and SEMITEC

datasets (described in [104]).

90

Figure 5.3: Addition Updates of VICODI datasets

the way in which the incremental consistency algorithm scales. Statistics related to these

datasets are presented in Table 5.8, which includes the number of individuals in each

dataset, as well as the total number of triples in the ABox (which corresponds to the

number of ABox assertions).

In order to assess the effectiveness of the algorithm developed in this chapter and

its utility for the incremental consistency checking of the syndication broker’s KB, the

following evaluation has been performed: for each KB size, varying sized ABox additions

and deletions were randomly selected from the dataset. Update sizes include 1, 5, 15, 25,

and 50 ABox assertions; these sizes were selected as they align with publication sizes

expected in realistic syndication systems. These randomly selected assertions where then

added (or removed) to the KB and consistency was checked. The evaluation simulates

new publications arriving at the syndication broker.

In the evaluations, two versions of the DL reasoner Pellet were used; a regular ver-

sion of the reasoner and a version that has been extended with the incremental consistency

checking algorithm. The DL reasoner RacerPro was also used in the evaluation; similar

to Pellet, RacerPro is a highly optimized tableau-based DL reasoner, however RacerPro

91

Figure 5.4: Addition Updates of SEMINTEC datasets

is only sound and complete for the DL SHIQ.

The KAON212 OWL reasoner was also used in the evaluation; similar to Racer-

Pro, KAON2 only supports reasoning for the DL SHIQ. Interestingly, KAON2 is not a

tableau-based reasoner; rather, it reduces OWL KBs to disjunctive datalog and is highly

optimized for ABox reasoning [104]. Our aim in using KAON2 in evaluation was to gain

insights into tableau-based algorithms for syndication purposes when compared to other

possible approaches.

The experiments were run on a Linux machine with 2Gb of RAM and a 3.06GHz

Intel Xeon CPU. Pellet v1.5, RacerPro v1.9.0, and KAON2 release 2007-09-07 were used

in the experiments. Additionally, all results were averaged over 75 iterations. Note that

in all of the figures, the X-axis corresponds to the update size, while the Y-axis is the

response time for consistency checking in milliseconds; the scale is logarithmic. Lastly,

it is noted that a maximum response time of 100 seconds was imposed in the tests, as any

response time above 100 seconds will clearly cause scalability issues for the syndication

framework.
12KAON2 project homepage: http://kaon2.semanticweb.org/

92

Figure 5.5: Addition Updates of LUBM datasets

Figure 5.3 present the consistency checking times for addition updates for both VI-

CODI datasets. First observe that the consistency checking time for the regular version of

Pellet are comparable through update sizes and is between 5 to 8 seconds, depending on

the dataset size. This is expected as consistency is rechecked from scratch and the update

sizes are small relative to the overall KB size. Response times for RacerPro exhibits sim-

ilar properties. The incremental consistency checking approach demonstrates substantial

performance improvements over both the regular version of Pellet and RacerPro. For

both datasets, approximately 3 orders of magnitude performance improvements are ex-

hibited and the response time is always under 10 milliseconds. This is clearly due to the

avoidance of reconstructing the entire completion graph. As the update size is increased,

the performance of the update approach scales well. KAON2 clearly outperforms the

regular tableau-based reasoners, and response times are comparable through the update

sizes. However, the incremental version of Pellet performs better than KAON2 in this

experiment.

Figure 5.4 presents the addition results for SEMINTEC; note that the response time

for Pellet, RacerPro, and KAON2 are again comparable through update sizes. In this

93

Figure 5.6: Addition Updates of UOB datasets

case KAON2 does not perform as well as in the VICODI datasets. It can be observed

that the incremental consistency checking approach exhibits 2 to 3 orders of magnitude

performance over the other reasoners.

The results from the LUBM and UOB datasets are presented in Figures 5.5 and 5.6.

In the experiments using LUBM, the performance results are similar to those exhibited in

the cases for VICODI and SEMINTEC. In contrast for UOB, both KAON2 and RacerPro

did not terminate within 100 seconds. However, the incremental algorithm demonstrates

substantial performance improvements over Pellet and responses times generally under

10 milliseconds.

Figures 5.7 & 5.8 present the deletion results for VICODI and SEMINTEC. The

results for the regular version of Pellet, RacerPro, and KAON2 are essentially the same

as the results from the addition experiments with these ontologies. As in the results for

additions, the incremental consistency checking algorithm demonstrates substantial per-

formance improvements.

Figure 5.9 presents the deletion results for LUBM; again the results are similar for

Pellet, RacerPro, and KAON2. Similarly, substantial performance improvements are ob-

94

Figure 5.7: Deletion Updates of VICODI datasets

served using the incremental reasoning technique over both the regular version of Pellet

and RacerPro. It can be observed that the technique also outperforms KAON2, with the

exception of larger sized updates for the LUBM2 dataset. However, in this case reason-

ing is still in the 10s of milliseconds using the algorithm presented in this chapter and

substantially outperforms the regular tableau-based algorithms. Figure 5.10 presents the

deletion results for UOB, and the results exhibit similar characteristics as the previous

cases.

Table 5.9 presents a summary of the distribution of response times for publications

of size 50 observed in the evaluation. In the table, the notation “VIC-1” and “VIC-2” is

used to denote the VICODI KB of size 1 and 2 respectively (the same notation is used

for the other ontologies as well); additionally, the table presents the minimum, median,

maximum, and average response times observed, as well as the standard deviation. This

provides additional insights into the results of the algorithm, as it demonstrates that the

response times observed for the ontologies are generally very close to the average.

One issue with the algorithm developed in this chapter is related to the impact on

memory due to axiom tracing. I have investigated this and the memory overhead is pre-

95

Figure 5.8: Deletion Updates of SEMINTEC datasets

Additions Deletions
KB Min Med Max Avg Stdv Min Med Max Avg Stdv

VIC-1 2 3 4 3 .5 10 14 23 14 2.6
VIC-2 3 4 6 4.4 .7 8 12 17 12 1.5
SEM-1 2 2 3 2.4 .4 6 8 27 8.1 2.6
SEM-2 3 4 6 4.3 .5 7 9 50 9.6 4.9

LUBM-1 2 2 4 2.4 .5 4 6 13 5.9 1.3
LUBM-2 8 10 15 10.6 1.06 33 75 141 78.6 21.7
UOB-1 6 9 12 8.4 1.1 15 30 45 28.7 6.3
UOB-2 14 16 29 16.4 2 31 57 91 57.6 13.5

Table 5.9: Distribution of Response Times for Updates of Size 50 (time in milliseconds)

sented in Table 5.10. This ranges from approximately 50 to 240 mb. While there is

overhead introduced, the approach provides dramatic performance improvements over

checking consistency from scratch.

5.6 Discussion

The empirical results presented in the previous section demonstrate that incremental

consistency can be performed in a practical manner for realistic KBs. In the remainder of

96

Figure 5.9: Deletion Updates of LUBM datasets

Ontology Tracing Memory (mb)
VICODI1 81
VICODI2 121

SEMINTEC1 51
SEMINTEC2 105

LUBM1 64
LUBM2 185
OUBM1 109
OUBM2 240

Table 5.10: Memory Overhead

this chapter a few open issues will be discussed.

First, the approach presented in this chapter is only applicable to the DLs SHOQ

and SHIQ; this is primarily due to fact that there is no expansion rule ordering imposed

by the tableau algorithm when these logics are considered. Extending the technique to

support SHOIQ is not addressed in this dissertation and is left as future work. The

limitation to SHOQ and SHIQ is reasonable because a very large subset of OWL has

been covered using the algorithm just described and it demonstrates our ability to handle

more expressive syndication. As pointed out earlier, recent surveys of publicly available

97

Figure 5.10: Deletion Updates of UOB datasets

ontologies indicate that a majority of ontologies are expressed in SHIQ, SHOQ, or

one of their sublanguages [146]. In particular, over 88% of the surveyed ontologies are

expressed in SHIF or one of its sub-languges.

Lastly, if the KB is inconsistent after the update, nothing is done to resolve the

inconsistency. This issue is the focus of Chapter 7.2.

98

Chapter 6

Incremental Query Answering

As discussed in Chapter 4, registered subscriptions in the syndication framework

are represented as continuous conjunctive retrieval queries. Therefore, matching newly

published information in the framework reduces to DL query answering. Unfortunately,

as in the case for consistency checking (discussed in the previous chapter), if standard DL

reasoning algorithms and off-the-shelf reasoners are used within this syndication frame-

work, scalability issues with respect to query answering are immediately encountered.

Let us consider current query answering response times using today’s tableau-based rea-

soners for the publicly available OWL ontology from the financial domain discussed in

Chapter 5.11; assume that a subscriber is interested in information matches about in-

surance payments. Given this, the subscriber registers a subscription using the concept

InsurancePayments from the ontology. The subscription is represented by the following:

((x)← InsurancePayment(x),∞)

Then, when a new publication is received at the broker, the query is re-evaulated

over the updated broker’s KB. Table 6.1 presents the query answering times using the

two tableau-based OWL reasoners as used in Chapter 5.1, Pellet and RacerPro. The

times shown are only for actual query answering and do not include consistency check-

ing or query preparation time. It is clear that the response times using these reasoners

demonstrate that scalability issues will be encountered if they are used for matching in a

high-demand (i.e., high publication rate) syndication domain.

Therefore, in this chapter, a technique is developed for more efficient incremental

query answering. One of the main issues with current query answering algorithms is that

1Available at http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

99

Reasoner Response Time (sec)
Pellet 1.69
Racer 14.4

Table 6.1: Query Answering Times for SEMINTEC Ontology

after an update the entire knowledge base is considered when re-evaluating the query.

Given this, the technique developed in this chapter aims to reduce the portion of the KB

that must be considered as candidate answers after an update; therefore, the query only

needs to be re-evaulated over a subset of the KB. This aligns with work in relational and

deductive database query and view maintenance (see Chapters 3.2 & 3.2 for a discussion),

in which the entire query result or view is not reconstructed from scratch given an update

to the database.

6.1 Main Observation

In this section, the main theorem underlying the approach developed in this chapter

is introduced. Let us assume that we are given a retrieval query (x)← C(x) for some con-

cept C and named individual a. Additionally, say that an ABox update β is integrated into

the KB under syntactic updates, such that the resulting KB is consistent. The main insight

underlying the approach is that the dependencies of clashes in completion graphs for the

KB caused by β and ¬C(a) can be exploited to provide an overestimate of the individuals

that instantiate C after the update. Before formally presenting the necessary conditions

for the entailment, the definition of the dependency of a node label in a completion graph

is presented.

Definition 14 (Label Dependence) Define a node label l ∈ L(x) to be dependent on a

node label C ∈ L(y) (or node y ∈ V, edge 〈y, z〉 ∈ E, or edge label R ∈ L(〈y, z〉)) if

during the application of expansion rules to construct completion graph G, l is added to

L(x) due to the existence of C ∈ L(y) (respectively y ∈ V, 〈y, z〉 ∈ E, R ∈ L(〈y, z〉)).

100

The notion of clash dependence is a straightforward extension of this definition;

that is, if a clash2 c = (x,¬C,C) is observed and either ¬C or C is dependent on l ∈ L(y)

(or node y ∈ V, edge 〈y, z〉 ∈ E, or edge label R ∈ L(〈y, z〉)), then the clash is said to be

dependent on l ∈ L(y) (respectively y ∈ V, 〈y, z〉 ∈ E, R ∈ L(〈y, z〉)). Finally, we say that

a label l ∈ L(x) is dependent on an update β if β causes the addition of some node label

C ∈ L(y) (or node y ∈ V, edge 〈y, z〉 ∈ E, or edge label R ∈ L(〈y, z〉)) s.t. l is dependent

on C ∈ L(y) (respectively y ∈ V, 〈y, z〉 ∈ E, R ∈ L(〈y, z〉)); note that a clash dependency

on an update can be defined in a similar way.

Given this, the main theorem underlying the approach developed in this chapter is

introduced3; the theorem presents two conditions, one of which must be satisfied in order

for the new entailment to occur (or be invalidated). For ease of exposition, when referring

to the addition of the structure of a set of ABox assertions β to a completion graph G and

then applying any sequence of the necessary expansion rules (as discussed in Chapter 54),

the terminology “adding β to G”, denoted G] β, will be used.

Theorem 3 Let K be a consistent SHI KB, β an ABox addition (or deletion), and C

some SHI concept. If K 6|= C(a) (respectively K |= C(a)) for some a ∈ IK∪ Iβ, K +β 6|= ⊥,

and K + β |= C(a) (respectively K − β 6|= C(a)), then one of the following conditions is

satisfied when adding β ∪ {¬C(a)} to every G ∈ Comp(K):

1. there exists G ∈ Comp(K) (respectively G ∈ Comp(K − β)) s.t. G] (β ∪ {¬C(a)})

results in a clash c that is dependent on both ¬C(a) and β

2. there exists the same node x with D1 t D2 ∈ L(x) in {G1,G2} ⊆ Comp(K) (respec-

tively {G1,G2} ⊆ Comp(K − β)) such that:

2Note that due to the fact that number restrictions are not allowed in SHI, clashes only occur if
{¬C,C} ⊆ L(x) for some node x; when referring to a clash in the label of node x, the clash will be de-
noted as a triple (x,¬C,C).

3As stated in Chapter 2.4.3, the notation Comp(K) will be used to denote the set of complete, clash-free
completion graphs that can be constructed for K.

4In this discussion, it is assumed that back-jumping is not used, as all completion graphs are maintained.

101

• G1] (β ∪ {¬C(a)}) results in a clash that is independent of ¬C(a) and is

dependent on both β and D1 t D2 ∈ L(x)

• G2] (β∪ {¬C(a)}) results in a clash that is independent of β and is dependent

on both ¬C(a) and D1 t D2 ∈ L(x)

Proof See Appendix A.2.1 for the proof of this theorem. �

It is important to reiterate that in condition 2 of the theorem, the node x in G1 and

G2 corresponds to the same node (which corresponds to either a named or existential in-

dividual). Note that the case in which x corresponds to an existential is not problematic

to maintain, as nodes are not merged (i.e., number restrictions are not supported in SHI)

and all completion graphs are maintained; therefore, when a disjunction is encountered

on an existential and various new completion graphs are constructed, the correspondences

between the existential node x in each of the completion graphs can trivially be deter-

mined.

Intuitively, the first condition of Theorem 3 states that for a named individual a

to instantiate a concept after an addition, then some clash observed when incrementally

updating a completion graph for the original KB with β and ¬C(a) will be dependent on

structures from both β and ¬C(a). On the other hand, the second condition states that

¬C(a) and β will cause clashes in different completion graphs that are dependent on the

same non-determinstic choice (i.e., a disjunction label). Analogous statements can be

made for deletions.

6.2 Naı̈ve Approach

Given a retrieval query composed of a single DL concept, Theorem 3 implies that if

all completion graphs for the KB are maintained through updates and the two conditions

are checked, then the detection of new candidate bindings (respectively invalidated bind-

ings for deletions) for a given query can be accomplished; then, only this subset of the

102

individuals would have to actually be checked for the entailment. The main insight is that

if this technique (or an overestimate of it) can be accomplished in a practical manner, then

this set of candidates may be a small subset of the original KB, thereby decreasing the

overhead of re-evaluting queries given an ABox update. In the remainder of this section, a

naı̈ve approach is outlined which exploits Theorem 3 for this task. Then, in the remainder

of this chapter, I extend the technique to make it practical.

6.2.1 ABox Additions

It can be observed that in order to take into account the first condition of Theorem

3 for additions, one can update all completion graphs for the initial KB with β and track

the label dependencies for β. Following this, one can update the resulting complete and

clash-free completion graphs with ¬C(a) and determine which clashes are dependent on

both β and ¬C(a). This is sufficient due to the fact that there is not an expansion rule

application ordering imposed for SHI and condition 1 of Theorem 3 states the clash

must be dependent on both β and ¬C(a) when applying any sequence of the necessary

expansion rules5. An additional observation related to this is also made; in particular,

for a clash to be dependent on both β and ¬C(a), then after adding β to all G ∈ Comp(K)

resulting in the set of complete and clash-free completion graphs GK+β, it must be the case

that when adding ¬C(a) to some G′ ∈ GK+β, a root node that had a node label, edge, or

edge label added due to βmust have a label added due ¬C(a). This is a consequence of the

previous observation and the tree-like model property of SHI, which intuitively states

that the completion graph will be a forest of trees rooted at nodes corresponding to named

individuals. Therefore, one can easily determine an over-estimate of the individuals that

could satisfy condition 1 by first updating all G ∈ Comp(K) with β, while tracking the

root nodes N with a node label, edge, or edge label change. Then, the following can be

5Note, however, there could be a case in which there is an immediate clash as a result of adding the
structures of β and ¬C(a) to some G ∈ Comp(K) prior to applying any expansion rules. Using this approach,
such a case would not be detected; however this case can trivially be covered by inspecting β and ¬C(a).

103

performed for each individual a to determine if a is in fact a candidate: the negated query

concept, ¬C, can be to L(xa)6 in each updated completion graph, and for the condition to

be satisfied for a, a label must be added to some n ∈ N due to the addition of ¬C to L(xa).

A straightforward observation is made regarding the second claim for Theorem 3 as

well. In particular, when updating each G ∈ Comp(K) with β, all clashes dependent on β

that are independent of ¬C will be observed. Therefore, if the dependencies of labels on

disjunctions are tracked during the tableau algorithm (addressed in more detail shortly),

one can easily determine the individuals that satisfy the second condition by adding ¬C to

each individual and checking if this causes a clash that is dependent on some disjunction

that contributed to a clash when updating each G ∈ Comp(K) with β. Similar to the

discussion for the first condition, an over-estimate of this approach can be provided as

well; in particular, using a disjunction label dependency function (addressed shortly), one

can easily determine the root nodes N that have a label or non-root descendent with a

label that is dependent on some disjunction that contributed to a clash observed when

adding β to the completion graph. Then, an overestimate of the individuals which satisfy

the second condition can be provided by determining the individuals a such that adding

¬C to L(xa) causes some label to be added to some n ∈ N. This is sufficient because for

there to be a clash dependent on the disjunction, it must be the case that the expansion

rules add a label to one of these root nodes.

Such a disjunction dependency tracking function can easily be maintained in a sim-

ilar manner to the axiom tracing technique discussed in Chapter 5. In particular, when a

disjunction is added to a node in a completion graph, the function will be updated with

the label addition events that are a result of the disjunction. As this can be accomplished

in an analogous manner as axiom tracing, this function is simply assumed.

6Note that as in the previous chapter, given a named individuals a, denote by xa the root node corre-
sponding to a.

104

6.2.2 ABox Deletions

By additionally leveraging the axiom tracing function introduced in the previous

chapter, this theorem can be exploited to support incremental deletions in a similar to

the approach just discussed for addition updates; specifically, due to the completeness of

the axiom tracing function (shown in Theorem 1), if there was a change event in some

G ∈ Comp(K) that was caused due to the existence of some α ∈ β, then it must be the

case that there is a corresponding change event in ψ(α) reflecting this change. Thus,

the complete and clash-free completion graphs for K − β can easily be obtained by first

rolling-back the change events in each G ∈ Comp(K) that are dependent on some α ∈ β

and then applying the necessary expansion rules as in Chapter 57. Thus, the deletions can

be supported in the same manner as additions.

6.2.3 Example

To further illustrate the general approach, consider the KB presented in Table 6.2,

which consists of two ABox assertions stating that BauschAndLomb has product Renu and

that Renu causes some thing that is either an Infection or a PositiveEffect (for simplicity,

there are not any TBox axioms in the KB).

Knowledge Base
hasProduct(BauschAndLomb,Renu),

∃causes.(Infection t PositiveEffect)(Renu)

Table 6.2: Sample Knowledge Base

When performing the tableau algorithm for this KB, the complete and clash-free

completion graphs shown in Figure 6.1 would be constructed. Note that there are two

completion graphs due to the type assertion for BaushAndLomb involving a disjunction.

7Note that all non-determinstic choices must be explored when applying the expansion rules and back-
jumping does not need to be used as all completion graphs are maintained; additionally, it is assumed
that the disjunction and clash dependency functions are updated to reflect the deletion by simply retracting
entries that involve some structure removed during the roll-back.

105

(a) (b)

Figure 6.1: (a) Completion Graph 1. (b) Completion Graph 2.

Next, assume that a query is issued over the KB for all things that have some

product which causes an infection; more formally the query is represented by (x) ←

(∃hasProduct.(∃causes.In f ection))(x). Given an update, for an individual to now in-

stantiate the query concept, then one of the two conditions presented in Theorem 3 must

be satisfied. To demonstrate the first condition, let us assume that an ABox addition is re-

ceived stating that Renu only causes infections, denoted by (∀causes.Infection)(Renu). If

we now consider whether BauschAndLomb satisfies condition 1, it can be seen that when

adding the negation of the query concept (i.e., ∀hasProduct.(∀cause.(¬In f ection)), to

L(BauschAndLomb) and ∀causes.Infection to L(Renu) (corresponding to the structure of

the update) in the second completion graph, the clash (x, Infection,¬In f ection) would

be observed which is dependent on both of these labels; this is depicted in Figure 6.2.

Therefore, BaushAndLomb must be considered as a candidate for the query concept; note,

however, that in this case, it does not instantiate the query.

Next, let us consider the second condition of Theorem 3; in this case, assume that an

ABox addition is received which states that Renu does not cause PositiveEffects; formally

(∀causes.¬PositiveEffect)(Renu). If we consider BauschAndLomb again, there would be

a clash involving the labels ¬Infection and Infection in the first completion graph that is

dependent on the negated query concept and the disjunct Infection from the disjunction

Infection t PositiveEffect. Further, the addition will in turn cause a clash with the other

disjunct (i.e. PositiveEffect) of the disjunction in L(x). Therefore, the second condition

106

Figure 6.2: Clash Satisfying Condition 1

(a) (b)

Figure 6.3: Clashes Satisfying Condition 2: a) Clash in completion graph 1 due to negated
query concept. b) Clash in completion graph 2 due to ABox addition.

will be satisfied, and in this case, the updated KB would in fact entail that BauschAnd-

Lomb is a new answer for the query. The resulting completion graphs containing the

clashes are depicted in Figure 6.3

6.2.4 Discussion

It is clear that adopting such a naı̈ve approach to determine the candidate individuals

will impose substantial overhead, and likely be worse than simply running the query from

scratch. This is because one would have to perform such a check for each named individ-

ual in all completion graphs, which would clearly be ineffective. Further, maintaining all

107

completion graphs for the KB is itself impractical due to the potential exponential number

of completion graphs.

Given this, in the remainder of this chapter, a more practical approach to exploit

Theorem 3 is presented. First, the issue of adding the negated query concept to all named

individuals is addressed in section 6.4; the main idea of the technique presented is to build

a structure that can be used to perform a structural search in each completion graph after it

has been incrementally updated with an ABox update; then, only the nodes corresponding

to named individuals reached during this search need to be considered. In using such an

approach, applying the expansion rules to the negated query concept and attempting to

detect clashes is almost entirely avoided.

Secondly, in section 6.5, I develop a technique to avoid maintaining all completion

graphs for the KB; the main insight is to construct a single completion graph structure

which acts as a summary for all completion graphs, therefore allowing only the mainte-

nance of this one (summary) completion graph. However, until section 6.5, it is assumed

that all complete and clash free completion graphs for the KB are maintained through

updates. Further, in the remainder of this chapter, when referring to the update of some

completion graph, it is assumed that backtracking does not occur during the reapplication

of expansion rules; this is because it is assumed all completion graphs are maintained.

6.3 Assumptions

In the techniques developed in the remaining sections of this chapter some restric-

tions and assumptions are imposed on the queries supported. First, it must be the case

that the query can be rolled-up into a distinguished variable (see Chapter 2.4.2 for a dis-

cussion about the rolling-up procedure). This implies that the rolling-up technique must

be applicable to the query and that it must contain at least one distinguished variable (im-

plying it is a retrieval query). While this is a restriction of the approach in general, it

is noted that the requirement that the query is a retrieval query does not directly impact

108

the utility of the technique for the purpose of the syndication framework; this is because

subscriptions are in fact retrieval queries. The second restriction is that transitive roles

or sub-roles of transitive roles are not allowed as query atoms (i.e., all roles are simple);

this is necessary to ensure completeness of the proposed techniques. However, as stated

in Chapter 2.4.2, rolling-up arbitrarily shaped queries in the presence of transitive roles

is known to be problematic [140, 52, 51]; therefore, this restriction implies that the query

can in fact be rolled-up (as required in the first restriction). It is noted that an additional

syntactic restriction is imposed on the queries supported, however this will be discussed

later in section 6.4.

Lastly, without loss of generality, in the remainder of this chapter we assume that

the query is connected [50].

6.4 Concept Guide

In this section, an approach is presented for avoiding the addition of the negated

query concept to all named individuals. The main goal behind the approach is to build a

structure that can be used to determine the propagation of labels to root nodes in a com-

pletion graph due to the addition of the negated query concept. Therefore, this structure

can be used to detect the individuals such that if the query concept were added to their

node label, the application of expansion rules could cause a label to propagate to a node

with some other label, (incoming/outoing) edge, or edge label dependent on the update

β or some disjunction. As discussed earlier, determining this propagation is necessary

in order to check if the conditions of Theorem 3 are satisfied. In the remainder of this

section, only retrieval queries involving a single DL concept are assumed (i.e., concept

retrieval queries); however, the technique introduced here is extended to complex query

patterns in section 6.6.

In order to support general TBoxes, a restriction is imposed on the queries supported

in the approach. Before explaining this restriction, the following notation is introduced:

109

given KB K, let CT denote the concept constructed as a result of internalizing8 the TBox

for K into a single concept (in NNF). Additionally, given a concept D, let clos(D) denote

the smallest set of concepts containing D that is closed under sub-concepts (in NNF);

further, given KB K, let clos(K) denote the union of clos(CT) and all clos(D) for each

concept assertion D(a) ∈ K; that is clos(K) = clos(CT) ∪
⋃

D(a)∈K clos(D).

Then, given retrieval query for concept C (in NNF), it is assumed that if ∀R.D ∈

clos(K) ∪ clos(¬C), then it must be the case that ∃P.E < clos(¬C), where Inv(P) v∗ R.

Intuitively, given a complete and clash-free completion graph G and some named indi-

vidual a, this restriction ensures that if a new edge is added to G as a result of extending

G with ¬C(a), then no concepts will be transfered back up this newly added edge. This

effectively isolates the propagation of labels due to expansion rule applications from the

addition of the negated query concept to G (see section 6.10 for a discussion regarding

the impact of the restriction in practice). Given a KB K and concept C, we will say that C

is safe with respect to K if C satisfies the restriction just introduced.

I now introduce the structure that is leveraged for determine the effects of adding a

concept name to the label of a node in a completion graph; this is referred to as a concept

guide. Intuitively, a concept guide is a labeled, directed graph, which is formally defined

in Definition 15.

Definition 15 (Concept Guide) Define a concept guide G to be a labeled directed graph

G = (NG, EG, LG). Each node n ∈ NG is labeled with a non-empty set of SHI concepts,

and each edge (n,m) ∈ EG is labeled with a non-empty set of role names.

Note that for ease of readability later in this chapter, edges in a concept guide are

denoted via (n,m), whereas edges in a completion graph are denoted by 〈x, y〉. The con-

cept guide is built by repeatedly inspecting the form of the concept names in node labels

in the concept guide.

8See Chapter 2.4.3 for a discussion of the process.

110

Definition 16 (Concept Guide Construction) Let K be a SHI KB, C a SHI concept,

and G = (∅, ∅, L). Define the concept guide for C, denoted guide(C), to be initialized with

n ∈ NG and LG(n) ← {C}. Then define the following rules to be repeatedly applied to the

concept guide node labels until no further modifications can be made to G:

1. if ∀R.D ∈ LG(n) and (n,m) < EG s.t. R ∈ LG((n,m)) and D ∈ LG(m) then

(a) add a new node m to NG and set LG(m)← {D}

(b) set EG ← EG ∪ {(n,m)}

(c) set LG((n,m))← LG((n,m)) ∪ {R}

2. if ∀R.D ∈ LG(n), there is some S with Trans(S) and S v∗ R, and {(n,m), (m,m)} *
EG s.t. R ∈ LG((n,m)), D ∈ LG(m), and S ∈ LG((n,m)) and S ∈ LG((m,m)) for all S
s.t. Trans(S) and S v∗ R then

(a) add a new node m to NG and set LG(m)← {D}

(b) set EG ← EG ∪ {(n,m)} ∪ {(m,m)}

(c) set LG((n,m))← LG((n,m)) ∪ {R}

(d) set LG((n,m)) ← LG((n,m)) ∪ {S } and LG((m,m)) ← LG((m,m)) ∪ {S } for all
S s.t. Trans(S) and S v∗ R

3. if C1 u C2 ∈ LG(n) or C1 t C2 ∈ LG(n) and {C1,C2} * LG(n) then set LG(n) ←
LG(n) ∪ {C1,C2}

It is a straightforward consequence of the definition that the construction of the

concept guide will terminate; this is implied by the conditions checked prior to performing

the operations in the definition and the fact that clos(C) is of finite size.

6.4.1 Example

To demonstrate the construction of a concept guide, let us consider the previous

query from section 6.1, (x) ← (∃hasProduct.(∃causes.Infection))(x). Additionally, as-

sume that hasProduct is a transitive role; observe that the negation of the query concept

is ∀hasProduct.(∀causes.¬Infection). Let us consider the concept guide for the negated

query concept; when constructing the concept guide, a new node will first be added and la-

beled with the negated query concept. Following this, the second condition of Definition

111

15 will be applicable to this node label. Therefore, a new node and edge will be cre-

ated with labels hasProduct and ∀causes.¬In f ection respectively. Further, because the

hasProduct role is transitive, a self-looping edge labeled with this role will be added to

the most recently added node. Lastly, due to the newly added ∀causes.¬In f ection label,

a new edge and node will be created and labeled with causes and ¬Infection respectively.

The resulting concept guide is depicted in Figure 6.4.

Figure 6.4: Example Concept Guide

6.4.2 Approach

In this section, I discuss how the concept guide is used to determine the propagation

of labels due to an update in a completion graph. First, the notion of a concept guide path

between two nodes in a completion graph in defined.

