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This work describes the modeling and simulation of a parallel-plate Electrowet-

ting On Dielectric (EWOD) device that moves fluid droplets through surface tension

effects. The fluid dynamics are modeled by Hele-Shaw type equations with a focus

on including the relevant boundary phenomena. Specifically, we include contact

angle saturation, hysteresis, and contact line pinning into our model. We show that

these extra boundary effects are needed to make reasonable predictions of the correct

shape and time scale of droplet motion. We compare our simulation to experimental

data for five different cases of droplet motion that include splitting and joining of

droplets. Without these boundary effects, the simulation predicts droplet motion

that is much faster than in experiment (up to 10-20 times faster).

We present two different numerical implementations of our model. The first

uses a level set method, and the second uses a variational method. The level set

method provides a straightforward way of simulating droplet motion with topological



changes. However, the variational method was pursued for its robust handling

of curvature and mass conservation, in addition to being able to easily include a

phenomenological model of contact line pinning using a variational inequality. We

are also able to show that the variational form of the time-discrete model satisfies a

well-posedness result. Our numerical implementations are fast and are being used

to design algorithms for the precise control of micro-droplet motion, mixing, and

splitting.

We demonstrate micro-fluidic control by developing an algorithm to steer indi-

vidual particles inside the EWOD system by control of actuators already present in

the system. Particles are steered by creating time-varying flow fields that carry the

particles along their desired trajectories. Results are demonstrated using the model

given above. We show that the current EWOD system [29] at the University of Cal-

ifornia in Los Angeles (UCLA) contains enough control authority to steer a single

particle along arbitrary trajectories and to steer two particles, at once, along simple

paths. We also show that particle steering is limited by contact angle saturation

and by the small number of actuators available in the EWOD system.
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LIST OF FIGURES

1.1 Electrowetting applications. (a) The UCLA ‘lab-on-a-chip’ system.
View is from above through a transparent top electrode. The six bot-
tom electrodes are the black squares between the jagged white lines.
(b) The Phillips/Liquavista liquid color pixels. Left: colored oils are
wetted; right: voltage actuation has de-wetted the oils revealing a
reflective white background. The 30 micrometer diameter beaded oil
drops are too small to be seen by the naked eye, hence the pixels on
the left appear to be colored and the ones on the right look bright
white. The small size and fast switching speed of these pixels allows
them to be fabricated on thin and flexible substrates and to function
faster and brighter than regular LCD pixels. This allows, for exam-
ple, viewing of movies on a laptop in bright sunlight. (c) A schematic
diagram of the first liquid cell-phone lens by Varioptic. (Figures (a),
(b), and (c) courtesy of Chang-Jin (‘CJ’) Kim at UCLA, Hans Feil
and Rob Hayes at Liquavista/Phillips, and Bruno Berge at Varioptic.) 3

1.2 Schematic of sample EWOD device (courtesy of CJ Kim at UCLA).
This EWOD system consists of two parallel plates with the top plate
(transparent) acting as a ground electrode and the bottom plate con-
taining a grid of embedded electrodes. Wires are shown leading off of
the device and connecting to an external voltage source (not shown).
The small cubes near the edges are ‘spacers’ to ensure the channel
height is uniform. In practice, two pieces of cellophane tape (one on
each side) are used as spacers. See Figure 1.3 for a cross-sectional view. 6

1.3 Cross-sectional view of the EWOD device. The top layer is a (trans-
parent) ground electrode, followed by a coating of Teflon and a liquid
droplet. Underneath the droplet is a coating of Teflon, followed by a
layer of silicon dioxide (SiO2) that acts as a dielectric and improves
device performance. On the bottom is a grid of electrodes that can
be actuated individually to induce droplet motion.

7

1.4 Overhead view (through transparent electrode) of experimental EWOD
device (courtesy of CJ Kim at UCLA). A droplet is shown undergo-
ing a topological change (i.e. it is pinching). The voltage actuation is
25, 0, and 25 volts (from left to right) for the three square electrodes
that the droplet overlays. The long thin pieces are wires that lead to
voltage sources.

9
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1.5 Moving interfaces can be tracked by explicit and implicit methods.
a) Overhead view of the water/air interface in the UCLA experiment,
the droplet is just about to split. b) Explicit tracking of the interface
by a FEM over a mesh that conforms to the interface and is convected
by the flow. c) Implicit level-set tracking of an interface. The scalar
function shown is the signed distance function to the interface; it is
convected by the flow. The intersection of the scalar function and
the z = 0 horizontal plane (here shown as the thick ‘figure 8’ curve)
tracks the moving interface. d) Implicit phase-field tracking of the
interface. Here a phase variable, such as the fluid density, varies
smoothly from one phase (liquid, dark gray) to the other (gas, white)
and is convected by the flow. The interface is the thin smeared gray
layer. An inset shows the smoothed density function as it goes from
gas to liquid. There is also the Volume of Fluid (VoF) method (not
shown) that tracks volume fractions for each phase inside each cell
of a computational grid and then reconstructs the interface. And
the Coupled Level Set-VoF (CLS-VoF) method combines VoF and
level-sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 EWOD device geometry. The coordinate axes are defined such that
the top and bottom plates of the device lie in planes parallel to the x-
y plane. The physical parameters of the device are listed in Table 2.1.
17

2.2 Velocity profile: the fluid velocity field is assumed to have a quadratic
profile in the z direction.
19

2.3 Overhead view of a 2-D droplet with side view zoom-in of the in-
terface. The liquid-gas interface is assumed to have a circular cross-
section, which gives an estimate of the z curvature, κz, in dimensional
form. The x-y curvature, κxy, is just the curvature of the boundary
of the two dimensional droplet. . . . . . . . . . . . . . . . . . . . . . 22

2.4 Curvature note: κxy and κz are both positive for the bulging droplet
on top. For the inward bending droplet, only κz is negative.
23
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2.5 EWOD lumped circuit schematic. A voltage source is connected
across the device by connecting with the ground electrode (top) and
electrode grid (bottom); the electrodes are assumed to be perfect
conductors. Each layer of Teflon, and silicon dioxide layer, can be
modeled as a parallel resistor and capacitor. The liquid is assumed
to only be resistive. Values for the circuit components can be ob-
tained from [91]. The output voltage Vout is only taken across the
bottom plate of the device because that is where the majority of the
electrical energy is stored (due to the silicon dioxide layer). . . . . . . 25

2.6 Contact Angle Versus Voltage Curves: theoretical and experimen-
tal data for contact angle variations using electrowetting on dielec-
tric. The dotted line denoting the Young-Lippmann (Y-L) curve is
theoretical [94], [17], [36]. The single plate saturation curve has six
experimental data points (given in [29]) with a piecewise interpolat-
ing polynomial (see dashed line and ‘◦’ data points). The two plate
saturation curve has two experimental data points [29] with an in-
terpolating curve derived from the single plate case in Section 2.2.3
using a linear map (see solid line and ‘⋄’ data points). This curve
is used in our simulation to predict the correct droplet motion and
splitting time (see Section 5.1.3). . . . . . . . . . . . . . . . . . . . . 29

2.7 Illustration of contact line pinning and hysteresis. The contact line of
the droplet is where the liquid-gas interface meets the solid surface.
Line pinning simply means the contact line (and the droplet) is stuck
to the surface. A direct result of this is contact angle hysteresis,
which refers to the situation where the receding angle θR is less than
the nominal (equilibrium) angle θ0 while the advancing angle θA is
greater than θ0. In the diagram above, θ0 is the contact angle of the
droplet on a horizontal surface, whereas θR and θA are the contact
angles when the surface is tilted. The droplet can slide by using a
large enough tilt angle, but the motion will be limited by the static
frictional effect of line pinning and contact angle hysteresis will still
be present. A similar situation happens in EWOD, where hysteresis
also acts as a retarding effect by deforming the liquid-gas interface
shape in an unfavorable way (see Section 2.2.4). . . . . . . . . . . . . 30

2.8 Effects of contact angle hysteresis in the EWOD device. A droplet is
shown moving from left to right due to voltage actuation (OFF/ON).
When hysteresis is present, the contact angles differ from their nom-
inal (non-hysteresis) values. The effects on the liquid-gas interface
pressure are also shown. The presence of hysteresis causes the pres-
sure gradient throughout the droplet to be weakened from the nomi-
nal case (PR − PA > P̃R − P̃A). . . . . . . . . . . . . . . . . . . . . . 31
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2.9 Diagram of simple contact line pinning experiment. An adjustable
inclined plane is shown with a droplet resting on it. On the left,
the droplet slightly deflects towards the right because of gravity but
does not move because of the contact line pinning effect. When the
angle of the inclined plane is increased to a high enough value, the
force due to gravity is strong enough to overcome the pinning effect,
and the droplet slides down the plane. Given the angle at which the
droplet first slips, one can compute the maximal pinning force given
the droplet volume, density, and gravitational force. After performing
this experiment several times for droplets of varying volumes, it is
found that Fmax scales linearly with the contact line length Lcl [146],
[103]. This relation is written as Fmax = cpinLcl, where cpin is the line
pinning coefficient with the same units as surface tension. . . . . . . . 36

2.10 Contact line force averaging. Contact line friction is a force that is
active along the three-phase contact line. On the left, the contact
line pinning force is shown concentrated at the contact line (at both
the floor and ceiling). On the right, the pinning force has been redis-
tributed over the channel height. Since the governing EWOD fluid
equations have been averaged along the channel height, we average
the contact line friction force across the channel height. This redis-
tributes the force from a length of contact line (at floor and ceiling),
to a vertical strip along the liquid-gas interface. This allows the line
friction to be included in the pressure boundary conditions as an ad-
ditional pressure term (see equation (2.14)).

38

2.11 Line pinning variable versus normal velocity. The line pinning friction
variable λ is defined by the ‘sign’ function of the normal velocity:
λ = Ppin sgn(~u · ~n). If the normal velocity (~u · ~n) is positive, the
friction ‘pressure’ pushes against the interface with maximum +Ppin;
vice-versa when ~u · ~n is negative (note that ~n is an outward pointing
normal vector). When ~u · ~n = 0, the pinning variable takes on a
value between ±Ppin (i.e. −Ppin ≤ λ ≤ +Ppin) and acts as a lagrange
multiplier to enforce the constraint that the interface does not move.
Also see Figure 2.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.12 A 2-D droplet with parts of the boundary pinned. The pinned regions
are denoted by a dashed line; unpinned regions are shown as a solid
line with velocity arrows indicating direction of motion. An outward
motion is considered positive (~u · ~n > 0), and an inward motion is
negative (~u·~n < 0). The pinning variable λ is defined on the boundary
Γ of the droplet. On the unpinned regions, the value of λ saturates
to ±Ppin. On the pinned regions (~u · ~n = 0), λ continuously varies
between −Ppin and +Ppin. In our simulations (see Chapter 5), λ is
used to indicate where the boundary is pinned, i.e. the boundary is
pinned wherever |λ| < Ppin. . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Diagram of 2-D droplet domain with notation. The domain of the
droplet is denoted by Ω and its liquid-gas interface is labeled Γ. The
unit vectors ~n and ~t denote the outward pointing normal vector and
‘right-hand’ oriented tangent vector. Inside the droplet, the pressure
field obeys Laplace’s equation, and the velocity field is governed by a
Hele-Shaw type equation. The pressure boundary condition depends
on the curvature of Γ (denoted κ) and the EWOD forcing E. . . . . . 43

3.1 Algorithm flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Computational domain layout. Liquid region corresponds to interior
nodes. Boundary nodes are adjacent to the interior nodes.
48

3.3 Example of a level set function. The zero level contour is highlighted
with a thick black line and shows a droplet about to split.
49

3.4 Velocity Field Extension. Illustration showing before and after results
of extending the velocity field by diffusion using Jacobi iterations.
54

4.1 Example test function over the domain Ω. Intuitively, test func-
tions are used to extract information about the solution of the PDE
through the integral representation. The variational formulation pro-
vides a convenient way of encoding the conditions that a function
must satisfy in order to be a solution of the PDE. A particular test
function provides a very small amount of information, in the support
of the test function (i.e. where it is non-zero), about the PDE solu-
tion. Hence, one must test with all possible test functions in order
to ‘see’ the whole solution.
61
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4.2 Triangulated domain and ‘hat’ function. On the left, a domain has
been partitioned into a (coarse) triangulation, and is denoted by Ω.
On the right, a local ‘hat’ function is shown over a sub-domain of
Ω. There is one hat function for each vertex in the triangulation.
The collection of hat functions defines a finite dimensional subspace
of H1(Ω) and is used to approximate solutions of the PDE listed in
equation (4.1).
63

4.3 Convex set of functions. A plot of an example function µ in the con-
vex set K is shown. The vertical axis is the amplitude and the s axis
is along the interface Γ (µ is a function defined on Γ). The function
µ is periodic because Γ is a closed curve. Above the plot, an exam-
ple droplet domain Ω is shown with dashed lines indicating pinned
regions of the boundary where |µ| < Ppin. Functions in K are limited
in amplitude to ±Ppin point-wise. The set K is convex because of
the following: let µ1 and µ2 be in K, and let µ = (1 − t)µ1 + tµ2,
where 0 ≤ t ≤ 1. Then clearly −Ppin ≤ µ ≤ +Ppin at each point on
Γ, which implies µ is in K. Hence, by the definition of convexity, K
is convex.
81

4.4 A triangulated domain with curved triangles on the boundary. The
boundary Γ of the domain Ω is composed of curved sides that are
piecewise quadratic and continuous. The ‘dots’ mark the degrees-
of-freedom (DoF) of the quadratic polynomials that are defined on
each triangle. Quadratic sides are required to compute curvature
accurately when using piecewise quadratic polynomial functions to
approximate the velocity field [128]. . . . . . . . . . . . . . . . . . . . 93

4.5 Projection onto a convex set. By equation (4.110), we know that the
inner product of the functions (λ−ω) and (λ−µ) must be negative or
zero for all µ in the convex set Λh (note: ω := λ+ρ~u ·~n). This is only
possible if λ is the L2(Γ) projection of ω onto Λh (i.e. λ = PΛh

(ω)).
105

5.1 Droplet splitting experimental results with level set simulation over-
lay. Six frames showing the video snapshots of the experiment (cour-
tesy of CJ Kim and Sung Kwon Cho at UCLA). The three electrodes
shown in each frame have activation voltages (from left to right) of
25, 0, and 25 volts. Each electrode is approximately square with a
side length of 1.4 millimeters. The dashed-line droplet outlines are
from the simulation depicted in Figures 5.10 and 5.11 and show a
direct comparison between experiment and the level set simulation
including contact angle saturation and hysteresis. . . . . . . . . . . . 113
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5.2 Young-Lippmann Model with the level set method (part A): sim-
ulation frames showing splitting behavior under the ideal Young-
Lippmann theory. Simulation continued in Figure 5.3. . . . . . . . . . 115

5.3 Young-Lippmann Model with the level set method (part B): sim-
ulation frames showing splitting behavior under the ideal Young-
Lippmann theory. Split time is 18.9 times faster than the experiment. 116

5.4 Young-Lippmann Model with the variational method (part A): sim-
ulation frames showing splitting behavior under the ideal Young-
Lippmann theory. Simulation continued in Figure 5.5. . . . . . . . . . 117

5.5 Young-Lippmann Model with the variational method (part B): sim-
ulation frames showing splitting behavior under the ideal Young-
Lippmann theory. Split time is slightly shorter than with the level
set method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Saturation Model with the level set method (part A): simulation
frames showing splitting behavior when contact angle saturation is
included. Simulation continued in Figure 5.7. . . . . . . . . . . . . . . 121

5.7 Saturation Model with the level set method (part B): simulation
frames showing splitting behavior under the contact angle saturation
model. Split time is 11.6 times faster than the experiment. . . . . . . 122

5.8 Saturation Model with the variational method (part A): simulation
frames showing splitting behavior when contact angle saturation is
included. Simulation continued in Figure 5.9. . . . . . . . . . . . . . . 123

5.9 Saturation Model with the variational method (part B): simulation
frames showing splitting behavior under the contact angle saturation
model. A small satellite drop is released in the center (not present in
the level set simulation). The split time is also slightly shorter than
with the level set method. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10 Saturation and Hysteresis Model with the level set method (part A):
simulation frames showing splitting behavior when both contact an-
gle saturation and hysteresis are added (Khys = 0.09). Simulation
continued in Figure 5.11. . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Saturation and Hysteresis Model with the level set method (part B):
continuation from previous figure. The droplet splits in the same
amount of time as the experiment. Overlays of this simulation are
shown in Figure 5.1 on top of video frames from the actual experiment.127
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5.12 Saturation, Hysteresis, and Contact Line Pinning Model with the
variational method (part A): simulation frames showing splitting be-
havior when the full model is used (Khys = 0.1505, cpin = 3 ×
10−3 N / m). Bolded parts of the droplet interface represent regions
that are ‘pinned’ because of contact line pinning. Note that pinning
only restricts the normal velocity to zero; there can still be a tangen-
tial motion. Simulation continued in Figure 5.13. . . . . . . . . . . . 129

5.13 Saturation, Hysteresis, and Contact Line Pinning Model with the
variational method (part B): continuation from previous figure (same
format). The droplet splits in the same amount of time as the exper-
iment. Overlays of this simulation are shown in Figure 5.14 on top
of video frames from the actual experiment. . . . . . . . . . . . . . . 130

5.14 Droplet splitting experimental results with variational simulation over-
lay. Same format as Figure 5.1. The dashed-line droplet outlines are
from the simulation depicted in Figures 5.12 and 5.13 and show a di-
rect comparison between experiment and the variational simulation
including contact angle saturation, hysteresis, and contact line pinning.131

5.15 Moving water droplet motion experimental results with level set sim-
ulation overlay. Four frames show video snapshots of the experiment
(courtesy of CJ Kim and Jian Gong at UCLA). A time-varying se-
quence of voltages is applied to the eight electrode pattern so as to
make the droplet move right, up, and then left. Each electrode is
square with a side length of 1.4 millimeters. All device parameters
here are the same as for the splitting experiment shown in Figure
5.1 except the electrode pattern is different. The dashed-line droplet
outlines (from simulation) show a direct comparison between the ex-
periment and a level set simulation including contact angle saturation
and hysteresis (Khys = 0.09). . . . . . . . . . . . . . . . . . . . . . . . 133

5.16 Moving water droplet motion experimental results with variational
simulation overlay. Same format as Figure 5.15. The dashed-line
droplet outlines (from simulation) show a direct comparison between
the experiment and a variational simulation including contact angle
saturation, hysteresis, and line pinning (Khys = 0.1505, cpin = 3 ×
10−3 N / m). The simulated droplet appears to follow the real droplet
a little more closely as compared to the level set simulation in Figure
5.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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5.17 Moving Glycerin droplet experimental results with variational simu-
lation overlay. Frames show video snapshots of the experiment (cour-
tesy of CJ Kim and Jian Gong at UCLA). The applied voltage (50
volts) switches between the left and right electrodes every two sec-
onds. Each electrode is square with a side length of 1.5 millimeters.
Simulation and device parameters are given in Table 5.3. Note the
large time-scale because glycerin is highly viscous. The simulation
follows the experiment fairly well, except the ‘tail’ narrows more in
the simulation than in the experiment. . . . . . . . . . . . . . . . . . 136

5.18 Moving Glycerin droplet variational simulation. The applied voltage
(50 volts) switches between the left and right electrodes every two
seconds. Each electrode is square with a side length of 1.5 millimeters.
Simulation and device parameters are given in Table 5.3. Bolded parts
of the droplet interface represent regions that are ‘pinned’ because of
contact line pinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.19 Joining water droplets experimental results with variational simula-
tion overlay. Frames show video snapshots of the experiment (cour-
tesy of CJ Kim and Jian Gong at UCLA). The applied voltage (65
volts on the center electrode only) causes the two side droplets to
flow together and eventually merge. Each electrode is approximately
square with a side length of 1.5 millimeters. Simulation and device
parameters are given in Table 5.3. The simulation matches the ex-
periment fairly well in the first four frames. However, the pinning
behavior in the experiment is significantly different than the simula-
tion in the last two frames. . . . . . . . . . . . . . . . . . . . . . . . . 138

5.20 Joining water droplets variational simulation. The applied voltage
(65 volts on the center electrode only) causes the two side droplets
to flow together and eventually merge. Each electrode is approxi-
mately square with a side length of 1.5 millimeters. Simulation and
device parameters are given in Table 5.3. Bolded parts of the droplet
interface represent regions that are ‘pinned’ because of contact line
pinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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5.21 Splitting Glycerin droplet experimental results with variational simu-
lation overlay. Frames show video snapshots of the experiment (cour-
tesy of CJ Kim and Jian Gong at UCLA). The applied voltage (65
volts on the left and right electrodes) causes the droplet to be pulled
apart and eventually split. Each electrode is approximately square
with a side length of 1.5 millimeters. Simulation and device param-
eters are given in Table 5.3. The match between the simulation and
experiment is very good. The only difference is that, in the experi-
ment, slightly more fluid flows into the left satellite droplet than in
the right droplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.22 Splitting Glycerin droplet variational simulation. The applied volt-
age (65 volts on the left and right electrodes) causes the droplet to
be pulled apart and eventually split. Each electrode is approximately
square with a side length of 1.5 millimeters. Simulation and device
parameters are given in Table 5.3. Bolded parts of the droplet inter-
face represent regions that are ‘pinned’ because of contact line pinning.142

6.1 The EWOD system manipulates fluids by charging a dielectric layer
underneath the liquid that effectively changes the local surface tension
properties of the liquid/gas interface creating liquid motion. Existing
(move, split, join, and mix) capabilities of electrowetting devices are
shown schematically (see [89], [79], [131], [107], [111], [28], [55]) above
the new particle steering capability developed in this thesis. The
view is from overhead the EWOD device. Shaded circles represent
droplets of liquid. Squares are electrodes, where the lighter shading
indicates the electrode is on. Directed lines specify the direction of
motion. The multi-shaded droplet shows the diffusion and mixing of
two chemicals; here mixing is enhanced by the fluid dynamics created
inside the droplet due to its imposed motion. . . . . . . . . . . . . . . 145
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6.2 Particle steering closed loop feedback control architecture. 1) The
EWOD device is observed by 2) an image system (a microscope/camera
or an on-chip contact imager) which transmits information to 3) a
computer or chip that contains 3a) an image processing algorithm to
identify droplet shapes and the location of the particles and 3b) a
control algorithm that computes the actuator voltages that will move
the particles from where they are to where they should be, and 4)
these actuation voltages are then applied on the EWOD device. The
loop repeats at each time step to steer the particles along their de-
sired trajectories. The zoomed overhead view of the EWOD device
(at right) shows a single droplet with one particle floating inside. The
curvy line indicates the desired path of the particle. In our control al-
gorithm, we sample the trajectory by many points (only seven points
are shown here; see numbered stars 1-7). . . . . . . . . . . . . . . . . 149

6.3 Linear combination of pressure gradients for a single droplet overlay-
ing four electrodes (small dashed squares). The diagram above shows
a droplet in an EWOD system with four different instances of voltage
actuation. In each instance, only one of the four electrodes is on.
The particle floating inside the droplet (black dot) has a thick arrow
indicating its direction of motion for each single electrode actuation.
These arrows actually represent the opposite direction of the pressure
gradient when a unit pressure boundary condition is set on the thick
curve that overlays the shaded electrode, with zero pressure bound-
ary conditions everywhere else. The thin curvy arrows show the fluid
flow inside the droplet. Since the pressure field obeys Laplace’s equa-
tion (2.15), it is linear and we can make the particle move in any
desired direction by taking an appropriate linear combination of the
four possible boundary conditions given above. . . . . . . . . . . . . . 153

6.4 Linear transformation of boundary conditions; an example of satisfy-
ing the boundary condition constraints. On the left, the components
of the solution to (6.3) are plotted with the maximum and minimum
constraint bounds denoted by dashed lines (see equation (6.4)). On
the right, the components have been linearly mapped to enforce the
constraints. This introduces a scaling factor into the linear system
(6.3), which affects the magnitude of the desired direction vector b
(i.e. the magnitude of the force acting on the particles). In effect,
this causes the particle to be forced as much as possible in the desired
direction.
156
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6.5 Voltage versus contact angle with contact angle saturation. Here we
show the inverse mapping of the thick black line in Figure 2.6 that
represents the contact angle variability of the EWOD device. The
plot shows how to compute the voltage needed to actuate a specific
contact angle. The dashed line depicts the mapping from a 105.0◦

contact angle to a voltage of about 14.2 volts. We use this in our
control algorithm for estimating the necessary actuation voltages (see
Section 6.2.4).
158

6.6 EWOD particle steering control algorithm update. The droplet con-
figuration from Figure 6.2 is shown on the left. The direction of
motion for the particle is toward the trajectory point that is just out
of reach for the current time step. This control strategy ensures the
particle will move as fast as possible and stays close to its desired
trajectory. On the left, the shaded electrodes contain the voltages
needed to move the particle in the desired direction. These voltages
are computed by the least squares solution in Section 6.2.4, the con-
straint map in Figure 6.4, and by the voltage versus contact angle
curve in Figure 6.5. The varying voltage grid induces a pressure gra-
dient field inside the droplet such that minus the pressure gradient
at the particle’s position is pointing along the desired direction of
motion. This moves the droplet and particle along the trajectory to
the next time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Particle following a figure ‘8’ path (level set method). An initially
circular droplet (denoted by the closed black curve) lies on a 3x3 grid
of electrodes (denoted by straight lines). The dashed figure ‘8’ curve
is the desired path, and a large dot represents the particle with an
arrow pointing in the desired direction of travel. The light solid curve
that overlays the dashed curve is the actual path of the particle. The
time-stamp is given in the upper left corner. The voltages on the grid
are time varying in such a way as to keep the particle moving along
the desired path with less than 20 micrometers deviation. . . . . . . . 162

6.8 Particle following a figure ‘8’ path (variational method without pin-
ning). Same format as Figure 6.7. The results are similar to Figure
6.7 with some differences in the droplet shape and total time to move
the particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xxii



6.9 Particle following a figure ‘8’ path (variational method with pinning).
Same format as Figure 6.8, except the extra bolded parts of the
droplet boundary denote pinned regions of the liquid-gas interface. In
this case, the droplet becomes nearly stuck (shown in the last frame)
and asymptotically approaches a completely pinned state. This is
because the particle is slightly off of the desired way-point, so the
algorithm is trying to force the particle back on but fails to apply
enough forcing. Basically, the control algorithm cannot account for
potential pinning of the droplet. It is possible to ‘unstick’ the droplet
but would require a different algorithm. . . . . . . . . . . . . . . . . . 164

6.10 Particle following an angular path (level set method). Same format
as Figure 6.7. The particle is able to track the trajectory very well,
even at the corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.11 Particle following an angular path (variational method without pin-
ning). Same format as Figure 6.8. The path of the particle appears
to follow the desired trajectory slightly better than for the level set
simulation shown in Figure 6.10. . . . . . . . . . . . . . . . . . . . . . 167

6.12 Particle following an angular path (variational method with pinning).
Same format as Figure 6.9. The particle is able to follow the trajec-
tory at first, but then begins to deviate (see later frames). Eventually,
it becomes nearly stuck (shown in the last frame) and asymptotically
approaches a completely pinned state. Explanation is the same as
that given in Figure 6.9. . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.13 Two-particle control: one particle moves on a circular arc, the other
is stationary (level set method). Same format as Figure 6.7. The
stationary particle’s trajectory is a single point. As the particle on
the right follows the circular arc, the droplet distorts to accommodate
both particle motions. Eventually, the algorithm is unable to continue
the particle motion due to the restrictive condition of moving one
particle while the other is held stationary, in addition to overcoming
the curvature effect of the deformed droplet. . . . . . . . . . . . . . . 169

6.14 Two-particle control: one particle moves on a circular arc, the other
is stationary (variational method without pinning). Same format as
Figure 6.8. The results are similar to Figure 6.13. . . . . . . . . . . . 170

6.15 Two-particle control: one particle moves on a circular arc, the other is
stationary (variational method with pinning). Same format as Figure
6.9. The results are similar to Figure 6.14 with some variation of
droplet shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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6.16 Two-particle separation into two satellite drops, part A (level set
method). Same format as in Figure 6.7. Each particle first follows a
trajectory that takes them away from each other. When there is suf-
ficient distance between the two particles (see last frame), our control
algorithm turns off and the separation is completed by applying open
loop voltages that split the droplet. Simulation continued in Figure
6.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.17 Two-particle separation into two satellite drops, part B (level set
method). Same format as in Figure 6.7. . . . . . . . . . . . . . . . . . 174

6.18 Two-particle separation into two satellite drops, part A (variational
method without pinning). Same format as Figure 6.8. The paths of
the particles follow the desired trajectories much better than for the
level set method in Figure 6.16. Eventually, the algorithm turns-off
(last frame) and open loop voltages are applied to split the droplet.
Simulation continued in Figure 6.19. . . . . . . . . . . . . . . . . . . 175

6.19 Two-particle separation into two satellite drops, part B (variational
method without pinning). Same format as Figure 6.8. . . . . . . . . . 176

6.20 Two-particle separation into two satellite drops (variational method
with pinning). Same format as Figure 6.9. The particles attempt
to follow the splitting trajectories, but quickly become stuck due to
contact line pinning (the droplet is fully pinned in the last frame).
The algorithm is unaware of the pinned state and does not know how
to compensate. See Figure 6.9 for more explanation. . . . . . . . . . . 177

6.21 Particle traveling on a sine wave (level set method). Same format as
Figure 6.7. The particle is able to track the sine wave path until the
last time frame where the particle drifts away from the desired tra-
jectory momentarily (see ‘kink’ in the particle path just underneath
the particle’s position in the last frame). . . . . . . . . . . . . . . . . 179

6.22 Particle traveling on a sine wave (variational method without pin-
ning). Same format as Figure 6.8. The particle follows the sine wave
very well, until near the end of the path where it is unable to continue.
More electrodes would be needed to continue the motion. Also note
that the particle does not drift away from the center of the droplet as
much as for the level set simulation (Figure 6.21). It is possible that
the excessive drift in Figure 6.21 is a numerical artifact of the level
set method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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6.23 Particle traveling on a sine wave (variational method with pinning).
Same format as Figure 6.9. The particle is able to follow the tra-
jectory very well until it becomes nearly stuck due to contact line
pinning (last frame). . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.24 Two particles trying to come together and pinch a droplet (level set
method). Same format as Figure 6.7. The particles travel on two sep-
arate trajectories that would, ideally, bring them together. However,
as they come together, numerical instabilities in (6.3) cause random
variations in the control voltages. This causes the droplet to hold its
shape and move up and down in an undesirable way. . . . . . . . . . 182

6.25 Two particles trying to come together and pinch a droplet (variational
method without pinning). Same format as Figure 6.8. Results are
similar to the level set method (Figure 6.24). . . . . . . . . . . . . . . 184

6.26 Two particles trying to come together and pinch a droplet (variational
method with pinning). Same format as Figure 6.9. Results are similar
to the non-pinning case (Figure 6.25). . . . . . . . . . . . . . . . . . . 185

6.27 Two particles on diverging paths (level set method). Same format as
Figure 6.7. Each particle is attempting to follow separate trajectories,
both of which lead away from each other. Due to limitations of the
pressure boundary actuation and a lack of electrodes, the control
algorithm is unable to keep both particles moving on their respective
paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.28 Two particles on diverging paths (variational method without pin-
ning). Same format as Figure 6.8. Results are similar to the level set
method (Figure 6.27). . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.29 Two particles on diverging paths (variational method with pinning).
Same format as Figure 6.9. The particles are able to follow their tra-
jectories at first, but eventually becomes nearly stuck (third frame).
The last frame shows the droplet asymptotically approaching a com-
pletely pinned state. Explanation is the same as that given in Figure
6.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.1 A 1-D closed curve Γ with mapping ~X. The mapping is defined on
a single reference domain U , which is just an interval. Only one
reference domain is needed for 1-D curves. . . . . . . . . . . . . . . . 199
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A.2 Section of a 2-D surface Γ with mapping ~X. The mapping is de-
fined on multiple open sets {U1, U2, U3} (reference domains) that are
disjoint. Each Ui is mapped to a small patch (denoted by a dashed
curve) on the surface Γ. More than one reference domain is required
to cover the whole surface Γ if it is closed. . . . . . . . . . . . . . . . 199

A.3 A 1-D curve Γ (in the x-y plane) shown as a cross-section of a 2-D sur-
face Γ2D. All differential geometric formulas derived in this appendix
are for a 2-D surface in an ambient 3-D space. But these formulas
also hold for a 1-D curve in a 2-D ambient space. This can be seen
by noting that a 1-D curve can be interpreted as a cross-section of a
cylindrical surface (shown here).
200

C.1 Polygonal boundary Γh approximating a closed smooth curve Γ̂. The
polygon consists of a set of straight sides {Sk} with vertices {~xi} de-
noted by thick dots (note: all vertices lie on the smooth boundary
Γ̂). The outward pointing normal vector of Γh is ~n, and on each side

Sk it is labeled ~nk. The normal vector of the smooth domain is ~̂n.
Because Γh is closed, the vertex ~xNS

precedes ~x1.
226

C.2 Curved polygonal boundary Γh approximating a closed smooth curve
Γ̂ (denoted by the thicker curve). Γh consists of a set of curved sides
{Sk} with vertices {~xi} shown as thick dots and midpoints {~mi}
shown as black diamonds (note: all vertices and midpoints lie on
the smooth boundary Γ̂). The outward pointing normal vector of Γh

is ~n, and on each side Sk it is labeled ~nk. The normal vector of the
smooth domain is ~̂n. Because Γh is closed, the vertex ~xNS

precedes ~x1.
229

C.3 Zoom-in of side Sk of the polygon Γh (dashed line) with the smooth
(thick) curve Γ̂. The side Sk of the polygon has vertices ~xk and ~xk+1

with unit normal ~nk and lies on the s axis with length hk := |Sk|. It is
assumed that Γh is sufficiently refined to allow for the smooth curve Γ̂
to be represented (locally) as the graph of a function f on the interval
[0, hk]. The vertex ~xk of the polygon is located at (s = hk, f(hk) = 0),
and ~xk+1 is at (s = 0, f(0) = 0). The smooth curve has normal vector

~̂n, and we define ~̂nk := ~̂n(~xk) and ~̂nk+1 := ~̂n(~xk+1). The angle θ is

between ~nk and ~̂nk+1.
234
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C.4 Zoom-in of side Sk of the curved polygon Γh (dashed line) with the
smooth (thick) curve Γ̂. The side Sk of the polygon has vertices ~xk

and ~xk+1, with middle vertex ~mk labeled as a black diamond. The
unit normal vector of Sk is ~nk and is not constant along Sk. The
length of Sk is denoted hk := |Sk|. Γh is assumed to be sufficiently
refined to allow for the smooth curve Γ̂ to be represented (locally)
as the graph of a function f on the interval [0, lk], with f ′(0) = 0.
The vertex ~xk of the polygon is located at (s = lk, f(lk)), and ~xk+1

is at (s = 0, f(0) = 0). The smooth curve has normal vector ~̂n, and

we define ~̂nk := ~̂n(~xk) and ~̂nk+1 := ~̂n(~xk+1). The normal vector of
the curved side at the endpoints is defined as ~n1

k := ~nk(~xk+1) and

~n0
k := ~nk(~xk). The angle θ is between ~n1

k and ~̂nk+1. . . . . . . . . . . . 240
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Chapter 1

Introduction

In 1875, Gabriel Lippmann demonstrated, through rigorous theory and ex-

periments, a relationship between electrical and surface tension phenomena [94]

(see [103] for an English translation). This relationship allows for controlling the

shape and motion of a liquid meniscus (i.e. liquid-gas interface) through the use

of an applied voltage. The liquid surface changes shape when a voltage is applied

in order to minimize the total energy of the system (i.e. the sum of the surface

tension energy and electrical energy). In his seminal paper, he showed applications

of this effect ranging from allowing sensitive voltage measurements to a working

electro-capillary motor. Today, this effect is known as electrowetting and has seen a

resurgence in modern applications in the area of Micro-Electro-Mechanical Systems

(MEMS). Some of these applications include cell phone camera lenses [15], video

speed electronic paper [65], and ‘lab-on-a-chip’ devices [62].

The main topic of this thesis concerns the fluid dynamics of water droplets

actuated through electrowetting in a specific system configuration. To begin, we

review the current literature and applications of electrowetting. Next, we give a

description of the particular electrowetting configuration in which we are interested.

Then, we give an overview of various numerical methods for simulating two-phase

flow which is important for our application. Finally, we give a thesis outline.
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1.1 Literature Overview and Applications of Electro-Wetting

Well designed MEMS devices take advantage of the large surface-to-volume

ratios found at the micro-scale. In particular, micro-fluidic devices often exploit

surface tension forces to actuate or control liquids [66], [33], [53]. Electro-wetting

refers to using electrical fields to effectively modify surface tension effects [94], [103],

[34] (see [82] and [81] for some fascinating experimental demonstrations). This allows

for the manipulation of fluid droplets at the micro-scale.

Applications for these devices range from micro-fluid transport [118], mixing

[108], dispensing [113], and ‘lab-on-a-chip’ devices that automate functions, such as

sensing and testing of biological samples [48], [131], to tunable optical fiber devices

[25], [75], reflective displays [115], and light valves [68], [67]. See Figure 1.1 for more.

This thesis is concerned with modeling a specific variant of electrowetting

called Electrowetting-On-Dielectric (EWOD) [29], which has an extra insulating

layer to enhance its operation (see Section 1.2 for a full description of the EWOD

device). See [99] for an initial experimental demonstration and [14] for an analysis

of the advantage of using a dielectric insulating layer in an electrowetting system.

Similar applications exist for the EWOD device as well, such as mass spectrom-

etry [144], [101], mixing [55], ‘lab-on-a-chip’ [62], micro-injection [73], and particle

separation and concentration control [27]. Potential uses of these technologies could

be for controlled mixing of chemicals and automated DNA testing.

Ultimately, these applications will need accurate fluid dynamical control in

order to execute their many subtasks (i.e. particle control, precise droplet motion,
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Figure 1.1: Electrowetting applications. (a) The UCLA ‘lab-on-a-chip’ system.

View is from above through a transparent top electrode. The six bottom electrodes

are the black squares between the jagged white lines. (b) The Phillips/Liquavista

liquid color pixels. Left: colored oils are wetted; right: voltage actuation has de-

wetted the oils revealing a reflective white background. The 30 micrometer diameter

beaded oil drops are too small to be seen by the naked eye, hence the pixels on the

left appear to be colored and the ones on the right look bright white. The small

size and fast switching speed of these pixels allows them to be fabricated on thin

and flexible substrates and to function faster and brighter than regular LCD pixels.

