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Abstract 

CAPTCHAs are tests used by resource-rich websites to ensure that humans, but 

not malicious automated programs, have access to their resources. Most 
CAPTCHAs are visual tests (e.g. identifying distorted text), but auditory versions 

are necessary to provide access to the visually impaired, and are currently 
deployed at commonly used websites such as Google and Facebook. To be 

effective at deterring automated programs, they must be at least as secure as their 

visual counterparts. Assuming that the attacks against auditory CAPTCHAs will 
depend on automatic speech recognition systems (ASRs), we undertook the 

project of designing auditory CAPTCHAs that would take advantage of the 
weaknesses in ASRs as compared to the human auditory system. Examples of 

such weaknesses of ASRs, relative to humans, include impeded recognition in the 

presence of broadband and time-varying noise such as multiple simultaneous 
speakers. Results show that a combination of such disruptive noise types can 

outperform currently employed techniques while still maintaining human 
intelligibility. 

 

*These authors contributed equally to this work. 
† To whom correspondence should be addressed. E-mail: jzsimon@umd.edu 
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Introduction 

The notion of a machine imitating human intelligence was first addressed as early as 1950 by 

English mathematician and logician Alan Turing. Acknowledged as the father of modern 

computing, Turing recognized that computers might eventually be able to imitate human thought 
in very convincing ways. Therefore, he suggested what is now known as the Turing test, where a 

human converses with a computer without seeing it. If the human is convinced by the computer’s 

answers that it is human, then the machine passes the test and is deemed to have some level of 
human-like intelligence. The idea of a reverse Turing test, wherein a computer attempts to 

differentiate between a human and a computer, arose during the late 1990s when computer 
programs began to imitate humans in order to misuse the resources of internet-based systems. 

Tests developed to differentiate these programs from real humans took the form of what would 

come to be known as CAPTCHAs. [1-3] 

 In a general sense, CAPTCHAs are used to prevent automated software (i.e. “bots”) from 

abusing the resources of various systems. They arose from a need to reduce or eliminate mass 
spam on websites and in web-based mail, to prevent bots posing as humans from entering chat 

rooms, to eliminate voting fraud on online polls, and most importantly to protect sensitive data 

that could be accessed by a simulated user. For example, a bot might use an email provider to 
create multiple fake email accounts in order to send spam. Similarly, it could use a social 

networking site to spam or otherwise annoy the other users. Or, it might simply create fake 
accounts in order to use up system resources. CAPTCHAs can be used to prevent this misuse of 

resources by requiring that users prove that they are human before using a system.  

 The first CAPTCHAs were visual, requiring users to enter a series of letters or numbers 
based on a given distorted image. The image was meant to create a barrier for simulated users 

because a program would presumably not be able to interpret the image in order to enter the 
correct string of characters. Visual CAPTCHAs, however, are an accessibility barrier to users 

who are visually impaired or have cognitive disabilities such as dyslexia. Auditory CAPTCHAs 

attempt to provide accessibility where visual ones cannot.[4] 

 Since auditory CAPTCHAs are necessary for every website which must provide access to 
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all users, it is important that they be at least as secure as their visual counterparts—a website is 

only as secure as its weakest link.  

 It is important to understand the advantages as well as the vulnerabilities of auditory 

CAPTCHAs. For example, a bot might attempt to crack an auditory CAPTCHA by filtering out 
excess noise from the sound clip in order increase its signal quality. It may be stumped, then, if a 

human voice is mixed with background noise that shares similar frequencies; it then cannot 

distinguish which frequencies belong to the voice and which belong to the background noise. A 
human user may be able to understand the voice in that same situation, because the human brain 

has specialized ways to segment sound.  

