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In order to survive in the wide range of sensory contexts that comprise our 

physical world, the nervous system employs adaptive mechanisms that optimize 

functional behaviors within a given sensory environment. Human bipedal stance control 

requires that the nervous system obtain relevant information about the environment and 

the body's relationship with it from multiple sensory systems. How does the nervous 

system accomplish this when the sensory environment compromises the information 

available from a given sensory system?  

In previous theoretical and empirical work, we have provided evidence of 

nonlinearities that are consistent with an hypothesis of sensory re-weighting: The nervous 

system adapts to changing sensory contexts by decreasing its dependence, or weighting, 

on the compromised system and increases its weighting of other inputs. This thesis 

presents empirical findings that further support the sensory re-weighting hypothesis and 

further efforts towards characterizing sensory re-weighting by providing empirical results 

that provide important constraints on any proposed sensory re-weighting scheme. 



First, postural responses to complex visual motion consisting of the sum of 10 

different sinusoidal components, were measured at two different amplitudes. Changes in 

the gain of body sway to visual motion were consistent with the nonlinearities previously 

interpreted as evidence for sensory re-weighting. Further, the observed changes in gain 

did not vary significantly as a function of stimulus frequency. Second, we found evidence 

indicating a temporal asymmetry in the sensory re-weighting process dependent upon the 

direction of the change in stimulus motion amplitude: the change in postural response is 

faster to a rapid increase versus decrease in stimulus amplitude. This temporal asymmetry 

was interpreted functionally: an increase in visual environmental motion may threaten 

balance, requiring a rapid down-weighting of vision if a strong dependence upon visual 

information would increase postural response beyond the stability boundaries of stance. 

Conversely, if stance is already stable in the face of large visual motion amplitude, a 

decrease in motion amplitude does not threaten balance and adapting rapidly to the new 

sensory conditions is not critical to avoid falling. 
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Chapter 1: A Review of the Literature 

 
It is common for authors, in justifying their investigations examining human 

postural control, to refer to statistics that reflect the costs to the health care system due to 

injuries resulting from falls. Indeed, the costs are high. Loughlin and Redfern (2003) state 

that costs due to injuries from falls are second only to injuries resulting from automobile 

accidents, while Maki et al., (2003) report that falls result in approximately 300,000 hip 

fractures per year in the United States alone, with associated costs of $10 billion. 

Therefore, improving our understanding of ability to maintain postural stability, as well 

as what factors and disorders affect this ability and may put individuals at heightened 

risks for falls has both pragmatic, economic value, and obvious clinical relevance.  

However, the study of postural control and, in particular, our ability to maintain 

an upright standing position is important in its own right as a platform for understanding 

sensorimotor integration and multisensory processing in the human nervous system. As 

we will detail, the maintenance of upright stance control is considered as a complex, 

feedback control process that involves the integration of sensory inputs from multiple 

systems, in particular, the visual, somatosensory and vestibular systems. We are 
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interested in understanding and elucidating the mechanism(s) by which the human 

nervous system is able to utilize information about the body’s configuration and its 

relationship to the environment obtained by these different sensory systems to produce a 

functional behavior such as upright standing. 

 
As Gagey (2003) points out, scientific interest in the control of upright stance 

stretches back to as early as Sir Charles Bell in 1837. Further, the first published 

recordings of the behavior we now call postural sway were likely to have been made by 

von Vierordt (c. 1860). Since that time, a vast literature encompassing both experimental 

and conceptual investigations of how we maintain stance has been developed that has 

shown the remarkable complexity underlying this quite fundamental sensorimotor 

behavior.  

Over the past several years, we have contributed to this dialogue in a series of 

studies aimed at identifying 1) the properties of sensory input that are relevant for 

postural control, 2) the non-linear nature of postural sway under different sensory 

conditions, and 3) a potential mechanism for multisensory integration in postural control, 

sensory re-weighting (cf., Jeka et al., 2000; Kiemel et al., 2002; Oie et al., 2001, 2002; 

Ravaioli et al., 2005). Sensory re-weighting is the idea that the nervous system is able to 

adaptively change its reliance upon a given sensory input depending upon current sensory 

conditions. For example, in a dark room, information about our visual environment, 

which is known to be used in controlling stance, is no longer available. Under such 

conditions, it is thought that the dependence upon vestibular and somatosensory 

information can be increased, and the dependence on visual information decreased, in 

order to maintain upright standing. However, that sensory re-weighting occurs has only 
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recently been more rigorously demonstrated (cf. Oie et al., 2002) and the mechanisms by 

which re-weighting may occur remain to be elucidated. 

The goals of this thesis, then, are 1) to obtain empirical results that identify how 

human postural responses reflect the re-weighting of sensory information for the control 

of upright stance 2) to discover constraints upon any potential re-weighting mechanism 3) 

with the aim of providing an initial characterization of sensory re-weighting that will 

inform future models of the human postural control system. One of the important current 

objectives in the field of postural control is to provide a model of the human postural 

control system that identifies and implements the underlying mechanisms involved in this 

complex sensorimotor behavior.  Sensory re-weighting is one such mechanism, and 

characterizing how sensory re-weighting affects postural sway behavior, and how fast it 

does so, will be an important step in achieving the aim of a complete mechanistic model 

of human postural control. 

In the following literature review, we will examine a number of studies that 

demonstrate the various influences that the multisensory inputs to the postural control 

system – namely, visual, vestibular, somatosensory and proprioceptive – have upon 

experimentally observed postural sway behavior, and we will frame the various lines of 

argument that have suggested the need to include a sensory re-weighting mechanism in 

potential models of posture.  

What is postural sway? 

To begin, let us first consider what we mean by ‘postural sway.’ As we have 

mentioned above, perhaps the earliest measurements of what we call postural sway were 

made in the mid 19th century by Karl von Vierordt (1860/1877). His equipment was 
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crude: A paintbrush was affixed to the peak of a helmet and was used to scratch out a 

figure on a glass plate covered in lampblack that was situated above the subjects’ heads. 

They were asked to maintain several different body configurations including different 

upright bipedal stances, standing on one leg and sitting in a chair. While we might 

consider these methods and his subsequent analyses rudimentary by today’s standards, 

the irregular patterns of bodily motions (see Figure 1.1 for a more modern example) 

recorded in these studies already identified: 1) a crude approximation of a measure still 

used in some forms today, sway area (e.g., Chiari et al., 2002; Prieto et al., 1996), which 

quantifies the two-dimensional area over which the subject’s body moves in space, 2) that 

closing one’s eyes can lead to an increase in sway area, and 3) that different stance 

configurations can induce increases (e.g., standing on one leg) or decreases (e.g., sitting) 

in sway area. 

In Figure 1.1(A-C), we see an example of a typical postural sway trajectory of the 

estimated total body center of mass of a healthy, young adult subject standing quietly 

with feet parallel and eyes closed. It is well established, and one can plainly see, that the 

sway associated with upright stance is characterized by continuous deviations within a 

limited spatial range rather than the maintenance of a fixed or static position. Such 

motions would be similar to what von Vierordt observed almost one and one-half 

centuries ago. Of course, the methods that we use in measuring postural sway behavior 

and the variables that are used to describe it are at least somewhat more refined, and 

certainly more numerous, today.  
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Figure 1.1. Examples of estimated center-of-mass postural sway trajectories. Data 
were collected using an OptoTrak motion capture system and the position of the total 
body center of mass was estimated from a three-segment model (Winter, 1991) at each 
time sample for A) anterior-posterior and B) medial-lateral directions, with the mean 
subtracted from each trajectory. The resultant planar trajectory is presented in C). 
[Unpublished data.] 
 

The most common method of measuring the sway associated with upright 

standing has been by recording the horizontal and vertical ground reaction forces applied 

by a subject’s feet upon an instrumented force platform and computing the position of the 

center of pressure (CoP) applied at the feet upon the support surface as the resultant of all 

ground reaction forces at a given time (e.g., Bronstein et al., 1990; Winter et al., 1996, 

2003). Alternatively, other authors have used numerous other measures to capture sway, 

for example: total body center of mass (CoM) either estimated as a single point (e.g., Jeka 

et al., 1998a,b; Black et al., 1988) or from a multi-segment model (e.g., Gu et al., 1996; 

Winter et al., 2003; Ravaioli et al., 2005)(see also, Figure 1.1, above), changes in the 

angle at the ankle (e.g., Fitzpatrick et al., 1996; Kavounoudias et al., 2001; Rogers et al., 

2001), spatial positions of the head or other body landmark (e.g., Black et al., 1988; 
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Dijkstra et al., 1994a; Keshner et al., 1987) to name a few.  These measurements are 

recorded using a variety of devices including camera systems (e.g., Bardy et al., 1996; 

Guerrez et al., 2001; Horak and Nashner, 1986; Ravaioli et al., 2005) and accelerometers 

or potentiometers (e.g., Black et al., 1988; Horak et al., 1994; Peterka and Benolken, 

1995; Soechting and Berthoz, 1979). 

Eventually, of course, the mechanistic model that we hope for will also include 

mechanisms for the control of the effectors of the postural system. As a point of interest, 

according to Gagey (2003), the first force platform was constructed in France by Scherrer 

around 1950. At about that same time, a number of investigations were undertaken using 

a different but also then quite new technology, electromyography (EMG). These studies 

examined not postural sway itself, but the potential role of the leg and trunk musculature 

that underlies the control of upright, quiet standing (e.g., Basmajian and Bentzon, 1954; 

Joseph, 1953, 1955, 1962, 1964; Joseph et al., 1952, 1954, 1955; Kelton and Wright, 

1949).  

Activity during quiet standing above baseline resting levels was observed in 

numerous muscle groups: trapezius (Carlsöö, 1961), erector spinae (Carlsöö, 1961, 

Clemmesen, 1951), quadriceps and hamstrings (Lewko, 1996) and gluteus maximus, 

minimus or medius (Carlsöö, 1961; Jonsson and Synnerstad, 1966), though results varied 

across studies (cf., Joseph, 1964). The majority of these studies, though, examined 

muscles of the lower leg that control ankle angle. The most consistent result found 

continuous activity in the calf muscles collectively (Jacobson, 1943; de Vries, 1965) or 

more specifically in soleus (e.g., Carlsöö, 1961; Joseph, 1953, 1955, 1962, 1964; Joseph 

et al., 1952, 1954, 1955; Naponiello, 1957). Intermittent or phasic activity of 
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gastrocnemius (Carlsöö, 1961; Joseph, 1962, 1964; Joseph and Nightingale, 1952) and in 

tibialis anterior (Basmajian and Bentzon, 1954; Hoefer, 1941; Kelton and Wright, 1949) 

was also commonly observed, though others reported no activity in tibialis (Joseph, 1953; 

Joseph et al., 1952, 1954; Smith 1954).  

The use of surface EMG in examining quiet stance behavior, however, seemed to 

fall out of style after this period, with the field coming to favor various ways of 

manipulating sensory inputs to subjects or the use of sensory or physical perturbations 

and their effects on CoP or CoM responses. Though EMG techniques have often been 

employed when examining responses to physical or sensory perturbations (e.g., 

Fitzpatrick et al., 1996; Henry et al., 1998), very few studies in the interim have used 

EMG to study quiet stance behavior (e.g., Lewko, 1996; Soames and Atha, 1981). 

Moreover, the analyses employed in most of these studies did not move beyond 

subjective, visual inspection of strip chart recordings to indicate increased activity 

relative to a baseline resting condition as the only variable to characterize muscular 

activity during quiet, upright standing. In the past few years, the role of muscular activity 

and the use of EMG during quiet stance has begun to spark some interest (e.g., Gatev et 

al., 1999; Masani et al., 2003), and more quantitative analysis. For example, Gatev et al 

(1999) showed positive correlations (~0.2-0.4) between changes in muscle activation of 

the lateral gastrocnemius and both center-of-gravity (CoG) and CoP displacements, with 

body sway lagging EMG activity by ~250-300 ms. The strength of these observed 

correlations was found to depend upon both stance width (normal v close (Romberg)) and 

eye closure. Still, examination of EMG of postural muscles during quiet stance certainly 

remains underrepresented in the literature. It would be worthwhile to provide a more 
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quantitative and comprehensive analysis of the relationship between body sway and 

activity in different muscle groups (cf. Masani et al., 2003) in one or both legs. An 

understanding of how the nervous system controls muscular activations in maintaining 

quiet stance behavior will be crucial for implementing effector mechanisms in future 

models. 

The more extensive study of postural sway behavior itself, on the other hand, is 

reflected in the quite large number of variables computed to capture the characteristics of 

postural sway. Prieto et al., (1996) identified 14 variables that could be computed from 

the components of center-of-pressure (CoP) postural sway trajectories. These range from 

commonly used time-domain variables such as sway path length (e.g, Bronstein 1986; 

Bronstein et al., 1990; Wade et al., 1995) sway area (e.g., Lacour et al., 1997; Rocchi et 

al., 2002), root-mean square distance (e.g., Kunkel et al., 1998; Rocchi et al., 2002) and 

sway range (e.g., Blaszczyk JW et al., 1993; Gu et al., 1996) to frequency-domain 

variables such as mean, 50% or 90% power frequency or total spectral power (e.g., 

Carpenter et al., 2001; Duarte and Zatsiorsky, 2002; Jeka and Lackner, 1994; Jeka et al., 

1998a,b; Krafczyk et al., 1999) to other, more esoteric variables such as fractal dimension 

(Stambolieva et al., 2001), which has had more limited usage in the field.  

As Chiari et al. (2002) point out, many of these so-called ‘summary statistic 

scores’ are attractive for clinical use as they are ‘easy to use and computationally 

undemanding.’ In the literature, they are often used to characterize differences in quiet 

stance sway behavior under different sensory conditions (e.g., Clapp and Wing, 1999; 

Fitzgerald et al., 1994; Jeka and Lackner, 1994) or among different population cohorts or 

patient groups (e.g., Bronstein et al., 1990; Hay et al., 1996; Panzer et al., 1995). But as 
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Prieto et al. (1996) demonstrated, the between- and within-subject variability often 

associated with such measures limits their sensitivity to discriminate sway responses in 

different experimental manipulations and among different subject populations. In Prieto 

(1996), the authors simply compared CoP sway trajectories in healthy young and elderly 

subjects with eyes either open or closed. Analysis of the correlations between visual 

condition and subject group among 37 identified variable showed that only measures of 

sway velocity identified age-related changes in both visual conditions, as well as 

differences between visual conditions in both age groups. The sensitivity of the postural 

system to velocity is a point that we will return to later. 

For now, it suffices to say that the variety of variables used to characterize sway 

behavior - and the above list is certainly not exhaustive – and their lack of sensitivity to 

experimental conditions is suggestive both of the difficulty that exists in trying to 

quantify upright stance behavior and the necessity for different techniques to understand 

how we maintain upright stance. Indeed, as some have pointed out (e.g., Chiari et al., 

2002; Collins and DeLuca, 1993), summary statistic scores only characterize mean 

behavior and are unable to take into account the intrinsic, dynamic properties of postural 

sway (Chiari et al., 2002; Collins and DeLuca, 1993, 1995a, b; Newell et al., 1997). So, 

how do we examine these dynamic properties of sway behavior to gain a more complete 

understanding of how we maintain upright stance?  

The Nature Of Human Postural Sway 

In the previous section, I have suggested that, while summary statistics have been 

employed both successfully and extensively, they do not fully characterize the dynamic 

properties of postural sway behavior. The question is how does one view postural sway 
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trajectories to examine the nature of postural sway and the underlying system that 

produces it? Here, I will discuss three prominent ways in which postural sway trajectories 

have been characterized: 1) as non-stationary (e.g., Carroll and Freedman, 1993; Cao et 

al., 1998), 2) as a linear, stochastic process (e.g., Johansson, 1988, 1995; Kiemel et al., 

2002), and 3) as a stochastic process comprised of coupled random walks (e.g., Collins 

and DeLuca, 1993, 1995a,b).  

In one of the earliest and most often cited examples of the non-stationarity of 

postural sway (e.g., Cao et al., 1998; Chiari et al., 2000; Duarte and Zatsiorsky, 1999; 

Loughlin et al., 2003a, b), Carroll and Freedman (1995), observed a transient decay of the 

position and variance of sway at the beginning of trials. This decay was present during 

quiet standing with eyes open or closed, or when standing on one foot. If postural sway 

under such conditions is stationary (i.e., its statistical properties are invariant over time), 

ensemble averages (n = 51) of the sway trajectories at each time step should not have 

been statistically different from zero. However, for three subjects, the initial position of 

anterior-posterior (AP) CoP trajectories was found to be statistically different from zero, 

while points from approximately 20 s until the end of the 60 s trial duration were, 

generally, not statistically different from zero. These results were taken to indicate a 

transient non-stationarity in postural sway trajectories at the beginning of trials, in 

agreement with previously reported observations (e.g., Maki et al., 1987; Werness and 

Anderson, 1984). The presence of such transients could obviously bias the values of 

summary statistic scores computed over the entire trial, which rely in one way or another 

on the result of time averaging. As a potential, but rather course, solution, the authors 

suggest that one could simply not include the first 20-30 s of data in the computation of 
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time-invariant variables, which some authors have put into practice (e.g., Stoffregen et 

al., 1999, 2000). 

However, the non-stationarity identified by Carroll and Freedman (1995), though 

potentially important in the practice of examining postural sway, is rather limited in 

characterizing the statistical properties of sway behavior, in general. Indeed, the authors 

attributed the observed transient to a peculiarity of their experimental protocol; that 

subjects always assumed the required standing posture by stepping onto a force platform 

from the rear, which may have simply biased the initial position at the start of trials. A 

more general commentary on non-stationarity in CoP sway trajectories comes from Cao 

et al. (1998) who showed that removing a 10th-order polynomial trend, artificially 

making the data ‘more stationary,’ improved fits using three different prediction methods 

for identifying the underlying dynamics of the postural system. The authors thus 

suggested that the (assumed) intrinsic non-stationarity of postural sway can affect 

analyses that assume statistical properties that are time-invariant. 

Such a result certainly has potential implications for the summary statistics we 

have discussed previously, but also for commonly-used spectral (Fourier) analyses that 

also assume stationarity. Schumann et al. (1995) suggest instead that the use of time-

varying spectral methods may be more appropriate. Evolutionary spectral methods (cf. 

El-Jaroudi et al., 1996) allow for the resolution of changes in the frequency content of a 

signal over time. Exemplar time-frequency distributions in Schumann et al. (1995) 

demonstrated some fluctuations in the estimates of frequency content over time, as well 

as that a patient with vestibular deficit generally showed more power across frequency 



 12

than a healthy adult subject, though their analysis did not go beyond simple visual 

inspection.  

A potentially more interesting use of time-varying frequency analyses, though, is 

offered by El-Jaroudi et al. (1996). Healthy adult and vestibular-impaired patients were 

exposed to sinusoidally moving visual scenes at 0.1 or 0.25 Hz (see also below). 

Inspection of the time-frequency distributions of subjects’ responses indicated that a peak 

in the spectral distributions of healthy individuals appeared immediately following the 

onset of visual motion (cf., Dijkstra et al., 1994a, b; Jeka et al., 2000; Lee and Aronson, 

1974; Oie et al., 2001, 2002), indicating a dependence of postural responses upon 

stimulus motion. El-Jaroudi et al. (1996) found that the amplitude of this peak tended to 

decrease over the duration of the 60 s trial, which would clearly suggest a non-

stationarity, as well as a possible adaptation of postural responses to stimulus motion. On 

the other hand, vestibular-deficient patients’ responses tended to show a delay relative to 

stimulus onset, and amplitude did not decay or may have increased over time. 