This allows, for example, viewing of movies on a laptop in bright sunlight. (c) A

schematic diagram of the first liquid cell-phone lens by Varioptic. (Figures (a), (b),

and (c) courtesy of Chang-Jin (‘CJ’) Kim at UCLA, Hans Feil and Rob Hayes at

Liquavista/Phillips, and Bruno Berge at Varioptic.)
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splitting, optimal mixing, etc.). But this will also require accurate models to help

design robust controllers as well as guide device optimization. Fabricating EWOD

systems usually takes more than eight months per device. Hence, having a predictive

tool is clearly desirable. Furthermore, these models must be convenient and cheap

to use in order to fit within available control design and optimization methodologies.

Other modeling efforts of EWOD include [29], which gives a basic model of how

the device parameters affect droplet splitting. Equilibrium models for the shape of

sessile drops on a charging dielectric plate are given in [139] and [124]. In particular,

[139] considers a conducting liquid on top of an insulating layer and the effect of

charge trapping at high voltage on contact angle saturation. In [124], Shapiro, et

al use an energy minimization framework to show that liquid resistance can lead

to contact angle saturation in the EWOD devices. Other energy based methods

include [10], which they use to ascertain performance parameters for electrowetting-

induced droplet actuation. An alternative, lumped parameter, electro-mechanical

model for a one dimensional (1-D) liquid column actuated by electrowetting is given

in [77] for the equilibrium case and in [143] for the dynamics. In addition, a dynamic

model of the contact angle variation for a spreading axisymmetric drop is given

in [36], and in [97], a diffuse interface model and simulation of droplet motion is

compared to experiments on a scaled-up version of the electrowetting device.

This thesis presents a distributed parameter model of EWOD fluid dynamics

that is able to approximately capture the evolution of a droplet’s liquid-gas interface

in two dimensions. Our model includes a rough approximation of contact angle

hysteresis, which is different than, though analogous to, the contact line friction
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model discussed in [143] and [36]. Also, we include a phenomenological model of

contact line pinning that can account for ‘sticking’ droplets, and is similar in spirit

to static (Coulomb) friction.

The simulation of our model is done using two different techniques, both of

which are sufficiently fast and low dimensional to use in controller design. The first

method uses the level set method [105] and is advantageous for capturing droplet

split and merge events (i.e. topological changes). The second method uses explicit

front tracking of the interface with a variational formulation of the governing equa-

tions. Furthermore, we augment the variational method with the work in [140] to

allow for topological changes. See Section 1.3 for more discussion on different general

techniques for simulating two-phase droplet motion.

Other computational models of electrowetting exist, such as [92], which as-

sumes quasi-static behavior of the droplet (i.e. no internal fluid effects) and uses

Surface Evolver [19] to compute droplet shapes for device optimization. In [13], they

developed a CFD model for transport of biological species inside an EWOD-driven

droplet. Their simulation uses a Volume of Fluid (VoF) method to track the droplet

motion but does not give precise information about the liquid-gas interface shape.

In [100], they also use a VoF method to simulate a zero-leakage micro-valve actuated

by electrowetting. And in [135], they perform a finite element analysis for deforming

dielectric droplets in an electric field.
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Figure 1.2: Schematic of sample EWOD device (courtesy of CJ Kim at UCLA).

This EWOD system consists of two parallel plates with the top plate (transparent)

acting as a ground electrode and the bottom plate containing a grid of embedded

electrodes. Wires are shown leading off of the device and connecting to an external

voltage source (not shown). The small cubes near the edges are ‘spacers’ to ensure

the channel height is uniform. In practice, two pieces of cellophane tape (one on

each side) are used as spacers. See Figure 1.3 for a cross-sectional view.
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Figure 1.3: Cross-sectional view of the EWOD device. The top layer is a (trans-

parent) ground electrode, followed by a coating of Teflon and a liquid droplet.

Underneath the droplet is a coating of Teflon, followed by a layer of silicon dioxide

(SiO2) that acts as a dielectric and improves device performance. On the bottom

is a grid of electrodes that can be actuated individually to induce droplet motion.

1.2 Description Of The EWOD System

A schematic of an EWOD device is given in Figure 1.2, while Figure 1.3 shows

a cross-sectional view. The device consists of a sandwich of various layers listed

from top to bottom as: top (transparent) electrode, hydrophobic Teflon coating,

droplets of water (here only one droplet is shown), another Teflon coating, a layer

of solid dielectric silicon dioxide, and an underlying grid of electrodes. There are

also spacers to ensure that the channel height is uniform.

The basic principle of operation is that the liquid-gas interface of the droplet
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can be locally deformed by capacitively charging the silicon dioxide layer underneath

it. The induced motion of the droplet is due to competing effects of energy storage

between the dielectric layer (and external charging source) and the surface energy

of the liquid-gas interface [124]. In other words, the EWOD system attempts to

minimize its total energy, which is the sum of the electrical energy and surface

tension energy. The stored electrical energy of the system is proportional to the

applied voltage squared and linearly proportional to the contact area of the droplet

with the solid substrate. Furthermore, the electrical energy has a negative sign

because the voltage source does work in moving charge to and from the dielectric

layer. The surface tension energy is directly proportional to the surface area of

the liquid-gas interface of the droplet and is positive. Hence, it is favorable for the

droplet’s substrate contact area to increase when a voltage is applied because it

leads to a reduction in total energy (because the electrical energy is negative). This

causes the contact angle of the droplet to decrease and increases its wettability with

increasing voltage. Note that the change in electrical energy is more than enough to

compensate for the increased surface tension area (because the area of the liquid-gas

interface has increased). Essentially, the applied voltage acts to modify the surface

tension properties of the solid-liquid surface between the dielectric and the droplet.

This electro-wetting effect can be done locally about the three-phase contact

line of the droplet (i.e. the line where the liquid, gas, and solid phases intersect).

Thus, each electrode can change the surface tension properties immediately above

it. This change can be used to move droplets from electrode to electrode, to split

droplets (by pulling on either side using three electrodes), to join droplets by making
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Figure 1.4: Overhead view (through transparent electrode) of experimental EWOD

device (courtesy of CJ Kim at UCLA). A droplet is shown undergoing a topological

change (i.e. it is pinching). The voltage actuation is 25, 0, and 25 volts (from left

to right) for the three square electrodes that the droplet overlays. The long thin

pieces are wires that lead to voltage sources.

them collide, and to mix fluid in droplets by making the droplets execute complex

paths.

An experimental device with a splitting droplet is shown in Figure 1.4 (the

view is through the top transparent electrode). The actuation voltages of the three

electrodes from left to right have been turned on to 25, 0, and 25 volts.

In [124], a model was developed for the equilibrium shape of droplets under

applied electric fields. This thesis further considers the non-equilibrium fluid dy-

namics. Specifically, we focus on modeling and simulating motion, splitting, and

joining of the liquid droplets, as well as accounting for contact line friction. Before
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this work, most models and simulation tools have focused on the equilibrium be-

havior of EWOD, or simplified versions such as 1-D flow dynamics of a plug of fluid

driven by EWOD, or a modified EWOD system where contact angle hysteresis is

negligible. Furthermore, our simulation tool is able to handle pinching and merging

of droplets, which is readily observed in EWOD. And our model has enabled the

possibility of controlling fluid flow in an EWOD system such as for controlled mixing

or particle control (i.e. for controlling the trajectory of particles or agents floating

in a droplet).

The next section gives a general overview of numerical methods for simulating

two-phase flow and states why we chose the methods described in this thesis.

1.3 Overview of Numerical Methods for Two-Phase Flow

Given a model of two-phase flow, there is still the problem of discretization

and implementing a computational tool to simulate it. Many techniques exist for

simulating and computing solutions to partial differential equations (PDE), espe-

cially those with a moving boundary. But the foundation of these methods are the

standard numerical schemes: Finite Difference (FDM), Finite Element (FEM), and

Boundary Integral methods (BIM). FDM [102], [46] works by replacing all deriva-

tive terms in the PDE by finite difference approximations (i.e. by approximating

the differential operator of the PDE) and partitioning the domain (usually) into a

cartesian grid. FEM [18], [20], [76], on the other hand, never discretizes the differ-

ential operator. It only approximates the solution of the PDE over an unstructured
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grid (e.g. a triangulation) that represents the domain. Furthermore, FEM uses

an integral representation, which makes it more robust than FDM. BIM [57], [74]

also uses an integral representation, but the PDE is captured through the use of a

convolution kernel. And BIM only requires a partitioning of the boundary of the

domain, which is advantageous in 3-D because no bulk interior mesh is required.

Problems that involve a moving boundary and large deformations require spe-

cial enhancements to the standard techniques [52] and use implicit and explicit front

tracking methods to simulate the motion of the interface (see Figure 1.5 and Table

1.1). One popular implicit method for capturing free surface motion is the level

set method [105], [123], which advects a scalar field function whose zero level set

represents the interface. The numerical implementation can be done using either

FDM or FEM. Level set methods have the advantage of being completely Eulerian

and can automatically handle topological changes, though the physics underlying

such changes is often left ill-understood. One drawback of the level set method is

enforcing boundary conditions because the interface is not known explicitly. This

is commonly addressed by including a Dirac-delta type source term into the gov-

erning equations that is active at the two-phase boundary [105], [136], [64], but

this still has some accuracy issues. In addition, for curvature-driven flows, level set

methods typically use an explicit calculation of the interface curvature which can

create numerical artifacts and noise [112]. And mass conservation requires special

handling [44] or refinement [96]. The phase-field method is also implicit and uses

a ‘phase’ variable to represent the fluid domain [3], [40], [134], [147], where the in-

terface is represented by a thin diffuse region (see Figure 1.5). Phase field methods
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Figure 1.5: Moving interfaces can be tracked by explicit and implicit methods. a)

Overhead view of the water/air interface in the UCLA experiment, the droplet is

just about to split. b) Explicit tracking of the interface by a FEM over a mesh

that conforms to the interface and is convected by the flow. c) Implicit level-set

tracking of an interface. The scalar function shown is the signed distance function

to the interface; it is convected by the flow. The intersection of the scalar function

and the z = 0 horizontal plane (here shown as the thick ‘figure 8’ curve) tracks the

moving interface. d) Implicit phase-field tracking of the interface. Here a phase

variable, such as the fluid density, varies smoothly from one phase (liquid, dark

gray) to the other (gas, white) and is convected by the flow. The interface is the

thin smeared gray layer. An inset shows the smoothed density function as it goes

from gas to liquid. There is also the Volume of Fluid (VoF) method (not shown)

that tracks volume fractions for each phase inside each cell of a computational grid

and then reconstructs the interface. And the Coupled Level Set-VoF (CLS-VoF)

method combines VoF and level-sets.
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have similar advantages and drawbacks as the level set method. Another technique,

similar in spirit, is the Volume of Fluid (VoF) method [71], which tracks volume

fractions for each phase inside each cell of a computational grid and is designed

to conserve mass exactly. However, VoF requires a non-trivial reconstruction algo-

rithm [95] to obtain the interface shape from the mass fraction in each grid cell and

also has accuracy concerns for curvature driven flows.

Alternatively, one can use an explicit interface tracking method (Figure 1.5b),

which uses a computational grid that conforms to the two-phase boundary (La-

grangian approach) and discretize the PDE using either FDM, FEM, or BIM. FDM

is less appealing because the interface mesh will not be cartesian, whereas FEM

and BIM make use of unstructured grids naturally and can enforce boundary con-

ditions easily [120], [49] and mass conservation accurately. In addition, there exist

finite element and boundary integral methods that take advantage of the intrin-

sic representation of the interface [9], [43], [74] to compute curvature accurately.

However, the main disadvantage to these explicit surface representations is the dif-

ficulty in handling large deformations of the mesh and topological changes (pinch-

ing/reconnection), especially in 3-D. This requires a non-trivial adaptive mesh al-

gorithm to adjust the mesh and avoid distortion [31], [2], [149], [56], [51], [121],

in addition to a way of handling topological changes (droplet splitting and merg-

ing) [31], [88]. Some of this difficulty is alleviated with BIM, which requires no bulk

interior mesh.

This thesis describes two methods for simulating the free surface motion of a

droplet in an EWOD device. The first uses a level set method and finite differences,
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Table 1.1: Front-Tracking Method Comparison

Advantages Disadvantages

Implicit topological changes are automatic, accuracy issues,

Front-Tracking can use stationary uniform grid conservation of mass

Explicit interface position known exactly, mesh distortion due to

Front-Tracking high accurate methods available moving grid

and the second method uses an explicit representation of the free surface and a

variational formulation with finite elements. Originally, the level set method was

chosen for its ability to handle topological changes. But because of the mass conser-

vation and curvature issues, we adopted the second approach. Topological changes

for the explicit approach are handled using the method in [140]. The two methods

are compared in Chapters 5 and 6.
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1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 describes the governing fluid

equations and boundary conditions, along with our model of contact angle hysteresis

and contact line pinning. Chapter 3 describes our level set method for simulating

droplet motion in the EWOD system and its numerical implementation. Chapter

4 describes our variational method, which includes our phenomenological contact

line pinning model. We also show the well-posedness of our numerical FEM scheme.

Chapter 5 presents numerical results, using both numerical methods, in comparison

with experiments that exhibit droplet splitting and bulk droplet motion. In Chapter

6, we describe our algorithm for controlling particle motion in the EWOD system,

along with some simulation test cases. Finally, Chapter 7 gives some discussion

about the trade-offs of our methods and a list of the contributions of this work. An

appendix is also included which contains some supplemental material and a list of

symbol definitions (see Appendix D for nomenclature).
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Chapter 2

EWOD Modeling

This section describes the EWOD modeling approach. In particular, our main

assumptions, derivation of the fluid equations, proper boundary conditions, voltage

actuation, contact angle saturation, and hysteresis effects are discussed in detail. A

list of the physical parameters for the geometry of the EWOD device, and the fluid

parameters for distilled water at standard temperature and pressure (assumed in

our model), is given in Table 2.1.

2.1 Governing Equations of the Liquid Flow

In the following sections, the main assumptions and governing equations for the

flow of liquid inside an EWOD device are described (see Figure 2.1). In particular,

we obtain a model similar to Hele-Shaw type flow with pressure boundary conditions

at the liquid-gas interface proportional to its mean curvature.

2.1.1 Navier-Stokes Equations

We start by considering the Knudsen number of the EWOD device, which

provides a measure of how accurate the continuum hypothesis is for a fluid system

[78]. For our case, we can assume the flow physics to be a continuum because the
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Figure 2.1: EWOD device geometry. The coordinate axes are defined such that

the top and bottom plates of the device lie in planes parallel to the x-y plane. The

physical parameters of the device are listed in Table 2.1.

Knudsen number is

Kn =
λair

H
=

6.111 × 10−8m

70 × 10−6m
= 8.73 × 10−4

where λair is the mean free path of air molecules at standard temperature and

pressure, and H is the channel height of the device. Clearly, this is within the

continuum regime defined to be Kn < 10−2 [78]. The Knudsen number associated

with the liquid flow is even smaller because the mean free path of water is much

lower than that of air.

Since the flow is a continuum, the dimensional Navier-Stokes equations are

applicable. Because we are modeling the flow of water, incompressibility and New-
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tonian fluid assumptions may be used [109]. This gives

ρ(∂t
~V + ~V · ∇~V ) = −∇p+ µ∇2~V (2.1)

∇ · ~V = 0 (2.2)

in the bulk liquid, where ~V = (u, v, w) is the three dimensional velocity, p is the

pressure, ∂t denotes the partial derivative with respect to time, and ρ and µ are

the density and dynamic viscosity, respectively. Equations (2.2) and (2.1) represent

conservation of mass and momentum, respectively, with gravity ignored because the

potential energy change in the z direction is negligible when the channel height, H,

is small.

Next, we have the boundary conditions for a liquid droplet between two parallel

plates. On the top and bottom plates, we have the usual no-slip condition for velocity

(i.e. all velocity components are zero). Because the air surrounding the droplet is

not being forced, it does not significantly affect any droplet motion. Therefore,

by ignoring the airflow, we have the following conditions for the free surface of an

incompressible, Newtonian liquid (i.e. the liquid-gas interface) [11]

~n · T~n = −σlg(κ1 + κ2) (2.3)

~t · T~n = 0 (2.4)

where σlg denotes surface tension coefficient, κ1 and κ2 are the principal curvatures

of the interface [37], T is the stress tensor, ~n is the unit normal vector to the interface,

and ~t is any tangent vector to the interface. Physically, (2.3) states that the normal

stress across the liquid-gas interface is balanced by surface tension, whereas (2.4)
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Figure 2.2: Velocity profile: the fluid velocity field is assumed to have a quadratic

profile in the z direction.

says the tangential stress vanishes because the shear stress at the liquid-gas interface

is negligible.

2.1.2 Hele-Shaw Type Flow

The Reynolds number is small (approximately 1 to 5) because we have pressure-

driven flow in a slot with channel height much smaller than the diameter of the

droplet [109]. Therefore, we assume the flow can be modeled by a two-dimensional

field. By making the additional assumption that the x and y fluid velocity compo-

nents u and v have a quadratic profile in the z direction (i.e. local Poiseuille flow;

see Figure 2.2), equations (2.1) and (2.2) can be non-dimensionalized and reduced

to a form similar to Hele-Shaw flow [11]:

∇2p = 0 (2.5)
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(
L

H
Re

)
∂t~u+ 12

(
L

H

)2

~u = −P0L

U0µ
∇p (2.6)

where ~u = (u, v) is the vector velocity field. The term on the far left of (2.6) is

the extra term beyond the usual Hele-Shaw equations. This time derivative term

is included because it may have a large magnitude due to rapidly varying pressure

boundary conditions if high frequency voltage actuation is used to modulate the

droplet’s contact angles.

Parameter Symbol Definition

Surface Tension σlg = 0.07199 J/m2

Dynamic Viscosity µ = 0.89 g/m · s
Density ρ = 996.93 Kg/m3

Channel Height H = 70 µm

Electrode Length LElec = 1.4 mm

Length Scale L ≈ 3 × LElec

Velocity Scale U0 (see Sec. 5.1)

Time Scale t0 = L/U0

Pressure Scale P0 = σlg/L

Reynolds Number Re = ρU0H/µ

Capillary Number Ca = µU0/σlg

Table 2.1: Physical Parameters of the EWOD device for the experiments described

in Sections 5.1 and 5.2. See Appendix D for a list of symbols.

The boundary conditions for equation (2.5) are then given by the Young-

Laplace relation [11], which says (in non-dimensional form) that the pressure on

the liquid-gas interface is equal to the total curvature of the interface (i.e. the sum

of the principal curvatures). Because the channel spacing is so small, this can be
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approximated by

p = κxy +
L

H
κz, at the liquid/gas interface (2.7)

where κxy is the non-dimensional curvature of the droplet in the x-y plane, κz is

the non-dimensional curvature of a cross-section of the droplet along the z axis (see

Figure 2.3), and L is the x-y length scale of the device. Given that (2.5) has been

posed in two dimensions, equation (2.7) is evaluated at each point of the boundary

of the two-dimensional (2-D) droplet and is discussed in Section 2.2.1.

2.2 Physics of the Droplet Boundary

Above, we described the governing equations of liquid droplet motion. We now

discuss the geometry and different physical phenomena happening at the liquid-gas

interface, such as voltage actuation, contact angle saturation, and hysteresis. We

show how these effects are modeled and how they affect the computation of the

boundary conditions.

2.2.1 Interface Curvature

The interface mean curvature is approximated using the individual curvatures

κxy and κz in equation (2.7). We compute the z curvature by assuming the interface

has a circular cross-section (see Figure 2.3). The x-y curvature computation requires

a representation of the shape of the two dimensional droplet boundary. This is

accomplished by using either 1) a level set method to implicitly capture the interface

(described in more detail in Section 3.4.2), or 2) an explicit representation (described
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Figure 2.3: Overhead view of a 2-D droplet with side view zoom-in of the interface.

The liquid-gas interface is assumed to have a circular cross-section, which gives an

estimate of the z curvature, κz, in dimensional form. The x-y curvature, κxy, is just

the curvature of the boundary of the two dimensional droplet.
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Figure 2.4: Curvature note: κxy and κz are both positive for the bulging droplet on

top. For the inward bending droplet, only κz is negative.

in Section 4.2.1).

To use the circular approximation for computing the z curvature, we must

know the slope of the liquid-gas interface cross-section at the floor and ceiling of

the EWOD device. This is given by the top and bottom contact angles, θt and θb

respectively (see Figure 2.3). After some basic geometry, the dimensional z curvature

is given by

κz = − 1

H
[cos(θt) + cos(θb)],

which gives the non-dimensional curvature as

κz = −[cos(θt) + cos(θb)] (2.8)

Through the use of EWOD, contact angles can be voltage controlled, thereby

allowing the droplet pressure field to be actuated through the boundary condition

(2.7). The details of voltage actuation and contact angles are described in the next
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sections 2.2.2 and 2.2.3.

2.2.2 EWOD Charging Time

We analyze the electrical charging time of the EWOD device to determine if

it must be included in our model. Consider the circuit diagram shown in Figure

2.5. Using transfer function theory [104], which reduces the ordinary differential

equation associated with the electric circuit to an algebraic problem, we can obtain

an estimate for the time constant of the device. The transfer function for this circuit

is given by

T (s) =
α1s+ α2

α3s2 + α4s+ α5

(2.9)

where the coefficients are given by

α1 = (CT + CO)RORT

α2 = RO +RT

α3 = RLROCORTCT

α4 = RORT (CT + 2CO) +RL(ROCO +RTCT )

α5 = RO +RL + 2RT

Using the parameters for water, silicon dioxide, Teflon, and the dimensions of the

EWOD device [29], equation (2.9) becomes

T (s) =
1927.5(s+ 3.957 × 10−6)

(s+ 3.132 × 10−6)(s+ 2439.7)

After approximately canceling the two near-identical terms in the numerator and

denominator, we are left with a transfer function describing a first order differential
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Figure 2.5: EWOD lumped circuit schematic. A voltage source is connected across

the device by connecting with the ground electrode (top) and electrode grid (bot-

tom); the electrodes are assumed to be perfect conductors. Each layer of Teflon,

and silicon dioxide layer, can be modeled as a parallel resistor and capacitor. The

liquid is assumed to only be resistive. Values for the circuit components can be

obtained from [91]. The output voltage Vout is only taken across the bottom plate

of the device because that is where the majority of the electrical energy is stored

(due to the silicon dioxide layer).
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equation. The defining parameter of any first order system is the time constant,

which in this case is 0.41 milliseconds. Using this, the electrical charging time is

estimated as four times the time constant, or 1.64 milliseconds.

For the splitting droplet experiment in Section 5.1, the time to split is 0.167

seconds. Because the majority of the voltage drop occurs across the bottom SiO2

and Teflon layer and the charging time is more than 100 times faster than the bulk

fluid motion we are interested in (i.e. droplet splitting), we assume the output

voltage is instantaneously equal to the input voltage. Therefore, given that there

is a direct relation between contact angle and applied voltage (see Section 2.2.3),

EWOD is capable of changing the contact angle very quickly.

2.2.3 Contact Angles and Saturation

There is a considerable amount of literature on contact angles and wetting

phenomena; see the following references for a sampling: [23], [110], [39], [35], [146],

[119], [41], [69], [98]. In this section, we are concerned with how the contact angle

varies with respect to the applied voltage.

According to [94], [17], and [36], for a sessile drop on a single dielectric plate,

the Young-Lippmann equation predicts a near parabolic curve relating contact angle

to the capacitive voltage across the plate (see Figure 2.6). However, if Young-

Lippmann is used to simulate droplet splitting, it predicts an incorrect shape for

the motion of the droplet. This is because electrowetting, in reality, deviates from

the Young-Lippmann theory at high voltages and reaches a saturation limit (also
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shown in Figure 2.6). In Section 5.1.1, we present simulations using the Young-

Lippmann equation and saturation to illustrate the importance of modeling the

latter. For more information on the causes of contact angle saturation of sessile

droplets, see [124].

The available literature only discusses a sessile droplet on a single plate. For

this thesis, we need data on contact angle variations of a droplet sandwiched between

two plates. In [29], experimental contact angle data for the EWOD device is given at

an applied voltage of 0 and 25 volts. The top contact angle remains approximately

the same at 117 degrees regardless of voltage actuation. This is because most of

the dielectric energy is stored in the bottom plate due to the presence of the SiO2

layer. Therefore, we assume the nominal contact angle on the top plate is fixed at

117 degrees. The bottom contact angle varies between 117 and 90 degrees at 0 and

25 volts respectively.

In order to model contact angle variations on the bottom plate for any voltage,

we must combine the two experimental data points for the parallel plate case with

the six data points for the single plate case (shown in Figure 2.6). In other words,

we must transform the contact angle versus voltage data for the single plate case

into useable data for the parallel plate case. Because there is an overlap between

two of the data points for both cases, we define a linear mapping that represents

this correspondence

θ2 =
117◦ − 90◦

119◦ − 80.4◦
(θ1 − 80.4◦) + 90◦ (2.10)

where θ1 is the contact angle for a single plate and θ2 is the contact angle for two
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parallel plates. This equation maps 119.0◦ to 117.0◦ and 80.4◦ to 90.0◦. By taking

the six data points and their piecewise interpolating polynomial for saturation on a

single plate as input to this linear map, we obtain the saturation curve for two plates

as output (see Figure 2.6). Due to the scarcity of data on contact angle variation

for the parallel plate EWOD device, we assume the two plate saturation curve in

Figure 2.6 is true for our model.

2.2.4 Hysteresis

Contact angle hysteresis is another piece of the boundary physics we need to

complete our model of droplet motion using EWOD forces. Hysteresis refers to

the difference in contact angles between the advancing and receding ends of sessile

drops. It is a direct consequence of contact line pinning, which acts as a force that

resists any sliding motion, and it can be seen when water droplets stick to the side

of a solid surface (see Figure 2.7). For more information on contact angle hysteresis

and line pinning, see [23], [39], [35], [146], [119], [41], [69].

From Figure 2.7, for a sessile drop on a single plate, it can be seen that the

advancing and receding contact angles are greater and smaller, respectively, than

the nominal contact angle. This is also true for a droplet inside the EWOD device

(shown in Figure 2.8). Ideally, if there were no hysteresis, the nominal contact angle

at the interface of the droplet should be determined by the two plate saturation

curve in Figure 2.6 and the applied voltage at the interface. But in the presence

of hysteresis, the contact angles deflect from their nominal values which affects the
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Figure 2.6: Contact Angle Versus Voltage Curves: theoretical and experimental

data for contact angle variations using electrowetting on dielectric. The dotted

line denoting the Young-Lippmann (Y-L) curve is theoretical [94], [17], [36]. The

single plate saturation curve has six experimental data points (given in [29]) with a

piecewise interpolating polynomial (see dashed line and ‘◦’ data points). The two

plate saturation curve has two experimental data points [29] with an interpolating

curve derived from the single plate case in Section 2.2.3 using a linear map (see solid

line and ‘⋄’ data points). This curve is used in our simulation to predict the correct

droplet motion and splitting time (see Section 5.1.3).
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g

Figure 2.7: Illustration of contact line pinning and hysteresis. The contact line of the

droplet is where the liquid-gas interface meets the solid surface. Line pinning simply

means the contact line (and the droplet) is stuck to the surface. A direct result of

this is contact angle hysteresis, which refers to the situation where the receding

angle θR is less than the nominal (equilibrium) angle θ0 while the advancing angle

θA is greater than θ0. In the diagram above, θ0 is the contact angle of the droplet on

a horizontal surface, whereas θR and θA are the contact angles when the surface is

tilted. The droplet can slide by using a large enough tilt angle, but the motion will be

limited by the static frictional effect of line pinning and contact angle hysteresis will

still be present. A similar situation happens in EWOD, where hysteresis also acts

as a retarding effect by deforming the liquid-gas interface shape in an unfavorable

way (see Section 2.2.4).
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P̃R > P̃A

PR > P̃R P̃A > PA

Figure 2.8: Effects of contact angle hysteresis in the EWOD device. A droplet

is shown moving from left to right due to voltage actuation (OFF/ON). When

hysteresis is present, the contact angles differ from their nominal (non-hysteresis)

values. The effects on the liquid-gas interface pressure are also shown. The presence

of hysteresis causes the pressure gradient throughout the droplet to be weakened

from the nominal case (PR − PA > P̃R − P̃A).
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pressure on the boundary by the Young-Laplace relation (2.7).

To see how it is affected, consider a circular droplet in motion due to voltage

actuation (see Figure 2.8). Let PA and PR denote the pressures at the advancing

and receding ends of the droplet, respectively, when no hysteresis is present. And let

P̃A and P̃R denote the same pressures with hysteresis. It is clear from Figure 2.8 that

the z curvatures at the receding and advancing ends of the droplet are larger and

smaller, respectively, for no hysteresis than with hysteresis. From equation (2.7), it

can be seen that the curvature change implies that PR > P̃R and PA < P̃A.

This change in boundary pressure weakens the pressure gradient throughout

the droplet from what it would be without hysteresis because its magnitude is pro-

portional to the pressure difference

|∇P | ∝ |PR − PA|

|∇P̃ | ∝ |P̃R − P̃A|

where ∇P̃ and ∇P are the pressure gradients with and without hysteresis, respec-

tively. Using the fact that PR > P̃R > P̃A > PA, we obtain the inequality

|∇P̃ | < |∇P |.

Hence, the driving force of the droplet motion is decreased when hysteresis is present.

This is why our simulation (with just saturation modeled) predicts a split time over

ten times faster than the experiment shows (see Section 5.1.2).

From the discussion above, an obvious way to model hysteresis is to modify

the contact angle of the interface based on which way it is moving. However, from
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our own numerical experiments with the level set method, this is not very robust.

Therefore, we opted for a simpler model by assuming that

∇P̃ = Khys∇P

where Khys is a constant smaller than 1. In other words, we scale down the pressure

gradient in (2.6) to account for hysteresis. This is analogous to the contact line

friction model in [36] and [143], which also acts as a retarding effect on liquid

motion.

Scaling the pressure gradient introduces one fitting parameter into the simu-

lation, but is straightforward and capable of approximately capturing the droplet

motion and time scale observed in the experiments (see Section 5.1.3). However, we

do stress that it is not exact nor does it capture the effect of line pinning, which is

observable in EWOD as demonstrated in [29] by the fact that droplets do not move

unless sufficient voltage actuation is used. Contact angle hysteresis is not completely

understood, so we opted for a model that is computationally quick but still captures

the lossy effect of droplet motion that is induced by line pinning; namely hysteresis.

In Section 2.3, we describe an alteration of the EWOD pressure boundary conditions

that is able to account for contact line pinning.

We now estimate the hysteresis constant in terms of contact angles. From the

relations given above, we have

Khys =
|P̃R − P̃A|
|PR − PA|

where the pressure terms are given by (2.7) and (2.8). Using these, Khys can be
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estimated by

Gnum =
[

cos(θt,0V − ∆hys) + cos(θb,0V − ∆hys)

− cos(θt,25V + ∆hys) − cos(θb,25V + ∆hys)
]

Gden =
[

cos(θt,0V ) + cos(θb,0V )

− cos(θt,25V ) − cos(θb,25V )
]

Khys =
Gnum

Gden

(2.11)

where ∆hys is the extra amount of contact angle deflection from the nominal angle

due to hysteresis, and θt and θb are the top and bottom contact angles, respectively.

The voltage subscripts specify the actuation strength of the contact angles, with

the top angle fixed at 117.0◦ regardless of voltage and the bottom angle obeys the

two plate saturation curve in Figure 2.6. Due to the lack of data on hysteresis of

EWOD driven droplets, we assume the contact angle deflection to be the same on

the top and bottom of the advancing and receding ends of the droplet. In Section

5.1.3, we use (2.11) to estimate the hysteresis angle deflection that corresponds to

the appropriate constant, Khys, that ensures the simulated splitting time matches

the experiment.

2.3 Alternate Contact Line Pinning Model

The model described above does not accurately account for contact line pinning

(see Section 2.2.4). Therefore, an alternative model is described in the following

section and is based upon the assumption that contact line pinning can be modeled
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in an analogous way to static (Coulomb) friction.

2.3.1 Phenomenological Approach

Contact line pinning (or sticking) is a readily observed phenomenon in most

wetting applications (see [23], [39], [35], [146], [119], [41], [69]). It is not a fluid

viscous effect but rather a kind of molecular adhesion that occurs at the three-

phase contact line of the droplet. This can prevent motion of a droplet, even under

an applied force (see Figure 2.7) and is observable in the EWOD system. As of

today, the nature of this effect is still somewhat controversial. Most modeling of

contact line pinning uses molecular dynamics simulations [137], [63], which can be

computationally very expensive.

But for our purposes, a molecular dynamics simulation is not necessary or de-

sirable. Thus, to improve the agreement between simulation and experiment, we use

a phenomenological approach to incorporate this effect into our continuum model.

This is done to avoid a molecular/atomistic description that would be impractical

for enabling useful simulations of fluid flow in an EWOD device. Recently [16], some

new models for contact line dynamics have been proposed that avoid an atomistic

description and are designed to be incorporated into a continuum model.

Macroscopic experiments [146], [103] indicate that the line pinning force scales

with the length of the contact line (see Figure 2.9). In other words,

Fmax = cpinLcl (2.12)

where Fmax is the maximum total force that can resist motion of the droplet, Lcl
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Droplet

‘Pinned’

Slip!

Figure 2.9: Diagram of simple contact line pinning experiment. An adjustable

inclined plane is shown with a droplet resting on it. On the left, the droplet slightly

deflects towards the right because of gravity but does not move because of the

contact line pinning effect. When the angle of the inclined plane is increased to a

high enough value, the force due to gravity is strong enough to overcome the pinning

effect, and the droplet slides down the plane. Given the angle at which the droplet

first slips, one can compute the maximal pinning force given the droplet volume,

density, and gravitational force. After performing this experiment several times for

droplets of varying volumes, it is found that Fmax scales linearly with the contact

line length Lcl [146], [103]. This relation is written as Fmax = cpinLcl, where cpin is

the line pinning coefficient with the same units as surface tension.
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is the total contact line length, and cpin is the line pinning coefficient with units

of force per length (units of surface tension). So the constant cpin represents the

maximum force per unit length that a piece of contact line can exert against the

droplet to prevent its motion. Therefore, we model contact line pinning similarly

to static (or Coulombic) friction, in which case the friction force always opposes

motion and cannot exceed a certain threshold value (see Figure 2.11).

2.3.2 Including Line Pinning into the Governing Equations

Since the EWOD governing equations are posed in 2-D, we must ‘average’

the above line friction model in order to incorporate it into the pressure boundary

condition. This is done by averaging the maximal line friction coefficient cpin over

the channel height H of the EWOD device (see Figure 2.10). This gives a maximal

‘pinning pressure’ P̃pin = 2cpin/H (in dimensional form), which represents the max-

imum opposing force per liquid-gas interface area that the contact line can apply

against motion of the interface. The factor of ‘2’ accounts for the interface contact

line pinning at the floor and ceiling of the EWOD device. The non-dimensional

pinning pressure is given by

Ppin =
1

P0

2cpin

H
, (2.13)

where P0 is the reference pressure scale. This allows us to introduce a variable

pinning pressure λ to the boundary condition (in non-dimensional form)

p = κxy +
L

H
κz + λ, (2.14)
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Figure 2.10: Contact line force averaging. Contact line friction is a force that is

active along the three-phase contact line. On the left, the contact line pinning force

is shown concentrated at the contact line (at both the floor and ceiling). On the

right, the pinning force has been redistributed over the channel height. Since the

governing EWOD fluid equations have been averaged along the channel height, we

average the contact line friction force across the channel height. This redistributes

the force from a length of contact line (at floor and ceiling), to a vertical strip along

the liquid-gas interface. This allows the line friction to be included in the pressure

boundary conditions as an additional pressure term (see equation (2.14)).
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where λ = Ppin sgn(~u · ~n) (see Figure 2.11). In other words, if the normal velocity

of the liquid-gas interface is positive, then the pinning pressure will push back with

maximum positive pressure +Ppin to limit the motion. Likewise, if the normal

velocity is negative, the pinning pressure will push back in the opposite direction

−Ppin. And if the normal velocity is zero, then λ takes on a value between ±Ppin

and acts as a lagrange multiplier to enforce the constraint that the interface does

not move (see Figure 2.12). This also means that |λ| ≤ Ppin, which agrees with the

above experimental observation.

It is important to note that this line pinning model must be implemented

exactly in order to correctly capture the pinning effect. Replacing the ‘sign’ function

by a smoothed version, and plugging it into the pressure boundary condition gives

poor results and does not simulate pinning. This model also introduces a coupling

between the velocity and pressure boundary condition, which makes it non-linear.

Despite this, we are able to include this model into our variational formulation of

Chapter 4, and we have a method of solution. Unfortunately, it is not clear how to

include this model into our level set method. Hence, it is not used in Chapter 3.

2.4 Final Equation Summary

This section collects all the equations and simplifies some of the notation. The

first section gives the model without any contact line pinning, and the next section

indicates how the model changes when the contact line pinning model of Section 2.3

is included.

39



λ

+Ppin

−Ppin

~u · ~n

Figure 2.11: Line pinning variable versus normal velocity. The line pinning friction

variable λ is defined by the ‘sign’ function of the normal velocity: λ = Ppin sgn(~u·~n).

If the normal velocity (~u · ~n) is positive, the friction ‘pressure’ pushes against the

interface with maximum +Ppin; vice-versa when ~u · ~n is negative (note that ~n is an

outward pointing normal vector). When ~u · ~n = 0, the pinning variable takes on a

value between ±Ppin (i.e. −Ppin ≤ λ ≤ +Ppin) and acts as a lagrange multiplier to

enforce the constraint that the interface does not move. Also see Figure 2.12.
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Pinned

Pinned

λ = −Ppin

λ = −Ppin

λ = +Ppin

Γ

−Ppin
≤ λ ≤ +Ppin

Figure 2.12: A 2-D droplet with parts of the boundary pinned. The pinned regions

are denoted by a dashed line; unpinned regions are shown as a solid line with velocity

arrows indicating direction of motion. An outward motion is considered positive

(~u · ~n > 0), and an inward motion is negative (~u · ~n < 0). The pinning variable λ

is defined on the boundary Γ of the droplet. On the unpinned regions, the value

of λ saturates to ±Ppin. On the pinned regions (~u · ~n = 0), λ continuously varies

between −Ppin and +Ppin. In our simulations (see Chapter 5), λ is used to indicate

where the boundary is pinned, i.e. the boundary is pinned wherever |λ| < Ppin.
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2.4.1 Model Without Contact Line Pinning

We now write the final model equations (non-dimensionalized) describing the

fluid flow of a liquid droplet inside an EWOD device. The equations for the pressure

field are

∇2p = 0, in Ω (2.15)

p = κ+ E, on Γ (2.16)

where ∇2 := ∇ · ∇ is the Laplacian operator, Ω denotes the domain of the liquid

droplet in two dimensions with boundary labeled Γ (see Figure 2.13), p is the pres-

sure, and κ is the curvature in the x-y plane (note: we have dropped the subscript

xy for convenience). The symbol E is the electrowetting forcing

E =
L

H
κz, (2.17)

where L is a chosen length scale, H is the channel height, and κz is the z curvature

given by

κz = −[cos(θt) + cos(θb)] (2.18)

where θt and θb are the contact angles on the top and bottom of the EWOD device,

respectively. The top angle is assumed to be 117.0◦ regardless of the applied voltage.