 For instance, the “cocktail party effect” [5] is a well-known example of the human brain’s 

surprisingly facile ability to separate sound from one source among many. A common example of 

this is that someone at a noisy party can understand what another person is saying, despite the 
fact that the noise in this situation (i.e. all the other speakers) covers the same frequency range as 

the speech. A computer would likely be unable to accomplish this since it would be confused by 

so many voices of similar frequency and volume. This is the idea behind typical auditory 
CAPTCHAs—to utilize the human brain’s ability to segregate sound streams from disruptive 

noise.  

 In our research, we looked at some of the techniques currently used in some of the most 

advanced CAPTCHAs. We attempted to duplicate some of these techniques and to test how well 

they stand up to an automatic speech-recognition program (ASR). We also formulated some of 
our own distortion methods to observe how well they fared against the ASR. We focused 

exclusively on CAPTCHAs that contained a series of spoken digits, partly for simplicity, but also 
because, despite the fact that they require knowledge of spoken English, their pronunciation is 

more widely known among non-English speaking users than almost any other English words. 

Hypotheses 
The auditory CAPTCHAs used by the companies of Google [6] and Facebook [7] to protect their 
websites should represent some of the most advanced distortion techniques used today, since 
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their high-profile internet presence makes their resources so desirable. In listening to these 

auditory CAPTCHAS, and ones from other popular websites, we observed a variety of 
techniques used to distort the spoken text. For example, many of the spoken digits sounded as if 

reverberation had been added. Other spoken text sounded like a tempo or pitch change had been 
applied. Both Google and Facebook intermixed both male and female voices in one CAPTCHA 

file and added background noises derived from human speech. For instance, Facebook’s 

CAPTCHA background noise was simply reversed human speech. Many CAPTCHAs also 
featured “false leads”— sound elements which were as loud as the spoken digits, but to the 

human ear were clearly reversed numbers or gibberish. Our work focused on the distortion to the 
numbers themselves but not the false leads intended to fool an automatic speech recognizer.  

 

  

Figure 1: The sound waveform of an example Facebook CAPTCHA in its entirety. 

 

 We set out to test our own versions of some of these observed distortion techniques, to 
determine which were most effective at making spoken digits unrecognizable by an ASR while 

still recognizable to a human. We tested a variety of background sounds derived from human 
speech, as well as other methods such as cutting out part of the speech signal. The specific 
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techniques are discussed below. We expected each of our distortions to decrease the recognition 

rate of a speech recognition program when that program was trained on normal speech, although 
we did not know by how much. In addition, we hypothesized that combinations of these 

techniques would decrease the ASR’s recognition rate to lower than those found with Facebook 
or Google’s CAPTCHAs.  

Methods 
We used the freely available speech recognizer HTK (Hidden Markov Model Toolkit)[8] to test 

the power of our various distortion techniques. This speech recognizer can be trained on a 
number of sound files to recognize the difference between different words, or, in our case, digits. 

It can then be tested on new sound files, outputting which of these test words were identified 
correctly in a given test. In this experiment, it used a six-step Markov modeling technique in 

order to create guesses and provide recognition statistics for the input files. In order to use this 

speech recognizer, we needed to obtain a large database of spoken digits to train and test on.  

 To reflect the wide range of voices used to create advanced CAPTCHAs, we chose as our 

training corpus a collection of spoken digits from a subset of the TIDIGITS database.[9] There 

are approximately 2000 separate files in this database—almost 200 recordings of each digit zero 
through nine, spoken by different individuals. The people recorded were men and women with 

varied regional American accents, speaking at a variety of speeds and rhythms. For example, the 
final /r/ of “four” is not always present. Our hypothesis was that by training on a wide variety of 

speaking styles, our speech recognizer would likewise be able to identify the different speaking 

styles featured in the online CAPTCHAs.  

 The files were downsampled from 20 kHz sampling frequency to 8 kHz, in order to match 

the sampling frequency of typical CAPTCHAs. The sounds were also normalized in amplitude 
and their mean value set to zero. Furthermore, initial and final periods of silence were trimmed, 

in order to increase the performance of the ASR. Trimming was accomplished by a combination 

of automatic and manual methods. 