Unfortunately, as the authors point out, the use of time-varying spectral analyses are still 

descriptive in nature and further development of these techniques may make them more 

useful in the analysis of postural sway. 

Duarte and Zatsiorsky (1999) identified a qualitatively different type of non-

stationarity than those considered above in three descriptive motion patterns observed 

during prolonged (> 30 min), unrestrained standing versus the typical laboratory standard 

of requiring subjects to ‘stand quietly’; that is, to try to maintain a single foot position 

and body configuration throughout a trial. Identified as ‘shifting’, ‘fidgeting’, and 

‘drifting’, respectively, all of these patterns of CoP motion would affect the computation 



 13

of variables that assume stationarity if one examines unconstrained standing: 1) Shifting 

– a fast displacement of the average CoP position, 2) Fidgeting – a fast, large 

displacement of CoP position and a return to approximately the same position, and 3) 

Drifting – a slow, continuous displacement of the average CoP position. Describing these 

patterns of motion does point out that differences in observed behaviors exist between 

that typically asked of subjects in the laboratory and the more natural behaviors examined 

in this study and what, if any, differences might exist in future models of the postural 

control system that account for stance behavior in constrained versus unconstrained 

conditions. 

 
As we have seen, one of the shortcomings of the above studies that propose the 

non-stationary nature of postural sway is that they are generally descriptive in nature. In a 

companion paper to the one we have just reviewed, Zatsiorsky and Duarte (1999) forward 

a similarly descriptive interpretation of CoP sway trajectories in constrained  standing by 

decomposition into two distinct components, which they termed ‘rambling’ and 

‘trembling’. The rambling trajectory was found to be a relatively slow process, with most 

of its spectral power in the range of 0-0.25 Hz, and to account for about 80% of the 

variability observed in CoP sway trajectories during quiet standing. This rambling 

component was found by first identifying zero-points in the horizontal ground reaction 

force, when the body is assumed to be at rest or its center of mass moving with constant 

velocity. A cubic spline fit to these ‘Instant Equilibrium Points’ was hypothesized to 

represent the trajectory of a set point or reference point reflecting the central command 

for the postural control system. The trembling component was obtained by subtracting 

the rambling component from the original CoP sway trajectory. It was smaller in 



 14

amplitude and higher in frequency (mean ~0.5 Hz) than the rambling component, and 

was interpreted to reflect the control about the drifting reference point due to the intrinsic 

elastic properties of the musculoskeletal system. 

As we will see in the following section, the identification of slow (low-frequency) 

and fast (high-frequency) components of sway has been suggested by several different 

authors within different theoretical contexts (e.g., Collins and DeLuca, 1995; Dijkstra, 

2000; Kiemel et al., 2002). Indeed, if one looks more closely at the exemplar trajectories 

presented in Figure 1.1A and 1.1B, simple visual inspection can reveal these two 

components. Next, we will discuss work from our laboratory that more rigorously 

identified these slow and fast components and how these results have gone beyond 

description to suggest the existence of two separate underlying processes, that are 

interpreted differently than that forwarded by Zatsiorsky and Duarte (1999). 

Cao et al. (1998) utilized three different nonlinear prediction methods to try and 

identify the dynamics of the postural control system. Their findings suggested 3rd-order 

dynamics, though they could not distinguish if the system was intrinsically linear or 

nonlinear. A potential shortcoming of their approach, though, was the use of quite short 

stretches of data (30 s), where the slow component of sway – the rambling component of 

Zatsiorsky and Duarte (1999) – might considerably alter the observed statistical 

properties from one short section of data to the next. In Kiemel et al. (2002), we instead 

used longer sway trajectories (240 s); data segments long enough to adequately capture 

the slow component of sway. In this way, this slow component, which would contribute 

most to findings of non-stationarities over shorter data stretches, could be considered as 

an inherent part of the stochastic structure of observed postural sway trajectories. 
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In Kiemel et al., (2002), models of varying order were fit directly to CoM 

trajectories using autoregressive moving average (ARMA) techniques in nine healthy, 

young subjects across four different sensory conditions: 1) eyes closed, 2) eyes closed 

while lightly touching a stationary surface, 3) eyes open, and 4) eyes open with light 

touch (see also discussion of sensory influences on postural sway, below). It was found 

that the observed postural sway trajectories were best described by at least a 3rd-order 

model in terms of its eigenvalues and the coefficients of the autocovariance functions, 

whose makeup suggested two distinct processes: 1) In all cases, the eigenvalue 

accounting for the greatest proportion of the observed variance was negative and real-

valued, corresponding to a first-order decay process. 2) In 33 of the 36 cases, a pair of 

complex-valued eigenvalues was also found, corresponding to a damped oscillatory 

component. In most cases, the decay and damped-oscillatory eigenvalues were the only 

eigenvalues found to account for a significant proportion of the variance. 

In all cases the real part of the complex-valued eigenvalues was more negative 

than the eigenvalue of the first-order decay, indicating that these two processes operate 

on different time scales in the postural system, with the first-order decay process being 

slower than the damped oscillatory process. Further, the slow-decay process was also 

found to account for almost all of the observed variance in the sway trajectories. Thus, 

the comparison of the slow decay and damped oscillatory processes with the ‘rambling’ 

and ‘trembling’ components of Zatsiorsky and Duarte (1999) is quite clear. The results 

are also consistent with observations of Johansson et al. (1988, 1995) who also used 

ARMA techniques and found 3rd-order dynamics in sway under the influence of 
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vibration applied to the calf muscles (Johansson et al., 1988) or 4th-order dynamics with 

galvanic vestibular stimulation (Johansson et al., 1995). 

Dijkstra (2000) also presented a model, the dynamic set-point model, that 

proposes both slow and fast processes. Like similar dynamical models (cf., Schöner, 

1991; Dijkstra et al., 1994a,b; Jeka et al., 1997, 1998a, 2000), the deterministic response 

of the postural system is captured by a 2nd-order, damped oscillatory process. The model 

then includes an additional dynamic variable that determines the stable point of the 

dynamics of the postural system. This so-called dynamic set-point variable accounts for 

the low-frequency components of sway, which operates on a slower time scale then the 

2nd-order oscillation. 

Recall that Zatsiorsky and Duarte (1999) suggest that their rambling trajectory 

reflected a migrating or drifting reference point of the postural control system similar to 

that of Dijkstra (2000). However, it is unclear why the reference point, which 

hypothetically reflects the central command of the nervous system to maintain an upright 

position, should drift at all. By comparing the results of the ARMA model descriptions of 

the stochastic structure of postural sway to the behavior of an optimal control theory 

model, Kiemel et al. (2002) suggests specific mechanisms that account for the slow and 

fast components of sway. Specifically, the slower, first-order decay process, which 

accounted for the majority of sway variance, corresponds to the model eigenvalue that 

reflects the time-scale of the dynamics of state estimation; that is, the fusion of 

multisensory information to produce estimates of postural state. The faster second-order 

oscillatory process corresponds to the model eigenvalues associated with the control 

function; the use of those state estimates to produce the muscular activations for the 
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control of upright stance. This view of postural control in terms of separate processes of 

estimation and control provides us with an important theoretical context for 

understanding the control of posture.  

A different approach, and one of the most prominent methods used over the past 

decade to examine the stochastic nature of postural sway was forwarded by Collins and 

DeLuca (1993). This approach considers CoP displacements in upright stance behavior as 

the result of both deterministic and stochastic mechanisms, which can be modeled as a 

system of two coupled, correlated random walks. The prototypical stabilogram-diffusion 

analysis of postural sway – extracting parameters from plots of the mean squared 

displacement as a function of time step – produces a function whose slope changes over 

time, typically in two regions separated by a (subjectively identified) critical point. This 

result suggested that sway is not a simple random walk process, and the authors adopted a 

two-process model with short-term and long-term regions described by separate but 

coupled random walk components. Their model has six parameters: critical point 

coordinates (∆t, <∆r2>), which separate the short- and long-term regions, and a diffusion 

coefficient (D) and scaling exponent (H) for each region. Fitting such a model has been 

shown to typically account for around 97% of the variance observed in experimentally 

observed stabilogram diffusion plots.  

The authors interpreted the identification of short-term and long-term regions in 

CoP stabilogram diffusion functions to infer two linked mechanisms for the control of 

upright standing. One operates in open-loop over short time intervals, and the other 

operates over long time intervals in closed loop. Under this hypothesis, stabilogram-

diffusion analysis has spawned numerous empirical investigations utilizing the method 
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showing systematic changes in stabilogram diffusion function parameters with changes in 

visual input (Collins and DeLuca, 1995a; Riley et al. 1998; Rougier and Farenc, 2000), 

age (Collins et al., 1995b) and fingertip contact with a stationary surface (Riley et al., 

1997), as well as a number of theoretical attempts at characterizing the underlying 

dynamics of the postural system (Eurich and Milton, 1996; Lauk et al., 1998).  

Several authors have pointed out shortcomings in and alternatives to this approach 

(Chiari et al., 2000; Newell et al., 1997; Peterka, 2000). Both Chiari et al. (2000) and 

Newell et al. (1997) argue that the two-process model of Collins and DeLuca (1993) can 

be adequately and more parsimoniously accounted for with models having fewer than six 

parameters. Newell et al. (1997) compared the two-process random walk model with a 

single, continuous linear- process, with only two parameters. Fitting of this model to CoP 

trajectories in eyes-open and eyes-closed conditions with subject groups in four different 

age groups showed that this model fit the data almost as well as the six-parameter model, 

accounting for about 92% (versus 96%) of the variance across all visual conditions and 

age groups. 

Similarly, Chiari et al., (2000) used a four-parameter nonlinear random walk 

model. Examination of the intra-class correlations of parameters across eyes-open and 

eyes-closed conditions showed that, overall, the four-parameter model yielded more 

reliable estimates than either the six-parameter model or a group of four summary 

statistic scores (mean velocity, 95% confidence ellipse area, fractal dimension and 

centroidal frequency). Further, the four parameter model was able to improve both 

reliability and sensitivity to sensory conditions on diffusion function estimates based 
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upon fewer trials than that of Collins and DeLuca, an important aspect when proposing 

such analyses for clinical assessment.   

Peterka (2000), on the other hand, showed that realistic stabilogram diffusion 

functions could be produced by a simple feedback control model. The model he 

employed treats the body as a single-link inverted pendulum. Sensory systems are 

assumed to detect angular deviations from the vertical, which are used to generate a 

corrective torque to compensate for these disturbances. The controller takes the form of a 

common PID (proportional, integral, derivative) controller with a time delay. A second 

input to the controller is an external disturbance torque that is used to capture the 

stochastic fluctuations observed in sway behavior. The model has two outputs: AP body 

sway angle, and, via a simple transformation, AP CoP displacement. Analyzing simulated 

sway trajectories showed that within certain parameter regimes of the PID controller and 

time delay, fairly typical stabilogram diffusion functions could be produced, with 

simulation diffusion function parameters in the range of those found experimentally in 

Collins and DeLuca (1993). 

That a simple feedback control model could account for the statistical properties 

of sway trajectories revealed by stabilogram diffusion analyses clearly challenges the 

open-loop/closed loop hypothesis of Collins and DeLuca (1993). The results in Peterka 

(2000) indicate that there is no need to postulate a nonlinear open-loop mechanism that 

operates below some sensory, perceptual or temporal threshold as posited by Collins and 

DeLuca. Instead, the dynamics of sway behavior can be determined by a single, 

continuous, closed-loop control mechanism. 
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However, it is an important point to appreciate that the simplicity of the model 

presented in Peterka (2000) belies the complexity of the multisensory processing required 

for the control of stance. As the author points out, the model’s PID controller generates 

its corrective torque in proportion to the angular position, angular velocity and the 

integral of the body’s center of gravity relative to the inertial frame of reference. This 

suggests that to implement such control, the nervous system must be able to estimate 

center of gravity motion in space in order to compute appropriate motor commands. 

Alternatively, this sensorimotor transformation may be accomplished directly from the 

multiple sensory inputs available to the postural control system into motor commands. In 

any case, such processing requires that the nervous system make use of information from 

its sensory systems. We have already considered a number of ways in which changes in 

sensory inputs affect sway behavior in our discussion of the nature of postural sway. In 

the next section, we will examine in more detail what is known about how sensory 

information, and a number of other factors, affects how we maintain upright stance.   

Sensory (and Other) Influences on Human Postural Control 

It is widely accepted that the maintenance of upright stance can be conceived of 

as a complex, sensorimotor feedback control process (e.g., van der Kooij et al., 1999, 

2001; Mergner, 2003; Morasso, 1999; Peterka, 2000). Numerous experimental results 

have shown that the postural control system is able to utilize sensory information from at 

least: somatosensation from foot contact with the support surface (e.g., Aniss et al., 1992; 

Kavanoudias et al., 2001), proprioception regarding the configuration of body segments 

(e.g., Fitzpatrick et al., 1996; Wierzbicka et al., 1998), vision (e.g., Bardy et al., 1996; 

Berthoz et al., 1979; Lee and Lishman, 1975) and the vestibular system (e.g., Hlavacka et 
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al., 1996; Johansson et al., 1995). Further, sensory feedback from touch contact with 

external surfaces (e.g., Clapp and Wing, 1999; Jeka and Lackner, 1994, 1995; Riley et al., 

1997; Rogers et al., 2001) and, even audition (e.g., Easton et al., 1998) has been shown to 

influence postural responses.  

A common way to consider the role of sensory information for postural control is 

in terms of the information that each sensory system can provide (for a review, see Horak 

and Macpherson, 1996). For example, Nashner and colleagues (e.g., Black et al., 1984; 

Nashner, 1982) have suggested that information from the vestibular system – the otolith 

organs and semicircular canals – serves as a reference frame for postural orientation (cf., 

Hlavacka et al., 1996), as it registers a sum of all accelerations acting on the head, 

including the acceleration due to gravity. Somatosensory and proprioceptive input from 

cutaneous and proprioceptive receptors in the skin, musculature and connective tissues 

provides crucial information about both the configuration of body segments relative to 

each other and functional information about contact with external objects and surfaces 

(Jeka et al., 1998b), and it has been shown to be sensitive to at least the velocity of a 

stimulus (e.g., Jeka et al., 1998a, 2000). Similarly, vision, which provides information 

about the external environment, has also been shown to be velocity-sensitive (Dijkstra et 

al., 1994b; Jeka et al., 2000; Schöner, 1991; Stoffregen, 1986). The ability to maintain 

upright stance is also associated with numerous other factors including age (e.g., 

Okuzumi et al., 1996; Perrin et al., 1997), task demands (e.g., Hunter and Hoffman, 2001; 

Stoffregen et al., 1999, 2000), and various disease states including vestibular loss (e.g., 

Black et al., 1988; Horak et al., 1990; Lacour et al., 1997), cerebellar dysfunction (e.g., 

Bronstein et al., 1990; Horak and Diener, 1994), spinal cord injury (e.g., Lewko, 1996), 
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peripheral neuropathy (e.g., Ingliss et al., 1994) and Parkinson’s syndrome (e.g., 

Bronstein et al., 1990; Rocchi et al., 2002). 

Many different methods have been used to manipulate sensory inputs to examine 

how we use sensory information to maintain upright stance. For example, one method 

that has been employed to examine the role of the vestibular system in postural control is 

galvanic stimulation: the application of small-amplitude (< 4 mA), bipolar vestibular 

stimulation applied to the mastoid bones, which has been repeatedly shown to modulate 

the firing of peripheral vestibular afferents. It has been shown to elicit reproducible, 

directionally-specific postural responses (e.g., Fitzpatrick et al., 1996; Hlavacka et al., 

1996; Johansson et al., 1995; Pavlik et al., 1999). Hlavacka et al. (1996) observed 

stimulation with the anode on the right mastoid produces an illusory perception of left 

body lean and produces a compensatory postural response to the right. When the anode 

was on the left mastoid, sway was induced to the left. With pseudorandom variation of 

the galvanic current (~0 to ~5-10 Hz) across the mastoid bones, Johansson et al. (1995) 

showed coherence of ~0.6-0.7 between ML sway with subject’s facing forward and 

galvanic stimulation between 1-5 Hz, but not with AP sway, again illustrating the 

directional specificity of such stimuli. Indeed, AP sway can be elicited if the subject’s 

head is turned either to the right or left (cf., Pavlik et al., 1999; Fitzpatrick et al., 1996) 

Coats (1973) also showed that the amplitude of the sway response varies with increasing 

stimulus current, and Coats (1972) and Petersen et al. (1994) showed that sinusoidally 

varying the stimulus current leads to sinusoidally varying sway.  
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 The directional specificity of postural responses to galvanic stimulation certainly 

suggests an important role for vestibular information in the control of posture. In a novel 

study, Fitzpatrick et al. (1996) utilized both galvanic stimulation and an external physical 

perturbation applied to the waist to examine how the postural control system uses 

feedback control to resist disturbances, both sensory and mechanical. The human stance 

control system was conceived of as a simple, closed feedback control loop between the 

muscle systems and load and the reflex control of the effectors. Perturbations of stance - 

the load - create postural sway displacements about an axis of rotation at the ankle joint. 

Reflex responses (short, medium or long latency) under sensory input from visual, 

proprioceptive or vestibular systems (cf., Nakazawa et al., 2003; Wu and Chiang, 1997), 

are activated by these postural movements. The reflex recruitment of motor neurons 

activates specific muscle systems to produce torques about the ankle that oppose sway. 

Each of these three components – load, reflex and muscle systems - can theoretically be 

described by a transfer function or input-output function that characterizes the 

amplification (gain) and temporal relationship (phase) between correlated components of 

the input and output signals at any given frequency. 

The authors’ method was to apply low-amplitude, external perturbations at two 

different points in the control loop, under the assumption that the responses generated 

were linearly related to the perturbations. The transfer function of the reflex pathways 

was measured using the random mechanical perturbation to induce body sway and evoke 

an EMG response to obtain a perturbation-to-EMG transfer function, which, when 

divided by the perturbation-to-sway transfer function, yielded an estimate of the reflex 

transfer function in open-loop conditions. The galvanic stimulation was used to drive a 
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vestibular-induced sway, and dividing stimulus-to-sway transfer functions by the 

stimulus-to-EMG transfer function estimated the muscle-load transfer function. The gains 

of the reflex and muscle-load transfer functions, then, describe the amount of EMG 

evoked per unit of movement and the amount of movement evoked per unit EMG, 

respectively, and the product of the reflex and muscle-load transfer functions describes 

the behavior of the entire closed loop system. 

As the authors point out, in many engineering feedback systems, high loop gains 

are utilized such that external disturbances are strongly resisted. However, in systems 

with non-negligible feedback delays (e.g., the nervous system), high loop gains may 

cause instability. Standard techniques in engineering systems exist to deal with feedback 

delays (e.g., the Smith predictor), and have indeed been employed in some recent models 

of human posture (e.g., van der Kooij et al., 1999, 2001; Morasso et al., 1999). The 

authors found that loop gain estimates were not high, but rather only slightly greater than 

unity at low frequency and decreasing slightly with increasing frequency, suggesting that 

the postural control system does not operate entirely upon feedback control, with the 

authors proposing a feed-forward component to the human postural control system.  