The variations of the bottom angle are given by the two plate saturation curve in

Figure 2.6.

The equation for the velocity field is

α∂t~u+ β~u = −∇p, in Ω (2.19)
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Ω

Γ
p = κ+ E

∇2p = 0

α∂t~u+ β~u = −∇p

Figure 2.13: Diagram of 2-D droplet domain with notation. The domain of the

droplet is denoted by Ω and its liquid-gas interface is labeled Γ. The unit vectors ~n

and ~t denote the outward pointing normal vector and ‘right-hand’ oriented tangent

vector. Inside the droplet, the pressure field obeys Laplace’s equation, and the

velocity field is governed by a Hele-Shaw type equation. The pressure boundary

condition depends on the curvature of Γ (denoted κ) and the EWOD forcing E.
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where ~u = (u, v) is the vector velocity with x and y components denoted by u and

v. The constants α and β are given by

α =

(
ρU0L

µ

)(
Ca

Khys

)
β = 12

(
L

H

)2(
Ca

Khys

)
(2.20)

where U0 is a chosen velocity scale, ρ is the fluid density, µ is the dynamic viscosity,

Khys is the hysteresis constant, and Ca is the capillary number.

Because we have two-phase flow, we need an equation to describe the motion

of the droplet boundary Γ. For each point ~x on the boundary, the change in position

is given by

∂t~x = (~u(~x, t) · ~n(~x, t))~n(~x, t) (2.21)

where ~n is the unit outer normal vector of the boundary. Basically, the droplet

boundary moves with the normal velocity of the fluid. The next two chapters discuss

the numerical simulation of these equations.
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2.4.2 Model With Contact Line Pinning

The governing equations inside the domain Ω are the same as in the previous

section, except the pressure boundary condition is modified by the following relation

p = κ+ E + λ, (2.22)

where λ is a pinning variable and is defined by

λ = Ppin sgn(~u · ~n). (2.23)

The λ encodes the contact line pinning effect and is able to partially account for the

loss of EWOD forcing available to move or split a droplet. The other loss mechanism

is due to contact angle hysteresis when the droplet is in motion and is accounted

for by the hysteresis constant Khys. Chapter 4 discusses the simulation of EWOD

fluid dynamics with this pinning effect included.
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Chapter 3

Implicit Front Tracking with The Level Set Method

In this chapter, we describe our level set implementation of the EWOD gov-

erning equations. This was the first method we experimented with and does not

include the contact line pinning model. In chapters 5 and 6 we show comparisons

between our level set method and the variational formulation given in Chapter 4.

3.1 Introduction

The most crucial part of simulating the fluid equations in Section 2.4 is in

handling the time-varying two-phase droplet boundary modeled by (2.21). Various

methods for simulating two-phase flow are available (see Section 1.3 for a survey).

For this thesis, the method needs to be capable of simulating splitting and joining

of droplets without excessive computation. Therefore, we first chose the level set

method [105], [123], [24], which implicitly tracks the droplet boundary as the zero

level set of a scalar function defined over the x-y plane (see Figure 3.3). This scalar

function deforms and changes shape based on the fluid velocity field, which causes

the zero level set to also change. Hence, the motion of the droplet boundary is

captured through the evolution of the scalar function.

This level set function is used to define the domain of the droplet at each

instant of time, allowing the pressure and velocity fields to be computed from finite
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3rd Order Runge-Kutta

Euler Step

Update Level Set

Solve For Pressure

Update Velocity Field

Correct Level Set

Choose Time Step

Figure 3.1: Algorithm flowchart.

difference approximations to equations (2.15) and (2.19). We combine these methods

in a third order Runge-Kutta time-stepping algorithm that specifies an order to the

computation of the pressure field, velocity field, and level set update (see Figure

3.1). The following sections give the details of our algorithm, which is based on the

methods used in [50] and [24].

All simulations were performed with MATLAB on a Pentium 4, 3.6 GHz with

2 GB of RAM running Windows XP. The computing time of each simulation varied

between 3 and 6 minutes for a 108x108 mesh, which shows the speed of the method.
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Figure 3.2: Computational domain layout. Liquid region corresponds to interior

nodes. Boundary nodes are adjacent to the interior nodes.

3.2 Discretization

The computational domain is defined to be the unit square and is discretized

by a regular cartesian grid (see Figure 3.2). For the simulations given in Chapter

5, we used a 108x108 mesh. On this grid, the level set function, φ, and the fluid

variables ~u and p are sampled. A small buffer region, three grid nodes thick, is

defined at the sides of the computational domain. No droplet motion is allowed

inside the buffer region because of potential problems with computing second order

spatial derivatives there.
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Figure 3.3: Example of a level set function. The zero level contour is highlighted

with a thick black line and shows a droplet about to split.

3.3 Initialization

The level set function, φ, is initialized to a signed distance function with the

zero level contour corresponding to the initial interface shape (see Figure 3.3). By

distance function, we mean that the value of φ at a grid point in the computational

domain corresponds to the shortest distance that the grid point is from the interface.

Signed distance means that φ is positive inside the droplet and negative outside.

Next, the velocity field, ~u = (u, v), is set to zero. And finally, we choose a small

initial time step before entering the main update routine discussed in Section 3.4.

3.4 Main Update Routine

At each time step of our simulation, the fluid variables and level set function

are updated by computing a convex combination of three forward Euler steps. This
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method is a third order Runge-Kutta method, and is detailed in [105] and [112].

In each Euler step, the level set is updated first, followed by the pressure, and

then velocity. The updated level set is used in computing the pressure field for the

new time step, which is then used to update the velocity field (see Figure 3.1). In

the following sections, we give the details of each of these subroutines.

3.4.1 Update Level Set

The level set function is updated through a standard convection equation:

∂tφ+ ~u · ∇φ = 0 (3.1)

This equation represents conservation of the quantity, φ, while being transported

by the velocity field, ~u. Hence, the zero level set ‘quantity,’ φ = 0, is transported by

the local fluid velocity around the droplet boundary. The numerical implementation

uses an upwinded third order Hamilton-Jacobi weighted essentially non-oscillatory

(WENO) method for discretizing the velocity-gradient term, which uses ~u, and φ

from the previous time step. This method is robust and is described in detail in [105].

In this thesis, to reduce simulation time, only the grid nodes in a small band

surrounding the zero level set are actually updated. This does not reduce accuracy

because the whole level set must be reset to a distance function periodically (see

Section 3.5.1).
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3.4.2 Solve For Pressure

The domain, Ω, of the droplet is defined to be the regions in the x-y plane

where the level set function, φ, is positive (see Figure 3.3). The computational

domain of a hypothetical droplet is depicted in Figure 3.2. Each of the grid nodes

is located on an electrode with a known applied voltage. The local curvature of the

boundary, Γ, is then given by [105]:

κ = −
φ2

xφyy − 2φxφyφxy + φ2
yφxx

(φ2
x + φ2

y)
3/2

∣∣∣∣∣
φ=0

(3.2)

where the level set derivative terms are approximated using central differences. Be-

cause of fundamental problems with differentiating numerical data, the level set

function, φ, must be filtered prior to computing the derivative terms [112]. In addi-

tion, κ must be post-filtered to ensure smooth curvature data. This is mainly due

to the explicit nature of the curvature calculation used here.

Then, we get the bottom contact angle, θb, at each boundary node using the

known voltage there and the two plate saturation curve in Figure 2.6. Voltage tran-

sitions near the edge between two electrodes are smoothed out using linear interpola-

tion in a narrow region to prevent large localized velocities caused by discontinuous

boundary conditions. Finally, the boundary pressure values are computed using

equations (2.16), (2.17), (2.18), and (3.2) evaluated on the boundary nodes.

The pressure values at the interior nodes are computed by solving (2.15),

which implicitly contains the conservation of mass equation (2.2). The numerical

solution is obtained by using a simple red-black Gauss-Seidel iterative solver with a

relative error tolerance of 10−8 [46]. Note that Gauss-Seidel is easily implemented
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on a regular cartesian grid. Other more advanced methods for solving a matrix

system of equations exist but would require the matrix structure to be recreated at

every time step because the domain of the droplet is always changing. In addition,

the Gauss-Seidel solver is implemented in C, for speed, and called from MATLAB.

Therefore, we saw no significant advantage with using a different method.

Once the pressure values are known, the pressure gradient, ∇p, at every inte-

rior node is computed using a central difference formula [46]. These values are then

used in the velocity update routine.

3.4.3 Update Velocity Field

The fluid velocity, ~u, obeys a first order time differential equation given by

the vector equation (2.19). The pressure gradient provides a forcing term in the

equations, which causes a velocity field to develop. We compute the velocities

on our computational domain by discretizing (2.19) in space while keeping time

continuous. This approach is commonly known as a semi-discrete method [130] (or

method-of-lines) and allows for the use of an analytic solution to (2.19) for updating

the velocity field.

For a time-invariant pressure gradient, the steady-state solution for equation

(2.19) is given by

~uss = −∇p
β

Let ~ui be the initial velocity at time ti. Then, by assuming the pressure gradient
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remains constant during the time step, △t, the velocity field at ti +△t is given by:

~u|ti+△t = e−△t β

α~ui + [1 − e−△t β

α ]~uss (3.3)

where the above equation is the analytic solution for the vector velocity in (2.19)

evaluated at ti + △t. We apply this update to all interior grid nodes to obtain the

velocity field inside the droplet for the current time step.

The last piece needed for updating the velocity is to extend it from inside

the droplet to outside. In Section 3.4.1, the velocity field is needed to update the

level set function. But in order to do this properly, it must be extended into the

boundary and exterior nodes of the computational domain. This is accomplished

by letting the velocity components diffuse into the exterior region (see Figure 3.4),

which ensures a continuous velocity field for updating the level set. We now give

the details of this extension algorithm.

First, fix the values of ~uss at the interior grid nodes and set the edge node

values of the computational domain to be zero. At each boundary and exterior grid

node (excluding the edge nodes), compute a value for ~uss using this formula:

~uss|i,j =
~uss|i+1,j + ~uss|i−1,j + ~uss|i,j+1 + ~uss|i,j−1

4

where (i, j) are the row and column coordinates for each grid node. Iterate this

process a fixed number of times for all boundary and exterior grid nodes. With each

iteration, the velocity values diffuse further away from the interior region. For our

simulations, we used 50 iterations to extend ~uss, which is then used in (3.3). This

guarantees that the velocity field will always be extended. Our method is nothing

more than Jacobi iterations executing on all boundary and exterior nodes and acting
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Figure 3.4: Velocity Field Extension. Illustration showing before and after results

of extending the velocity field by diffusion using Jacobi iterations.

on velocity values. In [105] and [24], the method they use for extending the velocity

field is based on a convection-type equation that propagates velocity data from

the interior region into the boundary and exterior nodes. However, we do not use

their method because it is computationally more complex. Another technique for

generating velocity fields that also preserves the distance function property of the

level set function is given in [123], but this is a very expensive computation. We

prefer our method because it is simpler and gives excellent performance.

3.5 Remaining Tasks

After updating the level set function, pressure, and velocity fields, there re-

main two final tasks. Reconditioning the level set function and choosing the next

time step. Once completed, the program loops back to Section 3.4 to continue the
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simulation.

3.5.1 Correct Level Set

Despite the ingenuity of the level set method, it does have problems. Since

we are using the fluid velocity to update φ, it is highly likely that the level set will

become distorted and introduce numerical inaccuracies [123]. This requires peri-

odically resetting φ so that it is always close to being a distance function. This

is done by explicitly finding the zero level set of φ, which represents the droplet

boundary, and recomputing the signed distances at each grid point in the compu-

tational domain. We speed up this calculation by using a coarse sampling of the

boundary for computing signed distances of grid nodes far from the boundary. For

closer grid nodes, we use a finer sampling. The advantage of keeping it a distance

function is that it increases the accuracy of computing spatial derivatives of φ. In

addition, it ensures |∇φ| ≈ 1, which increases the accuracy of computing curvature

with equation (3.2) because the denominator is close to unity. Other methods exist

for maintaining the distance function character of the level set (see [105], [123], [24]),

but we decided to use a more straightforward approach.

The other main problem with the level set method is that, even if it is updated

with a divergence free velocity field, it does not preserve mass [105]. In general,

it tends to lose mass as the simulation progresses. This is mainly due to inherent

numerical diffusion in the discretization of equation (3.1). We alleviate this problem

by adding an appropriate constant offset to φ at each time step. This ensures global
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mass conservation because the constant offset affects the size of the zero level set

(see Figure 3.3). The mass is measured by computing the enclosed area of the zero

level set, which is directly proportional to the mass (by incompressibility). If there

is more than one droplet, say after a split, then different constants are added to the

regions of the level set corresponding to those droplets. Hence, mass is conserved

individually for each droplet.

Unfortunately, the constant offset does not ensure local mass conservation,

such as in the pinching region of a splitting droplet, which can cause the droplet in

our simulation to ‘hesitate’ while splitting and sometimes get stuck. The two left

and right ends would bulge and pull apart as usual, but as the neck joining them

became thin it stopped moving. This was completely erroneous because the velocity

field inside the droplet dictated that it should split apart. One reason for this is

that the level set method does not lose mass at equal rates in different regions

of the domain. Therefore, a constant offset cannot properly correct for this. In

addition, the dynamics of droplet pinching are not resolved very well because the

grid resolution is fixed, uniform, and quite coarse in the pinching region (i.e. only

two to five grid points).

Recently, [44] introduced a particle level set method that ensures global and

local mass conservation. And in [96], a method for adaptive refinement is described

that can resolve fine-scale dynamics. However, the first method is computationally

intensive because of the number of seed particles needed to adequately reconstruct

the level set as well as the particle re-seeding routines necessary to make the algo-

rithm work. And the second method leads to more involved data structures and
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coding. Therefore, we opted for the following simpler, faster method for correcting

the splitting problem.

First, we check for potential splitting of the droplet by looking for thin necking

regions in the flow. This is done by using information contained in the level set

function, φ, itself. If it is not close to splitting, then we do nothing. Otherwise, we

modify φ by slightly decreasing its height in a small region around the pinch point

at each time step. This prevents the level set from getting stuck and allows it to

complete pinch-off without drastic modification to the level set function. In Table

3.1, we present simulation results for the grid resolution versus time to pinch-off

for the splitting case discussed in Section 5.1. The splitting time of the simulated

droplet only varies by a few percent from the 108x108 grid resolution case used in

Section 5.1.3.

3.5.2 Choose Time Step

The next time step is chosen adaptively by the following formula [105]

△t =
h

max(|u| + |v|)

where h is the grid spacing of the computational domain, u and v are the velocity

components at the current time step, and the maximum is taken over all grid nodes

in a thin band around the zero level set. It is not necessary to consider the whole

domain because we only update level set values inside the thin band. This formula is

based on the Courant-Friedrichs-Lewy (CFL) condition, which specifies the largest

time step that can be taken and still allow the simulation to remain stable [102]. It
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is common to have some safety margin by choosing a smaller time step, but this is

unnecessary because the HJ-WENO method in Section 3.4.1 has built-in artificial

dissipation which enhances stability. For more details, see [105] and [102].

Grid Resolution Pinch Time (ms) % Dev.

84x84 127.9 −0.9

90x90 126.4 −2.0

96x96 125.5 −2.7

102x102 126.0 −2.3

108x108 129.0 +0.0

114x114 132.7 +2.9

120x120 133.9 +3.8

130x130 140.0 +8.5

140x140 131.2 +1.7

150x150 139.8 +8.4

161x161 125.0 −3.1

174x174 134.2 +4.0

187x187 125.4 −2.8

201x201 129.8 +0.6

Table 3.1: Pinch Time Versus Grid Resolution. Simulation results for the grid

resolution versus time to pinch-off for the splitting case discussed in Section 5.1.

Percent deviations are taken with respect to the 108x108 grid resolution case. The

splitting time of the simulated droplet only varies by a few percent.
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Chapter 4

Variational Method for Explicit Front Tracking

In the level set method, the interface was captured implicitly by the zero set

of a scalar function (see Figure 3.3). For explicit front tracking, an explicit mesh is

used to represent the liquid-gas interface (see Figure 1.5b). The following sections

describe a variational formulation of the front tracking method that gives a stable

way to compute curvature accurately using the Finite Element Method (FEM).

This method was pursued in lieu of the difficulties we experienced with the level set

method (i.e. noisy curvature calculation and poor mass conservation). It also gives

us more tools for analyzing the well-posedness of our EWOD model (i.e. does the

partial differential equation (PDE) model have a unique solution?).

The mathematical analysis of free boundary problems is wide ranging. At

the PDE modeling level, the well-posedness and long-time behavior of solutions is

not trivial due to the nonlinear nature of geometrically driven flows that can cause

the solution domain to deform considerably (e.g. motion of droplets by surface

tension) [12], [125], [61], [117]. Recently, [26] proved the well-posedness of a nonlinear

elastic shell interacting with a Navier-Stokes fluid using higher order Sobolev spaces.

In this chapter, we start by reviewing the variational method and FEM. We

then derive the variational formulation of our EWOD model, both with and without

the contact line pinning model. We proceed to give an analysis of the well-posedness

59



of the time-discrete and fully discrete variational formulations of the EWOD equa-

tions. Knowledge of the well-posedness of our numerical scheme is desirable because

it ensures that our method is stable and accurate.

4.1 Introduction to the Variational Method and Finite Elements

A variational formulation [47], [58], [114], is an integral representation of the

usual ‘strong’ form of a partial differential equation, such as that given in equations

(2.15) and (2.19). A variational formulation is derived by multiplying a strong form

equation with a smooth test function then integrating over the domain where the

PDE is defined. We demonstrate this process through Laplace’s equation.

4.1.1 Variational Form of Laplace’s Equation

The strong form of Laplace’s (or Poisson’s) equation with Neumann data is

given by

−∆p = f, in Ω,

∂p

∂~n
= g, on Γ,

(4.1)

where g and f are given data and ∆ := ∇ · ∇ = ∇2 is the Laplace operator.

Multiplying the first equation by an arbitrary smooth test function q (see Figure

4.1) and integrating gives
∫

Ω

−∇ · ∇p q =

∫

Ω

fq. (4.2)

Next, we perform an integration by parts to get

∫

Ω

∇p · ∇q −
∫

Γ

∂p

∂~n
q =

∫

Ω

fq, (4.3)
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Ω

Test Function

Figure 4.1: Example test function over the domain Ω. Intuitively, test functions

are used to extract information about the solution of the PDE through the integral

representation. The variational formulation provides a convenient way of encoding

the conditions that a function must satisfy in order to be a solution of the PDE. A

particular test function provides a very small amount of information, in the support

of the test function (i.e. where it is non-zero), about the PDE solution. Hence, one

must test with all possible test functions in order to ‘see’ the whole solution.

which introduces a boundary term. Inserting the boundary condition from (4.1)

gives
∫

Ω

∇p · ∇q =

∫

Γ

gq +

∫

Ω

fq. (4.4)

The next step to obtain the variational formulation of (4.1) requires the use

of certain function spaces. The first space needed is denoted by L2(Ω), which is the

space of all functions whose squares are integrable (over the domain Ω) in the sense

61



of Lebesgue. The second space is given by:

H1(Ω) := {p ∈ L2(Ω) : ∇p ∈ [L2(Ω)]2}, (4.5)

where [L2(Ω)]2 is the set of 2-D vector functions, whose individual components are

in L2(Ω). Functions in H1 are said to be ‘weakly’ differentiable because they do not

have to be point-wise differentiable (i.e. their derivatives only exist in the Lebesgue

sense). This is useful from a theoretical and practical viewpoint, because it gives

freedom in approximating the true solution of the strong form PDE.

The variational formulation of (4.1) is now given by the following statement.

Find a solution p ∈ H1(Ω) such that

∫

Ω

∇p · ∇q =

∫

Γ

g q +

∫

Ω

fq, for all q ∈ H1(Ω), (4.6)

where f is in the dual space of H1(Ω) and g is in the dual space of H1/2(Γ) [59], [21].

The space H1 was chosen because it is the least ‘regular’ function space such that

the integrals in (4.6) make sense. Note that the solution p is not required to be twice

differentiable, as it is in equation (4.1). For this reason, equation (4.6) is also called

a weak formulation because there are fewer restrictions on the smoothness of p. The

well-posedness of this formulation is well known [47] (i.e. it has a unique solution).

In addition, if the solution to (4.6) is smooth (i.e. twice differentiable in the usual

sense), then it is possible to derive the strong form (4.1) by only assuming the weak

form (4.6) is true and (essentially) following the above steps in reverse. In this case,

the strong and weak forms are said to be equivalent. For most formulations this

is true, but one must take care that the introduction of the function spaces in the

weak formulation does not introduce any ‘strange’ behavior in the weak solution.
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Ω

‘Hat’ Function

sub-domain of Ω

Figure 4.2: Triangulated domain and ‘hat’ function. On the left, a domain has

been partitioned into a (coarse) triangulation, and is denoted by Ω. On the right,

a local ‘hat’ function is shown over a sub-domain of Ω. There is one hat function

for each vertex in the triangulation. The collection of hat functions defines a finite

dimensional subspace of H1(Ω) and is used to approximate solutions of the PDE

listed in equation (4.1).

4.1.2 Finite Elements for Laplace’s Equation

Finding a solution to (4.6) can be done by writing p and q as linear combi-

nations of basis functions that span all of H1(Ω) (i.e. the Galerkin method). This

would lead to a set of equations for computing the coefficients of the basis functions.

However, the basis functions are not easily obtainable when Ω is an arbitrary do-

main. Therefore, an alternative method consists of replacing the space H1(Ω) by a

finite dimensional subspace. One then only needs to construct a finite dimensional

basis, which can be constructed in the following way. Let the domain Ω be parti-
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tioned into a set of disjoint elements. In 2-D, Ω can be partitioned into a set of

triangles, for instance. Then, we define a set of functions which are subordinate to

the partitioning. In the case of a triangulation, one can take a set of basis functions,

Q ⊂ H1(Ω), to be piecewise linear ‘hat’ functions that are linear over each triangle

and continuous at the edges of the triangles (see Figure 4.2). This gives a new finite

dimensional formulation: find a solution p ∈ Q such that

∫

Ω

∇p · ∇q =

∫

Γ

gq +

∫

Ω

fq, for all q ∈ Q. (4.7)

The well-posedness of this problem is directly inherited from the infinite dimensional

case (4.6). Problem (4.7) leads to a sparse linear system of equations that can be

solved by many standard techniques for solving matrix equations [18], [20], [76].

This process of choosing a finite dimensional subspace by partitioning the domain

into a finite number of elements is called the finite element method.

In the following sections, we state the proper strong and weak form of the

governing equations for EWOD driven flow. We show the well-posedness of the

time-discrete (continuous in space) formulation, as well as for the fully discrete

version.
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4.2 Variational Formulation of Model Without Line Pinning

In this section, we derive the variational formulation of the governing equations

(see Section 2.4.1) and show that the weak and strong forms of that model are

equivalent. For clarity, we do not consider contact line pinning at this time. The

line pinning formulation only has an additional term to the formulation derived here,

and is postponed until Section 4.3. In deriving the variational form, we assume that

the domain is C2 (i.e. its boundary can be locally described by a twice differentiable

function).

First, we rewrite the EWOD flow model in Section 2.4.1 in a slightly different

form:

α∂t~u+ β~u+ ∇p = 0, Ω,

∇ · ~u = 0, Ω,

p = κ+ E, Γ,

(4.8)

where the first equation is conservation of momentum, the second is conservation of

mass, and the third is the pressure boundary condition. Note that Laplace’s equation

for pressure has been replaced by the second equation in (4.8). The equations in (4.8)

are more convenient because they allow us to derive a mixed variational formulation

of the PDE model that allows the pressure boundary condition to be included as

a natural boundary condition. This is advantageous for computing curvature (see

below). In addition to (4.8), we have the following equation of motion for the time-
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varying liquid-gas interface Γ

~X(·, t) = Γ(t),

d ~X(s, t)

dt
= (~u( ~X(s, t), t) · ~n( ~X(s, t), t))~n( ~X(s, t), t) + φ(s, t)~t( ~X(s, t), t),

(4.9)

where ~X(·, t) : I → Γ(t) ⊂ R
2 is a parameterization (see Appendix A) of the set of

points Γ(t), s is the parameterization variable, I is the parameterization interval, ~n

is the outward pointing normal vector of Γ, ~t is the tangent vector, and φ(s, t) is

any bounded smooth function.

According to (4.9), the time-varying set of points Γ(t) (i.e. the interface mo-

tion) only depends on the normal component of the velocity (~u ·~n) because the extra

tangential component φ only serves to re-parameterize ~X. In other words, the shape

of the interface only depends on the normal velocity. And since only the shape

matters in regards the boundary condition in (4.8), the extra φ term is completely

irrelevant for the time-continuous problem. In fact, one can alter the equation of

motion to be

d ~X(s, t)

dt
= ~u( ~X(s, t), t), (4.10)

which is what we use in deriving the weak form of the time-discrete problem given in

the following sections. We make a point about this ‘irrelevant’ tangential component

now to address a small issue with the weak formulation of the time-discrete problem,

which is discussed further in Section 4.2.3.

For reference, we call (4.8) and (4.10) the fully continuous strong form of the

EWOD flow problem.
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4.2.1 Time-Discrete Strong-Form

Next, we define the time-discrete version of (4.8) and (4.10) by first partition-

ing the time axis into time-steps △ti, for i in some finite index set. Let Ωi and Γi

be the domain and interface at time index ti, and let ~X i(·) be a parameterization of

Γi. Let ~X i+1(·) be a parameterization that approximates the shape of the interface

at time index ti+1 and is given by the following time-discrete version of (4.10)

~X i+1(s) := ~X i(s) + △ti+1~u
i+1( ~X i(s)), for all s ∈ I, (4.11)

where ~ui+1 is the velocity (defined on Ωi) at the next time index.

Using a finite time-step to update the position of the interface introduces a

time-discretization error (i.e. a difference between ~X i+1 and where the interface

‘should’ be for the time-continuous case) that is directly related to the size of △ti+1

and the velocity ~ui+1. For the fully continuous case (4.8), (4.10), the presence of an

‘arbitrary’ tangential component of the velocity was irrelevant (i.e. only the normal

component determines the evolution). Ergo, it is desirable that the discretization

error only depend on the normal component of velocity. This is the case if the tan-

gential component is bounded (in some appropriate sense) by the normal component

(~ui+1 · ~ni)~ni. Therefore, we consider any velocity with the same normal component

as the update velocity in (4.11), and whose tangential component is bounded by the

normal component, to be equivalent to the update velocity appearing in (4.11) with

respect to the time-discrete strong form.

We obtain the update velocity by solving a linearized, time-discrete version of
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equation (4.8), which is listed as

α
~ui+1 − ~ui

△ti+1

+ β~ui+1 + ∇pi+1 = 0, Ωi,

∇ · ~ui+1 = 0, Ωi,

pi+1 = κi+1 + Ei, Γi,

(4.12)

where ~ui is the (known) velocity at time index ti. Here, we have used a finite

difference approximation of the time derivative term ∂t~u. Given ~X i+1, we define the

interface at time ti+1 by

Γi+1 = { ~X i+1(s) : s ∈ I}, (4.13)

and κi+1 is an approximation of the curvature of Γi+1.

The solution domain is kept explicit in (4.12) when solving for the new velocity

~ui+1 (i.e. ~ui+1 is defined on the current domain Ωi), which is effectively a linearization

step. But the curvature term κi+1 is not explicit, meaning that κi+1 is not the

curvature of Γi. In fact, we have some freedom in choosing how the curvature is

computed. Before stating how the curvature is approximated, we re-write the update

(4.11) in a more convenient form:

~X i+1 ◦ ( ~X i)−1(~x) = ~X i ◦ ( ~X i)−1(~x) + △ti+1~u
i+1(~x), for all ~x ∈ Γi, (4.14)

where we use ‘◦’ to emphasize the composition of maps or functions (i.e. if f and

g are functions, then f ◦ g(x) = f(g(x))). Equation (4.14) can be written more

concisely as

~X i+1 ◦ ( ~X i)−1 = ~X i ◦ ( ~X i)−1 + △ti+1~u
i+1, (4.15)

where ( ~X i)−1 : Γi → I is the inverse map of ~X i. Obviously, ~X i ◦ ( ~X i)−1 is the

identity map idΓi : Γi → Γi, but we prefer to keep it as written for clarity.
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From differential geometry [37], [58], [7], the vector curvature of Γi and Γi+1

is defined (see Appendix A, equation (A.26)) using the Laplace-Beltrami operator

or ‘surface Laplacian’ by

κi+1~ni+1 = −∆Γi+1( ~X i+1 ◦ ( ~X i+1)−1), (4.16)

κi~ni = −∆Γi( ~X i ◦ ( ~X i)−1). (4.17)

In other words, the vector curvature is given by the surface Laplacian of the identity

map on the surface. Formulas (4.16) and (4.17) are true for 1-D and 2-D surfaces.

For a 1-D surface, the surface Laplacian of the identity map is just the second

derivative, with respect to arc-length, of the curve parameterization. For the purpose

of our time-discrete problem, using (4.16) corresponds to an implicit computation

of the curvature, while (4.17) is explicit because it is the curvature of the current

domain boundary Γi. In our case, we use a compromise given by

κi+1~ni := −∆Γi( ~X i+1 ◦ ( ~X i)−1), (4.18)

⇒ κi+1 = −∆Γi( ~X i+1 ◦ ( ~X i)−1) · ~ni,

which is semi-implicit because we use the updated surface parameterization defined

by (4.15) but compute the surface Laplacian on the original surface Γi.

The above time-discretization was chosen because it leads to a linear set of

equations that describe the velocity at each time-step. A fully implicit approach

would not be linear because the domain Ωi+1 at the next time-step is not known

a priori. In addition, the semi-implicit discretization in (4.18) ensures a stable

computation of the curvature [8], [9], [43]. This decouples geometry from the physical
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variables and converts the original nonlinear PDE system into a sequence of linear

elliptic PDE.

4.2.2 Variational Formulation of the Time-Discrete Problem

From the time-discrete equations given in Section 4.2.1, we proceed to derive

the variational formulation by the standard means (see Section 4.1). Let ~v be an

arbitrary smooth vector test function and multiply the first equation in (4.12) by ~v

and integrate:

α

△ti+1

∫

Ωi

(~ui+1 − ~ui) · ~v + β

∫

Ωi

~ui+1 · ~v +

∫

Ωi

∇pi+1 · ~v = 0. (4.19)

Next, integrate the pressure gradient term by parts, plug in the boundary condition

in (4.12), and rearrange to get

(
α

△ti+1

+β)

∫

Ωi

~ui+1 ·~v−
∫

Ωi

pi+1∇·~v+

∫

Γi

κi+1~ni ·~v =
α

△ti+1

∫

Ωi

~ui ·~v−
∫

Γi

Ei~v ·~ni.

(4.20)

We now concentrate on simplifying the boundary term involving the curvature.

Using our semi-implicit definition (4.18), we have

∫

Γi

κi+1~ni · ~v = −
∫

Γi

∆Γi( ~X i+1 ◦ ( ~X i)−1) · ~v.

Using the fact that ∆Γi = ∇Γi · ∇Γi (i.e. the surface Laplacian is the surface diver-

gence of the surface gradient; see Appendix A and equation (A.18)) and integrating

by parts on the boundary (A.32), we get

∫

Γi

κi+1~ni · ~v =

∫

Γi

∇Γi( ~X i+1 ◦ ( ~X i)−1) · ∇Γi~v,
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where the dot · (on the right side) is the ‘double dot product’ of two matrices (A.33).

Finally, plugging in the update formula (4.15) gives

∫

Γi

κi+1~ni · ~v =

∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1 + △ti+1~u
i+1) · ∇Γi~v, (4.21)

where we update with the full velocity ~ui+1.

We use the full velocity because it simplifies the implementation. If we only

used the normal velocity component, then our computational domain would need

to have a C1 boundary to ensure that the normal vector ~ni is continuous. This is

necessary because of the surface gradient term in (4.21). However, computing with

a moving C1 boundary complicates the numerical method, so is undesirable. Al-

ternatively, using a polygonal domain (or iso-parametric elements) to represent the

liquid-gas interface (as is typically done with FEM), would mean ~ni is discontinuous,

so ∇Γi~ni would not make sense in our formulation. But using the full ~u avoids this

issue, and is equivalent to just using the normal component anyway (see Section

4.2.1). One way to keep the normal velocity update would be to replace the normal

vector by a continuous approximation, but this would introduce extra discretization

error and further complicate the method. Ergo, we chose to use ~ui+1 to update the

interface position.

Combining equation (4.21) with (4.20) and rearranging gives the weak formu-

lation of the first (conservation of momentum) equation:

(
α

△ti+1

+ β)

∫

Ωi

~ui+1 · ~v −
∫

Ωi

pi+1∇ · ~v + △ti+1

∫

Γi

∇Γi~ui+1 · ∇Γi~v =

α

△ti+1

∫

Ωi

~ui · ~v −
∫

Γi

Ei~v · ~ni −
∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1) · ∇Γi~v.

(4.22)

The variational form of the second (conservation of mass) equation in (4.12)
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is obtained simply by multiplying by an arbitrary smooth test function q and inte-

grating:
∫

Ωi

q∇ · ~ui+1 = 0. (4.23)

Next, we need the correct function space to pose the variational form in. We

start by defining a scalar product si(·, ·) : C∞(Ωi) × C∞(Ωi) → R by

si(~u,~v) :=

∫

Ωi

~u · ~v +

∫

Ωi

(∇ · ~u)(∇ · ~v) +

∫

Γi

~u · ~v +

∫

Γi

∇Γi~u · ∇Γi~v, (4.24)

and define a norm induced by this scalar product |||~u||| :=
√
si(~u, ~u). We then define

the function space V
i as the closure of C∞(Ωi) with respect to the norm ||| · |||, i.e.

V
i := C∞(Ωi)

|||·|||

. (4.25)

In other words, the space V
i is the set of functions that are limits of C∞(Ωi) Cauchy

sequences that converge with respect to the norm ||| · ||| [84], [87], [47]. We denote

this norm by:

‖~u‖Vi :=
√
si(~u, ~u). (4.26)

Therefore, the space V
i and norm ‖ · ‖Vi define a Hilbert space [47], [84], which is

required for the well-posedness of the variational formulation. We now make note of

some functional relations that will be useful later in showing the discrete INF-SUP

condition. Using Definition 3.2, Corollary 3.4, and Theorem 3.17 in [1], one can

show the following inclusions:

H1(Ωi) ∩H1(Γi) ⊂ V
i ⊂ H(div,Ωi) ∩H1(Γi), (4.27)

where H(div,Ωi) := {~v ∈ [L2(Ωi)]2 : ∇ · ~v ∈ L2(Ωi)} [59].
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The variational formulation of the problem now reads as follows: find a velocity

~u ∈ V
i and pressure p ∈ P

i, such that (4.22) and (4.23) are true for all ~v ∈ V
i and

all q ∈ P
i, where P

i := L2(Ωi). The electrowetting force Ei is required to be in

the dual space M (discussed later; see equation (4.53)), although in practice it is

actually more regular. The boundary Γi must be, at least, Lipschitz to make sense

of the surface gradient operator ∇Γi . This is satisfied in our computations because

we use a continuous approximation of the boundary that is piecewise C1 (i.e. a

polygon with curved iso-parametric sides) (see [1] for more details). The spaces V
i

and P
i are the ones with the minimal regularity needed to make sense of the integrals

appearing in (4.22) and (4.23). Note that the superscript i denotes dependence on

the current domain Ωi.

4.2.3 Equivalence of Weak and Strong Forms

Next, we show that the weak formulation implies the strong form assuming

the solution is smooth and the domain is smooth. Normally this is obvious, but

in this case there is an ‘artifact’ of the weak formulation that arises because of the

definition of V
i. The space V

i contains vector velocity functions whose tangential

component on Γi is unrelated to the vector function values in the interior of Ωi.

This could affect the equivalence with the time-discrete strong form in Section 4.2.1

if the tangential component of the solution is completely arbitrary. We now clarify

this issue.
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Notation for Interior and Decoupled Tangential Velocity

First, we define some notation for a function in V
i. Let ~v ∈ V

i, which is a

function defined on the closure Ωi, and let ~vint denote ~v on the open set Ωi. Because

of a standard result for the normal trace of H(div,Ωi) functions, [59], we know that

~v · ~n = ~vint · ~n on Γi. Which means that the normal component of the velocity on

the boundary is dependent on the velocity in the interior. No such result exists for

the tangential component. In other words, there could be a ‘jump’ in the tangential

velocity (i.e. ~vint · ~t 6= ~v|Γi · ~t). So we let ~v~t denote the tangential component of ~v

on Γi, which has no connection with ~vint. Therefore, when we write ~v ∈ V
i, we are

really referring to the pair of functions (~vint, ~v~t) that are decoupled.

Derive Strong Form Equations in the Bulk

Next we derive the strong form of the governing PDE from the weak formu-

lation by assuming that the domain is smooth and that we have a smooth (i.e.

C∞(Ωi)) solution (~u, p) of the variational form. Let ~v be a smooth test function and

apply it to (4.22). After integrating the pressure term by parts, we get

(
α

△ti+1

+ β)

∫

Ωi

~ui+1 · ~v +

∫

Ωi

∇pi+1 · ~v −
∫

Γi

pi+1~ni · ~v + △ti+1

∫

Γi

∇Γi~ui+1 · ∇Γi~v =

α

△ti+1

∫

Ωi

~ui · ~v −
∫

Γi

Ei~v · ~ni −
∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1) · ∇Γi~v.