 To determine human intelligibility level of the distorted spoken digits, a computer script 
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was created to play randomly chosen files from the distorted testing database to human listeners. 

These subjects then entered via the computer keyboard their best guess for the digit, with 
feedback provided for correct vs. incorrect answers. A batch of digits distorted by a particular 

method was judged to be “intelligible” if no more than 3% were incorrect. Some digits were 
more prone to errors than others, e.g. some of the shorter ones such as “six”.  

 Only two human subjects were used to rate intelligibility (the first two authors), an issue 

which is discussed below. In future studies, more test subjects (and test subjects from a greater 
variety of backgrounds) should be used to get an accurate measure of intelligibility. 

 As mentioned above, our distortion techniques consisted either of adding background 
sound derived from human voices and other sources, or manipulating the sound itself. 

Preliminary attempts to manipulate the sounds included changing the tempo and/or pitch. It was 

found, however, that these changes did not change HTK’s recognition significantly from the 
original, undistorted files, so the technique was not pursued further.  

 Another preliminary technique was to modify a file sound by cutting out various parts of 

its signal. Kochanski et. al. [10] suggested that cutting out 60 ms of every 100 ms should 
decrease an ASR’s recognition rate to nearly zero without affecting human recognition. We 

tested this idea by breaking up the digits into 8 ms intervals and randomly removing half of the 
intervals. Besides removing parts of the signal in this way, we also attempted a similar technique 

where we replaced the deleted portions with white noise. We hoped that the human ear would be 

able to filter out this background noise and ignore it, but that the random signal would cause 
errors in HTK. 

 



 7 of 16 

   

Figure 2: The spoken digit “two”, before and after the cutout technique is applied. 

 

 At first, these techniques did degrade HTK’s recognition significantly. HTK uses 

windows of a specified duration (typically 25 ms) to analyze small intervals of the sound, so it 
was found that as long as the window size was somewhat greater than the size of the removed 

portions, recognition did not decrease dramatically. Even with as large an interval as 60 ms cut 
out, we were able to increase the window size such that the recognition rate did not degrade 

significantly. Intervals larger than 60 ms, however, would have degraded human recognition too 

much.  

 Another form of distortion that we attempted was to add echo. An echo is created by 

taking the sound samples and adding them back into a set number of samples later (the delay). A 
double echo is created by performing this same process but for two different delays, and a triple 

echo with three, etc. We hypothesized that this distortion technique would achieve low 

recognition from HTK, since Facebook and Google CAPTCHAs include reverberation, which is 
similar to echo. The results were poor, however – HTK had high recognition rates, within about 

90%, for most all of the echo files we tested.  

 We also tried adding reverberation directly, adding either mathematically simple or 
“natural” sounding reverberation. However, as with echo, after several trials it was found that 

these reverberation techniques did not have a significant impact on HTK’s recognition rate. For 
this reason they were not pursued further. 
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Figure 3: The spoken digit “seven”, before and after reverberation is applied. 

 

 As discussed above, the human auditory system can easily distinguish one human speaker 
from a cacophony of other voices, a task typically difficult for a computer. For this reason, we 

also decided to use background noises which themselves featured human speech in an attempt to 
better mask the target digit. This technique was particularly effective because the background 

noises share a similar frequency range with the spoken digit. Whereas the Facebook and Google 

CAPTCHAs use the reversed speech of one or two people speaking English, we decided to test 
backgrounds featuring more voices and speech of different languages. Each background noise 

was superimposed on the clean speech sounds. Each noise waveform was individually 
normalized and then the entire digit with distortion was again normalized.  

 Most of our background noise examples files were found in the audio file database 

Soundsnap, [11] a freely available database of users-contributed sound effects, consisting of a 
few types of background noise. One type was cheer, which consisted of recordings of people 

cheering at sporting events. This background noise covered a broad range of frequencies, 
especially in the higher range. Another type was chatter, e.g. the sounds of many people speaking 

simultaneously in a crowded place such a restaurant, with enough speakers that no one individual 

can be understood. The frequency range is lower, and has more temporal structure, than the cheer 
type. We hypothesized that the broad spectrum of frequencies found in the cheer and chatter 
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backgrounds would help prevent cracking the CAPTCHA because a simple frequency selective 

filters(e.g. low pass or high pass) used to extract the spoken digit would not be effective. 