 

Earlier, we discussed the use of EMG in characterizing the way in which the 

nervous system produces the control necessary for stance control. While I have noted that 

the use of EMG during quiet standing has been underrepresented in the literature, 

examining how muscular activity is related to postural responses to large mechanical 

perturbations has been a significant paradigm in the examination of human postural 

control (e.g., Allum et al., 2001; Inglis et al., 1994; Horak and Nashner, 1986). In Horak 
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and Nashner (1986), subjects stood on support surfaces of various lengths and were 

exposed to short forward and backward translations of the support. On a sufficiently long 

support surface, subjects showed fairly stereotyped patterns of muscular activation 

(EMG), beginning around the ankle joint and proceeding temporally in a distal-to-

proximal order with an onset latency of about 100 ms. Because this pattern of muscle 

activation compensated for body motions away from equilibrium primarily through 

motion about the ankle joint, it was termed the ‘ankle strategy.’ By contrast, with short 

support surface lengths, the pattern of activation was proximal-to-distal, generating 

corrective torques about the hip rather than ankle joint; thus, the pattern was termed the 

‘hip strategy.’  

In part, the interpretation of ankle and hip strategies has affirmed the belief that 

quiet standing under normal support surface conditions is primarily driven by corrective 

torques applied about the ankle joint (e.g., Fitzpatrick et al., 1996; Lee and Lishman, 

1975). Aramaki et al. (2001), however, has reported findings that showed that angular 

displacements, velocity and acceleration of the hip are significantly higher than those of 

the ankle, indicating an important role of hip-joint motion even in quiet standing. 

Interestingly, the authors also observed an anti-phase relationship between ankle and hip 

angular acceleration that was not evident in the relationship between ankle and hip 

displacement, suggesting that rotations about the ankle and hip may serve to minimize 

CoM acceleration. 

In Horak and Nashner (1986), support surface translations with intermediate-

length surfaces elicited more complex motions that were interpreted as being different 

temporal combinations of the ankle and hip strategies. The authors suggested, then, that 
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the ankle and hip strategies may represent a limited set of central programs that can be 

organized to produce more complex motions. However, using multidirectional support-

surface translations, Henry et al. (1998) found a more complex organization of muscle 

recruitment. For example, shank and thigh muscles were activated with constant latencies 

regardless of translation direction, while the latencies of trunk muscles (erector spinae 

and rectus abdmonus) were dependent upon the direction of perturbation. Different 

muscle groups responded maximally in different directions, sometimes orthogonal to the 

predicted direction (rectus femoris and adductor longus) and some of the muscles active 

in synergic regions were not anatomic synergists. These results suggested that postural 

responses are produced by flexible combinations of muscle activations that can be 

modified in a task-dependent manner. 

Sensory perturbations, rather than the mechanical perturbations used in the studies 

we have just discussed, can similarly produce muscular activations relevant for stance 

control. For example, Aniss et al., (1992) showed that electrical stimulation of cutaneous 

receptors of the foot elicited reflex patterns of activation in leg muscles in standing 

subjects. Kavounoudias et al. (2001) demonstrated that vibratory stimulation of the 

tendons of the tibialis anterior and of the sole of the foot elicited predictable postural 

responses. Vibration of cutaneous receptors in the forefoot produced earliest EMG 

responses (latencies ~120 ms) in soleus, followed by initial backwards CoP sway. 

Conversely, vibration of the tendons of the tibialis anterior produced earliest EMG 

responses in tibialis, followed by an initial forward CoP motion. The application of 

vibratory stimuli to the forefoot or tendon, then, produces illusory perceptions of changes 

in foot pressure or of muscle length, respectively. This in turn leads to illusory 
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perceptions of forward or backward lean, respectively, and results in compensatory 

postural responses. With both stimuli, the amplitude of CoP displacements was found to 

be dependent upon the frequency of vibration, and tactile stimulation was found to be 

more effective in lower frequency ranges than proprioceptive stimulation, which yields 

responses more strongly in higher frequency ranges. The linear summation of the CoP 

responses to single-modality stimulations agreed well with the CoP response during 

concurrent stimulation, which the authors interpreted to suggest that somatosensory and 

proprioceptive inputs may sub-serve complementary functions dependent upon the 

frequency of peripheral sensory activation. 

Further, in a paradigm that combined both vibratory stimulation of tibialis and 

galvanic stimulation applied to the mastoids (see also, above) Hlavacka et al. (1996) 

demonstrated that combined stimulation elicited complex postural responses. Galvanic 

stimulation, as seen previously, produced postural sway in the direction of the anode, 

either to the left or the right. Vibration of the right tibialis anterior muscle predictably 

produced sway forward and to the right. When both galvanic and vibratory stimuli were 

applied at different intervals with respect to each other, the resultant postural responses 

were found to be approximated by a summation of responses to the individual vestibular 

and proprioceptive inputs. The authors took these results to suggest a multisensory 

reference frame of body vertical for the control of posture, which is obtained by the 

continuous integration of proprioceptive and vestibular inputs. Proprioceptive input is 

assumed to register an estimate of the body relative to the support surface (e.g., earth 

horizontal) and vestibular input is assumed to register an estimate of the head in space 

relative to the gravitational vector (earth vertical). These estimates are summed to 
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provide an estimate of body in space relative to vertical, consistent with the observation 

that postural responses with multisensory information reflected the summation of the 

single sensory responses. Any body lean away from vertical, then, could be corrected for 

by the postural control system.  

Thus far, we have considered paradigms in which external disturbances, whether 

they were primarily sensory or mechanical in nature, elicited predictable postural sway 

responses. As noted repeatedly above, another way of examining the sensory influences 

upon sway is to change the availability or reliability of sensory inputs and then to 

examine the effects upon postural sway deviations, for example, by removing visual 

information via eye closure (e.g., Clapp and Wing, 1999; Jeka and Lackner, 1994; 

Kiemel et al., 2002; Prieto et al., 1996). The removal of a sensory input can be considered 

to lead to increases in sway due to the necessity of producing estimates of the postural 

state given source of sensory information (Kiemel et al., 2002). Conversely, providing 

additional sources of sensory information should lead to improved estimation and, 

potentially, to decreases in postural sway. For example, Rogers et al. (1997) has shown 

that passive tactile stimuli applied to the leg and shoulder can also provide somatosensory 

information relevant for postural control. Subjects were exposed to light contact forces 

(~0.25 N) via a small (5.0 X 2.0 cm) textured material on the back of the right leg or on 

the top of right shoulder. Across all subjects in four different groups (young adult, older 

adult, older adult fallers and patients with peripheral neuropathy), the passive tactile input 

was found to significantly decrease sway (root-mean-square amplitude). Shoulder stimuli 

decreased sway (root-mean-square amplitude of ankle angle) significantly more than leg 
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stimuli (29% v 22%), while combined stimuli decreased sway significantly more (42%) 

than either stimuli in isolation.  

Earlier investigations showed that active fingertip contact with a stationary 

surface also stabilizes sway. Jeka and Lackner (1994) had subjects stand with one foot in 

front of the other (tandem Romberg), which challenged the subjects postural stability 

primarily in the ML direction. Results showed that somatosensory information obtained 

from light fingertip contact that was limited to < 1 N of vertical force attenuates ML CoP 

sway to the same extent as when subjects were allowed to apply as much force to the 

contact surface as desired, where mean vertical contact forces were observed at ~5 N. 

Time lags between touch contact force and ML CoP sway in the force contact conditions 

were < 100 ms, suggesting that fingertip contact was being used to physically 

counteracting sway motion. By contrast, in the light contact conditions, time lags were 

much higher, between 300-400 ms, suggesting that under these conditions, fingertip 

contact provides sensory information allowing anticipatory actions serving to reduce 

sway. The effectiveness of fingertip somatosensory information has been supported by 

subsequent studies that have shown sway attenuation with light touch in bipedal stance, 

primarily in the AP direction (Clapp and Wing, 1999), equivalent degrees of sway 

attenuation with rough or slippery surfaces with significant differences in observed EMG 

activity in postural muscles of the leg during between light and force contact conditions, 

suggesting increased sensory-evoked, reflex muscle activation rather than physical 

support with light touch contact (Jeka and Lackner, 1995), as well as decreased stochastic 

activity with light touch as characterized by stabilogram diffusion parameters (Riley et 

al., 1997). 
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 Beyond the above effects of tactile contact, the results of Rogers et al., (2001) 

also demonstrated some other commonly observed effects: When proprioceptive 

information from the ankles is altered or disrupted, in this case by standing on a 

compliant foam pad, postural sway is increased (cf., Bronstein, 1986; Lee and Lishman, 

1975; with ischemic blocking of ankle proprioception: Diener et al, 1984; Horak et al., 

1990).  Increased sway is associated with increased age (cf., Bronstein et al., 1990; Wade 

et al., 1995), with increased risk of falls (cf., Lord et al., 1994) and with various disease 

states, in this case, peripheral neuropathy due to diabetes (cf., Bronstein, 1986). 

Finally, Rogers et al. (2001) also showed that vision, as well as tactile input, 

stabilizes sway; an oft-reproduced result reflecting the important role of vision in postural 

control (cf., Dichgans and Brandt, 1978; Collins and DeLuca, 1995a; Jeka and Lackner, 

1994, 1995; Prieto et al., 1996). Thus far, we have considered the effect of various 

vestibular and somatosensory stimuli on sway behavior. In the final section of this 

chapter, I will focus how visual information affects postural control in terms of the most 

prominent method that we use in our laboratory, one of the classical methods for 

examining the influence of vision on posture; the ‘moving room’ paradigm (e.g., van 

Asten et al., 1988a,b; Berthoz et al., 1979; Dichgans and Brandt, 1978; Dijkstra et al., 

1994a,b; Lee and Aronson, 1974; Lee and Lishman, 1975; Lestienne et al., 1977; 

Ravaioli et al., in press; Stoffregen, 1985). 

The ‘moving room’ paradigm 

Following from the early work of Lee and colleagues, the moving room paradigm 

normally involves placing a subject on a stationary support surface while the visual 

environment is moved relative to the fixed inertial frame of reference. This can be 
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achieved by physically moving the walls of a visual surround (e.g., Lee and Aronson, 

1974; Lee and Lishman, 1975; Stoffregen, 1985; Peterka, 2000) or by projecting 

computer-generated visual displays that simulate this movement (e.g., Dijkstra et al., 

1994a,b; Jeka et al., 2000; Oie et al., 2001, 2002; Warren et al., 1996).  

Examining postural responses to motions of the visual environment reveals the 

compelling influence of visual information on the control of stance. Lee and Aronson 

(1974) showed that with discrete forward or backward motions of the visual environment, 

toddlers produced destabilizing postural motions in the direction of motion, often to the 

point of falling over. In adults, while they generally do not fall over, visual environmental 

motion has been found to elicit postural sway in the direction of linear motion (Bronstein 

et al., 1986, 1990; Lestienne et al., 1977), in the direction of a visual rotation (van Asten 

et al., 1988b), and sway responses are found to be sensitive to the three-dimensional 

structure of the visual environment (Bardy et al., 1996; Masson et al., 1995; Stoffregen, 

1985), distance (virtual or real) between the eye and the visual field (Dijkstra et al., 

1994b; Stoffregen, 2000), the direction of gaze (Gielen and van Asten, 1990) and spatial 

frequency (Kunkel et al., 1998). 

Early on, Lee and Lishman (1975) showed that oscillatory motion of the visual 

surround elicited postural responses that clearly reflected the spatiotemporal structure of 

visual motion. This result has been replicated often (e.g., Dijkstra et al., 1994a,b; Masson 

et al., 1995; Stoffregen, 1996) and is of particular importance in the methodologies we 

have adopted (cf., Jeka et al., 1998a,b, 2000; Oie et al., 2002). Specifically, visual 

environmental motion has been presented at different frequencies to characterize a 

transfer function, or frequency response function, of sway response to visual motion in 
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both the AP (Dijkstra et al., 1994a; Peterka, 2002; Peterka and Benolken, 1995) and ML 

directions (Jeka et al., 2000).  

The transfer function, as above, is generally described in terms of the variables 

gain and phase. Gain is a measure of the dependence between induced postural sway 

amplitude and stimulus motion amplitude and phase is a measure of the temporal 

relationship. In both AP and ML directions, gain to the position of visual motion is 

around unity, with a slight peak in the gain function in the range of 0.2-0.4 Hz. Phase 

generally starts at a slight phase lead at very low frequencies, is about in-phase (i.e., 0�) 

around 0.2-0.4 Hz, with an increasing phase lag as frequency increases.  

 

In our lab, we have also demonstrated that small-amplitude oscillations of a 

surface that subjects contact lightly with their fingertip induces sway responses in a 

similar fashion as whole-field visual motion (e.g., Jeka et al., 1997, 1998a,b, 2000). 

Further, we have utilized a paradigm that combines both visual and touch surface motion 

to provide a multisensory moving room (Jeka et al., 2000; Oie et al., 2002), which has 

allowed us to examine how multiple sensory inputs are integrated in the control of 

upright stance. In Chapter 2, I will detail the series of studies we have conducted over the 

past several years utilizing these techniques, as well as how it has led us to an 

examination of one of the more prevalent hypotheses regarding multisensory integration 

in human postural control: sensory re-weighting. 
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Chapter 2: The Sensory Re-weighting Hypothesis 

As I have suggested, the control of upright stance is dependent upon the 

integration of multiple sensory inputs – visual, somatosensory, proprioceptive, vestibular. 

In our lab, we have conducted a number of studies over the past several years (Jeka et al., 

1998a, b, 2000; Oie et al., 2001, 2002; Ravaioli et al., in submission) aimed at 

characterizing how visual and somatosensory information are used and integrated with 

each other for stance control. One of our major accomplishments is the establishment of 

sensory re-weighting as a candidate mechanism for multisensory integration. Sensory re-

weighting as argued for in the postural control literature is the idea that the human 

postural control system can change its dependence upon a given sensory input adaptively 

to maintain upright stance dependent upon current environmental conditions (cf. Horak 

and Macpherson, 1996). The focus of this thesis, then, is to provide an initial 

characterization of sensory re-weighting in terms of 1) its effect on the transfer function 

of the postural system and 2) the time scale of its dynamics. 

 



 34

An Historical View of The Sensory Re-weighting Hypothesis 

Nashner and colleagues introduced the idea of sensory re-weighting over 20 years 

ago (cf. Black et al., 1984; Nashner, 1982). The paradigm that was utilized allowed the 

experimenters to selectively diminish both visual and proprioceptive inputs by rotating 

either a visual surround or the platform upon which the subject stood in direct proportion 

to anterior-posterior (AP) body sway motions, a technique now known as sway-

referencing. The effect is to keep the ankle or visual angle relatively constant, and in this 

way, sway-referencing disrupts the sensory cues that are normally available during stance 

by diminishing visual and/or ankle proprioceptive information regarding self-motion 

normally available with sway motions relative to a stationary visual environment or 

stable support surface. 

Following from the work of Martin (1965), the authors suggested that the relative 

dependence of visual, vestibular, somatosensory and proprioceptive inputs for the control 

of stance is context dependent; while visual, somatosensory and proprioceptive inputs 

may dominate under stable support surface conditions, vestibular inputs about the 

gravitational reference may play a more critical role when support surface and/or visual 

inputs become unreliable or unpredictable for the control of upright stance. Therefore, 

Nashner et al. (1982) examined the postural responses of normal and vestibular deficit 

patients under varying conditions of visual or support surface sway referencing. 

In all conditions, eye closure increased sway, similar to many other observations 

already identified in Chapter 1 (e.g., Collins and DeLuca, 1995a; Jeka and Lackner, 1994, 

1995; Prieto et al., 1996). Visual sway referencing increased sway even further than eye 

closure. With a fixed support surface, the 12 vestibular patients showed only small 
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differences in both normalized sway and EMG activation of four leg muscle groups 

compared to normal, age-matched controls in conditions with eyes open, eyes closed and 

with a sway-referenced visual surround. This suggested that all subjects, including the 

patients, were able to utilize somatosensory inputs from the support surface. 

The vestibular patients ranged in the severity of their deficits, with the least 

affected subjects showing clinical balance evaluations within normal ranges. However, 

the degree of deficit was found to be associated with their ability to maintain under 

sensory conditions where information relevant for stance control became progressively 

unreliable. When the support surface was sway-referenced, sway was increased versus 

the eyes-open conditions for all subjects. All but the most severely affected vestibular-

deficient subject able to maintain stance for the duration of the 50-s trials. With eyes 

closed and the support surface sway referenced, sway was increased still further, and the 

second most-affected vestibular subject was unable to maintain the required standing 

posture. However, when both visual and support surfaces sway-referenced making both 

visual and somatosensory inputs unreliable for stance control, 6 of the patients were 

unable to maintain stance. So, as sensory information was made progressively less 

reliable for stance control – from eyes open to visual sway-referenced to eyes closed to 

support surface sway-referenced to both visual and support surface sway-referenced – 

those with progressively severe vestibular deficits were increasingly less able to maintain 

the required standing position.  

Additionally, all but one subject exhibited an attenuation of EMG amplitude in 

response to discrete, repeated, support surface translations or rotations. The degree of 

adaptation corresponded strongly with subjects’ performance in the visual and support 
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surface sway-referencing conditions. That is, those affected most by sway-referencing 

showed the least attenuation and the longest latencies of EMG response.  

The authors interpreted these results to suggest two important roles for the 

vestibular system: First, vestibular inputs provide an orientation reference frame (cf., 

Hlavacka et al., 1996) against which conflicts among visual, somatosensory and 

proprioceptive inputs can be identified. Second, vestibular inputs, along with visual, 

somatosensory and proprioceptive inputs can then be re-weighted selectively to directly 

mediate postural control under different conditions of sensory input. Thus, the authors 

proposed that subjects with the most severe vestibular deficits lacked the gravitational 

reference provided by the vestibular system necessary for successful sensory re-

weighting, and therefore could not suppress the increasingly conflicting orientation inputs 

derived from the sway-referenced support surface and visual surround. Subjects with less 

severe deficits were able to successfully re-weight the inappropriate visual and/or 

somatosensory and proprioceptive cues under sway-referenced conditions in order to 

maintain stance, though not to the extent of the normal controls.  

Bronstein (1986) and Bronstein et al. (1990) forwarded a similar interpretation of 

sensory re-weighting in experiments with short, discrete, linear visual perturbations in the 

medial-lateral direction utilizing a moving room paradigm. In normals, exposure to such 

perturbations elicits an initial response in the direction of visual motion, with a 

subsequent compensatory response in the opposite direction. Repetition of the 

perturbations, however, showed a strong attenuation of both the initial and secondary 

components of these responses. When subjects were standing on a foam pad, this degree 

of attenuation was decreased (Bronstein, 1986), suggesting that the observed attenuation 
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depends upon the availability of reliable somatosensory inputs. These results were 

interpreted as consistent with sensory re-weighting: When visual information is known to 

be destabilizing for stance control, visual inputs can be suppressed or down-weighted in 

favor of the congruent information provided by the vestibular and somatosensory systems 

under stable support surface conditions, which are less reliable for stance control when 

subjects stood on foam. 