(4.28)

Now suppose ~v has compact support in Ωi, meaning ~v is chosen so that it has

zero value on the boundary Γi. This eliminates the boundary terms and, after
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rearranging, gives

∫

Ωi

(α
~ui+1

int − ~ui
int

△ti+1

+ β~ui+1
int + ∇pi+1) · ~vint = 0, (4.29)

where we have replaced ~u and ~v with ~uint and ~vint because the integral is on the

open set Ωi. Since (4.29) is true for all smooth functions ~vint, we get the strong form

of the momentum equation:

α
~ui+1

int − ~ui
int

△ti+1

+ β~ui+1
int + ∇pi+1 = 0, in Ωi.

The conservation of mass equation follows similarly by letting q be smooth and

arbitrary in (4.23),

∇ · ~ui+1
int = 0, in Ωi.

Derive Strong Form of the Pressure Boundary Condition

Now that we have the strong mass and momentum equations, (4.28) simplifies

to

−
∫

Γi

pi+1~ni · ~v + △ti+1

∫

Γi

∇Γi~ui+1 · ∇Γi~v =

−
∫

Γi

Ei~v · ~ni −
∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1) · ∇Γi~v.

(4.30)

Because the domain and ~v are smooth, we can integrate the last term by parts to

get

∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1) · ∇Γi~v = −
∫

Γi

∆Γi( ~X i ◦ ( ~X i)−1) · ~v =

∫

Γi

κi~ni · ~v, (4.31)

by definition of the curvature of Γi (4.17). But this implies that the left-hand side of

(4.31) is zero if the test function ~v is purely tangential. Therefore, the last integral
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in (4.30) only sees the normal component of ~v, which allows us to replace ~v by ~vint

in three of the four integrals of (4.30) because they only depend on the normal

component. This gives

−
∫

Γi

pi+1~ni · ~vint + △ti+1

∫

Γi

∇Γi~ui+1 · ∇Γi((~vint · ~ni)~ni + ~v~t) =

−
∫

Γi

Ei~vint · ~ni −
∫

Γi

∇Γi( ~X i ◦ ( ~X i)−1) · ∇Γi~vint,

(4.32)

where we have written ~v (in the other remaining integral) in terms of the decoupled

normal and tangential components, both of which are assumed to be smooth and

arbitrary.

Next, we are free to take ~vint = 0 but keep ~v~t arbitrary (because it is a test

function). This gives

∫

Γi

∇Γi((~ui+1
int · ~ni)~ni + ~ui+1

~t
) · ∇Γi~v~t = 0, (4.33)

where we have expanded ~ui+1 in terms of its decoupled components. We then fix

~v~t = ~ui+1
~t

and obtain the relation:

∫

Γi

∇Γi~ui+1
~t

· ∇Γi~ui+1
~t

= −
∫

Γi

∇Γi((~ui+1
int · ~ni)~ni) · ∇Γi~ui+1

~t
. (4.34)

After taking the absolute value and applying the Cauchy-Schwarz inequality, we get

‖∇Γi~ui+1
~t

‖2
0,Γi ≤ ‖∇Γi((~ui+1

int · ~ni)~ni)‖0,Γi‖∇Γi~ui+1
~t

‖0,Γi ,

⇒ ‖∇Γi~ui+1
~t

‖0,Γi ≤ ‖∇Γi((~ui+1
int · ~ni)~ni)‖0,Γi .

(4.35)

In fact, because ~ui+1
~t

is tangential (see Appendix A, Lemma A.6.2), we get that the

full H1(Γ) norm of the tangential component is controlled by the H1(Γ) semi-norm

of the normal component:

‖~ui+1
~t

‖1,Γi ≤ C‖∇Γi((~ui+1
int · ~ni)~ni)‖0,Γi , (4.36)
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where the constant C only depends on the diameter of Γi. This means that the

decoupled tangential component is not completely arbitrary, and is bounded by the

normal component of the interior velocity.

Because the decoupled tangential component is bounded by the normal com-

ponent, we have that the full velocity ~ui+1 on Γi is equivalent to ~ui+1
int with respect to

the interface update equation (4.11) (or the more concisely written equation (4.15)).

Hence, we can apply (4.15) to get the strong form of the boundary condition for the

time-discrete problem. We proceed by first rearranging (4.32) and setting ~v~t = 0,

−
∫

Γi

pi+1~ni · ~vint +

∫

Γi

Ei~vint · ~ni+

+

∫

Γi

∇Γi(( ~X i ◦ ( ~X i)−1) + △ti+1~u
i+1) · ∇Γi((~vint · ~ni)~ni) = 0,

(4.37)

where we have the full velocity as the update. Plugging in the equivalent update

(4.15), while choosing a ~vint such that ~vint

∣∣
Γi = ϕ~ni on the boundary, gives

−
∫

Γi

pi+1ϕ+

∫

Γi

∇Γi( ~X i+1 ◦ ( ~X i)−1) · ∇Γi(ϕ~ni) +

∫

Γi

Eiϕ = 0. (4.38)

Integrating the surface gradient term by parts and using the approximation of the

updated curvature (4.18), we get

−
∫

Γi

pi+1ϕ+

∫

Γi

(κi+1~ni) · (ϕ~ni) +

∫

Γi

Eiϕ = 0,

⇒
∫

Γi

(−pi+1 + κi+1 + Ei)ϕ = 0

(4.39)

for all smooth ϕ. This gives the strong form of the pressure boundary condition for

the time-discrete problem

pi+1 = κi+1 + Ei, Γi.

Therefore, we have proved that the weak and strong forms of the time-discrete

problem are equivalent. The decoupled tangential component in the weak formula-
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tion is not completely arbitrary and is bounded by the normal component. Hence,

it only perturbs the evolution of the liquid-gas interface within the same time-

discretization error (at each time-step) as if we had completely neglected the tan-

gential component.

The well-posedness of this variational formulation is a special case of the well-

posedness of the formulation that includes the contact line pinning model. So we

defer answering this question until the end of Section 4.3.

4.3 Variational Formulation of Model Including Line Pinning

The variational formulation provides a natural way to include the contact line

pinning model. This is another instance where the variational technique is able

to improve on our level set method. The following sections start by rewriting the

strong form of the time-discrete EWOD model and simplifying the notation. We

skip writing the strong form of the fully continuous problem, because it is only a

minor modification of (4.8) and (4.9) by the model given in Section 2.4.2. Next,

we give the variational formulation, which is a minor adjustment to the formulation

given in Section 4.2.2. Then, we discuss the well-posedness of the time-discrete and

fully discrete equations.

4.3.1 Time-Discrete Strong Form

For simplicity, we only consider one time-step of the time-discrete problem.

This allows us to drop the time index notation, which is convenient. The following
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equations are similar to those given in Section 4.2.1.

The interface update equation is given by

~Y ◦ ~X−1 = ~X ◦ ~X−1 + △t ~u, (4.40)

where ~X is a parameterization of the interface at the initial time t0, ~Y is the new

updated interface parameterization, and △t is the time-step. The velocity ~u is at

the next time index t1, and is obtained by solving

α
~u− ~u0

△t + β~u+ ∇p = 0, in Ω,

∇ · ~u = 0, in Ω,

p = κ+ E + λ, on Γ,

(4.41)

where ~u0 is the velocity at time index t0 and λ is given by

λ = Ppin sgn(~u · ~n), Γ, (4.42)

where Ω and Γ denote the domain and interface at t0, ~n is the outward normal vector

of Γ, E is the electrowetting forcing at t0, and λ is the contact line pinning ‘pressure.’

The curvature κ is defined using the semi-implicit scheme in (4.18), namely

κ~n := −∆Γ(~Y ◦ ~X−1), (4.43)

⇒ κ = −∆Γ(~Y ◦ ~X−1) · ~n.

4.3.2 Variational Formulation of the Time-Discrete Problem

The variational form of the EWOD pinning model is the same as in Section

4.2.2, except an extra unknown variable λ appears in the pressure boundary con-

dition. This means we need another equation to close the system. The pinning
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variable λ acts as an inequality constraint on the velocity ~u. Therefore, we ap-

pend a variational inequality to our previous variational form [80], [60], [42]. This

is outlined as follows.

Assuming we have a smooth solution to (4.41) on a smooth domain, we mul-

tiply it by smooth test functions and integrate to get

(
α

△t + β)

∫

Ω

~u · ~v −
∫

Ω

p∇ · ~v + △t
∫

Γ

∇Γ~u · ∇Γ~v +

∫

Γ

λ~v · ~n =

α

△t

∫

Ω

~u0 · ~v −
∫

Γ

E~v · ~n−
∫

Γ

∇Γ( ~X ◦ ~X−1) · ∇Γ~v,

(4.44)

∫

Ω

q∇ · ~u = 0, (4.45)

which is similar to the non-pinning case except an additional term,
∫

Γ
λ~v · ~n, is

in (4.44) and λ satisfies (4.42). We now proceed to derive an inequality relation

that is a direct consequence of the definition (4.42). This derivation is extremely

non-obvious, but its purpose will be made clear later.

Derive Variational Inequality

First, let K be a set of smooth functions defined on Γ in the following way

(see Figure 4.3)

K = {µ ∈ C∞(Γ) : |µ| ≤ Ppin}, (4.46)

(i.e. the set K is a convex set in the space of smooth functions defined on the

interface Γ). Now let µ ∈ K and consider the following inequality:

(~u · ~n)µ ≤ (~u · ~n)λ. (4.47)
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Γ

µ

Ω
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0
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LΩ

pinned

unpinned

s

Figure 4.3: Convex set of functions. A plot of an example function µ in the convex

set K is shown. The vertical axis is the amplitude and the s axis is along the

interface Γ (µ is a function defined on Γ). The function µ is periodic because Γ is a

closed curve. Above the plot, an example droplet domain Ω is shown with dashed

lines indicating pinned regions of the boundary where |µ| < Ppin. Functions in K

are limited in amplitude to ±Ppin point-wise. The set K is convex because of the

following: let µ1 and µ2 be in K, and let µ = (1− t)µ1 + tµ2, where 0 ≤ t ≤ 1. Then

clearly −Ppin ≤ µ ≤ +Ppin at each point on Γ, which implies µ is in K. Hence, by

the definition of convexity, K is convex.
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That inequality is true for the following reason. If ~u · ~n = 0, then (4.47) is clearly

satisfied. If ~u · ~n > 0, then λ = Ppin and dividing by (~u · ~n) gives

µ ≤ Ppin, (4.48)

which is satisfied because µ ∈ K. If ~u ·~n < 0, then λ = −Ppin and dividing by (~u ·~n)

flips the inequality to give

µ ≥ −Ppin, (4.49)

which is also satisfied. Upon rearranging (4.47) and integrating, we get

∫

Γ

(~u · ~n)(µ− λ) ≤ 0, (4.50)

which is the variational inequality we were looking for.

The relation (4.50) (and the set K) actually implies the formula (4.42) by the

following argument. First, suppose µ ∈ K and can be arbitrarily chosen, and let

λ ∈ K with |λ| < Ppin in an open set of the free surface Γ. Given a smooth function

ϕ with support in the same open set, we can always find δ > 0 sufficiently small

such that µ := λ + δϕ is still contained in K. Inserting this function µ into (4.50)

we realize that
∫

Γ

(~u · ~n)ϕ = 0 ⇒ ~u · ~n = 0,

because ϕ can have either sign and is arbitrary. Alternatively, if λ = +Ppin (in an

open set of Γ), then we can only choose µ := λ − δϕ with δ > 0 sufficiently small

and the function ϕ ≥ 0 to guarantee µ ∈ K. This yields

∫

Γ

(~u · ~n)ϕ ≥ 0 ⇒ ~u · ~n ≥ 0. (4.51)
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Likewise, we get a relation ~u · ~n ≤ 0 when λ = −Ppin. This implies that λ =

Ppin sgn(~u · ~n), where λ is free to vary between −Ppin and +Ppin when ~u · ~n = 0.

Altogether, this shows the equivalence of (4.42) and (4.50) (with the set K).

The variational inequality allows us to treat λ as an additional unknown,

and embeds the relation (4.42) into the act of solving the weak formulation. This is

advantageous because it avoids introducing a discontinuous function into our method

and it captures the inequality constraint exactly.

Function Space For Pinning Variable

Before precisely stating the full weak formulation of the pinning model, we

must specify the proper space in which the pinning variable λ lives. In other words,

given ~v in V, what is the correct space for λ such that
∫
Γ
λ~v · ~n ‘makes sense’ and

allows for the weak formulation to be well-posed? It turns out that λ should be

viewed as a functional [87] that acts on objects of the form ~v · ~n. In this case, the

integral does not make sense, so we rewrite the weak form using the duality pairing

(i.e. < λ,~v · ~n >=:
∫
Γ
λ~v · ~n).

We now precisely define the duality pairing. Let G = {η : η = ~v ·~n, where ~v ∈

[H1(Γ)]2}. The space G is a Banach space endowed with the norm

‖η‖G := inf

~v ∈ [H1(Γ)]2

~v · ~n = η

‖~v‖1,Γ. (4.52)

Next, let G∗ be the dual space of G (i.e. the set of functionals defined on G) [47], [87],

and let < ·, · > denote the duality pairing between G and G∗. The space for the
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pinning variable is defined to be

M := {µ ∈ G∗ : < µ, 1 >= 0}, (4.53)

i.e. the space of functionals with mean value zero. This is done to enforce a unique

solution for λ in the variational formulation. Physically, this is due to the fact that

since λ depends on the velocity, and the velocity is unaffected by constant offsets to

the pressure boundary condition, λ is arbitrary up to a constant. The norm on M

is then given by

‖µ‖M = sup
η∈G

< µ, η >

‖η‖G

. (4.54)

Next, we define a closed convex subset of M (analogous to K used before) that

captures the inequality constraint dictated by equation (4.42) within the framework

of this particular dual space.

Convex Set of Functionals

In order to include the condition of equation (4.42) into our variational frame-

work, we introduce the following closed convex set of functionals:

Λ := {µ ∈ M : − Ppin < 1, ~v · ~n > ≤ < µ,~v · ~n > ≤ Ppin < 1, ~v · ~n >,

for all ~v ∈ [H1(Γ)]2 such that ~v · ~n ≥ 0 a.e.}.
(4.55)

The convexity is clear. We now show why it is closed. Let {µk} ⊂ Λ be a sequence

such that µk → µ ∈ M. This means that

lim
k→∞

< µk, ~v · ~n >=< µ,~v · ~n >, for all ~v ∈ [H1(Γ)]2.

So, since µk ∈ Λ for all k, we have that µ satisfies

−Ppin < 1, ~v · ~n > ≤ < µ,~v · ~n > ≤ Ppin < 1, ~v · ~n >, (4.56)
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for all ~v in [H1(Γ)]2 such that ~v ·~n ≥ 0 almost everywhere (a.e.), which means µ ∈ Λ.

Therefore, Λ is closed.

The definition of Λ in (4.55) is somewhat abstract. However, if µ ∈ Λ can be

identified with a function in L2(Γ), then µ satisfies |µ| ≤ Ppin a.e. by the following

argument. Suppose µ is in L2(Γ) ∩ Λ. Then the duality pairing can be replaced by

an integral, and the condition in Λ reads

−
∫

Γ

Ppin~v · ~n ≤
∫

Γ

µ~v · ~n ≤
∫

Γ

Ppin~v · ~n, for all ~v ∈ [H1(Γ)]2 such that ~v · ~n ≥ 0 a.e.

Then, since ~v · ~n ≥ 0 a.e., we have that

∫

Γ

(Ppin − µ)~v · ~n ≥ 0 ⇒ (Ppin − µ) ≥ 0 ⇒ µ ≤ +Ppin, a.e.,

∫

Γ

(Ppin + µ)~v · ~n ≥ 0 ⇒ (Ppin + µ) ≥ 0 ⇒ µ ≥ −Ppin, a.e.,

which means

|µ| ≤ Ppin, a.e.,

and is the condition defined earlier by the convex set K. So, clearly the definition

(4.55) captures the condition set by equation (4.42).

Variational Equations for the Pinning Case

Finally, we state the full variational formulation of the EWOD pinning model.

The function space for the velocity is denoted by V and is a complete space under

a certain norm (recalled below). The pressure space is given by P := L2(Ω), and

the pinning multiplier space M is defined to be a set of mean value zero functionals

(see (4.53)).
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The variational formulation now reads as follows: find a solution ~u in V, p in

P, and λ in Λ such that

(
α

△t + β

)(∫

Ω

~u · ~v + γ

∫

Ω

(∇ · ~u)(∇ · ~v)
)

+ △t
∫

Γ

∇Γ~u · ∇Γ~v +

−
∫

Ω

p∇ · ~v + < λ,~v · ~n > =

α

△t

∫

Ω

~u0 · ~v −
∫

Γ

E~v · ~n −
∫

Γ

∇Γ( ~X ◦ ~X−1) · ∇Γ~v, for all ~v ∈ V,

(4.57)

−
∫

Ω

q∇ · ~u = 0, for all q ∈ P, (4.58)

< (µ− λ), (~u · ~n) > ≤ 0, for all µ ∈ Λ. (4.59)

We have added an augmented lagrangian term
∫

Ω
(∇ · ~u)(∇ · ~v), with parameter

γ > 0, to the first equation. This is consistent with the governing PDE because the

velocity is divergence free by (4.58). This is added to improve the convergence of

our algorithm for solving the variational inequality (see Section 4.3.6) and will be

discussed later.

Next, we recall the appropriate norms for these spaces:

‖~v‖2
V

:= ‖~v‖2
H(div,Ω) + ‖~v‖2

H1(Γ), (4.60)

‖q‖P := ‖q‖L2(Ω), (4.61)

and the M norm ‖µ‖M was defined in (4.54).

Now, let us define the following bilinear and linear forms:

a(~u,~v) =

(
α

△t + β

)(∫

Ω

~u · ~v + γ

∫

Ω

(∇ · ~u)(∇ · ~v)
)

+ △t
∫

Γ

∇Γ~u · ∇Γ~v, (4.62)

b(~v, (q, µ)) = −
∫

Ω

q∇ · ~v + < µ,~v · ~n >, (4.63)
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χ(~v) =
α

△t

∫

Ω

~u0 · ~v −
∫

Γ

E~v · ~n −
∫

Γ

∇Γ( ~X ◦ ~X−1) · ∇Γ~v, (4.64)

With (4.62), (4.63), and (4.64), we can rewrite the variational form more concisely:

find (~u, p, λ) ∈ V × P × Λ such that

a(~u,~v) + b(~v, (p, λ)) = χ(~v), for all ~v ∈ V,

b(~u, (q, µ− λ)) ≤ 0, for all (q, µ) ∈ P × Λ.

(4.65)

This is called a mixed variational formulation because there is more than one func-

tion space being used and they are different [21], [59]. The well-posedness of this

formulation is discussed in Section 4.3.3. It should be noted that the domain Ω

does not need to be smooth for our weak formulation (4.65) to make sense. It only

needs to be piecewise smooth and continuous. This is true for polygonal domains

and for domains with piecewise quadratic boundary. We make use of this when we

discretize with finite elements.

4.3.3 Well-Posedness of the Time-Discrete Problem

We can guarantee the well-posedness of (4.65) if all of the following properties

are true (see [22], [129], [80]):

• the bilinear form a(~u,~v) is coercive over all of V, i.e.

a(~v,~v) ≥ c‖~v‖2
V
,

for some fixed constant c > 0.

• the bilinear form b(~v, (q, µ)) satisfies the INF-SUP condition.

• the convex set Λ is closed.
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The condition on a(·, ·) can be relaxed to just being coercive over the kernel of b.

However, it is convenient to take a to be coercive over the whole space. This makes

the proof of the well-posedness of the fully discrete problem easier (Section 4.3.4)

and guarantees the convergence of our iterative algorithm for solving (4.65) with the

inequality constraint (Section 4.3.6). In the following sections, we prove the first

two items in the list. We showed previously that the convex set was closed. Note

that our convex set is not a convex cone, which is the usual assumption made in

some of the literature.

An Alternate Norm on V

Let ‖~u‖2
altV :=

∫
Ω
~u · ~v +

∫
Ω
(∇ · ~u)(∇ · ~v) +

∫
Γ
∇Γ~u · ∇Γ~v. We show that

‖ · ‖altV is a norm on V. The only norm property that needs to be checked is

that if ‖~u‖altV = 0, then V ∋ ~u = 0. So, let ~u ∈ V, and let ‖~u‖altV = 0. Then

‖∇Γ~u‖0,Γ = 0, which implies ~u|Γ = ~u0 (constant vector) in L2(Γ). By standard

Sobolev embedding [93], [1], this gives

‖(~u− ~u0) · ~n‖−1/2,Γ ≤ c‖~u− ~u0‖0,Γ = 0. (4.66)

Next, because ~u is in H1(Γ), the H−1/2(Γ) norm of ~u can be written as

‖~u · ~n‖−1/2,Γ = ‖~u0 · ~n‖−1/2,Γ = sup
w∈H1(Ω)

< ~u0 · ~n, w >1/2

‖w‖1,Ω

= sup
w∈H1(Ω)

∫
Γ
(~u0 · ~n)w

‖w‖1,Ω

,

where we used (4.66), <,>1/2 is the duality pairing between H−1/2(Γ) and H1/2(Γ),

and the pairing has been replaced by an integral because of the regularity of ~u0 and

w. Now note that there exists a non-empty subset Γ0 of Γ such that ~u0 · ~n ≥ c1|~u0|
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on Γ0. And also note that we can find a w0 in H1(Ω) such that w0 is smooth, w0 > 0

on Γ0, and w0 = 0 on Γ \ Γ0. Therefore, because 0 = ‖~u‖H(div,Ω) ≥ ‖~u · ~n‖−1/2,Γ (by

hypothesis), we get

0 ≥ sup
w∈H1(Ω)

∫
Γ
(~u0 · ~n)w

‖w‖1,Ω

≥
c1|~u0|

∫
Γ0
w0

‖w0‖1,Ω

≥ c2|~u0|,

where c2 > 0. Hence, ~u0 = 0, which means that ~u = 0 in V. So, ‖ · ‖altV is a norm

on V. Specifically, ‖ · ‖altV is equivalent to the V norm defined previously (4.60). In

other words,

‖~u‖V ≥ ‖~u‖altV ≥ cV‖~u‖V, (4.67)

where cV > 0 is a constant that only depends on Ω.

Coercivity of a(·, ·)

The coercivity follows from the previous result. Since a(~u, ~u) ≥ △t‖~u‖2
altV (the

constants α and β are typically larger than 1), we get that

a(~u, ~u) ≥ △t‖~u‖2
altV ≥ △t c2

V
‖~u‖2

V
. (4.68)

So the coercivity constant depends on the time-step △t.

INF-SUP Proof

The ‘INF-SUP’ condition has many forms, all of which are equivalent [21], [18].

We use the following form of it:

sup
~v∈V

b(~v, (q, µ))

‖~v‖V

≥ β0(‖q‖2
P

+ ‖µ‖2
M

)1/2, for all (q, µ) ∈ P × M, (4.69)
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for some constant β0 strictly greater than zero. The idea of the proof is that we

construct a ~v in V that gives us the inequality, then take the supremum (sup) over

all of V. The proof is broken up into the following steps:

STEP 0:

Fix q in P and µ in M. We will construct a velocity ~v that will give us (4.69).

STEP 1:

First, we construct a vector function ~v0 ∈ [H1(Γ)]2 such that

‖µ‖M = < µ,~v0 · ~n >, ‖~v0‖1,Γ = 1. (4.70)

By the definition of the M norm (4.54), there exists an η0 in G such that ‖η0‖G = 1

and ‖µ‖M = < µ, η0 >. Note that adding a constant to η0 would not affect the

numerator of (4.54) (because µ has mean value zero, i.e. < µ, 1 > = 0), whereas

the denominator would change. Hence, to attain the supremum in (4.54), η0 must

have mean value zero to minimize the denominator. Likewise, by the definition of

the G norm (4.52), there exists a ~v0 ∈ [H1(Γ)]2 such that ‖~v0‖1,Γ = ‖η0‖G = 1 and

η0 = ~v0 · ~n. Ergo, ~v0 satisfies (4.70) and ~v0 · ~n has mean value zero.

STEP 2:

Next, we use Proposition B.0.1 in Appendix B. Let ~v ∈ [H1(Ω)]2 satisfy the

following problem:

∇ · ~v = −q, Ω,

~v = ‖µ‖M~v0 + α~ns, Γ,

(4.71)

where α is a constant to guarantee compatibility and is given by

α =
1

|Γ|

∫

Ω

−q,
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and the vector ~ns is described in Appendix C.

Now, note the following inequalities:

|α| ≤ 1

|Γ|

∫

Ω

|q| ≤ |Ω|1/2

|Γ| ‖q‖P ≤ 1

2
√
π
‖q‖P,

‖~v‖1,Γ ≤ ‖µ‖M‖~v0‖1,Γ + |α|‖~ns‖1,Γ.

Using these inequalities, ~v0 from step 1, the construction of ~ns (given in Appendix

C), and Proposition B.0.1, we get that the solution to (4.71) satisfies these bounds

‖~v‖H(div,Ω) ≤ c2‖~v‖1,Ω ≤ c3(‖q‖P + ‖~v‖1/2,Γ) ≤ c4(‖q‖P + ‖µ‖M). (4.72)

‖~v‖1,Γ ≤ c1(‖q‖P + ‖µ‖M), (4.73)

Note that ~v is also contained in V by (4.27).

STEP 3:

Now, insert the function ~v from step 2 into the bilinear form b

b(~v, (q, µ))

‖~v‖V

=
−
∫

Ω
q∇ · ~v+ < µ,~v · ~n >

‖~v‖V

=

∫
Ω
q2 + ‖µ‖M < µ,~v0 · ~n > +α < µ, 1 >

‖~v‖V

.

(4.74)

By step 1, we get

b(~v, (q, µ))

‖~v‖V

=
‖q‖2

P
+ ‖µ‖2

M

‖~v‖V

. (4.75)

STEP 4:

Finally, using the bounds given in (4.72) and (4.73) and taking the supremum

over all of V, we get

sup
~v∈V

b(~v, (q, µ))

‖~v‖V

≥ β0(‖q‖2
P

+ ‖µ‖2
M

)1/2 (4.76)

for some fixed constant β0 > 0. Since q and µ were arbitrary, this proves the

continuous INF-SUP condition.
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This proof holds for domains Ω that are not just smooth but rather piecewise

smooth. This is true for polygonal domains and domains with curved sides. The

only part that changes is the particular choice of ~ns (see Appendix C).

4.3.4 Finite Element Discretization

One must be careful when choosing how to discretize the function spaces in

a mixed variational formulation (i.e. which finite element spaces to use). Choosing

an ‘obvious’ or straightforward discretization can adversely affect the stability of

the method (i.e. its well-posedness) as well as the order of convergence. The key to

ensuring a stable method is to ensure that the same criteria listed in Section 4.3.3

is true when using finite dimensional approximations of the usual function spaces.

First, we partition the domain Ω (and Γ) into a set of triangles (and sides)

(see Figure 4.2). Denote this set of triangles by ⊤Ω and the set of sides of Γ by SΓ.

This means the domain Ω has a polygonal boundary Γ or, if curved triangles are

used on the boundary, the boundary sides are piecewise quadratic (see Figure 4.4).

If piecewise linear functions are used to approximate the velocity, then a polygonal

representation of the boundary is adequate. In our case, we use piecewise quadratic

functions to approximate the velocity in order to have a stable method. Thus, we

approximate the domain with curved triangles.

Next, we state the polynomial spaces that will be used in approximating V,

P, and M. Let Pk(D) be the space of polynomials of order k on the sub-domain D.
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~n

Γ

Ω

DoF

Figure 4.4: A triangulated domain with curved triangles on the boundary. The

boundary Γ of the domain Ω is composed of curved sides that are piecewise quadratic

and continuous. The ‘dots’ mark the degrees-of-freedom (DoF) of the quadratic

polynomials that are defined on each triangle. Quadratic sides are required to

compute curvature accurately when using piecewise quadratic polynomial functions

to approximate the velocity field [128].
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Define

Vk := {~u = (u, v) ∈ [C(Ω̄) ∩H1(Ω)]2 : u, v|T ∈ Pk(T ), for T ∈ ⊤Ω} (4.77)

to be a space of piecewise vector polynomials of order k, and define

Qk := {q ∈ C(Ω) ∩ L2(Ω) : q|T ∈ Pk(T ), for T ∈ ⊤Ω} (4.78)

to be a space of piecewise scalar polynomials of order k. We also need a space of

piecewise discontinuous polynomial functions on the boundary Γ:

Mk := {µ ∈ L2
0(Γ) : q|S ∈ Pk(S), for S ∈ SΓ}, (4.79)

where L2
0(Γ) is the space of L2 functions on Γ that have mean value zero.

Let Vh ⊂ V, Ph ⊂ P, and Mh ⊂ M be conforming finite dimensional subspaces

defined by:

Vh := V2, Ph := Q1, Mh := M0, (4.80)

where h is a discretization parameter that refers to the maximum size of triangles

in ⊤Ω. We also need a discrete version of the convex set defined in (4.55). This is

given by

Λh := {µ ∈ Mh : −Ppin ≤ µ|S ≤ +Ppin, for each S ∈ SΓ}, (4.81)

and is conforming: Λh ⊂ Λ.

The variational formulation of the discrete problem then reads: Find (~u, p, λ) ∈

Vh × Ph × Λh such that

a(~u,~v) + b(~v, (p, λ)) = χ(~v), for all ~v ∈ Vh,

b(~u, (q, µ− λ)) ≤ 0, for all (q, µ) ∈ Ph × Λh.

(4.82)
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Note the very similar structure of (4.82) to the continuous case (4.65). The only

difference is that we have chosen finite-dimensional spaces (Vh,Ph,Λh) to replace

the continuous spaces (V,P,Λ).

4.3.5 Well-Posedness of the Fully Discrete Problem

The well-posedness of (4.82) follows by the same criteria as for the continuous

case. Because the finite element spaces are conforming to the infinite dimensional

spaces, the only criteria to check is that the INF-SUP condition is still satisfied [21],

[18].

We split the proof of the discrete INF-SUP condition into two stages. First, we

prove it for the triple, (V2, Q0,M0), (i.e. for piecewise continuous and quadratic ve-

locity, piecewise constant pressure, and piecewise constant pinning variable). Then,

we prove it for the triple, (V2, Q1,M0), (i.e. the spaces we chose in the formulation

(4.82)).

In both cases, we make use of Fortin’s criteria [21], [18], which uses the con-

tinuous INF-SUP condition to prove the discrete version:

Proposition 4.3.1. (Fortin’s Criteria) Suppose that the bilinear form b : V × (P ×

M) → R satisfies the INF-SUP condition. In addition, suppose that for the con-

forming subspaces Vh,Ph,Mh, there exists a bounded linear projector Π : V → Vh

such that

b(~v − Π~v, (q, µ)) = 0, for all (q, µ) ∈ Ph × Mh. (4.83)

If ‖Π~v‖V ≤ c‖~v‖V for some constant independent of h, then the finite element spaces
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Vh and (Ph × Mh) satisfy the INF-SUP condition.

Proof. Let µ ∈ Mh ⊂ M and let q ∈ Ph ⊂ P. By the assumption that the continuous

INF-SUP is satisfied, we have

β0(‖q‖2
P

+ ‖µ‖2
M

)1/2 ≤ sup
~v∈V

b(~v, (q, µ))

‖~v‖V

= sup
~v∈V

b(Π~v, (q, µ))

‖~v‖V

≤

≤ c sup
~v∈V

b(Π~v, (q, µ))

‖Π~v‖V

= c sup
~v∈Vh

b(~v, (q, µ))

‖~v‖V

,

which is the discrete INF-SUP condition, with constant β0/c.

The projector Π is called a Fortin interpolation operator. The goal next is to

construct a suitable Fortin interpolator.

Discrete INF-SUP with (V2, Q0,M0)

Again we proceed in steps. Note that the duality pairing for the pinning

variable can now be written as an integral because µ is piecewise constant in L2
0(Γ).

STEP 0:

Assume that ~v ∈ [H1(Ω)]2 ∩ [H1(Γ)]2 ⊂ V.

STEP 1:

Define the V2 −Q0 projection Π2~v|T on each triangle T in the following way:

Π2~v|T ∈ P2(T ),

Π2~v|T (~x) = 0, for all ~x = vertex of T,

∫

S

(~v − Π2~v) · ~n = 0, for all S ⊂ ∂T,

∫

S

(~v − Π2~v) · ~t = 0, for all S ⊂ ∂T,

(4.84)
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where ~n and ~t are the normal and tangent vectors of the triangle side S. In the case

of a triangle that is not curved, the last two conditions in (4.84) would simplify to

∫

S

(~v − Π2~v) = 0, for all S ⊂ ∂T. (4.85)

However, for iso-parametric elements (i.e. curved triangles on the boundary), we

need the other two conditions.

STEP 2:

Now verify that the following is true

b(~v − Π2~v, (q, µ)) = 0, for all ~v ∈ [H1(Ω)]2 ∩ [H1(Γ)]2 (4.86)

and for all q ∈ Q0 and µ ∈ M0. We do this by breaking up the integrals over

individual triangles and sides:

b(~v − Π2~v, (q, µ)) = −
∫

Ω

q∇ · (~v − Π2~v) +

∫

Γ

µ(~v − Π2~v) · ~n =

= −
∑

T∈⊤Ω

q|T
∫

T

∇ · (~v − Π2~v) +
∑

S∈SΓ

µ|S
∫

S

(~v − Π2~v) · ~n

=
(4.84) −

∑

T∈⊤Ω

q|T
∑

S⊂ ∂T

∫

S

(~v − Π2~v) · ~n =
(4.84)

0,

where the divergence theorem was used in translating integrals over triangles to

integrals over sides.

STEP 3:

We need the following estimates for the Π2 interpolant (taken from [21]):

|Π2~v|1,T = |Π̂2~v|1,T̂ ≤ c‖~̂v‖1,T̂ ≤ c(h−1
T |~v|0,T + |~v|1,T ),

=⇒ ‖Π2~v‖1,T ≤ c(h−1
T ‖~v‖0,T + |~v|1,T ), (4.87)
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where hT is the size of triangle T and T̂ is the standard reference triangle [18], [20].

The next estimate follows by an inverse inequality (see equation (4.5.2) on page 111

of [20]),

‖Π2~v‖1,S ≤ ch−1
S ‖~v‖0,S, (4.88)

where hS is the length of a side S ⊂ Γ of a triangle.

STEP 4:

Let Π1 be the Clément [30] or Scott-Zhang interpolant [122] (onto vector piece-

wise linear polynomials, V1), which has the following properties:

∑

T∈⊤Ω

h−2
T |~v − Π1~v|20,T ≤ c‖~v‖2

1,Ω, (4.89)

∑

T∈⊤Ω

|~v − Π1~v|21,T ≤ c‖~v‖2
1,Ω, (4.90)

∑

S∈SΓ

h−2
S |~v − Π1~v|20,S ≤ c|~v|21,Γ, (4.91)

‖Π1~v‖1,Γ ≤ c‖~v‖1,Γ, (4.92)

where (4.91) and (4.92) follows from the properties of the Scott-Zhang interpolant,

or by setting the Clément interpolant on the boundary to the nodal interpolant

of the H1(Γ) function, which has point-wise values because Γ is a 1-D curve (i.e.

H1(Γ) ⊂ C0(Γ) when Γ is 1-D [47], [93], [1]).

STEP 5:

Now we derive two intermediate inequalities:

‖Π2(I − Π1)~v‖2
1,Ω =

∑

T∈⊤Ω

‖Π2(I − Π1)~v‖2
1,T ≤

(4.87)

≤ c1
∑

T∈⊤Ω

{h−2
T |(I − Π1)~v|20,T + |(I − Π1)~v|21,T} ≤

(4.89), (4.90)
c2‖~v‖2

1,Ω,

(4.93)
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‖Π2(I − Π1)~v‖2
1,Γ =

∑

S∈SΓ

‖Π2(I − Π1)~v‖2
1,S ≤

(4.88)

≤ c1
∑

S∈SΓ

h−2
S |(I − Π1)~v|20,S ≤

(4.91)
c2‖~v‖2

1,Γ,

(4.94)

STEP 6:

We define the main (Fortin) interpolant:

Πh~v := Π1~v + Π2(~v − Π1~v), (4.95)

and we can derive the following estimates, starting with the [H1(Ω)]2 norm,

‖Πh~v‖1,Ω ≤ ‖Π1~v‖1,Ω + ‖Π2(~v − Π1~v)‖1,Ω ≤
(4.93)

≤ ‖Π1~v − ~v‖1,Ω + ‖~v‖1,Ω + c1‖~v‖1,Ω ≤
(4.89), (4.90)

c2‖~v‖1,Ω

(4.96)

and also for the [H1(Γ)]2 norm,

‖Πh~v‖1,Γ ≤ ‖Π1~v‖1,Γ + ‖Π2(~v − Π1~v)‖1,Γ ≤
(4.94)

≤ ‖Π1~v‖1,Γ + c1‖~v‖1,Γ ≤
(4.92)

c2‖~v‖1,Γ

(4.97)

Hence, we get that the Fortin operator (4.95) is bounded in the [H1(Ω)]2 ∩ [H1(Γ)]2

norm,

‖Πh~v‖1,Ω + ‖Πh~v‖1,Γ ≤ c(‖~v‖1,Ω + ‖~v‖1,Γ). (4.98)

And we also have that Πh satisfies (4.83),

b(~v − Πh~v, (q, µ)) = 0, for all ~v ∈ [H1(Ω)]2 ∩ [H1(Γ)]2,

and all q ∈ Q0, µ ∈M0,

(4.99)

because of (4.86) and the fact that ~v−Πh~v = (~v−Π1~v)−Π2(~v−Π1~v) = ~w−Π2 ~w,

where [H1(Ω)]2 ∩ [H1(Γ)]2 ∋ ~w = ~v − Π1~v.

STEP 7:
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Next, we extend the Fortin operator to all of V (recall definition (4.25)) us-

ing Proposition B.0.1. To do this, first let ~w ∈ V and note that ∇ · ~w ∈ L2(Ω)

and ~w ∈ H1(Γ) by the inclusion relation (4.27). Moreover, we have the following

compatibility condition

∫

Ω

∇ · ~w =

∫

Ω

∇ · ~wint =

∫

Γ

~wint · ~n =

∫

Γ

~w · ~n,

where we use the decoupled velocity notation from Section 4.2.3. Hence, we can let

~v ∈ [H1(Ω)]2 ∩ [H1(Γ)]2 satisfy the following divergence problem:

∇ · ~v = ∇ · ~w, Ω,

~v = ~w, Γ,

where ~v satisfies the bound: ‖~v‖1,Ω ≤ c(‖~w‖1,Γ + ‖∇ · ~w‖0,Ω). Then define a new

operator Π : V → Vh, where Vh is the space of (vector) piecewise continuous

quadratic polynomials, in the following way: Π~w = Πh~v (note: ~v depends on ~w).