Definition 17 (Concept Guide Path): Let K be aSHI KB, C some concept,G = guide(C),

G ∈ Comp(K), and n,m ∈ NG. Define there to be an n-m-concept guide path between two

nodes x, y ∈ V, denoted path(n,m, x, y,G,G), if there is a sequence of edge traversals,

〈x1, y1〉, ..., 〈xk, yk〉 ∈ E and (n1,m1), ..., (nk,mk) ∈ EG, such that the following holds:

1. x1 = x and n1 = n (i.e., the path starts at n ∈ NG and x ∈ V)

2. for each edge traversal, 〈xi, yi〉 ∈ E, and corresponding edge traversal, (ni,mi) ∈

EG, it is the case that for some R ∈ LG((ni,mi)), xi has R-neighbor yi

112

(a) if some node z ∈ V is blocked by w ∈ V, then an edge 〈v,w〉 withL(〈v,w〉)←

L(〈v, z〉), where v is the predecessor of z, is also considered for traversal

3. yk = y and mk = m (i.e., the path ends at m ∈ NG and y ∈ V)

Condition 2a is necessary due to blocking conditions utilized during the creation

of SHI completion graphs, as cyclic models can occur. Condition 2a overcomes the

problematic case where there would be a path in the completion graph that satisfies the

constraints imposed by the concept guide, yet due to blocking, the path does not explicitly

exist.

Assuming the restrictions imposed on the form of C, it can be shown that if adding

a concept ¬C to root node xa in a complete and clash-free completion graph causes a label

to be added to a root node xb, then there is a concept guide path that starts at the concept

guide node labeled with ¬C between the two nodes.

Theorem 4 Let K be a SHI KB, G ∈ Comp(K), C be a SHI concept that is safe with

respect to K, and G = guide(¬C). If adding ¬C(a), a ∈ IK, to G causes a concept name

to be added to L(xb), b ∈ IK, then there is a concept guide path path(n,m, xa, xb,G,G) for

some n,m ∈ NG s.t. ¬C ∈ LG(n).

Proof See Appendix A.2.2 for the proof of this theorem. �

Theorem 4 implies that the concept guide can be used to determine all root nodes

that could be reached by label propagations as a result of adding the concept name ¬C

to the node corresponding to a named individual in the KB. This in turn means that we

can avoid adding ¬C to all individuals in the KB to take into account the first condition

of Theorem 3 for additions. This is because, one can maintain the root nodes x with a

node label, edge, or edge label change due to β, and then search for all nodes that satisfy

the concept guide path relation involving x. This set of nodes therefore constitutes a

superset of individuals which, if ¬C were added to their label, would cause a clash that is

dependent on ¬C and β.

113

Similarly, the concept guide can be utilized to take into account the second condi-

tion of Theorem 3 for additions. As discussed earlier, one can trivially observe the clashes

that are dependent on βwhen updating each G ∈ Comp(K); further, the actual disjunctions

that the clashes are dependent on (if any) can also be observed. If the disjunction depen-

dencies of labels are tracked during the tableau algorithm, then one can easily determine

the root nodes N which have a label that is dependent on one of the disjunctions. Thus,

the concept guide can then be used to determine the root nodes n ∈ N reachable due to

¬C. Given the discussion presented in section 6.2.2, it is clear that deletion updates can

be handled in a similar manner.

Next, a variety of notation is introduced, which will be utilized to show the cor-

rectness of the approach. Given addition β, G ∈ Comp(K) and G′ the result of G] β

(containing a clash or clash-free), denote by Dep(β,G,G′) the set of named individuals

whose corresponding root nodes have a node label, or incoming/outgoing edge or edge

label changed when constructing G′. Also, given some node x with D1 t D2 ∈ L(x) and

completion graph G, denote by Dis jG((D1 t D2, x)) the set of named individuals whose

corresponding root nodes have a label that is dependent on disjunction D1 t D2 ∈ L(x)

in G. Further, denote by Dis jK((D1 t D2, x)) the set of named individuals whose corre-

sponding root nodes have a label that is dependent on disjunction D1tD2 ∈ L(x) in some

completion graph G ∈ Comp(K). As in section 6.1, it is important to reiterate that the

node x corresponds to the same node in the different completion graphs. Again, the case

in which x corresponds to an existential is not problematic to maintain, as nodes are not

merged (i.e., number restrictions are not supported in SHI) and all completion graphs

are maintained.

Given this, I define the set of concept candidates, which intuitively is an over-

estimate of the individuals which instantiate (or no longer instantiate) a concept after an

addition (respectively deletion).

114

Definition 18 (Concept Candidates): Let K be a SHI KB, β an ABox addition (or dele-

tion), C be a SHI concept that is safe with respect to K and β, and G = guide(¬C). Then

define the concept candidates, denoted CC(K,C, β), to be the set of all named individuals

a ∈ IK ∪ Iβ such that adding β to some G ∈ Comp(K) (respectively G ∈ Comp(K − β))

results in G′ and one of the following conditions is satisfied:

1. a ∈ Iβ

2. G′ clash-free, b ∈ Dep(β,G,G′) and there is a concept guide path path(n,m, xa, xb,G,G′)

3. a clash is observed that is dependent on D1 t D2 ∈ L(y) and for some b ∈

Dis jK((D1 t D2, y)) (respectively b ∈ Dis jK−β((D1 t D2, y))) or b ∈ Dep(β,G,G′)

there is a concept guide path path(n,m, xa, xb,G,G′′) in some G′′ ∈ Comp(K) \ G

for some n,m ∈ NG, where ¬C ∈ LG(n).

Theorem 5 implies the correctness of the approach using the concept guide for

determining the candidate new (respectively invalidated) bindings for a retrieval query

consisting of a SHI concept.

Theorem 5 Let K be a SHI KB, β an ABox addition (or deletion), C be a SHI concept

that is safe with respect to K and β, and G = guide(¬C). If for some a ∈ IK ∪ Iβ, K 6|= C(a)

and K + β |= C(a) (respectively K |= C(a) and K − β 6|= C(a)), then a ∈ CC(K,C, β)

Proof See Appendix A.2.3 for the proof of this theorem. �

6.4.3 Discussion

The construction of the concept guide assumes the standard SHI tableau expan-

sion rules [74]. In many DL reasoning systems, a variety of optimizations are utilized,

some of which introduce additional tableau expansion rules (see Chapter 2.4.3 for addi-

tional details). The approach can easily be extended to take into account the unfolding

and domain/range expansion rules via a simple extension to the definition of the concept

115

guide construction. In order to support the unfolding rule, whenever an atomic concept is

encountered during the construction of the concept guide, the concept is unfolded and its

label is be added to the current concept guide node; in order ensure that the same concept

is not repeatedly unfolded (i.e., termination), nodes with the same concept names can be

merged, capturing the cycle. For the domain rule, whenever a label of the form ∃R.D is

encountered during the construction of the concept guide, then the domain of the role R

is added to the current node. Observe that handling the range-rule is un-necessary, due to

the restriction on the query form.

6.5 Summary Completion Graph

Incrementally maintaining all completion graphs for a given KB is not practical;

further, in the presence of a reasonable degree of non-determinism in a KB, constructing

all completion graphs is a very expensive process. To overcome this issue, an approach is

developed in which a completion graph structure is constructed that represents a summary

of the structures present in all completion graphs for the KB; this structure is referred to

as a summary completion graph. The general idea is to maintain the summary completion

graph through updates in a similar manner as maintaining a regular completion graph.

Importantly, this structure can be utilized to locate the candidate individuals, and therefore

all completion graphs for the KB do not have to be maintained. Given this brief overview,

a summary completion graph is defined as follows:

Definition 19 (Initial Summary Completion Graph Construction): Define the summary

completion graph forSHI KB K, denoted S G, to be constructed by applying theSHI tableau

algorithm to K, however with the following modifications:

1. the t-rule is replaced as follows:

if C1 t C2 ∈ L(x), x is not indirectly blocked and {C1,C2} * L(x) then L(x) ←

L(x) ∪ {C1,C2}

116

2. if a clash is encountered, it is ignored and the algorithm continues

The construction of the summary completion graph proceeds in an similar manner

as the regular tableau algorithm, however when the t-rule is applied, all concept names of

the disjunction are added to the node label (in the same manner as the u-rule). Note that

condition 2 of the definition is required, as adding all concept names from a disjunction

can introduce clashes which would not occur in the different completion graphs.

Termination of the construction of the summary completion graph follows eas-

ily from the fact that the termination for the SHI tableau algorithm is independent of

clash detection; therefore it can be shown in an identical manner as termination for the

SHI tableau algorithm [79, 74].

6.5.1 Summary Completion Graph Properties

In this section, various properties of the summary completion graph for a KB are

shown. Specifically, it is shown that if a root node has a label in some completion graph

corresponding to a model for the KB, then that concept name will be in the label for that

individual in the summary completion graph. Further, properties regarding the tree and

graph-like structures rooted at root nodes are shown. These properties will be utilized

later when showing the correctness of the approach.

First, the following notation is introduced: given a completion graph G with root

node x, denote by Tree(x) the tree rooted at x that is composed of x, all non-root descen-

dants of x, and the labels for nodes and edges for the tree; this tree is referred to as the

root tree for x in G. Additionally, given root tree T , denote by Root(T), VT , ET , and LT

the unique root, set of nodes, edges, and label function for the tree respectively. The no-

tion of sub-graphs of root nodes in a completion graph is also introduced. This structure

can be viewed as a generalization of a root tree in which node neighbors, edges from the

predecessor of a blocked node to the blocking node, and edges between root nodes are

also considered.

117

Definition 20 (Root Graph) A root graph G is composed of a set of nodes VG, edges EG,

and labeling function LG for the nodes and edges; additionally, there is a uniquely defined

root node of the graph, Root(G). Given a completion graph G and root node x, the root

graph G for x, denoted Graph(x), is defined as follows:

1. Root(G) = x, x ∈ VG, and LG(x) = L(x)

2. if y ∈ VG and y has R-neighbor z in G s.t. z not blocked, then z ∈ VG, 〈y, z〉 ∈ EG,

LG(z) = L(z) and LG(〈y, z〉) = LG(〈y, z〉) ∪ {R}

3. if w, y ∈ VG, z ∈ V a non-root node, y the predecessor of z, y has R-neighbor z, and

w blocks z in G, then 〈y,w〉 ∈ EG and LG(〈y,w〉) = LG(〈y,w〉) ∪ {R}

Next, the notion of tree containment in a root graph is introduced; intuitively, this

implies that the tree structure of the root node is included in the graph structure of the

node.

Definition 21 (Tree Containment) Let T,G be a root tree and root graph respectively. In-

ductively define node x ∈ VT to be contained in y ∈ VG, denoted con(x, y), if the following

holds:

1. LT (x) ⊆ LG(y)

2. for each 〈x, z〉 ∈ ET there exists an edge 〈y,w〉 ∈ EG s.t.

(a) for all R ∈ LT (〈x, z〉) there is some S ∈ LG(〈y,w〉) s.t. S v∗ R and

(b) LT (z) ⊆ LG(w) and

(c) con(z,w)

Then, T is said to be contained in G, denoted contain(T,G), if con(Root(T),Root(G)).

Lastly, given a root tree T and root graph G s.t. contain(T,G), denote by y →T,G z a

mapping of node y ∈ VT into z ∈ VG s.t. the containment relationship is satisfied.

118

Importantly, each root tree in a complete and clash-free completion graph for K

must be contained in the root graph for the corresponding node in the summary comple-

tion graph for K.

Lemma 2 Let K be a SHI KB and S G be the summary completion graph for K. Then

for all G ∈ Comp(K) and each a ∈ IK, xa ∈ V and x′a ∈ VS G , it is the case that

contain(Tree(xa),Graph(x′a)).

Proof See Appendix A.2.4 for the proof of this lemma. �

Because root nodes are never blocked and the tableau expansion rules do not add

edges or edge labels between root nodes, it must be the case that all edges and their labels

between root nodes that exist in any complete and clash free completion graph for the KB

also exist in the summary completion graph. Intuitively, this and Lemma 2 imply that the

summary completion subsumes the information in all complete and clash-free completion

graphs for K.

6.5.2 Using the Summary Completion Graph

In this section, I show how the summary completion graph can be used to avoid

maintaining all completion graphs for the purpose of exploiting Theorem 3. This is ac-

complished by showing that an overestimate of the concept candidates introduced in Def-

inition 18 can be determined by simply using the summary completion graph. In the

following two sections, I address each of the three conditions in Definition 18 separately.

Clearly, the first condition of the definition is trivial; therefore, only conditions 2 and 3

are addressed. It is noted that in the following two subsections, I only address addition

updates; this is because the approach for deletions follows in a similar manner and will

be addressed later.

119

Condition 2

For the second condition of Definition 18 to be taken into account using the sum-

mary completion graph, intuitively it must shown that we can determine the propagation

of labels due to the addition in all complete and clash-free completion graphs for a KB by

simply using the summary completion graph. The main idea of the approach is that given

a set of assertions β, the structures for β can be added to the summary completion graph

and the expansion rules can be applied to the added labels in a similar manner as when

incrementally updating a complete graph (as in Chapter 5). Then, it can be shown that

the propagation of labels to root nodes in the summary completion graph subsumes the

propagation in all completion graphs. Further, I show that the concept guide paths must

also exist in the summary completion graph; collectively, this implies the completeness

of the approach.

Due to the specialized treatment of the t-rule, there may be labels present in the

summary completion graph which prohibit the application of an expansion rule. For ex-

ample, βmay include a type assertion of the form ∀R.C(a) and in the summary completion

graph all R-neighbors of a already have C in their label; however, in the different complete

and clash-free completion graphs for the KB prior to the addition of β, there could exists

some R-neighbor that does not contain C in its label (this is due to the non-determinism

in the tableau algorithm). In this case, this neighbor would in fact have a label change,

causing it to be considered when detecting concept guide paths.

This problem is overcome by a modification when checking if the expansion rules

can be applied to a node. Specifically, if when updating the summary completion graph

with β, it is the case that a node label exists which prevents the application of an expansion

rule, then it is applied anyway. In order to ensure that the algorithm still terminates, rule

applications are tracked using a marking function θ when they have been applied to a

specific node during the update of the summary completion graph (shown in Table 6.3);

therefore, the re-application will only happen once.

120

u-rule: if 1) C1 uC2 ∈ L(x), x is not indirectly blocked and
2) either a) θ((C1 uC2, x)) == f alse or b) {C1,C2} * L(x)

then set θ((C1 uC2, x)) = true and L(x) = L(x) ∪ {C1,C2}

t-rule: if 1) C1 tC2 ∈ L(x), x is not indirectly blocked and
2) either a) θ((C1 tC2, x)) == f alse or b) {C1,C2} * L(x)

then set θ((C1 tC2, x)) = true and L(x) = L(x) ∪ {C1,C2}

∃-rule: if 1) ∃S .C ∈ L(x), x is not blocked and
2) either a) θ((∃S .C, x)) == f alse or b) x has no S -neighbor y with C ∈ L(y)

then set θ((∃S .C, x)) = true and create a new node y with L(〈x, y〉) = S and L(y) = C

∀-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) either a) θ((∀S .C, x, y)) == f alse and there is an S -neighbor y of x with C ∈ L(y) or

b) there is an S -neighbor y of x with C < L(y)
then set θ((∀S .C, x, y)) = true and L(y) = L(y) ∪C

∀+-rule: if 1) ∀S .C ∈ L(x), x is not indirectly blocked and
2) there is some R with Trans(R) and R v∗ S ,
3) either a) θ((∀S .C,R, x, y)) == f alse and there is an R-neighbor y of x with ∀R.C ∈ L(y)

b) there is an R-neighbor y of x with ∀R.C < L(y)
then set θ((∀S .C,R, x, y)) = true and L(y) = L(y) ∪ {∀R.C}

Table 6.3: Modified Tableau Expansion Rules for the Summary Completion Graph.

Given this, the approach for updating of the summary completion graph is defined

as follows.

Definition 22 (Summary Completion Graph Update): Let K be a SHI KB, S G be the

summary completion graph for K, and β a set of ABox assertions. Then S G is incremen-

tally updated with β using the approach presented in Chapter 5, however:

• clashes are ignored

• the modified expansion rules defined in Table 6.3 are assumed and are applied to

the following nodes:

1. each node xa corresponding to some individual a ∈ Iβ

2. any node subsequently reached by the application of an expansion rule due to

condition 1–3

3. any node that was previously blocked, yet the block is invalidated because of

the addition of a node label due to condition 1–3

121

Denote by U pdate(β, S G) the update of summary completion graph S G with β ac-

cording to Definition 22. Additionally, denote by Dep(β, S G) the set of named individuals

whose corresponding root nodes have a node label, or incoming/outgoing edge or edge

label that is (re)added during U pdate(β, S G). It can be shown that the approach for up-

dating the summary completion graph terminates and that after the update Lemma 2 still

holds.

Lemma 3 Let K be a SHI KB, G ∈ Comp(K), S G the summary completion graph for K,

β an ABox addition, G′ the result of adding β to G (either containing a clash, or complete

and clash-free), and S ′G = U pdate(β, S G). Then U pdate(β, S G) terminates and Lemma 2

holds for S ′G and G′.

Proof See Appendix A.2.5 for the proof of this lemma. �

In order to show completeness of the approach, we must demonstrate that S G can

be used to find all a ∈ Dep(β,G,G′) for some G ∈ Comp(K) and G′ the result of adding

β to G. First, note that if an edge 〈x, y〉 ∈ E, where x, y are root nodes, is added to G,

it must have been added due to a role assertion in β (the same holds for edge labels for

edges between root nodes); this is due to the fact that the tableau expansion rules do not

add edges or edge labels between named individuals. Therefore, it suffices to show that

if a label is added to some root node xa during the update of some G ∈ Comp(K), then a

label will be (re)added to the corresponding root node in the summary completion graph.

Lemma 4 Let K be a SHI KB, G ∈ Comp(K), S G be the summary completion graph for

K, and β a set of ABox assertions. If when adding β to G, a root node x has a concept

name added to L(x), then x will have a concept name (re)added to LS G(x) when updating

S G with β.

Proof See Appendix A.2.6 for the proof of this lemma. �

Given this, the summary completion graph can be used to determine Dep(β,G,G′)

by tracking the nodes that are reached during the update of the summary completion

122

graph. However, one must then find the concept guide paths involving these individuals

in each G′ (i.e., the result of adding β to G ∈ Comp(K)). Once again, it can be shown that

it suffices to simply use the updated summary completion graph, rather than all G′; this

is a consequence of Lemma 3 and the following theorem, which intuitively states that if

there is a concept guide path in a completion graph, then there will also exist a concept

guide path in the summary completion graph.

Lemma 5 Let K be a SHI KB, G ∈ Comp(K), S G be the summary completion graph for

K, C be a SHI concept that is safe with respect to K, and G = guide(¬C). If for some

a ∈ IK, n,m ∈ NG s.t. ¬C ∈ LG(n) there is a concept guide path path(n,m, xa, xb,G,G),

then there is a concept guide path path(n,m, xa, xb,G, S G)

Proof See Appendix A.2.7 for the proof of this lemma. �

Condition 3

Now, let us consider the third condition of Definition 18 for addition updates. In-

tuitively, an approach must be developed that uses the summary completion graph to

determine the clashes observed when adding β to G ∈ Comp(K) that that are dependent

on some D1 t D2 ∈ L(x); additionally, the root nodes with a label that is also dependent

on D1tD2 ∈ L(x) in a completion graph G′ ∈ Comp(K)\G must also be determined. The

general idea of the approach, and the focus of the remainder of this section, is that a spe-

cialized disjunction dependency function can be introduced for the summary completion

graph, such that the dependencies subsume those in all completion graphs. Given this, it

is also shown that all clashes observed when updating a completion graph for the KB will

also be observed when updating the summary completion graph. This implies that we

can use the summary completion graph to detect all clashes dependent on a disjunction

and all root nodes with a label dependent on those disjunctions. This in conjunction with

Lemma 5 implies that the summary completion graph can be used to take into account the

123

third condition.

First, the topic of maintaining the dependencies on disjunctions in the summary

completion graph is addressed; due to the fact that labels from different completion graphs

are essentially merged in the summary completion graph, care must be taken when main-

taining the dependence of labels on disjunctions. In particular, we must ensure that if

a label could be added due to a disjunction, then this is reflected in the disjunction de-

pendencies. To account for this, a disjunction dependency function for the summary

completion graph is defined in Definition 23.

Definition 23 (Summary Disjunction Dependency) Given summary completion graph S G

and node x with D1 t D2 ∈ L(x), inductively define the set S of concept/node pairs (C, x)
that are dependent on D1 t D2 ∈ L(x) as follows:

• (D1 t D2, x) ∈ S
• if (C, y) ∈ S , then if C of the form:

1. C1 uC2, then {(C1, y), (C2, y)} ⊆ S
2. C1 tC2, then {(C1, y), (C2, y)} ⊆ S
3. ∃R.D, then for each z s.t.

(a) z a R-neighbor of y and D ∈ L(z), then (B, z) ∈ S for all B ∈ L(z)
(b) z a R-neighbor of y, z blocked by m and D ∈ L(m), then (B,m) ∈ S for

all B ∈ L(m)
(c) z a R-neighbor of y, z blocked by m, ∀S .D ∈ L(m) s.t. Inv(R) v∗ S , and

D ∈ L(m), then (B, y) ∈ S for all B ∈ L(y)

4. ∀R.D, then for each z s.t.
(a) z a R-neighbor of y and D ∈ L(z), then (D, z) ∈ S
(b) z a R-neighbor of y, z blocked by m and D ∈ L(m), then (D,m) ∈ S
(c) y blocks z, m the predecessor of z, m a R-neighbor of z, and D ∈ L(m),

then (D,m) ∈ S

5. ∀R.D and there is some P s.t. Trans(P) and P v∗ R, then for each z s.t.
(a) z a P-neighbor of y and ∀P.D ∈ L(z), then (∀P.D, z) ∈ S
(b) z a P-neighbor of y, z blocked by m and ∀P.D ∈ L(m), then (∀P.D,m) ∈ S
(c) y blocks z, m the predecessor of z, m a P-neighbor of z, and ∀P.D ∈ L(m),

then (∀P.D,m) ∈ S

In the remainder of this chapter, denote by Dis jS G((D1tD2, x)) the named individu-

als whose corresponding root nodes in S G have a node label dependent on D1tD2 ∈ L(x).

124

Note that the neighbor relation is used in condition 3 of Definition 23 because it

could be the case that during the construction of S G, the ∃-rule is prohibited from firing

due to an existing R-neighbor. Additionally, the (b), (c) conditions account for traversal

through blocked nodes, which is necessary to show completeness.

The disjunction dependency function can easily be constructed after building or

updating a summary completion graph. Further, if a new disjunction is introduced after

an update, then its dependencies can be easily identified after the update. Given this, it

is simply assumed that the disjunction dependency function is maintained. Importantly,

it can be shown that if some root node x in a completion graph for the KB has a node

label that is dependent on a disjunction in some node label L(y), then the dependency

for the disjunction (using Definition 23) of the nodes in the summary completion graph

corresponding to y (via the containment relationship) will contain x. This intuitively

implies that the disjunction dependencies of the completion graphs are subsumed by those

in the summary completion graph.

Lemma 6 Let K be a SHI KB, β a set of ABox assertions, G ∈ Comp(K), and S G the

summary completion graph for K. Also, let y be some node in G s.t. D1 tD2 ∈ L(y), x be

the unique root of y (possibly y itself), T = Tree(x) in G, and G = Graph(x) in S G. Then

for all y→T,G z, Dis jG((D1 t D2, y)) ⊆ Dis jS G((D1 t D2, z)).

Proof See Appendix A.2.8 for the proof of this lemma. �

Observe that Lemma 3 implies that after adding β to some G ∈ Comp(K) result-

ing in G′ (possibly containing a clash), the tree containment relationship still holds after

updating S G with β. Therefore, it is a direct consequence of Lemmas 3 & 6 that the

disjunctions dependencies in the updated summary completion graph subsume those for

each completion graph after it is updated.

Corollary 1 Let K be a SHI KB, β a set of ABox assertions, G ∈ Comp(K), G′ the result

of G] β (possibly containing a clash), S G the summary completion graph for K, and

125

S ′G = U pdate(β, S G). Also, let y be some node in G′ s.t. D1 t D2 ∈ L(y), x be the unique

root of y (possibly y itself), T = Tree(x) in G′, and G = Graph(x) in S ′G. Then for all

y→T,G z, Dis jG((D1 t D2, y)) ⊆ Dis jS G((D1 t D2, z)).

Lastly, all clashes observed when updating each G ∈ Comp(K) will be observed

when updating the summary completion graph. While clashes are ignored during the

construction and update of the summary completion graph, they still will be present and

therefore can be tracked.

Lemma 7 Let K be a SHI KB, G ∈ Comp(K), S G be the summary completion graph

for K, and β a set of ABox assertions. Also assume that there is a clash c = (y,C,¬C)

observed when β is added to G and let x be the unique root of y (possibly y itself). Addi-

tionally, let T = Tree(x) in G at the time of the clash and G = Graph(x) in S G after S G is

updated with β. Then, for some y →T,G z, the expansion rules will be applied to z when

updating updating S G and {¬C,C} ⊆ LS G(z).

Proof See Appendix A.2.9 for the proof of this lemma. �

Given this, we have effectively shown the summary completion graph can be used

to determine all of the clashes that would be observed when updating some G ∈ Comp(K)

with β, as well as the disjunction dependencies for these clashes. This is because all

clashes that would be observed in some G ∈ Comp(K) will be observed in S G and

the disjunction dependencies of the clashes subsume those that would be found in all

completion graphs. Then to take into account the third condition of Definition 18, one

must then find concept guide paths involving the individuals in the disjunction depen-

dencies (or in Dep(β,G,G′), which has been addressed in the previous section) in some

G′ ∈ Comp(K) \ G. It is a direct consequence of Lemma 5 that this can be performed

simply using the summary completion graph.

126

ABox Deletions

Until this point, I have only discussed how the summary completion graph can be

used to support addition updates. Thus, deletion updates are now addressed; following

this, correctness of the approach is shown in Theorem 6.

Given the axiom tracing function presented in Chapter 5, incremental deletions can

be supported using the summary completion graph in a similar manner as the approach

for addition updates. This is because the completeness of the axiom tracing function

when applying it to the summary completion graph directly follows from Theorem 1.

Given this, a straightforward approach to support deletion updates can be accomplished

by first reverting the change events in the summary completion graph that are dependent

on the deletion (as in Chapter 5). Then, the necessary expansion rules can be applied

to the summary completion graph; importantly, the modified t-rule must be used (as

presented in Definition 19) and clashes must be ignored during the re-application of the

expansion rules. Lastly, the disjunction dependencies for the summary completion graph

can be updated to reflect the deletion of β. Given this, the summary completion graph

for K − β is easily obtained; for ease of presentation denote this process by Del(β, S G).

Therefore, deletions updates can be supported by then adding β back to the summary

completion corresponding to K − β and performing the same approach as in the case

for additions. It is noted that after a deletion has been processed using this technique,

the summary completion graph must again be updated to reflect the deletion. As in the

original retraction of β, the axiom tracing function can be used for this purpose.

Given this, the completeness of the over-estimate for the set of candidate individuals

is shown; first, the over-estimate is formally defined.

Definition 24 (Concept Candidates Overestimate): Let K be a SHI KB, β an ABox ad-

dition (or deletion), S G the summary completion graph for K, S ′G = Del(β, S G), S ′′G =

U pdate(β, S G) (respectively S ′′G = U pdate(β, S ′G)), C a SHI concept that is safe with

respect to K and β, and G = guide(¬C). Define the overestimate of candidate individuals,

127

denoted CCS G(K,C, β), to be the set of named individuals a ∈ IK ∪ Iβ such that for some

n,m ∈ NG s.t. ¬C ∈ LG(n), one of the following conditions is satisfied:

1. a ∈ Iβ

2. b ∈ Dep(β, S G) (respectively b ∈ Dep(β, S ′G)) and there is a concept guide path

path(n,m, xa, xb,G, S ′′G)

3. the expansion rules are applied to a node x during U pdate(β, S G) (respectively

U pdate(β, S ′G)) such that {A,¬A} ⊆ L(x), A ∈ L(x) or ¬A ∈ L(x) is dependent on

D1 t D2 ∈ L(y) (determined using Definition 23), and for some b ∈ Dis jS ′′G
((D1 t

D2, y)) there is a concept guide path path(n,m, xa, xb,G, S ′′G)

Given this, it is shown that this over-estimate is in fact complete.

Theorem 6 Given a SHI KB K, ABox update β, C be a SHI concept that is safe

with respect to K and β, and summary completion graph S G for K, then CC(K,C, β) ⊆

CCS G (K,C, β).

Proof See Appendix A.2.10 for the proof of this theorem. �

6.6 Supporting Complex Query Patterns

Thus far, the techniques presented have only addressed queries that are simply com-

posed of a single DL concept. Given this, the approach is now extended to support com-

plex query patterns. As discussed previously, the general approach for supporting com-

plex query patterns is to transform each role atom in the query into a concept atom, which

is referred to as rolling-up the query; for example, the query (x) ← hasProduct(x, y) can

be transformed into the equivalent concept term ∃hasProduct.> [81, 140] (see Chapter

2.4.2 for further details).

This rolling-up process if often enabled via the use of nominals, however the DL

SHI does not provide such expressivity. Fortunately, as discussed in Chapter 2.4.2, there

128

is a well known workaround, in which the use of nominals can be simulated. The approach

is to substitute each constant in the rolled-up query concept with a new concept name

that does not occur in the knowledge base; additionally, an assertion is added to ensure

that the individual instantiates its representative concept. The general query answering

technique for retrieval queries is then to iteratively introduce a new concept names for the

each individual substitution for distinguished variables and further extend the KB with

concept assertions for these representative concepts/individual pairs; then, for each of

these possible substitutions, a consistency check is performed [81, 140].

It can be shown that the techniques developed in the previous sections can be used

to find the candidate bindings for the distinguished variable that the query is rolled-up

into if the resulting query concept is safe w.r.t. the KB and updates. Further, it can be

shown that the query can simply be rolled-up once using a single set of new concept

names and the additional type assertions for the representative concepts can be ignored

when determining the candidates. Thus, if the query can be rolled-up into a distinguished

variable x, the same approach can be used to find the candidates using the single rolled-up

concept.

Given a retrieval query Q with DVar(Q) = {x1, ..., xn}, denote the rolling-up of Q

into xi ∈ DVar(Q) by Rollup(i,Q), such that it produces a SHI concept C where each x j,

i , j, has been replaced by a new atomic concept D j not appearing in the KB, any update,

or the query. It is assumed that the concept obtained by Rollup(i,Q) is safe with respect

to K and all updates. Given this, for a new (respectively invalidated) binding {a1, ..., an} to

occur, it must be the case that the individual bound to the distinguished variable that the

query is rolled-up into is in the set of concept candidates for the rolled-up query concept.