It was also shown that both vestibular patients (Bronstein, 1986) and cerebellar 

patients (Bronstein et al., 1990) were able to suppress the inappropriate visual cues when 

on a stable support surface. However, a patient with tabes dorsalis, which precluded 

proprioceptive input from below the knees (Bronstein, 1986), as well as Parkinson’s 

patients, showed no attenuation of the postural response with repetitive visual motions. 

The first result is consistent with the authors’ interpretations of sensory re-weighting 

relative to the vestibular reference frame: without reliable somatosensory inputs, the 

destabilizing of visual information provided by the moving visual surround was not 

suppressed. The latter finding was taken to suggest a role for the basal ganglia in sensory 

re-weighting for stance control. 

Following from studies such as Nashner et al. (1982) and Bronstein et al. (1986), 

others have interpreted other experimental results supporting sensory re-weighting in 

similar fashions (e.g., Horak et al., 1994; Johansson et al., 1995). We maintain, however, 

that such accounts of sensory re-weighting are based upon indirect evidence, which may 

be subject to alternative interpretations (cf., Oie et al., 2002). For example, changes in 

other parameters of the postural control system, for example damping, could have 

similarly account for the observed postural responses. The idea that the postural control 
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system adapts to changes in sensory conditions, whether via a sensory re-weighting 

mechanism or not, clearly suggests nonlinear aspects to posture. Indeed, despite the 

success of a number linear models of posture (e.g., Dijkstra et al., 1994a,b; Gusev and 

Semenov, 1992; Jeka et al., 1997, 1998a, 2000; Schöner, 1991), experimental results 

have suggested nonlinearities in the human postural control system when sensory 

conditions change (e.g., Peterka and Benolken, 1995; Oie et al., 2002; Sasaki et al., 

2002), indicating the necessity of a mechanism such as sensory re-weighting in future 

models of postural control. 

Peterka and Benolken (1995) provided a crucial empirical finding in support of 

sensory re-weighting. In this study, healthy young adult and bilateral vestibular loss 

subjects were exposed to rotations of a physical visual surround at 0.1, 0.2, 0.5 Hz at 5 

amplitudes (0.2-10 deg peak amplitude) in either fixed or sway-referenced support 

surface conditions. Similar to results we cite above, in both groups, visual and support 

surface motions elicited sway responses at the stimulus frequency, with sway referencing 

increasing response amplitude at the drive versus fixed surface condition. Computation of 

a ratio of sway amplitudes in fixed and sway-referenced conditions showed no trend with 

frequency or amplitude and was about equal in normals and patients, suggesting that 

sway referencing had fairly equal effects upon postural responses across frequency and 

amplitude in both subject groups. Phase generally showed an increasing lag with 

increasing frequency, with vestibular loss subjects tending to show a phase advance 

compared to normals at any given frequency. Response at the stimulus frequencies was 

found to depend upon frequency, surface condition, and stimulus amplitude. Phase 

typically did not vary with stimulus amplitude, and importantly, at a given stimulus 
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frequency, gain was found to decrease with increasing stimulus amplitude in both surface 

conditions.  

This result clearly emphasizes the need to develop nonlinear models that capture 

the dependence of gain upon stimulus amplitude. The fact that gain was found to vary 

with different stimulus amplitudes at the same frequency demonstrates nonlinearity. Any 

strictly linear model predicts constant gain at a given frequency regardless of stimulus 

amplitude.   

 
Over the past several years, I have been involved in a series of studies that has 

lead us to just this task; developing a mechanistic model that implements sensory re-

weighting in the multisensory fusion for postural control. In the following section I will 

review this body of work, which has lead my colleagues and I to our present views on 

sensory re-weighting, as well as the experiments explained later in Chapters 3 and 4. 

Briefly, early efforts in our laboratory utilized simple linear dynamical systems 

models, extending from previous findings with vision, to identify what properties of 

somatosensory input were relevant for postural control. As with vision, the human 

postural control system was found to be sensitive to at least the velocity of somatosensory 

stimuli. We next extended the model to try to account for the integration of both vision 

and somatosensation. While the model achieved some qualitative success, quantitative 

analysis of model predictions with experimental data clearly showed the failure of 

general linear models of multisensory integration, and suggested the need for nonlinear 

mechanisms, such as sensory re-weighting. 
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Theoretical Beginnings: The Importance of Sensory Information for Human 
Postural Control 

Schöner (1991), and later Dijkstra et al. (1994a,b) provided a 

conceptual/experimental approach that strongly influenced the early empirical and 

modeling efforts that have led us to our current understanding. Briefly, a simple model of 

the postural control system under the influence of visual environmental motion was 

formulated as a second-order, linear dynamical system (Schöner, 1991): 

( )txecQxxx envtx ,2
0 −=−++ ξωα&&&    (2.1) 

where ( )tx  is the position of the eye in the inertial frame, α  and 0ω  are damping and 

eigenfrequency parameters, respectively, tξ  is Gaussian white noise (zero mean, unit 

variance) and xQ  is the noise strength. The influence of sensory information on the 

postural system is explicitly represented in the model as the visual expansion rate, ( )txe , , 

where: 

( ) ( )
( )tDx
tDxtxe

−
−

=
&&

,    (2.2) 

( )tD  represents motion of the visual environment, and the visual expansion rate is related 

to the postural system through the coupling constant, envc .  

This simple model was shown in simulation (Schöner, 1991) to largely capture 

several of the aspects of postural behavior under conditions of visual stimulation that we 

have discussed previously: 1) A static visual environment decreases postural sway 

displacements. In the model, stabilization of posture by visual information is 

accomplished by increasing the effective damping, 0
~ Dcenv+=αα , when ( ) 0DtD = , a 

constant when the visual environmental motion is present. 2) Linear motion of the visual 
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environment relative to the subject induces a transient postural response (e.g., Bronstein 

et al., 1986, 1990) in the direction of visual motion. 3) Slow oscillatory motions (~0.2 

Hz) of the visual environment induce oscillatory sway that is phase-locked to stimulus 

motion, stabilizing the postural system relative to the dynamic visual environment. 

Following from these efforts, Jeka et al. (1997; 1998a) extended this approach to 

examine the influence of dynamic somatosensory input obtained by fingertip contact with 

an external surface (see also above) on center-of-mass postural sway displacements. 

Here, the model of Schöner (1991)(Eq 2.1, above) was adapted for the case of contact 

surface motion with sensory information explicitly represented in model now in terms of 

somatosensory information regarding motion of the touch surface: 

( )xdcQxxx stx &&&&& −=+++ 1
2
0 ξωα    (2.3) 

where ( )tx  is the position of the center of mass and ( )td  is the time-varying position of 

the contact surface (Note: In Eq 2.3, and in the following, the subscript notation specifies 

sensory modality ( s = somatosensation or v = vision) or the order of derivative (1= 

velocity, 0 = position)). Similar to vision, in Eq. 2.3, contact with a static surface leads to 

a decrease in sway by increasing the effective damping, vc+=αα~ . We fit parameters of 

model 2.3 to transfer function estimates obtained by presenting subjects with sinusoidal 

motions of the contact surface at frequencies ranging from 0.1-0.8 Hz in different trials. 

Fitted gain and phase revealed systematic errors: 1) Phase was overestimated, particularly 

at very low and high frequencies. 2) Gain was underestimated at high frequencies, and 

overestimated at low frequencies. This led us to consider an extended model that included 

coupling to the position of the contact surface: 

( ) ( )tdcxdcQxxx sstx 01
2
0 +−=+++ &&&&& ξωα    (2.4) 
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The addition of this position coupling term, pc , resulted in much-improved fits 

with gain being well-approximated up to a stimulus frequency of 0.6 Hz, while phase was 

well-fit between 0.2-0.6 Hz. At high frequencies, phase remained slightly overestimated, 

while at low frequencies phase was slightly underestimated. We will return to these 

residual errors, as well as those observed in Dijkstra et al. (1994) and addressed in Giese 

et al. (1996), later in this chapter. What is important here in considering the application of 

these modeling techniques is that velocity information is derived from visual and 

somatosensory stimuli for the control of posture. Similarly, velocity information at low 

frequencies is thought to be provided, if indirectly, by the vestibular system through 

transformation of head acceleration (Wilson and Melvill Jones, 1979). 

Multisensory Integration of Vision and Somatosensation for Postural Control 

Next, given that the commonalities between these models for visual and 

somatosensory control of posture, we turned to the question of how these different 

sensory inputs might be integrated in the control of posture. As the culmination of my 

master’s thesis work, later published as Jeka et al. (2000), we built directly upon the 

previous empirical and modeling work examining visual (Dijkstra et al., 1994b; Giese et 

al., 1996; Schöner, 1991) and somatosensory (Jeka et al., 1997, 1998a) inputs by 

proposing a model that conceives of the multisensory integration for postural control as a 

linear, additive process. The initial model characterizing this integration of vision and 

somatosensory information was: 

( ) ( ) ( )tdcxdcxdcQxxx ssssvvtx 011
2
0 +−+−=+++ &&&&&&& κξωα    (2.5) 
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where ( )tx  is the position of the center of mass, ( )tdv  and ( )td s  are the position of the 

visual environment and the contact surface, respectively, and κ  is a correction factor (≈ 

2); the approximate ratio of sway amplitude of the head at eye level divided by the sway 

amplitude of the center of mass, as visual environmental motion is registered by the eyes 

and contact surface motion is registered by the finger at approximately waist level. 

The model (Eq. 2.5) proposed in Jeka et al. (2000) was, in large part, chosen as 

the simplest extension of models 2.1 and 2.4 to the multisensory case. Still, this relatively 

simple additive model qualitatively supported a number of predictions in terms of the 

patterns of gain and phase observed in five experimental conditions: no contact/dynamic 

vision, dynamic vision/no contact, static contact/dynamic vision, dynamic contact/static 

vision, dynamic contact/dynamic vision. Indeed, a number of authors have had some 

success using linear models to capture the multisensory integration involved in postural 

control (e.g., Gusev and Semenov, 1992; Zacharias and Young, 1981) in a similarly 

qualitative fashion.  

However, in Jeka et al. (2000), more strict quantitative comparisons revealed 

significant deviations from model predictions. Specifically, it was predicted that the 

observed transfer functions in the dynamic contact/dynamic vision condition should equal 

the sum of the transfer functions of the two dynamic/static conditions. Fitting of the 

transfer functions showed that, while phase was quite well-predicted across most 

subjects, gain was not, with some subjects showing differences greater than 50% at lower 

frequencies and all subjects showing differences between 30-70% at high stimulus 

frequencies. The failing of the linear additive model in Jeka et al., (2000) to account for 
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the sensory fusion process was interpreted to indicate nonlinearities in the multisensory 

integration for postural control under different sensory conditions.  

It should be noted that the earlier modeling efforts of Jeka et al. (1998a) and of 

Dijkstra et al. (1994b) and Giese et al. (1996) both interpreted the residual errors in 

model predictions as evidence of nonlinearities in the sensorimotor integration for 

postural control. Specifically, both groups suggested parameter adaptation to account for 

the model errors. While Giese et al. (1996) proposed adaptation of the system’s 

eigenfrequency, 0ω , both Jeka et al. (1998a) and Giese et al. (1996) suggested adaptation 

of the effective damping, α~ , with Giese et al. (1996) showing a dependence of α~  on 

stimulus frequency. In retrospect, adaptation of α~  as stimulus frequency changes could 

also have been interpreted in terms of sensory re-weighting in these single-sensory 

conditions, as the coupling to sensory information in models 2.3-2.5 add to the effective 

damping. However, in Kiemel et al. (2002), eigenvalues of linear stochastic models fitted 

to postural sway trajectories in four different sensory conditions (eyes closed/no light 

fingertip contact, eyes closed/light contact, eyes open/no contact, eyes open/light 

contact), expressed as model parameters, showed that changing sensory information 

across conditions did not affect the damping of the postural system. 

Identifying the mechanism underlying the nonlinearities observed in Dijkstra et 

al. (1994b) and Jeka et al. (1998a) is an important issue that needs to be addressed. At the 

time however, the general finding of nonlinearities in the multisensory control of posture 

led us towards attempts to identify nonlinear behaviors that would constrain future 

multisensory models. 
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Figure 2.1. Exemplar trial indicating a linear response. (A) Time series of center-of-
mass displacement (middle), visual display position (upper) and touch surface motion 
(lower). B. Observed (dark circles) and predicted (open circles) Fourier transforms. The 
Fourier transform and the predicted Fourier transform from the linear fit for the initial 
plateau where the visual display was stationary and touch surface oscillated with 1.0 cm 
amplitude are indicated by the respective square symbols. A linear model was found to be 
the best fit for this trial, which would be consistent with constant weighting of sensory 
inputs. 
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Nonlinear Aspects of Postural Sway Behavior – Sensory Re-weighting 

In the next study (Oie et al., 2001), the amplitudes of anti-phase, 0.2 Hz visual 

and somatosensory inputs were co-varied within six-cycle steps during a trial and 

postural responses were characterized by examining how the Fourier transforms of 

postural sway as the stimulus motion amplitudes changed. The original intent was to 

examine the postural system for the potential existence of hysteresis in terms of the phase 

relationship between postural sway and stimulus motion (recall that at 0.2 Hz, sway 

response was shown to be roughly in-phase with both visual and somatosensory motion 

(Dijkstra et al., 1994a; Jeka et al., 1998a, 2000)). 

No strong evidence of hysteresis was found. However, transfer functions 

computed across the six-cycles of each amplitude step within a trial often showed a 

dependence upon the amplitudes of stimulus motion. A typical trial is presented for a 

single subject in Figure 2.1, where the somatosensory input, which was applied through 

fingertip contact with a servo-motor controlled touch surface (cf., Jeka et al., 1998, 

2000), was initially stationary and increased in 0.1 cm amplitude steps every 30 s 

throughout the course of the trial, while visual stimulus motion began at 1.0 cm then 

decreased and was anti-phase relative to touch surface motion (see Figure 2.1A). The 

Fourier transform was computed at the stimulus frequency (0.2 Hz) for each 30-s trial 

segment, and plotted in the complex plane (Figure 2.1B). 

In this case, the transform in the initial segment (indicated by the black square), 

was observed at approximately 180 degrees, which indicated a roughly in-phase 

relationship with visual motion. This was consistent with previous findings at this 
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Figure 2.2. Examples of nonlinear and constant responses to stimulus motion. (A) 
Cubic model, indicating non-linearity. The cubic fit for this trial was found to be 
significantly better than all fits of lower order (P < 0.05). B) Constant model (zero mean). 
Response was not fit significantly better by any higher order models. This is consistent 
with a response that is uncoupled to stimulus motion. 
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stimulus frequency (e.g., Dijkstra et al., 1994a,b; Jeka et al., 1998, 2000; Oie et al., 

2002). As the trial progressed and stimulus motion amplitudes were co-varied relative to 

each other, the response changed giving an indication of how the multisensory fusion 

process in the postural system solved the anti-phase motions of the stimuli. Thus, the 

observed patterns of Fourier transforms within a trial were interpretable as a reflection of 

the underlying process of multisensory fusion. If the fusion process was linear with 

constant weights (i.e., no sensory re-weighting), then the Fourier transforms would be a 

linear function of stimulus amplitude in the complex plane. In this case, the transforms 

did change in an approximately linear way in the complex plane, which is indicated by 

the linear fit represented by the white circles in Figure 2.1B.   

However, in 28 of 58 trials, fitting of different order models to the patterns of 

Fourier transforms in the complex plane revealed non-linear responses, while a linear 

model was selected in only 15 trials. These results indicated that the nonlinearity in gain 

response observed in Peterka and Benolken (1995), who also varied stimulus amplitudes, 

but between trials and by larger steps of at least 9 mm, is observable even with very small 

changes (1 mm) in stimulus amplitude within a trial. We interpreted the results to be 

consistent with sensory re-weighting, which as we have already pointed out, had been 

proposed in the literature (e.g., Black et al., 1984; Bronstein, 1986; Bronstein et al., 1990; 

Horak and Macpherson, 1996; Nashner, 1982). 

However, while the results of Oie et al. (2001) indicate nonlinearities in postural 

response, they can not directly support the sensory re-weighting hypothesis. It was not 

until a more recent empirical and modeling study that more direct evidence for the 

existence of sensory re-weighting was actually given (Oie et al., 2002). Oscillatory visual 
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and somatosensory stimuli were presented simultaneously to subjects at 0.2 and 0.28 Hz, 

respectively, while their amplitudes were co-varied from 2-8 mm in different conditions. 

We based our interpretation of the existence of sensory re-weighting upon the following: 

1) Clear, systematic changes in gain to a given stimulus (vision or somatosensation) were 

observed when its amplitude was increased from 2 mm to 4 mm to 8 mm. 2) In the case 

of vision, increases in touch motion produced significant increases in the gain to the 

motion of a visual stimulus even when its amplitude remained constant. 3) Fitting third-

order, linear, stochastic time series models to postural responses in each condition 

showed that different models were necessary for different conditions, and the only 

parameters that changed significantly with changes in stimulus amplitude were those that 

determined the dependence of the postural system upon visual or somatosensory input 

(i.e., the sensory weights). The first two points indicate the presence of nonlinearities in 

the gain response across stimulus amplitude conditions, as we have pointed out above. 

The last point, importantly, suggests that the mechanism for gain adaptation by the 

postural control system in response to changes in the stimulus amplitude can be thought 

to be primarily due to changes in sensory weights. Taken together, these findings showed 

that changes in gain may reflect, both within a sensory modality (i.e., intra-modality) and 

between modalities (i.e., inter-modality), a sensory re-weighting mechanism consistent 

with the view generally held in the field. 

In a more recent investigation (Ravaioli et al., in submission), we have provided 

even further empirical evidence that can also be interpreted as consistent with sensory re-

weighting. We had subjects stand within visual environment whose motion consisted of 

two distinct components: a constant-frequency, low-amplitude oscillation (0.2 Hz, 4 mm 
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amplitude) and a constant-velocity translation from left to right (0-4 cm/s in 4 separate 

conditions). The variability of postural sway increased systematically with translation 

velocity, but remained significantly lower than that observed in a control condition with 

eyes closed. This indicates that the postural control system is able to use visual 

information to stabilize sway even with visual translation velocities as high as 4 cm/s. 

Importantly, gain showed a significant dependence on translation velocity, with gain 

relatively constant at low translation velocities and decreasing as translation velocity 

increased. These changes in gain, again, clearly indicated nonlinearity in the postural 

response across conditions, which we interpreted in terms of sensory re-weighting; 

decreasing gain suggests that the dependence of the postural system upon visual 

information (i.e., the weighting of visual input) also decreases as the velocity of visual 

translation increases.  