STEP 8:

To prove that this new operator satisfies the Fortin criteria, we must first verify

that it is bounded in the V norm. This is done using properties of the solution of

the problem in the previous step,

‖Π~w‖V ≤ c1(‖Πh~v‖1,Ω + ‖Πh~v‖1,Γ) ≤
(4.98)

c2(‖~v‖1,Ω + ‖~v‖1,Γ) ≤

≤ c3(‖∇ · ~w‖0,Ω + ‖~w‖1,Γ) ≤ c3(‖~w‖H(div) + ‖~w‖1,Γ) ≤ c4‖~w‖V

(4.100)

STEP 9:
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Finally, we verify that Π satisfies (4.83),

b(~w − Π~w, (q, µ)) = −
∫

Ω

q∇ · (~w − Π~w) +

∫

Γ

µ(~w − Π~w) · ~n =

= −
∫

Ω

q∇ · (~v − Πh~v) +

∫

Γ

µ(~v − Πh~v) · ~n =

= b(~v − Πh~v, (q, µ)) =
(4.99)

0,

(4.101)

for all q in Q0 and µ in M0. The property (4.101) is true for any ~w ∈ V. Hence,

by Fortin’s criteria, the discrete INF-SUP condition is satisfied, using the Fortin

interpolant Π.

Discrete INF-SUP with (V2, Q1,M0)

Here we will use the previous section and the proof of the standard Taylor-

Hood element to prove that the discrete INF-SUP condition holds for the triple

(V2, Q1,M0).

STEP 0:

Let q ∈ Q1 (i.e. a piecewise linear continuous function over Ω) and let q be

the L2 projection of q onto piecewise constants. Also, let µ ∈M0.

STEP 1:

Since the INF-SUP condition is true for (V2, Q0,M0) (see previous section),

there exists a ~w0 ∈ Vh such that

b(~w0, (q, µ))

‖~w0‖V

≥ β0(‖q‖2
P

+ ‖µ‖2
M

)1/2.

By letting ~w := (‖q‖2
P

+ ‖µ‖2
M

)1/2 ~w0

‖~w0‖V

, we get the following useful property:

b(~w, (q, µ)) ≥ β0(‖q‖2
P

+ ‖µ‖2
M

),

‖~w‖V = (‖q‖2
P

+ ‖µ‖2
M

)1/2.

(4.102)
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Using (4.102), gives the following estimate

b(~w, (q, µ)) = −
∫

Ω

q∇ · ~w +

∫

Γ

µ(~w · ~n) =

= −
∫

Ω

q∇ · ~w +

∫

Γ

µ(~w · ~n) −
∫

Ω

(q − q)∇ · ~w =

= b(~w, (q, µ)) −
∫

Ω

(q − q)∇ · ~w ≥

≥ β0(‖q‖2
P

+ ‖µ‖2
M

) − ‖q − q‖P(‖q‖2
P

+ ‖µ‖2
M

)1/2,

(4.103)

where, in the last line, we used the Cauchy-Schwarz inequality and the fact that

‖∇ · ~w‖0,Ω ≤ ‖~w‖V

STEP 2:

We use some of the proof from the Taylor-Hood case. From [21], there exists

a ~z ∈ V2 such that ~z = 0 on Γ, ‖~z‖V ≤ c1‖~z‖1,Ω ≤ c2‖q − q‖P, and

−
∫

Ω

q∇ · ~z ≥ c3‖q − q‖2
P
.

STEP 3:

Let ~v = ~w + δ~z, where δ > 0 is to be chosen. Plugging into b(·, ·) gives

b(~v, (q, µ)) = b(~w, (q, µ)) − δ

∫

Ω

q∇ · ~z ≥
(4.103), (Step 2)

≥ β0(‖q‖2
P

+ ‖µ‖2
M

) − ‖q − q‖P(‖q‖2
P

+ ‖µ‖2
M

)1/2 + δc3‖q − q‖2
P
≥

≥
(Cauchy ineq.) β0

2
(‖q‖2

P
+ ‖µ‖2

M
) + (δc3 −

1

2β0

)‖q − q‖2
P
.

And then setting δ = 1
2β0c3

+ β0

2c3
gives

b(~v, (q, µ)) ≥ β0

2
(‖q‖2

P
+ ‖q − q‖2

P
) +

β0

2
‖µ‖2

M
=
β0

2
(‖q‖2

P
+ ‖µ‖2

M
), (4.104)

where the equality follows by orthogonality in L2(Ω).

STEP 4:
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Finally, the bound for ~v is

‖~v‖2
V
≤ 2(‖~w‖2

V
+ δ2‖~z‖2

V
) ≤ c24(‖q‖2

P
+ ‖µ‖2

M
+ ‖q − q‖2

P
) =

= c24(‖q‖2
P

+ ‖µ‖2
M

),

(4.105)

and forming the quotient gives

b(~v, (q, µ))

‖~v‖V

≥ β0

2c4
(‖q‖2

P
+ ‖µ‖2

M
)1/2.

Therefore, b satisfies the discrete INF-SUP condition for (V2, Q1,M0):

sup
~v∈Vh

b(~v, (q, µ))

‖~v‖V

≥ β0

2c4
(‖q‖2

P
+ ‖µ‖2

M
)1/2. (4.106)

4.3.6 Solving the Linear System with Inequality Constraint

Finally, given the inequality constraint (4.59), we still need a method of com-

puting a solution in the discrete case. In this section, we present our method for

solving the variational inequality for the case when M is approximated by discrete

L2 functions (i.e. M is replaced by Mh, which is a space of piecewise constant func-

tions). Note the duality pairing in (4.59) can now be written as an integral involving

L2 functions (we make use of this). The rest of the analysis is alla Glowinski [60],

but applied to our problem.

For convenience, we rewrite the discrete variational equations with the duality

pairing replaced by an integral. For the rest of this section, let ~u ∈ Vh, p ∈ Ph, and
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λ ∈ Λh (the discrete convex set) be the true solution of the discrete problem

(
α

△t + β

)(∫

Ω

~u · ~v + γ

∫

Ω

(∇ · ~u)(∇ · ~v)
)

+ △t
∫

Γ

∇Γ~u · ∇Γ~v +

−
∫

Ω

p∇ · ~v +

∫

Γ

λ~v · ~n =
α

△t

∫

Ω

~u0 · ~v −
∫

Γ

E~v · ~n +

−
∫

Γ

∇Γ( ~X ◦ ~X−1) · ∇Γ~v, for all ~v ∈ Vh,

(4.107)

−
∫

Ω

q∇ · ~u = 0, for all q ∈ Ph, (4.108)

∫

Γ

(~u · ~n)(µ− λ) ≤ 0, for all µ ∈ Λh. (4.109)

Iterative Solution Scheme (Uzawa Method)

We proceed to derive an Uzawa method, which basically takes advantage of

an L2(Γ) projection property. Note that all functions in this derivation are discrete,

hence all integrals are well-defined. The first step is to perform the following trick

using the variational inequality (4.109):

0 ≥
∫

Γ

ρ~u · ~n(µ− λ) =

∫

Γ

[λ− (λ+ ρ~u · ~n)](λ− µ) =

∫

Γ

(λ− ω)(λ− µ), (4.110)

where ρ > 0 and ω := λ+ ρ~u · ~n. This implies that λ is the L2 projection of ω onto

Λh (i.e. λ = PΛh
(ω)). This can be seen by Figure 4.5 or by minimizing the following

functional over the convex set Λh:

J(λ) =

∫

Γ

|λ− ω|2 = min
µ∈Λh

∫

Γ

|µ− ω|2. (4.111)

In other words, using the standard techniques of minimization leads to equation

(4.110).
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ω

λ

µ

Λh

0 ≥
∫
Γ
(λ− ω)(λ− µ)

Figure 4.5: Projection onto a convex set. By equation (4.110), we know that the

inner product of the functions (λ− ω) and (λ− µ) must be negative or zero for all

µ in the convex set Λh (note: ω := λ + ρ~u · ~n). This is only possible if λ is the

L2(Γ) projection of ω onto Λh (i.e. λ = PΛh
(ω)).

105



Therefore, the exact solution of the discrete problem must satisfy this L2

projection property

λ = PΛh
(λ+ ρ~u · ~n). (4.112)

This suggests the following iterative method for solving the variational inequality:

λj+1 = PΛh
(λj + ρ~uj · ~n). (4.113)

where λ0 is an initial guess (say 0) and ρ acts as a relaxation parameter. The initial

velocity ~u0 is obtained by plugging λ0 into equation (4.107) and solving (4.107)

and (4.108) using standard methods for saddle point problems. Then we apply the

projection (4.113) to obtain λ1 and plug it into (4.107) and solve for ~u1. We iterate

this process several times until both sequences {λj} and {~uj} converge.

In the actual implementation, we let U~n and U j
~n be the L2(Γ) projection of

~u · ~n and ~uj · ~n onto Mh, respectively. This allows ~u · ~n in (4.110) to be replaced by

U~n. So by the same argument as before, we get that the exact solution λ satisfies

λ = PΛh
(λ+ ρU~n).

Therefore, we actually use the following update equation in our iterative algorithm

λj+1 = PΛh
(λj + ρU j

~n). (4.114)

The convergence proof using (4.114) is almost exactly the same as with (4.113),

except one must also use the properties of the L2(Γ) projection with respect to U~n

and U j
~n. But the convergence of the solution variables ~uj, pj, and λj are exactly the

same, hence we only give the proof using (4.113).
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Convergence Proof of the Uzawa Method

This proof is similar to Glowinski, except it is applied to a different problem.

Let λj
err = λj − λ, pj

err = pj − p, and ~uj
err = ~uj − ~u denote the error between

the iterate and the exact solution. Because the L2(Γ) projection, PΛh
, is an L2(Γ)

norm decreasing map (follows by the minimization argument (4.111)), we have the

following:

‖λj+1
err ‖0,Γ ≤ ‖λj

err + ρ~uj
err · ~n‖0,Γ. (4.115)

Squaring both sides gives

‖λj+1
err ‖2

0,Γ ≤ ‖λj
err‖2

0,Γ + 2ρ

∫

Γ

λj
err(~u

j
err · ~n) + ρ2‖~uj

err · ~n‖2
0,Γ, (4.116)

which, by moving terms around, gives

‖λj
err‖2

0,Γ − ‖λj+1
err ‖2

0,Γ ≥ ρ[−2

∫

Γ

λj
err(~u

j
err · ~n) − ρ‖~uj

err · ~n‖2
0,Γ]. (4.117)

Now we need to take advantage of the PDE. Due to the linearity of the terms in

(4.107) and (4.108), we have

(
α

△t + β

)(∫

Ω

~uj
err · ~v + γ

∫

Ω

(∇ · ~uj
err)(∇ · ~v)

)
+ △t

∫

Γ

∇Γ~u
j
err · ∇Γ~v +

−
∫

Ω

pj
err∇ · ~v +

∫

Γ

λj
err~v · ~n = 0, for all ~v ∈ Vh,

−
∫

Ω

q∇ · ~uj
err = 0, for all q ∈ Ph.

(4.118)

By setting the test functions ~v = ~uj
err and q = pj

err in (4.118), we get

−
∫

Γ

λj
err(~u

j
err · ~n) =

(
α

△t + β

)(∫

Ω

|~uj
err|2 + γ

∫

Ω

|∇ · ~uj
err|2

)
+

+ △t
∫

Γ

|∇Γ~u
j
err|2,

= a(~uj
err, ~u

j
err),
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which implies that (because a(·, ·) is coercive)

−
∫

Γ

λj
err(~u

j
err · ~n) ≥ c△t‖~uj

err‖2
V
, (4.119)

where c > 0 is a constant. Combining (4.119) with (4.117), and the fact that

‖~uj
err · ~n‖0,Γ ≤ ‖~uj

err‖1,Γ ≤ ‖~uj
err‖V, gives

‖λj
err‖2

0,Γ − ‖λj+1
err ‖2

0,Γ ≥ ρ(2c△t− ρ)‖~uj
err‖2

V
. (4.120)

Hence, if ρ < 2c△t, then {‖λj
err‖2

0,Γ} is a decreasing sequence of numbers, so it

converges to some number (by the least upper bound axiom/Bolzano-Weierstrauss

Theorem [85]). This means the right hand side of (4.120) goes to zero as j goes to

∞. Therefore,

~uj → ~u, as j → ∞. (4.121)

In order to show that ‖λj
err‖M and ‖pj

err‖P go to zero as j → ∞, we must make

use of the INF-SUP condition. Using (4.118) and the definition of the bilinear forms

(4.62), (4.63) in (4.82), we have that

b(~v, (pj
err, λ

j
err)) = a(−~uj

err, ~v), for all ~v ∈ Vh. (4.122)

So, we just divide by the norm and take the supremum to get:

sup
~v∈Vh

b(~v, (pj
err, λ

j
err))

‖~v‖V

= sup
~v∈Vh

a(−~uj
err, ~v)

‖~v‖V

≤ a0‖~uj
err‖V, (4.123)

where a0 > 0 is the continuity constant for a(·, ·). Using (4.106), we obtain

‖~uj − ~u‖V ≥ β0

2a0c4
(‖pj − p ‖2

P
+ ‖λj − λ‖2

M
)1/2. (4.124)

So, by (4.121), we have that pj → p and λj → λ in their respective norms. Note

that the convergence of λj is in a negative norm (recall the dual space M (4.53)).
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It is possible that there may be oscillations in the true discrete solution λ because

we are using piecewise constants to approximate the continuous solution in M. In

practice, the behavior of λ is determined by the ‘forcing’ in the problem (i.e. the

curvature κ and electrowetting force E). For the computations in this thesis, the

behavior of λ seems appropriate.
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4.4 Handling Large Deformations and Topological Changes

One of the drawbacks of using the explicit front tracking method is the presence

of the mesh. Because the interface is moving, the underlying mesh must move with

it. If the droplet is undergoing a large deformation, such as a splitting motion,

this can cause mesh distortion (i.e. elongated triangles/elements in the droplet

triangulation and/or inverted elements). It is known that distorted meshes can

adversely affect the accuracy of the finite element solution [127]. Therefore, any

explicit front tracking method must also be able to handle severe mesh distortion.

We handle large mesh deformations by using mesh smoothing and periodic

re-meshing. Topological changes are handled using a hybrid variational-level set

method and is described in [140]. We give some highlights of the algorithm in the

following list. For more details, see [140].

• Mesh smoothing and re-meshing. We use standard techniques, such as opti-

mization based mesh smoothing [45] and re-meshing with the program ‘Trian-

gle’ [126].

• Updating mesh topology. We use a level set method to guide the evolution of

the explicit finite element mesh through a topological change.

• Mesh reconstruction after the topological change. We use an active contour-

based minimization approach to adjust the mesh in the local region of the

topological change.
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Chapter 5

Simulations Versus Experiments

We present comparisons between our simulation method and five different ex-

periments. In each section, we describe the experimental setup and the correspond-

ing simulation results. In the first experiment (splitting water droplet), we discuss

the various physical phenomena affecting the motion of the droplet (i.e. saturation

and hysteresis) and how the simulations were modified to capture these effects. Sim-

ulations for the first two experiments were run using the level set method (Chapter

3) and variational method (Chapter 4). The remaining experiments are compared

to the variational method only.

5.1 A Splitting Water Droplet

In Figure 5.1, an overhead view of an EWOD device with three electrodes

running left to right is depicted with a splitting droplet. The voltage actuation,

from left to right, is 25 volts, 0 volts, 25 volts and is constant throughout the

split. In the first frame, an initial near-circular droplet is shown just before voltage

activation. After the voltage is turned on, the liquid-gas interface over the left

and right electrodes deforms and induces a low pressure region there. The regions

where no voltage is activated remain at high pressure. In the subsequent frames,

the droplet is pulled from the left and right sides, while it is pushed in from the
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top and bottom. The droplet elongates along the horizontal dimension and is being

pinched in the vertical direction. This causes two smaller droplets to form on the

left and right sides, with a thin neck joining them. The neck eventually gets so thin

that it snaps due to capillary instability. The two smaller droplets then continue

moving to the left and right electrodes because of the pressure differential created

from the voltage actuation. Finally, the two droplets come to rest on the two 25 volt

electrodes. The total time of this experiment is approximately 167 milliseconds.

Next, we present three simulations showing the effects of the various physics

at the boundary. The first simulation is for contact angle variations obeying the

ideal Young-Lippmann curve (see the Y-L curve in Figure 2.6). Next, we simulate

droplet splitting assuming only contact angle saturation (see the saturation curve

for two plates in Figure 2.6). Finally, we show a simulation that includes saturation

and hysteresis. In Table 5.1, we list the pertinent parameters of each simulation

for the level set method; Table 5.2 lists the parameters for the variational method.

In all cases, the velocity scale U0 is chosen so that the non-dimensional velocities

during the simulation are order one.

5.1.1 Ideal Young-Lippmann

In Figures 5.2 and 5.3, we have a simulation (level set) of droplet motion

when no contact angle saturation or hysteresis is being modeled. As can be seen,

the general shape of the splitting droplet is not the same as in the experiment.

Just after the voltage is turned on, the droplet shape has much more of a bulge
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0.0 ms 33.3 ms

66.7 ms 100.0 ms

133.3 ms 166.7 ms

Figure 5.1: Droplet splitting experimental results with level set simulation overlay.

Six frames showing the video snapshots of the experiment (courtesy of CJ Kim

and Sung Kwon Cho at UCLA). The three electrodes shown in each frame have

activation voltages (from left to right) of 25, 0, and 25 volts. Each electrode is

approximately square with a side length of 1.4 millimeters. The dashed-line droplet

outlines are from the simulation depicted in Figures 5.10 and 5.11 and show a direct

comparison between experiment and the level set simulation including contact angle

saturation and hysteresis.
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Y-L Sat All Units

L 4.406 4.406 4.406 mm

U0 1500 500 50 mm/sec

t0 2.94 8.81 88.12 msec

P0 16.3 16.3 16.3 N/m2

Re 117.6 39.2 3.92 non-dim.

Ca 0.01854 0.006181 0.000618 non-dim.

α 137.3 15.25 1.695 non-dim.

β 881.4 293.85 326.5 non-dim.

Khys 1.0 1.0 0.09 non-dim.

Table 5.1: Simulation Parameters for the Level Set Method: Numbers for three

simulations are listed here: (Y-L) uses the Young-Lippmann theory, (Sat) adds in

saturation, and (All) includes saturation and hysteresis. Each simulation uses a

different value of U0 so the maximum non-dimensional velocity is close to unity.

This also causes Re, Ca, α, β, and t0 to differ. Grid resolution is 108x108.

in the center than shown in the experiment. This becomes more pronounced in

later frames, with two thin necks developing between the three bulging parts of the

droplet. The droplet then splits into three pieces instead of two as in the experiment.

Finally, the two larger droplets come to rest on the active electrodes, with the smaller

satellite droplet resting in the center. The total time to complete the split and reach

equilibrium is 8.8 milliseconds, 18.9 times faster than the experiment.

The variational method, shown in Figures 5.4 and 5.5, gives a similar result

except the total split time is 7.6 milliseconds.

Because no saturation or hysteresis is being modeled, the simulated EWOD
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Figure 5.2: Young-Lippmann Model with the level set method (part A): simulation

frames showing splitting behavior under the ideal Young-Lippmann theory. Simu-

lation continued in Figure 5.3.
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Figure 5.3: Young-Lippmann Model with the level set method (part B): simulation

frames showing splitting behavior under the ideal Young-Lippmann theory. Split

time is 18.9 times faster than the experiment.
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Figure 5.4: Young-Lippmann Model with the variational method (part A): simu-

lation frames showing splitting behavior under the ideal Young-Lippmann theory.

Simulation continued in Figure 5.5.
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Figure 5.5: Young-Lippmann Model with the variational method (part B): simu-

lation frames showing splitting behavior under the ideal Young-Lippmann theory.

Split time is slightly shorter than with the level set method.
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Y-L Sat All Units

L 4.2 4.2 4.2 mm

U0 750 250 50 mm/sec

t0 5.6 16.8 84 msec

P0 17.14 17.14 17.14 N/m2

cpin 0.0 0.0 0.003 N/m

Re 58.8 19.6 3.9 non-dim.

Ca 0.009272 0.00309071 0.0006181 non-dim.

α 32.7 3.64 0.9662 non-dim.

β 400.6 133.5 177.4 non-dim.

Khys 1.0 1.0 0.1505 non-dim.

Table 5.2: Simulation Parameters for the Variational Method: Numbers for three

simulations are listed here: (Y-L) uses the Young-Lippmann theory, (Sat) adds in

saturation, and (All) includes saturation and hysteresis. Each simulation uses a

different value of U0 so the maximum non-dimensional velocity is close to unity.

This also causes Re, Ca, α, β, and t0 to differ. The length scale is slightly different

than for the level set method because there is no ‘buffer region’.

force is much larger than in reality. This causes the droplet to be pulled apart so

fast that the middle region is never able to become a thin neck. As a result, three

satellite droplets are created instead of two. In fact, the z curvature of the liquid-

gas interface (i.e. the EWOD force) is so large that the x-y curvature component is

practically negligible. This is why the droplet does not resist being pinched in two

places; the EWOD force here dominates the large curvature forces induced by the

pinched regions.
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5.1.2 Saturation

For the simulation (level set) shown in Figures 5.6 and 5.7, we have added the

effect of contact angle saturation. The splitting motion of the droplet now looks

much closer to the experiment. As the droplet is pulled apart, a single thin neck

joins the two bulging ends. The neck then breaks, allowing the two droplets to come

to rest on the left and right electrodes. However, the time scale is still not correct.

The time to reach equilibrium here is 14.33 milliseconds, which is 11.6 times faster

than the experiment.

The variational method (Figures 5.8 and 5.9) gives a similar result except a

small satellite drop is released in the center and the split time is 12.17 milliseconds.

The lack of a small satellite drop in the level set simulation is possibly due to the

coarse grid used (108x108), whereas the triangular mesh in the variational simulation

becomes more refined around the pinching area.

Including saturation does slow the droplet, but it is still not enough. In real-

ity, the line pinning induced contact angle hysteresis is extremely significant in most

wetting phenomena. Hysteresis slows motion by reducing the pressure gradient (see

Section 2.2.4). Therefore, it is not surprising that this effect must be included to ac-

curately simulate droplet speed. The following section presents our final simulation

of splitting with hysteresis included (and also contact line pinning for the variational

method).
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Figure 5.6: Saturation Model with the level set method (part A): simulation frames

showing splitting behavior when contact angle saturation is included. Simulation

continued in Figure 5.7.
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Figure 5.7: Saturation Model with the level set method (part B): simulation frames

showing splitting behavior under the contact angle saturation model. Split time is

11.6 times faster than the experiment.
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Figure 5.8: Saturation Model with the variational method (part A): simulation

frames showing splitting behavior when contact angle saturation is included. Sim-

ulation continued in Figure 5.9.
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Figure 5.9: Saturation Model with the variational method (part B): simulation

frames showing splitting behavior under the contact angle saturation model. A

small satellite drop is released in the center (not present in the level set simulation).

The split time is also slightly shorter than with the level set method.

124



5.1.3 Contact Angle Hysteresis and Line Pinning

In Figures 5.10 and 5.11, we show several frames of our simulated (level set)

splitting droplet, which are also shown as dashed-line overlays in Figure 5.1. The

hysteresis constant, Khys, is 0.09. This simulation is similar to the one in Figures

5.6 and 5.7, except that the time scale is now correct. The simulated droplet now

splits in the same amount of time as the experiment, as shown in Figure 5.1.

The value of the hysteresis constant, Khys = 0.09, was chosen to make the

simulation time scale match the experiment. By using (2.11) and experimental data

from Figure 2.6, we estimate the contact angle deflection due to hysteresis to be

∆hys = 6.4◦. In [106], the authors give a value of about 20◦ for sessile drops of

water sliding on top of a Teflon surface. This discrepancy is reasonable because the

droplet size and geometry in the EWOD device is different than in [106].

Our hysteresis constant is also analogous to the contact line friction coefficient

in [143], where they treat contact line friction as an extra forcing term proportional

to the velocity of the contact line. In their case, the forcing term has units of force

per unit contact line length. By scaling their friction force by the ratio of contact

line length to volume for a droplet in an EWOD device (to put it into units of force

per unit volume), we can include this as a body force term in the Navier-Stokes

equations. After going through the same derivation as in Section 2.1.2, we obtain

an equation similar to (2.6), except the coefficient of the velocity term has an extra

positive term added to 12(L/H)2. Hence, the coefficient is larger than before. If we

ignore the velocity time derivative term in (2.6), the extra friction force is equivalent
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Figure 5.10: Saturation and Hysteresis Model with the level set method (part A):

simulation frames showing splitting behavior when both contact angle saturation

and hysteresis are added (Khys = 0.09). Simulation continued in Figure 5.11.
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Figure 5.11: Saturation and Hysteresis Model with the level set method (part B):

continuation from previous figure. The droplet splits in the same amount of time as

the experiment. Overlays of this simulation are shown in Figure 5.1 on top of video

frames from the actual experiment.
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to multiplying the pressure gradient by a constant smaller than 1 (i.e. Khys). In fact,

our choice of hysteresis constant corresponds to a contact line friction coefficient of

0.5664 Newton-seconds per square meter, which is comparable to the values listed

in [143] for a column of fluid comprised of deionized water between two parylene

coated electrodes.

However, keep in mind that these estimates are rough approximations. The

hysteresis constant is not an exact model and it does not capture line pinning.

Our initial goal was not to model line pinning or contact angle hysteresis in great

detail, but to show that a simple scaling constant is all that is needed to produce

simulations that approximately capture the shape and speed of splitting droplet

motion. In other cases of droplet motion, however, contact line pinning is more

noticeable (see experiments in the following sections) and should be included in the

model.

In Figures 5.12 and 5.13, we have our variational simulation that includes

contact angle saturation, hysteresis, and contact line pinning. The contact line

pinning coefficient is taken from experiments done in our lab, and is given by

cpin = 3 × 10−3 N / m. The hysteresis constant required to match the simulated

split time to the experiment is given by Khys = 0.1505, which is larger than for the

level set method. This is because our contact line pinning model partially retards

the EWOD force, so less hysteresis is required to slow the droplet down. See Figure

5.14 for an overlay of the variational simulation with the experiment.
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Figure 5.12: Saturation, Hysteresis, and Contact Line Pinning Model with the vari-

ational method (part A): simulation frames showing splitting behavior when the full

model is used (Khys = 0.1505, cpin = 3 × 10−3 N / m). Bolded parts of the droplet

interface represent regions that are ‘pinned’ because of contact line pinning. Note

that pinning only restricts the normal velocity to zero; there can still be a tangential

motion. Simulation continued in Figure 5.13.
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Figure 5.13: Saturation, Hysteresis, and Contact Line Pinning Model with the vari-

ational method (part B): continuation from previous figure (same format). The

droplet splits in the same amount of time as the experiment. Overlays of this simu-

lation are shown in Figure 5.14 on top of video frames from the actual experiment.
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0.0 ms 33.3 ms

66.7 ms 100.0 ms

133.3 ms 166.7 ms

Figure 5.14: Droplet splitting experimental results with variational simulation over-

lay. Same format as Figure 5.1. The dashed-line droplet outlines are from the

simulation depicted in Figures 5.12 and 5.13 and show a direct comparison between

experiment and the variational simulation including contact angle saturation, hys-

teresis, and contact line pinning.
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5.2 A Moving Water Droplet

This section compares our simulation to another experimental case to give

more supporting evidence for our model. The EWOD device shown here has eight

electrodes arranged in a square-like pattern. A predetermined voltage sequence was

used to actuate the droplet so it moves to the right first, then up, and finally to the

left. All constants in our level set simulation are the same as those used in Section

5.1.3 (i.e. Khys = 0.09), and the same computational grid resolution (108x108) is

used (see Table 5.1).

From Figure 5.15, it is evident that the simulation follows the experiment fairly

well. The match is not exact, however, and this is mainly because line pinning is

not taken into account, and hysteresis is not being modeled very accurately. But

the overall motion and time scale are correct.

Figure 5.16 shows the same moving droplet experiment with our variational

simulation that also includes contact line pinning. All constants are the same as in

Section 5.1.3 (i.e. Khys = 0.1505, cpin = 3 × 10−3 N / m); see Table 5.2.

5.3 A Moving Glycerin Droplet

The EWOD device in this experiment has only two electrodes arranged in a

horizontal fashion with a droplet of Glycerin (Glycerol) being actuated. A voltage

of 50 volts is first applied to the left electrode with 0 volts on the right. This causes

the droplet to flow to the left electrode. The voltage actuation is kept constant for

two seconds when it switches to 0 volts on the left, 50 volts on the right, which
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0.0 ms 31.6 ms

79.9 ms 136.6 ms

Figure 5.15: Moving water droplet motion experimental results with level set simu-

lation overlay. Four frames show video snapshots of the experiment (courtesy of CJ

Kim and Jian Gong at UCLA). A time-varying sequence of voltages is applied to

the eight electrode pattern so as to make the droplet move right, up, and then left.

Each electrode is square with a side length of 1.4 millimeters. All device parameters

here are the same as for the splitting experiment shown in Figure 5.1 except the elec-

trode pattern is different. The dashed-line droplet outlines (from simulation) show

a direct comparison between the experiment and a level set simulation including

contact angle saturation and hysteresis (Khys = 0.09).
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Figure 5.16: Moving water droplet motion experimental results with variational

simulation overlay. Same format as Figure 5.15. The dashed-line droplet outlines

(from simulation) show a direct comparison between the experiment and a vari-

ational simulation including contact angle saturation, hysteresis, and line pinning

(Khys = 0.1505, cpin = 3×10−3 N / m). The simulated droplet appears to follow the

real droplet a little more closely as compared to the level set simulation in Figure

5.15.
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causes the droplet to switch direction of motion. Again, the voltage actuation is

kept constant until after two seconds it switches back, causing the droplet to also

switch its direction of travel. This process repeats.

Figure 5.17 shows a comparison between the variational simulation and the ex-

periment; Figure 5.18 shows only the simulation. Simulation and device parameters

are given in Table 5.3.

5.4 A Joining Water Droplet

The EWOD device in this experiment has three electrodes arranged in a hori-

zontal fashion with two droplets of water being actuated to join together. A voltage

of 65 volts is applied to the center electrode (with wire coming out the top), with 0

volts applied to the left and right electrodes, which causes the two droplets to flow

together. The voltage actuation is constant throughout the experiment. Eventually,

the two droplets connect and merge together.

Figure 5.19 shows a comparison between the variational simulation and the ex-

periment; Figure 5.20 shows only the simulation. Simulation and device parameters

are given in Table 5.3.

5.5 A Splitting Glycerin Droplet

This experiment uses the same EWOD device as in Section 5.4, except that

a Glycerin droplet is being actuated to split apart. A voltage of 65 volts is applied

to the left and right electrodes, with 0 volts applied on the center electrode which
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Figure 5.17: Moving Glycerin droplet experimental results with variational simula-

tion overlay. Frames show video snapshots of the experiment (courtesy of CJ Kim

and Jian Gong at UCLA). The applied voltage (50 volts) switches between the left

and right electrodes every two seconds. Each electrode is square with a side length

of 1.5 millimeters. Simulation and device parameters are given in Table 5.3. Note

the large time-scale because glycerin is highly viscous. The simulation follows the

experiment fairly well, except the ‘tail’ narrows more in the simulation than in the

experiment.
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Figure 5.18: Moving Glycerin droplet variational simulation. The applied voltage

(50 volts) switches between the left and right electrodes every two seconds. Each

electrode is square with a side length of 1.5 millimeters. Simulation and device

parameters are given in Table 5.3. Bolded parts of the droplet interface represent

regions that are ‘pinned’ because of contact line pinning.
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Figure 5.19: Joining water droplets experimental results with variational simulation

overlay. Frames show video snapshots of the experiment (courtesy of CJ Kim and

Jian Gong at UCLA). The applied voltage (65 volts on the center electrode only)

causes the two side droplets to flow together and eventually merge. Each electrode

is approximately square with a side length of 1.5 millimeters. Simulation and device

parameters are given in Table 5.3. The simulation matches the experiment fairly

well in the first four frames. However, the pinning behavior in the experiment is

significantly different than the simulation in the last two frames.
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Figure 5.20: Joining water droplets variational simulation. The applied voltage (65

volts on the center electrode only) causes the two side droplets to flow together and

eventually merge. Each electrode is approximately square with a side length of 1.5

millimeters. Simulation and device parameters are given in Table 5.3. Bolded parts

of the droplet interface represent regions that are ‘pinned’ because of contact line

pinning.
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causes the droplet to pull apart. The voltage actuation is constant throughout the

experiment. Eventually, a thin neck develops between two smaller droplets and the

neck collapses.

Figure 5.21 shows a comparison between the variational simulation and the ex-

periment; Figure 5.22 shows only the simulation. Simulation and device parameters

are given in Table 5.3.
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Figure 5.21: Splitting Glycerin droplet experimental results with variational sim-

ulation overlay. Frames show video snapshots of the experiment (courtesy of CJ

Kim and Jian Gong at UCLA). The applied voltage (65 volts on the left and right

electrodes) causes the droplet to be pulled apart and eventually split. Each elec-

trode is approximately square with a side length of 1.5 millimeters. Simulation and

device parameters are given in Table 5.3. The match between the simulation and

experiment is very good. The only difference is that, in the experiment, slightly

more fluid flows into the left satellite droplet than in the right droplet.
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Figure 5.22: Splitting Glycerin droplet variational simulation. The applied voltage

(65 volts on the left and right electrodes) causes the droplet to be pulled apart and

eventually split. Each electrode is approximately square with a side length of 1.5

millimeters. Simulation and device parameters are given in Table 5.3. Bolded parts

of the droplet interface represent regions that are ‘pinned’ because of contact line

pinning.
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Moving Glycerin Joining Water Splitting Glycerin Units

σlg 0.0645 0.072294 0.0645 J / m2

µ 265.98 0.9348 265.98 g / m-sec

ρ 1235.15 997.44 1235.15 Kg / m3

H 0.1 0.1 0.1 mm

LElec 1.5 1.5 1.5 mm

L 3.0 4.5 4.5 mm

U0 0.4 15 1.1 mm / sec

t0 7500 300 2727.3 msec

P0 21.5 16.065 21.5 N / m2

cpin 0.0015 0.009 0.0015 J / m2

Re 1.8575E-4 1.6005 5.1081E-4 non-dim.

Ca 1.6495E-3 1.9396E-4 4.5361E-3 non-dim.

α 1.8759E-5 0.19675 8.4772E-5 non-dim.

β 36.356 66.383 59.744 non-dim.

Khys 0.49 0.071 0.82 non-dim.

θb,0V 107.35 111.62 107.35 degrees

θb,50V 68.46 - - degrees

θb,65V - 70.01 64.32 degrees

Table 5.3: Simulation Parameters for the experiments in Sections 5.3 (Moving

Glycerin), 5.4 (Joining Water), and 5.5 (Splitting Glycerin) using the Variational

Method. Note the large viscosity of glycerin. We assumed a 90%/10% glyc-

erin/water mixture for the glycerin experiments. θb,0V , θb,50V , θb,65V are the contact

angles on the bottom plate of the EWOD device at 0, 50, and 65 volts, respectively.
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Chapter 6

Controlling EWOD

6.1 Introduction

This chapter shows that Electro-Wetting-on-Dielectric (EWOD) systems con-

tain enough control authority to steer individual particles on trajectories inside the

liquid drops. It is possible, for example, to actuate the available electrodes surround-

ing a single droplet in such a way that the resulting fluid flow inside the drop will

carry a particle around a figure ‘8’ path or will carry two particles along separate

trajectories (see Figure 6.1).

Steering particles inside droplets introduces another level of functionality into

electro-wetting systems. By being able to steer individual particles inside droplets

to 10 micrometer resolution, it will be possible to precisely place cells under or on

top of localized sensors, to stretch out DNA strands (by steering beads attached

to the two ends of the strand in different directions), to move particles from one

location to another at rates much faster than those created by diffusion, to steer

and sort particles within a single drop, or to ensure that certain particles remain

in one drop while other particles are steered to a drop that is being split away.

In essence, our control methods allow electrowetting systems to achieve some of

the same capabilities as laser tweezers [6], [72], [32], although only in two spatial

dimensions and with less accuracy.
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(a) Existing EWOD Capabilities

Path Tracking Particle Point-to-Point Control

(b) New Particle Steering Capabilities

Figure 6.1: The EWOD system manipulates fluids by charging a dielectric layer

underneath the liquid that effectively changes the local surface tension properties

of the liquid/gas interface creating liquid motion. Existing (move, split, join, and

mix) capabilities of electrowetting devices are shown schematically (see [89], [79],

[131], [107], [111], [28], [55]) above the new particle steering capability developed in

this thesis. The view is from overhead the EWOD device. Shaded circles represent

droplets of liquid. Squares are electrodes, where the lighter shading indicates the

electrode is on. Directed lines specify the direction of motion. The multi-shaded

droplet shows the diffusion and mixing of two chemicals; here mixing is enhanced

by the fluid dynamics created inside the droplet due to its imposed motion.
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Steering results are demonstrated using a model [142] of fluid flow in the UCLA

EWOD system [89], [29] and the simulation tools developed in the previous chapters.

This model of EWOD fluid dynamics includes surface tension and electrowetting

interface forces, Hele-Shaw type 2-phase fluid flow, and the essential loss mechanisms

due to contact angle saturation, contact line pinning, and the related mechanism

of contact angle hysteresis. The model has one free parameter associated with the

frictional effect due to hysteresis, but all other parameters are either derived from

first principles or taken from experimental data. And the model is validated against

experimental results for the UCLA devices (see [142] and Chapter 5).

