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In recent years, the increasing popularity of eCommerce, and particularly on-

line auctions has stirred a great amount of scholarly research, especially in informa-

tion systems, economics, and marketing, but little or no attention has been received

from statistics. ECommerce arrives with enormous amounts of rich and clean data

as well as statistical challenges. eCommerce not only creates new data challenges,

it also motivates the need for innovative models. While there exist many theories

about economic behavior of participants in market exchanges, many of these theo-

ries have been developed before the appearance of the world wide web and often are

not appropriate to be used in explaining modern economic behavior in eCommerce.

This calls for new models that describe not only the evolution of a process, but also

its dynamics. This research takes a different look at online auctions and proposes

to study an auction’s price evolution and associated price dynamics from different

points of view using functional data analysis techniques.



In this dissertation, we develop novel dynamic modeling procedures applicable

to online auctions. First, we develop a dynamic forecasting system to predict the

price of an ongoing auction. By dynamic we mean that the model can predict the

price of an auction “in-progress” and can update its prediction based on newly ar-

riving information. Our dynamic forecasting model accounts for the special features

of online auction data by using modern functional data analysis techniques. We

also use the functional context to systematically describe the empirical regularities

of auction dynamics. Second, we propose a family of differential equation models to

capture the dynamics in online auctions. A novel multiple comparisons test is pro-

posed to compare dynamics models of auction sub-populations. We accomplish the

modeling task within the framework of principal differential analysis and functional

models. Third, we propose Model-based Functional Differential Equation Trees to

better incorporate the different characteristics of the auction, item, bidders and

seller into the differential equation. We compare this new tree-method with trees

either based on high-dimensional multivariate responses or functional responses. We

apply our methods to a novel set of Harry Potter and Microsoft Xbox data for model

validation and comparison of method.
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Chapter 1

Introduction

1.1 Background: Electronic Commerce

Electronic commerce (also referred to as EC, e-commerce or eCommerce) con-

sists primarily of the distributing, buying, selling, marketing, and servicing of prod-

ucts or services over electronic systems such as the internet and other computer net-

works. The information technology industry might see it as an electronic business

application aimed at commercial transactions. The meaning of the term “electronic

commerce” has changed over the last 30 years. Originally, “electronic commerce”

meant the facilitation of commercial transactions electronically. Today, it encom-

passes a very wide range of business activities and processes, from e-banking to

offshore manufacturing to e-logistics.

Electronic commerce continues to grow at an impressive pace despite widely

publicized failures by prominent online retailers. According to Forrester Research,

electronic commerce generated retail sales worth about US $165 billion in 2005, a

20% lift over 2004 (www.forrester.com).

Online auctions are one of the most successful forms of electronic commerce.

On any given day there are several million items, dispersed across thousands of

categories, for sale on the web behemoth eBay. In the full year 2005, 1.9 billion

items were listed for sale on eBay alone, a 33 percent increase over the previous
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year. This generated gross merchandise sales of $ 44.3 billion, up from $34.2 billion

in 2004. eBay ’s popularity among the public can also be evidently quantified in

the following numbers: In 2005 alone, the cumulative confirmed registered users

totaled a record 180.6 million, which was a 33% increase over the 135.5 million

users reported at the end of 2004; and eBay hosts approximately 383,000 stores

worldwide, with approximately 212,000 stores hosted in the U.S. alone. According

to the Forrester Technographics survey, close to 30% of all US households had bid

in an eBay online auction in 2004.

The dominant auction format on eBay is a variant of the second price sealed-

bid auction [59] with “proxy bidding”. This means that individuals submit a “proxy

bid”, which is the maximum value that they are willing to pay for the item. The auc-

tion mechanism automates the bidding process to ensure that the person with the

highest proxy bid is in the lead of the auction. The winner is the highest bidder and

pays the second highest bid (plus an increment). Unlike other auctions, eBay has

strict ending times, ranging between 1 and 10 days from the opening of the auction,

as determined by the sellers. eBay posts information on closed auctions for a dura-

tion of at least 15 days on its web site (see http://listings.ebay.com/pool1/listings/list

/completed.html). These publicly available postings make eBay an invaluable source

of rich bidding data.
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1.2 Statistical Challenges of eCommerce Data

This dissertation addresses statistical challenges associated with eCommerce

research. Electronic commerce is a growing field of scholarly research especially

in information systems, economics, and marketing, while surprisingly, it has only

received little attention in statistics. ECommerce provides researchers an enormous

amount of data and data-driven questions and problems. While eCommerce tends

to generate very rich and clean data which is structurally different from offline data,

it also arrives with many new data- and model-related challenges.

One of the main challenges of eCommerce data is the combination of longi-

tudinal information (time series data) with cross-sectional information (attribute

data). A sample of n records in eCommerce data consists of n time series and a set

of n attributes. Take eBay ’s online auctions as an example. On eBay, each auction

is characterized by a series of bids placed over time and a set of additional auction

attributes such as the opening price, the item condition, the auction duration, a

seller’s rating, whether or not a secret reserve price has been set up, etc.

Besides the combination of longitudinal and cross-sectional information, an-

other typical aspect of eCommerce data is the unequal spacing of events. In tradi-

tional statistics, times series are typically recorded at pre-defined and equidistant

time-points at scales of days, months, quarters or years. For eCommerce data, how-

ever, this is not true. In eCommerce, different users or agents will access the web at

different points in time and different geographical locations, and user behavior has

a strong influence on the events that constitute the observed time series. Conse-

3



quently, the resulting times when new events arrive are extremely unevenly spaced.