Having thus established sensory re-weighting as a potential mechanism in the 

multisensory integration for human stance control, it is now our intent to develop a model 

of the postural control system that implements such a mechanism. Peterka (2002) has 

presented a model that suggests the presence of inter-modality re-weighting, however no 

mechanism for how such re-weighting occurs is presented. There is a single model in the 

current literature that explicitly represents sensory re-weighting (van der Kooij et al., 

2001). The van der Kooij (2001) model dynamically re-weights sensory error signals 

computed as a difference between sensory measurements and estimates based upon 

internal models of the sensory environment, and it has been shown to largely reproduce 

the intra-modality changes in gain as observed by Peterka and Benolken (1995) when fit 

to observed estimates of gain and phase. 
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However, it remains an open question whether a general adaptive scheme like that 

employed in van der Kooij et al. (2001) captures the sensory re-weighting observed in 

human stance control. We are taking a different approach by first identifying the 

properties of sensory re-weighting in postural control that will constrain future modeling 

efforts. Specifically, in this thesis, two experiments will be presented that examine the 

questions: 1) How does sensory re-weighting affect the transfer function of visual input 

to sway response? and 2) What is the time scale over which this sensory re-weighting 

occurs? 
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Chapter 3: Experiment – Sum-of-sines Visual Input 

In the previous chapter, it was argued that sensory re-weighting can be considered 

as a potential mechanism in the multisensory integration for the maintenance of upright 

stance. One of the important goals of our investigations has been to implement such a 

sensory re-weighting mechanism into models of the human postural control system. To 

do so, our approach was to identify properties of postural sway behavior that can be 

interpreted in terms of sensory re-weighting and that provided important constraints for 

any proposed re-weighting mechanism. 

The experiment presented in this chapter examined how sensory re-weighting 

affects the shape of the transfer function of the postural control system as stimulus 

amplitude is varied. That is, does the dependence of gain previously observed as a 

function of stimulus amplitude, which we have interpreted in terms of sensory re-

weighting (Oie et al., 2002), change uniformly across different stimulus frequency? 

Stimuli consisted of a summation of ten different sinusoids at two different amplitudes. 

This provides a more efficient method of estimating the postural system’s transfer 

function by examining the postural system at multiple frequencies simultaneously where 
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the dynamics of the postural system can be assumed to be the same across stimulus 

frequencies at a given amplitude. This method, then, avoids a potential limitation of 

previous studies that obtained transfer function estimates at a single frequency in a given 

trial.1  

Introduction 

As discussed in Chapter 2, sensory re-weighting in postural control is not a new 

concept (cf. Black et al., 1983, 1988; Nashner et al., 1982). However, to our knowledge 

there presently exists in the literature only a single model of postural control that includes 

an explicit scheme for sensory re-weighting. The model of van der Kooij et al. (2001) 

proposes a general adaptive scheme for re-weighting sensory error signals in an optimal 

control model. The model was shown to have some success in accounting for changes in 

gain when fitting observed transfer functions to visual and support surface oscillations. 

Recent findings in our lab (cf. Carver, 2005), though, have revealed deficiencies in this 

model, and it is debatable whether proposing a model with specific mechanisms for 

sensory re-weighting is appropriate given our current state of knowledge. Of course, such 

a model would be invaluable in furthering our understanding of nervous system 

organization, as well as being beneficial as a potential tool for clinical diagnosis, but that 

remains to be achieved. 

In our lab, we have approached the development of models in a different manner 

than mechanistic models such as that of van der Kooij et al. (2001), which generally 

                                                 
1 The results of the experiment detailed in this chapter have been published in Kiemel, Oie and Jeka (2006), 
which presents a detailed modeling analysis and interpretation of these data. Mr. Oie’s contribution to that 
effort comprised experimental conceptualization and design, setup and conduct, and initial data analysis 
and interpretation, which was verified and extended by the modeling analysis presented in Kiemel et al. 
(2006).   
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apply established concepts such as Kalman filtering (e.g., van der Kooij et al., 1999, 

2001) or Smith predictors (e.g., Morasso, 1999) in order to account for observed sway 

behavior. Our approach, instead, has been to develop descriptive models whose form and 

parameters are determined by fitting of experimental sway trajectories (cf. Kiemel et al., 

2002). This is in contrast to mechanistic models, which often are used to reproduce 

measures such as gain, phase and variance that provide fewer constraints than 

reproducing the statistical properties of actual sway trajectories. Indeed, we know of no 

mechanistic model that has been rigorously shown to produce trajectories consistent with 

those observed experimentally. Developing descriptive models has the advantage of 

assuring one that all contributions to the postural system are accounted for if model 

trajectories are not statistically different from actual sway trajectories. This enables us to 

clearly identify the dynamic characteristics of postural behavior that must be produced by 

specific, proposed mechanisms. 

Using such descriptive models, we have recently forwarded findings based upon 

fits of a linear 3rd-order model (Oie et al., 2002). Our results indicated that sensory re-

weighting, and not changes in other parameters of the postural system, could account for 

changes in postural sway gain to oscillatory visual and somatosensory stimuli of different 

amplitudes. Thus, it is now our aim to develop a model of posture that implements a 

mechanism of sensory re-weighting for the multisensory integration required in postural 

control. 

However, while sensory re-weighting is a generally well-accepted idea in the field 

of postural control, the findings of Oie et al. (2002) may be the most direct evidence for it 

as a mechanism in the sensorimotor integration for posture. Thus, little is yet known 
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about how such a mechanism operates nor how to formalize it in a model of posture. 

Rather than proposing a general adaptive scheme as in van der Kooij et al. (2001), our 

approach is to first identify empirical results that will provide important constraints on 

any proposed sensory re-weighting scheme. 

In this first experiment, the question of how changes in stimulus amplitude affect 

the pattern of postural response gain across a range of stimulus frequencies was 

examined. Specifically, it was asked whether changes in gain changes in response to 

varying stimulus amplitudes are uniform across stimulus frequency using complex, sum-

of-sines visual stimuli with frequencies ranging from 0.024-2.936 Hz at two different 

amplitudes. 

A second question is the still open question of whether the postural system 

couples to visual position, as well as visual velocity. Velocity information is important in 

the use of vision of stance control (Dijkstra et al., 1994b; Jeka et al., 2000; Schöner, 

1991; Stoffregen, 1986). However, some of our previous modeling efforts have also 

suggested the existence of position coupling (Jeka et al., 2000) or, alternatively, 

acceleration coupling (Oie et al., 2002). Expanding the stimulus frequency range in this 

experiment, with respect to previous studies, towards lower frequencies could allow the 

analysis of the transfer function of the postural response to visual motion to qualitatively 

assess the question of position coupling.  

Method 

Subjects 

Eleven students (4 females, 6 males) at the University of Maryland participated in 

the study. Subjects ranged in age from 19-33 years and had no known musculoskeletal 
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injuries or neurological disorders that might have affected their ability to maintain 

balance. All subjects had normal vision or vision corrected to normal using contact lenses 

or eyeglasses. All subjects were given both oral and written task instructions and gave 

written consent according to guidelines implemented by the Internal Review Board at the 

University of Maryland before undergoing the experimental protocol. 

Experimental setup 

 
Figure 1 illustrates the ‘moving room’ paradigm employed in this study. Subjects 

stood with feet parallel and about 1 cm apart (standard Romberg) in front of a large, 

translucent screen (2.0 m x 1.0 m, Da-Lite Screen Company, Inc.) at a distance of 40 cm.  

The animated visual display that was used as the stimulus consisted of a pattern of 100 

white triangles on a black background. Each triangle was approximately 0.2  x 0.3  x 

0.2  on a side and was randomly positioned in an annulus between 10  and 45  of visual 

eccentricity. The hole in the middle of the stimulus array was made to suppress the 

visibility of aliasing effects, which would be most noticeable in the foveal region. 

Stimulus motion was always suggested in the anterior-posterior direction relative to the 

subject, and the center of the annulus, which was located at the focus of expansion in 

virtual space, was positioned at the approximate center of the subject’s foveal region 

prior to data collection. 
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Figure 3.1. Experimental paradigm illustrating stance and marker placements. 
Subjects stood about 40 cm from the display screen and wore goggles (not shown) that 
restricted their peripheral vision such that no part of the screen’s frame or other additional 
visual reference cues were available. 
 

The visual display was generated by a graphics workstation (Intergraph, Inc). at a 

frame rate of 25 Hz. The display had a spatial resolution of 1024 x 768 pixels with a 

vertical refresh rate of 75 Hz, and was rear-projected via a CRT projection system (ECP 

4500, Electrohome, Inc.). The suggested position of the stimulus was updated by a 

position voltage input specified by a custom D/A Labview signal generator running on a 
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separate personal computer (E-3400, Gateway, Inc.), and obtained by the visual display 

program via an A/D board (PC-MIO-16E, National Instruments, Inc.). Subjects wore 

goggles that limited their visual range to approximately 100  high x 120  wide, while 

allowing them to wear their prescription eyeglasses, if necessary. The goggles prevented 

subjects from seeing the edges of the screen or other potential visual cues relevant to 

stance control. 

Subject motion was captured via an active infrared position tracking system 

(OptoTrak, Northern Digital, Inc.) at a sampling rate of 50 Hz. The OptoTrak cameras 

were positioned perpendicular to and to the right of the subject. A total of nine points on 

the body were measured on the right side of the body: toe (distal end of the fifth 

metatarsal), heel (lateral, posterior calcaneous), ankle (lateral malleolus), knee (lateral 

tibial tuberosity or approximate joint center), hip (greater trochanter), shoulder 

(acromion), mandilble, mastoid process and orbit (lateral, inferior protrusion of the 

frontal bone on the orbit of the eye). The stimulus generator signal and the actual visual 

display position (cm), as well as anterior-posterior (AP) and medial-lateral (ML) center-

of-mass position measured using a force platform (Kistler), were also recorded at 50 Hz 

via an A/D unit synchronized with the OptoTrak system. 

Postural sway measures 

An estimate of the center-of-mass position trajectories was computed using a 

three-segment model based upon the position trajectories of the ankle, knee, hip and 

shoulder markers. The anthropometric standards published in Winter (1991) were used 

for the location of the segmental centers of mass: 
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where ( )tx j  and ( )ty j  are the time-varying medial-lateral and anterior-posterior 

positions of the ankle, knee, hip and shoulder, respectively. ( )tX j  and ( )tY j  are the time-

varying medial-lateral and anterior-posterior positions of the segmental centers of mass 

of the leg, thigh and trunk, respectively. The medial-lateral ( X ) and anterior-posterior 

(Y ) positions of the total-body center of mass were computed as a weighted sum of the 

segmental centers of mass: 

( ) ( ) ( ) ( )
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tXtXtXtX

trunkthighleg
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While both AP and ML center-of-mass and center-of-pressure positions were 

obtained in this study, the analyses below focus only upon AP center-of-mass (COM) 

motions, which were scaled to centimeters for comparison with the visual display 

trajectories. 

Experimental Design 

Subjects were presented with sum-of-sines visual display motion in low and high 

amplitude conditions. The sum-of-sines motion consisted of 10 sinusoids, with 

frequencies ranging from 0.0244-2.9696 Hz, with each sinusoid beginning at 0° of phase. 

The frequencies of the sinusoids were chosen as prime multiples of a base frequency to 
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avoid low-order harmonics. The amplitudes of the sinusoidal components were varied as 

1/frequency to maintain a constant peak velocity across frequency, with the amplitude of 

each sinusoid in the high amplitude condition twice that of the respective sinusoid in the 

low amplitude condition. Stimulus (peak) velocity was kept constant across stimulus 

frequencies as the postural control system is known to be sensitive primarily to the 

velocity of environmental motion (cf., Kiemel et al., 2006). The amplitude at the highest 

frequency in the low and high amplitude conditions were 0.0175 cm and 0.035 cm, 

respectively. 

Subjects performed 8 trials in the low amplitude condition and 3 trials in the high 

amplitude condition. All trials were 260 s in duration, with the sum-of-sines motion 

active for 250 s and 10 s of quiet stance with a static visual display collected prior to 

stimulus onset. The order of trials across conditions was randomized for each subject, 

though all subjects were presented first with a trial in the low amplitude condition. This 

was done to insure that subjects were familiarized with the experimental task first in the 

easier of the two conditions. It should be noted that, due to technical difficulties during 

data collection where measurements from one of the four body markers used in the 

computation of center of mass were lost and resulted in either the exclusion of the trial (n 

= 3) or truncation of the data (n = 3) at the end of the trial. This left one subject with 6 

trials and another subject with 7 trials in the low condition. In the case of truncation, the 

data were zero-padded to maintain the same spectral resolution across all trials during 

analysis (see below). 
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Experimental Protocol 

After subjects were given instructions and consented to participate in the 

experiment, they were asked to change into a short-sleeved shirt and shorts, without 

socks. Small infrared-emitting diodes (IREDs) were then attached to the subject at the 

body landmarks reported above. The wire leads of the IREDs were secured with cloth 

tape in order to avoid having them obstruct the view of the cameras. Once all markers 

were in place, the subject was again instructed about and asked to assume the required 

stance position for the experiment. The experimenter then positioned the center of the 

stimulus pattern at the approximate center of the subject’s visual field. 

The subject was then asked to sit and the overhead lights were turned off, with at 

least 5 minutes of rest taken before the start of the first trial in order to allow the subject’s 

visual system to adapt to the low-light conditions. The overhead lights remained off 

throughout the remainder of the experimental session, though illumination from the 

computer monitors, a small desk lamp, and the visual display itself produced low-light 

conditions, rather than complete darkness. While full dark adaptation of the visual system 

requires at least 30-40 minutes, the rapid initial phase of this process, which occurs on the 

order of 2-3 minutes (cf. Bennett et al., 2002) was assumed to be sufficient for the current 

experimental conditions given the high-contrast stimuli employed. Further, no subjects 

reported any perceptual discomfort after only a few minutes in the low-light conditions. 

Prior to each trial, the subject was asked to stand and assume the required 

position, with the experimenter, using a small handheld flashlight, assisting the subject 

with foot placement and insuring that the wire leads did not hamper the subject’s motion. 

The foot position was marked on the force platform where the subject stood to maintain a 



 62

consistent position across trials. Once the subject was in position, the experimenter first 

checked that all IREDs were visible by the OptoTrak cameras, then asked the subject to 

signal that he/she was ready to begin the trial. Data collection was started, then after a 

delay of at least 10 s, stimulus motion was started. Once the trial was complete, the 

experimenter assisted the subject in sitting down, and at least 120 s of seated rest was 

given. The total experimental session lasted approximately 120 m. 

Analysis 

Linear, spectral analysis was performed for each trial by computing the individual 

Fourier transforms of the time series of postural displacements and of stimulus position. 

For each trial, the transfer function or frequency-response function (FRF) at each of the 

stimulus frequencies was computed by dividing the transform of the center-of-mass by 

the transform of the stimulus, and then averaged across trials. The FRF is complex-

valued function; its absolute value is gain and its argument is phase. By definition, a 

positive phase indicates that sway lead the visual motion.  

To characterize the gains and phases of the sampled group, we used the absolute 

value and argument of the average FRF across subjects in each condition to obtain group 

gain and phase, respectively. For each condition and stimulus frequency, an F-statistic 

was used to compute 95% confidence ellipses in the complex plane based on the 

assumption that the real and imaginary parts of the FRF come from a bivariate normal 

distribution. The range of absolute values and arguments for points on the boundary of 

the ellipses were used to obtain conservative 95% confidence intervals for group gain and 

group phase. 
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To compare gain and phase between the low- and high-amplitude conditions at 

each frequency, we computed the ratio lowhigh zzr = , where highz  and lowz  are the mean 

FRF for the low-and high-amplitude conditions, respectively (cf. Kiemel et al., 2006). 

Similar to the above, a 95% confidence region, R , was computed in the complex plane 

for r  and the range of absolute values and arguments were used to obtain 95% 

confidence intervals for the gain ratio and phase difference. The region, R , was defined 

as follows: for any possible r , let ( )rp  be the P  value from testing whether lowhigh rzz −  

is significantly different from zero using an F-test. Then, ( )[ ]05.0: ≥= rprR . R  is the 

complex analog of the Fieller confidence interval for the ratio of the two means (Miller, 

1986). 

Results 

Previously, we (e.g., Jeka et al., 2000; Oie et al., 2002) and others (e.g., van Asten 

et al., 1988a; Dijkstra et al., 1994a,b; Peterka and Benolken, 1995; Soechting et al., 1979) 

have shown that postural sway responses to highly predictable, sinusoidal motions of the 

visual environment strongly reflect the structure of stimulus motion. In Figure 3.2A, we 

present an example of this effect, showing how postural sway responses to simple 

sinusoidal motion of the visual environment strongly reflect stimulus motion. By 

contrast, in the current experiment, the motion of the visual display was comprised of the 

addition of 10 unique sinusoidal components, and none of our subjects reported being 

able to predict the motion of the stimulus. In Figure 3.2B, the relationship between 

stimulus motion and postural response seems less evident, upon visual inspection. 

However, the averaged amplitude spectra shown in Figure 3.2C revealed peaks in the 

subject’s postural sway responses at the stimulus frequencies, showing that the postural 
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response was indeed structured by the unique sinusoidal components of the stimulus. All 

subjects provided similar results. 

 
Figure 3.2. Exemplar trajectories and amplitude spectra. A) An exemplar trajectory 
illustrating CoM response (dark line) to a simple sinusoidal visual stimulus (light line). 
B) CoM response (dark line) to sum-of-sines visual motion (light line). C) Averaged 
amplitude spectra of CoM response (dark line)(n = 8) to sum-of-sines visual stimulus 
motion (light line). 
 

Gain and Phase Functions 

In Figure 3.3 (A and B), the group gain and phase response across all subjects is 

shown. As expected, gain (Figure 3.3A) was found to vary with stimulus frequency, with 

a maximum found to be in the range between 0.2-0.4 Hz, and with gains in the low 

amplitude condition found to be higher than those in the high amplitude condition.  Gain 

was found to be significantly greater than zero (p < 0.05) for the eight lowest frequencies 
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(0.024 – 1.432 Hz)), indicating that a detectable response to stimulus motion. For the two 

highest frequencies, 2.104 and 2.936 Hz, gain was not significantly greater than zero in at 

least one of the conditions (p > 0.05).  

 
Figure 3.3. Group gain and phase functions. A) Mean gain across subjects for high 
amplitude (squares) and low amplitude (circles) conditions as a function of stimulus 
frequency. B) Corresponding mean phase across subjects. Errorbars indicate 95% 
confidence intervals.  
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Phase (Figure 3.3B) was also found to vary with stimulus frequency, starting out 

at a slight phase lead at low frequencies, and showing an increasing phase lag of about 

360 deg as frequency increased from 0.024 to 1.432 Hz. At the two highest frequencies, 

phase could not be reliably estimated due to the difficulty in detecting a response to 

visual motion. 

 
Figure 3.4. Gain ratio and phase difference. Functions describing the differences in 
postural response to motion of the visual scene between low- and high-amplitude 
conditions. Errorbars indicate 95% confidence intervals. 
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When visual motion amplitude was doubled in the high-amplitude condition, gain 

decreased significantly at all frequencies from 0.024 to 0.904 Hz (Figure 3.4 A). At all 10 

frequencies, the high- to low-amplitude gain ratio was not significantly different from 

0.5. A gain ratio of 0.5 corresponds to equal response amplitudes in both conditions. No 

significant differences in phase were detected between the two conditions (Figure 3.4 B). 

Discussion2 

One of the advantages of using sum-of-sines stimuli over different frequency 

sinusoids in different trials, as with the pseudorandom stimuli used in Peterka (2002), is 

that it allows one to estimate the transfer function at different frequencies simultaneously. 