To experimentally demonstrate particle steering in the UCLA EWOD system

would require real time implementation of the least squares control algorithm, a

vision system to find the location of the particles and to track droplet shapes in

real time, and integration and experimental validation of the feedback closed loop

architecture shown in Figure 6.2. Some of these tasks have already been demon-

strated in Shapiro, et al [4], [5], which developed a particle tracking vision system, a

real time control algorithm implementation, and closed loop feedback integration for

steering of particles in a micro fluidic system driven by electro-osmotic (as opposed

to EWOD) actuation. It remains to create a real time control implementation for

the EWOD system, to implement our vision algorithm on the UCLA devices, and

to achieve the feedback control system integration. However, the size of the vision

system, which is currently a microscope and a camera with an image algorithm im-

plemented on a digital signal processing chip, can be reduced to an on-chip contact

imager as demonstrated in [54]. This permits the feedback EWOD system, with

146



vision feedback, to remain portable and hand-held.

Section 6.2 describes the particle steering control task and algorithm develop-

ment. This is followed by some numerical demonstrations in Section 6.3 that show

which particle trajectories can and cannot be achieved.

6.2 Particle Steering Control Algorithm

We consider neutral particles that are simply carried along by the (vertically

averaged) planar fluid flow. Thus, a particle at the location ~x = (x, y) will simply

follow the velocity of the fluid at its location

~̇x = ~u(~x), (6.1)

where ~u = (u, v) is the flow field from equation (2.19) (see Section 2.4.1) and the

overhead ‘dots’ denote derivatives with respect to time. The pressure gradient in

equation (2.19) can be thought of as a control for manipulating the velocity of the

particle or particles. It is by controlling the pressure gradient field inside the droplet,

by changing the pressure on the interface via electrode voltages (see equations (2.16),

(2.17), (2.18) and Figure 2.6), that we can achieve particle steering using actuators

already available in the EWOD device. Steering of multiple particles along complex

trajectories requires controlled actuation of the electrode voltages. Therefore, the

control problem is to find an electrode voltage sequence that creates a temporally

and spatially varying flow field that will carry all the particles along their desired

trajectories.

The control problem described above is a trajectory-tracking problem: we
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seek to find the control inputs that will cause the system (in this case the particle

positions) to follow a desired trajectory. A näıve inspection of the equations of

motion, especially (6.1) for the particle dynamics, would suggest that the control

problem is standard in linear control theory and a linear quadratic regulator (LQR)

tracking controller [90] could be used. However, the particle motion depends on the

droplet shape and on the number of electrodes that the droplet overlays at any given

moment. This information is not known a priori, which means that an LQR cannot

be used. For this reason, we do local estimation and control at each time step of

our simulation using a least squares framework to compute the necessary pressure

boundary conditions and then compute the electrode voltages that will achieve these

boundary pressures (see Figures 6.3 and 6.5). Any particle deviation from the

desired trajectory that may arise from thermal fluctuations, external disturbances,

and actuation errors is corrected using feedback of the particle’s position. Figure

6.2 gives a diagram of the closed loop feedback architecture.

Our particle steering algorithm proceeds as follows:

1. Initialization: Represent the desired trajectory of each particle as a set of

points connected by straight line segments.

2. Sensing: Feed back the particle position data and the location of the droplet

boundary to the control algorithm (as would be provided by the vision sensing

system).

3. Control algorithm part A: Choose the desired velocity directions of each par-

ticle so that the particles will move towards and then along the desired tra-
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Figure 6.2: Particle steering closed loop feedback control architecture. 1) The

EWOD device is observed by 2) an image system (a microscope/camera or an on-

chip contact imager) which transmits information to 3) a computer or chip that

contains 3a) an image processing algorithm to identify droplet shapes and the loca-

tion of the particles and 3b) a control algorithm that computes the actuator voltages

that will move the particles from where they are to where they should be, and 4)

these actuation voltages are then applied on the EWOD device. The loop repeats

at each time step to steer the particles along their desired trajectories. The zoomed

overhead view of the EWOD device (at right) shows a single droplet with one parti-

cle floating inside. The curvy line indicates the desired path of the particle. In our

control algorithm, we sample the trajectory by many points (only seven points are

shown here; see numbered stars 1-7).
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jectories.

4. Control algorithm part B: Solve a least squares problem for the necessary

voltage actuation to induce a pressure gradient field that will create a flow

field to carry the particles along the desired directions obtained in step 3.

5. Actuate: Apply the computed control voltages at the current time step of our

simulation and advance the simulation to the next time step. This updates

the droplet shape and particle positions. Then go back to step 2 and repeat

the feedback control loop.

The algorithm details are described below.

6.2.1 Algorithm Initialization

We represent the desired trajectory curves for each particle as a fine sampling

of points connected by straight lines. The points are indexed in the order in which

the particles should follow them (i.e. the trajectory is parameterized; see Figure

6.2). Complicated trajectories are broken up into separate segments for ease of

particle tracking (see Section 6.2.3). For simplicity, only one particle and trajectory

is considered in the following sections. Multiple particle steering is discussed in

Section 6.2.5.

6.2.2 Particle Position and Droplet Boundary Sensing

We need to know the shape and position of the droplet as well as the position

of each particle in order to apply our control algorithm. At the beginning of each
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time step, we obtain the position of the particle and the location of the droplet

boundary using feedback through a vision system (see Figure 6.2). The issues of

integrating a vision system with an EWOD device are not considered here. For

the purposes of this thesis, the particle positions and droplet shape information are

taken directly from the simulation.

6.2.3 Compute the Desired Direction of Particle Motion

Next, the desired direction of motion for the particle is chosen to be a unit

vector that points from the particle’s current coordinates towards one of the trajec-

tory points. Since maximum forcing of the pressure gradient is used to drive the

particle in the desired direction (see Figure 6.4), it is necessary to choose a trajectory

point that is just out of reach of the particle for the current time step. Otherwise,

it is possible that the particle could overshoot trajectory points and trace out an

unwanted zigzag path around the trajectory.

Hence, we find the target trajectory point by first finding the closest trajectory

point to the particle. Then, using the trajectory parameterization (i.e. the index

list; see Figure 6.2), we look ahead after the closest point and choose the target

to be the first trajectory point that is out of reach of the particle. This ensures

the particle will move forward along the trajectory and not zigzag. If the closest

trajectory point is the last point of the trajectory, then the particle aims for the last

point.

For a self-intersecting or extremely curvy trajectory, it is possible that the
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particle could become stuck in a loop and not travel the entire trajectory. We resolve

this issue by breaking the trajectory into smooth segments that do not intersect and

only allow the particle to ‘see’ one segment at a time. As a result, the particle follows

one piece of the trajectory until it reaches the end, where our algorithm switches to

the next segment. Therefore, without loss of generality, we assume in the following

subsections that the trajectory consists of just one segment.

The forcing of the particle is created by the pressure gradient. And the desired

unit vector discussed above determines the direction of forcing. This unit vector is

used in the next section to calculate the pressure boundary conditions needed to

realize the pressure gradient that will move the particle in the desired direction.

6.2.4 Least Squares Solution for the Boundary Conditions

Figure 6.3 shows an overhead view of a sample droplet in the EWOD device

containing a single particle. The current drop shape overlaps four electrodes, hence

four actuators are available to move the single particle. In each of the four cases,

only one electrode is on; the other electrodes are off. The arrows inside the droplet

show the fluid flow for each of the four voltage actuations. The big dot represents the

particle with a thick arrow indicating the negative direction of the pressure gradient

at the particle location (note that the fluid flows opposite to the pressure gradient).

Our algorithm centers on the idea of taking an appropriate linear combination of

pressure gradients in Figure 6.3 to make the particle (or particles) move in the

direction(s) we want at a particular time step. This will directly correspond to
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Figure 6.3: Linear combination of pressure gradients for a single droplet overlaying

four electrodes (small dashed squares). The diagram above shows a droplet in an

EWOD system with four different instances of voltage actuation. In each instance,

only one of the four electrodes is on. The particle floating inside the droplet (black

dot) has a thick arrow indicating its direction of motion for each single electrode

actuation. These arrows actually represent the opposite direction of the pressure

gradient when a unit pressure boundary condition is set on the thick curve that

overlays the shaded electrode, with zero pressure boundary conditions everywhere

else. The thin curvy arrows show the fluid flow inside the droplet. Since the pressure

field obeys Laplace’s equation (2.15), it is linear and we can make the particle move

in any desired direction by taking an appropriate linear combination of the four

possible boundary conditions given above.
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finding the right combination of electrode voltages at every time step to realize the

desired particle motion (or motions).

First, given the current droplet configuration, we solve (2.15) for the pressure

field inside the droplet for a single active electrode. The pressure boundary condi-

tions are defined to be 1 on the droplet boundary that lies over the active electrode

and 0 everywhere else (see Figure 6.3). From the pressure solution, the pressure gra-

dient at each particle’s position is computed. After repeating this for each electrode,

we obtain a matrix of pressure gradients

G = −




∇P1(~x1) · · · ∇PN(~x1)

...
. . .

...

∇P1(~xm) · · · ∇PN(~xm)



, (6.2)

where ~xj = (xj, yj) are the coordinates for the jth particle. Each column of pressure

gradients ∇Pk(~xj) in the matrix corresponds to a single active electrode; each row

corresponds to a single particle. The total number of particles is m, and the number

of available electrodes is N . The minus sign accounts for the direction of particle

motion.

Next, given the desired pressure gradient at each particle’s location in the

droplet, we wish to find the appropriate boundary conditions to realize it. Because

Laplace’s equation for the pressure (2.15) is linear regardless of the droplet shape,

solutions for single active electrodes can be combined linearly to obtain the pressure

gradient field due to many active electrodes. This reduces our problem to solving a
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linear system

Gξ = b ξ =




ξ1

...

ξN




b =




~b1

...

~bm



, (6.3)

where ~bj is a 2x1 vector representing the desired direction of motion for the jth

particle and ξ is the vector of boundary values that will achieve b. We set ~bj equal

to the unit vector in Section 6.2.3 that represents the desired direction of motion

for the jth particle. If 2m ≥ N , the number of particle degrees of freedom is greater

than the available actuators and (in general) a least squares solution of (6.3) is

required to obtain the best fit of actuations ξ. Otherwise, it is a pseudo-inverse

problem and has a solution as long as the matrix has full row rank [133].

We solve (6.3) for ξ using the singular value decomposition (SVD) [133]. This

is not an expensive computation since the matrix G is not large. In addition, each

component of the solution vector must be made to satisfy an inequality constraint

ξmin ≤ ξj ≤ ξmax, 1 ≤ j ≤ N, (6.4)

where ξmin and ξmax are the minimum and maximum values that the pressure bound-

ary condition can be for any electrode. These constraints come from the limitations

of varying the contact angle (i.e. contact angle saturation [124], [138], [139], [103]).

Hence, ξmin and ξmax are related to the minimum and maximum contact angles

achievable in the EWOD device (see equations (2.17) and (2.18)).

ξmin = − L

H
[cos(117.0◦) + cos(90.0◦)],

ξmax = − L

H
[cos(117.0◦) + cos(117.0◦)].

(6.5)

155



unachievableunachievable

Vector IndexVector Index

ξ1
ξ1

ξ2
ξ2

ξ3
ξ3

ξN

ξN

BC Value

11 22 33 NN
· · ·· · ·

ξminξmin

ξmaxξmax

Figure 6.4: Linear transformation of boundary conditions; an example of satis-

fying the boundary condition constraints. On the left, the components of the

solution to (6.3) are plotted with the maximum and minimum constraint bounds

denoted by dashed lines (see equation (6.4)). On the right, the components

have been linearly mapped to enforce the constraints. This introduces a scaling

factor into the linear system (6.3), which affects the magnitude of the desired

direction vector b (i.e. the magnitude of the force acting on the particles). In ef-

fect, this causes the particle to be forced as much as possible in the desired direction.

In order to satisfy equation (6.4), we take the solution ξ to (6.3) and transform each

of its components so that the full dynamic range of boundary forcing is utilized (see

Figure 6.4).

With this new transformed ξ, we know what the pressure boundary values

should be to realize the desired pressure gradient field. But it is not possible to

exactly enforce ξ because we cannot directly control the planar curvature term κ
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in (2.16). For a circular droplet, the planar curvature term is constant and has no

effect on the pressure gradient field [148]; hence, it can be ignored. Using (2.17) and

(2.18), it is straightforward to compute the contact angles needed to implement ξ.

For non-circular droplets, we use the same procedure. It is not reasonable to use the

planar curvature term in our control algorithm because it involves second deriva-

tives of data that cannot be accurately measured in experiments [112]. Instead, we

view it as a small error to the desired directional forcing of the particles. This error

grows as the droplet deviates from being a circle. This is not a problem for particle

steering for two reasons. First, the linear transformation of the boundary conditions

in Figure 6.4 ensures maximum forcing of the particle. Thus, the relative magnitude

of the error due to the planar curvature κ is minimized. Second, any particle trajec-

tory tracking errors that may occur are corrected through our feedback system (see

numerical simulations in Section 6.3). However, the planar curvature does limit the

type of trajectories that the particles can follow (also see Section 6.3).

Finally, given that pressure on the boundary is directly related to the local

contact angle (2.18), we use experimental data for the contact angle versus voltage

characteristics of the EWOD device [29] to compute the electrode voltages needed

to achieve the boundary pressures ξ (see Figure 6.5). In general, there will be some

uncertainty about the device parameters. In this thesis, we do not consider adaptive

or robust control strategies to deal with uncertain device parameters, but rather

demonstrate the potential for particle control and separation in EWOD devices.
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Figure 6.5: Voltage versus contact angle with contact angle saturation. Here we

show the inverse mapping of the thick black line in Figure 2.6 that represents the

contact angle variability of the EWOD device. The plot shows how to compute the

voltage needed to actuate a specific contact angle. The dashed line depicts the map-

ping from a 105.0◦ contact angle to a voltage of about 14.2 volts. We use this in our

control algorithm for estimating the necessary actuation voltages (see Section 6.2.4).
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6.2.5 Advance Simulation and Update Particle Position

Our simulation advances to the next time step after using the voltages com-

puted in Section 6.2.4 to solve for the induced pressure and velocity fields. The

velocity field is then used to update the position of the particle (see Figure 6.6).

The scaling described in Figure 6.4 ensures the particle will be forced as fast as

possible along the desired direction. Our algorithm runs by going back to Section

6.2.2 and repeating for each time step.

Multiple particle steering is easily handled by applying the above discussion

to each particle and its respective trajectory. The only change is that the linear

system in Section 6.2.4 has more rows to accommodate the extra particles. If the

number of electrodes is limited, then this can adversely affect the controllability we

have. A single particle can be made to track interesting trajectories with enough

electrodes (see Figure 6.7 and Figure 6.10). Two particles can be controlled for sim-

ple trajectories as shown in Figure 6.13. For more than two particles, most complex

trajectories cannot be tracked. Section 6.4 discusses the merits and limitations of

our method.

6.3 Controlling Motion and Splitting

This section presents results demonstrating basic particle steering control using

our experimentally validated simulation. A 3x3 electrode grid is used to actuate

and control the droplet where each square electrode is 1.4 millimeter on a side. We

present seven cases, with different levels of controllability, using both the level set
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Figure 6.6: EWOD particle steering control algorithm update. The droplet configu-

ration from Figure 6.2 is shown on the left. The direction of motion for the particle

is toward the trajectory point that is just out of reach for the current time step. This

control strategy ensures the particle will move as fast as possible and stays close to

its desired trajectory. On the left, the shaded electrodes contain the voltages needed

to move the particle in the desired direction. These voltages are computed by the

least squares solution in Section 6.2.4, the constraint map in Figure 6.4, and by the

voltage versus contact angle curve in Figure 6.5. The varying voltage grid induces

a pressure gradient field inside the droplet such that minus the pressure gradient at

the particle’s position is pointing along the desired direction of motion. This moves

the droplet and particle along the trajectory to the next time step.
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method and variational method and make note of their differences. This is followed

by a discussion of the possibilities and limits of our control algorithm. The voltages

generated by our algorithm are reasonable and are within the limits of the UCLA

device discussed in [29].

6.3.1 Figure ‘8’ Path

Figure 6.7 shows a droplet moving in a way that makes a particle floating

inside follow a figure ‘8’ path. A circular droplet starts on the center electrode with

a particle resting in the center of the droplet. The dashed curve represents the

desired trajectory, which is made up of a fine sampling of points. Two segments are

used to represent the trajectory because of the self-intersection (see Section 6.2.3).

The voltages on the electrode grid are actuated using the algorithm in Section 6.2,

which causes the particle to move forward along the trajectory. For this case, the

droplet always overlaps enough electrodes to allow it to be controlled in a way that

keeps the particle moving on the figure ‘8’ path. The particle never deviates more

than 20 micrometers from the desired trajectory.

Figure 6.8 presents the same case using the variational simulation without the

pinning model; Figure 6.9 includes the pinning model.

6.3.2 Angular Path

In Figure 6.10, a particle is shown following an angular path that is represented

by five separate straight-line segments. This is to prevent the particle from rounding
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174.4 ms 242.0 ms

Figure 6.7: Particle following a figure ‘8’ path (level set method). An initially

circular droplet (denoted by the closed black curve) lies on a 3x3 grid of electrodes

(denoted by straight lines). The dashed figure ‘8’ curve is the desired path, and a

large dot represents the particle with an arrow pointing in the desired direction of

travel. The light solid curve that overlays the dashed curve is the actual path of

the particle. The time-stamp is given in the upper left corner. The voltages on the

grid are time varying in such a way as to keep the particle moving along the desired

path with less than 20 micrometers deviation.
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Figure 6.8: Particle following a figure ‘8’ path (variational method without pin-

ning). Same format as Figure 6.7. The results are similar to Figure 6.7 with some

differences in the droplet shape and total time to move the particle.
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Figure 6.9: Particle following a figure ‘8’ path (variational method with pinning).

Same format as Figure 6.8, except the extra bolded parts of the droplet boundary

denote pinned regions of the liquid-gas interface. In this case, the droplet becomes

nearly stuck (shown in the last frame) and asymptotically approaches a completely

pinned state. This is because the particle is slightly off of the desired way-point, so

the algorithm is trying to force the particle back on but fails to apply enough forcing.

Basically, the control algorithm cannot account for potential pinning of the droplet.

It is possible to ‘unstick’ the droplet but would require a different algorithm.
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off the corners as it travels along the trajectory. Just as in Figure 6.7, the droplet

always overlaps enough electrodes to keep the particle on the path, with a maximum

deviation error of 25 micrometers.

Figure 6.11 presents the same case using the variational simulation without

the pinning model; Figure 6.12 includes the pinning model.

6.3.3 Arc and Point Paths

An example of two-particle control is shown in Figure 6.13. One particle is

held stationary while the other moves along a circular arc. The trajectory for the

stationary particle consists of a single point, which ensures that it stays close to that

point. As the particle on the right follows the circular arc trajectory, the stationary

particle oscillates around its desired position to within 10 micrometers. The droplet

itself becomes deformed because of the limited actuators and the restrictive task of

moving one particle and holding another still. This also prevents the particle on the

circular arc from moving past the point shown in the last frame of Figure 6.13 and

completing the arc.

Figure 6.14 presents the same case using the variational simulation without

the pinning model; Figure 6.15 includes the pinning model.

6.3.4 Particle Separation

In Figures 6.16 and 6.17, we demonstrate particle separation. A droplet starts

in the first panel with two particles spaced 0.31 millimeters apart. Both particles
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Figure 6.10: Particle following an angular path (level set method). Same format as

Figure 6.7. The particle is able to track the trajectory very well, even at the corners.

166



00.0V

00.0V09.7V14.4V

00.0V

18.9V 25.0V 00.0V

15.5V

00.0V

00.0V00.0V00.0V

00.0V

00.0V 00.0V 00.0V

00.0V

15.9V

00.0V00.0V00.0V

17.9V

15.7V 00.0V 14.9V

25.0V

00.0V

16.9V25.0V00.0V

00.0V

00.0V 14.7V 00.0V

15.6V

0.0 ms 83.2 ms

200.8 ms 284.8 ms

Figure 6.11: Particle following an angular path (variational method without pin-

ning). Same format as Figure 6.8. The path of the particle appears to follow the

desired trajectory slightly better than for the level set simulation shown in Figure

6.10.
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Figure 6.12: Particle following an angular path (variational method with pinning).

Same format as Figure 6.9. The particle is able to follow the trajectory at first,

but then begins to deviate (see later frames). Eventually, it becomes nearly stuck

(shown in the last frame) and asymptotically approaches a completely pinned state.

Explanation is the same as that given in Figure 6.9.
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Figure 6.13: Two-particle control: one particle moves on a circular arc, the other is

stationary (level set method). Same format as Figure 6.7. The stationary particle’s

trajectory is a single point. As the particle on the right follows the circular arc, the

droplet distorts to accommodate both particle motions. Eventually, the algorithm is

unable to continue the particle motion due to the restrictive condition of moving one

particle while the other is held stationary, in addition to overcoming the curvature

effect of the deformed droplet.
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Figure 6.14: Two-particle control: one particle moves on a circular arc, the other is

stationary (variational method without pinning). Same format as Figure 6.8. The

results are similar to Figure 6.13.
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Figure 6.15: Two-particle control: one particle moves on a circular arc, the other

is stationary (variational method with pinning). Same format as Figure 6.9. The

results are similar to Figure 6.14 with some variation of droplet shape.
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follow separate diverging trajectories designed to stretch the droplet and separate the

particles. Once the particles near the ends of their trajectories (see third frame), our

control algorithm turns off (fourth frame), and we command an open loop voltage of

25 volts on the middle left and right electrodes and zero volts everywhere else. This

causes the droplet to split into two smaller drops, each of which contains a single

particle. The reason for not using our control algorithm to complete the split is

numerical instability. When both particles are in the lobes of the dumbbell shape of

the pinching droplet, the available forcing at the particles’ positions is fairly weak.

This causes the condition number of the Gmatrix in (6.3) to degenerate and produce

errors in the least squares solution. Therefore, we avoid this by commanding open

loop voltages that we know will split the droplet (see Figures 5.10 and 5.11). Also,

see Figure 6.24 for an example of how this numerical instability can affect particle

control.

Figures 6.18 and 6.19 present the same case using the variational simulation

without the pinning model.

Figure 6.20 presents a simulation of (attempted) particle separation with the

pinning model.

6.3.5 Sine Wave Path

In Figure 6.21, a particle is shown traveling along a sine wave path. The

particle is able to track the trajectory very well until near the end where there is

a kink in the particle’s path. The loss of tracking is because the droplet’s shape
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20.3V
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25.0V

0.0 ms 28.6 ms

64.3 ms 89.0 ms

Figure 6.16: Two-particle separation into two satellite drops, part A (level set

method). Same format as in Figure 6.7. Each particle first follows a trajectory

that takes them away from each other. When there is sufficient distance between

the two particles (see last frame), our control algorithm turns off and the separa-

tion is completed by applying open loop voltages that split the droplet. Simulation

continued in Figure 6.17.
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Figure 6.17: Two-particle separation into two satellite drops, part B (level set

method). Same format as in Figure 6.7.
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Figure 6.18: Two-particle separation into two satellite drops, part A (variational

method without pinning). Same format as Figure 6.8. The paths of the particles

follow the desired trajectories much better than for the level set method in Figure

6.16. Eventually, the algorithm turns-off (last frame) and open loop voltages are

applied to split the droplet. Simulation continued in Figure 6.19.
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Figure 6.19: Two-particle separation into two satellite drops, part B (variational

method without pinning). Same format as Figure 6.8.
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Figure 6.20: Two-particle separation into two satellite drops (variational method

with pinning). Same format as Figure 6.9. The particles attempt to follow the

splitting trajectories, but quickly become stuck due to contact line pinning (the

droplet is fully pinned in the last frame). The algorithm is unaware of the pinned

state and does not know how to compensate. See Figure 6.9 for more explanation.
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and position is such that the number of available electrodes that overlap the droplet

boundary is very limited. It becomes impossible to create a pressure gradient field

that will continue moving the particle in the tangential direction of the desired

trajectory. Hence, the particle drifts away from the trajectory by more than 100

micrometers. This situation corresponds to (6.3) having no exact solution, which

means only a least squares best fit of the desired forcing direction can be computed.

Eventually, however, the particle is able to reacquire the trajectory.

Figure 6.22 presents the same case using the variational simulation without

the pinning model; Figure 6.23 includes the pinning model.

6.3.6 Unstable Pinching Path

Figure 6.24 shows two initially separate particles trying to come together and

touch. The desired motion of the particles induces the droplet to try and pinch

together in an effort to have the particles touch. However, when the particles begin

to near each other, the droplet ceases its splitting action. Instead, the droplet holds

the necking region and begins to oscillate up and down. This is because we are

specifying two opposite directions of motion at points very close together leading to

a numerical instability in solving (6.3). As the particle positions get closer together,

the condition number of the matrix G degenerates causing spurious oscillations in

the control voltages. The droplet is unable to bring the particles together, much

less pinch, because of the randomly varying electrode voltages.

Figure 6.25 presents the same case using the variational simulation without
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0.0V 18.3V 0.0V

24.7V

0.0 ms 92.1 ms

202.3 ms 293.0 ms

Figure 6.21: Particle traveling on a sine wave (level set method). Same format as

Figure 6.7. The particle is able to track the sine wave path until the last time frame

where the particle drifts away from the desired trajectory momentarily (see ‘kink’

in the particle path just underneath the particle’s position in the last frame).
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Figure 6.22: Particle traveling on a sine wave (variational method without pinning).

Same format as Figure 6.8. The particle follows the sine wave very well, until near

the end of the path where it is unable to continue. More electrodes would be needed

to continue the motion. Also note that the particle does not drift away from the

center of the droplet as much as for the level set simulation (Figure 6.21). It is

possible that the excessive drift in Figure 6.21 is a numerical artifact of the level set

method.
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Figure 6.23: Particle traveling on a sine wave (variational method with pinning).

Same format as Figure 6.9. The particle is able to follow the trajectory very well

until it becomes nearly stuck due to contact line pinning (last frame).
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Figure 6.24: Two particles trying to come together and pinch a droplet (level set

method). Same format as Figure 6.7. The particles travel on two separate trajec-

tories that would, ideally, bring them together. However, as they come together,

numerical instabilities in (6.3) cause random variations in the control voltages. This

causes the droplet to hold its shape and move up and down in an undesirable way.
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the pinning model; Figure 6.26 includes the pinning model.

6.3.7 Diverging Paths

Figure 6.27 shows two particles trying to follow diverging paths. At first

the droplet is able to deform enough to keep the two particles on their respective

trajectories. But this quickly fails. The droplet is unable to continue deforming in a

way that keeps both particles on track and moving forward. Because the trajectories

are just straight lines represented by two points each, the control algorithm keeps

the particles moving forward while trying to force them toward the endpoints of the

trajectories. The end result is both particles stay roughly parallel with each other

and are unable to recover their trajectories. This stems from a lack of available

electrodes and the limitations imposed by contact angle saturation.

Figure 6.28 presents the same case using the variational simulation without

the pinning model; Figure 6.29 includes the pinning model.

6.4 Discussion

The limitations of achievable particle control arise from having a small number

of electrodes available for actuation and from contact angle saturation. Moving

several particles in different directions requires many degrees of freedom in adjusting

the pressure boundary conditions. As the droplet moves, it must overlap enough

electrodes to allow the realization of the pressure gradient field needed to push the

individual particles along their trajectories. Hence, a finer electrode grid would allow
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Figure 6.25: Two particles trying to come together and pinch a droplet (variational

method without pinning). Same format as Figure 6.8. Results are similar to the

level set method (Figure 6.24).
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Figure 6.26: Two particles trying to come together and pinch a droplet (variational

method with pinning). Same format as Figure 6.9. Results are similar to the non-

pinning case (Figure 6.25).
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Figure 6.27: Two particles on diverging paths (level set method). Same format as

Figure 6.7. Each particle is attempting to follow separate trajectories, both of which

lead away from each other. Due to limitations of the pressure boundary actuation

and a lack of electrodes, the control algorithm is unable to keep both particles

moving on their respective paths.
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Figure 6.28: Two particles on diverging paths (variational method without pinning).

Same format as Figure 6.8. Results are similar to the level set method (Figure 6.27).
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Figure 6.29: Two particles on diverging paths (variational method with pinning).

Same format as Figure 6.9. The particles are able to follow their trajectories at

first, but eventually becomes nearly stuck (third frame). The last frame shows the

droplet asymptotically approaching a completely pinned state. Explanation is the

same as that given in Figure 6.9.
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more precise control of more particles simultaneously. Also, some trajectories will

require the droplet to become extremely distorted and may require it to split into

several pieces. To do this, one needs enough dynamic range in the boundary forcing

to overcome the droplet’s natural tendency to remain in a circular shape (see the

planar curvature term κ in (2.16)). Contact angle saturation limits the boundary

forcing and the degree of droplet deformation, which can cause controllability to

be lost and particles to drift off of their desired trajectories (see Figures 6.21 and

6.27). In addition, if two particles are very close together, it is not possible to force

them in arbitrary directions. The limits of boundary forcing and the numerical

instability that enters into solving (6.3) inhibit close particle control no matter

how many actuators are present (see Figure 6.24). Contact line pinning can also

hinder particle steering for the algorithm developed here (see Figures 6.9 and 6.20).

However, this could be overcome by modifying the algorithm so that following the

desired trajectory could be abandoned in favor of unsticking the droplet. Another

improvement that can be made is to solve the linear system (6.3) while taking into

account the inequality constraint (6.4) directly (instead of scaling the solution as in

Figure 6.4). This could possibly give a solution ξ that produces a higher forcing of

the particle in the desired direction of motion, which would be helpful for overcoming

droplet sticking.

As of today, it is only feasible to fabricate devices with a few actuators that

can control one or two particles. But it is interesting that existing EWOD systems

have enough control authority to steer a single particle along complex trajectories

and to steer two particles along simple paths.
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Chapter 7

Conclusions

We give a summary of the contributions of this work followed by some discus-

sion.

7.1 Contributions of This Work

This section is broken into four subsections: 1) modeling of EWOD flow, 2)

implementation of the implicit front-tracking level set method, 3) derivation of the

explicit-front tracking variational method, and 4) performing particle control in the

EWOD system. Each subsection lists and describes its main contributions. Note:

some of the contributions here have been published in [142] and [141].

7.1.1 Modeling EWOD Flow

1. Non-dimensionalized the problem and performed an order of magnitude anal-

ysis to derive the governing equations.

2. Demonstrated, computationally, the need to include contact line friction effects

to better match experimental data for EWOD-driven droplet motion.

3. Introduced a constant scaling factor (hysteresis constant) that approximately

models the frictional effects induced by contact angle hysteresis. This was
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necessary in order to adjust for the mismatch in time scales when comparing

simulations to experimental splitting times because our prior model had ig-

nored 3-phase contact line friction. This introduced a single parameter into

the simulation that had to be fit to the experimental data. But this scaling

factor is similar to other contact line friction models from the literature.

4. Compared simulations to experiments at UCLA. This is clearly important to

demonstrate the usefulness of our computational tool to the electrowetting

community.

5. Developed a phenomenological model of contact line pinning to account for

sticking of the three-phase contact line of a droplet, which is a noticeable effect

in the UCLA EWOD system.

7.1.2 Implementing the Level Set Method

1. Applied the level set method to simulating droplets moving in an EWOD

system.

2. Used a method-of-lines approach to evolve the velocity field at each time step.

3. Introduced a diffusion method for extending the velocity field when updating

the level set function. This is a necessary step when using the level set method,

and our diffusion method is not the usual technique for extending the velocity

field.

4. Modified the level set method so that it conserves mass while still being com-
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putationally efficient and able to evolve through topological changes.

5. Implemented the method in MATLAB with some routines written in C for

computational efficiency.

7.1.3 Deriving the Variational Method

1. Recast the EWOD fluid equations into a mixed variational formulation and

applied FEM. This was done to overcome the following problems in our level

set method: lack of accurate (local) mass conservation and noisy curvature

due to our previous explicit calculation that involved differentiating numerical

data.

2. Included our phenomenological line-pinning model into the variational formu-

lation using a variational inequality. This was another instance where the

variational method proved to be superior to the level set implementation.

3. Mathematically proved the well-posedness of the time-discrete version of the

EWOD governing equations (with contact line pinning), as well as for the fully

discrete version.

4. Developed a stable and accurate algorithm for the solution of the FEM linear

system that includes the contact line pinning inequality constraint.

5. Implemented the method in MATLAB with some routines written in C for

computational efficiency.
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7.1.4 Particle Control in the EWOD System

1. Developed an algorithm for actuating the voltages in an EWOD device for

controlling the trajectory of a floating particle just by using EWOD actuation.

This demonstrated to the electrowetting community that its systems could be

used to steer particles, and was new and unexpected.

2. Developed the algorithm capable of dealing with the non-linear aspect of the

evolution of the droplet shape. As a droplet moves across the electrode grid,

the forcing available for particle control changes in a way that cannot be

accounted for a priori. This requires the algorithm to compute the available

forcing at each time step of the evolution in order to control the particle

motion.

3. Accounted for constraints of voltage actuation to ensure maximal speed of

particle motion. The forcing available for particle control is limited by contact

angle saturation in the EWOD system. Therefore, we included a step in the

control algorithm that ensures the controlling voltages satisfy the constraints

while maximizing the particle speed along the given trajectory.

7.2 About the Model and Numerics

This thesis has presented a model and numerical simulation of droplet mo-

tion inside an electrowetting device. Starting from the full Navier-Stokes equations

we obtained a reduced order model, similar to Hele-Shaw type flow, that captures
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the bulk dynamic behavior of EWOD-driven droplets in 2-D. The key part of our

analysis is including contact angle saturation, a simple model of hysteresis, and a

phenomenological model of contact line pinning in order to match the experimental

data. Our simulation results show how the liquid-gas interface physics affect the

motion of the droplet. When all effects are included, our simulations compare fa-

vorably with the experiments but are not an exact match. The main reasons for

this are:

1. contact line pinning and contact angle hysteresis are not modeled exactly;

2. inadequate modeling of the detailed fluid dynamics near the liquid-gas inter-

face;

3. uncertainty in the experimental conditions.

Some improvements on item (1) can be made by considering a more realistic

contact line friction model. For example, the pressure boundary condition could be

modified to include a ‘viscous’ damping term:

p = κ+ E + Ppinsgn(~u · ~n) +Dviscous(~u · ~n),

where the extra term creates a boundary pressure that pushes back with increasing

normal velocity (Dviscous is a damping coefficient). This could replace the hysteresis

constant Khys and be more ‘physical’, however Dviscous would still be a fitting pa-

rameter for the simulation. Including this extra term into the variational framework

is quite easy. One only needs to include another integral term into the a(·, ·) bilinear
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form, namely:

Dviscous

∫

Γ

(~u · ~n)(~v · ~n).

None of the function spaces would change and the well-posedness of the formulation

would be the same. In fact, adding this extra term would improve the variational

inequality solver because it adds another positive term. This is also another in-

stance where the variational/front tracking method is more flexible than the level

set method; it is not clear how to include a ‘boundary viscous term’ with level sets.

As for item (2), the current model does not accurately capture boundary effects

because they are ignored in the derivation of Hele-Shaw flow. One possible remedy

would be to vary the parabolic velocity profile assumption when near the liquid-gas

interface (e.g. make the velocity profile along the channel spacing be more uniform

rather than parabolic). However, this would complicate the resulting governing

equations. Moreover, it may be necessary to account for the 3-D fluid dynamics

near the interface in order to markedly improve the model (see [70] for an instance

where this was important).

Improving item (3) would require more controlled experiments and is beyond

the scope of this thesis.

The numerical methods introduced here are fast, and readily lend themselves

to control algorithm design and device optimization. Computing time of the level

set simulations (in MATLAB) varied between 3 and 6 minutes. Our variational

method (also in MATLAB) was comparable, with some simulations requiring up to

10 minutes to complete when simulating contact line pinning. We note here that the
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Uzawa iterative variational inequality solver can be slow to converge. This is mainly

due to the fact that our Uzawa method is essentially a steepest descent method, as

opposed to a conjugate gradient method which would be much faster. Deriving a

fast solver for our contact line pinning model is still an active area of research.

As for the performance of the two methods, the main advantage of the level set

method is that it has a simple grid structure and can go through topological changes

fairly automatically. But it is our belief that the variational method is superior with

respect to accurately computing boundary conditions, namely:

• being able to represent the boundary accurately;

• computing curvature accurately;

• simulating contact line pinning.

In addition, our variational method conserves mass better than our level set imple-

mentation and without including an ad hoc correction. The only drawback is in

computing through topological changes. But the method in [140] is able to account

for this. Therefore, our variational method is a good tool for simulating the fluid

motion of EWOD driven droplets.

196



7.3 On Particle Control

A control method has been developed to steer individual particles inside elec-

trowetting systems. Using only existing EWOD electrode actuators, the algorithm

can steer particles to specific locations, hold one particle stationary while another

particle is moved along a path, and steer and sort particles within and across indi-

vidual droplets. The particle steering is achieved by creating fluid flows that carry

all the particles from where they are to where they should be at each time step. It

is possible to steer a single particle along interesting trajectories with a small (3x3)

number of electrodes. Steering two particles independently inside a single drop is

also possible for simple particle motions. A finer grid of electrodes, or the use of

larger liquid drops, would allow simultaneous steering of more particles along more

complicated trajectories inside a single drop of liquid. The particle steering results

outlined in Chapter 6 are based on the EWOD model described in Chapter 2 and

the experimentally validated simulation methods detailed in Chapters 3 and 4. An

experimental demonstration of particle steering in the UCLA devices will require

the implementation of a real time vision system, a real time control algorithm real-

ization, image sensing, control computation, and EWOD device system integration.

These items have been demonstrated for an electro-osmotically driven micro-fluidic

system (Shapiro, et al [4], [5]), so it is reasonable that the same could be done for

the EWOD system.
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Appendix A

Some Differential Geometry

This appendix states the basic definitions of differential geometry and derives

some formulas used in the main text. For more details on this subject, see the

references in [37], [7], [145], [38], [116]. Note: some of the notation in this appendix

supersedes the notation in the rest of the thesis.

A.1 Main Definitions

Differential geometry is the study of the intrinsic geometry or shape of a sur-

face. The surface can be a 1-D curve in a 2-D or 3-D space (R2 or R
3) or a 2-D

surface in 3-D space (see Figures A.1 and A.2). For example, a 1-D surface could

represent the liquid-gas interface of a 2-D droplet in an EWOD device. All differen-

tial geometric relations are true regardless of the way the surface is parameterized

(i.e. the way the surface is mapped or labeled).