Theorem 7 Let K be a SHI KB, Q a conjunctive retrieval query that can be rolled-up

into a distinguished variable xi ∈ DVar(Q), C = Rollup(i,Q), and β an ABox addition

(or deletion). If K 6|= Q[x1/a1, ..., xn/an] and K + β |= Q[x1/a1, ..., xn/an] (respectively

K |= Q[x1/a1, ..., xn/an] and K − β 6|= Q[x1/a1, ..., xn/an]), then ai ∈ CC(K,C, β).

129

Proof See Appendix A.2.11 for the proof of this theorem. �

It is a direct consequence of Lemma 5, Theorems 6 & 7 and the fact that each D j

is a new atomic concept that the summary completion graph can be used to determine an

overestimate of concept candidates for the rolled-up query concept.

6.6.1 Query Impact

It is easy to show that one cannot simply consider the candidates for the variable

that the query is rolled-up into as the only candidates for the other distinguished vari-

ables in the query. Consider the query (x, y)← (∃hasProduct.(∃causes.In f ection))(x) ∧

hasCEO(x, y); if it is assumed that the query is rolled-up into the variable x, then the

resulting query concept would be ∃hasProduct.(∃causes.In f ection)) u ∃hasCEO.Nomy,

where Nomy is the representative concept for distinguished variable y. In this case, simply

considering the candidates for x as the candidates for y is insufficient, as the previously

described techniques do not allow us to make any statements regarding the candidates for

y. Therefore, in this section two techniques are developed to determine the remaining

candidates; this is referred to as the query impact on the candidates.

It is pointed out that given Theorem 7 and the monotonicity of SHI, in the event

of deletions, all that must be considered after the update are the previous answer sets

which have some individuals that is in the set of query concept candidates. Therefore,

one simply needs to re-check these answer sets to ensure that the entailment still holds.

Given this, the remainder of this section only addresses ABox additions.

Basic Approach

The first approach to take into account the query impact exploits properties about

SHI completion graphs and the assumptions made regarding the query. It has previ-

ously been shown that if if two elements from the domain of interpretation are in the

interpretation of a role, then there must be an edge between the completion graph nodes

130

corresponding to these domain elements [136]. This, in conjunction with the assumption

that the query is connected and only contains simple roles implies that the roles between

named individuals that satisfy the query role atoms must exist in each complete and clash-

free completion graph for the updated KB9.

Given this, a straightforward approach can be used to find the remaining named

individuals in a new binding. In particular, the initial set of query concept candidates

can be expanded to also included any individual b such that xb is reachable by at most

n edge traversals (ignoring direction) from some a ∈ CC(K,C, β) in some completion

graph G ∈ Comp(K + β), where n is the length of the longest path in the query graph

between the node that the query was rolled-up into and some other node. Note that the

individual must be reachable in all completion graphs, because the entailment must hold

in all models; therefore, it suffices to only consider one completion graph for the KB when

expanding the candidate set. Denote by Impact(K,Q, β) the extended set of individuals.

Mapping Approach

The previous technique does not take into account the actual role names when de-

termining the additional candidates; given this, a second approach is presented that ac-

complishes this, which will in turn result in a smaller set of candidates. It has previously

been shown that a conjunctive query can be answered be syntactically mapping the query

into all completion graphs for the KB [114, 92]. More specifically, [114] defines a syn-

tactic mapping from a query Q (restricted to only simple roles) into a completion graph

G, denoted Q ↪→ G, using a mapping µ from the variables (both distinguished and non-

distinguished) and individuals in Q into the nodes of G such that:

• µ(a) = xa for each individual a ∈ Q,

• for each atom C(x) in Q, C ∈ L(µ(x)), and
9Note that inverse and transitive roles, as well as role hierarchies have to be accounted for.

131

• for each atom R(x,y) in Q, µ(y) is an R-neighbor of µ(x)

If the query can be mapped into all completion graphs, then the KB satisfies the

query [114]. In order for such an approach to be complete, a special blocking condition,

tree-blocking, must be used during the tableau algorithm, in which blocking is delayed to

take into account the longest path in the query (see Chapter 2.4.3 for a discussion regard-

ing blocking in general); this is accomplished by using two isomorphic trees such that the

depth of the tree corresponds to the longest path of the query [114, 92], and it ensures

that such a mapping will be possible in the presence of blocking. It is important to note

that if the query contains only distinguished variables, then tree-blocking is not necessary

and simply dynamic blocking can be used. This is because root nodes corresponding to

named individuals are never blocked during the tableau algorithm. Additionally, a TBox

axiom > v C t ¬C must be added to the KB for each concept atom C in the query; this

is necessary as the query concepts are syntactically mapped into the completion graph.

A straightforward application of this technique can be leveraged for our purpose.

First, it is noted that extending the KB with > v C t ¬C for each query concept may

be impractical in the syndication framework when dealing with a substantial number of

registered subscriptions. Therefore, a slight modification of the approach is used, in which

the mapping of concept names in the query is ignored. Specifically, given a conjunctive

retrieval query Q with DVar = {z1, ..., zn} that has been rolled-up into a distinguished

variable zi ∈ DVar(Q) resulting in concept C and the set of query concept candidates

CC(K,C, β), the following mapping is checked in some G ∈ Comp(K + β) for each xb s.t.

b ∈ CC(K,C, β):

• µ(a) = xa for each individual a ∈ Q,

• µ(zi) = xb,

• µ(z j) = xc for 1 ≤ j < i, i < j ≤ n and some root node xc

• for each atom R(x,y) in Q, µ(y) is an R-neighbor of µ(x)

132

If the original candidate individual b cannot be mapped into xb such that there is

a valid mapping for the remaining query nodes, then this individual does not need to be

considered as a candidate; this follows as a completion graph (i.e., model) has just been

found in which the query cannot be mapped [114]. However, if the query can be mapped

into the completion graph such that the candidate individual, b, is mapped into xb, then

this individual must be considered as a candidate binding; importantly, any named in-

dividual in the completion graph that can be mapped into the remaining distinguished

variables of the query graph must also be added to the candidate set. As in the previ-

ous query impact approach, the mapping only needs to be performed for one completion

graph, as for the entailed to occur, it must be satisfied by all completion graphs. Denote

by Map Impact(K,Q, β) the set of all named individuals corresponding to the root nodes

that are mapped into a distinguished variable in a valid mapping.

To illustrate the approach further, consider the query (x, y) ← Company(x) ∧ on-

SellList(x,y) ∧ hasCEO(y,z), whose query graph is presented in Figure 6.5.

Figure 6.5: Sample Query Graph

Let us assume that the query is rolled up into the variable x; then, when determining

the additional candidates, any individual a ∈ CC(K,C, β) that does not have a onSellList-

neighbor, which in turn has a hasCEO neighbor cannot be a candidate binding for the

variable x. Again, this is because a model has just be found in which the entailment

does not hold. However, if a has onSellList-neighbors b and c (both of which are root-

nodes) that also have hasCEO-neighbors d, e respectively, then a, b, c are considered in

the candidate set. Lastly, it is shown that the query impact approaches are complete.

Theorem 8 Let K be a SHI KB, Q a conjunctive retrieval query that can be rolled-up

into a distinguished variable xi ∈ DVar(Q), C = Rollup(i,Q), and β an ABox addition. If

133

K 6|= Q[x1/a1, ..., xn/an] and K+β |= Q[x1/a1, ..., xn/an], then {ai, ..., an} ⊆ Impact(K,Q, β)

and {ai, ..., an} ⊆ Map Impact(K,Q, β).

Proof See Appendix A.2.12 for the proof of this theorem. �

6.7 Finding Concept Guide Paths

Until now, the task of finding concept guide paths in a completion graph has not

been addressed. This is clearly necessary in order to exploit the concept guide to avoid

adding the negated query concept to each completion graph (or summary completion

graph) for the KB. Therefore, this topic is addressed in this section.

It is a fairly straightforward observation that the task of determining if there is a

concept guide path in the summary completion graph can be reduced to evaluating regular

path expressions over a labeled directed graph. This follows as clearly the summary

completion graph is a labeled directed graph, and it is easily seen that a set of regular

path expressions can be constructed from the concept guide; specifically, for each node x

in the concept guide, a regular path expression can be created that starts at the node that

corresponds to the negated query concept and terminates at x. Then, in the most naı̈ve

approach, for each pair of nodes in the completion graph, one needs to test if there is a

path in the completion graph that satisfies one of the regular path expressions.

There exist known results regarding the complexity of evaluating regular path ex-

pression over graph databases; specifically, it has been shown that deciding if a graph

G contains a directed path from nodes x to y satisfying regular expression R can be per-

formed in polynomial time [103]. Given this, assume there are m nodes in the concept

guide and s nodes in the summary completion graph. Then, there are
(

s
2

)
pairs of nodes

in the summary completion graph, which is O(n2). Thus, the concept guide paths can be

found in O(m ∗ n2) time.

From a practical point of view, it is important to note that there has been recent

134

work in XML database literature that addresses the evaluation of regular path expressions

over graph-based XML data (XML documents with IDREFs) [83, 84]. Therefore, there

exist known algorithms which can be utilized to locate concept guide paths.

6.8 Incremental Query Answering Algorithm

Prior to presenting the incremental query answering algorithm, the pseudo code

for updating the summary completion graph and determining the set of individuals that

must be considered in concept guide paths when determining the concept candidates is

provided (shown in Algorithm 3). It is assumed that the summary completion graph S G

is created at startup. For ease of exposition, given S ′G = U pdate(β, S G) and a clash c

observed during U pdate(β, S G) that is dependent on a set of disjunctions in node labels

of S ′G, denote by Dis j(c) the set of named individuals a s.t. a ∈ Dis jS ′G
((D1 t D2, x)) for

some disjunction D1 t D2 ∈ LS ′G
(x) that c is dependent on.

Algorithm 3 U pdate S ummary(S G, β)
Input:

S G: Summary completion graph
β: Set of ABox assertions

Output:
AI: Set of named individuals
S G: Updated summary completion graph

1: if β is a deletion then
2: S G ← Del(β, S G)
3: end if
4: AI ← Iβ
5: S G ← U pdate(β, S G)
6: for all root nodes xa such that the tableau expansion rules are applied to xa during U pdate(β, S G) do
7: AI ← AI ∪ {a}
8: end for
9: for all clashes c observed during U pdate(β, S G) do

10: AI ← AI ∪ Dis j(c)
11: end for
12: return AI, S G

The general algorithm for the incremental query answering is presented in Algo-

rithm 4. Similar to the discussion above, the algorithm is presented in terms of a single

135

query; additionally, it is assumed the query can be rolled up into the distinguished variable

xi ∈ DVar(Q). The presentation of the algorithm does not dictate which approach will

be used for handling complex query patterns; simply, the function Query Impact(A,Q) is

used to denote the extension of a set of named individuals A to include all candidates for

distinguished variables in the query Q in some complete and clash free completion graph

for the updated KB. It is also assumed that the initial set of answers for Qc is previously

determined.

The algorithm first integrates the update into a consistent KB; if the update is an

addition, it is also assumed that KB is consistent after the update. Following this, the set

of candidate individuals is found using the summary completion graph and concept guide

searches (lines 2–3); for simplicity, given a set of individuals AI and concept guide G, the

location of concept guide paths is denoted as Guide S earch(AI,G).

If the update is an addition, the remaining candidates are found by taking into ac-

count the query impact; after this, the set of candidate distinguished variable bindings is

iterated over and checked for entailment. Standard techniques for query answering are

used (see Chapter 2.4.2 for a discussion).

In contrast, if the update is a deletion, each tuple in the previous answer set is iter-

ated over and tuples that do not contain some individual in the set of affected individuals

are still entailed, as the conditions for the invalidation of the entailment were not satisfied;

otherwise, the tuples are re-checked for entailment.

Theorem 9 Algorithm 4 is sound, complete, and terminating.

Proof See Appendix A.2.13 for the proof of this theorem. �

6.9 Empirical Results

A prototype of the algorithm developed in this chapter has been implemented as an

extension to the OWL DL reasoner Pellet. The advanced mapping technique has been

136

Algorithm 4 U pdate Query Results(K, S G,Q,G,R, β)
Input:

K: Consistent SHI KB
S G: Summary completion graph for K
Q: Conjunctive query
G: Concept guide for Rollup(i,Q)
R: Set of all current bindings (answer set)
β: ABox update

Output:
K: Consistent SHI KB
S G: Updated summary completion graph
R: Updated bindings (answer set)

1: K← K ⊕ β
2: AI, S G ← U pdate(S G, β)
3: CC ← Guide S earch(AI,G)
4: if β is an addition then
5: QC ← Query Impact(CC,Q)
6: for all {a1, ..., an} ∈ QCn s.t.]DVar(Q) = n do
7: if K |= Qc[x1/a1, ..., xn/an] then
8: R← R ∪ {(a1, ..., an)}
9: end if

10: end for
11: else if β is an deletion then
12: for all (a1, ..., an) ∈ R do
13: if CC ∩ {a1, ..., an} = ∅ then
14: continue
15: else if K 6|= Qc[x1/a1, ..., xn/an] then
16: R← R \ {(a1, ..., an)}
17: end if
18: end for
19: S G ← Del(β, S G)
20: end if
21: return K, S G,R

137

implemented to take into account query impact, as it is more effective.

In order to evaluate the technique the same ontology test-suite from Chapter 5.5

has been used. For each of the ontologies, a set of queries has been used to simulate

subscriptions and to evaluate the effectiveness of the approach. For the LUBM and UOB

benchmarks, a set of sample queries accompanies the benchmarks; therefore, a represen-

tative subset of these queries are used. In contrast, the VICODI and SEMINTEC ontolo-

gies do not have such a query suite. However, there has been recent work in literature

[104] in which a set of queries has been obtained from the authors of these ontologies;

therefore, these queries have been used, as they will provide insights into response times

for expected queries over these datasets. Because the approach is applicable to SHI,

functional role assertions have been removed from the SEMINTEC and UOB ontologies.

In the experiments, varying sized ABox additions and deletions were randomly se-

lected from each dataset. Update sizes include 1, 5, 15, 25, and 50 assertions, and as noted

in the previous evaluation, these sizes were selected as they align with publication sizes

expected in realistic syndication systems. In the experiments, the initial set of answers for

the query was first determined, and then the randomly selected assertions were added (or

removed) to the KB and the query results were updated. The aim behind the evaluation

was to simulate new publications arriving at the syndication broker.

In the experiments, two versions of the DL reasoner Pellet were used; a regular ver-

sion of the reasoner and a version that has been extended with the algorithm to reduce the

candidate individuals. Additionally, RacerPro and KAON2 were used in the evaluation.

The experiments were run on a Linux machine with 2Gb of RAM and a 3.06GHz Intel

Xeon CPU. Pellet v1.5, RacerPro v1.9.0, and KAON2 release 2007-09-07 were used in

the experiments and all results were averaged over 75 iterations. Note that in all of the

figures showing the query response time results, the X-axis corresponds to the update

size, and the Y-axis is the response time in milliseconds for query answering (the scale is

logarithmic). Additionally, the response times shown only include the time to determine

138

the query results. To clarify further, the response times do not include consistency check-

ing times or query preparation times performed by Pellet and RacerPro. The response

times for the incremental algorithm developed in this chapter include both the time to

find the candidates and execute the query over the candidate set (i.e., Algorithm 4). In the

experiments a maximum response time of 100 seconds was imposed in the tests.

As discussed earlier, the summary completion graph must be built so that the tech-

nique can be used. The total time to construct the initial summary completion graph is

of interest, as well as the potential memory overhead imposed by the structure. Table 6.4

addresses the both of these topics and specifically shows the total time (in seconds) to

construct the initial summary completion for each of the different datasets, as well as the

memory overhead; note that the results were averaged over 50 iterations.

Ontology Construction Time (sec) Memory (mb)
VICODI1 1.7 57
VICODI2 3.7 115

SEMINTEC1 2.4 82
SEMINTEC2 5.3 165

LUBM1 2.3 59
LUBM2 9.2 228
UOB1 15.2 183
UOB2 30.4 331

Table 6.4: Summary Completion Graph Initial Construction Results

As expected, the initial construction of the summary completion graphs introduces

overhead. However, the process must only be performed once at startup. It is also clear

that there is a memory impact of the summary completion graph. However, in the im-

plementation of the algorithm, the overlap of between the summary completion graph

and the cached completion graph corresponding to a model of the KB is not exploited.

Today’s tableau-based reasoners typically cache the completion graph constructed during

the initial consistency check, as it is used in optimizations for other reasoning tasks (e.g.,

classification). A substantial portion of the structure in the cached completion graph will

overlap with the summary completion graph. Therefore, with further engineering, this

139

(a) (b)

Figure 6.6: (a) VICODI query 1 - additions (b) VICODI query 1 - deletions

memory overhead can be dramatically reduced.

For the VOCODI ontology, the following queries have been used:

1. (x)← Individual(x)

2. (x, y, z)← Military − Person(x) ∧ hasRole(y, x) ∧ related(x, z)

3. (x, y)← Military − Person(x) ∧ hasRole(y, x)

Queries 1 and 2 have been used in previous literature [104] to evaluate DL query

answering and were suggested by the ontology authors. Query 3 has been included as it

provides additional insights into the approach (discussed later).

Figure 6.6 presents the response times for query 1 for addition and deletion updates

(note that Inc-Pellet corresponds to Algorithm 4). The query answering times for the

regular version of Pellet is comparable through update sizes and is between 1.4 to 3.08

seconds, depending on the dataset size. The response time remains comparable through

update sizes, as the query is re-performed from scratch and the update sizes are small

relative to the overall KB size. Response time for RacerPro exhibits similar properties as

Pellet.

The incremental query answering approach demonstrates substantial performance

improvements over both the regular version of Pellet and RacerPro. For both datasets,

approximately 1.5 to 3 orders of magnitude performance improvements over Pellet are

140

exhibited, and the response time is in the 10s of milliseconds (in many cases less than

10ms). This is clearly due to the reduction in the portion of the KB that must be consid-

ered for the query after the update. Table 6.5 presents the actual number of candidates

for addition updates using the approach for the different update sizes and queries (the re-

sults for deletions are very similar and are therefore omitted). This table also shows the

percentage of the KB that this candidate set represents. For the first query, the technique

provides a dramatic reduction in the portion of the KB that must be considered (always

below 1% of the original KB).

KB / Query 1 (%) 5 (%) 15 (%) 25 (%) 50 (%)
VIC-1 / 1 1.6 (.009) 7.02 (.04) 20.7 (.12) 34.4 (.2) 65.6 (.38)
VIC-2 / 1 1.7 (.01) 7.4 (.02) 21 (.06) 35.4 (.1) 67.6 (.19)
VIC-1 / 2 7,128 (42) 11,440 (67) 11,553 (68) 11,560 (68) 11,536 (68)
VIC-2 / 2 8,375 (24) 19,358 (57) 22,958 (67) 23,062 (68) 23,126 (68)
VIC-1 / 3 1.9 (.01) 7.16 (.04) 21.6 (.12) 34.9 (.2) 72.8 (.43)
VIC-2 / 3 1.9 (.005) 7.2 (.02) 21.5 (.06) 35.3 (.1) 71.6 (.2)

Table 6.5: VICODI Candidate Sizes for Different Queries and Update Sizes

It can also be seen in Figure 6.6 that as the update size is increased, the performance

of the approach scales well. Deletions take slightly longer than additions because the

deleted assertions must be retracted from the summary completion graph, whereas this

process is not necessary for additions.

KAON2 outperforms the regular tableau-based reasoners (i.e., Pellet and Racer-

Pro) and exhibits comparable results through the update sizes. However, the incremental

version of Pellet performs better than KAON2 in this experiment.

Figure 6.7 presents the results for queries 2 and 3. In the second query, the query

answering times for the regular version of Pellet and RacerPro exhibit similar character-

istic as for the first query. Further, KAON2 again exhibits comparable response times

through updates sizes and in general performs better than in query 1. However, the incre-

mental approach does not provide as dramatic performance improvements as it did in the

first query. This can be explained by inspecting Table 6.5; in particular, it can be seen that

141

(a) (b)

(c) (d)

Figure 6.7: (a) VICODI query 2 - additions (b) VICODI query 2 - deletions (c) VICODI
query 3 - additions (d) VICODI query 3 - deletions

142

a large portion of the knowledge base is considered after each update, and therefore, it is

like re-running the query from scratch.

If we inspect the results of query 3, additional insights into the results for the second

query are provided. Query 3 is actually a subset of the second query, in which the last role

atom from query 2 is excluded. Once again, the incremental algorithm exhibits dramatic

performance improvements, as the candidates considered are a small subset of the original

KB. This sheds light on the previous query, as there are individuals in the KB that are

related to an extremely large portion of the KB by the related role. Therefore, when

taking into account the query impact, almost all of the knowledge base is included as a

candidate. As we will see in the remainder of the evaluation, this was the only query for

any of the ontologies that demonstrated this behavior, indicating the approach should be

effective in general.

Table 6.6 presents a summary of the distribution of response times for publications

of size 50 observed in the experiments using the VICODI ontology. In the table, the

notation “VIC-1” and “VIC-2” are used to denote the VICODI KB of size 1 and 2 re-

spectively; additionally, the table presents the minimum, median, maximum, and average

response times observed, as well as the standard deviation. In general, it can be observed

that the response times are very close to the average.

Additions Deletions
KB / Query Min Med Max Avg Stdv Min Med Max Avg Stdv

VIC-1 / 1 5 7 52 7 5.2 31 36 70 36 5
VIC-2 / 1 6 7 10 7.4 .7 57 65 76 65 3
VIC-1 / 2 795 854 1236 881 83 303 480 916 534 132
VIC-2 / 2 1541 1736 2461 1800 180 911 1629 2556 1672 246
VIC-1 / 3 5 7 10 6.8 1 3 5 9 5.5 1.1
VIC-2 / 3 6 7 33 7 3 4 6 97 7.7 10

Table 6.6: Distribution of VICODI Response Times for Updates of Size 50 (time in mil-
liseconds)

For the SEMINTEC datasets, the following queries have been used:

143

(a) (b)

(c) (d)

Figure 6.8: (a) SEMINTEC query 2 - additions (b) SEMINTEC query 2 - deletions (c)
SEMINTEC query 3 - additions (d) SEMINTEC query 3 - deletions

1. (x)← Man(x)

2. (x, y, z)← Man(x) ∧ Gold(y, x) ∧ Region(z) ∧ isCreditCardOf (y, x) ∧ livesIn(x, z)

Similar to the VICODI queries, the SEMINTEC queries have been used previously in

literature to evaluate DL query answering and were suggested by the ontology authors.

Figure 6.8 presents the response times for both queries. Pellet, RacerPro, and

KAON2 exhibit similar characteristics as for the VICODI ontologies. Further, the algo-

rithm developed in this chapter again demonstrates dramatic performance improvements

for all update sizes. In many cases, the results are below 10ms. Table 6.7 presents the

actual number of candidates considered on average for addition updates; again, there is

a dramatic reduction in the portion of the KB that must be considered for the query after

the updates. Table 6.8 presents a summary of the distribution of response times for publi-

144

cations of size 50 observed in the experiments using the SEMINTEC ontology. As in the

case for VICODI, it can be observed that the response times are typically very close to

the average.

KB / Query 1 (%) 5 (%) 15 (%) 25 (%) 50 (%)
SEM-1 / 1 1.5 (.008) 7.2 (.04) 21.8 (.12) 36.8 (.2) 71.8 (.4)
SEM-2 / 1 1.55 (.004) 7.5 (.02) 22.1 (.06) 37 (.1) 73.4 (.2)
SEM-1 / 2 6.2 (.03) 27.2 (.15) 95.4 (.53) 147.6 (.82) 206.6 (1.1)
SEM-2 / 2 22 (.06) 27.8 (.07) 86.6 (.24) 157 (.43) 243 (.67)

Table 6.7: SEMINTEC Candidate Sizes for Different Queries and Update Sizes

Additions Deletions
KB / Query Min Med Max Avg Stdv Min Med Max Avg Stdv
SEM-1 / 1 7 9 40 9.5 4.5 15 17 37 17.7 2.9
SEM-2 / 1 8 10 12 10.1 .9 26 29 45 29.5 2.8
SEM-1 / 2 3 20 56 19.5 16.3 6 11 89 14.5 14.6
SEM-2 / 2 4 23 93 27.7 23.3 6 15 87 18.5 12.4

Table 6.8: Distribution of SEMINTEC Response Times for Updates of Size 50 (time in
milliseconds)

As discussed, the LUBM benchmark includes a set of 14 queries for performance

analysis of DL systems. From this set of queries, the results of the following 6 queries10

are presented.

1. (x, y, z)← GraduateStudent(x)∧University(y)∧Department(z)∧memberOf (x, z)∧
subOrganization(z, y) ∧ undergraduateDegreeFrom(x, y)

2. (x)← Student(x)

3. (x, y, z)← Student(x)∧Faculty(y)∧Course(z)∧ advisor(x, z)∧ takesCourse(x, z)∧
teacherOf (y, z)

4. (x)← Student(x) ∧ takesCourse(x,GraduateCourse0)

5. (x)← ResearchGroup(x) ∧ subOrganizationOf (x,University0)

6. (x)← UnderGraduateStudent(x)
10Note that these correspond to LUBM queries 2, 6, 9, 10, 11, & 14 respectively

145

This subset was selected because the results for the remaining queries are similar.

Figure 6.9 presents the results for queries 1–3. The incremental algorithm again demon-

strates dramatic performance improvements, as the portion of the KB that must be con-

sidered after the update is very small (shown in Table 6.9). In the queries, the approach

typically exhibits response times in the 10s of milliseconds and in all cases shows orders

of magnitude improvements over the regular version of Pellet and RacerPro. Further, the

approach outperforms KAON2 in many cases. An interesting observation can be made

from the number of candidates under additions presented in Table 6.9; in particular, for

query 1 for the smaller of the LUBM datasets, there are 0 candidates. In this case, there

are no answers for the query in the entire KB, and when performing the syntactic mapping

to take into account the query impact, the initial candidates can never be mapped into the

cached completion graph. In the case of the larger dataset, there are only a few mappings

in the entire KB, which are located during the approach. Another interesting observation

can be made regarding query 3; specifically, the number of candidates is actually smaller

on average in the experiments involving the larger of the two datasets. This can be ex-

plained by the fact that in the larger dataset there is a larger number of individuals which

do not participate in a concept guide path (for the negated, rolled-up query concept) with

some other individual, and there is a larger number of individuals that are not mappable

into the query (under query impact). Thus, when the random updates are selected, there

is a greater chance that these individuals will be selected.

Figure 6.10 presents the results for queries 4–6. Queries 5 & 6 exhibit similar

properties as the previous three queries. Interestingly, in query 4, the regular version of

Pellet outperforms the version which exploits the optimizations presented in this chapter,

even though there is over a 98% reduction in the portion of the KB that must be considered

for the query (shown in Table 6.9). This is because query answering for this query in

Pellet is extremely fast; therefore, locating the candidates introduces this extra overhead.

However, even in this case, the overall response time of the incremental algorithm is still

146

(a) (b)

(c) (d)

(e) (f)

Figure 6.9: (a) LUBM query 1 - additions (b) LUBM query 1 - deletions (c) LUBM query
2 - additions (d) LUBM query 2 - deletions (e) LUBM query 3 - additions (f) LUBM query
3 - deletions

147

generally under 10ms and is fast enough for matching in syndication systems.

KB / Query 1 (%) 5 (%) 15 (%) 25 (%) 50 (%)
LUBM-1 / 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
LUBM-2 / 1 9.97 (.02) 17 (.04) 17 (.04) 17 (.04) 17 (.04)
LUBM-1 / 2 1.4 (.008) 7.3 (.04) 22.3 (.13) 36.7 (.2) 74.1 (.45)
LUBM-2 / 2 2.8 (.007) 28.5 (.07) 80 (.2) 133.8 (.3) 263.2 (.7)
LUBM-1 / 3 14.6 (.09) 50.2 (.3) 138.8 (.8) 216 (1.3) 404 (2.4)
LUBM-2 / 3 2 (.005) 7.2 (.01) 19.5 (.05) 32.7 (.08) 67.6 (.18)
LUBM-1 / 4 1.6 (.009) 25.3 (.15) 72.3 (.4) 120.8 (.7) 245.5 (1.5)
LUBM-2 / 4 12.9 (.03) 27.6 (.07) 88.2 (.2) 131.8 (.35) 271.1 (.72)
LUBM-1 / 5 3.2 (.01) 14.3 (.08) 32 (.19) 61. (.3) 118.2 (.7)
LUBM-2 / 5 3.5 (.009) 10.9 (.02) 36.6 (.09) 62.4 (.16) 129.3 (.3)
LUBM-1 / 6 1.5 (.009) 8 (.04) 22.7 (.1) 37.1 (.2) 74.3 (.4)
LUBM-2 / 6 1.4 (.003) 7.1 (.01) 22.8 (.06) 37.4 (.1) 75.1 (.2)

Table 6.9: LUBM Candidate Sizes for Different Queries and Update Sizes

Next, Table 6.10 presents a summary of the distribution of response times for pub-

lications of size 50 observed in the experiments for LUBM. As in the previous cases, it

can be observed that the response times are close to the average.

Additions Deletions
KB / Query Min Med Max Avg Stdv Min Med Max Avg Stdv
LUBM-1 / 1 69 83 119 83.6 9.7 26 30 64 31.1 4.7
LUBM-2 / 1 180 239 346 246.1 33.6 89 105 257 108.1 22.2
LUBM-1 / 2 6 8 38 9 4.7 36 42 52 41.9 2.5
LUBM-2 / 2 13 15 89 18.9 10.3 346 552 720 552.2 75.5
LUBM-1 / 3 7 13 30 12.6 2.8 6 8 16 8.8 1.5
LUBM-2 / 3 9 12 25 13.6 3.4 13 17 31 17.7 3.8
LUBM-1 / 4 4 6 9 6.4 1.02 5 7 28 7.5 2.7
LUBM-2 / 4 12 14 26 15.5 3.1 11 17 26 17.3 3.07
LUBM-1 / 5 2 4 10 4.5 1.04 6 18 60 19.6 8.4
LUBM-2 / 5 10 14 58 15.8 6.3 13 22 45 22.9 5.9
LUBM-1 / 6 7 8 38 8.8 3.4 33 38 70 38.2 4.2
LUBM-2 / 6 13 16 23 16.4 2.2 85 94 167 96 10.1

Table 6.10: Distribution of LUBM Response Times for Updates of Size 50 (time in mil-
liseconds)

As with the case for LUBM, the UOB benchmark provides a suite of queries, and

148

(a) (b)

(c) (d)

(e) (f)

Figure 6.10: (a) LUBM query 4 - additions (b) LUBM query 4 - deletions (c) LUBM
query 5 - additions (d) LUBM query 5 - deletions (e) LUBM query 6 - additions (f)
LUBM query 6 - deletions

149

the following queries11 have been used:

1. (x)← UndergraduateStudent(x) ∧ takesCourse(x,Course0)

2. (x)← Employee(x)

3. (x, y)← Publication(x) ∧ Faculty(y) ∧ isMemberOf (y,University0)∧
publicationAuthor(x, y)

4. (x)← ResearchGroup(x) ∧ subOrganizationOf (x,University0)

5. (x, y, z)← GraduateCourse(x) ∧ isTaughtBy(x, y) ∧ isMemberOf (y, z)∧
subOrganizationOf (z,University0)

6. (x)← PeopleWithHobby(x) ∧ isMemberOf (x,University0)

These queries were selected as the results for the other queries are similar.