Under these conditions, the dynamics of the postural system can be assumed to be the 

same across stimulus frequencies at a given amplitude. In this study, we utilized sum-of-

sines techniques and observed changes in gain with stimulus amplitude that are consistent 

with previously observed changes in gain made in our laboratory (Oie et al., 2002) and by 

others (Peterka, 2002; Peterka and Benolken, 1995): In the low-amplitude condition, 

group gain was found to be significantly different from gain in the high-amplitude 

condition at frequencies between 0.024 and 0.904 Hz. These results are consistent with an 

interpretation of an adaptive sensory re-weighting mechanism that allows stance control 

under varying sensory conditions.   

Doubling the amplitude of visual motion led to a change in gain of roughly one 

half. This indicates that the sway response amplitude remained roughly constant across 

conditions. Peterka and Benolken (1995) found that, when stimulus amplitude was 

                                                 
2 The results of this experiment were reported in Kiemel et al. (2006). The discussion presented here 
focuses only upon aspects related to multisensory re-weighting and position coupling addressed in this 
dissertation thesis. 
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increased, response amplitude initially increased but reached saturation, resulting in a 

plateau in gain at high motion amplitude. The current finding that the gain ratio across 

stimulus frequencies was not different from 0.5 suggests that the amplitudes used in this 

study were within this saturation region.  

However, as has been argued previously, any amplitude dependent change in gain 

indicates some type of nonlinearity in the postural control system. Parameters of linear 

stochastic models fit to the postural sway trajectories in this study did not, however, 

provide strong evidence for position coupling of body sway to visual motion. Fifth-order, 

linear stochastic models were fit to COM trajectories using the maximum likelihood 

method, and used to estimate parameters of the autocovariance function of the residual 

sway (i.e., sway with the effect of stimulus input subtracted). Five model parameters 

were associated with the coupling of sway to visual motion. Of these, only the velocity 

coupling coefficient was found to be significantly positive for all subjects and conditions 

(p < 0.05). Its mean across subjects was significantly positive in both conditions (p < 

0.0002) and was significantly higher in the low-amplitude condition than in the high-

amplitude condition (p = 0.001).  

Velocity coupling in the postural control system between visual motion and sway 

has been argued for based upon both theoretical analysis (Schöner, 1991) and empirical 

evidence (Dijkstra et al., 1994; Jeka et al., 2000). It should be noted, as well, that velocity 

coupling in posture is not limited to visual motion, but has also been found similarly with 

somatosensory input (Jeka et al., 1998a, 2004; Kiemel et al., 2002). The current findings 

support these previous results. 
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By contrast, none of the non-velocity related coupling coefficients exhibited a 

consistent sign across subjects, though for a substantial number of subjects, these 

coefficients were significantly different from zero (p < 0.05). For higher-order 

coefficients (i.e., acceleration and the 3rd and 4th derivatives of stimulus position), this 

was true for 8, 6 and 5 subjects, respectively. This was true, however, for only 2 of the 10 

subjects in the case of the position coupling coefficient. The means of the position 

coupling coefficient were different from each other in the two conditions (p = 0.045), 

with the mean in the low-amplitude condition being significantly less than zero (p = 

0.021) and the mean in the high-amplitude condition not significantly different from zero 

(p = 0.67).  

Previously, Jeka et al. (2000) have argued for position coupling based upon a 

second-order model. Additionally, Jeka et al. (1998a) similarly argued for position 

coupling to somatosensory inputs. The results presented here with a more accurate fifth-

order model provide only weak evidence for position coupling. However, it is important 

to consider that the lack of evidence for position coupling is based on a descriptive 

model; its interpretation depends upon consideration of a mechanistic model. For 

example, optimal control models such as those presented by Kiemel et al. (2002), Kuo 

(2005) and van der Kooij et al. (1999) generate estimates of body position and velocity 

based upon noisy sensor inputs, which are multiplied by feedback gains in order to 

specify the resultant motor command. For such a model, zero position coupling implies 

that the body state estimates are not based upon position of the visual scene, but only 

upon velocity and higher-derivative information. It does not imply, however, that the 

position feedback gain is zero. 
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Chapter 4: Experiment – The Dynamics of Sensory Re-weighting 

In our previous investigations examining sensory re-weighting (Oie et al., 2001, 

2002), including the preliminary results that I have presented in Chapter 3, my focus has 

been on characterizing how the transfer function of the postural control system depends 

upon stimulus amplitude. In order to provide the initial characterization of the sensory re-

weighting mechanism for human postural control that represents a culmination to the 

body of work presented in this thesis we examined the question: What is the time scale 

over which sensory re-weighting occurs? 

Introduction 

The fact that we have multiple sensory modalities that are sensitive to different 

forms of physical energy and can provide information that is unique or redundant 

necessitates that our nervous systems estimate which sensory signals are relevant within a 

given sensory context. How we accomplish this multisensory integration has been the 

focus of several recent theoretical efforts (e.g., Anastasio, 2006; Pouget, 2006; Shams 

and Ma, 2006), which have argued that neural computation can be understood as 

probabilistic (i.e., Bayesian) in nature: Because neural systems are inherently noisy, their 
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sensory inputs cannot be strictly deterministic. It is postulated that neurons compute the 

conditional probability of the stimulus value (e.g., if a target is present or not within a 

neuron’s receptive field), given the uncertainty in their sensory inputs (c.f., Anastasio and 

Patton, 2003, for an in-depth treatment of the Bayes’ rule model to multisensory neurons 

in the deep superior colliculus).  

The Bayesian framework can also be applied to the problem of estimating 

quantities that change stochastically with time.  In the case of a linear stochastic system, 

Bayesian inference can be implemented using a Kalman filter.  Kalman filters have been 

used, for example, in models of postural control of human upright stance (van der Kooij 

et al., 1999; Kiemel et al., 2002; Kuo, 2005).  In these models, a Kalman filter 

continually estimates the body’s position and velocity based on noisy inputs from 

multiple senses, and these estimates are used to generate appropriate motor commands to 

stabilize the continual deviations from the upright vertical that characterize postural 

behavior.   

In the vast majority of experimental contexts at the neural and behavioral level, 

the Bayesian framework has been applied to paradigms in which sensory fusion is treated 

on a condition by condition basis (cf., Anastasio and Patton, 2003; Peterka, 2002; Kiemel 

et al., 2002). Sensory parameters are arranged discretely so that conditional probabilities 

can be calculated independently in each condition.  Such paradigms, however, avoid the 

important question of how behaving animals continuously adapt to changing 

environmental conditions. For example, one common experimental technique in the 

postural domain is to have subjects stand within a visual “moving room”.  The walls of 

the laboratory move sinusoidally but the floor that the subject stands upon remains 
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motionless, creating conflicts between vision and the other senses (i.e. proprioception and 

the vestibular sense). The visual motion of the walls is initially small, making it difficult 

to distinguish self-motion from the motion of the room, leading to a strong postural 

response (gain on the order of 1).  What happens if amplitude of the sinusoidal visual 

input doubles? A linear system depends linearly on its inputs, so doubling the amplitude 

of a sinusoidal input to a linear system would double the response at the frequency of the 

input.  What in fact happens is that gain decreases dramatically, indicating a nonlinear 

process. One of the prevailing hypotheses is that this non-linear response reflects a 

decrease in coupling, or weighting to that particular sensory modality which is 

compensated at least partially by an increase in weighting to other sensory inputs in order 

to prevent a loss of balance (e.g., Carver et al., 2005; Keshner et al., 2004; Mahboobin et 

al, 2005; Oie et al., 2002; van der Kooij et al, 2001; however, see Mergner et al., 2003 for 

an alternative interpretation). The Bayesian framework has also been used to account for 

multisensory re-weighting (in postural control) through an adaptive Kalman filter (van 

der Kooij et al., 2001; Carver et al., 2005). However, because of the paucity of empirical 

research about the real-time properties of the multisensory re-weighting, namely, the 

dynamics of re-weighting, adaptive schemes are not motivated biologically.  The present 

investigation tested a prediction of the Carver et al. (2005) model about the time course 

of re-weighting. 

In the Carver et al. model, adaptation is based on minimizing the mean squared 

torque specified by the neural controller.  As a consequence of this adaptation scheme 

(see Discussion), the Carver et al. (2005) model predicts a temporal asymmetry in 

response to changes in environmental motion. Specifically, if the amplitude of 
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environmental motion is suddenly changed from one value to another, the initial decrease 

in gain when environmental motion is increased is predicted to be faster than the initial 

increase in gain when environmental motion is decreased.  Here, we present experimental 

results that are consistent with this prediction.  

Method 

 
Figure 4.1. Experimental paradigm.  
 



 88

Subjects 

Thirty participants (15 female, 15 male, mean age 20.9 (± 1.6) years of age) took 

part in this study. All participants had normal or corrected-to-normal vision, were free of 

any self-reported musculoskeletal or neurological disorders, and gave written consent to 

participate according to the guidelines implemented by the Internal Review Board of the 

University of Maryland. 

Experimental Setup and Procedures 

Participants were asked to stand quietly, approximately 0.5 m from a large 

translucent screen (2.0 m x 1.0 m, Da-Lite Screen Company, Inc., Warsaw, IN)(see 

Figure 4.1). A pattern of randomly positioned, white 2-D triangles (approximately 0.2º x 

0.3º x 0.2º) in a front-parallel plane on a black background was rear projected onto the 

screen via a Direct Drive Image Light Amplifier (D-ILA) projector (JVC M15, JVC 

America, Wayne, NJ). The visual displays were generated using a desktop PC (Dell 

PWS650, Dell, Inc., Austin, TX) with a Wildcat4 7210 video adapter (3Dlabs US, 

Madison, AL) at a resolution of 1280 x 1024 pixels.  

Large-scale, sinusoidal environmental motion was specified by varying the 

suggested position of the virtual ‘wall’ of triangles in a forward-backward direction 

relative to the participant. The focus of expansion of visual motion was positioned at the 

approximate center of the participant’s foveal region prior to the start of data collection, 

and no triangles were placed near the focus of expansion to suppress the visibility of 

aliasing effects. Participants were asked to keep their head level, eyes open, gaze directed 

at the focus of expansion and to avoid locking their knees during the conduct of an 

experimental trial. Stimulus motion comprised a 0.4 Hz sinusoid whose amplitude was 
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changed twice within a 360 s trial, from 0.3 cm to 1.2 cm and back to 0.3 cm at 120 s and 

180 s into the trial, respectively. Three trials were run for all participants. 

It should be noted that the 0.4 Hz stimulus frequency was utilized as a 

compromise between temporal resolution and the robustness of the postural response to 

stimulus motion, which was the result of extensive pilot experimentation. Previous results 

(e.g., Dijkstra et al., 1994a, b; Jeka et al.., 2000; Oie et al., 2002) have shown that 

postural responses to sinusoidal visual motion are most consistent at a stimulus frequency 

of ~02 Hz, with increasing gain and phase variability as stimulus frequency is increased 

or decreased. However, it was thought that sensory re-weighting is a relatively fast 

process. In part, this was due to unpublished analyses in that showed little evidence of 

adaptive changes in postural responses at the beginning of experimental trials at the onset 

of visual stimulus motion. As a 0.2 Hz stimulus would allow estimation of cycle-by-cycle 

frequency response functions (FRF) every 5 s, an increase in stimulus frequency to 0.4 

Hz was used to improve the temporal resolution without overly degrading the stability of 

the postural responses to visual stimulus motion.   

Participants’ postural responses to visual display motion were captured using an 

OptoTrak camera position tracking system (Northern Digital, Inc., Waterloo, ON, CA) at 

a sampling rate of 60 Hz. Markers were placed at the heel (posterior calcaneous), ankle 

(lateral malleolus), knee (lateral tibial tuberosity), hip (greater trochanter) and shoulder 

(acromion) on the right side of the body. Center-of-mass (COM) trajectories were 

estimated using a three-segment model based upon the trajectories of these markers (cf. 

Winter, 1991).  
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Analysis 

To characterize how the postural response to visual scene motion varied as a 

function of time, we used the FRF from visual scene position to COM position at the 

stimulus frequency. As a compromise between accuracy and temporal resolution, we 

divided each trial into 72 5-s intervals (two stimulus cycles per interval) and computed 

the FRF for each interval. Each FRF was computed by dividing the Fourier transform of 

the COM trajectory by the Fourier transform of the stimulus trajectory. The FRF is 

complex-valued. The absolute value of the FRF is gain; the postural response amplitude 

divided by the stimulus amplitude. The argument of the FRF is phase, which indicates the 

temporal relationship between postural response and stimulus motion. A positive phase 

indicated that COM position lead stimulus position. In addition to the FRF, position and 

velocity variability of the residual sway response was computed as the standard deviation 

of the COM motion after the deterministic response of the postural response at the 

stimulus frequency was removed (cf., Jeka et al., 2000), over 60 s segments, with a time 

step of 0.167 s.  

For each subject and time interval, the FRF was averaged across trials. In general, 

FRFs changed slowly with time except at the beginning of the trial and after the two 

switches in stimulus amplitude (see Results). To describe these slow changes, we fit 

FRFs by a linear function of the time-interval index over three separate time periods: 

before the first switch, between the first and second switches, and after the second switch. 

To avoid the effects of relatively fast changes in postural responses when sensory motion 

was initiated or changed, the first 6 time intervals (30 s) were excluded. We fit the FRFs 

by computing least-squares fits of their real and imaginary parts.  
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The linear fits were used to estimate the FRFs in the last time interval before each 

switch and in the last time interval of the trial. We performed a statistical analysis on 

these three estimated FRFs and the FRFs from the first time interval after each switch. 

We averaged the resulting five FRFs across subjects and computed group gains and 

phases as the absolute value and argument, respectively of the averaged FRFs. Null 

hypotheses involving group gains and phases were tested under the assumption of 

multivariate normality for the real and imaginary parts of the FRFs. For each null 

hypothesis, group gains and phases for the constrained and unconstrained models were 

estimated using the method of maximum likelihood, and Wilks’ Λ, which is related to the 

likelihood ratio, was tested using the same degrees of freedom as in linear regression 

(Seber, 1984). For group gain and phase, we made comparisons for all pairs of time 

intervals. To test for temporal asymmetry, we tested whether the changes at the two 

switches summed to zero, that is, H0: (b1-a1) + (b2-a2) = 0 (see Figure 4.2). A closed 

testing procedure (Hochberg and Tamhane, 1987) was used to control the family-wise 

Type I error rate at α = 0.05 for all test on gains, and separately for all tests on phase. 

Results 

Figure 4.2 shows two examples of the mean cycle-to-cycle gain and phase 

trajectories for different subjects (A-C and B-E, respectively). In general, subjects 

exhibited similar qualitative changes in response to the changes in stimulus motion 

amplitude. That is, gain decreased quickly when stimulus amplitude was increased at 120 

s in the trial, and increased more slowly when stimulus amplitude was subsequently 

decreased at 180s. Some individual differences were observed in the overall response to 

stimulus motion; for example, compare the overall gain between the subjects’ results in 



 92

Figures 2A and 2D, respectively. These individual differences are largely responsible for 

the inter-subject variability shown in the mean cycle-to-cycle gain and phase across all 

thirty subjects presented in Figure 4.3. 

Across subjects, when visual motion amplitude was low ( t  ≤ 120 s, t  ≥ 180 s), 

gain was observed to be higher than when visual motion amplitude was high (120 s < t  < 

180 s), with phase showing an approximately constant phase of about -90º (see Figure 

4.2). Pair-wise contrasts revealed significant differences between the estimated FRFs: b1 

> b2 (p < 0.001) and b2 < b3 (p < 0.001), and no difference between b1 and b3 (p = 

0.469). This result reproduces the characteristic gain-dependence of the postural response 

upon the amplitude of visual motion, where gain has been observed to be higher when 

stimulus amplitude was low, and lower when stimulus amplitude was high (e.g., Kiemel 

et al., 2006; Oie et al., 2000; Peterka and Benolken, 1995; Mergner, et al, 2003). 

 
Figure 4.2. Examples of mean gain and phase responses of two subjects. Mean cycle-
to-cycle gain (A & D, respectively) and phase (B & E, respectively) for two individual 
subjects. 
 

When visual motion amplitude was either increased or decreased (at 120 s and 

180 s, respectively. See Figure 4.2A and 4.2B), the resultant change in postural response 
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was different. Gain of the averaged FRFs showed a significant difference (p < 0.001) 

between time intervals b1 and a1, when visual motion amplitude was increased, 

indicating a significant decrease in gain within the first two cycles of stimulus motion. A 

significant change in phase was observed (p = 0.041). By contrast, no difference (p = 

0.518) was observed between b2 and a2, when stimulus motion amplitude was 

subsequently decreased indicating that gain of the averaged FRF did not increase 

significantly within the first two cycles of stimulus motion after the decrease in stimulus 

motion amplitude. No change in phase was detected (p = 0.471).  

 
Figure 4.3. Group gain and phase trajectories and stimulus motion position. Mean 
(A) Gain and (B) phase across subjects. Dark lines indicate results of linear fits, which 
were used to estimate FRF values at b1, b2 and b3. Light lines indicate endpoints of 
conservative 95% confidence intervals (cf., Kiemel et al., 2006)  
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Testing more explicitly for temporal asymmetry, we tested whether the sum of the 

changes in FRFs at the two amplitude switches summed to zero. Results revealed a 

significant difference from zero in the gain of the summed FRFs (p = 0.009), indicating 

that the observed changes in FRFs over the same amount of time (i.e., 2 stimulus cycles) 

were significantly larger (i.e., faster) when stimulus motion increased versus when it 

decreased. 

Finally, both position and velocity variability showed a significant increase when 

stimulus motion amplitude was increased (p’s < 0.002)(see Figure 4.3). After stimulus 

motion amplitude was decreased (at 180 s), both position and velocity variability 

remained significantly higher (p’s < 0.03) than during the initial portion of the trial prior 

to the initial increase in stimulus amplitude at 120 s.  

Discussion 

Sensory re-weighting as an adaptive process in the nervous system is not unique 

to the control of upright stance. Hypotheses of sensory re-weighting appear across many 

functional behaviors, including object perception and manipulation (Ernst and Banks, 

2002), perception of full-body motion (Lambrey and Berthoz, 2003), and goal-directed 

reaching (Sober and Sabes, 2003, 2005). However, few studies have investigated the 

dynamics of the re-weighting process. Here we studied the time course of sensory re-

weighting and found evidence of a temporal asymmetry, consistent with the predictions 

of an adaptive model (Carver et al., 2006).   

The Carver et al. (2005) model contains an adaptive Kalman filter that uses noisy 

sensory measurements to estimate the body’s position and velocity (see Introduction).  
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The relative weighting of visual and non-visual inputs in the Kalman filter is specified by 

an adaptive parameter, θ, which is continually adjusted to minimize a performance index 

J, the mean squared ankle torque specified by the neural controller.  (This choice of J is 

not crucial; there are other choices that lead to qualitatively similar behavior.)   J is 

minimized by changing θ at a rate proportional to −dJ/dθ (gradient descent). 

 
Figure 4.4. Position and velocity sway variability. Mean position (upper) and velocity 
(lower) variability across subjects, indicating the mean sway response after the induced 
effects of stimulus motion were removed over 60 s time intervals. Error bars indicate ± 
s.d. 
 