 

   

Figure 4: The spoken digit “seven” before and after cheer is added. 

 

 Another type of background noise was created by combining ten random digits from our 

speech database. The resulting sound was not recognizable as any single number, but was rather a 

confusing mix that we called babble. Since this background noise was created using speech 
samples from the same pool used to create the testing files, this background was like cheer and 

chatter in that it featured many voices, but the frequency range was more similar to that of the 

digits themselves. We also tried temporally reversing the babble, to prevent any recognition of 
the digits used to make the background noise from distracting listeners from the target digit.  

 We also used the babble background in another way. We realized that, for human 
recognition, hearing the end of a number is not as important as hearing the first part of the 

number. Because the digits zero through nine all begin with different sounds, humans can 

recognize a digit before it is even finished. Knowing that we could take advantage of this ability, 
the babble noise was added to the last 75% of the target digit waveform, giving a new type called 

end-babble, in an attempt to mask the end of the digit but leave the beginning with cleaner 
speech. 
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Figure 5: The spoken digit “four” before and after end-babble is applied. 

 

 We hypothesized that background of another language would be less distracting to a 

human user than an English background, and therefore added speech in a foreign language as 

background noise (French). We used the AT&T Labs Text-to-Speech converter [12] to convert 
several paragraphs of French text into artificial speech waveforms, allowing us access to multiple 

voices, male and female. This additional variation is important when working with HTK because 
it reduces the ability of the computer to recognize speech patterns. The French distortion was 

similar to babble in intelligibility levels for human subjects. 

 Because Facebook’s CAPTCHAs achieved significantly lower recognition rates than 
Google’s (in fact an earlier version of the Google CAPTCHA was cracked in March 2008 [13]), 

our goal was to create CAPTCHAs which would achieve even lower rates than Facebook’s, 
while still maintaining human intelligibility. In using combinations of the different types of 

distortion, we found at least one combination of background noises that achieved this goal – 

mixing cheer, chatter, and end-babble types. The figure below displays the spectrogram of a 
spoken digit before and after this combination is applied.  
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Figure 6: An example of the most effective combination type applied to the spoken digit “nine”. 

 

Results 
Figure 7 shows the trends of individual distortions as higher percentages of each distortion are 
applied. As the corruption percentage increases, the graph shows which techniques better degrade 

HTK’s ability to recognize the testing database. The second-to-last data point for the trend lines 

corresponds to 100% corruption (the point deemed to be just-barely-intelligible). In other words, 
the techniques with a lower recognition rate at this second-to-last point were overall more 

effective at masking the identity of the digits to the ASR while still maintaining human 
intelligibility.  
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Figure 7: HTK recognition rates of our various distortion methods. The horizontal axis 

corresponds to an increasing corruption of the spoken digits, where 100% corruption (the second-
to-last data point) means that the digits are just barely intelligible. Lower HTK recognition rates 

at this point indicate a more effective distortion. 

 

 Table 1 shows the automatic recognition rates for the more successful distortion 

techniques, and extracted digits from Google and Facebook CAPTCHAs. The second column 
lists recognition rates of the various distortions when HTK was trained on the 2,000 clean digit 

files. The third column shows the recognition rates after HTK was instead trained on already 

digits distorted using the same technique as those tested on. These percentages are important 
because a technique which is varied enough to withstand being trained on examples of itself is 

more resilient to attack than one which can be easily cracked by discovering or mimicking the 
distortion. Distortions with a higher percentage in the third column are more susceptible to this 
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kind of attack than those with lower percentages. 