Figure 6.11 presents the results for queries 1–3. The response times of all reasoners

were comparable in query 1. The technique presented in this chapter resulted in a dramatic

reduction in the candidates considered (shown for addition updates in Table 6.11), and the

incremental version of Pellet outperformed re-running the query from scratch. In queries

2 & 3, the developed approach substantially outperforms the other reasoners, demonstrat-

ing orders of magnitude performance improvement and generally response times in the

10s of milliseconds. Interestingly, KAON2 was able to process all of the queries, even

though consistency checking performance times in Chapter 5.5 indicated significant over-

head. This is potentially explained due to the removal of functional roles in the TBox.

Figure 6.12 presents the results for queries 4–6. Again, there incremental version

of Pellet demonstrated substantial performance improvements in many of the queries and

generally exhibited response times in the 10s of milliseconds. It is also noted that similar

observations as those found in the case for LUBM can be made regarding the number of

candidates under additions in the UOB datasets (shown in Table 6.11).

Lastly, Table 6.12 presents a summary of the distribution of response times for

publications of size 50 observed in the experiments for UOB. Again, the response times

are close to the average.
11Note that these correspond to UOB queries 1, 2, 4, 5, 9, & 13 respectively

150

(a) (b)

(c) (d)

(e) (f)

Figure 6.11: (a) UOB query 1 - additions (b) UOB query 1 - deletions (c) UOB query 2
- additions (d) UOB query 2 - deletions (e) UOB query 3 - additions (f) UOB query 3 -
deletions

151

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: (a) UOB query 4 - additions (b) UOB query 4 - deletions (c) UOB query 5
- additions (d) UOB query 5 - deletions (e) LUBM UOB 6 - additions (f) UOB query 6 -
deletions

152

KB / Query 1 (%) 5 (%) 15 (%) 25 (%) 50 (%)
UOB-1 / 1 1.9 (.007) 29 (.11) 66.8 (.26) 111.4 (.4) 238.3 (.9)
UOB-2 / 1 1.5 (.002) 21.7 (.04) 58.8 (.1) 98.3 (.1) 201.6 (.3)
UOB-1 / 2 3.2 (.01) 17.6 (.06) 52.3 (.2) 85.7 (.33) 174.3 (.6)
UOB-2 / 2 3.2 (.006) 12.3 (.02) 55.1 (.1) 87.1 (.16) 157.1 (.3)
UOB-1 / 3 .9 (.003) 1.1 (.004) 35.1 (.13) 25 (.09) 80 (.3)
UOB-2 / 3 .04 (.0005) .3 (.0006) 10.5 (.02) 20.8 (.04) 46.4 (.08)
UOB-1 / 4 2 (.007) 10.8 (.04) 29.8 (.1) 49.9 (.2) 96.8 (.38)
UOB-2 / 4 2.1 (.004) 9.3 (.01) 31.7 (.06) 47.5 (.09) 106.9 (.2)
UOB-1 / 5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
UOB-2 / 5 6.1 (.001) 14.02 (.02) 69.5 (.13) 69.9 (.13) 187.8 (.36)
UOB-1 / 6 10.9 (.04) 162.2 (.6) 528.1 (2.1) 1,052 (4.1) 2,080 (8.2)
UOB-2 / 6 118.5 (.2) 164.4 (.3) 586.8 (1.1) 936.8 (1.8) 1,776 (3.4)

Table 6.11: UOB Candidate Sizes for Different Queries and Update Sizes

6.10 Discussion

It is clear that the empirical results demonstrate that the approach developed is very

effective for optimizing continuous query answering. One issue regarding the approach

is related to the syntactic restriction imposed on the query; specifically, it is reasonable to

question what the real-world impact of this restriction will be. In order to investigate this,

recent results of a survey of the publically available OWL ontologies available on the Web

were utilized [146]. In particular, a subset of the OWL ontologies gathered during this

survey was used to gauge the actual impact of the restriction; note that only a subset was

used as a number of the ontologies were no longer available on the Web. However, this

subset still totaled 460 ontologies, which provides reasonable insight into the expected

impact of the restriction.

In the experiment, each concept in the ontology was selected and tested to see if

it violated the restrictions imposed by the approach. Given that today’s state of the art

DL reasoners typically use highly optimized tableau algorithms, involving the unfolding

and domain/range expansion rules, it was assumed that the unfolding and domain/range

rules were utilized; therefore, the syntactic restriction was extended to cover the concept

encountered when unfolding the query concept. The statistics were gathered after ab-

153

Additions Deletions
KB / Query Min Med Max Avg Stdv Min Med Max Avg Stdv
UOB-1 / 1 24 25 30 25.9 .8 27 70 131 69.7 17
UOB-2 / 1 29 35 60 37.3 7.3 32 69 196 72.1 24.2
UOB-1 / 2 20 30 61 31.3 8.1 72 170 392 181.6 66.3
UOB-2 / 2 31 39 145 43.2 18 77 188 383 196.1 55.1
UOB-1 / 3 17 49 121 54.09 22.8 86 235 504 244 92.5
UOB-2 / 3 32 56 144 62.3 24.3 27 256 616 276.3 117.3
UOB-1 / 4 15 24 48 25.3 7.1 30 67 161 73.5 23.4
UOB-2 / 4 27 37 62 38.9 8.9 36 83 172 84.8 27.6
UOB-1 / 5 16 30 104 33.7 14 35 71 126 73 19.1
UOB-2 / 5 29 54 347 61.2 40.2 86 225 1078 270.8 164.7
UOB-1 / 6 19 63 130 64.4 25.2 136 385 703 386.6 129.5
UOB-2 / 6 30 61 146 68 24.2 85 436 1101 455.9 174.2

Table 6.12: Distribution of UOB Response Times for Updates of Size 50 (time in mil-
liseconds)

sorption and internalization of the general TBox. That said, of the 460 ontologies, only

4 had at least one concept that violated the restriction. This indicates that the restriction

should not have a large impact when attempting to use the technique for many ontolo-

gies. Further, in the 4 violating ontologies, on average 6.8 concepts actually violated the

restriction. This is promising, as the number of concepts concepts in the ontology that

cannot be used in queries is very small.

I have investigated lifting the syntactic restriction on the queries by further restrict-

ing the expressivity of the KB. In particular, if the KB is restricted to definitorial SHI,

then the restriction can be removed [64] and a similar approach as the one presented here

can be used. However, discussing this approach has been omitted as assuming the KB to

definitorial SHI greatly restricts the expressivity of the KB.

154

Chapter 7

Maintaining Consistency at the Syndication Broker

While Chapter 5 provides an efficient approach to determine if an inconsistency has

occurred as a result of the integration of a new publication into the broker’s KB, thus far a

mechanism to recover from such an inconsistency has not been addressed. This is clearly

an issue, as if the broker’s KB is inconsistent, then all publications will trivially satisfy all

registered subscriptions.

There have been numerous approaches investigated in literature to address this

problem. Unfortunately, when applying many of the common theories for updating and

revising logical KBs to the OWL, negative results are encountered; for example, it has

been shown that the traditional minimal change, model-based update semantics cannot

be represented in the DLs which OWL is aligned with [96]. Further, it has been shown

that the traditional AGM theory of belief revision cannot be directly applied to OWL, as

the postulates for contraction cannot be satisfied [45, 46]. As noted in Chapter 4, this has

been one of the motivations for adopting syntactic updates for integrating new publication

into the broker’s KB.

In this chapter, two techniques to recover from an inconsistency are introduced.

The first is a straightforward approach, which will be discussed next in section 7.1. Sec-

ondly, a belief-base semi-revision algorithm for OWL DL is developed, which provides a

flexible mechanism to select the assertions to retract from the KB to regain consistency.

To illustrate this, an approach using the notion of trust in publications to perform the

selection process is presented at the end of the chapter.

155

7.1 Rejection-Based Approach

In this section, a straightforward technique to regain consistency is introduced.

First, observe that if a publication p composed of a set of ABox assertions β is received by

the broker such that it causes the broker’s KB K to become inconsistent (i.e., K 6|= ⊥ and

K + β |= ⊥), it must be the case that the inconsistency is dependent on β. This implies that

if β were simply retracted from K + β, then the KB would trivially be consistent. There-

fore, in the first proposed approach, if a publication is received by the broker such that it

causes the broker’s KB to become inconsistent, then the publication is simply rejected.

From a practical point of view, supporting such an approach will introduce very lit-

tle overhead, as the previous technique for incremental consistency checking can be used.

Specifically, given an addition publication which leads to an inconsistency, the effects

of the publication can simply be rolled-back using the previously described approach in

Chapter 5; given the performance results observed in Chapter 5, such an approach will

impose very little overhead.

7.2 Belief Base Revision in OWL-DL

Simply rejecting a publication because it causes the broker’s KB to become incon-

sistent may not be ideal. This is because the entire publication may not contribute to the

inconsistency, therefore rejecting all assertions in the publication is un-necessary. Fur-

ther, there could be other assertions contained in other publications which additionally

contribute to the inconsistency, which may be better candidates to revise/remove; for ex-

ample, if one views newer publications as more important, then it may be better to retract

assertions from older publications that contribute to the inconsistency. Additionally, cer-

tain publishers may be more trust-worthy than others; in this case, one may want to retain

inferences deduced from the trust-worthy sources, implying that assertions from highly

trusted publications should not be retracted during the revision process.

156

Given this motivation, a belief-base revision algorithm for OWL-DL is developed

in this chapter; specifically, an algorithm for kernel semi-revision is presented. As noted

in Chapter 2.5, the difference between belief-base revision and semi-revision is that semi-

revision does not ensure that the newly added belief will be accepted. While there

have been many different belief-base revision operators investigated in literature, a semi-

revison approach has been developed as it is fitting for the syndication framework. In

particular, the construction of the kernel semi-revision operator [68, 69] allows for an

arbitrary function to be defined to actually select the assertions to be retracted from the

minimal set of assertions causing the inconsistency. Therefore, the previous notions of

publication time and trust-worthiness could be leveraged during the revision process. Ad-

ditionally, the fact that the recently added publication (or assertions contained within it)

can be rejected is actually ideal for our need; for example, if a trust-based approach is

used and the most recent publication is trusted the least, then one would want to reject it.

7.2.1 Overview

As discussed in Chapter 2.5, the construction of the kernel semi-revision operator

requires two main tasks. First, one must be able to compute all of the minimal sets of

beliefs (i.e., assertions) in the KB that entail the inconsistency; as discussed in Chapter

2.5, such an operator is referred to as a kernel operator. Secondly, a function must be

defined that selects for removal at least one belief from each kernel, which then results

in recovering consistency of the KB; this selection function is referred to as an incision

function (again introduced in Chapter 2.5).

In the next section, a kernel operator for OWL DL is first provided. This is accom-

plished by leveraging recent work in literature on finding all justification for entailments

for OWL DL KBs [85]. Following this, a kernel semi-revision operator is defined.

157

7.2.2 Kernel Semi-Revision Operator

As previously mentioned, an approach is needed for computing all minimal jus-

tifications for an entailment (in our case K |= ⊥) in an OWL DL knowledge base. To

accomplish this, related work in literature is leveraged; specifically, as discussed in Chap-

ter 2.5, [85] has developed an algorithm for finding all minimum sets of assertions in an

OWL DL KB responsible for an entailment, referred to as justifications. The notation

Just(K, α) is used to denote the set of all justifications (see Chapter 2.5 for a more formal

definition). As we are only concerned with ABox assertions (as the TBox is assumed to

be fixed in the framework), it is assumed Just(K, α) simply contains the ABox assertions

in the justification. Given this, it can easily be shown that this function can be used as a

kernel operator, implying that this previous work can be leveraged for our purpose.

Lemma 8 Let K be aSHOIN KB and α some belief, such that K |= α. Then, Just(K, α) =⋃
(K y α).

Proof See Appendix A.3.1 for the proof of this lemma. �

Next, an incision function must be defined in order to select the assertions from

each kernel for removal. Given an incision function, the semi-revision operator can easily

be defined. The general requirements of an incision function are introduced by Definition

2 in Chapter 2.5. This function does not ensure minimality, implying that an arbitrary

number of assertions from each justification can be selected for removal.

Given this, a general purpose minimal incision function is defined, which is a adap-

tation of the minimal incision function presented in [147].

Definition 25 (SHOIN–Minimal Incision Function) Let K be a SHOIN KB. Define a

SHOIN–minimal incision function to be any function σSHOIN that maps a set of sets of

formulae into a set of formulae, such that for any set of formulae S :

1. σSHOIN (S) ⊆
⋃

S

158

2. If X , ∅ and X ∈ S then X ∩ σSHOIN (S) , ∅

3. If for all X ∈ S , X ∩ K , ∅, then σSHOIN (S) ⊆ K, and

4. σSHOIN (S) is the smallest set satisfying conditions 1–3

Now, we are in a position to define a semi-revision operator for OWL DL.

Definition 26 Let K be a SHOIN KB and α some formula. Define the operator ?σSHOIN

such that:

K?σSHOINα = (K + {α}) \ σSHOIN (Just(K + {α},⊥))

It directly follows from this definition and Lemma 8 that ?σSHOIN satisfies the kernel

semi-revision postulates and is a kernel semi-revision operator.

Theorem 10 ?σSHOIN satisfies the kernel semi-revision postulates.

7.2.3 Semi-Revision Algorithm

The belief base semi-revision algorithm is shown in Algorithm 5. First, the under-

lying KB is expanded with the update; if the KB is inconsistent after the expansion, then

all justifications for the inconsistency are found using the previously discussed approach

for computing Just(K,⊥). Following this, the incision function selects the assertions to re-

tract; given that an arbitrary incision function can be used, the incision function is simply

denoted by Incision.

7.2.4 Trust-Based Incision Function

It has been pointed out that any incision function that satisfies the conditions of

Definition 2 can be used to select the assertions for removal. In this section, an incision

159

Algorithm 5 Semi Revision(K, β)
Input:

K: Initial SHOIN KB
β: Set of SHOIN assertions

Output:
K: Consistent KB

1: K← K + β
2: if K |= ⊥ then
3: J ← Just(K,⊥)
4: K← K \ Incision(J)
5: end if
6: return K

function that is based on the trust and recency (i.e. time since publication) of assertions

contained in publications is presented 1.

The motivation and insight into using such an approach is that certain publishers

will be more trustworthy than others; for example, if content is being disseminated from

within the financial domain, publications from a reputable publisher such as the Dow

Jones Newswires will be more trustworthy than Bob’s financial news blog. Therefore, if

an inconsistency occurs, it is intuitive to select an assertion for retraction that was pub-

lished by Bob’s blog, as opposed to content from the Dow Jones Newswires. Further, the

incision function presented takes into account the age of the statement; this is additionally

intuitive as even statements from highly trusted source will become obsolete over time.

In the approach presented, it is assumed that the syndication broker maintains the

trust value for each source. When major publishers are involved, it is likely that the num-

ber of sources will be small enough that the broker can manually decide the trust value for

sources. In other situations where potentially thousands of publishers are involved (e.g.,

syndication of blog posts), the broker can likely rely on algorithms that compute trust

automatically. Developing such algorithms is out of scope of this dissertation, however

there exists substantial work on inferring trust in social networks (e.g., [54, 90]) and it

is likely that these approaches could be applied to this problem as well. It is pointed out

1See [55] for the original presentation of this algorithm.

160

that a philosophical discussion of how to determine trust ratings for published content is

not presented, as it is out of scope of this dissertation; however, the interested reader is

referred to [54], which provide detailed discussion of this topic.

First, the notion of the trust for a statement is introduced. Specifically, given an

assertion α, let τsourceα be the broker defined trust in the source of α and ρα be a measure

of the recency of the statement (i.e., time since publication). Trust in α, denoted τα,

is determined by an arbitrary function of the trust in its source and it recency. However,

higher trust in the source or a more recent statement must be more trusted. This is formally

defined in Definition 27; note that the notation sourceα and source′α denote different

sources of α, whereas ρα and ρ′α denotes publications of α with different measures of

recency (i.e., the greater ρα, the longer the information has existed).

Definition 27 (Trust Function) Trust in α, denoted τα, is given by a function ζ such that:

1. τα = ζ(τsourceα , ρα)

2. ζ(τsourceα , ρα) < ζ(τsource′α , ρα) if τsourceα < τsource′α

3. ζ(τsourceα , ρα) < ζ(τsourceα , ρ′α) if ρ′α < ρα

4. if ζ(τsourceα , ρα) < ζ(τsourceβ , ρβ) then ζ(τsourceα , ρα + i) < ζ(τsourceβ , ρβ + i)

It is noted that condition 4 requires that ρ degrades τ linearly. This ensures that if

τα < τβ at time t, then at time t + i, τα < τβ; that is, condition 4 ensures that our choice at

time t remains the same at all times in the future. Lastly, it is re-iterated that the precise

trust function for these inputs is not specified, as it will likely differ per deployment of the

syndication framework.

Given this, a trust-based selection function is introduced:

Definition 28 (Trust-Based Selection Function) Define a trust-based selection function λ

as any function mapping a set of SHOIN assertions into an assertion α, such that for

any set X of SHOIN assertions:

161

1. If X , ∅ then α ∈ X

2. For each γ ∈ X, τα ≤ τγ

Intuitively, the selection function returns (one of) the least trusted assertion. Given

this, a trust-based incision function is defined in Definition 29.

Definition 29 (Trust-Based Incision Function) Given KB K, a trust-based incision func-

tion στ is any function mapping a set of sets of assertions into a set of assertions, such

that for any set S of sets of assertions:

1. στ(S) ⊆
⋃

S

2. If X , ∅ and X ∈ S then X ∩ στ(S) , ∅

3. If for all X ∈ S , X ∩ K , ∅, then στ(S) ⊆ K, and

4. For each X ∈ S , λ(X) ∈ στ(S)

5. στ(S) is the smallest set satisfying conditions 1–4

The incision function will select the least trusted statement from each kernel. Clearly

there can be situations in which the intersection of two kernels A, B is non-empty. In this

case, it could be that assertion α ∈ A∩B and α is the least trustworthy assertion in A, how-

ever not in B. Clearly α will be removed from A, as it is necessary to regain consistency;

similarly the least-trusted assertion in B will be retracted as well. This demonstrates that

the trust-based incision function is not a minimal-incision function, as it does not satisfy

the conditions of Definition 25. That said, it is a direct consequence of the definition

that the trust-based incision function satisfies the condition of a general incision func-

tion defined in Definition 2. This implies that it can be used in the previously described

belief-base semi-revsion algorithm.

Lastly, the pseudo-code of an algorithm for στ is provided in Algorithm 6.

162

Algorithm 6 Trust Incision(S)
Input:

S : Set of sets of SHOIN assertions
Output:

R: Set of assertions to discard
1: R← ∅
2: for all X ∈ S do
3: discard ← null
4: for all x ∈ X do
5: if τx < τdiscard then
6: discard = x
7: end if
8: end for
9: R← R ∪ {discard}

10: end for
11: return R

Example

In this section, a brief example of the trust-based incision function is provided.

First, assume that trust values range over the positive integers from 1 to 10. Additionally,

for simplicity assume that given an assertion α, the trust function is defined as follows:

ζ(τsourceα , ρα) =
τsourceα
ρα+1

That is, the trust in α is simply the result of dividing the trust value for a given assertion

by one plus the number of time units since it was published; note that the time since

publication is incremented by one to ensure division by a non-zero number.

For ease of exposition, simply assume that the broker’s initial KB is empty. Addi-

tionally, let there be two publishers, P1 and P2, registered with a syndication broker, such

that P1 is a highly trusted source with trust value of 9. Further, P2 is a far less trust-worthy

publisher and therefore has a trust value of 3.

Now, say that at time 1, P1 publishes the assertion RiskyCompany(BauschAndLomb).

Given that this is the only assertion in the KB at time 1, the KB is clearly consistent. Next

assume that at time 2, publisher P2 publishes the assertion¬RiskyCompany(BauschAndLomb),

clearly resulting in an inconsistency. Using the previously described revision approach,

163

the justifications (constituting the kernels) for K |= ⊥ will be determined. In this sim-

ple example, there is only one justification composed of the two assertions. Next, the

following trust values would be found for the assertions at time 2:

τRiskyCompany(BauschAndLomb) = 9
2

τ¬RiskyCompany(BauschAndLomb) = 3
1

Given this, the assertion ¬RiskyCompany(BauschAndLomb) would be removed and

consistency would be regained.

7.3 Discussion

It is clear that the previously described approaches provide mechanisms to recover

from an inconsistency encountered when updating the broker’s KB. However, a comment

is in order regarding the practicality of adopting the revision algorithm for the syndication

framework; specifically, an open question is whether the approach will impose unaccept-

able performance overhead.

The main performance issue with the approach is related to efficiently computing all

kernels (i.e., computing all justifications for an entailment). In [85] an implementation of

the algorithm for finding all justifications has been provided; further, the results presented

indicate that the algorithm performs well on average, and in some cases response times

are even less than 1 second. However, in a syndication environment in which there are

frequent publications, it is quite clear that response times in the seconds will not scale.

In the algorithm provided in [85], the main performance overhead is in computing

the minimal hitting sets (see Chapter 2.5 for a more detailed discussion regarding the

algorithm); specifically, this requires a substantial number of consistency checks. This

is evident as the algorithm incrementally removes assertions and performs consistency

checks at each node in the hitting set tree. In order to make this approach more practical,

the technique from Chapter 5 on incremental consistency checking can be directly applied

164

to this problem; that is, rather than checking for consistency from scratch at each itera-

tion of the algorithm, the incremental approach can be used. Given the empirical results

demonstrated in Chapter 5, this will clearly reduce the overhead required in re-checking

consistency from scratch for each new node of the tree. Because of the direct application

of this technique, further discussion of this issue is not presented.

165

Chapter 8

Implementation and Evaluation

In this chapter, a prototype of the syndication framework is presented. The dis-

cussion includes an overview of the system architecture, as well as a variety of details

related to the implementation itself. Additionally, results from performance evaluations

using the implemented system are presented; the aim is to demonstrate the practicality of

the syndication framework. This is accomplished by showing that the system can match

subscriptions in 10s to 100s of milliseconds for realistic subscriptions and publications.

Given the actual publication frequencies observed in real domains with high publication

rates (shown in section 8.3), this demonstrates practicality because the system can support

substantial numbers of subscriptions efficiently.

The evaluation is conducted in two parts; first, experiments using synthetic datasets

are provided; specifically, the previously discussed ontology test-suite is used to simulate

newly arriving publications in the system and matching times are assessed. The second

part of the evaluation investigates the practicality of the framework for syndicating real-

world content from the financial domain. The financial domain has been selected as the

publication frequency in this domain is very high (up to 12,000 publications per day1).

To this end, we have worked with the Dow Jones Newswires2, who has provided sample

datasets from their historical news feed archive3. This allows the simulation of real publi-

cations which align with the actual publication times. Additionally, realistic subscriptions

have been constructed in collaboration with the Dow Jones Newswires and used in the ex-

periments, demonstrating the practicality of the framework using subscriptions one might

1Source: http://www.dj.com/Products Services/ElectronicPublishing/DJNewswires.htm
2http://www.djnewswires.com/
3Dow Jones News & Archive For Algorithmic Applications:

http://www.djnewswires.com/us/djnaap.htm

166

expect in the financial domain.

8.1 System Architecture

A prototype of the syndication framework presented in Chapter 4 has been imple-

mented (in Java). The main components of the system are shown in Figure 8.1. When a

new publisher joins with the system, it first registers with a publication manager. Follow-

ing this, new publications can be sent to the publication manager, whose main task is to

add and retract new publications from the broker’s knowledge base. In a similar manner,

when a new subscriber joins the system, it first registers with a subscription manager. Af-

ter this, the subscriber can register new subscriptions with the subscription manger; it is

additionally the subscription manager’s task to maintain the list of subscribers and their

subscriptions.

Figure 8.1: Syndication System Architecture

As discussed throughout this dissertation, the main matching engine is an OWL

DL reasoner. Given a new publication, the reasoner is notified to update the results for

registered subscriptions (i.e., queries). In the current implementation, the version of the

167

OWL DL reasoner Pellet that has been extended with the algorithms developed in this

dissertation serves as the matching engine. Lastly, when there is a new match for a sub-

scription, the subscription notification component sends the actual alerts to the necessary

subscribers; note that only new matches are forwarded to the subscribers.

8.2 Synthetic Datasets

In this section, an empirical evaluation of the syndication system using the syn-

thetic datasets discussed in Chapter 6.9 is presented. In the experiments, the same set of

queries from Chapter 6.9 has been used to simulate registered subscriptions in the sys-

tem; in the remainder, the queries will simply be referred to as subscriptions. As in the

evaluation in Chapter 5.5, varying sized ABox additions and deletions were randomly

selected from each dataset. The remainder of the dataset was used to simulate persistent

background information and publications in the broker’s KB. Publication sizes include 1,

5, 15, 25, and 50 assertions. In the experiments, the subscription is first registered with

the subscription manager; it is noted that in all of the experiments, it was assumed that

the subscriptions where for information matches, as publication matches can easily be

found from new information matches. Following this, the randomly selected publications

where submitted to the publication manager. It was assumed that all subscriptions and

publications persisted throughout the evaluation. The aim behind the experiment was to

simulate new publications arriving at the syndication broker and to asses the practicality

of the syndication system.

The experiments where run on a Linux machine with 2Gb of RAM and a 3.06GHz

Intel Xeon CPU. In all of the figures, the X-axis corresponds to the publication size,

while the Y-axis is the average time in milliseconds for processing a new publication (i.e.,

consistency checking, followed by query answering) after it has been integrated into the

OWL KB; the scale is logarithmic.

Figure 8.2 presents the average matching time for all of the VICODI subscriptions

168

(a) (b) (c)

(d) (e) (f)

Figure 8.2: (a) VICODI subscription 1 - additions (b) VICODI subscription 2 - additions
(c) VICODI subscription 3 - additions (d) VICODI subscription 1 - deletions (e) VICODI
subscription 2 - deletions (f) VICODI subscription 3 - deletions

(see Chapter 6.9 for a discussion of these queries). It can be observed that for addition

publications, subscription 1 and 3 are always matched in 10s of milliseconds; this demon-

strates the practicality of the syndication system. Deletion publications introduce slightly

more overhead, as the incremental query answering technique is more costly for deletions

(see Chapter 6.9 for a discussion). However, it can be observed that deletion publica-

tions are still matched in 10s of milliseconds; further, in realistic syndication systems

publications are much more likely to be additions (i.e., new publications).

It can be observed that subscription 2 introduces additional overhead; as discussed

in Chapter 6.9, this is because the incremental query answering technique is not as effec-

tive for this subscription, essentially resulting in the subscription being re-evaluated from

scratch over the entire broker’s KB. If such a problematic subscriptions were encountered

in a real deployment of the syndication system, one could potentially batch process the

subscription (i.e., re-evaluate the subscription more infrequently). While this would intro-

169

(a) (b)

(c) (d)

Figure 8.3: (a) SEMINTEC subscription 1 - additions (b) SEMINTEC subscription 2
- additions (c) SEMINTEC subscription 1 - deletions (d) SEMINTEC subscription 2 -
deletions

duce a time delay when matching the publication with the necessary subscribers, it would

reduce the overhead. However, in the remainder of this chapter, the subscriptions do not

demonstrate this behavior.

Figure 8.3 presents the average matching times for the SEMINTEC subscriptions.

It can be observed that for addition publications matching is performed in 10s of mil-

liseconds. Further, the same is observed for deletions. This clearly demonstrates that the

practicality of the system.

Figures 8.4 & 8.5 present the average matching times for LUBM subscriptions 1–3

and 4–6 respectively. It can be observed that for addition publications using the smaller

dataset, all matching times are in the 10s of milliseconds; the same is also observed for

the larger dataset for subscriptions 2–6. It can be seen that for the first subscription over

the larger dataset, slightly more overhead is introduced; however, the response time is

well below one second.

170

(a) (b) (c)

(d) (e) (f)

Figure 8.4: (a) LUBM subscription 1 - additions (b) LUBM subscription 2 - additions
(c) LUBM subscription 3 - additions (d) LUBM subscription 1 - deletions (e) LUBM
subscription 2 - deletions (f) LUBM subscription 3 - deletions

(a) (b) (c)

(d) (e) (f)

Figure 8.5: (a) LUBM subscription 4 - additions (b) LUBM subscription 5 - additions
(c) LUBM subscription 6 - additions (d) LUBM subscription 4 - deletions (e) LUBM
subscription 5 - deletions (f) LUBM subscription 6 - deletions

171

(a) (b) (c)

(d) (e) (f)

Figure 8.6: (a) UOB subscription 1 - additions (b) UOB subscription 2 - additions (c)
UOB subscription 3 - additions (d) UOB subscription 1 - deletions (e) UOB subscription
2 - deletions (f) UOB subscription 3 - deletions

Lets us now turn our attention to deletion publications; as in the case for additions,

all subscriptions over the smaller dataset are matched in 10s of milliseconds. For the

larger dataset, it can be observed that slightly more overhead is introduced; however,

again, it is expected that deletions are far more infrequent and the current matching times

are still very promising, as they are well below one second.

Lastly, Figures 8.6 & 8.7 present the average matching times for UOB subscriptions

1–3 and 4–6 respectively. Similarly to LUBM, all matching times for addition publica-

tions are in the 10s of milliseconds. Similarly, many of the deletion publications over the

smaller dataset are matched in 10s of milliseconds.

In summary, the empirical results demonstrate that the syndication framework will

be practical for realistic domain models (i.e., OWL ontologies). Further, the results in-

dicate the approach will scale even when substantial information is persisted (e.g., back-

ground information or publications) in the broker’s knowledge base.