The model’s adaptive scheme leads to a temporal asymmetry like that reported 

here (Carver et al. 2006).  When motion of the visual scene is small, adaptation leads to 

substantial weighting of both visual and non-visual inputs, since using all the available 

sensory information reduces the effect of sensory noise on sway and, thus, the need for 
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corrective ankle torques. When visual motion amplitude suddenly increases, the sway at 

the stimulus frequency suddenly increases, leading to a large increase in corrective ankle 

torques that is highly sensitive to changes in the adaptive parameter.  As a result, the 

adaptive parameter changes quickly to down-weight vision and gain quickly decreases.  

Later, when visual motion amplitude suddenly decreases, there is only a small decrease in 

sway at the stimulus frequency, since gain is initially low.  This small decrease in sway 

leads to a small decrease in corrective torques that is not very sensitive to changes in the 

adaptive parameter.  As a result, the adaptive parameter changes slowly to up-weight 

vision and gain slowly increases. 

The preceding description of the model’s temporal asymmetry refers to the initial 

change in gain after a change in visual motion amplitude.  In the model, the change in 

gain produced by a sudden change in visual motion amplitude is not exponential and, 

therefore, cannot be characterized by a single fixed time constant.  Instead, changes in 

gain can be viewed as reflecting a changing time constant that depends on the current 

gain level.  When gain is high, the time constant is small (fast); when gain is low the time 

constant is large (slow).  Note that the time constant depends on the current gain level, 

not the direction in which gain is changing.  For example, if visual motion amplitude is 

low and suddenly changed by a small amount, the model predicts that gain will quickly 

converge to a new level regardless of whether amplitude is increased or decreased. 

The sway variability results were only partially consistent with the Carver et al 

(2005) model. The Carver model predicts the observed increase in sway variability as 

vision is down-weighted (120-180 sec - Fig 2).  However, the predicted decrease in sway 

variability as vision is up-weighted (180-240 sec - Fig 2) was not observed. The latter 
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result is also not consistent with previous studies which found a consistent trade-off 

between re-weighting and variability (Allison et al., 2006). This trade-off reflects the 

degree of weighting to a stimulus versus the precision of estimating body dynamics. 

Large amplitude sensory inputs are ‘down-weighted’ to minimize responses that would 

threaten stability if, for example, coupling to vision remained high. However, the 

consequence of down-weighting vision is reduced sensory information available for 

estimation, leading to increased sway variability.  Conversely, it is advantageous to ‘up-

weight’ small amplitude sensory inputs because more information is available for 

estimation, leading to a reduction in sway variability. Strong coupling to small amplitude 

inputs does not threaten stability. While this scenario has been supported in previous 

studies in which gain and sway variability was averaged over 2-4 minute trials with 

constant-amplitude sensory stimuli (Allison et al., 2006), the dynamic measures used here 

indicate that overall stability does not behave similarly when the visual stimulus changes 

abruptly. 

For example, perhaps the first adaptive model of stance control was that of van 

der Kooij et al. (2001), which proposed an internal model of body and sensor dynamics 

based on an optimal (Kalman) estimator, as well as an internal model of the dynamics of 

the environment. However, Carver et al (2005) have demonstrated that an internal model 

of the visual environment is not necessary to reproduce the amplitude-dependent gain and 

roughly constant phase that is typically observed with visually induced postural 

responses.    

The observed temporal asymmetry in sensory re-weighting can also be evaluated 

from a functional perspective: Upright stance is inherently unstable, and the stance 
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control system must continuously respond to internal and external perturbations that 

could produce an injurious fall. In our paradigm, when visual motion amplitude is low, 

vision provides a relatively stable source of information for stance control.  When visual 

motion amplitude is increased beyond the stability boundaries of upright stance, visual 

information will provide a poor source of information for stance control. Under such 

conditions, if gain to visual motion remains high, the large visual motion amplitude 

threatens balance, and the stance control system must diminish the visual weighting 

rapidly in order to maintain upright standing. On the other hand, if current visual motion 

amplitude is large and stance is already stable, decreasing visual motion amplitude does 

not threaten balance and adapting rapidly to the new sensory conditions is not critical to 

avoid falling. One may argue that slow up-weighting reflects a conservative CNS 

strategy. Rapid up-weighting may cause instability if the change in sensory conditions is 

transient.  Slow up-weighting insures stronger coupling to only sustained changes in the 

sensory surround. Thus, the temporal asymmetry can be interpreted to reflect a scheme in 

which the nervous system commits resources to sensory re- weighting based upon a 

functional need. Balance control entails an inherent “cost function”, minimizing fall-risk, 

which modulates adaptive processes such as sensory re-weighting, suggesting a cognitive 

component to the re-weighting process. 

Conclusion 

De Ruyter van Steveninck and colleagues have also recently shown evidence for 

sensory re-weighting at the level of neural coding (Brenner et al, 2000; Fairhall et al, 

2001). The authors presented evidence of adaptive scaling of the transfer function of 

motion-sensitive neurons in the fly visual system based upon the variance of the visual 
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input, such that information is optimized across a wide range of sensory contexts, as well 

as a temporal asymmetry dependent upon whether variance increased or decreased.  

Adaptation of the sort demonstrated by Brenner et al (2000) and Fairhall et al (2001), as 

well as in the current study, where adaptation is based upon some statistical property of 

the sensory input necessitates that the nervous system estimates these statistics, at least 

implicitly.  As pointed out by Tin and Poon (2005), the related concepts of estimation, 

adaptive control and internal models have been influential in furthering our 

understanding of processes of sensorimotor and multisensory integration. The present 

empirical results add to our understanding of adaptive processing by demonstrating that 

the temporal asymmetry observed in sensory re-weighting dynamics may be a general 

property of adaptive estimation in the nervous system. 
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Chapter 5: Summary and Conclusions 

In order to survive in the wide range of sensory contexts that comprise our 

physical world, the nervous system employs adaptive mechanisms that optimize 

functional behaviors within a given sensory environment. The control of human bipedal 

stance requires that the nervous system obtain relevant information about the 

environment and the body's relationship with it from multiple sensory systems. This 

dissertation examines the question: How does the nervous system accomplish this when 

the sensory environment compromises the information available from a given sensory 

system (e.g., vision in dark versus light conditions or proprioception on stable versus 

compliant or slippery surfaces)?  

In previous theoretical and empirical work, we have provided evidence of 

nonlinearities that are consistent with an hypothesis of sensory re-weighting: The nervous 

system adapts to changing sensory contexts by decreasing its dependence, or weighting, 

on the compromised system and increases its weighting of other inputs that provide the 

most reliable information for stance control in order to prevent a loss of balance. Here, 

empirical findings have been presented that further support the sensory re-weighting 



 101

hypothesis, and advance efforts towards characterizing by providing empirical results that 

provide important constraints on any proposed sensory re-weighting scheme. 

First, postural responses to complex visual motion consisting of the sum of 10 

different sinusoidal components, were measured at two different amplitudes. Changes in 

the gain of body sway to visual motion were consistent with the nonlinearities previously 

interpreted as evidence for sensory re-weighting. The observed changes in gain did not 

vary significantly as a function of stimulus frequency. Recall that, because the postural 

system has been shown to be primarily velocity-sensitive (cf., Kiemel et al., 2006), the 

components of the stimuli used in the study all had the same peak velocity within a 

condition and that the amplitude of each component was doubled in the high amplitude 

versus the low amplitude condition. That there was no dependence of the changes in gain 

upon frequency, then, indicated that the re-weighting process affected the response at all 

stimulus frequencies in an approximately equal fashion. This may be suggestive of a 

relatively simple mechanism for multisensory re-weighting, though the results of this 

study can not address questions of whether more complex interactions within the sensory 

re-weighting process may exist; for example, that changes in stimulus motion at one 

frequency might affect responses at some or all other frequencies.  

Further, analyses (cf., Kiemel et al., 2006) that fit linear stochastic models directly 

to sway trajectories found 1) fifth-order dynamics, 2) strong evidence of velocity 

coupling and 3) little evidence for position coupling.  While these results provide greater 

knowledge that provide important constraints to models of postural control, individual 

differences also provide further questions: While the majority of subjects exhibited 

similar patterns of in the fitted model structure and parameters (i.e., fifth-order dynamics, 
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strong velocity coupling, weak or no position coupling), a substantial number of subjects 

revealed significant coupling to higher-order aspects of stimulus motion, though the 

patterns of these coefficients were not the same across subjects. However, as models in 

this study were fit to trajectories of a single-point estimate of total body center-of-mass 

(CoM) motion, it is possible that the residual variance accounted for by the higher-order 

coupling coefficients may be due to, for example, inadequacies of a single-component 

model (i.e., based upon trajectories of a single-point estimate of CoM) to adequately 

capture the dynamics of  the motion of a multi-link body or errors in the computation of 

CoM based upon a simple three-segment body model (cf., Winter, 1990).   

Second, we found evidence indicating a temporal asymmetry in the sensory re-

weighting process dependent upon the direction of the change in stimulus motion 

amplitude: a significant change in postural response gain was observed within two 

stimulus cycles (5 s) following a rapid increase in stimulus amplitude, whereas after a 

rapid decrease in stimulus amplitude no significant change in response was found within 

this time window. This temporal asymmetry was interpreted functionally: an increase in 

visual environmental motion may threaten balance, requiring a rapid down-weighting of 

vision if a strong dependence upon visual information would increase postural response 

beyond the stability boundaries of stance. Conversely, if stance is already stable in the 

face of large visual motion amplitude, a decrease in motion amplitude does not threaten 

balance and adapting rapidly to the new sensory conditions is not critical to avoid falling, 

and may even be maladaptive if changes in sensory conditions are only transient. 

Again, open questions remain: First, it is unclear why in this study position and 

velocity variability did not decrease after the second change in stimulus amplitude 
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decreased visual motion (see Figure 4.4), despite the observation that gain did increase 

significantly. The consequence of down-weighting vision when visual motion becomes 

large is not only a de-coupling to the large visual displacement which would threaten 

balance if gain remains high, but also a reduction in sensory information available for 

estimation. As we have previously argued (cf., Kiemel et al., 2002), increases in sway 

variability are reflective of errors in estimation based upon its sensory inputs, and 

therefore we would predict the increase in sway variability that was observed in the 

current study. Conversely, it would also be advantageous to up-weight vision, even when 

small-amplitude vision is present, to increase information available for estimation, which 

would lead to a reduction in sway variability. The Carver et al. (2005) model also makes 

this prediction regarding sway variability. Further, recent empirical evidence in response 

to constant-amplitude stimulus motion for both healthy older and fall-prone older adults 

is also not consistent with the results presented here (Allison et al., 2006), though some 

possible explanations may exist: For example, the abrupt changes in visual stimulus 

motion used here may affect postural stability in different ways. A conservative response 

to a decrease in stimulus motion may be to compromise between greater sway variability 

and the probability that the reduction in motion amplitude is transient rather than 

enduring. The young, healthy adults in the current study may adopt a strategy that 

tolerates higher levels of sway variability than those of older individuals, and sway 

variability may decrease more slowly despite relatively more rapid increases in postural 

gain. 

While the variability observed within subjects was quite large, individual 

differences in response were qualitatively observed (e.g., see Figure 4.2). Previously, we 
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have observed individual differences in, for example, gain and phase responses to the 

same stimulus motion (cf., Jeka et al., 1998, 2000; Oie et al., 2001, 2002). Therefore, the 

range of the temporal asymmetries observed in response to changes in stimulus motion 

will be an important constraint to future models of postural control. Indeed, the Carver et 

al. (2005) model makes further predictions about the nature of the observed temporal 

asymmetry. For example, the model does not predict a single time constant for sensory 

re-weighting, but rather that the temporal dynamics of the re-weighting process are 

dependent upon the system’s current state. While the current results can not address this 

issue, it remains an open question whether such state-dependence of the time scale of re-

weighting is correct or not. 

Finally, the functional interpretation of the observed temporal asymmetry may 

have important implications to developing strategies for mitigating the potential for 

injurious falls, especially in clinical populations. The development of sensory training 

protocols to improve postural stability in the performance of activities of daily life may 

be integral to preventative and rehabilitative treatment programs, especially as the 

population ages.  

 
     



 105

 
 
 
 
 
 
 
 
 
 
 
 

References 

Allison L, Kiemel T, Jeka JJ (2006) Multisensory reweighting is intact in healthy and 

fall-prone older adults. Exp Brain Res, 175(2), 342-452. 

Allum JHJ, Carpenter MG, Adkin AL (2001) Balance control analysis as a method for 

screening and identifying balance deficits. Ann NY Acad Sci, 942, 413-427 

Anastasio TJ, Patton PE. Analysis and modeling of multisensory enhancement in the 

deep superior colliculus. In: Calvert G, Spence C, Stein B (Eds.) The handbook of 

multisensory processes. Bradford Books/MIT Press:Cambridge, MA, 2003 

Anastasio TJ. Testing models of multisensory integration. Computational and systems 

neuroscience 2006, Models of multisensory integration: psychophysical and 

neural contraints. Salt Lake City, UT, 2006. 

Aniss AM, Gandevia SC, Burke D (1992) Reflex responses in active muscles elicited by 

stimulation of low-threshold afferents from the human foot. J Neurophysiol, 

67(5), 1375-1384 



 106

Aramaki Y, Nozaki D, Masani K, Sato T, Nakazawa K, Yano H (2001) Reciprocal 

angular acceleration of the ankle and hip joints during quiet standing in humans. 

Exp Brain Res, 136, 463-473 

Asten WNJC van, Gielen CCAM, Denier van der Gon JJ (1988a) Postural adjustments 

induced by simulated motion of differently structured environments. Exp Brain 

Res, 73, 371-383 

Asten WNJC van, Gielen CCAM, Denier van der Gon JJ (1988b) Postural movements 

induced by rotations of visual scenes. J Opt Soc Am, 5, 1781-1789 

Bardy BG, Warren WH Jr, Kay BA (1996) Motion parallax is used to control postural 

sway during walking. Exp Brain Res, 111, 271-282 

Basmajian JV, Bentzon JW (1954) Electromyographic study of certain muscles of the leg 

and foot in the standing position. Surg Gynec Obstet, 98, 662-666 

Bennett PJ (2002) Vision: early psychological process. In Nadel L(ed.), Encyclopedia of 

cognitive science. London:Macmillan Publishers 

Berthoz A, Lacour M, Soechting JF, Vidal PP (1979) The role of vision in the control of 

posture during linear motion. Prog Brain Res, 50, 197-209 

Black FO, Nashner LM (1984) Vestibulo-spinal control differs in patients with reduced 

versus distorted vestibular function. Acta Otolaryngol Suppl, 406, 110-114 

Black FO, Shupert Cl, Horak FB, Nashner LM (1988) Abnormal postural control 

associated with peripheral vestibular disorders. Prog Brain Res, 76, 263-275 

Blaszczyk JW, Hansen PD, Lowe DL (1993) Postural sway and perception of the upright 

stance stability borders. Perception, 22(11), 1333-1341 



 107

Brenner N, Bialek W, de Ruyter van Stevenink R (2000) Adaptive rescaling maximizes 

information transmission. Neuron, 26, 695-702 

Bronstein AM (1986) Suppression of visually evoked postural responses. Exp Brain Res, 

63, 655-658 

Bronstein AM, Hood JD, Gresty MA, Panagi C (1990) Visual control of balance in 

cerebellar and Parkinsonian syndromes. Brain, 113, 767-779 

Cao LY, Kim BG, Kurths J, Kim S (1998) Detecting determinism in human posture 

control data. Int J Bifurcation Chaos, 8(1), 179-188 

Carlsöö S (1961) The static muscle load in different work positions – an 

electromyographic study. Ergonomics, 4, 193-211 

Carpenter MG, Frank JS, Silcher CP, Peysar GW (2001) The influence of postural threat 

on the control of upright stance. Exp Brain Res, 138(2), 210-218 

Carroll J, Freedman W (1993) Nonstationary properties of postural sway. J Biomech, 26, 

409-416 

Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory reweighting. Biol 

Cybern, in press. 

Carver S, Kiemel T, van der Kooij H, Jeka JJ (2005) Comparing internal models of the 

dynamics of the visual environment. Biol Cybern, 92(3), 147-63. 

Chiari L, Bertani A, Cappello A (2000) Classification of visual strategies in human 

postural control by stochastic parameters. Hum Mov Sci, 19, 817-842  

Chiari L, Cappello A, Lenzi D, della Croce U (2000) An improved techinque for the 

extraction of stochastic parameters from stabilograms. Gait Posture, 12, 225-234 



 108

Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by 

anthropometry and foot placement. Clinical Biomech, 17, 666-677 

Clapp S, Wing AM (1999) Light touch contribution to balance in normal bipedal stance. 

Exp Brain Res, 125, 521-524 

Clemmesen S (1951) Some studies on muscle tone. Proc R Soc Med, 44, 637 

Coats AC (1973) Effect of varying stimulus parameters on the galvanic body-sway 

response. Ann Otolaryngol, 82, 96-102 

Coats AC (1972) The sinusoidal galvanic body-sway response. Acta Otolaryngol, 74, 

155-162 

Collins JJ, DeLuca CJ (1995a) The effects of visual input on open-loop and closed-loop 

postural control mechanisms. Exp Brain Res, 103, 151-163 

Collins JJ, DeLuca CJ (1995b) Age-related changes in open-loop and closed-loop 

postural control mechanisms. Exp Brain Res, 104, 480-492 

Collins JJ, DeLuca CJ (1993) Open-loop and closed-loop control of posture: a random-

walk analysis of center-of-pressure trajectories. Exp Brain Res, 95, 308-318 

Dichgans J, Brandt T. (1978). Visual-vestibular interaction: effects of self-motion 

perception and postural control. In R. Held, H.W. Leibowitz, and H.L. Teuber 

(Eds.) Handbook of sensory physiology, Volume VIII: Perception, (pp. 755-804). 

New York: Springer.  

Diener HC, Dichgans J, Guschlbauer B, Mau H (1984) The significance of 

proprioception on postural stabilization as assessed by ischemia. Brain Res, 

296(1), 103-109 



 109

Dijkstra TMH (2000) A gentle introduction to the dynamic setpoint model of human 

postural control during perturbed stance. Hum Movement Sci, 19(4), 567-595 

Dijkstra TMH, Schöner G, Gielen CCAM (1994a) Temporal stability of the action-

perception cycle for postural control in a moving visual environment. Exp Brain 

Res, 97, 477-486 

Dijkstra TMH, Schöner G, Giese MS, Gielen CCAM (1994b) Frequency dependence of 

the action-perception cycle for postural control in a moving visual environment: 

relative phase dynamics. Biol Cybern, 71, 489-501 

Duarte M, Zastsiorsky VM (2002) Effects of body lean and visual information on the 

equilibrium maintenance during stance. Exp Brain Res, 146(1), 60-69 

Duarte M, Zatsiorsky VM (1999) Patterns of center of pressure migration during 

prolonged unconstrained standing. Motor Control, 3, 12-27 

Easton RD, Greene AJ, DiZio P, Lackner JR (1998) Auditory cues for orientation and 

postural control in sighted and congenitally blind people. Exp Brain Res, 118, 

541-550 

El-Jaroudi A, Redfern MS, Chaparro LF, Furman JM (1996) The application of time-

frequency methods to the analysis of postural sway. Proc IEEE, 84(9), 1312-1318 

Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a 

statistically optimal fashion. Nature, 415, 429-433.  