 

 

Distortion Type 

HTK Recognition trained 

on entire database 
(higher is worse) 

HTK Recognition 

trained on self 
(higher is worse) 

end-babble 74% 93% 

french 56.5% 88.0% 

babble 55.0% 90.0% 

Google CAPTCHA 42.0% 98.0% 

cheer (70%) 38.0% 73.0% 

chatter (60%) + end-babble (14%) 33.5% 84.5% 

chatter (80%) 28.5% 80.0% 

chatter (70%) + end-babble (14%) 28.0% 83.0% 

Facebook CAPTCHA 27.0% 62.5% 

cheer (40%) + chatter (30%) + end-babble 

(14%) 

23.0% 80.0% 

 

Table 1: HTK Recognition of our Distortion Techniques and CAPTCHAs. Percentages in the 

Distortion Type (first) column refer to fraction of full amplitude. The second column shows the 

recognition percentages when HTK was trained on clean speech. The third column shows the 
recognition percentages when HTK was trained on digits distorted in an identical way as the 

testing files. Distortion types are sorted by the second column: lower is better. 

 

 This table shows that our most successful technique was a combination of cheer, chatter, 

and end-babble background noise. When trained on undistorted digits, this combination achieved 
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a lower recognition rate (23%) than did the digits from Google (42%) or Facebook (27%) 

CAPTCHAs.  

Conclusions 
This project was limited in several ways which could be improved on in the future. Even though 

our training database contained a variety of speech styles, pitches, and intonation, an even more 
extensive database would likely improve a speech recognizer’s accuracy. The ASR could also be 

trained to recognize the silence before and after the spoken digits. This was something which 

proved to be too time-consuming, but training the recognizer to automatically distinguish 
between silence and the number would allow it to recognize digits which had not been hand-

trimmed. Similarly, the recognizer could be trained to distinguish between a given background 
noise and the digit.  

 The work would be most improved by using more human subjects to estimate the 

intelligibility of different distortion types. Using more subjects, unfamiliar with the distortion 
techniques and digit database, should help get a more objective assessment of intelligibility. 

 We discovered that several of our results were very promising: several combinations of 

distortions were able to achieve lower recognition rates than did Facebook’s CAPTCHAs, as low 
as 23% recognition rate by HTK (Figure 8). Variations of this combination such as increased 

babble and decreased cheer also achieved similar recognition rates. The variations most 
challenging to the human ear, though still intelligible by the criteria above, went as low as 20.5%.  

 Our end-babble technique was also surprisingly successful. Although on its own this 

technique did not degrade recognition very much, end-babble was essential to create the low 
recognition rates obtained with our combination techniques.  

 Our testing not only showed how well these techniques fared against HTK when trained 
on clean speech, but how well they performed when HTK was trained on a database distorted in 

the same way. These figures are important because they indicate how difficult it would be to 

crack a CAPTCHA by simply training using other examples the same website successfully 
identified by a human aide. Facebook’s recognition rate when trained on itself was only 62.5%, 
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whereas for Google the rate jumped to 98.0%. This shows that Google CAPTCHAs may be 

especially vulnerable to attack which use samples derived from Google itself to train their ASRs. 
Our cheer + chatter + babble combos consistently got around 80.0% recognition rates when 

trained on themselves, and other distortions lay between 73% and 93%. None of our distortions 
achieved as low a recognition rate against themselves as did Facebook, showing that these 

techniques are weaker than Facebook’s CAPTCHAs in this respect. However, using different 

techniques for different digits in the same CAPTCHA might alleviate this vulnerability 
independent of the distortion type. 

The 4% discrepancy between the recognition rates of our combination distortions and 
those of Facebook CAPTCHAs is not great enough to show that our technique is necessarily 

superior to those currently used in advanced CAPTCHAs. However, the similarly low 

recognition rates suggest that our technique can also be used successfully. Thus, in combination 
with existing methods, our techniques of background noise to mask the digits can be used to 

further increase the security of auditory CAPTCHAs. 
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