172

(a) (b) (c)

(d) (e) (f)

Figure 8.7: (a) UOB subscription 4 - additions (b) UOB subscription 5 - additions (c)
UOB subscription 6 - additions (d) UOB subscription 4 - deletions (e) LUBM UOB 5 -
deletions (f) UOB subscription 6 - deletions

8.3 Real-World Financial Dataset

While the usage of the synthetic datasets in the previous section indicates that the

syndication framework will be practical, it is still an open question as to whether such

a system will meet the performance demands of real-world, high demand syndication

environments. Therefore, in this section we explore the application of the system to

disseminating real-world news feed information from the financial domain. This domain

was selected as there exists a very high publication frequency (e.g., > 12,000 publications

per day) and there is a critical need to perform matching very efficiently (e.g., for stock

trading purposes).

To this end, we have worked with the Dow Jones Newswires to obtain histori-

cal news feed content from the financial domain; fortunately, the Dow Jones Newswires

maintains a 20+ year historical news feed archive, which is utilized by their customers

for a variety of uses (e.g., building automated trading systems). Further, the archive is

173

represented in a numerous representation formats, including XML, and has metadata as-

sociated with each news item; as we will see later in this chapter, this allows a straightfor-

ward translation to an OWL representation and therefore the utilization of the developed

syndication framework. Additionally, there exists time stamps associated with the actual

publications, allowing realistic simulations to be performed in which we can assess the

practicality of the framework for this domain.

Given this, an OWL domain model has been constructed, which is an extension of

the current metadata category codes (taxonomy-like) that the Dow Jones Newswires has

created and associates with published news items; this serves as the syndication broker’s

fixed schema and allows for subscriptions to be issued over the classes and properties

defined in this ontology. Further, we have worked with the Dow Jones Newswires to

develop realistic subscriptions for the financial domain. Collectively, this allows a real-

world assessment of the practicality of the syndication framework for a high-frequency

publication domain.

The remainder of this chapter is organized as follows; first, background information

related to the Dow Jones Newswires historical news feed archive is presented. Following

this, a discussion of the construction of the OWL domain model is provided. A brief

discussion of an extension of the previously described system architecture is discussed.

Then an overview of the subscriptions used in the simulations is presented. Lastly, we

presented the empirical results from the evaluation.

8.3.1 News Feed Background and Overview

The Dow Jones Newswires News & Archive4 (simply referred to as archive) is

20+ year historical news archive dating back to January 1986 that contains news stories

4Dow Jones News and Archives for Algorithmic Applications:
http://www.djnewswires.com/us/djnaap.htm

174

from the Dow Jones Newswires, The Wall Street Journal5, and Barron’s6. The archive

is represented in various formats, including the Dow Jones News Mark-up Language,

Dow Jones Composite Feed (text-based), and NewsML/NITF; note that the later is a

standardized XML representation for news content.

Importantly, each news item contains a variety of metadata associated with it; this

includes the date, time, story headline, company ticker symbols, and Dow Jones category

codes. The later are a collection of subject-specific metadata codes (with a taxonomic-like

structure), which details the topic of the article (i.e., specific industry, region, government

statistics, etc.). Due to proprietary issues, further discussion regarding the metadata codes

is omitted.

8.3.2 OWL Domain Model

To utilize the archive for empirical evaluations of the developed syndication frame-

work, the category codes associated with published articles have been translated to an

OWL ontology. This has been performed by inspecting the codes and their accompanying

XML DTD (provided by the Dow Jones Newswires) and creating an automatic translation

to an OWL ontology. During this conversion, implicit relations from the category codes

have been created as well (e.g., the containment of sub-regions in regions).

After converting the initial category codes, additional modeling was performed to

enrich the ontology. This included constructing classes and properties describing rela-

tions between organizations, employees, government organizations, and regions. Mod-

eling was also performed to describe the general investment domain, including securi-

ties, portfolios, etc. More complex modeling related to government regulatory decisions

(e.g., FDA clearances) was performed to allow subscriptions of interest for the Dow Jones

Newswires.
5http://www.wsj.com/
6http://www.barrons.com/

175

The resulting OWL ontology was additionally populated with instances from freely

available data-sources. This included the population of all of the listed securities and

their corresponding companies for the NASDAQ, NYSE, and AMEX stock exchanges.

This allowed stock ticker symbols associated with published articles to be integrated with

additional background information about the companies and the securities; this in turn,

allows for more complex OWL inferences when determining subscription matches. Addi-

tionally, geographic regions were populated using commonly available OWL ontologies

(which also include instances) describing the domain; specifically, this includes the usage

of a countries ontology7 developed by Jenz & Partner GmbH8. Given that there was a

dramatic overlap with the regions in the countries ontology and the region specific Dow

Jones Newswires category codes, OWL constructs were additionally utilized to state that

regions were equivalent (using the OWL sameAs constructor).

Due to proprietary Dow Jones Newswires content, the ontology is not made avail-

able. However, it is noted that in the ontology, the following constructs are used: concept

and role subclass axioms, negation, universal and existential property restrictions, inverse

roles, transitive roles and datatypes. Table 8.1 provides additional details regarding the

ontology, including the DL expressivity, number of classes, properties, individuals and

triples; additionally, the average time to perform the initial consistency check using Pel-

let (in seconds) of the ontology is shown. The later is provided as it demonstrates the

overhead of checking the consistency of the broker’s KB from scratch.

Expressivity] Classes] Properties] Individuals] Triples Init. Cons. (sec.)
SHI(D) 58 53 21,683 68,238 4.3

Table 8.1: Financial Ontology Overview

7Available at http://www.w3.org/Consortium/Offices/Presentations/RDFTutorial/rdfs/Countries.owl
8Jenz & Partner GmbH Homepage: http://www.jenzundpartner.de/

176

8.3.3 Extended System Architecture

It is clear that a conversion step must be performed when a new publication is

received. In the evaluation, we have used the NewsML/NITF format of the archive, as

there exists freely available APIs for manipulating NewsML documents9. Given this, it is

a trivial process to convert the existing metadata associated with published articles to the

OWL model.

In order to augment the previously existing metadata and provide richer filtering

based on semantic content, an information extraction module has been implemented as

well. While simplistic, the module developed exploits the observation that many of the

headlines for news articles have a similar structure; this is particularly true for specific

government statistics, company earnings, and regulatory decision releases. For exam-

ple, the phrase “XYZCompany Gets FDA OK For XYZDrug” is often used in the headline

of news articles discussing regulatory decision by the Food and Drug Administration.

Clearly, more sophisticated information extraction and natural language processing tech-

niques would be effective as well, however further exploring their use is out of scope of

this dissertation.

The previous system architecture presented in section 8.1 is slightly extended to in-

clude this functionality. Figure 8.8 shows the main components of this extension; specifi-

cally, a new publication is first processed by information conversion and extraction mod-

ules prior to their receipt by the publication manager.

8.3.4 Real-World Subscriptions

We have additionally consulted our collaborators at the Dow Jones Newswires when

selecting the subscriptions to use in the simulations. The following four queries have been

selected.
9For example, see the NewsML Toolkit: http://newsml-toolkit.sourceforge.net/

177

Figure 8.8: Metadata Converter Architecture

1. (x)← CompanyWithPositiveFDARegulatoryDecision(x)

2. (x, y) ← CompanyWithPositiveFDARegulatoryDecision(x) ∧ issuesSecurity(x, y) ∧
listedOnExchange(y,NASDAQ)

3. (x)← Publication(x) ∧ hasTopic(x,AAPL)

4. (x, y)← Publication(x) ∧ hasTopic(x, y) ∧ containedIn(y,HalaschekPortfolio)

The first subscription is a retrieval query for all instances of that are companies that

have some positive FDA regulatory decision. This subscription is of interest as it will

likely indicate a stock which will become volatile due to new regulatory decisions. It is

noted that a variety of OWL inferences are necessary to conclude that an instance is actu-

ally a member of this class; specifically the concept is defined in terms of a conjunction of

the concept Company and an existential property restriction on the role receivesRegulato-

ryNotification and role filler GrantedFDARegulatoryDecision. Additionally, receivesReg-

ulatoryNotification is an inverse role, and GrantedFDARegulatoryDecision is also defined

in terms of a complex concept.

Subscription 2 is an extension of the first subscription, and specifically only matches

instances that are of type CompanyWithPositiveFDARegulatoryDecision, which addition-

178

ally issue a security on the NASDAQ stock exchange; it is noted that issuesSecurity has

an inverse role.

The third subscription matches publications with a topic that includes the common

stock for Apple Inc. Such a subscription is intended to filter information such that only

news related to a specific company is returned to the subscriber. The last subscription is

for any publication that has some topic that is contained in a specific type of investment

portfolio, namely HalaschekPortfolio. This subscription is intended to filter information

that is only relevant to a collection of securities.

8.3.5 Empirical Results

In this section, the results of the simulations using the Dow Jones Newswires news

archive, previously described domain model, and subscriptions are presented. In the eval-

uation, three different one week subsets of the archive have been used, namely from Oct.

20–26, 2001, Oct. 21–27, 2002, and Oct. 17–23, 2004. In each experiment, the previous

four subscriptions are initially registered with the syndication broker. Then, three different

simulations have been run using the different one-week datasets; in particular, the histor-

ical news items from the datasets are streamed into the syndication in real-time using the

time-stamps associated with publications. Additionally, in the experiments each publica-

tions is persisted in the syndication broker’s KB for 2 days and then expired. In the event

of an inconsistency after receiving a new publication, the rejection-based approach dis-

cussed in the previous chapter was used. As in the evaluation with the synthetic datasets,

response times for information matches have been assessed for the different subscriptions.

Prior to presenting the average matching times for the various subscriptions, a dis-

cussion regarding the actual publication frequencies observed in the datasets is presented.

This will later provide insights into the practicality of the syndication framework. First,

Table 8.2 presents an overview of the average number of publications observed over var-

ious timeframes in the different datasets; specifically, the average number of publications

179

per second, minute, hour, and day is presented. In the table, different subsets of the var-

ious one-week time periods is also shown. The first row corresponds to the publication

frequencies for the weekend days (i.e., Saturday and Sunday) for each dataset. It can be

observed that during these days, the publication frequency is the lowest, given that the

financial markets are not open. The next row presents the average publication frequen-

cies for the weekdays in the datasets. Importantly, it can been observed that on average

.08–.13 news items are published per second. Next, the publications frequencies for the

weekdays between 7:00am–7:00pm EST is provided. These have been shown, as it is in-

tuitive to expect there to be higher publication frequencies during actual trading hours; it

can be seen that this is in fact observed. The maximum publication frequencies during the

7:00am–7:00pm EST weekday timeframe have also been provided. Interestingly, there

appears to be periodic bursts of a high number of publications within one second.

Time Dataset Pub. / Sec. Pub. /Min. Pub. / Hour Pub. / Day
10/21/01-10/27/01 .005 .29 16 276

Weekend 10/20/02-10/26/02 .01 .31 17.59 325
10/17/04-10/23/04 .01 .38 21.52 358
10/21/01-10/27/01 .11 7 403.9 10,098

Weekdays 10/20/02-10/26/02 .08 5.02 289.3 7,234
10/17/04-10/23/04 .13 8.28 477.8 11,925
10/21/01-10/27/01 .15 9.2 542.8 6,691

Peak Hours 10/20/02-10/26/02 .11 6.69 371.1 4,825
10/17/04-10/23/04 .18 11.1 645 8,014
10/21/01-10/27/01 34 69 1,110 7,682

Max. Peak 10/20/02-10/26/02 63 63 1,254 5,849
10/17/04-10/23/04 13 85 1,530 9,361

Table 8.2: Publication Frequency Distribution

Table 8.3 provides additional insights into the cases where a high number of publi-

cations is received within one seconds. First, the table shows the average number of oc-

currences during each weekday in which more than 20 publications are produced within

one second (the third one-week period is omitted as this never occurs). In general, it can

be seen that this does not occur very often. The observation that there are times when a

180

high number of publications are disseminated within one second might suggest that there

could potentially be scalability issues if a subsequent high number of publications is im-

mediately received. In light of this concern, Table 8.3 additionally provides the average

number of publications produced in the following minute after a one second period with

more than 20 publications. It can be seen that the frequency essentially returns to the av-

erage publication frequency per second shown in Table 8.2. This indicates that typically

these bursts do not appear to be prolonged.

Dataset Freq. of Pub./Sec. > 20 Avg.] Pub. in Next Min.
10/21/01-10/27/01 47.5 15
10/20/02-10/26/02 63 16.08

Table 8.3: Frequency of High Publication Rates in One Second

Next, Table 8.4 presents the average number of OWL assertions obtained when

converting and extracting information from each article from the archive. This indicates

that the conversion/extraction process is successfully able to generate OWL assertions for

matching purposes.

10/20/2002–10/26/2002 10/21/2001–10/27/2002 10/17/2004–10/23/2004
27.46 29.45 34.62

Table 8.4: Average Number of OWL Assertions per Publication

Let us now turn our attention to matching time for the various subcrptions. It is

first noted that in the figures, the matching time consists of both the time to check the

consistency of the broker’s KB and re-evaluate the registered subscriptions.

Consider the first subscription; it is pointed out that initially executing the subscrip-

tion over the broker’s KB takes on average 540 milliseconds. Figure 8.9 presents the

average matching time for the first subscription given an new publication. The response

times range from under 10ms to just over 12ms, depending on the dataset; this clearly

indicates the effectiveness of the incremental reasoning algorithms developed in previous

chapters. This also shows that the framework will be practical for realistic domains.

181

Figure 8.9: Finance Subscription 1 Average Matching Time

Next, let us consider the second subscription. Running this subscription (i.e., query)

from scratch over the broker’s initial KB takes approximately 2.08 seconds; clearly, re-

running this subscription from scratch in the event of a new publications will not scale for

even a small number of subscriptions. Figure 8.10 presents the average matching times for

the second subscription. It can be observed that this subscription introduces slightly more

overhead, however matching time is still well below 100ms, demonstrating the utility of

the developed algorithms.

Figure 8.10: Finance Subscription 2 Average Matching Time

182

The third and fourth subscriptions are initially evaluated more efficiently then the

previous two subscriptions; namely, they are answered in 7 and 8 milliseconds respec-

tively on average (however, note that the initial consistency check takes more than 2 sec-

onds). Figures 8.11 & 8.11 presents the average matching time for these subscriptions.

It can be seen that the matching times range from approximately 30 milliseconds to just

over 80 milliseconds.

Figure 8.11: Finance Subscription 3 Average Matching Time

Figure 8.12: Finance Subscription 4 Average Matching Time

It is important to note that during all of the simulations, the system did not encounter

183

a situation in which it effectively got stuck evaluating a subscription for a period long

enough to cause a bottleneck at the matching engine (i.e., OWL reasoner). Even during

the (infrequent) times in which a very high number of publications was received within

one second, the publication buffer still cleared; this is explained from the observation from

Table 8.3, which shows that subsequent publication frequencies return to the average case.

8.3.6 Discussion

The empirical results demonstrated in the previous section indicate that a substantial

number of subscriptions can be supported in the framework without creating a bottleneck

in the matching engine. For example, assuming the average publication frequency during

the peak weekday hours, then potentially 100s of subscriptions can be supported. On

the other hand, assuming the average number of publications per second observed during

the weekend, then it is clear that 1,000s of subscriptions can be supported. This in turn

demonstrates the practicality of the framework, as the results show that my techniques

work for realistic OWL domain models, publication frequencies, and subscriptions.

Such a number of subscriptions may be acceptable for small to medium deploy-

ments of the syndication framework, depending on the domain models and publication

frequencies. In order to achieve increased numbers of subscriptions, a production level

deployment of the framework involving multiple servers dedicated to performing match-

ing for a subset of the registered subscriptions can be developed. This would dramatically

increase the number of subscriptions supported. However, further addressing this issue is

out of scope of this dissertation. Additional future work to further increase the scalability

of the framework is presented in Chapter 9.2.

184

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The main goal of this dissertation was to develop a syndication framework that uti-

lizes a rich semantics-based mechanism for matching that is practical for real world use.

This provides finer control for filtering published information by using automated reason-

ing, resulting in subscription matches not found using traditional syntactic syndication

approaches.

Given this motivation, a syndication framework has been developed in Chapter 4,

in which published information is represented using OWL. Given OWL’s alignment with

description logics, matching newly published information with subscription requests in

the framework is reduced to DL query answering. Therefore, the previous goal of using

automated reasoning for matching within the framework is accomplished via DL reason-

ing algorithms.

While the developed framework is more expressive more traditional approaches, us-

ing standard DL reasoning algorithms introduces overhead which ultimately prohibits the

framework from being practical for many real-world domains and publication frequen-

cies. This is primarily due to reasoning through the frequent changes to the KB caused

by new publications.

Within the syndication framework, two DL reasoning services are required, namely

consistency checking and query answering. Therefore, in Chapter 5, incremental consis-

tency checking techniques have been developed for the DLs SHIQ and SHOQ. The

main idea behind the approach is to leverage information related to the model constructed

in previous consistency checks. Specifically, the developed algorithms incrementally

185

maintain tableau completion graphs, which correspond to a model for the KB. Then,

in the event of an addition or deletion to the KB, the previous completion graph can be

updated to reflect the changes.

Following this, the topic of query answering in the presence of updates to DL KBs

has been addressed. Specifically, Chapter 6 presents an algorithm for reducing the portion

of the KB that must be considered after an update for the DL SHI. The developed ap-

proach safely prunes candidate answers by exploiting the interactions between the effects

of the update and the query concepts on the KB. This provides an effective technique for

incrementally maintaining query results as the underlying KB is updated.

Given the likelihood that logical contradictions will be encountered as the syndica-

tion broker’s KB is updated with new publications, two approaches for recovering from

inconsistencies have been developed in Chapter 7. The first is a straightforward approach

in which problematic publications are simply discarded. The second technique is a belief-

base revision algorithm which is flexible in that arbitrary functions can be defined to de-

termine the assertions to retract from the KB to regain consistency. A specific function

using the notion of trust in publication sources has also been presented.

An important goal of this dissertation was to demonstrate the practicality of the

syndication framework. To this end, a comprehensive empirical evaluation has been

conducted, the results of which have been presented in Chapter 8. In the evaluation,

experiments have been performed using synthetic datasets to simulate publications in

the system. Additionally, real-world simulations have been performed using historical

news items from the financial domain obtained by collaborating with the Dow Jones

Newswires. In these evaluations, historical time-stamps have been used to simulate the

actual publication frequencies observed. This allows the assessment of whether the syn-

dication system can accommodate high frequency publication rates observed in the finan-

cial domain. In the end, the utility of the algorithms and practicality of the syndication

framework developed in this dissertation are shown.

186

A summary of the contributions in this dissertation are as follows:

• A formalization of a syndication framework for the Web, which is based upon the

Web Ontology Language and description logic reasoning.

• A set of techniques for efficient consistency checking through incremental updates

to the KB. This provides a practical approach for integrating new publications into

the broker’s KB.

• A set of techniques for reducing the portion of the KB that must be considered for

query answering after an update to the KB. This provides efficient query answering

through incremental changes to the KB.

• An algorithm for recovering from logical inconsistencies for DL knowledge bases.

This allows the syndication broker to regain consistency in the event a publications

which cause a logical contradiction in its KB.

• Demonstrated the practicality of the OWL-based syndication framework by per-

forming a comprehensive evaluation of syndication framework using synthetic datasets,

as well as real world data from the financial domain.

9.2 Open Issues and Future Work

In this section, the limitations and open issues of this dissertation are discussed.

Additionally, areas for future work are outlined. First, discussions are provided regarding

the extension of the syndication framework developed in this dissertation.

187

9.2.1 Extending the Syndication Framework

Even More Expressivity

Supporting Boolean Queries

In the syndication framework developed in Chapter 4, subscriptions have been rep-

resented as conjunctive retrieval queries (i.e., they contain at least one distinguished vari-

able), and therefore boolean queries (i.e., no distinguished variables) are not supported.

As stated in Chapter 4, boolean queries are not supported as there is no notion of an

information match when subscribers’ interests are represented as boolean queries. Ad-

ditionally, in many real world applications, queries typically have some number of dis-

tinguished variables. In general, it is straightforward to extend the framework to support

boolean queries. The notion of continuous conjunctive boolean queries can be defined in

a similar manner as continuous retrieval queries, and publication matches can be extended

to support boolean queries as well.

Publication Representation

In this dissertation, I have proposed the use of the subsets of the Web Ontology

Language that align with description logics as the means for encoding published informa-

tion in the developed syndication framework. Currently, there are efforts to extend OWL

with additional DL constructs, resulting in OWL 1.11. Clearly, there can be extensions of

the developed syndication framework to allow the use of these additional constructs pro-

vided by this and future extensions to OWL. There are also ongoing efforts to standardize

rules languages for the Web (e.g., the Rules Interchange Format2), and therefore, another

interesting avenue for future work includes supporting the results of such standardiza-

tion efforts within the syndication framework. Interesting directions for future work also

include investigating syndication frameworks that support full first order logic or higher

1W3C OWL Working Group: http://www.w3.org/2007/OWL/
2W3C Rule Interchange Format homepage: http://www.w3.org/2005/rules/

188

order logics, as well as non-monotonic logics (e.g., there have been non-monotonic ex-

tensions of descriptions logics; for example see [24]). In general, potential interesting

research problems include formalizing an integration of these different rules languages

within the framework and addressing the scalability issues introduced by the inclusion of

additional formalisms.

Distributed Architectures

In the syndication framework, it has been assumed that there is a single syndication

broker. However, it is clear that the scalability of the approach can be further increased

by extending the framework to a distributed architecture. This is a common technique

investigated in literature when further extending previous syndication approaches (e.g.,

[21, 150, 38, 151]). Simply utilizing additional servers that are dedicated to a subset of

the registered subscriptions can be supported in a fairly straightforward manner and is

largely an engineering issue. However, supporting distributed matching is much more

difficult problem, as this reduces to distributed DL reasoning. This topic has recently

gained attention in literature (e.g., see [134, 135]), and these techniques may eventually

lead to possible extensions of the framework.

Exploiting Subscription Overlap

Similar to the previous section, exploiting the overlap of registered subscriptions

has been investigated in syndication literature for the purpose improving scalability. The

intuition is to exploit the containment relationship between queries to determine more

optimal subscription evaluation orderings when a new publication is received. The notion

of query containment in DLs has been investigated in literature (e.g., see [92]) and can

certainly be leveraged in the developed syndication framework. Given the straightforward

application of such an approach, it has been left as future work. It is also noted that recent

work on determining more optimal subscription evaluation orders for general syndication

189

systems [98] can be leveraged as well.

9.2.2 Enhancing Incremental Reasoning Techniques

In this dissertation, incremental reasoning algorithms have been developed for a

variety of description logics. In the following sections, some limitations and tradeoffs of

these techniques are addressed and future work related to these issues is identified.

Consistency Checking

The incremental consistency checking algorithm developed in Chapter 5 is appli-

cable to the DLs SHIQ and SHOQ. However, given that the framework is applicable

to all of OWL DL, extending the algorithm to SHOIQ would allow efficient support

for ontologies that utilize all of the constructs available in OWL DL. The restriction to

SHIQ and SHOQ is primarily due to fact that there is no expansion rule ordering im-

posed by the tableau algorithm when these logics are considered; therefore, the correct-

ness of the algorithm can be shown. It should be possible to extend the technique to

all of OWL DL, however this is left as future work, as a very large subset of OWL has

been covered using the algorithm just described, and by using this subset a far more ex-

pressive syndication framework is provided when compared to XML and RDF/S-based

approaches.

Related to this is additionally investigating the extension of the technique to more

expressive formalisms discussed in section 9.2.1, such as OWL 1.1, non-monotonic ex-

tensions to DLs, or even full first order logic.

As noted in Chapter 5, in the worst case, the performance of the incremental con-

sistency checking algorithm is the same as reasoning from scratch. A near worst-case

scenario could potentially occur if the updated completion graph (i.e., model) contains a

clash, which requires a substantial portion of the completion graph to be reverted to a pre-

vious non-determinstic choice. Additionally, this could possibly occur if the update itself

190

causes structures to propagate to a large portion of the existing completion graph. For

example, if there is an individual a in the KB that is highly connected to the other individ-

uals via a knows role and the update states that a instantiates the concept ∀knows.Person,

then this will cause the propagation of the Person concept name to all other individuals;

this in turn, may then cause events to occur due to the fact that all individuals now satisfy

the Person concept. While this worst case was not encountered during experiments, it

is possible that it can occur and therefore additional empirical evaluations to determine

when and how frequently this occurs is left as future work. Additional ontologies can be

utilized to investigate this problem as well.

Query Answering

Similar to the consistency checking algorithm, the approach for incremental query

answering is applicable to a subset of OWL DL, namely SHI. The main issue with

respect to supporting all of OWL DL is that the construction and maintenance of the

summary completion graph becomes difficult to accomplish. For example, extending the

approach to deal with function roles or number restrictions is currently an issue, due to

the merging of arbitrary nodes in the completion graphs during the tableau algorithm.

Again, by using this portion of OWL DL, a far more expressive syndication framework

is provided when compared to XML and RDF/S-based approaches. Given this, extending

the technique to support a larger part of OWL is left as future work. As in the case of the

consistency checking algorithm, related to this is additionally investigating the extension

of the technique to more expressive formalisms discussed in section 9.2.1.

While the approach demonstrates very impressive results, there are some potential

limitations with the technique. One issue is related to the size of the overestimate of indi-

viduals affected by updates. In particular, if the approach produces an overestimate that is

too large, the value of the approach will degrade (note that in the worse case, the number

of individuals one would have to check is the same as in the non-incremental case). This

191

in fact was observed in the case with the second query of the VICODI test ontology, and

similar to the previously pointed out limitation with the incremental consistency checking

approach, this is caused by individuals in the KB that are connected to a large number of

other individuals via a role in the query. While this is problematic, in general the em-

pirical results indicate that the candidate set obtained provides a dramatic reduction in

the search space. However, further empirical evaluations using additional ontologies to

investigate this issue can certainly be performed.

As mentioned in section 9.2.1, it is possible to extend the framework to support

subscriptions represented as boolean queries. However, in the current incremental query

answering algorithm, only retrieval queries are supported. This is mainly due to the fact

that the general technique to answering boolean queries is to extend the KB with a TBox

axiom and then to check for consistency. In this case, extending the approach will require

further research.

Other interesting extensions of the approach include lifting the additional restric-

tions on the form of the query. The restriction which dis-allows transitive roles in the

query is imposed as it allows the query impact techniques to be used. With additional re-

search, it should be possible to lift this restriction, however the topic of query answering

in general for OWL DL in the presence of transitive roles is still a relatively open issue.

Lifting the syntactic restriction on the query is additionally a very interesting di-

rection for future work. This restriction is imposed as it allows the isolation of the prop-

agation of labels during the tableau algorithm; this essentially allows the correctness of

the concept guide technique to be shown. Lifting this restriction will require additional

investigation.

9.2.3 Evaluating Belief-Base Semi-Revision

While comprehensive performance evaluations have been preformed for the incre-

mental reasoning algorithms developed in Chapters 5 & 6, such an evaluation was not

192

performed for the revision approach presented in Chapter 7.2. This was primarily be-

cause the main mechanism for implementing the semi-revision operator follows from

previously developed algorithms on finding justifications for entailments in OWL KBs,

which has been extensively evaluated in literature. However, as noted in Chapter 7.2,

the incremental consistency checking technique can be directly applied to the approach

for finding all justifications, and it is expected that similar performance improvements as

demonstrated in Chapter 5 will be observed. Given this, additional future work includes

implementing such extensions and performing additional empirical evaluations.

9.2.4 Information Extraction

In this dissertation, the content creation problem has not been addressed; that is,

it has been assumed that published information is encoded in OWL. As demonstrated in

Chapter 8.3, in some domains this may not be the case, as information is encoded in other

formats. To this end, in Chapter 8.3 simple converters and extractors have been utilized

for converting non-OWL publications to the necessary representation when performing

simulations using historical news items. While natural language processing and informa-

tion extraction is out of scope of this dissertation, it certainly is an interesting avenue for

future work. This can involve both the research of novel extraction techniques for the

syndication framework and the application of existing extraction techniques which can be

applied to textual information that is then encoded in domain ontologies (e.g., see [6, 39]).

9.3 Summary

In summary, in this dissertation I have shown that it is possible to provide an expres-

sive syndication framework that uses an OWL/DL-based approach for matching newly

published information with registered subscriptions. The key results of this dissertation

are the formalization of the syndication framework and the development of algorithms for

193

incremental description logic reasoning and resolving inconsistencies encountered due to

new publications. Given this, it has been shown that the syndication framework is prac-

tical for use in real-world domains and publications frequencies. Future work involves

extending the syndication framework and developed incremental reasoning algorithms,

and performing additional empirical evaluations.

194

Appendix A

Proofs

A.1 Proofs for Chapter 5

A.1.1 Lemma 1: Correctness of Modified Tableau Algorithm

Proof It is first noted that soundness and completeness of the tableau algorithm are inde-

pendent of the expansion rule ordering [78]; therefore, they trivially hold. Next consider

termination. We first present the following properties of the assumptions of the lemma

and the SHOIQ tableau algorithm:

1. By assumption, assertions in the ABox are not transformed into TBox assertions

involving nominals.

2. K is assumed to be a SHIQ or SHOQ KB. This in conjunction with property 1,

implies that if the TBox includes nominals, then there will not exist inverses, and

if there exists inverse roles, then there will not exist nominals in the TBox. This in

turn implies that the NN-rule will never be applied and is not necessary [78].

It is a direct consequence of these properties that the modified tableau algorithm

terminates; this follows as the first three conditions in the termination proof shown in

Lemma 6 of [78] are sufficient to show termination of the algorithm, as the fourth property

is un-necessary because the NN-rule is never applied. The three conditions are omitted

here as they are identical to those in [78]. �

A.1.2 Theorem 1: Completeness of SHOIQ Axiom Tracing

Proof We must show the following claim: if e occurred due to α, then e ∈ ψ(α). This

will be shown by inductively considering the application of expansion rules. For the base,

195

consider the initial completion graph which corresponds to the ABox; observe that this

completion graph and the ψ function constructed from the initialized τ function (from

Algorithm 1) satisfy this claim. The only non-trivial cases regarding this initial condition

are 1) adding root nodes to the completion graph and 2) the dependence of root node

edges on multiple role assertions. The first case is trivially handled as the root nodes in

V correspond to the named individuals IA and not an ABox assertion. The second case

is clearly handled by the special condition in the definition of τ for edges between root

nodes.