Eurich CW, Milton JG (1996) Noise-induced transitions in human postural sway. 

Physical Rev E, 54(6), 5581-6684 

Fairhall AL, Lewen GD, Bialek W, de Ruyter van Stevenink R (2001) Efficiency and 

ambiguity in an adaptive neural code. Nature, 412, 787-792. 



 110

Fitzgerald JE, Murray A, Elliott C, Birchall JP (1994) Comparison of body sway analysis 

techniques. Assessment with subjects standing on a stable surface. Acta 

Otolaryngol, 114(2), 115-119 

Fitzpatrick R, Burke D, Gandevia SC (1996) Loop gain of reflexes controlling human 

standing measured with the use of postural and vestibular disturbances. J 

Neurophysiol, 76(6), 3994-4008 

Gagey PM. Coherence of the biomechanical discourse: stabilometry. Retrieved 17 

October 2003, from: http://perso.club\internet.fr/pmgagey/HistoireStabilometrie-

a.htm 

Gatev P, Thomas S, Kepple T, Hallett M (1999) Feedforward ankle strategy of balance 

during quiet stance in adults. J Physiol, 514(3), 915-928 

Giese MA, Dijkstra TMH, Schöner G, Gielen CCAM (1996) Identification of the 

nonlinear state-space dynamics of the action-perception cycle for visually induced 

postural sway. Biol Cybern, 74(5), 427-437 

Gu MJ, Schultz AB, Shepard NT, Alexander NB (1996) Postural control in young and 

elderly adults when stance is perturbed: dynamics. J Biomech, 29(2), 319-329 

Guerrez M, Gianna CC, Burchill PM, Gresty MA, Bronstein AM (2001) Effect of visual 

surrounding motion on body sway in a three-dimensional environment. Percep 

Psychophys, 63(1), 47-58 

Gusev V, Semenov L (1992) A model for optimal processing of multisensory information 

in the system for maintaining body orientation in the human. Biol Cybern, 66, 

407-411 



 111

Hay L, Bard C, Fleury M, Teasdale N (1996) Availability of visual and proprioceptive 

afferent messages and postural control in elderly adults. Exp Brain Res,108, 129-

139 

Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during 

multidirectional surface translations. J Neurophsyiol, 80(4), 1939-1950 

Hlavacka F, Mergner T, Krizkova M (1996) Control of the body vertical by vestibular 

and proprioceptive inputs. Brain Res Bull, 40(5/6), 431-435 

Hochberg Y, Tamhane AC. Multiple comparison procedures. Wiley: New York, 1987. 

Hoefer PFA (1941) Innervation and tonus of striated muscle in man. Arch Neurol 

Psychiat, 46, 947-72 

Horak FB, Diener HC (1994) Cerebellar control of postural scaling and central set in 

stance. J Neurophysiol, 72(2), 479-493 

Horak FB, Macpherson JM (1996) Postural orientation and equilibrium. In: Shepard J, 

Rowell L (eds) Handbook of physiology. New York: Oxford University Press, 

255-292 

Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation 

to altered support-surface configurations. J Neurophysiol, 55(6), 1369-1381 

Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with 

somatosensory and vestibular loss. Exp Brain Res, 82, 167-177 

Horak FB, Shupert CL, Dietz V, Horstmann G (1994) Vestibular and somatosensory 

contributions to responses to head and body displacements in stance. Exp Brain 

Res, 100. 93-106 



 112

Hunter MC, Hoffman MA (2001) Postural control: visual and cognitive manipulations. 

Gait Posture, 13, 41-48 

Ingliss T, Horak FB, Shupert CL, Jones-Rycewicz C (1994) The importance of 

somatosensory information in triggering and scaling automatic postural responses 

in humans. Exp Brain Res, 101, 159-164 

Jacobson E (1943) Innervation and tonus of striated muscle in man. J Nerv Ment Dis, 97, 

197-203 

Jeka JJ, Kiemel T, Creath R, Horak F, Peterka R (2004) Controlling human upright 

posture: velocity information is more accurate than position or acceleration. J 

Neurphys, 92, 2368-2379. 

Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp 

Brain Res, 100, 495-502 

Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces in 

human postural control. Exp Brain Res, 103, 267-276 

Jeka JJ, Oie KS, Kiemel T (2000) Multisensory information for human postural control: 

integrating touch and vision. Exp Brain Res, 134, 107-125 

Jeka JJ, Oie KS, Schöner G, Dijkstra TMH, Henson EM (1998a) Position and velocity 

coupling of postural sway to somatosensory drive. J Neurophysiol, 79, 1661-1674 

Jeka JJ, Ribeiro P, Oie K, Lackner JR (1998b) The structure of somatosensory 

information for human postural control. Motor Control, 2, 13-33 

Jeka JJ, Schöner G, Dijkstra TMH, Ribeiro P, Lackner JR (1997) Coupling of fingertip 

somatosensory information to head and body sway. Exp Brain Res, 113, 475-483 



 113

Johansson R, Magnusson M, Åkesson M (1988) Identification of human postural 

dynamics. IEEE Tran Biomed Eng, 35(10), 858-869 

Johansson R, Magnusson M, Fransson P (1995) Galvanic vestibular stimulation for 

analysis of postural adaptation and stability. IEEE Trans Biomed Eng, 42(3), 282-

292 

Jonsson B, Synnerstad B (1966) EMG studies of muscle function in standing. A 

methodological study. Acta Morphol Neerl Scand, 6, 361-376 

Joseph J (1964) Electromyographic studies on muscle tone and the erect posture in man. 

Brit J Surg Res, 51(8), 616-622 

Joseph J (1962) Electromyographic studies of man’s posture. Clin Orthop, 25, 92-97 

Joseph J (1955) Electromyographic records and their interpretation. J Anat, 89(4), 559-

560 

Joseph J (1953) Electromyography of postural muscles – leg and thigh. J Anat, 87(4), 460 

Joseph J, Nightingale A (1952) Electromyography of muscles of posture: leg muscles in 

males. J Physiol (Lond), 117, 484-491 

Joseph J, Nightingale A, Williams PL (1955) A detailed study of the electric potentials 

recorded over some postural muscles while relaxed and standing. J Physiol, 127, 

617-625. 

Joseph J, Nightingale A, Williams PL (1954) A detailed study of the electric potentials 

from relaxed muscle and certain postural muscles of the leg and thigh. J Anat, 

88(4), 583-584 

Kavounoudias A, Roll R, Roll JP (2001) Foot sole and ankle muscle inputs contribute 

jointly to human erect posture regulation. J Physiol, 532(3), 869-878 



 114

Kelton IW, Wright RD (1949) The mechanism of easy standing by man. Australian J Exp 

Biol Med Sci, 27(5), 505-515 

Keshner E, Allum JHJ, Pfaltz CR (1987) Postural coactivation and adaptation in the sway 

stabilizing responses of normals and patients with bilateral vestibular deficit. Exp 

Brain Res, 69, 77-92 

Keshner EA, Kenyon RV, Langston J (2004) Postural responses exhibit Multisensory 

dependencies with discordant visual and support surface motion. J. Vestib Res, 

14, 307-319. 

Kiemel T, Oie KS, Jeka JJ (2006) Slow dynamics of postural sway are in the feedback 

loop. J Neurophys, 95, 1410-1418. 

Kiemel T, Oie KS, Jeka JJ (2002) Multisensory integration and the stochastic structure of 

postural sway. Biol Cybern, 87, 262-277 

Krafczyk S, Schlamp V, Dieterich M, Haberhauer P, Brandt T (1999) Increased body 

sway at 3.5-8 Hz in patients with phobic postural vertigo. Neurosci Lett, 259(3), 

149-152 

Kunkel M, Freudenthaler N, Steinhoff BJ, Baudewig J, Paulus W (1998) Spatial-

frequency-related efficacy of visual stabilization of posture. Exp Brain Res, 121, 

471-477 

Kuo AD (2005) An optimal state estimation model of sensory integration in human 

postural balance. J Neural Eng, 2(3), S235-49. 

Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) 

Sensory strategies in human postural control before and after unilateral vestibular 

neurotomy. Exp Brain Res, 115(2), 300-310  



 115

Lambrey S, Berthoz A (2003) Combination of conflicting visual and non-visual 

information for estimating actively performed body turns in virtual reality. Int J 

Psychophysiol, 50, 101-115. 

Lauk M, Chow CC, Pavlik AE, Collins JJ (1998) Human balance out of equilibrium: 

nonequilibrium statistical mechanics in posture control. Physical Rev Lett, 80(2), 

413-416 

Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud, 1, 

87-95 

Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. 

Percep Psychophys, 15, 529-532 

Lestienne F, Soechting J, Berthoz A (1977) Postural readjustments induced by linear 

motion of visual scenes. Exp Brain Res, 28, 363-384 

Lewko JP (1996) Assessment of muscle electrical activity in spinal cord injury subjects 

during standing. Paraplegia, 34(3), 158-163 

Lord SR, Ward JA, Williams P, Anstey K (1994) Physiological factors associated with 

falls in older community-dwelling women. J Am Geriatrics Soc, 42, 1110-1117 

Loughlin PJ, Redfern MS (2003) Analysis and modeling of human postural control. IEEE 

Eng Med Biol Mag, 22(2), 18 

Loughlin PH, Redfern MS, Furman JM (2003a) Nonstationarities of postural sway. IEEE 

Eng Med Biol, 22(2), 69-75 

Loughlin PH, Redfern MS, Furman JM (2003b) Time-varying characteristics of visually 

induced postural sway. IEEE Trans Rehab Eng, 4(4), 416-424 



 116

Mahboobin A. Loughlin PJ, Redfern MS, Sparto PJ (2005) Sensory re-weighting in 

human postural control during moving-scene perturbations. Exp Brain Res, 

167(2), 260-267. 

Maki BE, McIlroy WE, Fernie GR (2003) Change-in-support reactions for balance 

recovery. IEEE Eng Med Biol Mag, 22(2), 20-26 

Maki B, Holliday P, Ferne G (1987) A posture control model and balance test for 

prediction of relative stability. IEEE Trans Biomed Eng, BME-34, 797-810  

Martin JP (1965) Tilting reactions and disorders of the basal gangila. Brain, 88, 855-874 

Masani K, Popovic MR, Nakazawa K, Kouzaki M, Nozaki D (2003) Importance of body 

sway velocity information in controlling ankle extensor activities during quiet 

stance. J Neurophysiol, 90, 3774-3782 

Masson G, Mestre DR, Pailhous J (1995) Effects of the spatio-temporal structure of 

optical flow on postural readjustments in man. Exp Brain Res, 103, 137-150 

Mergner T. Maurer C, Peterka RJ (2003) A multisensory posture control model of human 

upright stance. Prog Brain Res, 142, 189-201. 

Miller RG. Beyond ANOVA, Basics of Applied Statistics. Wiley: New York, 1986. 

Morasso PG, Baratto L, Capra R, Spada G (1999) Internal models in the control of 

posture. Neural Networks, 12, 1173-1180  

Nakazawa K, Kawashima N, Obata H, Yamanaka K, Nozaki D, Akai M (2003) 

Facilitation of both stretch reflex and corticospinal pathways of the tibialis 

anterior muscle during standing in humans. Neurosci Lett, 338, 53-56 

Naponiello LV (1957) An electromyographic study of certain leg muscles in the easy 

standing position. Anat Rec, 127, 339-340 



 117

Nashner LM, Black FO, Wall C III (1982) Adaptation to altered support and visual 

conditions during stance: patients with vestibular deficits. J Neurosci, 2(5), 536-

544 

Newell KM, Slobounov SM, Slobounova ES, Molenaar PCM (1997) Stochastic 

processes in postural center-of-pressure profiles. Exp Brain Res, 113, 158-164 

Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of 

vision and touch for the control of human posture. Cog Brain Res, 14, 154-176 

Oie KS, Kiemel T, Jeka JJ (2001) Human multisensory fusion of vision and touch: 

detecting nonlinearity with small changes in the sensory environment. Neurosci 

Lett, 315, 113-116. 

Okuzumi H, Tanaka A, Nakamura T (1996) Age-related changes in the magnitude of 

postural sway in healthy women. Percept Mot Skills, 81 (3 Pt 1), 991-994. 

Panzer VP, Bandinelli S, Hallett M (1995) Biomechanical assessment of quiet standing 

and changes associated with aging. Arch Phys Med Rehabil, 76(2), 151-157 

Pavlik AE, Inglis JT, Lauk M, Oddsson L, Collins JJ (1999) The effects of stochastic 

galvanic vestibular stimulation on human postural sway. Exp Brain Res, 124, 273-

280 

Perrin PP, Jeandel C, Perrin CA, Béné MC (1997) Influence of visual control, 

conduction, and central integration on static and dynamic balance in healthy older 

adults. Gerontology, 43, 223-231 

Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophys, 

88(3), 1097-1118. 



 118

Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion analysis. 

Biol Cybern, 82, 335-343 

Peterka RJ, Benolken MS (1995) Role of somatosensory and vestibular cues in 

attenuating visually induced human postural sway. Exp Brain Res, 105, 101-110. 

Petersen H, Magnusson M, Fransson PA, Johansson R (1994) Vestibular disturbance at 

frequencies above 1 Hz affects human postural control. Acta Otolaryngol 

(Stockh), 114, 225-230 

Pouget A. Neural basis of Bayes-optimal multisensory integration: theory and 

experiments. Computational and systems neuroscience 2006, Models of 

multisensory integration: psychophysical and neural contraints. Salt Lake City, 

UT. 

Prieto TE, Myklebust JB, Hoffmann RB, Lovett EG, Myklebust BM (1996) Measures of 

postural steadiness: differences between healthy young and elderly adults. IEEE 

Trans Biomed Eng, 43, 956-66 

Ravaioli E, Oie KS, Kiemel T, Chiari L, Jeka JJ (2005) Nonlinear postural control in 

response to visual translation. Exp Brain Res, 160(4), 450-459 

Riley MA, Balasubramaniam R, Mitra S, Turvey MT (1998) Visual influences on center 

of pressure dynamics in upright posture. Ecological Psych, 10(2), 65-91 

Riley MA, Wong S, Mitra S, Turvey MT (1997) Common effects of touch and vision on 

postural parameters. Exp Brain Res, 117, 165-170 

Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on 

postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry, 73, 267-

274 



 119

Rogers MW, Wardman DL, Lord SR, Fitzpatrick RC (2001) Passive tactile sensory input 

improves stability during standing. Exp Brain Res, 136(4), 514-522 

Rougier P, Farenc I (2000) Adaptive effects of loss of vision on upright undisturbed 

stance. Brain Res, 871, 165-174 

Sasaki O, Usami S, Gagey PM, Martinerie J, Quyen M le van, Arranz P (2002) Role of 

visual input in nonlinear postural control system. Exp Brain Res, 147, 1-7 

Schöner G (1991) Dynamic theory of action-perception patterns: the “moving room” 

paradigm. Biol Cybern, 64, 455-462 

Schumann T, Redfern MS, Furman JM, El-Jaroudi A, Chaparro LF (1995) Time-

frequency analysis of postural sway. J Biomech, 28(5), 630-607 

Seber GAF. Multivariate observations. Wiley:New York, 1984. 

Shams L, Ma WJ. Bayseian inference as a unifying model for auditory-visual integration-

segregation. Computational and systems neuroscience 2006, Models of 

multisensory integration: psychophysical and neural contraints. Salt Lake City, 

UT. 

Smith JW (1954) Muscular control of the arches of the foot in standing: an 

electromyographic assessment. J Anat, 88, 152-163 

Soames RW, Atha J (1982) The spectral characteristics of postural sway. Eur J Appl 

Physiol, 49(2), 169-177 

Soames RW, Atha J (1981) The role of the antigravity musculature during quiet standing 

in man. Eur J App Physiol, 47, 159-167 

Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor 

planning. Nature Neurosci, 8(4), 490-497. 



 120

Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J. Neurosci, 

23(18), 6982-6992. 

Soechting JF, Berthoz A (1979) Dynamic role of vision in the control of posture in man. 

Exp Brain Res, 36, 551-561 

Stambolieva K, Popivanov D, Grigorova V (2001) Nonlinear dynamics of human 

postural sway during upright stance. Acta Physiol Pharmacol Bulg, 26(3), 159-63 

Stoffregen TA (1986) The role of optic velocity in the control of stance. Percep 

Psychophys, 39(5), 355-360 

Stoffregen TA (1985) Flow structure versus retinal location in the optical control of 

stance. J Exp Psych Hum Percep Perf, 14(5), 554-565 

Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ (2000) Modulating postural 

control to facilitate visual performance. Hum Mov Sci, 19, 203-220 

Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ (1999) Postural stabilization of 

looking. J Exp Psych Hum Percep Perf, 25(6), 1641-1658 

Tin C, Poon CS (2005) Internal models in sensorimotor integration: perspectives from 

adaptive control theory. J Neural Eng, 2, S147-53. 

van der Kooij H, Jacobs R, Koopman B, van der Helm F (2001) An adaptive model of 

sensory integration in a dynamic environment applied to human stance control. 

Biol Cybern, 80, 1211-1221 

van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory 

integration model of human stance control. Biol Cybern, 80, 299-308. 

von Vierordt K (1860/1877) Grundriss per physiologie des menschen. H Laupp: 

Tübingen. As translated in: Gagey PM, Standing posture, by Karl Vierordt 



 121

(Original Text). Retrieved 17 October 2003, from: http://perso.club-

internet.fr/pmgagey/VierordtDebout-a.htm 

Vries HA de (1965) Muscle tonus in postural muscles. Am J Phys Med, 44, 275-291 

Wade MG, Lindquist R, Taylor JR, Treat-Jacobson D (1995) Optical flow, spatial 

orientation and the control of posture in the elderly. J Gerontol, 508(1), P51-P58 

Warren WH, Kay BA, Yilmaz EH (1996) Visual control of posture during walking: 

functional specificity. J Exp Psych Hum Percep Perf, 22(4), 818-838 

Werness A, ANderson D (1984) Parametric analysis of dynamic postural response. Biol 

Cybern, 51, 155-168 

Wierzbicka MM, Gilhodes JC, Roll JP (1998) Vibration-induced postural after-effects. J 

Neurophysiol, 79(1), 143-150 

Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. New York: 

Plenum Press. 

Winter DA (1991) Biomechanics and motor control of human movement, 2nd Edition. 

New York: Wiley-Interscience. 

Winter DA, Patla AE, Ishac M, Gage WH (2003) Motor mechanisms of balance during 

quiet standing. J Electromyog Kinesiol, 13, 49-56 

Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding 

A/P and M/L balance in quiet stance. J Neurophysiol, 75(6), 2334-2343 

Wu G, Chiang JH (1997) The significance of somatosensory stimulations to the human 

foot in the control of postural reflexes. Exp Brain Res, 113, 163-169 

Zacharias GL, Young LR (1981) Influence of combined visual and vestibular cues on 

human perception and control of horizontal rotation. Exp Brain Res, 41, 159-171 



 122

Zatsiorsky VM, Duarte M (1999) Instant equilibrium point and its migration in standing 

tasks: rambling and trembling components of the stabilogram. Motor Control, 3, 

28-38 