For our purposes, we will use an explicit parameterization of the surface in

deriving the differential geometric relations. And for the sake of generality, we will

compute most of the relations for a 2-D surface (embedded in a 3-D space), but all

formulas derived here are true for a 1-D surface (curve) also. This is because a 1-D

curve can be interpreted as a cross-section of a cylindrical 2-D surface (see Figure

A.3).
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x

y

U

Γ

~X

~X

~X

Figure A.1: A 1-D closed curve Γ with mapping ~X. The mapping is defined on a

single reference domain U , which is just an interval. Only one reference domain is

needed for 1-D curves.

x

y

z

s1

s2

U1

U2

U3

Γ

~X

~X

~X

Figure A.2: Section of a 2-D surface Γ with mapping ~X. The mapping is defined

on multiple open sets {U1, U2, U3} (reference domains) that are disjoint. Each Ui is

mapped to a small patch (denoted by a dashed curve) on the surface Γ. More than

one reference domain is required to cover the whole surface Γ if it is closed.
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x

y

z

Γ

Γ2D

Figure A.3: A 1-D curve Γ (in the x-y plane) shown as a cross-section of a 2-D

surface Γ2D. All differential geometric formulas derived in this appendix are for

a 2-D surface in an ambient 3-D space. But these formulas also hold for a 1-D

curve in a 2-D ambient space. This can be seen by noting that a 1-D curve can be

interpreted as a cross-section of a cylindrical surface (shown here).
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A.1.1 Parameterization

Let Γ denote the set of points (in R
3) that defines the surface, and let ~X : Ui →

Γ ⊂ R
3 be a mapping that parameterizes a ‘patch’ of Γ (i.e. ~X(Ui) ⊂ Γ) for each i in

some finite index set (see Figure A.2). Each disjoint open set Ui is a reference domain

in R
2 with local 2-D variables s1 and s2 (i.e. ~X(Ui) = { ~X(s1, s2) : (s1, s2) ∈ Ui}).

Furthermore, let ~X satisfy
⋃

i
~X(Ui) = ~X(∪iUi) = Γ. Hence, ~X(·) = Γ is a total

surface parameterization using local charts {Ui} [37]. Note that ~X is a vector

function with coordinate functions denoted by ~X = (X1, X2, X3).

We also define the unit normal vector ~n (in terms of local coordinates) using

the surface tangent vectors ∂s1
~X and ∂s2

~X

~n =
(∂s1

~X × ∂s2
~X)

|∂s1
~X × ∂s2

~X|
, (A.1)

where the parameterization is chosen such that ~n is an outward pointing normal

vector when Γ is a closed surface. Note that |∂s1
~X × ∂s2

~X| =
√

det(g) (see (A.2)

below). In the following, we assume that ~X is a smooth function (i.e. at least C2).

A.1.2 Fundamental Forms

The fundamental forms from differential geometry [37] are defined in the fol-

lowing way. The first fundamental form of differential geometry is given by a metric

which, for a 2-D surface, is a 2x2 matrix denoted g:

g =



g11 g12

g21 g22


 , (A.2)
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where the coefficients gij are given by certain derivatives of the parameterization

gij = ∂si
~X · ∂sj

~X, for 1 ≤ i, j ≤ 2. (A.3)

Note that g is symmetric. The inverse of the matrix g is given by

g−1 =



g11 g12

g21 g22


 =

1

det(g)



g22 −g12

−g21 g11


 , (A.4)

where we denote the coefficients of the inverse with a superscript for the indices. Of

course, we have the following property because g g−1 = I:

δj
i =

2∑

k=1

gikg
kj =

2∑

k=1

gikg
jk, (A.5)

δj
i = 1, i = j, (A.6)

δj
i = 0, i 6= j.

The second fundamental form h is also a 2x2 matrix:

h =



h11 h12

h21 h22


 , (A.7)

where the coefficients hij are given by [37]

hij = −∂si
~n · ∂sj

~X = ~n · ∂si
∂sj

~X, for 1 ≤ i, j ≤ 2. (A.8)

Using (A.2) and (A.7), the total and Gaussian curvatures (both scalar) are

given by (respectively):

κ = κ1 + κ2 = −
2∑

i,j=1

gijhij, (A.9)

κG = κ1κ2 =
det(h)

det(g)
, (A.10)
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where κ1 and κ2 are the principal curvatures of the surface Γ. There are two curva-

tures because Γ is a 2-D surface (note: for a 1-D curve there is only one curvature,

denoted κ). The minus sign in (A.9) ensures that the total curvature is positive for

a closed elliptic surface [37] when the normal vector ~n is defined to point outwards.

The vector curvature (or total curvature vector) is simply the product of the

scalar total curvature with the normal vector: κ~n.

A.2 Surface Derivative Operators

We define operators on the surface Γ that are directly analogous to the gradi-

ent, divergence, and Laplace operators in standard calculus.

A.2.1 Surface Gradient Operator

Let ω : Γ → R be a scalar function defined on the surface Γ. Then the surface

gradient ∇Γ(·) of ω in local coordinates is defined by

[∇Γω] ◦ ~X =
2∑

i,j=1

gij∂si
ω̃∂sj

~X, (A.11)

where ω̃ = ω ◦ ~X is in local coordinates. Note that [∇Γω] ◦ ~X is a 1x3 row vector.

Let ~ϕ : Γ → R
3 be a vector function on Γ, and let ϕk denote the coordinate

functions of ~ϕ (i.e. ~ϕ = (ϕ1, ϕ2, ϕ3)). Let ~̃ϕ = ~ϕ ◦ ~X and ϕ̃k = ϕk ◦ ~X denote

the functions in local coordinates. Then we define the surface gradient of a vector
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function (in local coordinates) by

[∇Γ~ϕ] ◦ ~X =




[∇Γϕ1] ◦ ~X

[∇Γϕ2] ◦ ~X

[∇Γϕ3] ◦ ~X



, (A.12)

where

[∇Γϕk] ◦ ~X =
2∑

i,j=1

gij∂si
ϕ̃k∂sj

~X. (A.13)

Note that [∇Γ~ϕ]◦ ~X is a 3x3 matrix. We will also have need of the following quantity

as well

[∇Γ( ~X ◦ ~X−1)] ◦ ~X =
2∑

i,j=1

gij∂si
~X ⊗ ∂sj

~X, (A.14)

where ~X ◦ ~X−1 is the identity map on Γ. But we prefer to keep it as written.

A.2.2 Surface Divergence Operator

The usual divergence operator is defined as ∇ · ~v = trace(∇~v). We define the

surface divergence operator in a similar way (again in local coordinates)

[∇Γ · ~ϕ] ◦ ~X =
2∑

i,j=1

gij∂si
~̃ϕ · ∂sj

~X =
2∑

i,j=1

gij

3∑

k=1

∂si
ϕ̃k∂sj

Xk, (A.15)

where [∇Γ · ~ϕ] ◦ ~X is a scalar function.

Surface Divergence of the Identity Map

From standard multi-variable calculus, we know that ∇ · ~x is equal to the

dimension of the space. We show a similar result for the surface divergence
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Proposition A.2.1. If Γ is a 2-D surface, then

∇Γ · ( ~X ◦ ~X−1) = 2. (A.16)

And for a 1-D surface, we have

∇Γ · ( ~X ◦ ~X−1) = 1. (A.17)

Proof. Applying (A.15) to the identity map ( ~X ◦ ~X−1) gives

[∇Γ · ( ~X ◦ ~X−1)] ◦ ~X =
2∑

i,j=1

gij

3∑

k=1

∂si
Xk∂sj

Xk =
2∑

i,j=1

gij∂si
~X · ∂sj

~X.

And using the definition of the first fundamental form (A.3) and properties (A.5)

and (A.6), reduces this to

[∇Γ · ( ~X ◦ ~X−1)] ◦ ~X =
2∑

i,j=1

gijgij =
2∑

i=1

δi
i =

2∑

i=1

1 = 2,

giving the assertion for a 2-D surface. Formula (A.17) comes from the fact that the

metric for a 1-D surface is a 1x1 matrix g = ∂s
~X(s) · ∂s

~X(s) (where s is the only

parameterization variable) and the surface divergence is just

[∇Γ · ( ~X ◦ ~X−1)] ◦ ~X =
∂s
~X(s)

g
· ∂s

~X(s) = 1.

A.2.3 Surface Laplacian Operator

Before defining the surface Laplacian operator, we compute some useful for-

mulas.
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Intermediate Formulas

Proposition A.2.2.

1√
det(g)

∂sq

√
det(g) =

1

2

2∑

i,j=1

gij∂sq
(gij).

Proof. Recall that det(g) = g11g22 − g12g21, so we have

∂sq

√
det(g) =

1

2
√

det(g)
(g22∂sq

g11 + g11∂sq
g22 − g21∂sq

g12 − g12∂sq
g21).

After a slight manipulation,

∂sq

√
det(g) =

√
det(g)

2

( g22

det(g)
∂sq
g11 +

g11

det(g)
∂sq
g22+

− g21

det(g)
∂sq
g12 −

g12

det(g)
∂sq
g21

)
.

After using (A.4), and the fact that g is symmetric, we get

∂sq

√
det(g) =

√
det(g)

2
(g11∂sq

g11 + g22∂sq
g22 + g12∂sq

g12 + g21∂sq
g21),

=

√
det(g)

2

2∑

i,j=1

gij∂sq
(gij)

which implies the assertion.

Proposition A.2.3.

2∑

i,j=1

gij(∂sq
∂si

~X) · (∂sj
~X) =

1√
det(g)

∂sq

√
det(g).

Proof. Start by writing out the sum

2∑

i,j=1

gij(∂sq
∂si

~X) · (∂sj
~X) = g11(∂sq

∂s1
~X) · (∂s1

~X) + g12(∂sq
∂s1

~X) · (∂s2
~X)

+g21(∂sq
∂s2

~X) · (∂s1
~X) + g22(∂sq

∂s2
~X) · (∂s2

~X).

206



Using the standard product rule, and the fact that g12 = g21, we get

2∑

i,j=1

gij(∂sq
∂si

~X) · (∂sj
~X) =

g11

2
∂sq

(∂s1
~X · ∂s1

~X) +
g12

2
∂sq

(∂s1
~X · ∂s2

~X)

+
g21

2
∂sq

(∂s2
~X · ∂s1

~X) +
g22

2
∂sq

(∂s2
~X · ∂s2

~X).

Plugging in (A.3) gives

2∑

i,j=1

gij(∂sq
∂si

~X) · (∂sj
~X) =

1

2

2∑

i,j=1

gij∂sq
(gij),

=
1√

det(g)
∂sq

√
det(g),

where the last equality follows from Proposition A.2.2.

Define Laplace-Beltrami Operator

We define the surface Laplacian (or Laplace-Beltrami) operator in a similar

way as for the usual Laplacian:

∆Γω := ∇Γ · ∇Γω, (A.18)

where ω is a scalar function on Γ. Applying the surface divergence (A.15) to the

surface gradient of ω (A.11) gives (in local coordinates)

[∆Γω] ◦ ~X =
2∑

i,j=1

gij∂si

{
2∑

p,q=1

gpq ∂sp
ω̃ ∂sq

~X

}
· ∂sj

~X. (A.19)

However, there is a more convenient form in which we can put (A.19). Expanding

slightly and applying the product rule gives

[∆Γω] ◦ ~X =
2∑

i,j=1

2∑

p,q=1

gij{(∂si
gpq)(∂sp

ω̃)∂sq
~X+gpq(∂si

∂sp
ω̃)∂sq

~X+

+gpq(∂sp
ω̃)(∂si

∂sq
~X)} · ∂sj

~X.
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This can be simplified slightly using (A.3):

[∆Γω] ◦ ~X =
2∑

i,j=1

2∑

p,q=1

{(∂si
gpq)(∂sp

ω̃)gijgqj+g
pq(∂si

∂sp
ω̃)gijgqj+

+gpqgij(∂sp
ω̃)(∂si

∂sq
~X) · ∂sj

~X},

followed by plugging in (A.5) gives

[∆Γω] ◦ ~X =
2∑

i=1

2∑

p,q=1

{(∂si
gpq)(∂sp

ω̃)δi
q + gpq(∂si

∂sp
ω̃)δi

q}+

+
2∑

i,j=1

2∑

p,q=1

{gpqgij(∂sp
ω̃)(∂si

∂sq
~X) · ∂sj

~X}.

After using the definition of the ‘Kronecker delta’ (A.6), renaming certain indices,

and rearranging slightly, we get

[∆Γω] ◦ ~X =
2∑

i,j=1

{(∂sj
gij)(∂si

ω̃) + gij(∂sj
∂si
ω̃)}+

+
2∑

p,q=1

gpq(∂sp
ω̃)

2∑

i,j=1

gij(∂sq
∂si

~X) · ∂sj
~X.

Plugging in Proposition A.2.3 simplifies to

[∆Γω] ◦ ~X =
2∑

i,j=1

{(∂sj
gij)(∂si

ω̃) + gij(∂sj
∂si
ω̃)}+

+
2∑

p,q=1

gpq(∂sp
ω̃)

1√
det(g)

∂sq

√
det(g).

Relabeling p, q as i, j and factoring out 1√
det(g)

gives

[∆Γω] ◦ ~X =
1√

det(g)

2∑

i,j=1

{
√

det(g)(∂sj
gij)(∂si

ω̃) +
√

det(g)gij(∂sj
∂si
ω̃)+

+(∂sj

√
det(g))gij(∂si

ω̃)}.

Applying the product rule in reverse gives the alternate form of the surface Laplacian

applied to a scalar function in local coordinates:

[∆Γω] ◦ ~X =
1√

det(g)

2∑

i,j=1

∂sj
[
√

det(g) gij(∂si
ω̃)]. (A.20)
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And the surface Laplacian of a 3x1 vector ~ϕ is computed by applying ∆Γ to each

component of the vector

[∆Γ~ϕ] ◦ ~X =




[∆Γϕ1] ◦ ~X

[∆Γϕ2] ◦ ~X

[∆Γϕ3] ◦ ~X



, (A.21)

which is also a 3x1 vector.

A.3 Alternate Curvature Formulas

We would like to have another formula to compute the total curvature κ and

Gaussian curvature κG. But first we make note of some basic vector identities that

are valid pointwise:

~a×~b = −~b× ~a, (A.22)

(~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d) − (~a · ~d)(~b · ~c), (A.23)

~a× (~b× ~c) = ~b(~a · ~c) − ~c(~a ·~b), (A.24)

where ~a,~b,~c, ~d are 3-D vectors and ‘×’ is the cross product.

A.3.1 Alternate Total Curvature

Proposition A.3.1.

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
(∂s1

~n× ∂s2
~X) + (∂s1

~X × ∂s2
~n)√

det(g)
, (A.25)

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X = κ ~n,

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n = κ.

(A.26)
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Proof. First, we compute −∆Γ( ~X ◦ ~X−1) in local coordinates. According to (A.20)

and (A.21), and using the definition (A.4) for the inverse metric, we have

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
−1√
det(g)

{
∂s1

(
(∂s2

~X · ∂s2
~X)∂s1

~X − (∂s1
~X · ∂s2

~X)∂s2
~X√

det(g)

)
+

+∂s2

(
(∂s1

~X · ∂s1
~X)∂s2

~X − (∂s1
~X · ∂s2

~X)∂s1
~X√

det(g)

)}
.

Now, by the vector identity (A.24), this becomes

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
−1√
det(g)

{
∂s1

(
∂s2

~X × (∂s1
~X × ∂s2

~X)√
det(g)

)
+

+∂s2

(
∂s1

~X × (∂s2
~X × ∂s1

~X)√
det(g)

)}
,

which, after using the definition of the normal vector (A.1) and the fact that

√
det(g) = |∂s1

~X × ∂s2
~X|, simplifies to

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
−1√
det(g)

{∂s1
(∂s2

~X × ~n) − ∂s2
(∂s1

~X × ~n)}.

Expanding this further gives

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
−1√
det(g)

{(∂s1
∂s2

~X × ~n) + (∂s2
~X × ∂s1

~n)+

−(∂s2
∂s1

~X × ~n) − (∂s1
~X × ∂s2

~n)},

followed by canceling and rearranging proves (A.25):

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X =
(∂s1

~n× ∂s2
~X) + (∂s1

~X × ∂s2
~n)√

det(g)
.

Note that the vector field given by (A.25) is orthogonal to the tangent vectors ∂s1
~X

and ∂s2
~X; hence (A.25) is parallel to the normal vector ~n. We use this to simplify
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(A.25) further:

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n =
(∂s1

~n× ∂s2
~X) + (∂s1

~X × ∂s2
~n)√

det(g)
· ~n

=
1

det(g)
{(∂s1

~X × ∂s2
~X) · (∂s1

~n× ∂s2
~X)+

+ (∂s1
~X × ∂s2

~X) · (∂s1
~X × ∂s2

~n)},

where we have used (A.1). By using the vector identity (A.23), we can transform

this into

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n =
1

det(g)
{(∂s1

~X · ∂s1
~n)(∂s2

~X · ∂s2
~X)

−(∂s1
~X · ∂s2

~X)(∂s2
~X · ∂s1

~n)

+(∂s1
~X · ∂s1

~X)(∂s2
~X · ∂s2

~n)

−(∂s1
~X · ∂s2

~n)(∂s2
~X · ∂s1

~X)},

and by definitions (A.3) and (A.8) this reduces to

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n =
−h11g22 + g12h12 − g11h22 + h21g21

det(g)
.

Finally, using the formula for the inverse metric (A.4) gives

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n = −(g11h11 + g12h12 + g22h22 + g21h21),

which, by the equation for the total curvature (A.9), proves the alternate scalar

curvature formula in (A.26)

[−∆Γ( ~X ◦ ~X−1)] ◦ ~X · ~n = κ.

Because we know that [−∆Γ( ~X ◦ ~X−1)] ◦ ~X is parallel to ~n, we have that the total

curvature vector (in terms of local coordinates) is given by the first equation in

(A.26).
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A.3.2 Alternate Gaussian Curvature

This section derives another way of writing the Gaussian curvature that is

similar in spirit to Proposition A.3.1.

Proposition A.3.2. The Gaussian curvature κG (in local coordinates) can be writ-

ten as

κG = ~n · ∂s1
~n× ∂s2

~n√
det(g)

. (A.27)

Proof. By the definition of the normal vector (A.1) and the vector identity (A.23),

we have

~n · ∂s1
~n× ∂s2

~n√
det(g)

=
(∂s1

~X × ∂s2
~X) · (∂s1

~n× ∂s2
~n)

det(g)
,

=
(∂s1

~X · ∂s1
~n)(∂s2

~X · ∂s2
~n) − (∂s1

~X · ∂s2
~n)(∂s2

~X · ∂s1
~n)

det(g)
.

Then, by the definition of the second fundamental form (A.8),

~n · ∂s1
~n× ∂s2

~n√
det(g)

=
h11h22 − h21h12

det(g)
,

which is just (by (A.10))

~n · ∂s1
~n× ∂s2

~n√
det(g)

=
det(h)

det(g)
=: κG.

This proves the assertion.

A.4 Integration by Parts

Next, we derive some integration by parts formulas.
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A.4.1 Preliminary Formulas

Proposition A.4.1. Let Γ be a smooth, closed surface. Let κ be the total scalar

curvature (see (A.9)) of Γ and assume it is positive if Γ is elliptic (e.g. a sphere).

Also assume the normal vector ~n points outward (away from the interior). Then the

following relation is true
∫

Γ

∇Γω =

∫

Γ

ωκ~n (A.28)

for all smooth scalar ω : Γ → R.

Proof. Let ω have compact support on Γ such that ω̃ := ω ◦ ~X has compact support

in some open set Ui (recall that {Ui} are local charts or reference domains). We

start on the left side of (A.28) and do a change of variables, followed by plugging in

the definition of the surface gradient operator (A.11):

∫

Γ

∇Γω =

∫

Ui

[∇Γω] ◦ ~X
√

det(g)ds1ds2,

=

∫

Ui

√
det(g)

2∑

i,j=1

gij∂si
ω̃∂sj

~Xds1ds2.

Writing out the sum gives

∫

Γ

∇Γω =

∫

Ui

√
det(g)[∂s1

ω̃(g11∂s1
~X + g12∂s2

~X)+

∂s2
ω̃(g21∂s1

~X + g22∂s2
~X)]ds1ds2,

and after using the definition of the inverse metric (A.4) and rearranging slightly

we get

∫

Γ

∇Γω =

∫

Ui

1√
det(g)

[
∂s1
ω̃
(
(∂s2

~X · ∂s2
~X)∂s1

~X − (∂s1
~X · ∂s2

~X)∂s2
~X
)
+

+∂s2
ω̃
(
(∂s1

~X · ∂s1
~X)∂s2

~X − (∂s1
~X · ∂s2

~X)∂s1
~X
)]
ds1ds2.
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Applying the vector identity (A.24) simplifies this to

∫

Γ

∇Γω =

∫

Ui

1√
det(g)

[
∂s1
ω̃
(
∂s2

~X × (∂s1
~X × ∂s2

~X)
)
+

+∂s2
ω̃
(
∂s1

~X × (∂s2
~X × ∂s1

~X)
)]
ds1ds2,

and using the definition of the normal vector ~n (A.1) and making note of (A.22)

reduces this further

∫

Γ

∇Γω =

∫

Ui

[
∂s1
ω̃
(
∂s2

~X × ~n
)
− ∂s2

ω̃
(
∂s1

~X × ~n
)]
ds1ds2.

Next, we integrate by parts the two terms in the integrand

∫

Γ

∇Γω =

∫

Ui

[
− ω̃∂s1

(∂s2
~X × ~n) + ω̃∂s2

(∂s1
~X × ~n)

]
ds1ds2,

where there are no boundary terms because ω̃ has compact support in Ui. After

applying the product rule and rearranging, we get

∫

Γ

∇Γω =

∫

Ui

ω̃
[(∂s1

~n× ∂s2
~X) + (∂s1

~X × ∂s2
~n)]√

det(g)

√
det(g)ds1ds2.

Using (A.26) for the total curvature vector in local coordinates gives

∫

Γ

∇Γω =

∫

Ui

[ω ◦ ~X][(κ~n) ◦ ~X]
√

det(g)ds1ds2.

Finally, we apply a change of variables back to the surface Γ

∫

Γ

∇Γω =

∫

Γ

ωκ~n,

which holds for any ω with compact support on Γ. But this formula is true for any

scalar ω because it is always possible to decompose ω using a partition of unity. This

allows ω to be written as a sum of scalar functions ωi, each of which has compact

support and the above formula is true for each individual ωi. The assertion then

follows (for general ω) by adding up the integrals.
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Proposition A.4.1 can be extended to vector functions.

Proposition A.4.2. Under the same assumptions as in Proposition A.4.1, we have

the following relations
∫

Γ

∇Γ~ϕ =

∫

Γ

κ ~n⊗ ~ϕ, (A.29)

∫

Γ

∇Γ · ~ϕ =

∫

Γ

κ ~n · ~ϕ, (A.30)

for all smooth vector functions ~ϕ : Γ → R
3.

Proof. Equation (A.29) is obtained by applying (A.28) to each component of ~ϕ and

(A.30) comes from taking the trace of the matrix equation (A.29).

A.4.2 Main Integration by Parts Formula

Proposition A.4.3. Let ϕ and η be smooth scalar functions on Γ (i.e. ϕ, η : Γ →

R). Then the following integration by parts formula is true

−
∫

Γ

ϕ∆Γη =

∫

Γ

∇Γϕ · ∇Γη. (A.31)

Proof. Because ∇Γ · (ϕ∇Γη) = ∇Γϕ · ∇Γη + ϕ∆Γη, we have

∫

Γ

(∇Γϕ · ∇Γη + ϕ∆Γη) =

∫

Γ

∇Γ · (ϕ∇Γη) =

∫

Γ

κ(~n · ∇Γη)ϕ,

where the last equality follows from (A.30) applied to the vector ϕ∇Γη. But ∇Γη is

tangent to the surface Γ, so ~n · ∇Γη = 0. This proves the assertion.

Proposition A.4.3 also extends to vector functions.
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Proposition A.4.4. Let ~ϕ = (ϕ1, ϕ2, ϕ3) and ~η = (η1, η2, η3) be smooth vector

functions on Γ (i.e. ~ϕ, ~η : Γ → R
3). Then (A.31) generalizes to

−
∫

Γ

~ϕ · ∆Γ~η =

∫

Γ

∇Γ~ϕ · ∇Γ~η, (A.32)

where the ‘dot’ (·) in ∇Γ~ϕ · ∇Γ~η means

∇Γ~ϕ · ∇Γ~η :=
3∑

k=1

∇Γϕk · ∇Γηk, (A.33)

(i.e. the ‘double dot product’ of two matrices).

Proof. Clearly, we can apply (A.31) to the vector components

−
∫

Γ

ϕk∆Γηk =

∫

Γ

∇Γϕk · ∇Γηk,

for k = 1, 2, 3. Then by summing over k, we get the assertion.

A.5 Other Equality Relations

Here we derive some formulas that will be useful in Section A.6.

A.5.1 Preliminary Calculations

Proposition A.5.1. Let ~ϕ = (ϕ1, ϕ2, ϕ3) and ~η = (η1, η2, η3) be smooth vector

functions on Γ (i.e. ~ϕ, ~η : Γ → R
3), and let ~̃ϕ = ~ϕ ◦ ~X, ~̃η = ~η ◦ ~X be the vector

functions in local coordinates. Then the following is true

{[∇Γ~ϕ] ◦ ~X} · {[∇Γ~η] ◦ ~X} =
2∑

i,j=1

gij∂si
~̃ϕ · ∂sj

~̃η.
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Proof. By equations (A.12) and (A.13), we have

{[∇Γ~ϕ] ◦ ~X} · {[∇Γ~η] ◦ ~X} =
3∑

k=1

{[∇Γϕk] ◦ ~X} · {[∇Γηk] ◦ ~X} =,

=
3∑

k=1

2∑

i,j=1

2∑

p,q=1

gijgpq∂si
ϕ̃k∂sp

η̃k∂sj
~X · ∂sq

~X,

=
2∑

i,j=1

2∑

p,q=1

gijgpqgjq

3∑

k=1

∂si
ϕ̃k∂sp

η̃k,

where we used the definition of the first fundamental form (A.3) in the last step.

By properties (A.5) and (A.6), the above equation simplifies to

{[∇Γ~ϕ] ◦ ~X} · {[∇Γ~η] ◦ ~X} =
2∑

i,j=1

gij∂si
~̃ϕ · ∂sj

~̃η,

which is the assertion we want.

A.5.2 Surface Gradient of the Normal Vector

Now we will get a relation between the curvature and the surface gradient of

the normal vector.

Proposition A.5.2. Let ~n be the normal vector. Then the following is true

|∇Γ~n|2 = κ2 − 2κG. (A.34)

If Γ is a 1-D closed curve, then κG = 0 and

|∇Γ~n| = |κ|. (A.35)

Proof. We start on the right side of (A.34) and use Proposition A.3.1 to get

κ2 = (κ~n) · (κ~n) =
1

det(g)
[(∂s1

~n× ∂s2
~X) + (∂s1

~X × ∂s2
~n)]·

·[(∂s1
~n× ∂s2

~X) + (∂s1
~X × ∂s2

~n)],
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which becomes

κ2 =
1

det(g)
[(∂s1

~n× ∂s2
~X) · (∂s1

~n× ∂s2
~X)+

+2(∂s1
~n× ∂s2

~X) · (∂s1
~X × ∂s2

~n)+

+(∂s1
~X × ∂s2

~n) · (∂s1
~X × ∂s2

~n)].

Using the vector identity (A.23) transforms this into

κ2 =
1

det(g)
[(∂s1

~n · ∂s1
~n)(∂s2

~X · ∂s2
~X) − (∂s1

~n · ∂s2
~X)(∂s2

~X · ∂s1
~n)+

+2(∂s1
~n · ∂s1

~X)(∂s2
~X · ∂s2

~n) − 2(∂s1
~n · ∂s2

~n)(∂s2
~X · ∂s1

~X)+

+(∂s1
~X · ∂s1

~X)(∂s2
~n · ∂s2

~n) − (∂s1
~X · ∂s2

~n)(∂s2
~n · ∂s1

~X)],

and using definitions (A.3) and (A.8) changes this to

κ2 =
1

det(g)
[(∂s1

~n · ∂s1
~n)g22 − h12h21+

+2h11h22 − 2(∂s1
~n · ∂s2

~n)g12+

+g11(∂s2
~n · ∂s2

~n) − h12h21].

Note that h12 = h21. Rearranging gives

κ2 =
[(∂s1

~n · ∂s1
~n)g22 − 2(∂s1

~n · ∂s2
~n)g12 + g11(∂s2

~n · ∂s2
~n)]

det(g)
+

+2
h11h22 − h12h21

det(g)
,

and plugging in the definition of the inverse metric (A.4) gives

κ2 =[(∂s1
~n · ∂s1

~n)g11 + (∂s1
~n · ∂s2

~n)g12 + (∂s2
~n · ∂s1

~n)g21 + g22(∂s2
~n · ∂s2

~n)]+

+2
det(h)

det(g)
.

Using (A.10) and writing more compactly, we have

κ2 =
2∑

i,j=1

gij(∂si
~n · ∂sj

~n) + 2κG.
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Finally, by Proposition A.5.1, we get the assertion

κ2 − 2κG = {[∇Γ~n] ◦ ~X} · {[∇Γ~n] ◦ ~X},

= |∇Γ~n|2,

where there is a slight abuse of notation on the last line because we left off the

mapping ~X.

Before continuing, we make note of a modified version of (A.35) for the tan-

gent vector. Suppose Γ is a closed 1-D curve in the plane, and let ~t = (t1, t2) be

the tangent vector with components t1, t2 and right-handed orientation. Then the

outward pointing normal vector ~n = (n1, n2) is related to the tangent vector by a

90 degree rotation:

(n1, n2) = (t2,−t1).

Then, by (A.35), we have the following identity

|∇Γ
~t |2 = |∇Γt1|2 + |∇Γt2|2,

= |∇Γn2|2 + |∇Γn1|2 = |∇Γ~n|2 = κ2.

Hence,

|∇Γ
~t | = κ. (A.36)

A.6 Some Inequalities

This section derives some inequalities that are used in Chapter 4.
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A.6.1 Scalar Inequality

Lemma A.6.1. Let φ : Γ → R be a scalar function defined on Γ. Then we have the

following inequality:

‖φ‖0,Γ ≤ C(‖φκ‖0,Γ + ‖∇Γφ‖0,Γ), (A.37)

where ‖ · ‖0,Γ denotes the L2 norm on Γ and C > 0 is a constant that depends on

the diameter of Γ in the ambient space.

Proof. Let d be the dimension of the surface Γ and let ~x0 be the coordinates of the

centroid of Γ (in the d+ 1 dimensional ambient space); so ~x0 is a d+ 1 dimensional

constant vector. Then we have by Proposition A.2.1

‖φ‖2
0,Γ =

∫

Γ

φ2 =
1

d

∫

Γ

dφ2 =
1

d

∫

Γ

∇Γ · ( ~X ◦ ~X−1)φ2,

=
1

d

∫

Γ

∇Γ · [( ~X ◦ ~X−1) − ~x0]φ
2,

because the surface divergence of a constant vector field is zero. By the product

rule we get

‖φ‖2
0,Γ =

1

d

∫

Γ

∇Γ · {φ2[( ~X ◦ ~X−1) − ~x0]} − ∇Γ(φ2) · [( ~X ◦ ~X−1) − ~x0],

and using the integration by parts formula (A.30) on the first part of the integrand

gives

‖φ‖2
0,Γ =

1

d

∫

Γ

φ2[( ~X ◦ ~X−1) − ~x0] · ~nκ−
∫

Γ

2φ∇Γφ · [( ~X ◦ ~X−1) − ~x0],

where we replaced ∇Γ(φ2) by 2φ∇Γφ. After taking the absolute value and bounding

the right-hand side, we get

‖φ‖2
0,Γ ≤

∫

Γ

φ2
∣∣( ~X ◦ ~X−1) − ~x0

∣∣|~n| |κ| +
∫

Γ

2|φ∇Γφ|
∣∣( ~X ◦ ~X−1) − ~x0

∣∣,

≤ C

∫

Γ

φ2|κ| + C

∫

Γ

|φ∇Γφ|,
(A.38)
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where C = 2R with R being the ‘maximal radius’ of Γ:

R := max
~x∈Γ

∣∣[~x− ~x0]
∣∣.

By Hölder’s inequality, we have that

∫

Γ

φ2|κ| =

∫

Γ

φ(φ|κ|) ≤ ‖φ‖0,Γ‖φκ‖0,Γ,

∫

Γ

|φ∇Γφ| =

∫

Γ

|φ| |∇Γφ| ≤ ‖φ‖0,Γ‖∇Γφ‖0,Γ.

Therefore, (A.38) becomes

‖φ‖2
0,Γ ≤ C (‖φ‖0,Γ‖φκ‖0,Γ + ‖φ‖0,Γ‖∇Γφ‖0,Γ) .

Ergo, we obtain the assertion (A.37).

A.6.2 Poincaré For Tangential Vector Field

Next, we derive a Poincaré type inequality for a vector field on a 1-D surface

that is purely tangential.

Lemma A.6.2. Let Γ be a 1-D closed surface, and let ~v be a vector field on Γ that

is purely tangential (i.e. ~v = φ~t, where φ : Γ → R and ~t is the unit tangent vector

of Γ). Then we have the following inequality

‖~v‖0,Γ ≤ C‖∇Γ~v‖0,Γ, (A.39)

where C > 0 is a constant that depends on the diameter of Γ in the ambient space.
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Proof. We begin with some preliminary computations:

|∇Γ(φ~t )|2 = (~t⊗∇Γφ+ φ∇Γ
~t ) · (~t⊗∇Γφ+ φ∇Γ

~t ),

= |~t⊗∇Γφ|2 + φ2|∇Γ
~t |2 + 2(~t⊗∇Γφ) · (φ∇Γ

~t ),

= |~t |2|∇Γφ|2 + φ2|∇Γ
~t |2 + 2φ∇Γφ · (~t · ∇Γ

~t ),

= |∇Γφ|2 + φ2|∇Γ
~t |2,

where the third term is the zero vector because

|~t |2 = ~t · ~t = 1 ⇒ ∇Γ(~t · ~t) = 2~t · ∇Γ
~t = 0.

And by (A.36), we get

|∇Γ(φ~t )|2 = |∇Γφ|2 + φ2κ2,

which after integrating over Γ, and plugging in ~v = φ~t, becomes

‖∇Γ~v‖2
0,Γ = ‖∇Γφ‖2

0,Γ + ‖φκ‖2
0,Γ. (A.40)

But computing the L2 norm of ~v gives

‖~v‖2
0,Γ =

∫

Γ

~v · ~v =

∫

Γ

φ2 = ‖φ‖2
0,Γ,

≤ 2C2(‖φκ‖2
0,Γ + ‖∇Γφ‖2

0,Γ),

by Lemma A.6.1 and use of a Cauchy inequality. The constant C is taken from

Lemma A.6.1 and depends on the diameter of Γ in the ambient space. Finally, by

(A.40), we have the assertion,

‖~v‖0,Γ ≤
√

2C‖∇Γ~v‖0,Γ.
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Appendix B

Solving the Divergence Equation

Let Ω be a domain in R
2 with boundary Γ := ∂Ω. In the following proposition

Ω only needs to be Lipschitz in order to define the function spaces H1/2(Γ) or H1(Γ).

In particular, Proposition B.0.1 certainly holds for a smooth domain, as well as a

continuous piecewise C1 domain (see pages 84, 163, 234 of [1] and page 34 of [93]).

This would be the case when Ω is a polygon or when curved edges are used (as for

iso-parametric elements).

Proposition B.0.1. (Solve the Divergence Equation) Let Ω be Lipschitz and Γ be

its boundary, and let ~n be the unit outer normal to Γ. Let ~r ∈ [H1/2(Γ)]2, f ∈ L2(Ω),

and suppose that the following compatibility condition holds:
∫
Γ
~r · ~n =

∫
Ω
f . Then,

there exists a ~v ∈ [H1(Ω)]2 such that

∇ · ~v = f, in Ω,

~v = ~r, on Γ,

and ~v satisfies the following bound

‖~v‖1,Ω ≤ c(‖~r‖1/2,Γ + ‖f‖0,Ω),

for some constant c > 0.
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Proof. First, let ~z ∈ [H1(Ω)]2 solve the following vector Laplace problem:

∆~z = 0, in Ω,

~z = ~r, on Γ,

where ‖~z‖1,Ω = ‖~r‖1/2,Γ by the definition of the H1/2(Γ) norm.

Next, by the surjectivity of the divergence operator [18], [42], [59] and the fact

that
∫
Ω
f −

∫
Ω
∇ · ~z =

∫
Ω
f −

∫
Γ
~r · ~n = 0, there exists a ~w ∈ [H1

0 (Ω)]2 that satisfies

∇ · ~w = f −∇ · ~z, in Ω,

~w = 0, on Γ,

with a bound given by

‖~w‖1,Ω ≤ c1‖f −∇ · ~z‖0,Ω ≤ c2(‖f‖0,Ω + ‖~z‖1,Ω) = c2(‖f‖0,Ω + ‖~r‖1/2,Γ).

Therefore, by letting ~v = ~w + ~z we get that

∇ · ~v = f, in Ω,

~v = ~r, on Γ,

with the following bound

‖~v‖1,Ω ≤ (1 + c2)(‖~r‖1/2,Γ + ‖f‖0,Ω).
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Appendix C

Construction of a Continuous Normal Vector

In Section 4.3.3, we use a special vector field (defined on the boundary Γ) de-

noted ~ns. This object is crucial to the well-posedness of the variational formulation,

so its construction is detailed here.

C.1 Properties of ~ns

First, we replace Γ by Γh to denote the dependence of the domain boundary

on the discretization parameter h (i.e. the mesh size), and let ~n be the unit nor-

mal vector of Γh. Then, there exists a vector field ~ns that satisfies the following

properties:

1. it is continuous and piecewise differentiable on Γh;

2. ~ns · ~n = 1 everywhere on Γh;

3. ‖~ns‖1,Γh
≤ C, where C > 0 is uniform in some sense (see subsequent sections).

Essentially, ~ns approximates ~n. If Γh were smooth, then ~ns := ~n and the above

properties are clearly satisfied. However, if Γh is a polygon (as it would be for a

triangulated domain) or a ‘curved polygon’ (when using iso-parametric elements),

then it is not obvious what ~ns should be. The following sections explain how to

construct ~ns for a regular polygon and a polygon with curved edges.
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~x1
~x2~x3

~xNS

S1

S2

SNS

~n1~n2

~nNS ~̂n

Γh
Γ̂

Figure C.1: Polygonal boundary Γh approximating a closed smooth curve Γ̂. The

polygon consists of a set of straight sides {Sk} with vertices {~xi} denoted by thick

dots (note: all vertices lie on the smooth boundary Γ̂). The outward pointing

normal vector of Γh is ~n, and on each side Sk it is labeled ~nk. The normal vector of

the smooth domain is ~̂n. Because Γh is closed, the vertex ~xNS
precedes ~x1.