For the inductive step, we show that if a given completion graph G and its corre-

sponding functions τ, ψ satisfy the claim, then after applying some expansion rule to G

the resulting τ, ψ functions satisfy the claim as well. This can be shown by considering

the application of a tableau expansion rules based on the form of a concept C:

• u-rule: The only events that occur are the addition of C1,C2 to L(x), both of which

are clearly due to the existence of x and the addition of C1 u C2 to L(x). These

are precisely the events added to τ. By induction τ((C1 u C2), x) and τ(x,V) are

complete, which implies the claim still holds after the application of the expansion

rule.

• t-rule: This condition follows in a similar manner as the u-rule.

• ∃-rule: The only event that occurs is the addition of a new node y, edge 〈x, y〉, role

name S to L(〈x, y〉), and concept name C to L(y); these are precisely the events

added to τ. All of these events are clearly dependent on the existence of x and

the label ∃R.C in L(x), both of which are taken into account when constructing τ.

Lastly, by induction τ((∃R.C), x) and τ(x,V) are complete, implying the claim still

holds.

• ∀-rule: The only events that occur are the addition of C to L(y), and clearly this

event is only dependent on the existence of the nodes x and y, concept name ∀S .C

in L(x), as well as the edge (to or from y) and edge label satisfying the S -neighbor

196

relation; these events and dependencies are precisely those taken into account when

constructing τ. By induction, τ is complete for these events, implying the claim still

holds after the application of the expansion rule.

• ∀+-rule: This condition follows in a similar manner as the ∀-rule.

• choose-rule: This condition follows in a similar manner as the ∀-rule.

• >-rule: This condition follows in a similar manner to the ∃-rule, however an addi-

tional event occurs which adds the inequality relation between yi, y j. Clearly this

event is handled as well.

• 6-rule: It suffices to show that the claim holds after the application of the merge

function. First, note that clearly the application of this rule is dependent on the

existence of more than n S -neighbors, implying that it is dependent on the existence

of these node, edges, and edge labels; additionally, the rule application is dependent

on the existence of the node x and concept name 6 nS .C in L(x). Note that all of

these dependencies are included in the definition of M. We now consider the sub-

cases of the merge function:

– 1a) The only events that occur are the creation of an edge 〈z, x〉 and the addi-

tion of all role names from L(〈z, y〉). This is dependent on satisfaction of the

conditions for applying the rule itself, as well as the existence of 〈z, y〉 and its

labels. The first of these dependencies is captured by M, while the latter of

these conditions is subsumed by T . This in conjunction with the completeness

of τ before the application of this rule, implies that the claim still holds.

– 1b) This follows in a similar manner as 1a, however only edge labels not in

L(〈z, x〉) will be added. This is taken into account during the construction of

τ.

– 1c) This follows in a similar manner as 1b.

– 1d) The only events that occur in this condition are the removal of the edge

197

〈z, y〉 and its labels; these are precisely the events added to τ. Additionally, all

of these events have the same dependencies as 1a. Therefore, the claim still

holds after this condition.

– 2a–d) These cases follow in a similar manner as cases 1a–d.

– 3) The only events which occur are the addition of concept names from L(y)

to L(x) if they do not already occur in L(x). These are precisely the events

added to τ. This is dependent on satisfaction of the conditions for applying

the rule itself, as well as the existence of the node y and its labels. As in case

1a, these dependencies are captured by M and T . This in conjunction with the

completeness of τ before the application of this rule, implies that the claim

still holds.

– 4) This can be shown in a similar manner as case 3.

– 5) We must show that the claim still holds after the prune function. Consider

the first condition of the prune function; the only events which occur are the

removal of edges 〈y, z〉 and their labels. These are precisely the events added

to τ. This is clearly dependent on satisfaction of the conditions for applying

the rule itself, as well as the existence of the edges and their labels. These

dependencies are captured by M and T . This in conjunction with the com-

pleteness of the τ function before the application of this rule, implies that the

claim still holds. The second condition of the prune function can be shown in

a similar manner.

• O-rule: The only difference with this rule and the 6-rule is the cause of the rule

application. In this case, the rule is dependent on the existence of the nodes x, y and

the label o in both of their labels. The definition of M captures this. Therefore, this

case follows in a similar manner as the 6-rule.

• NN-rule: The only events that occur are the addition of the label 6 mS .C to L(x)

198

label, the creation of new nodes y1, ..., ym, the creation of edges 〈x, yi〉 which are

labeled with S , the addition of {C, oi} to each L(yi), and the addition of yi,̇y j;

observe that these are precisely the events added to τ. All of these events are clearly

dependent on the existence of x and y, the label 6 nS .C inL(x), the label C inL(y),

the edge 〈x, y〉, and the label R of L(〈y, x〉) that satisfies the S -neighbor relation.

These dependencies are used when constructing τ. By induction, τ is complete

before the application of the rule, impling the claim still holds.

Given this, it has been shown that the claim holds. �

A.1.3 Theorem 2: Correctness of Algorithm 2

Proof First termination is shown. β is a finite set of ABox assertions; additionally, in the

case of deletions, the set of events dependent on these removed assertions is finite. This

implies that the for loop in Algorithm 2 (lines 4–40) will terminate. Therefore, it suffices

to show that firing the necessary tableau expansion rules on the updated completion graph

will terminate. Consider addition updates. Clearly the completion graph will be extended

with additional structures corresponding to the new ABox assertions. Note that these

actions results in a valid completion graph structure. This in conjunction with Lemma 1

implies that the application of the tableau expansion rules will terminate. Next, consider

deletion updates. Prior to re-firing the tableau expansion rules, nodes, edges, and labels

can be removed to the existing completion graph. Additionally, due to the roll-back of

merges, structures can be added to the completion graph. However, these actions still

result in a valid completion graph. This in conjunction with Lemma 1 implies that the

application of the tableau expansion rules will terminate.

Next, correctness of the algorithm is shown. Consider additions first. First note the

following properties of Algorithm 2 and the SHOIQ tableau algorithm:

1. By assumption K is consistent and G is a compete and clash-free completion graph

for K.

199

2. Algorithm 2 adds the structure of β to G in an identical manner as when the comple-

tion graph corresponding to the initial ABox is constructed. Also when performing

the tableau algorithm for K + β these structures will be added and the expansion

rules will be applied to them.

3. It is a consequence of Lemma 1 that the rule applications for structures in a com-

pletion graph G′ for K+β due to β can be delayed until after all expansion rule have

been applied to all other labels.

4. Due to generating tableau expansion rules (i.e., ∃-rule and >-rule), nodes and edges

could have been introduced to G that would not have been added when constructing

a completion graph for K + β. However, due to the completeness of the tableau

algorithm [78], when re-applying the expansion rules to G after the structures from

β have been added to it, the necessary nodes and edges will be merged, thereby

eliminating these structures.

Now we address the two possible cases. Suppose that Algorithm 2 returns a com-

pletion graph G′ that contains a clash, yet running the tableau algorithm from scratch for

K + β returns a complete and clash-free completion graph G′′. This implies that there

was some sequence of expansion rule applications and choices at non-determinstic points

that does not cause a clash when constructing G′′. The assumption that G′ contains a

clash, implies that when the expansion rules are re-applied in Algorithm 2, the regular

tableau algorithm must have backtracked and tried the sequence of rule applications that

allowed the construction of G′′. This in conjunction with the previous properties results

in a contradiction.

Next, suppose that Algorithm 2 returns a complete and clash-free completion graph

G′, yet running the tableau algorithm from scratch for K + β returns a completion graph

G′′ with a clash. When applying the algorithm from scratch, all non-determinstric choices

must have been explored. Properties 2–4 and the fact that G′′ contains a clash, imply

that after updating G with the structure from β and reapplying the expansion rules, a

200

clash was observed and the algorithm back-jumped to a previous non-determinstic choice;

this follows as after G is updated with β, it is a intermediate state (with possibly extra

nodes and edges) of some completion graph built for K + β (all of which contain a clash).

Therefore, the clash must also be observed in when updating G. This, the fact that G′′

contains a clash, and the completeness of the tableau algorithm implies that there is a

contradiction, as the exploration of all other non-determinstic choices must result in a

clash as well since they did when constructing G′′.

Next consider deletions. We consider two cases.

• G contains a clash. First note the following properties:

1. There does not exist a complete clash-free completion graph for K; otherwise,

G would not contain a clash

2. By Theorem 1, if a previously observed clash is dependent on some α ∈ β

then the structures causing the clash will be rolled-back.

3. The previous property and the definition of the tracing function imply that if a

structure (node, edge, or label) that was referenced during a merge operation

is dependent on a removed assertion, then the entire merge operation will be

rolled-back.

4. During the rollback, structures corresponding to explicit ABox assertions are

only removed if those ABox assertions are removed.

5. The standard tableau algorithm is applied to G after the events dependent on

β are rolled-back, and all previously invalidated non-determinstic choices are

re-considered.

Suppose that Algorithm 2 returns a completion graph that contains a clash, yet

running the tableau algorithm from scratch for K − β returns a complete and clash-

free completion graph G′′. This implies that when back-jumping in Algorithm 2,

there does not exist a sequence of expansion rule applications and choices at non-

201

determinstic points that can construct a complete and clash-free completion graph.

This in conjunction with properties 2–5 and the soundness and completeness of the

tableau algorithm results in a contradiction, as there must exist some sequence of

expansion rule applications and choices at non-determinstic points that constructs

a complete and clash-free completion graph (precisely those that constructed G′′).

Next, suppose that Algorithm 2 returns a complete and clash-free completion graph,

yet running the tableau algorithm from scratch for K−β returns a completion graph

with a clash. The previous properties imply that the reapplication of the expansion

rules found some sequence of expansion rule applications that constructed a com-

plete and clash-free completion graph; however, by properties 3–5, if when running

the tableau algorithm from scratch all sequences of expansion rule applications

and choices at non-determinstic points result in a clash, it must be the case when

re-applying the expansion rules in Algorithm 2 these clashes must be observed.

Therefore, we have arrived at a contradiction.

• G complete and clash-free. Suppose that Algorithm 2 returns a completion graph

that contains a clash, yet running the tableau algorithm from scratch for K − β re-

turns a complete clash-free completion graph. By the assumption that G complete

and clash free, it must be the case that the previous KB was consistent. Further, by

monotonicity of SHIQ & SHOQ and soundness and completeness of the tableau

algorithm it must be that K − β is consistent. Given the previous properties and

the soundness and completeness of the tableau algorithm, there is an immediate

contradiction as all dependent structures must be retracted and all non-determistic

choices are reconsidered when back-jumping. Next, suppose that Algorithm 2 re-

turns a complete clash-free completion graph, yet running the tableau algorithm

from scratch for K − β returns a completion graph with a clash. There is an imme-

diate contradiction, as by soundness and completeness of the tableau algorithm and

the mononticity of SHIQ & SHOQ, running the tableau algorithm from scratch

202

must results in a complete clash-free completion graph.

Thus, the theorem holds. �

A.2 Proofs for Chapter 6

A.2.1 Theorem 3: Conditions for SHI Concept Instantiation

Proof First note the following properties:

1. Comp(K + {¬C(a)}) , ∅, as K 6|= C(a)

2. Comp(K + β) , ∅, as it is assumed K + β is consistent.

3. Comp(K + {¬C(a)} + β) = ∅, as K + β |= C(a)

4. The additional expansion rule firings caused by adding β and ¬C(a) to each G ∈

Comp(K) must cause a clash in all possible completion graphs; this follows from

Theorem 2 & property 3

Consider addition updates. This case will be shown by contradiction. Assume that

1) K 6|= C(a), K + β 6|= ⊥, K + β |= C(a) and 2) there does not exist G ∈ Comp(K)

s.t. the first condition of the theorem holds and 3) there does note exist the same node

x with D1 t D2 ∈ L(x) in {G1,G2} ⊆ Comp(K) s.t. the second condition of the theorem

holds. Assumption 2 implies that every clash observed when updating each G ∈ Comp(K)

with ¬C(a) and β is not dependent on both ¬C(a) and β (note that property 4 implies a

clash must occur). This implies that if the clash is dependent on β, then a clash would be

observed if only β were added to G; the same can be said for ¬C(a). This in conjunction

with properties 1–2 implies that each observed clash c must be dependent on ¬C(a) or β

(but not both), as well as some non-determinstic choice (i.e., some D1 t D2 ∈ L(x) for

some x ∈ V); otherwise, K |= C(a) or K + β |= ⊥ must hold, resulting in a contradiction.

Observe that it clearly cannot be the case that every clash observed is dependent on β (or

¬C(a)), as this would imply K + β |= ⊥ (respectively K |= C(a)). Next, it must be the

203

case that for some set of clashes {c1, ..., cn} observed, any ci, 1 ≤ i ≤ n, is dependent on

the same non-deterministic choice as any c j, i , j; this is a consequence of the previous

properties, the assumption that K + β |= C(a) and the fact that each clash observed is

dependent on a non-determinstic choice. It suffices to show that for some set of observed

clashes {c1, ..., cn} that are dependent on the same non-determinstic choice, there exists ci,

1 ≤ i ≤ n, that is dependent on β and there exists c j, i , j, that is dependent on ¬C(a).

Assume this is not the case; that is, for each set of observed clashes {c1, ..., cn} that are

dependent on the same non-determinstic choice, it is the case that there does not exist

some ci, 1 ≤ i ≤ n, that is dependent on β and c j, i , j, that is dependent on ¬C(a).

If this is the case there is a contradiction as this would imply that either K + β |= ⊥

or K |= C(a). Next, note that the only cause of non-determinsm in the SHI tableau

algorithm are disjunctions; thus the observed clashes ci and c j must be dependent on the

same disjunction. This implies that there exists {G1,G2} ⊆ Comp(K) with the same node

x with D1 t D2 ∈ L(x) that ci and c j are dependent on, and ci and c j are dependent on β

and ¬C(a) respectively. Thus, we have arrived at a contradiction.

Next consider the case for deletions; due to the assumption that K |= C(a) and

K − α 6|= C(a), it is the case that (K − α) + α |= C(a). Therefore, the case for deletions is a

consequence of the case for additions. �

A.2.2 Theorem 4: Concept Guide Label Transfer

Proof First, note the following properties:

1. G is complete, implying no more expansion rules are applicable prior to the addition

of ¬C ∈ L(xa).

2. It is assumed that if ∀R.D ∈ clos(K)∪ clos(¬C), then ∃P.B < clos(¬C) s.t. Inv(P) v∗

R. This implies that a concept name will never be propagated across the Inv(P) edge

added to the completion graph due to ¬C ∈ L(xa).

204

This will be shown by induction on the application of expansion rules based on

the structure of the concept ¬C. By assumption, ¬C is in NNF; therefore, for ease of

exposition in the remainder of this proof, we simply denote the concept by C. First,

consider the base case, in which it is assumed the expansion rules are applied to C ∈

L(xa). We address the expansion rules case-by-case:

• C is an atomic concept: this case is trivial, as none the tableau expansion rules are

applicable to C ∈ L(xa).

• C is of the form ∃S .A: the ∃-rule will add a S edge from xa to a new individual y;

observe that xa will never be blocked as it is a root node. Property 2 implies a con-

cept name cannot be propagated back up this edge and the tree-like model property

of SHI implies that y has one unique root node (in this case xa). Therefore, this

case is irrelevant.

• C is of the form ∀S .A and there does not exist some R s.t. Trans(R) and R v∗ S : the

∀-rule will add the concept name A to the label of all of xa’s S -neighbors that do not

include A in their label; assume the existence of some S -neighbor z. By definition of

the construction for the concept guide, if C is of the form ∀S .A, then there will exist

an edge labeled with S between the nodes n and m s.t. ∀S .A ∈ LG(n), A ∈ LG(m).

Thus, a concept guide path will exist starting from xa and concept guide node n and

ending at z and m s.t. A ∈ LG(m).

• C is of the form ∀S .A and there exists some R s.t. Trans(R) and R v∗ S : as in the

previous case, the ∀-rule will add A to all of xa’s S -neighbors that do not include

A in their label. This propagation follows in a similar manner as the previous case.

Given the transitive role, the ∀+-rule will add the concept name ∀R.A to each R-

neighbor of y for all R s.t. Trans(R) and R v∗ S . Observe that by definition, these

edges will also exist in the concept guide; thus, this case holds in the same manner

as the previous case. Note that a self looping edge labeled with each R is added to

concept guide node m s.t. A ∈ LG(m).

205

• C is of the form A1 u A2: the u-rule will add all conjuncts to the label of xa. By

definition of the concept guide, if a conjunction is encountered, all conjuncts are

added to the label of the node. Observe, the tableau expansion rules will not reach

a new node due to application of the u-rule; thus this case holds.

• C is of the form A1 t A2: the t-rule will add one of the disjuncts to the label of xa.

By definition of the concept guide, if a disjunction is encountered, all disjuncts are

added to the label of the node. As in the previous case, the tableau expansion rules

will not reach a new node due to application of the t-rule, implying this case holds.

Observe that we can ignore the case in which C ∈ L(xa) invalidates a blocking

condition, allowing the propagation of labels due to the original structures in G; this

follows from a) property 1, b) the completeness of dynamic blocking which implies that

all labels have propagated back up the trees rooted at root nodes, and c) the fact that

breaking the block will simply repeatedly replicate the isomorphic sub-tree spanning from

the blocking node to the blocked node until the cycle is blocked again. In the inductive

step below we address the case in which the breaking of the blocking condition generates

the structure necessary to propagate some concept name added due to the query concept.

Next, consider the inductive step in which it is assumed that a concept D has just

been added toL(y) and there is a concept guide path xa/n, ...z/m, y/o, where xa/n denotes

the mapping of xa ∈ V to n ∈ VG. Again, consider the expansion rule applications; we

only address the application of the ∀-rule or ∀+-rule to a concept of the form ∀S .A, as the

cases for the remaining expansion rules follow in a similar manner as these cases and their

bases cases. We address both expansion rules together and consider the case in which the

node y in G is blocked and not blocked separately:

• y not blocked: if there exists a S neighbor b s.t. A < L(b), the expansion rules

would add a A label to the label of b; additionally if there exists some role P s.t.

Trans(P) and P v∗ S , then ∀P.A will be added to L(b). Due to property 2 and the

fact that y is not blocked, it suffices to only consider the case that b exists in G prior

206

to adding C ∈ L(xa). Next, consider two sub-cases:

– ∀S .A was not propagated to L(y) due to the existence of an Inv(S)-neighbor z

with ∀P.D ∈ L(z), Trans(S) and S v∗ P: by induction, it must be the case that

∀S .A ∈ LG(o) (the concept guide node y is mapped to), and therefore this case

follows similar to the base case.

– ∀S .A was propagated toL(y) due to the existence of an Inv(S)-neighbor z with

∀P.A ∈ L(z), Trans(S) and S v∗ P: by induction, there must be a self-looping

edge (o, o) s.t. S ∈ LG((o, o)) for all S s.t. Trans(S), S v∗ P, and A ∈ LG(o).

Therefore, this edge can be selected for the next transition in the concept guide

path and the hypothesis holds in a similar manner as the base case.

• y directly or indirectly blocked: first, consider the case where y directly blocked.

The only non-trivial case is if adding C ∈ L(xa) leads to the block being broken.

Therefore, it could be that the necessary S -neighbor does not explicitly exist in

G, due to the blocking condition. This is because the blocked node prevents the

repeated generation of the isomorphic subtree spanning from the blocking node

to the blocked node; if C were actually added to L(xa), then the block would be

invalidated leading to the addition of the necessary S -neighbor. Observe that the

tree-like model property of SHI and the fact that root nodes are not blocked, im-

ply that y has one unique predecessor z; assume L(〈z, y〉) = {R} (by definition there

can only be one such label). Next, let w be the blocking node s.t. L(y) = L(w).

Condition 2a of Definition 17 considers the edge 〈z,w〉 as a valid traversal in G due

to the blocking condition; this implies that there also exists a concept guide path

xa/n, ...z/m,w/o which satisfies the hypothesis. Further, because w is not blocked,

the S neighbor must exist and the traversal can be made. Therefore, this case fol-

lows in a similar manner as the case where y is not blocked. This is sufficient, as the

completeness of dynamic blocking implies concept names have been fully propa-

207

gated prior to the addition of C ∈ L(xa), and property 2 implies that concept names

will not be propagated back up an edge added to G as a result of adding C to L(xa);

this in turn implies that only concept names ∀S .D ∈ clos(C) added due to C(a) can

cause labels to be propagated through pre-existing cyclic structures in the comple-

tion graph and potentially back up to the root node. The case where y is indirectly

blocked follows from the directly blocked case, as 1) y is indirectly blocked, im-

plying that it has an ancestor that is directly blocked and 2) the cyclic structure is

captured by considering the traversal from the predecessor of the directly blocked

node to the blocking node.

�

A.2.3 Theorem 5: SHI Concept Instantiation Overestimate

Proof First consider addition updates; this case will be shown by contradiction. Assume

that K 6|= C(a), K + β |= C(a) and that a does not satisfy either of the three conditions

in Definition 18. It suffices to show that this implies that the conditions of Theorem

3 cannot be satisfied for a. Consider the first condition from Theorem 3, which states

a clash will be dependent on both β and ¬C(a) when applying any valid sequence of

expansion rules. Consider the case where there is an immediate clash after adding the

structure of β and ¬C(a) to G ∈ Comp(K) prior to applying any expansion rules. Clearly,

case 1 of Definition 18 trivially captures this case, as it must be the case that a ∈ Iβ for this

to occur. Next consider the case where expansion rules are applied prior to observing the

clash. Note that a valid sequence of expansion rule applications can be obtained by first

adding only β to G ∈ Comp(K) and then adding ¬C(a) to the resulting complete and clash

free completion graphs; this is a consequence of the fact that the SHI tableau algorithm

does not impose an ordering when applying the expansion rules. This is sufficient to

take into account condition one of Theorem 3 as the clash must be observed for any valid

sequence of expansion rules. In general, for there to be a clash on node y that is dependent

208

on β and ¬C(a), there must be some concept name l ∈ L(y) that is dependent on β and

some l′ ∈ L(y) that is dependent on ¬C(a). Further, the tree model property of SHI and

definition of the tableau algorithm imply that for there to be a label of a non-root node y

that is dependent on some ABox assertion α, then there must be some l ∈ L(x) s.t. l is also

dependent on α and x is the unique root node of y. Case 2 of Definition 18 considers all

individuals whose corresponding root nodes have a node label, or incoming/outgoing edge

or edge label dependent on β when updating some G resulting in G′; this follows from

the definition of Dep(β,G,G′). Thus, for there to be a clash observed that is dependent

on both β and ¬C(a), it must be the case that G′ is clash-free and adding ¬C(a) to G′

causes a label to propagate to some b ∈ Dep(β,G,G′). Theorem 4 implies that if adding

¬C to L(xa) causes a label to propagate to some b ∈ Dep(β,G,G′), then a concept guide

path will exist. Therefore, condition 1 of Theorem 3 cannot be satisfied, as it has been

assumed the concept guide path does not exist between a and any b ∈ Dep(β,G,G′).

Next consider the second condition from Theorem 3. Clearly, for this condition

to be satisfied, it must be the case that when adding β to some G ∈ Comp(K) a clash

is caused that is dependent on some disjunction D1 t D2 ∈ L(y), and in some other

G′ ∈ Comp(K) \G, when adding ¬C(a) to G′ a clash is observed that is dependent on the

same disjunction; similar to the previous condition, we can ignore ¬C(a) when adding

β to G (and β when adding ¬C(a) to G′), as for the condition to be satisfied, the clash

must be independent of ¬C(a) (respectively β). We consider the various cases in which

this can occur and show that they cannot be satisfied under our assumptions. First assume

y is a non-root node and the unique root node xb for y does not have a label dependent

on D1 t D2 ∈ L(y) in any G ∈ Comp(K). This in conjunction with the tree model

property of SHI implies that only the subtree rooted at xb has structures dependent on

the disjunction. In general, this implies that for there to be a clash dependent on this

disjunction and any assertion α, then α must cause a label to be added to L(xb). Since

β causes a clash dependent on the disjunction, β must have caused a concept name to be

209

added to L(xb). Thus, b ∈ Dep(β,G,G′) where G′ is the result of adding β to some G that

results in a clash. In this case, for condition 2 of Theorem 3 to be satisfied, it must be that

adding ¬C(a) causes a concept name to be added to L(xb) for some b ∈ Dep(β,G,G′).

However, given our assumptions this cannot occur, as Theorem 4 implies there must exist

a concept guide path involving xa and xb.

Next consider the case where y is a root node or y’s unique root xb does contain a

node label dependent on the disjunction in all G ∈ Comp(K). Clearly, other root nodes and

their non-root node descendants can also have node labels dependent on the disjunction.

By definition, the third case of CC(K,C, β) considers all individuals whose corresponding

root nodes have a label dependent on D1 t D2 ∈ L(y) in some G′ ∈ Comp(K) \G. Again,

for condition 2 of Theorem 3 to be satisfied, adding ¬C(a) must cause a concept name

to be added to one of these root nodes; however, Theorem 4 and the assumption that

the concept guide path does not exist, implies there would be a contradiction if this case

holds.

Lastly, consider the case in which y is a root node or y’s unique root xb does contain

a node label dependent on the disjunction in some G ∈ Comp(K). The only non-trivial

case is if in G xb has a node label dependent on D1 t D2 ∈ L(y) and G] β contains a

clash dependent on the disjunction. Given G′ ∈ Comp(K) \ G, it could be the case that in

G′ xb does not contain a node label dependent on D1 t D2 ∈ L(y) , yet ¬C(a) still causes

a clash that is dependent on the disjunction when updating G′ (i.e., a non-root descendant

of xb has a node label with the dependency). However, the third case of Definition 18

clearly considers xb as it has a node label dependent on the disjunction in G; therefore,

it can be shown that this case cannot not hold in the same manner as the previous cases.

Note that the case in which xb does have a node label dependent on the disjunction in G′

easily follows from the previous cases. Thus, a contradiction has been shown as neither

condition of Theorem 3 can be satisfied.

210

Next consider deletions. Again, it suffices to show that the previous assumptions

imply that the conditions of Theorem 3 cannot be met. Due to the assumption that K |=

C(a) and K − α 6|= C(a), it is the case that (K − α) + α |= C(a). Therefore, the case for

deletions is a consequence of the case for additions. �

A.2.4 Lemma 2: Tree Containment in Summary Completion Graph

Proof This will be shown by inductively considering the construction of a completion

graph and summary completion graph for the same KB. As the base case, consider the ini-

tial completion graph and summary completion graph corresponding to the initial ABox,

prior to the application of any expansion rules. Clearly, they are structurally the same,

therefore the hypothesis is satisfied. Next, we address the inductive step. Assume that

concept name C has just been added to L(y) (possibly x itself) s.t. y has unique root node

x in completion graph G, and that G and S G satisfy the hypothesis for each root node z.

Let T = Tree(x) in G, G = Graph(x) in S G, and y′ ∈ VS G be a node such that y →T,G y′

where contain(T,G) holds. By induction, it must be that C ∈ LS G(y′). We show that the

hypothesis holds through the application of an expansion rule to C ∈ L(y) based on the

form of C.

• u-rule: C1,C2 will be added L(y) if the labels do not exist. Consider two cases

depending on whether y′ is blocked at the time the u-rule is applied to it:

– y′ not blocked: because y′ not blocked, the expansion rule will be applied

when constructing S G, maintaining the label relationship. No new edges are

added, thus the containment relationship is maintained.

– y′ indirectly or directly blocked: consider the case in which y′ is directly

blocked. The expansion rule will still be applied; thus, the label relation-

ship will be maintained. However, we must show that a valid mapping exists

as blocked nodes are not in VG. This follows easily as there must exist some

predecessor w of y′ and blocking node z s.t. LS G(y′) = LS G(z); by definition

211

of Graph(x), there will be an edge from w to z with the same labels as 〈w, y′〉.

This implies that y can be mapped to z rather than y′ (i.e., y→T,G z). Because

z is not blocked, the relationship will be maintained. Next, consider y′ indi-

rectly blocked; first, observe that if the application of the expansion rule to y′

would cause the propagation of a label back up LS G(x), then the correctness

of dynamic blocking would be contradicted. Next, the indirect blocking of y′

implies there exists an ancestor z s.t. for some m ∈ NT , m →T,G z and z is

directly blocked by an ancestor n in S G. This and the definition of Graph(x)

implies that the mapping of m →T,G z must be replaced with m →T,G n, as z

and y′ are blocked. Given that the block represents a cycle, there must then be

a mapping y →T,G w s.t. w is not blocked and w is in a path between n and z.

Since w not blocked, the relationship is maintained.

• t-rule: C1 or C2 will be added toL(y); clearly multiple new completion graphs will

be created. It suffices to consider one such completion graph, G′′, as the remainder

follow in a similar manner. Observe that when constructing S G, both labels of a

disjunction are added to the node label. Therefore, this case follows in a similar

manner as the previous case for the u-rule.

• ∃-rule: consider two cases depending on whether y′ is blocked at the time the ∃-rule

is applied to it:

– y′ not blocked: due to the label relationship, this rule may not be applicable to

y′, as a S -neighbor w labeled with C already exists in S G; this case is trivial,

as simply z→T,G w if w is not blocked, and z→T,G m if w blocked by node m.

Additionally, consider the case where such a neighbor does not exist; clearly

the rule will be applied to y′ and again the relationship will hold.

– y′ indirectly or directly blocked: this can be shown in a similar manner as the

u-rule; thus, there exists a valid mapping to z through the cycle introduced

by the blocking condition and z will not be blocked. Thus, the necessary S

212

neighbor will exist and the containment relationship will hold.

• ∀-rule: all S -neighbors z of y in G s.t. C < L(z) will have C added toL(z). Consider

two cases:

– z a root node: by definition of Tree(x) and the tree model property of SHI,

it must be the case that z = x, as y was added to the application of the ∃-rule

to a label of x. By induction, there is mapping s.t. x in S G is a S -neighbor of

y′. Observe that y′ cannot be indirectly blocked, as its neighbor is a root node,

implying the expansion rule will be applied. Therefore, the label relationship

is maintained. Note that if y′ blocked, the mapping of y into a non-blocked

node follows in a similar manner as the previous cases.

– z a non-root node: consider two cases depending on whether y′ is blocked

at the time the ∀-rule is applied to it: 1) y′ not blocked: by induction the

S -neighbor exists in S G, and since the node is not blocked the rule with be

applied. Therefore, the relationship is maintained. 2) y′ indirectly or directly

blocked blocked: this follows in a similar manner as the previous case and the

u-rule.

• ∀+-rule: This condition follows in a similar manner as the ∀-rule.

Lastly, the general case is addressed in which y ∈ V is previously blocked, yet due

to the addition of a concept name C to an ancestor z of y or simply y itself, the block is

invalidated resulting in the application of expansion rules to y. By induction, prior to the

blocking of y, there is some y′ s.t. y →T,G y′. We show that a valid mapping will still

exist. Consider two cases: 1) y′ is not blocked: by induction L(y) ⊆ LS G(y′) and the

mapping still holds. Since y′ not blocked, this case follows from the cases shown above.

2) y′ directly or indirectly blocked: again by induction L(y) ⊆ LS G(y′) prior to applying

an expansion rule to y. We must show that there exists a mapping y →T,G z s.t. z not

blocked; again, this can be shown similar manner to the cases shown above. �

213

A.2.5 Lemma 3: Summary Completion Graph Update

Proof First consider termination; this can be shown as a simple extension to the termi-

nation proof of the SHI tableau algorithm [79]. Note that because the KB is expressed

in SHI dynamic blocking is assumed. Let m =](clos(K) ∪ clos(β)); then termination is

a consequence of the following properties:

1. The marking function θ ensures the expansion rules will be applied to a node label

at most once.

2. The expansion rules never remove nodes from the summary completion graph or

concept from node labels.

3. Successors are only generated for existential value restrictions. For any node, dur-

ing each update each of these restrictions can only trigger the generation of at most

one additional successor; this is a direct consequence of the marking function. As-

sume there have been n previous additions. Since clos(K) ∪ clos(β) cannot contain

more than m existential value restrictions, the out-degree of the tree is bound by

(n + 1)m.

4. Node are labeled with a nonempty subsets of clos(K)∪clos(β). If a path p is of least

length 2m, then there are 2 nodes x, y of p with L(x) = L(y), and therefore blocking

occurs. Since a path on which nodes are blocked cannot become longer, paths are

of length at most 2m.

Next consider the containment relationship after the update. It is a consequence of

Theorem 2, that in order to construct all complete and clash-free completion graphs for

K + β, one can add the structure from β to each G ∈ Comp(K) and apply the necessary

expansion rules. Therefore, it suffices to show that when updating each G ∈ Comp(K) with

β the lemma holds after updating S G; this can be shown as a straightforward extension of

the proof for Lemma 2. Consider each update type for some α ∈ β:

1. α = C(a), where a is an existing individual. By Lemma 2, LG(xa) ⊆ LS G(xa);

214

therefore, when adding C to L(xa) and LS G(xa) the label relationship is clearly

maintained. Consider the different expansion rules which could be applicable de-

pending on the form of C:

• u-rule: the expansion rule will add C1,C2 to L(xa) if that label does not ex-

ist. By definition, C1,C2 will be re-added to LS G(xa), and the expansion rules

will be applied to both labels. Clearly, the root label relationship is main-

tained. Therefore, this case can inductively be shown in the same manner as

in Lemma 2.

• t-rule: the expansion rule will select C1 or C2 to add to L(xa); clearly, multi-

ple new completion graphs will be created, as it is assumed that all complete

and clash-free completion graphs are constructed. It suffices to consider one

such completion graph, G′′, as the remainder follow in a similar manner. Note

that C ∈ {C1,C2} will be added to LG′′(xa). When updating S G, both labels

are be re-added even if they exists. Therefore, this case follows in a similar

manner as the u-rule.

• ∃-rule: the expansion rule will add a new edge and node and set the appro-

priate labels, if x does not have an S -neighbor labeled with C. Note that root

nodes cannot be blocked. Observe that due to the marking condition, a new

S -successor labeled with C will be added to S G and the expansion rule will be

applied to this node. Therefore, this case can be shown as in Lemma 2.

• ∀-rule: the concept name C will be added to the label of all of y’s S -neighbors

z. Consider the case that z is a root node. By definition, the tableau expansion

rules do not added edges between root nodes; therefore, there must be the

corresponding edge in S G. This, in conjunction with the marking scheme

implies that the label will be re-added to the corresponding S -neighbor, and

the modified expansion rules will be applied to all labels of this node. Thus,

this case can be shown in a similar manner as Lemma 2. Consider the case

215

that C is added to a non-root node y ∈ V. Lemma 2 implies there is some y′ in

S G where y→T,G y′ such that the containment is satisfied. Due to the marking

scheme, the C concept name will be propagated to L(y′). Therefore, this can

be shown in a similar manner as Lemma 2.

• ∀+-rule: This condition follows in a similar manner as the ∀-rule.

Lastly, consider the general case in which y is previously blocked, yet due to the

addition of a concept name C to an ancestor z of y, the blocking condition is invali-

dated resulting in the application of expansion rules to y. Given the previous cases

for the various expansion rules, this case can be shown in a similar to the same case

in the proof for Lemma 2.

2. α = C(a), where a is a new individual. This follows from Lemma 2, as the only

rule applications will be for C and the universal concept CT .

3. α = R(a, b). There are 4 cases to consider:

– a and b are new individuals. This follows from Lemma 2, as the only rule appli-

cations will be those applied to a, b due to the universal concept CT and generated

existential individuals with unique root node a or b.

– a and b are existing individuals. The only rules applicable are either the ∀-rule

or ∀+-rule for some label in either L(a) or L(b); this is a direct consequence as

G and S G are complete prior to the update. By Lemma 2, LG(a) ⊆ LS G(a) and

LG(b) ⊆ LS G(b). Therefore, this case can be shown in the same manner as shown

for these expansion rules in condition 1.

– a is a existing individual and b is an new individual. This can be shown in a

similar manner as previous case.

– a is a new individual and b is an existing individual. This can be shown in a

similar manner as previous case.

216

4. α = (a = b). By definition of the approach, under ABox equality updates, the

completion graph nodes will be merged; then, expansion rules are applied. Note

that this occurs when updating S G. By Lemma 2, LG(a) ⊆ LS G(a) and LG(b) ⊆

LS G(b). Thus, the relationship holds for the merged node; trivially the containment

relationship holds as well. Then, expansion rules are applied to all node labels of a

and b. Thus, this can be shown in a similar manner as the previous cases.

5. α = (a , b). Observe that by definition of the approach, the inequality relation will

be updated. The same will occur for the summary completion graph. Therefore,

this case trivially holds.

�

A.2.6 Lemma 4: Label Propagation of Summary Completion Graph

Proof Assume that x has concept name added toL(x) when updating some G ∈ Comp(K)

with β, yet x is not reached when applying the modified expansion rules while updating

S G. Let G′ be the completion graph resulting from the update of G with β such that a

concept name is added to L(x) and S ′G be the result of updating S G with β. We will show

that there is a contradiction by considering the different update types for some α ∈ β and

showing that the propagation must be observed in S G:

1. α = C(a), where a is an existing individual: Lemma 3 implies that after the update

LG′(xa) ⊆ LS ′G
(xa). By the tree model property of SHI, it is the case that labels

can only be propagated to some other root node by the application of the ∀-rule

for some other root node. Further, by definition the tableau expansion rules do

not add edges or edge labels between root nodes; so the corresponding edge must

also exist in S G. This, in conjunction with the marking scheme, implies that if the

tableau expansion rules are applied to a root node neighbor of xa when updating G,

the same expansion rule application must occur when updating S G. The same can

217

inductively be said for subsequently reached root nodes.

2. α = C(a), where a is a new individual. This follows trivially as the only rule

applications will be for C and the universal concept CT ; this in conjunction with the

tree model property for SHI implies the propagation holds.

3. α = R(a, b). There are 4 cases to consider:

– a and b are new individuals. This follows trivially as the only rule applications

will be those applied to xa, xb due to the universal concept CT and generated exis-

tential individuals rooted at xa or xb.

– a and b are existing individuals. Observe that the only rules applicable are ei-

ther the ∀-rule or ∀+-rule for some label in either L(ya) or L(yb); this is a di-

rect consequence as G and S G are complete prior to the update. By Lemma 3,

LG′(ya) ⊆ LS ′G
(ya) and LG′(yb) ⊆ LS ′G

(b). Therefore, this case can be shown in the

same manner as case 1.

– a is a existing individual and b is an new individual. This can be shown in a

similar manner as previous case.

– a is a new individual and b is an existing individual. This can be shown in a

similar manner as previous case.

4. α = (a = b). Observe that by definition of the approach, under ABox equality

updates, the completion graph nodes will be merged; then expansion rules are ap-

plied. Note that this occurs when updating S G. By Lemma 3, LG′(ya) ⊆ LS ′G
(ya)

and LG′(yb) ⊆ LS ′G
(yb). Therefore, this can be shown in a similar manner as the

previous cases.

5. α = (a , b). Observe that by definition of the approach, the inequality relation will

be updated. The same will occur for the summary completion graph. Therefore,

this can be shown in a similar manner as the previous cases.

�

218

A.2.7 Lemma 5: Concept Guide Paths in Summary Completion Graph

Proof First, observe that the edges and edge labels between root nodes in the sum-

mary completion graph will be the same as those in any G ∈ Comp(K); this is a direct

consequence of the construction of the summary completion graph and the fact that the

expansion rules never add edges or edge labels between root nodes. Therefore, it suffices

to show that the graph structure rooted at root nodes in any completion graph is contained

in the graph structure rooted at the root node in the summary completion graph. To show

this, a simplification of the graph structure introduced in Definition 20 is used. Define

a basic root graph to composed of a set of nodes V , edges E, and a labeling function L

for the nodes and edges; given root node x and completion graph G, the basic root graph,

denoted GraphB(x), is inductively defined as follows:

1. x ∈ V , and L(x) = L(x)

2. if y ∈ V and y has R-neighbor z s.t. z a non-root node in G that is not blocked, then

z ∈ V , 〈y, z〉 ∈ E, L(z) = L(z) and L(〈y, z〉) = L(〈y, z〉) ∪ {R}

3. if w, y ∈ V s.t. z a non-root node, y is the predecessor or z, y has R-neighbor z, and

w blocks z in G, then 〈y,w〉 ∈ E and L(〈y,w〉) = L(〈y,w〉) ∪ {R}

Define a basic root graph GB for root node xa to be contained in root graph G for

xa if contain(GB,G). Given basic root graph GB and root graph G, denote by y →GB,G z

the mapping of node y ∈ VGB into z ∈ VG s.t. the containment relationship is satisfied.

It suffices to show that given a completion graph G ∈ Comp(K) and summary comple-

tion graph S G for K, for each root node x ∈ V and corresponding root node x′ in S G,

contain(GB,G) holds for GB = GraphB(x), G = Graph(x′). This will be shown by induc-

tively considering the application of expansion rules to a completion graph and summary

completion graph for the same KB. As the base case, consider the initial completion graph

and summary completion graph corresponding to the initial ABox, prior to the application

of any expansion rules. Clearly, they are structurally the same, therefore the hypothesis is

219

satisfied.

Now we address the inductive step. Assume that a completion graph G and sum-

mary completion graph S G satisfy the hypothesis for root node x, and concept name C

has just been added toL(y), s.t. y is either a non-root descendent of x or x itself. We show

that the hypothesis holds through the application of an expansion rule to C ∈ L(y) based

on the form of C. Let y′ ∈ VS G be a node such that y→GB,G y′.

• u-rule: first, consider the case in which y′ is directly blocked; this implies there

exists some blocking node z such that L(z) = L(y′) and z not blocked. Therefore,

C1uC2 ∈ L(z), as C1uC2 ∈ L(y′) and C1uC2 ∈ L(y). Let w be the predecessor of

y′. By definition of Graph(x), there will be an edge from w to z with the same labels

as 〈w, y〉. This implies that y is mapped to z rather than y′ (i.e., y→GB,G z). Because

z is not blocked, then the u-rule can be applied to C1 u C2 ∈ L(z), resulting in

{C1,C2} ⊆ L(z). The case in which y′ indirectly blocked follows similar to the case

just addressed and the u-rule case from the proof for Lemma 2. Additionally, the

case in which y′ is not blocked follows trivially, as the expansion rules will apply

to the node.

Lastly, consider the case that a node n ∈ V is blocked after the application of this

rule. Therefore, a new edge 〈m,w〉 is added to GraphB(x) s.t. m is the predecessor

of n and w is the blocking node. By definition of blocking, L(w) = L(n). By induc-

tion, there exists some p s.t. n →GB,G p; assume p not blocked after the rule appli-

cation. Clearly,L(w) ⊆ L(p); therefore, the cycle in G must eventually be observed

in S G implying this case holds. This follows as the expansion rules will apply to

p and thus the necessary the sequence of neighbors z1, ..., zn will exist that satisfy

the hypothesis until the block occurs in S G. Then, the edge from the predecessor

of the blocked node to the blocking node will exist in S G, which will satisfy the

graph containment relationship. The case where p is blocked is trivial, as the same

edge is added Graph(x′). The case where p is indirectly blocked follows from the

220

indirectly blocked case in the regular inductive step for the u-rule discussed above

and the two cases just considered where p not blocked and blocked.

• t-rule: by definition of the construction of the summary completion graph, when a

disjunction is encountered, all disjuncts are added to the node label; therefore, this

case follows in a similar manner as the previous case for the u-rule.

• ∃-rule: assume the rule applies to y and creates a new node z. Consider two cases;

1) y′ not blocked: this case trivially holds as the same edge would be added to

Graph(x). 2) y′ directly blocked: this implies there exists some blocking node m

such that L(m) = L(y′) and m not blocked; further, because m is not blocked, it

must either have a S -neighbor labeled with C or the ∃-rule can be applied to the

∃S .C creating the neighbor. Therefore, this case follows in the same manner as the

u-rule. The case in which y′ is indirectly blocked follows similar to this case and

the ∃-rule case from the proof for Lemma 2. Lastly, the condition where some node

in G is blocked after the application of this rule follows in a similar manner as in

the u-rule.

• ∀-rule: consider the following cases which suffice to show the hypothesis holds:

– z a root node: by definition of GraphB(x), it must be the case that z = x, as y

was added due to the application of the ∃-rule to a label for x. By induction,

it must be the case that there exists a mapping s.t. x in S G is a S -neighbor of

y′. Observe that y′ cannot be indirectly blocked, as its neighbor is a root node,

imply the expansion rule will be applied. Therefore, the label relationship

is maintained. Note that if y′ blocked, the mapping of y into a non-blocked

node follows in a similar manner as this case and the ∀-rule case from the

proof for Lemma 2. Again, the condition where some node is blocked after

the application of this rule follows in a similar manner as in the u-rule.

– z a non-root node: we now consider two cases:

∗ y′ not blocked: by induction the S -neighbor exists in S G, and since the

221

node is not blocked, the rule with be applied. Therefore, the relationship

is maintained.

∗ y′ directly blocked: as in the u-rule, this implies there exists some block-

ing node w such that L(w) = L(y′) and w not blocked; further, by induc-

tion, w must have the necessary S -neighbor. Select one such S -neighbor

m. Clearly, the root graph containment relationship is satisfied, due to the

definition of neighbor and the fact that m is labeled with C as w is not

blocked. The case in which y′ indirectly blocked follows similar to this

case and the ∀-rule case from the proof for Lemma 2.

Again, the condition where some node in G is blocked after the application of

this rule follows in a similar manner as in the u-rule.

• ∀+-rule: This condition follows in a similar manner as the ∀-rule.

Lastly, consider the general case in which y ∈ V is previously blocked, yet due

to the addition of a concept name C to an ancestor z of y or simply y itself, the block

is invalidated resulting in the application of expansion rules to y. It is a consequence of

this case in the proof for Lemma 2 and the previously addressed expansion rules that the

relationship still holds. �

A.2.8 Lemma 6: Dependencies in Summary Completion Graph

Proof Let y ∈ V s.t. D1 t D2 ∈ L(y) and x be the unique root node for y (possible y

itself). First consider Dis jG((D1 t D2, y)) ⊆ Dis jS G((D1 t D2, z)) for T = Tree(x) in G

and G = Graph(x) in S G. Assume there exists some y →T,G z, s.t. Dis jG((D1 t D2, y)) *

Dis jS G((D1 t D2, z)). This will be shown by contradiction. Observe that Lemma 2, the

tree-model property of SHI, and the fact that the tableau expansion rules do not add

edges or edge labels between root nodes imply that it suffices to inductively show the

rule applications that can occur in G as a result of D1 t D2 ∈ L(y) are captured by the

222

modified disjunction dependencies of the nodes in S G for each y→T,G z. This shows there

is a contradiction as same propagations up or down the tree in G must be possible in S G,

implying the dependency will by captured.

The base case is simply the initial application of the expansion rule to the disjunct

selected in G. Clearly, Lemma 2 implies that the disjunct selected will be in LS G(z) and

thus the disjunction dependency easily holds. We now inductively consider the applica-

tion of expansion rules to some concept name in the node labelL(y) for some node y ∈ V

and show that the dependencies hold through the expansion rule applications for each

mapping of y→T,G z, implying there is a contradiction.

• u-rule: The expansion rule could have added C1,C2 to L(y). By definition, the

dependency in S G simply includes both concept names. Due to y →T,G z, it must

be the case that L(y) ⊆ LS G(z), implying that both concept names are in LS G(z) as

well. Thus, the dependency relation holds.

• t-rule: one of C1,C2 are added to L(y). As in the previous case, by definition of

S G, {C1,C2} ⊆ LS G(z). Thus the dependency relation holds.

• ∃-rule: The expansion rule will add a node w labeled with C and edge 〈y,w〉 labeled

with S . Clearly, the C label is dependent on the disjunction. By Lemma 2, ∃S .C ∈

LS G(z); further, the S -neighbor m in Graph(x) must exist, s.t. x is the unique root of

z. By definition all S -neighbors with C in their label are in the dependency, and the

definition of the disjunction dependency considers the mapping w →T,G m through

cycles introduced due to blocking in S G. Therefore, this case holds.

• ∀-rule and ∀+-rule: the concept name C will be added to all S -neighbors w ∈

V s.t. C < L(w); each of these label additions are obviously in the dependency

in G. Further, if there exists some R s.t. Trans(R) and R v∗ S , then ∀R.C will

be propagated to all R-neighbors, implying these concept names could be in the

dependency as well. Lastly, if C (or ∀R.C) is propagated across an edge added due

to ∃S .D ∈ L(y) that is dependent on the disjunction, then C (respectively ∀R.C)

223

is also dependent on the disjunction. Lemma 2 implies L(y) ⊆ LS G(z) and the

S -successors m of z must exist in Graph(x), s.t. x is the unique root of z. By

Definition 23, all S -neighbors with C in their label are in the dependency, and the

dependency considers the mapping w →T,G m through cycles introduced due to

blocking. Further, condition 3a of Definition 23 clearly accounts for the case in

which a concept is propagated across an edge added as a result of ∃S .C ∈ L(y)

(as all labels of the S -neighbors of y are in the dependency). Observe that this

additionally covers the case where some concept of the form ∀R.D is propagated to

a R neighbor due to the existence of a transitive role R s.t. R v∗ S ; further, conditions

4b, 4c, 5b and 5c clearly account for the case in which the propagation is through a

cycle introduced by a blocked node. Collectively, this implies that the dependencies

for the newly added labels will be captured.

�

A.2.9 Lemma 7: Clashes in Summary Completion Graph

Proof Assume that there is a clash c = (y,¬C,C) caused when updating some G ∈

Comp(K) with β due to the addition of ¬C to L(y), yet either the expansion rules do not

reach z or {¬C,C} * L(z) from all z s.t. y can be mapped into z satisfying the containment

relationship. A contradiction will be shown by considering the different update types for

some α ∈ β and showing that the expansion rules will reach some z and the clash will be

observed.

1. α = C(a), where a is an existing individual. It suffices to inductively consider the

different expansion rules which will be applicable depending on the form of C and

show that the expansion rules will reach some z and the clash will be observed.

As the base case, consider the initial addition of the concept name C to L(xa).

Lemma 3 implies that L(xa) ⊆ LS G(xa). Therefore, if a clash is observed when

224

adding C to L(xa), it will be observed when added C to LS G(xa). Because nodes

are not merged, there is a unique mapping for root nodes; thus this case holds.

Next consider the inductive step; assume that the hypothesis holds for all label

additions thus far. Further, assume that for some node y in G with unique root

node x (possibly y itself), an expansion rule is now applicable to concept name C

in L(y). Let T ′ = Tree(x) and G′ = Graph(x) at this point, and z be a node in S G

where y →T ′,G′ z s.t. the containment is satisfied. We now consider the different

expansion rules applicable based on the form of C:

• u-rule: the expansion rule will add C1,C2 to L(y) if that label does not exist.

Consider two cases:

– z not blocked: By definition, C1,C2 will be (re)added toLS G(z); therefore,

if the clash is observed in L(y), clearly it will be observed in L(z).

– z directly or indirectly blocked: consider the case where z directly blocked.

By definition of S G, z is no longer a valid mapping, as it is not in VS G;

however, as shown in the proof for Lemma 3, there must exist a blocking

node n s.t. L(n) = L(z). Further, there must be some predecessor p of z.

By definition, y must be mapped to n rather than z (as z blocked), result-

ing in the containment relationship; therefore, assume that y is mapped

to n rather than z. Next observe that due to the tree model property of

SHI, for the rules to be applied to z, they must have been applied to n,

as n is an ancestor of z. This implies the clash will be observed when the

expansion rules are applied to n, as L(n) = L(z). A similar case can be

made when z indirectly blocked, as there must be some ancestor of z that

is directly blocked.

• t-rule: the expansion rule will select C1 or C2 to add to L(y); clearly, mul-

tiple new completion graphs will be created. It suffices to consider one such

225

completion graph, G′′, as the remainder follow in a similar manner. Note

that C ∈ {C1,C2} will be added to LG′′(y). Observe that by definition of the

summary completion graph, both disjuncts are added to a node label if a dis-

junction is encountered. Therefore, this case can be shown in a similar manner

as the u-rule.

• ∃-rule: if y does not have a S -neighbor labeled with C, then the expansion

rule will add a new node w and edge 〈y,w〉 labeled with C and S respectively;

additionally, the universal concept CT will be added to L(w). Observe that

no atomic clashes can occur directly as a result of this action. However, we

must show that the expansion rules will subsequently be applied to a valid

mapping of w into S G. Consider the case that z not blocked. By Lemma

3, ∃S .C ∈ LS G(z); further, by definition of the marking scheme, a new S -

neighbor m will be added to the summary completion graph. Thus, w can

trivially be mapped to m and this case case holds. The cases in which z directly

or indirectly blocked can be shown similar to this case and the blocked cases

for the u-rule.

• ∀-rule: in G the label C will be added to all S -neighbors w of y. Consider the

following two cases:

– z not blocked: Lemma 3 implies that the corresponding S -neighbors m

of z also exist in S G s.t. L(w) ⊆ L(m) for each w →T,G m. Further, the

marking function implies that the label will be re-added to m. Therefore,

if the clash is observed in L(w), clearly it will be observed in L(m), as

L(w) ⊆ L(m). Lastly, note that due to blocking in S G, z itself could be

mapped to w; however, this case trivially follows as L(w) ⊆ LS G(z) and

the expansion rules are applied to z ∈ VS G .

– z directly or indirectly: this case follows in a similar manner as the

blocked case for the u-rule and the previously considered case in which

226

z is not blocked.

• ∀+-rule: This condition follows in a similar manner as the ∀-rule.

Lastly, consider the case where the blocking condition of a non-root node y in G is

invalidated due to the addition of some concept name C to L(w) for some w ∈ V.

Observe that for there to be a clash due to the application of expansion rules to the

labels in L(y), the blocking node z must be reached via an expansion rule applica-

tion in G; this follows from the tree-model property of SHI and completeness of

dynamic blocking, which implies further applying the expansion rules to the con-

cept names in L(y) will not propagate any node label back up the tree. Further, the

previously considered inductive cases for the expansion rules imply that some m

in S G, s.t. z →T,G m, will be reached when updating S G. Therefore, the previous

cases, Lemma 3, and the usage of the marking scheme, imply that any clashes in

G observed because of newly added structures due to the breaking of the blocking

condition will also be observed in S G.

2. α = C(a), where a is a new individual. This follows easily from the previous cases

as the only rule applications will be for C and the universal concept CT .

3. α = R(a, b). There are 4 cases to consider:

– a and b are new individuals. Again, this follows easily from the previous cases as

the only rule applications will be those applied to a, b due to the universal concept

CT and generated existential individuals rooted at a or b.

– a and b are existing individuals. Observe that the only rules applicable are ei-

ther the ∀-rule or ∀+-rule for some label in either L(xa) or L(xb); this is a di-

rect consequence as G and S G are complete prior to the update. By Lemma 3,

LG(xa) ⊆ LS G(xa) and LG(b) ⊆ LS G(xb). Therefore, this case can be shown in the

same manner as discussed above for these expansion rules.

227

– a is a existing individual and b is an new individual. This can be shown in a

similar manner as previous case.

– a is a new individual and b is an existing individual. This can be shown in a

similar manner as previous case.

4. α = (a = b). Under ABox equality updates, the completion graph nodes will be

merged; then expansion rules are applied. Note that this occurs when updating S G.

By Lemma 3, LG(xa) ⊆ LS G(xa) and LG(xb) ⊆ LS G(xb). Thus, the relationship

holds for the merged node. Therefore, if a clash is observed as a result of the merge

in G, it will be observed in S G. Then, expansion rules are applied to all node labels

of xa and xb. Therefore, this case is a consequence of the previous cases.

5. α = (a , b). By definition of the approach, the inequality relation will be updated.

The same will occur for the summary completion graph. Therefore, this case holds

as well.

�

A.2.10 Theorem 6: Completeness of Summary Completion Graph

Proof Consider addition updates first. This will be shown by contradiction. Assume there

exists some a ∈ CC(K,C, β) and a < CCS G(K,C, β). It suffices to show that if a satisfies

a condition in CC(K,C, β), then it must also satisfy the same condition in CCS G(K,C, β).

Clearly the first condition is trivial. Consider the second condition of Definition 18; it is

a direct consequence of Lemma 4 that if b ∈ Dep(β,G,G′), then b ∈ Dep(β, S G). This in

conjunction with Lemmas 3 & 5 implies that there is a contradiction if this case causes

a ∈ CC(K,C, β), as the concept guide path must also exist in S ′′G. Consider the third con-

dition. It is a direct consequence of Lemma 6, Corollary 1, and the fact that the expansion

rules do not remove nodes, edges or labels that the disjunction dependencies in the up-

dated summary completion graph will subsume those for all possible mappings in some

228

G ∈ Comp(K) and G] β; this implies the completeness of using the summary comple-

tion graph for detecting the disjunction dependencies of clashes, as well as root nodes.

Additionally, Lemma 7 implies that each clash c = (y,¬A, A) observed when updating

some G ∈ Comp(K) with β will also be observed for some mapping of y into z in S G as

it is updated. This in conjunction with the previous case and Lemmas 3 & 5 imply there

is a contradiction if the third condition of Definition 18 causes a ∈ CC(K,C, β), as the

individuals considered in concept guide paths in the second condition will be located us-

ing the summary completion graph and the concept guide path must exist in the summary

completion graph if it exists in a completion graph. Thus, a contradiction has been shown,

as for each a ∈ CC(K,C, β) it must be the case that a ∈ CCS G(K,C, β).

Consider deletions. By definition, the change events in S G dependent on β are

reverted and the necessary expansion rules are then applied to the summary completion

graph. Therefore, it is a consequence of Theorem 1 that this results in the summary

completion graph for K − β. Thus, this case is a consequence of the case for additions. �

A.2.11 Theorem 7: SHI Binding Requirement

Proof This will be shown by contradiction. Consider additions first; assume that Q can

be rolled-up into variable xi ∈ DVar(Q) resulting in concept C, K 6|= Q[x1/a1, ..., xn/an],

and K⊕β |= Q[x1/a1, ..., xn/an], but ai < CC(K,C, β). Let CP be the new concept obtained

by substituting new concept names D j into C for each distinguished variable x j, j , i.

Additionally let K′ = K + {D1(a1)} + ... + {Di−1(ai−1)} + {Di+1(ai+1)} + ... + {Dn(an)}. It

is shown in [140] that K |= Q[x1/a1, ..., xn/an] if K′ |= CP(ai); further, K′ |= CP(ai) if

K′ ∪ {¬CP(ai)} is inconsistent [140]. Therefore, it is a consequence of Theorem 3 that one

of two necessary conditions must be satisfied for ai. A contradiction can be demonstrated

by showing that if a ∈ CC(K′,C, β) then a ∈ CC(K,C, β).

It suffices to show that if one of the three conditions of Definition 18 are satisfied

for K′, then they will be satisfied for K. Clearly, the first condition is trivial. Consider

229

the second condition. Observe that each D j is a new concept, which implies that no

concepts will propagate in a completion graph due to the existence of D j; hence D j will

only exist in L(xa j). This implies that when updating G ∈ Comp(K) with {D1(a1)} + ... +

{Di−1(ai−1)} + {Di+1(ai+1)} + ... + {Dn(an)}, no expansion rules will be applicable, nor will

any clashes occur. Similarly when adding β to some G ∈ Comp(K′), no expansion rules

will be applicable, nor will any clashes will occur as a result of some D j ∈ L(xa j). Thus,

it suffices to show that {D1(a1)} + ... + {Di−1(ai−1)} + {Di+1(ai+1)} + ... + {Dn(an)} does not

affect the construction of the concept guide, nor the creation of a concept guide path.

This easily follows from the previously discussed implications of D j being a new concept

and the fact that all D j are atomic concepts, implying they will not cause any new nodes,

edges, or labels when constructing the concept guide for ¬CP.

Next consider the third condition. Note that the previous observations regarding

each D j being a new concept implies that they will not introduce any disjunctions during

the tableau algorithm; thus, the disjunction dependencies for K will be the same as those

for K′. Additionally, this implies that when updating G ∈ Comp(K + {D1(a1)} + ... +

{Di−1(ai−1)}+ {Di+1(ai+1)}+ ...+ {Dn(an)}) with β, if there is a clash, it cannot be dependent

on any D j ∈ L(xa j). Collectively, this implies that if the third condition in Definition

18 is satisfied for some individual a for K′, it will be also be satisfied for K. Thus we

have arrived at a contradiction, as we have shown that if a condition from Definition 18 is

satisfied for a in K′, then it will be satisfied for a in K.

The case for deletions is a direct consequence of the case for additions. �

A.2.12 Theorem 8: Completeness of Query Impact

Proof First consider Impact; we must show that all variable bindings not included in

CC(K,C, β) must be found. We will show this by contradiction. Assume that there

is a new binding {a1, ..., an} and {a1, ..., an} * Impact(K,Q, β). Theorem 7 implies that

ai ∈ CC(K,C, β). It is a direct consequence of Lemma A.2 in [136], that if two named

230

individuals are in the interpretation of some simple role, then an edge will exist between

those individuals. Also note that for the entailment to occur, each interpretation (and

therefore each completion graph) must satisfy the entailment. This in conjunction with

the connectedness of the query, restriction to simple roles in the query, and the fact that

the maximal query depth is used to expand each ai ∈ CC(K,C, β), implies that there is a

contradiction.