C.2 Construction of ~ns for a Polygon

Let Γh be a polygon that approximates a smooth boundary Γ̂, and let Sk

denote the kth side (see Figure C.1) with constant normal vector ~nk. Label the

number of sides as NS and let SΓh
be the set of sides:

SΓh
:= {Sk : 1 ≤ k ≤ NS}. (C.1)

Next, let {~xi}NS

i=1 be the set of vertices of the polygon Γh, and let {φi}NS

i=1 be con-

tinuous piecewise linear ‘hat’ functions defined on Γh (i.e. each φi is in P1(Sk) for

1 ≤ k ≤ NS) such that:

φi(~xj) =





1, i = j,

0, i 6= j.

(C.2)
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Now define the continuous vector field ~ns:

~ns :=

NS∑

i=1

~ni + ~ni−1

1 + ~ni · ~ni−1

φi, (C.3)

where

~x0 := ~xNS
,

~n0 := ~nNS
,

~xNS+1 := ~x1,

~nNS+1 := ~n1.

(C.4)

Note ~ns is bounded in L∞(Γh) as long as the angles of the polygon at the vertices

are strictly bounded away from 0◦.

Property (1) is satisfied because the set {φi}NS

i=1 is a continuous basis. To prove

property (2), we first define some notation. Let ψ be some function defined on Γh,

and let ψk be the restriction of ψ to the side Sk. Then we define ψ(~x+
k ) := ψk(~xk)

and ψ(~x−k ) := ψk−1(~xk), for any vertex ~xk. This is important if ψ is only continuous

over each side Sk and discontinuous at each vertex.

Therefore, because ~n is piecewise constant (discontinuous) over Γh, note the

following

~n(~x−k ) = ~nk−1,

~n(~x+
k ) = ~nk,

φi(~x
−
k ) = φi(~xk) = φi(~x

+
k ), for each i,

(C.5)

and then compute ~ns · ~n on the left and right sides of each vertex:

~ns(~x
−
k ) · ~n(~x−k ) =

NS∑

i=1

~n(~x−k ) · (~ni + ~ni−1)

1 + ~ni · ~ni−1

φi(~x
−
k ),

=
~nk−1 · (~nk + ~nk−1)

1 + ~nk · ~nk−1

=
~nk−1 · ~nk + 1

1 + ~nk · ~nk−1

= 1,

(C.6)
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~ns(~x
+
k ) · ~n(~x+

k ) =

NS∑

i=1

~n(~x+
k ) · (~ni + ~ni−1)

1 + ~ni · ~ni−1

φi(~x
+
k ),

=
~nk · (~nk + ~nk−1)

1 + ~nk · ~nk−1

=
1 + ~nk · ~nk−1

1 + ~nk · ~nk−1

= 1,

(C.7)

where we used definition (C.2). Ergo, by (C.6) and (C.7)

(~ns · ~n)(~xk) = 1, for all k. (C.8)

Now let Sk ∈ SΓh
be a side of Γh (i.e. Sk ⊂ Γh) for some k. Then by (C.3) (and the

definition of {φi}), ~ns is a linear function on Sk, so ~ns ·~n is also linear on Sk because

~n is constant on Sk. Combining with (C.8) implies that ~ns · ~n = 1 everywhere on

Sk. Finally, since k was arbitrary we get that ~ns · ~n = 1 everywhere on Γh, thereby

proving property (2).

Property (3) will be proved in Section C.4.

C.3 Construction of ~ns for Curved Edges

Let Γh be a polygon with curved sides that approximates a smooth boundary

Γ̂, and let Sk denote the kth side (see Figure C.2) with normal vector ~nk (note: ~nk

is not constant on each side Sk). Label the number of sides as NS, and let SΓh
be

defined by (C.1). Next, let {~xi}NS

i=1 be the set of vertices of the curved polygon Γh,

with midpoints denoted {~mi}NS

i=1, and let {φi}NS

i=1 be the set of continuous piecewise

linear ‘hat’ functions defined on Γh (i.e. each φi is in P1(Sk) for 1 ≤ k ≤ NS) such

that (C.2) is satisfied. And for convenience, given ~nk, define ~n1
k := ~nk(~xk+1) and

~n0
k := ~nk(~xk) at the endpoints of Sk.
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~x1
~x2~x3

~xNS

S1

S2
SNS

~m1

~m2

~mNS~n1

~n2
~nNS ~̂n

Γh
Γ̂

Figure C.2: Curved polygonal boundary Γh approximating a closed smooth curve

Γ̂ (denoted by the thicker curve). Γh consists of a set of curved sides {Sk} with

vertices {~xi} shown as thick dots and midpoints {~mi} shown as black diamonds

(note: all vertices and midpoints lie on the smooth boundary Γ̂). The outward

pointing normal vector of Γh is ~n, and on each side Sk it is labeled ~nk. The normal

vector of the smooth domain is ~̂n. Because Γh is closed, the vertex ~xNS
precedes ~x1.
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Now define a continuous vector field ~r on the curved polygon Γh:

~r :=

NS∑

i=1

~n0
i + ~n1

i−1

1 + ~n0
i · ~n1

i−1

φi, (C.9)

where we use definition (C.4). Note that ~r is bounded in L∞(Γh) as long as the

angle made by each pair of consecutive sides is strictly bounded away from 0◦ (i.e.

~n0
i · ~n1

i−1 > c > −1).

Just as in Section C.2, we have that

~r(~xk) · ~n(~x−k ) = ~r(~xk) · ~nk−1(~xk) = ~r(~xk) · ~n1
k−1 = 1,

~r(~xk) · ~n(~x+
k ) = ~r(~xk) · ~nk(~xk) = ~r(~xk) · ~n0

k = 1,

⇒ ~r(~xk) · ~n(~xk) = 1,

(C.10)

for 1 ≤ k ≤ NS. Therefore, ~r · ~n is a continuous function on Γh and ~r · ~n > c > 0

assuming that the curved edges of Γh are not extremely distorted. Now we define

~ns as

~ns :=
~r

~r · ~n, (C.11)

which is continuous piecewise C1 because it is composed of continuous piecewise

C1 functions. Hence, property (1) is satisfied, and property (2) is trivially verified.

Again, the proof of property (3) is delayed until Section C.4.

C.4 Proof of Bounded H1(Γh) Norm

The continuous vector ~ns is used in Section 4.3.3 to prove the INF-SUP con-

dition for the time-discrete problem. The INF-SUP constant in that proof depends

on 1/‖~ns‖1,Γh
; ergo it is necessary that the H1(Γh) norm be bounded. Of course,
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for a fixed boundary Γh, this is true. But if the discrete domain (i.e. the polygon or

curved polygon) is refined repeatedly, it is conceivable that the bound on ‖~ns‖1,Γh

may increase as the mesh size h decreases. This would cause the INF-SUP constant

to degrade and would be undesirable.

However, if Γh approximates a smooth closed curve Γ̂, then ‖~ns‖1,Γh
should be

bounded uniformly with respect to h. This requires that the vertices (and midpoints

when curved sides are used) of Γh always lie on the smooth curve Γ̂. So, ‖~ns‖1,Γh

should only depend on the true domain geometry being approximated.

In the subsequent sections, this is proven for the polygon and curved polygon

case. The assumption here will be that the smooth curve Γ̂ is at least C2 regular.

And the symbol h denotes the maximum length of all sides in Γh. Thus, Γh depends

on the boundary mesh size h.

C.4.1 Polygon Case

The proof for a polygon uses the following estimate for the difference between

the normal vector of a side of the approximating polygon and the normal vector of

the smooth curve.

Proposition C.4.1. Let Γ̂ be a C2 regular closed curve with approximating polygon

Γh, where h denotes the maximum length of all sides of the polygon. Suppose that

Γh approximates Γ̂ such that Γ̂ can be represented as the graph of a function f near

the side Sk ⊂ Γh (see Figure C.3). Hence, the derivative is bounded by a constant
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(i.e. |f ′| ≤ Cf). Then, the following estimate is true:

|~nk − ~̂nk+1| ≤ C0hk‖f ′′‖∞,[0,hk] ≤ C1hkκk,

|~nk − ~̂nk| ≤ C0hk‖f ′′‖∞,[0,hk] ≤ C1hkκk,

(C.12)

where ~̂nk is the unit normal vector of Γ̂ at the point ~xk, ~̂nk+1 corresponds to ~xk+1, ~nk

is the unit normal vector of Sk, hk is the length of Sk, κk is the maximum curvature

of the portion of Γ̂ between ~xk and ~xk+1, and C0, C1 > 0 are constants.

Proof. Let θ be the angle between the unit vectors ~nk and ~̂nk+1 (as shown in Figure

C.3). Then by basic geometry [86], we have that

tan

(
θ

2

)
=

|~nk − ~̂nk+1|/2
|~nk + ~̂nk+1|/2

=
|~nk − ~̂nk+1|
|~nk + ~̂nk+1|

.

Turning this around gives

|~nk − ~̂nk+1| = |~nk + ~̂nk+1| tan

(
θ

2

)
,

≤ 2

∣∣∣∣tan

(
θ

2

)∣∣∣∣ ≤ 2| tan θ|,
(C.13)

where the last inequality is true because tan is a monotonically increasing function

when |θ| < π/2, which is satisfied in our case because we assumed f is a graph.

But by the definition of the derivative and tan [85], we know | tan θ| = |f ′(0)|. So,

(C.13) becomes

|~nk − ~̂nk+1| ≤ 2|f ′(0)| = 2|f ′(0) − p′(0)|,

where p(s) := 0 is a linear function that approximates f for s ∈ [0, hk]. From

standard interpolation theory [132], [20], we know

|f ′(0) − p′(0)| ≤ C0hk‖f ′′‖∞,[0,hk],
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and combining with the previous inequality gives

|~nk − ~̂nk+1| ≤ 2C0hk‖f ′′‖∞,[0,hk], (C.14)

To get the rest of the estimate, we use the following formula for the curvature of Γ̂

in terms of the graph f [37]:

κ(s) =
f ′′(s)

(1 + (f ′(s))2)3/2
,

which implies that

|f ′′(s)| ≤ |1 + (f ′(s))2|3/2|κ(s)| ≤ |1 + C2
f |3/2 max

0≤s≤hk

|κ(s)|,

≤ |1 + C2
f |3/2κk,

(C.15)

where κk is the maximum of the curvature. Therefore, we get the first assertion in

(C.12) by plugging (C.15) into (C.14):

|~nk − ~̂nk+1| ≤ C1hkκk,

where C1 = 2C0|1+C2
f |3/2. The second assertion follows by the same argument.

We now prove the following point-wise estimate lemma.

Lemma C.4.1. Let Γ̂ and Γh be as in Proposition C.4.1, and let Sk denote a side

of Γh with length hk := |Sk|. Suppose that Γ̂ can be represented as the graph of a

function on each side of the polygon Γh (recall Figure C.3). Furthermore, assume

that Γh is shape regular in the following sense:

b1hk−1 ≤ hk ≤ b2hk−1, 1 ≤ k ≤ NS, (C.16)
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~xk~xk+1 Sk
s

~̂n

~̂nk

~̂nk+1

~nk

Γh

Γ̂

θ

~nk − ~̂nk+1

f

0 hk

Figure C.3: Zoom-in of side Sk of the polygon Γh (dashed line) with the smooth

(thick) curve Γ̂. The side Sk of the polygon has vertices ~xk and ~xk+1 with unit

normal ~nk and lies on the s axis with length hk := |Sk|. It is assumed that Γh is

sufficiently refined to allow for the smooth curve Γ̂ to be represented (locally) as

the graph of a function f on the interval [0, hk]. The vertex ~xk of the polygon is

located at (s = hk, f(hk) = 0), and ~xk+1 is at (s = 0, f(0) = 0). The smooth curve

has normal vector ~̂n, and we define ~̂nk := ~̂n(~xk) and ~̂nk+1 := ~̂n(~xk+1). The angle θ

is between ~nk and ~̂nk+1.
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where b1, b2 > 0 are uniform constants for all k (note: NS is the total number of

sides of Γh). Then the following point-wise estimate is true a.e. (almost everywhere)

on Γh

|∇Γh
~ns| ≤ CsκΓ̂, (C.17)

where ~ns is the vector field defined on Γh by (C.3), κΓ̂ is the maximum curvature of

Γ̂, and Cs > 0 is a uniform constant independent of h.

Proof. Using (C.3), we know that

~ns

∣∣∣
Sk

=
~nk + ~nk−1

1 + ~nk · ~nk−1

φk +
~nk+1 + ~nk

1 + ~nk+1 · ~nk

φk+1,

which, by the definition of the ‘surface gradient’ (A.11), implies

∇Γh
~ns

∣∣∣
Sk

=
1

hk

[
~nk+1 + ~nk

1 + ~nk+1 · ~nk

− ~nk + ~nk−1

1 + ~nk · ~nk−1

]
⊗ ~tk, (C.18)

where ~tk is the tangent vector on Sk. Next, we add and subtract ~̂nk

∇Γh
~ns

∣∣∣
Sk

=
1

hk

[(
~nk+1 + ~nk

1 + ~nk+1 · ~nk

− ~̂nk

)
+

(
~̂nk −

~nk + ~nk−1

1 + ~nk · ~nk−1

)]
⊗ ~tk, (C.19)

and define

G1 :=
~nk+1 + ~nk

1 + ~nk+1 · ~nk

− ~̂nk, G2 := ~̂nk −
~nk + ~nk−1

1 + ~nk · ~nk−1

,

so we can rewrite (C.19) as

∇Γh
~ns

∣∣∣
Sk

=
1

hk

[G1 +G2] ⊗ ~tk. (C.20)

We proceed to manipulate G1. Factoring out the denominator and rearranging gives

G1 =
1

1 + ~nk+1 · ~nk

(~nk − ~̂nk + ~nk+1 − ~̂nk(~nk+1 · ~nk)),
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and adding and subtracting ~̂nk+1 and ~̂nk gives

G1 =
1

1 + ~nk+1 · ~nk

[(~nk − ~̂nk) + (~nk+1 − ~̂nk+1)+

+(~̂nk+1 − ~̂nk) + (~̂nk − ~̂nk(~nk+1 · ~nk))].

After more manipulation, this becomes

G1 =
1

1 + ~nk+1 · ~nk

{(~nk − ~̂nk) + (~nk+1 − ~̂nk+1)+

+(~̂nk+1 − ~̂nk) + ~̂nk[~nk · (~nk − ~nk+1)]},

where we used the fact that ~nk · ~nk = 1. Bounding G1 then gives

|G1| ≤
|~nk − ~̂nk| + |~nk+1 − ~̂nk+1| + |~̂nk+1 − ~̂nk| + |~̂nk| |~nk| |~nk − ~nk+1|

|1 + ~nk+1 · ~nk|
,

≤ |~nk − ~̂nk| + |~nk+1 − ~̂nk+1| + |~̂nk+1 − ~̂nk| + |~nk − ~̂nk+1 + ~̂nk+1 − ~nk+1|
|1 + ~nk+1 · ~nk|

,

≤ |~nk − ~̂nk| + 2|~nk+1 − ~̂nk+1| + |~̂nk+1 − ~̂nk| + |~nk − ~̂nk+1|
|1 + ~nk+1 · ~nk|

,

and after using (C.12) and (C.29), this simplifies to

|G1| ≤
C1hkκk + 2C1hk+1κk+1 + C2hkκk + C1hkκk

|1 + ~nk+1 · ~nk|
,

≤ C3
hk + hk+1

|1 + ~nk+1 · ~nk|
κΓ̂,

where κΓ̂ is the maximum curvature of Γ̂. Next, we assume Γh is sufficiently refined

so that ~nk+1 · ~nk > 0 and use the shape regularity (C.16) to get

|G1| ≤ C3
hk + b2hk

|1 + ~nk+1 · ~nk|
κΓ̂ ≤ C4hkκΓ̂.

After noting that G2 satisfies the same bound (with a different constant), we go

back to (C.20) and bound to get

|∇Γh
~ns|
∣∣∣
Sk

≤ 1

hk

[C4hk + C5hk]κΓ̂ ≤ CsκΓ̂,
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which is bounded independent of h and k. Ergo, we get the assertion (C.17) on all

of Γh.

By Lemma C.4.1, we have the estimate for the H1(Γh) semi-norm of ~ns:

‖∇Γh
~ns‖2

0,Γh
=

∫

Γh

|∇Γh
~ns|2 ≤ C2

sκ
2
Γ̂

∫

Γh

1 = C2
sκ

2
Γ̂
|Γh| ≤ C2

sκ
2
Γ̂
|Γ̂|,

⇒ ‖∇Γh
~ns‖0,Γh

≤ CsκΓ̂|Γ̂|1/2.

(C.21)

The L2(Γh) norm is estimated by first computing

~ni + ~ni−1

1 + ~ni · ~ni−1

· ~ni + ~ni−1

1 + ~ni · ~ni−1

=
2(1 + ~ni · ~ni−1)

(1 + ~ni · ~ni−1)2
=

=
2

1 + ~ni · ~ni−1

≤ 2, for 1 ≤ i ≤ NS,

(C.22)

as long as ~ni ·~ni−1 > 0 for each i, which is easily satisfied if Γh is a sufficiently refined

approximation of Γ̂. This implies that

‖~ns‖∞,Γh
≤ 2. (C.23)

So, we get the following estimate:

‖~ns‖2
0,Γh

=

∫

Γh

~ns · ~ns ≤ ‖~ns‖2
∞,Γh

∫

Γh

1 ≤ 4|Γh| ≤ 4|Γ̂|,

⇒ ‖~ns‖0,Γh
≤ 2|Γ̂|1/2.

(C.24)

Therefore, the full H1(Γh) norm is bounded independently of h:

‖~ns‖1,Γh
≤ (4 + C2

sκ
2
Γ̂
)1/2|Γ̂|1/2, (C.25)

so property (3) in Section C.1 is satisfied.

C.4.2 Curved Edge Case

We follow a similar exposition as in the previous section. First, we prove a

similar result as in Proposition C.4.1 for curved sides.
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Proposition C.4.2. Let Γ̂ be a C2 regular closed curve with approximating curved

polygon Γh, where h denotes the maximum length of all curved sides of the polygon.

Suppose that Γh approximates Γ̂ such that Γ̂ can be represented as the graph of a

function f near the side Sk ⊂ Γh with f ′(0) = 0 (see Figure C.4). Hence, the

derivative is bounded (i.e. |f ′| ≤ Cf). Then, the following estimate is true:

|~n1
k − ~̂nk+1| ≤ C1hkκk,

|~n0
k − ~̂nk| ≤ C2hkκk,

(C.26)

where ~̂nk is the unit normal vector of Γ̂ at the point ~xk, ~̂nk+1 corresponds to ~xk+1,

~n0
k and ~n1

k is the unit normal vector of Sk at ~xk and ~xk+1, respectively, hk is the

length of Sk, κk is the maximum curvature of the portion of Γ̂ between ~xk and ~xk+1,

and C1, C2 > 0 are constants.

Proof. Let θ be the angle between the unit vectors ~n1
k and ~̂nk+1 (see Figure C.4).

By the same argument as in the proof of Proposition C.4.1 (see (C.13)), we get

|~n1
k − ~̂nk+1| ≤ 2| tan θ|. (C.27)

Let p(s) be the quadratic function that corresponds to the side Sk, expressed in the

local coordinate s ∈ [0, lk]. Then (C.27) can be rewritten as

|~n1
k − ~̂nk+1| ≤ 2| tan θ| = 2|p′(0)| = 2|p′(0) − f ′(0)|,

where the last equality is because f ′(0) = 0. Because p is an approximation of f ,

by basic interpolation theory [132], [20], we have

|p′(0) − f ′(0)| ≤ C ′lk‖f ′′‖∞,[0,lk],
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and combining with the previous inequality gives

|~n1
k − ~̂nk+1| ≤ 2C ′hk‖f ′′‖∞,[0,lk], (C.28)

where we used lk ≤ hk. The rest of the estimate follows by the same argument in

the proof of Proposition C.4.1:

|~n1
k − ~̂nk+1| ≤ C1hkκk,

where κk is the maximum curvature of Γ̂ between ~xk and ~xk+1, and C1 > 0 is a

uniform constant with respect to k. The second assertion in (C.26) follows by the

same argument but with a different local coordinate system (i.e. a different local

parameterization).

We also need a short proposition for the difference of the normal vector ~̂n

between the vertices ~xk and ~xk+1.

Proposition C.4.3. Assume the same hypothesis and definitions as in Proposition

C.4.2. Then, the following estimate is true:

|~̂nk − ~̂nk+1| ≤ C1hkκk, (C.29)

where κk is the maximum curvature of the portion of Γ̂ between ~xk and ~xk+1, and

C1 > 0 is a constant.

Proof. Let f be as in Proposition C.4.2 (in particular, f is defined on [0, lk], f
′ is

bounded, and f(0) = f ′(0) = 0; see Figure C.4). Then just as in Proposition C.4.2,

we get

|~̂nk − ~̂nk+1| ≤ 2| tan θ| = 2|f ′(lk)| = 2|f ′(lk) − f ′(0)|,
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~xk~mk

~xk+1

Sk

s

~̂nk

~̂nk+1

~̂n

~n1
k

~n0
k~nk

Γh

Γ̂

θ

f

0 lk

Figure C.4: Zoom-in of side Sk of the curved polygon Γh (dashed line) with the

smooth (thick) curve Γ̂. The side Sk of the polygon has vertices ~xk and ~xk+1, with

middle vertex ~mk labeled as a black diamond. The unit normal vector of Sk is ~nk

and is not constant along Sk. The length of Sk is denoted hk := |Sk|. Γh is assumed

to be sufficiently refined to allow for the smooth curve Γ̂ to be represented (locally)

as the graph of a function f on the interval [0, lk], with f ′(0) = 0. The vertex ~xk

of the polygon is located at (s = lk, f(lk)), and ~xk+1 is at (s = 0, f(0) = 0). The

smooth curve has normal vector ~̂n, and we define ~̂nk := ~̂n(~xk) and ~̂nk+1 := ~̂n(~xk+1).

The normal vector of the curved side at the endpoints is defined as ~n1
k := ~nk(~xk+1)

and ~n0
k := ~nk(~xk). The angle θ is between ~n1

k and ~̂nk+1.
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where θ is the angle between ~̂nk and ~̂nk+1. By the fundamental theorem of calculus

[83], we have

|~̂nk − ~̂nk+1| ≤ 2|
∫ lk

0

f ′′(s)ds| ≤ 2lk‖f ′′‖∞,[0,lk].

The assertion (C.29) follows by similar reasoning as in the proof of Proposition

C.4.1.

We now prove a proposition and a lemma regarding the surface gradient of ~n

and ~r in the definition (C.11) of ~ns for the curved polygon case.

Proposition C.4.4. Assume the same hypothesis and definitions as in Proposition

C.4.2 (see Figure C.4). Then, the following estimate is true:

|∇Γh
~n|
∣∣∣
Sk

= |∇Γh
~nk| ≤ Cnκk, (C.30)

where ~nk is the unit normal vector of Γh on Sk, κk is the maximum curvature of Γ̂

between ~xk and ~xk+1, and Cn > 0 is a uniform constant with respect to h and k.

Proof. By (A.35), we know that

|∇Γh
~nk| = |κSk

|, (C.31)

where κSk
is the curvature of the quadratic curved side Sk. Next, let p be the

quadratic function defined in the proof of Proposition C.4.2 (i.e. p is a function of

the local coordinate s). Then, by writing (C.31) in terms of the local coordinate s,

we get

|∇Γh
~nk| = |κSk

| =

∣∣∣∣
p′′

(1 + (p′)2)3/2

∣∣∣∣ ≤ ‖p′′‖∞,[0,lk]

≤ ‖p′′ − f ′′‖∞,[0,lk] + ‖f ′′‖∞,[0,lk],
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where f is the local parameterization of Γ̂. By standard Sobolev interpolation

theory [20], we get

|∇Γh
~nk| ≤ C0‖f ′′‖∞,[0,lk], (C.32)

and the rest follows by the same argument as in the proof of Proposition C.4.1:

|∇Γh
~nk| ≤ Cnκk.

Lemma C.4.2. Let Γ̂ and Γh be as in Proposition C.4.1, and let Sk denote a side

of Γh with length hk := |Sk|. Furthermore, assume that Γh is shape regular in the

following sense:

b1hk−1 ≤ hk ≤ b2hk−1, 1 ≤ k ≤ NS, (C.33)

where b1, b2 > 0 are uniform constants for all k (note: NS is the total number of

sides of Γh). Then the following point-wise estimate is true a.e. on Γh

|∇Γh
~r| ≤ CrκΓ̂, (C.34)

where ~r is the vector field defined on Γh by (C.9) and Cr > 0 is a uniform constant

independent of h.

Proof. Using (C.9), we have that

~r
∣∣
Sk

=
~n0

k + ~n1
k−1

1 + ~n0
k · ~n1

k−1

φk +
~n0

k+1 + ~n1
k

1 + ~n0
k+1 · ~n1

k

φk+1,

which, by the definition of the ‘surface gradient’ (A.11), implies

∇Γh
~r
∣∣
Sk

=
1

hk

[
~n0

k+1 + ~n1
k

1 + ~n0
k+1 · ~n1

k

− ~n0
k + ~n1

k−1

1 + ~n0
k · ~n1

k−1

]
⊗ ~tk, (C.35)
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where ~tk is the tangent vector on Sk. Adding and subtracting some convenient terms

changes (C.35) to

∇Γh
~r
∣∣
Sk

=
1

hk

[
~n0

k+1 + ~n1
k

1 + ~n0
k+1 · ~n1

k

− ~̂nk+1+

+(~̂nk+1 − ~̂nk)+

+~̂nk −
~n0

k + ~n1
k−1

1 + ~n0
k · ~n1

k−1

]
⊗ ~tk.

(C.36)

Next, define:

G1 :=
~n0

k+1 + ~n1
k

1 + ~n0
k+1 · ~n1

k

− ~̂nk+1, (C.37)

G2 := (~̂nk+1 − ~̂nk), (C.38)

G3 := ~̂nk −
~n0

k + ~n1
k−1

1 + ~n0
k · ~n1

k−1

, (C.39)

and rewrite (C.36) as

∇Γh
~r
∣∣
Sk

=
1

hk

[G1 +G2 +G3] ⊗ ~tk. (C.40)

First, we focus on G1. Factoring out the denominator and rearranging gives

G1 =
1

1 + ~n0
k+1 · ~n1

k

[~n1
k − ~̂nk+1 + ~n0

k+1 − (~n0
k+1 · ~n1

k)~̂nk+1],

and adding and subtracting ~̂nk+1 gives

G1 =
1

1 + ~n0
k+1 · ~n1

k

{(~n1
k − ~̂nk+1) + (~n0

k+1 − ~̂nk+1) + [1 − (~n0
k+1 · ~n1

k)]~̂nk+1}.

Another manipulation gives

G1 =
1

1 + ~n0
k+1 · ~n1

k

{(~n1
k − ~̂nk+1) + (~n0

k+1 − ~̂nk+1)+

+[~n1
k · (~n1

k − ~n0
k+1)]~̂nk+1},

(C.41)
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because ~n1
k · ~n1

k = 1. Next, we bound |G1|:

|G1| ≤
|~n1

k − ~̂nk+1| + |~n0
k+1 − ~̂nk+1| + |~n1

k| |~n1
k − ~n0

k+1| |~̂nk+1|
|1 + ~n0

k+1 · ~n1
k|

,

=
|~n1

k − ~̂nk+1| + |~n0
k+1 − ~̂nk+1| + |~n1

k − ~̂nk+1 + ~̂nk+1 − ~n0
k+1|

|1 + ~n0
k+1 · ~n1

k|
,

≤ 2
|~n1

k − ~̂nk+1| + |~n0
k+1 − ~̂nk+1|

|1 + ~n0
k+1 · ~n1

k|
,

and using (C.26) gives

|G1| ≤ 2
C1hkκk + C2hk+1κk+1

|1 + ~n0
k+1 · ~n1

k|
. (C.42)

Assuming that Γh is sufficiently refined so that ~n0
k+1·~n1

k > 0 and taking the maximum

curvature over all of Γ̂ (i.e. κΓ̂), (C.42) becomes

|G1| ≤ C3(hk + hk+1)κΓ̂. (C.43)

The term G3 satisfies a similar bound with the index k shifted by 1:

|G3| ≤ C4(hk−1 + hk)κΓ̂. (C.44)

The other term G2 is bounded using (C.29):

|G2| ≤ C5hkκk ≤ C5hkκΓ̂. (C.45)

Going back to (C.40) and bounding, we get

|∇Γh
~r|
∣∣
Sk

≤ 1

hk

[|G1| + |G2| + |G3|],

≤ C6

hk

[hk+1 + 3hk + hk−1]κΓ̂,

and using the shape regularity (C.33) gives

|∇Γh
~r|
∣∣
Sk

≤ C6

hk

[
b2hk + 3hk +

1

b1
hk

]
κΓ̂ ≤ CrκΓ̂,

which is true for all Sk. Hence, we get the assertion (C.34).
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Finally, we can prove that |∇Γh
~ns| is bounded uniformly by a constant. Be-

cause ~ns is continuous and piecewise C1, we have that

‖∇Γh
~ns‖∞,Γh

= max
1≤k≤NS

‖∇Γh
~ns‖∞,Sk

.

So, we compute ∇Γh
~ns on Sk for some k. By (C.11) and the product and chain rule,

we have

∇Γh
~ns

∣∣
Sk

= −(~r · ~n)−2[~n · ∇Γh
~r + ~r · ∇Γh

~n] ⊗ ~r + (~r · ~n)−1∇Γh
~r
∣∣
Sk
.

As long as the curved edges of Γh are not severely distorted (i.e. ~r · ~n > c > 0), we

get the following bound:

|∇Γh
~ns|
∣∣
Sk

≤ c−2[|~n| |∇Γh
~r| + |~r| |∇Γh

~n|] + c−1|∇Γh
~r|
∣∣
Sk
.

Since ~r is bounded in L∞(Γh), we get

|∇Γh
~ns|
∣∣
Sk

≤ C̃[|∇Γh
~r| + |∇Γh

~n|]
∣∣
Sk
,

≤ C̃[CrκΓ̂ + Cnκk]
∣∣
Sk

≤ CsκΓ̂,

where we used (C.34) and (C.30) (note: Cs > 0 is independent of h and k). Hence,

‖∇Γh
~ns‖∞,Γh

≤ CsκΓ̂. (C.46)

This means the H1(Γh) semi-norm is bounded independently of h:

‖∇Γh
~ns‖0,Γh

≤ CsκΓ̂|Γh|1/2 ≤ 2CsκΓ̂|Γ̂|1/2,

where we have conservatively assumed |Γh| ≤ 4|Γ̂|. Ergo, because the L2(Γh) norm

of ~ns is clearly bounded, we get the full H1(Γh) norm

‖~ns‖1,Γh
≤ CΓ̂, for all h, (C.47)

where CΓ̂ only depends on the geometry of Γ̂. Therefore, property (3) in Section

C.1 is satisfied.
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Appendix D

Symbol Definitions

Table D.1: Fluid Variable and Parameter Definitions (Part A)

Symbol Definition

H channel height (distance between top and bottom plates)

LElec electrode side length

σlg liquid-gas interface surface tension

cpin three-phase contact line pinning coefficient

Ppin maximum ‘pinning pressure’

ρ fluid density

µ fluid dynamic viscosity

Khys hysteresis constant

θ contact angle of the droplet (through liquid)

t time variable

~x position coordinate

Ω set of points that make up the 2-D droplet domain

Γ Γ := ∂Ω (1-D boundary of droplet)

κxy curvature of Γ

κz curvature of the liquid-gas interface along channel spacing
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Table D.2: Fluid Variable and Parameter Definitions (Part B)

Symbol Definition

~u vector velocity

(u, v) (x,y) velocity components ~u = (u, v)

p droplet pressure in Ω

λ pinning pressure on Γ

~n outward normal vector

L length scale

U0 velocity scale

t0 time scale

Re Reynolds number

Ca capillary number

α velocity time-derivative coefficient

β velocity coefficient

∇ gradient operator

∆ Laplace operator
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Table D.3: Variational and FEM Definitions

Symbol Definition

⊤Ω set of triangles for domain Ω

SΓ set of sides for boundary Γ

NS number of sides in SΓ

h mesh size

△t time-step size

γ augmented lagrangian coefficient

~n outward normal vector

~ns continuous approximation of outward normal vector

a(·, ·), b(·, ·) bilinear forms of mixed formulation

χ(·) linear form for given data

V velocity function space (with norm ‖ · ‖V)

P pressure function space (with norm ‖ · ‖P)

M pinning variable function space (with norm ‖ · ‖M)

Λ convex set contained in M (used with pinning variable)

a.e. almost everywhere (in the sense of measure theory)

‖ · ‖q,D Hq(D) norm

Pk set of polynomials of order k

Vk continuous vector polynomials of order k

Qk continuous scalar polynomials of order k

Mk discontinuous scalar polynomials of order k

Vh,Ph,Mh discrete, conforming approximations of V,P,M

Λh discrete, convex set contained in Mh
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Table D.4: Particle Control Definitions

Symbol Definition

~x position of a particle

~̇x velocity of a particle

∇Pk(~xj) pressure gradient vector at the jth particle due to the kth electrode

G matrix of pressure gradient values at particle positions

ξ vector of boundary condition values to set for desired particle motion

ξmin, ξmax minimum and maximum boundary condition values that may be set

b vector of desired forcing directions for the particles
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Table D.5: Differential Geometry Definitions

Symbol Definition

Γ surface (1-D or 2-D)

~X surface parameterization (of Γ)

~X−1 inverse map of ~X

{Xk}3
k=1

~X = (X1, X2, X3) (when Γ is in a 3-D space)

s parameterization variable for 1-D surface

I local chart for 1-D parameterization

s1, s2 parameterization variables for 2-D surface

{Ui} local charts for 2-D parameterization

ω scalar defined on Γ

ω̃ scalar in local coordinates (ω̃ = ω ◦ ~X)

~ϕ vector field defined on Γ

~̃ϕ vector in local coordinates ( ~̃ϕ = ~ϕ ◦ ~X)

~t ‘right-handed’ tangent vector

~n outward normal vector

∂s partial derivative operator with respect to param. variable s

∇Γ surface (tangential) gradient (on Γ)

∆Γ surface Laplacian or Laplace-Beltrami operator (∆Γ := ∇Γ · ∇Γ)

g first fundamental form (matrix)

gij (i, j) component of g

gij (i, j) component of g−1

h second fundamental form (matrix)

hij (i, j) component of h

δi
j Kronecker delta

κ1, κ2 principal curvatures

κ total curvature κ = κ1 + κ2

κG Gaussian curvature κG = κ1κ2
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[14] B. Berge. Électrocapillarité et mouillage de films isolants par l’eau (including

an english translation). Comptes Rendus de l’Académie des Sciences de Paris,

Série II, 317:157–163, 1993.

[15] B. Berge and J. Peseux. Variable focal lens controlled by an external voltage:

An application of electrowetting. European Physical Journal E, 3(2):159–163,

2000.

252



[16] T. D. Blake. The physics of moving wetting lines. Journal of Colloid and

Interface Science, 299:1–13, 2006.

[17] T. D. Blake, A. Clarke, and E. H. Stattersfield. An investigation of electrostatic

assist in dynamic wetting. Langmuir, 16(6):2928–2935, 2000.

[18] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid

Mechanics. Cambridge University Press, 2nd edition, 2001.

[19] K. A. Brakke. Surface evolver, version 2.26c. Technical report, Susquehanna

University, September 2005.

[20] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element

Methods. Springer, 2nd edition, 2002.

[21] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-

Verlag, New York, NY, 1991.

[22] F. Brezzi, W. W. Hager, and P. A. Raviart. Error estimates for the finite ele-

ment solution of variational inequalities: Part ii. mixed methods. Numerische

Mathematik, 31:1–16, 1978.

[23] R. S. Burdon. Surface Tension and the Spreading of Liquids. Cambridge

University Press, Cambridge, Great Britain, 1949.

[24] R. Caiden, R. Fedkiw, and C. Anderson. Numerical method for two phase

flow consisting of separate compressible and incompressible regions. Journal

of Computational Physics, 166:1–27, 2001.

253



[25] F. Cattaneo, K. Baldwin, S. Yang, T. Krupenkine, S. Ramachandran, and

J. A. Rogers. Digitally tunable microfluidic optical fiber devices. Journal of

Microelectromechanical Systems, 12(6):907–912, 2003.

[26] C. H. A. Cheng, D. Coutand, and S. Shkoller. Navier-stokes equations inter-

acting with a nonlinear elastic shell. preprint, page 60, 2006.

[27] S. K. Cho and C.-J. Kim. Particle separation and concentration control for

digital microfluidic systems. In The 16th Annual IEEE International Confer-

ence on MEMS, pages 686–689, Kyoto, Japan, Jan. 2003.

[28] S. K. Cho, H. Moon, J. Fowler, S.-K. Fan, and C.-J. Kim. Splitting a liquid

droplet for electrowetting-based microfluidics. In International Mechanical

Engineering Congress and Exposition, New York, NY, 2001.

[29] S. K. Cho, H. Moon, and C.-J. Kim. Creating, transporting, cutting, and

merging liquid droplets by electrowetting-based actuation for digital microflu-

idic circuits. Journal of Microelectromechanical Systems, 12(1):70–80, 2003.

[30] P. Clément. Approximation by finite element functions using local regulariza-

tion. R.A.I.R.O. Analyse Numérique, 9:77–84, 1975.

[31] V. Cristini, J. Blawzdziewicz, and M. Loewenberg. An adaptive mesh al-

gorithm for evolving surfaces: simulation of drop breakup and coalescence.

Journal of Computational Physics, 168:445, 2001.

[32] J. E. Curtis, B. Koss, and D. G. Grier. Dynamic holographic optical tweezers.

Optics Communications, 207:169–175, 2002.

254



[33] A. A. Darhuber, J. M. Davis, S. M. Troian, and W. W. Reisner. Thermo-

capillary actuation of liquid flow on chemically patterned surfaces. Physics of

Fluids, 15(5):10150–10153, 2003.

[34] A. A. Darhuber and S. M. Troian. Principles of microfluidic actuation by

modulation of surface stresses. Annual Review of Fluid Mechanics, 37:425–

455, 2005.

[35] P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré. Capillarity and Wetting
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