Next consider Map Impact; again, we must show that all candidate distinguished

variables binding not included in CC(K,C, β) must be found. We will show this by contra-

diction. Assume there is a new binding {a1, ..., an} and {a1, ..., an} * Map Impact(K,Q, β).

Again, it is a direct consequence of Theorem 7 that ai ∈ CC(K,C, β). Note that tree block-

ing is assumed, s.t. blocking is delayed to take into account the longest path in the query.

Next, observe that not adding > v ¬D t D for each concept atom D in the query does

impact the completeness of the mapping technique as query concepts are not taken into

account during the mapping. Thus, there is a contradiction of the completeness of The-

orem 3 in [114], as it is shown that if the query is entailed, then it must be syntactically

mappable in all complete and clash free completion graphs for the KB. �

A.2.13 Theorem 9: Correctness of Algorithm 4

Proof Consider additions. First, observe that by montonicity of SHI, under additions

only new bindings can be found; therefore, we do not have to recheck previous bind-

ings. Thus, soundness is trivial as it follows from the soundness of the query answering

algorithm provided in [82]. Termination follows from the following properties:

• Lemma 3 implies that the update of the summary completion graph terminates

• the summary root graph and concept guide are of finite size; further, evaluating

regular path expressions over graph databases can be decided in polynomial time

[103]. This implies the concept guide search will terminate.

• standard query answering are assumed, which reduce to query answering to consis-

231

tency checking; this is known to terminate [74, 80, 78]

In order to show completeness, we must show that all new answer tuples will be

found. Theorem 6 implies the completeness of using the summary root graph to determine

CC(K,C, β); note that this set of individuals is located in lines 2–3. Therefore, it is a

consequence of Theorems 3, 7, and 8 that all named individuals in new answer sets will

be found. Thus, completeness is a consequence of the fact that the algorithm iterates

over all combinations of candidate variable bindings and uses standard query answering

techniques to check for entailment [82].

Next consider deletions. Termination can be shown in a similar manner as the case

for additions. By montonicity of SHI, under deletions only previous answer tuples can

be invalidated (no new bindings can be found); therefore, only previous bindings need to

be rechecked, implying that completeness trivially follows. In order to show soundness

we must show that all tuples in the answer set after the deletion are in fact entailed. Al-

gorithm 4 admits previous binding under two conditions; first is when none of the bound

individuals of a previous binding are in CC(K,C, β). It is a consequence of Theorems 3,

6, 7, & 8 that if a previous binding is invalidated, then one of the bound individuals will

be in the set of query concept candidates. Therefore, this case clearly holds. The second

case only admits previous tuples if they are entailed; therefore soundness follows from

the soundness of standard query answering algorithms [82]. �

A.3 Proofs for Chapter 7

A.3.1 Lemma 8: SHOIN Kernel Operator

Proof By definition, Just(K, α) contains all justifications for K |= α. It suffices to show

that criteria 1, 2, and 3 from Definition 1 are satisfied. Let j ∈ Just(K, α). By definition,

j ⊆ K, thereby satisfying criteria 1. Further, by definition j |= α; thus criteria 2 is satisfied.

Finally, since justifications are minimal, we obtain condition 3, namely j′ ⊂ j, j′ 6|= α.

232

Thus, Just(K, α) is a kernel operator for SHOIN KBs. �

233

Bibliography

[1] System s project homepage:
http://domino.research.ibm.com/comm/research projects.nsf/pages/esps.index.html.

[2] W3c semantic web activity. In http://www.w3.org/2001/sw/.

[3] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 12, 2003.

[4] Serge Abiteboul and Gösta Grahne. Update semantics for incomplete databases.
In Alain Pirotte and Yannis Vassiliou, editors, VLDB’85, Proceedings of 11th In-
ternational Conference on Very Large Data Bases, August 21-23, 1985, Stockholm,
Sweden, pages 1–12. Morgan Kaufmann, 1985.

[5] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system.
In Symposium on Principles of Distributed Computing, pages 53–61, 1999.

[6] Massimiliano Albanese and V.S. Subrahmanian. T-rex: A domain-independent
system for automated cultural information extraction. In Proceedings of the First
International Conference on Computational Cultural Dynamics (ICCCD 2007),
2007.

[7] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of
theory change: Partial meet contraction and revision functions. Journal of Symbolic
Logic, 50(2):510–530, 1985.

[8] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In The VLDB Journal, pages 53–64, 2000.

[9] K. Apt and J. M. Pugin. Maintenance of stratified databases viewed as a belief
revision system. In PODS ’87: Proceedings of the sixth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 136–145, 1987.

[10] C. Areces and M. de Rijke. From description to hybrid logic, and back. In Advances
in Modal Logic, Volume 3. CSLI Publications, 2001.

[11] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query pro-
cessing. In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data,
pages 261–272, 2000.

[12] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence, 88(1–2):195–213, 1996.

234

[13] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4:109–132, 1994.

[14] F. Baader and B. Hollunder. Embedding defaults into terminological representation
systems. J. Automated Reasoning, 14:149–180, 1995.

[15] F. Baader, M. Milicic, C. Lutz, U. Sattler, and F. Wolter. Integrating descrip-
tion logics and action formalisms for reasoning about web services. LTCS-Report
LTCS-05-02, Chair for Automata Theory, Institute for Theoretical Computer Sci-
ence, Dresden University of Technology, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

[16] F. Baader and W. Nutt. Basic description logics. In Franz Baader, Diego Calvanese,
Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The
Description Logic Handbook: Theory, Implementation, and Applications, pages
43–95. Cambridge University Press, 2003.

[17] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

[18] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[19] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains
into concept languages. In Twelfth International Conference on Artificial Intelli-
gence, pages 452–257, 1991.

[20] S. Babu and J. Widom. Continuous queries over data streams. In SIGMOD Record,
2001.

[21] Guruduth Banavar, Tushar Deepak Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Stur. An efficient multicast protocol for content-
based publish-subscribe systems. In ICDCS ’99: Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems, page 262, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

[22] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web, scientific american,
284(5):34-43. 2001.

[23] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently updating
materialized views. In Proc. of SIGMOD ’86: ACM SIGMOD International Con-
ference on Management of Data, pages 61–71, 1986.

[24] P. Bonatti, C. Lutz, and F. Wolter. Expressive non-monotonic description logics
based on circumscription. In Patrick Doherty, John Mylopoulos, and Christopher

235

Welty, editors, Proceedings of the Tenth International Conference on Principles of
Knowledge Representation and Reasoning (KR’06), pages 400–410. AAAI Press,
2006.

[25] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In
AAAI-05, pages 602–607, 2005.

[26] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi.
Reasoning in expressive description logics. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 1581–1634. Elsevier
Science Publishers, 2001.

[27] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, and S. Ldonik. Monitoring streams - a new class of data man-
agement applications. In Proceedings of the International conference on Very large
data bases (VLDB2002), 2002.

[28] A. Carzaniga, M. Rutherford, and A. Wolf. A routing scheme for content-based
networking. In Technical Report CU-CS-953-03, Department of Computer Sci-
ence, University of Colorado, June 2003., 2003.

[29] A. Carzaniga and A. Wolf. Forwarding in a content-based network. In In SIG-
COMM ’03, Karlsruhe, Germany, Aug., 2003.

[30] Chee Yong Chan, Pascal Felber, Minos N. Garofalakis, and Rajeev Rastogi. Ef-
ficient filtering of XML documents with XPath expressions. The VLDB Journal,
11:354–379, 2002.

[31] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query
system for the internet databases. In Proc. of the 2000 ACM SIGMOD Intl. Conf.
on Management of Data, 2000.

[32] Paul Alexandru Chirita, Stratos Idreos, Manolis Koubarakis, and Wolfgang Nejdl.
Publish/subscribe for rdf-based p2p networks. In Proceedings of the 1st European
Semantic Web Symposium. (2004), 2004.

[33] M. Cilia, C. Bornhvd, and A. P. Buchmann. Cream: An infrastructure for dis-
tributed, heterogeneous event-based applications. In Proceedings of the Interna-
tional Conference on Cooperative Information Systems, 2003.

[34] Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-to-peer sys-
tems. In ICDCS ’02: Proceedings of the 22 nd International Conference on Dis-
tributed Computing Systems (ICDCS’02), page 23, Washington, DC, USA, 2002.
IEEE Computer Society.

[35] Brickley D. and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/tr/rdf-schema/. February 2004.

236

[36] Johan de Kleer. An assumption-based TMS. Artif. Intell., 28(2):127–162, 1986.

[37] M. Dean and G. Schreiber. OWL Web Ontology Language Reference W3C Rec-
ommendation. http://www.w3.org/tr/owl-ref/. February 2004.

[38] Y. Diao, S. Rizvi, and M. Franklin. Towards an internet-scale xml dissemination
service. In Proceedings of VLDB2004, August 2004., 2004.

[39] Yihong Ding and David W. Embley. Using data-extraction ontologies to foster
automating semantic annotation. In Proceedings of the 22nd International Confer-
ence on Data Engineering Workshops (ICDEW06), 2006.

[40] Guozhu Dong, Jianwen Su, and Rodney W. Topor. Nonrecursive incremental eval-
uation of datalog queries. Annals of Mathematics and Artificial Intelligence, 14(2-
4):187–223, 1995.

[41] Guozhu Dong and Rodney W. Topor. Incremental evaluation of datalog queries. In
Proc. of the 4th Int. Conference on Database Theory, pages 282–296, 1992.

[42] J. Doyle. A truth maintenance system. Readings in nonmonotonic reasoning, pages
259–279, 1987.

[43] Françoise Fabret, H. Arno Jacobsen, François Llirbat, João Pereira, Kenneth A.
Ross, and Dennis Shasha. Filtering algorithms and implementation for very fast
publish/subscribe systems. SIGMOD Record (ACM Special Interest Group on
Management of Data), 30(2):115–126, 2001.

[44] G. Flouris. On belief change and ontology evolution. In Ph.D. Dissertation, Uni-
versity of Crete, 2006.

[45] G. Flouris, D. Plexousakis, and G. Antoniou. On applying the agm theory to dls
and owl. In 4th International Semantic Web Conference (ISWC 2005), 2005.

[46] G. Flouris, D. Plexousakis, and G. Antoniou. Updating description logic using
the agm theory. In 7th International Symposium on Logical Formalizations of
Commonsense Reasoning, 2005.

[47] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Generalizing the
agm postulates: Preliminary results and applications. In Proceedings of the 10th
International Workshop on Non-Monotonic Reasoning (NMR 2004), Whistler,
Canada, June 2004.

[48] Andre Furmann. Theory contraction through base contraction. Journal of Philo-
sophical Logic, 20:175–203, 1991.

[49] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On the update of description logic ontologies at the instance level. In Proceed-
ings, The Twenty-First National Conference on Artificial Intelligence (AAAI 2006),
2006.

237

[50] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive query an-
swering for the description logic SHIQ. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2007), pages 399–404, 2007.

[51] Birte Glimm, Ian Horrocks, and Uli Sattler. Conjunctive query entailment for
SHOQ. In Proc. of the 2007 Description Logic Workshop (DL 2007), volume 250
of CEUR (http://ceur-ws.org/), 2007.

[52] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for
description logics with transitive roles. In Proc. of the Int. Description Logic Work-
shop (DL 2006), 2006.

[53] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for
the description logic SHOIQ. Technical report, University of Manchester, School
of Computer Science, 2006.

[54] Jennifer Golbeck. Computing and Applying Trust in Web-based Social Networks.
PhD thesis, University of Maryland, College Park, MD, USA, April 2005.

[55] Jennifer Golbeck and Christian Halaschek-Wiener. Trust-based revision for ex-
pressive web syndication. MINDSWAP Technical Report TR-MS1293, University
of Maryland, College Park.

[56] Bernardo Cuenca Grau, Christian Halaschek-Wiener, and Yevgeny Kazakov. His-
torymatters: Incremental ontology reasoning using modules. In Proceedings of the
6th International Semantic Web Conference, 2007.

[57] J. Gregorio and B. de hra. The atom publishing protocol. In IETF Internet Draft,
2005.

[58] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base sys-
tems. Journal of Web Semantics, 3(2):158–182, 2005.

[59] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, pages 157–166, 1993.

[60] Ashish Kumar Gupta and Dan Suciu. Stream processing of xpath queries with
predicates. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 419–430, New York, NY, USA, 2003.
ACM Press.

[61] V. Haarslev and R. Moller. Description logic systems with concrete domains: Ap-
plications for the semantic web. In Int. Workshop on KR meets Databases, 2003.,
2003.

[62] V. Haarslev and R. Möller. Incremental query answering for implementing docu-
ment retrieval services. In Proceedings of the International Workshop on Descrip-
tion Logics (DL-2003), Rome, Italy, September 5-7, pages 85–94, 2003.

238

http://ceur-ws.org/

[63] Volker Haarslev, Ralf Moller, and Anni-Yasmin Turhan. Exploiting pseudo mod-
els for tbox and abox reasoning in expressive description logics. In IJCAR ’01:
Proceedings of the First International Joint Conference on Automated Reasoning,
pages 61–75, London, UK, 2001. Springer-Verlag.

[64] Christian Halaschek-Weiner and James Hendler. Toward expressive syndication on
the web. In Proceedings of the 16th World Wide Web Conference, 2007.

[65] Christian Halaschek-Wiener, Aditya Kalyanpur, and Bijan Parsia. Extend-
ing tableau tracing for abox updates. In UMIACS Tech Report, 2006.
http://www.mindswap.org/papers/2006/aboxTracingTR2006.pdf.

[66] Sven Ove Hansson. New operators for theory change. Theoria, 55:114–133, 1989.

[67] Sven Ove Hansson. Belief base dynamics. In PhD Theis, Uppsala University.
1991.

[68] Sven Ove Hansson. Kernel contraction. Journal of Symbolic Logic, 59(3):845–859,
1994.

[69] Sven Ove Hansson. Semi-reivion. Journal of Applied Non-Classical Logics, 7(2),
1997.

[70] Sven Ove Hansson. A textbook on belief dynamics. Kluwer Academic Press, 1999.

[71] J. Harrison and S. Dietrich. Maintenance of materialized views in a deductive
database: An update propagation approach. In Workshop on Deductive Databases
held in conjunction with the Joint International Conference and Symposium on
Logic Programming (JICSLP), pages 56–65, 1992.

[72] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

[73] I. Horrocks. Implementation and optimisation techniques. In Franz Baader, Diego
Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors, The Description Logic Handbook: Theory, Implementation, and Applications,
pages 313–355. Cambridge University Press, 2003.

[74] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-
tion logics. In Proc. of the 6th Int. Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial In-
telligence, pages 161–180. Springer-Verlag, 1999.

[75] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285–296, 2000.

[76] Ian Horrocks and Ulrike Sattler. A description logic with transitive and inverse
roles and role hierarchies. J. of Logic and Computation, 9(3):385–410, 1999.

239

[77] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204. Morgan Kaufmann, Los Altos, 2001.

[78] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). Morgan
Kaufman, 2005.

[79] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A description logic with transi-
tive and converse roles, role hierarchies and qualifying number restrictions. LTCS-
Report 99-08, LuFg Theoretical Computer Science, RWTH Aachen, Germany,
1999.

[80] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHIQ. In David McAllester, editor, Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in
Computer Science, pages 482–496. Springer, 2000.

[81] Ian Horrocks and Sergio Tessaris. A conjunctive query language for description
logic aboxes. In National conference on artificial intelligence (AAAI 2000), pages
399–404, 2000.

[82] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Proc. of the 13th Int. Semantic Web Conf. (ISWC 2002), pages 177–191, 2002.

[83] Z. Ives, A. Levy, and D. Weld. Efficient evaluation of regular path expressions on
streaming xml data. In Univ. of Washington Tech. Rep. CSE000502., 2000.

[84] Zachary Ives, Alon Levy, Daniel Weld, Daniela Florescu, and Marc Friedman.
Adaptive query processing for internet applications. IEEE Data Engineering Bul-
letin, 23(2):19–26, 2000.

[85] Aditya Kalyanpur. Debugging and repair of owl ontologies. In
Ph.D. Dissertation, University of Maryland, College Park, 2006.
http://www.mindswap.org/papers/2006/AdityaThesis-DebuggingOWL.pdf.

[86] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Re-
pairing unsatisfiable concepts in owl ontologies. In Proceedings of the European
Semantic Web Conference (ESWC2006), pages 170–184, 2006.

[87] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-
satisfiable classes in owl ontologies. In Journal of Web Semantics - Special Issue
of the Semantic Web Track of WWW2005, 2005.

[88] Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating
a knowledge base and revising it. In International Conference of Principles of
Knowledge Representation and Reasoning(KR), 1991.

240

[89] V. Kuchenhoff. On the efficient computation of the difference betwen consecu-
tive database states. In Proc. of 2nd Int. Conf. on Deductive and Object-Oriented
Databases, pages 478–502, 1991.

[90] Ugur Kuter and Jennifer Golbeck. Sunny: A new algorithm for trust inference
in social networks using probabilistic confidence models. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 2007.

[91] Laks V. S. Lakshmanan and Sailaja Parthasarathy. On efficient matching of stream-
ing XML documents and queries. In Extending Database Technology, pages 142–
160, 2002.

[92] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language
combining horn rules and description logics. In European Conference on Artificial
Intelligence, pages 323–327, 1996.

[93] Isaac Levy. Subjunctives, dispositions, and chances. Synthese, 34:423–455, 1977.

[94] L. Li and I. Horrocks. A software framework for matchmaking based on seman-
tic web technology. In Proceedings of the Twelfth International World Wide Web
Conference (WWW 2003), 2003., 2003.

[95] D. Libby. Rss 0.91 spec, revision 3. In Netscape Comm., 1999.

[96] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic aboxes. In
International Conference of Principles of Knowledge Representation and Reason-
ing(KR), 2006.

[97] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven infor-
mation delivery. IEEE Trans. on Knowledge and Data Engineering, 11, 1999.

[98] Zhen Liu, Srinivasan Parthasarthy, Anand Ranganathan, and Hao Yang. Scalable
event matching for overlapping subscriptions in pub/sub systems. In Proceedings
of International Conference on Distributed Event-Based Systems (DEBS07), pages
250–261, 2007.

[99] Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously adaptive continuous queries over streams. In SIGMOD Conference,
2002.

[100] F. Manola and E. Miller. RDF Primer W3C Recommendation.
http://www.w3.org/tr/rdf-primer/. February 2004.

[101] David McAllester. Truth maintenance. In Reid Smith and Tom Mitchell, editors,
Proceedings of the Eighth National Conference on Artificial Intelligence, volume 2,
pages 1109–1116. AAAI Press, 1990.

[102] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intel-
ligence 4, pages 463–502. Edinburgh University Press, 1969. reprinted in McC90.

241

[103] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph databases.
In VLDB ’89: Proceedings of the 15th international conference on Very large data
bases, pages 185–193, San Francisco, CA, USA, 1989. Morgan Kaufmann Pub-
lishers Inc.

[104] Boris Motik and Ulrike Sattler. A Comparison of Reasoning Techniques for Query-
ing Large Description Logic ABoxes. In Miki Hermann and Andrei Voronkov,
editors, Proc. of the 13th Int. Conference on Logic for Programming Artificial In-
telligence and Reasoning (LPAR 2006), volume 4246 of LNCS, pages 227–241,
Phnom Penh, Cambodia, November 13–17 2006. Springer.

[105] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with
rules. Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 3(1):41–60, 2005.

[106] Bernhard Nebel. A knowledge level analysis of belief revision. In R. Brachman,
H. J. Levesque, and R. Reiter, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the 1st International Conference, pages 301–311, San
Mateo, 1989. Morgan Kaufmann.

[107] Bernhard Nebel. Syntax-based approaches to belief revision. In P. Gärdenfors, ed-
itor, Belief Revision, volume 29, pages 52–88. Cambridge University Press, Cam-
bridge, UK, 1992.

[108] Bernhard Nebel. Base revision operations and schemes: Semantics, representation,
and complexity. In Cohn A.G. (eds.), Proc. 11th European Conference on Artificial
Intelligence., 1994.

[109] Bernhard Nebel. How hard is it to revise a belief base? In Didier Dubois and Henri
Prade, editors, Handbook of Defeasible Reasoning and Uncertainty Management
Systems, Volume 3: Belief Change, pages 77–145. Kluwer Academic Publishers,
Dordrecht, 1998.

[110] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz, Mario
Schlosser, Ingo Brunkhorst, and Alexander Loser. Super-peer-based routing and
clustering strategies for rdf-based peer-to-peer networks. In Proceedings of the
12th International World Wide Web Conference, 2003.

[111] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring xml data on the
web. In Proc. of the 2001 ACM SIGMOD Intl. Conf. on Management of Data,
2001.

[112] M. Nottingham and R. Sayre. The atom syndication format. In IETF Internet
Draft, 2005.

[113] B. Oki, M. Pfluegl, and Dale Skeen. The information bus: An architecture for
extensible distributed systems. In In Proc. 14th SOSP, 1993.

242

[114] Maria Magdalena Ortiz de la Fuente, Diego Calvanese, and Thomas Eiter. Data
complexity of answering unions of conjunctive queries in shiq. In Proc. of the 2006
Description Logic Workshop (DL 2006). CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/, 2006.

[115] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In The First International Semantic
Web Conference, 2002.

[116] Bijan Parsia, Christian Halaschek-Wiener, and Evren Sirin. Towards incremental
reasoning through updates in owl-dl. In Reasoning on the Web - Workshop at 15th
International World Wide Web Confence, 2006.

[117] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In Third International
Semantic Web Conference - Poster, 2004.

[118] P.F. Patel-Schneider, P. Hayes, and I.Horrocks. Web ontology language OWL Ab-
stract Syntax and Semantics. W3C Recommendation, 2004.

[119] Pavlos Peppas, Abhaya C. Nayak, Maurice Pagnucco, Norman Y. Foo, Rex
Bing Hung Kwok, and Mikhail Prokopenko. Revision vs. update: Taking a closer
look. In Proceedings of the 12th European Conference on Artificial Intelligence,
pages 95–99, 1996.

[120] Milenko Petrovic, Ioana Burcea, and Hans-Arno Jacobsen. S-topss: Semantic
toronto publish/subscribe system. In VLDB ’03: Proceedings of the 29th inter-
national conference on Very large data bases, 2003.

[121] Milenko Petrovic, Haifeng Liu, and Hans-Arno Jacobsen. Cms-topss: Efficient
dissemination of rss documents. In VLDB ’05: Proceedings of the 31st interna-
tional conference on Very large data bases, pages 1279–1282. VLDB Endowment,
2005.

[122] Eric Prud’hommeaux and Andy Seaborne (editors). Sparql query language for
rdf. W3C Working Draft (21 July 2005) http://www.w3.org/TR/rdf-sparql-query/,
2005.

[123] R Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95,
1987.

[124] R. Reiter. Knowledge in action. MIT Press, 2001.

[125] Marcio Moretto Ribeiro and Renata Wasserman. Base revision in description log-
ics - preliminary results. In Proc. of the Int. Workshop on Ontology Dynamics
(IWOD 2007), 2007.

[126] Marcio Moretto Ribeiro and Renato Wasserman. First steps towards revising on-
tologies. In Proceedings of 2nd Workshop on Ontologies and their Applications
(WONTO’2006), 2006.

243

[127] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward updates in description
logics. In International Workshop on Knowledge Representation meets Databases,
2002.

[128] Richard B. Scherl and Hector J. Levesque. Knowledge, action, and the frame
problem. Artif. Intell., 144(1-2):1–39, 2003.

[129] S. Schlobach. Debugging and semantic clarification by pinpointing. In Proceedings
of the European Semantic Web Conference (ESWC2005), 2005.

[130] S. Schlobach. Diagnosing terminologies. In Proceedings of National Conference
on Artificial Intelligence (AAAI05), 2005.

[131] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proceedings of IJCAI, 2003, 2003.

[132] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan. Alert: An architecture for
transforming a passive dbms into an active dbms. In Proceedings of the Interna-
tional conference on Very large data bases (VLDB1991), 1991.

[133] Andy Seaborne. RDQL - A Query Language for RDF.
http://www.w3.org/submission/2004/subm-rdql-20040109/. January 2004.

[134] Luciano Serafini and Andrei Tamilin. Local tableaux for reasoning in distributed
description logics. In Proceedings of the International Workshop on Description
Logics, 2004.

[135] Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture
for the semantic web. In Proceedings European Semantic Web Conference, 2005.

[136] Evren Sirin. Combining description login reasoning with ai planning for composi-
tion of web services. In Ph.D. Dissertation, University of Maryland, College Park,
2006.

[137] Martin Staudt and Matthias Jarke. Incremental maintenance of externally materi-
alized views. In VLDB ’96: Proceedings of the 22th International Conference on
Very Large Data Bases, pages 75–86, 1996.

[138] Michael Stonebraker. Implementation of integrity constraints and views by query
modification. In SIGMOD ’75: Proc. of the 1975 ACM SIGMOD international
conference on Management of data, pages 65–78, New York, NY, USA, 1975.

[139] D. B. Terry, D. Goldberg, D. Nichols, and B. M Oki. Continuous queries over
append-only databases. In Proc. of the Intl. Conf. on Management of Data, pages
321–330, 1992.

[140] Sergio Tessaris. Questions and answers: reasoning and querying in Description
Logic. PhD thesis, University of Manchester, 2001.

244

[141] Stephan Tobies. The complexity of reasoning with cardinality restrictions and nom-
inals in expressive description logics. Journal of Artificial Intelligence Research,
12:199–217, 2000.

[142] Dmitry Tsarkov and Ian Horrocks. Efficient reasoning with range and domain
constraints. In Proc. of the Int. Description Logic Workshop (DL 2004), pages
41–50, 2004.

[143] Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia Smith, Stephen
Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A semantic infos-
phere. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of
the 2003 International Semantic Web Conference (ISWC 2003), number 2870 in
Lecture Notes in Computer Science, pages 882–896. Springer, 2003.

[144] Raphael Volz, Steffen Staab, and Boris Motik. Incrementally Maintaining Materi-
alizations of Ontologies Stored in Logic Databases. Journal of Data Semantics II,
3360:1–34, 2005.

[145] Jinling Wang, Beihong Jin, and Jing Li. An ontology-based publish/subscribe sys-
tem. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, pages 232–253, New York, NY, USA, 2004.

[146] Taowei David Wang, Bijan Parsia, and James Hendler. A survey of the web on-
tology landscape. In Proceedings of the International Semantic Web Conference
(ISWC2006, 2006.

[147] R. Wassermann. An algorithm for belief revision. In Proceedings of the Seventh In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR2000), 2000.

[148] J. Widom and R. Motwani. Query processing, resource management, and approx-
imation in a data stream management system. In Proceedings of Conference on
Innovative Data Systems Research (CIDR2003), pages 245–256, 2003.

[149] M. Winslett. Updating logical databases. In Updating Logical Databases. Cam-
bridge University Press, 1990.

[150] Tak W. Yan and Hector Garcia-Molina. The SIFT information dissemination sys-
tem. ACM Transactions on Database Systems, 24(4):529–565, 1999.

[151] Eiko Yoneki and Jean Bacon. Distributed multicast grouping for publish/subscribe
over mobile ad hoc networks. In Wireless Communications and Networking Con-
ference, pages 2293–2299, 2005.

245

	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Foundations
	Syndication Systems
	Semantic Web
	Web Ontology Language
	Description Logics
	Syntax and Semantics of SHOIQ(D)
	Description Logic Reasoning
	Tableau Algorithms

	Belief Base Revision

	Related Work
	Syndication Systems
	Syntactic Approaches
	Semantic Approaches
	Discussion

	Stream Processing Engines
	Revising and Updating Logical Knowledge Bases
	AGM Belief Revision Theory
	Belief Base Revision
	Logical Updates
	Repairing Description Logic Knowledge Bases

	Truth Maintenance Systems
	Incremental Description Logic Reasoning

	Syndication Framework
	Overview
	Framework Formalization
	Publishing
	Subscribing
	Matching
	Discussion

	Example
	Summary

	Incremental Consistency Checking
	Introduction
	ABox Additions
	Approach Details

	ABox Deletions
	Approach Details
	Discussion

	Incremental Consistency Checking Algorithm
	Empirical Results
	Discussion

	Incremental Query Answering
	Main Observation
	Naïve Approach
	ABox Additions
	ABox Deletions
	Example
	Discussion

	Assumptions
	Concept Guide
	Example
	Approach
	Discussion

	Summary Completion Graph
	Summary Completion Graph Properties
	Using the Summary Completion Graph

	Supporting Complex Query Patterns
	Query Impact

	Finding Concept Guide Paths
	Incremental Query Answering Algorithm
	Empirical Results
	Discussion

	Maintaining Consistency at the Syndication Broker
	Rejection-Based Approach
	Belief Base Revision in OWL-DL
	Overview
	Kernel Semi-Revision Operator
	Semi-Revision Algorithm
	Trust-Based Incision Function

	Discussion

	Implementation and Evaluation
	System Architecture
	Synthetic Datasets
	Real-World Financial Dataset
	News Feed Background and Overview
	OWL Domain Model
	Extended System Architecture
	Real-World Subscriptions
	Empirical Results
	Discussion

	Conclusions and Future Work
	Conclusions
	Open Issues and Future Work
	Extending the Syndication Framework
	Enhancing Incremental Reasoning Techniques
	Evaluating Belief-Base Semi-Revision
	Information Extraction

	Summary

	Proofs
	Proofs for Chapter 5
	Lemma 1: Correctness of Modified Tableau Algorithm
	Theorem 1: Completeness of SHOIQ Axiom Tracing
	Theorem 2: Correctness of Algorithm 2

	Proofs for Chapter 6
	Theorem 3: Conditions for SHI Concept Instantiation
	Theorem 4: Concept Guide Label Transfer
	Theorem 5: SHI Concept Instantiation Overestimate
	Lemma 2: Tree Containment in Summary Completion Graph
	Lemma 3: Summary Completion Graph Update
	Lemma 4: Label Propagation of Summary Completion Graph
	Lemma 5: Concept Guide Paths in Summary Completion Graph
	Lemma 6: Dependencies in Summary Completion Graph
	Lemma 7: Clashes in Summary Completion Graph
	Theorem 6: Completeness of Summary Completion Graph
	Theorem 7: SHI Binding Requirement
	Theorem 8: Completeness of Query Impact
	Theorem 9: Correctness of Algorithm 4

	Proofs for Chapter 7
	Lemma 8: SHOIN Kernel Operator

	Bibliography