Furthermore, the number of events in eCommerce data within a short period of time

can sometimes be very sparse and other times be extremely dense due to psycho-

logical, economic or other reasons. For instance, in online auctions, data (sequences

of bids) arrive in very unevenly-spaced time intervals, determined by the bidders

and their bidding strategies, and bidding in these auctions often tends to be concen-

trated at the beginning and especially at the end. Since many traditional statistical

methods assume that data arrive in evenly-spaced time intervals, irregularly spaced

data is very challenging.

eCommerce not only creates new data challenges, it also motivates the need

for innovative models. While there exist many theories about economic behavior

of participants in market exchanges, many of these theories have been developed

before the appearance of the world wide web and often are not appropriate to be

used in explaining modern economic behavior in eCommerce. For instance, there

exists quite a lot of empirical research that shows that online behavior deviates in

many ways from offline behavior and from what is expected by economic theory.

This calls for new models that describe not only the evolution of a process, but also

its dynamics. Modeling dynamics is very important in the sense that they not only

greatly affect the outcomes of eCommerce activities, but also show huge hetero-

geneity. As we can see in online auctions, while the patterns of the price evolutions

could be not very illuminating, the corresponding dynamics could show tremendous

heterogeneity. Changing dynamics are inherent in a fast moving environment like

the online world. Fast movements and changes imply nonstationarity, which poses

4



challenges to traditional times series modeling. Most approaches to date tend to ig-

nore this dynamic information and treat data as cross-sectional, by aggregating over

the temporal dimension. And studies investigating bidding regularities also tend to

be limited to reporting summary statistics. Such approaches lead to a great loss in

information. This research takes a different look at online auctions and proposes to

study an auction’s price evolution and associated price dynamics, and investigate

the empirical regularities in eBay’s auction dynamics.

Lastly, eCommerce typically arrives with huge databases which can put a com-

putational burden on users’ storage and processing facilities. This burden is often

intensified by the complicated structure of eCommerce data. The high-dimensional

feature of the data usually makes multivariate techniques perform in a way that

is very clumsy and unsuccessful. In this research, we investigate several new and

innovative approaches to overcome these challenges.

1.3 Contributions of this Dissertation

In the following we discuss the research problems and methodological innova-

tions addressed in this dissertation.

• Dynamic price forecasts for online auctions: On any given day, there are many

different auctions for the same or similar item available on eBay. One of the

problems associated with such an information flood is how bidders and buy-

ers can make informed decisions: when to bid and how much to bid, or from

the seller’s point of view, when to set up an auction and how to set up an

5



auction. A useful tool in this context could be a forecasting method that, at

any point in time, accurately predicts the price of an auction. Forecasting

price in online auctions can thus have benefits to different auction parties, and

forecasting an auction in operation can be even more interesting and has more

tangible benefits. As we addressed in the previous section, eCommerce data is

generally characterized by the combination of longitudinal and cross-sectional

information. As a typical form of eCommerce data, online auction data also

carries such features. Due to the difficulty caused by these features, most of

the studies to date focusing on forecasting online auction price are static in

nature and does not account for information that becomes available after the

start of the auction. In other words, these studies only use the cross-sectional

information to forecast the final prices of online auctions, ignoring the lon-

gitudinal information when an auction is in progress. The present research

successfully overcomes this data challenge with the great aid of functional

data analysis. We interpret longitudinal process data as functional observa-

tions (i.e., continuous curves) and interpret cross-sectional data as functional

attributes, thereby wedding both types of information and making both of

them contribute to forecasting prices. This dissertation develops a dynamic

forecasting system which can predict the price of an auction “in-progress” and

can update its prediction based on newly arriving information. The dynamic

nature of our forecasting approach is founded within the framework of func-

tional data analysis (FDA). This is discussed in Chapter 4. This work has

been accepted by the Journal of Business and Economic Statistics [105].
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• Modeling dynamics of online auctions: Recent research provides more and

more evidence that the price of an auction is not only determined by the a

priori calculations of all bidders, but it is also affected by what happens during

the auction. While we are not able to observe many of the underlying factors

that drive bidders’ behavior, auction dynamics capture many of their effects.

Meanwhile, there is evidence that dynamics vary from auction to auction.

Therefore the need of characterizing price process with respect to auction-

related characteristics is motivated. For that reason, we develop a formal

machinery to capture and model online auction dynamics and to character-

ize the price process, namely using differential equation models. We propose

a family of linear differential equations to directly model online auction dy-

namics, and also propose a novel test to compare multiple dynamic models

for several sub-populations of online auctions. This work has been submitted

to the Journal of the American Statistical Association and is under review;

see [106] or http://www.smith.umd.edu/faculty/wjank/Wang-Jank-Shmueli-

Smith-PDA of Online Auctions.pdf.

• Functional differential equation trees: Our previous work has shown that dy-

namics in online auctions differ a lot based on auction sub-populations. In

order to capture these differences, we propose a new functional differential

equation tree to incorporate covariate information into functional differen-

tial equations. There is a large set of auction-related characteristics that are

important factors related to the price dynamics, but incorporating covariate
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information into differential equations is not obvious. In order to tackle the

problem, we propose an elegant partitioning-based approach. A manuscript

based on this work is currently in preparation and it is expected to be sub-

mitted by the end of May.

1.4 Organization of the Dissertation

The organization of this dissertation is as follows:

In Chapter 2, we review previous work on online auction research in economics,

information systems and statistics. The statistical review includes areas such as

functional data analysis techniques, differential equation models, and tree-structured

models.

In Chapter 3, we give a description of the data used in this research: the data

availability, how we obtained the data, and a discussion of the data details.

In Chapter 4, we present our initial systematic study of the empirical regular-

ities in online bidding dynamics. We develop a dynamic forecasting system for the

price curves of on-going online auctions. We apply the method to our eBay data

and compare with the results from traditional methods. A sensitivity analysis is

presented to study robustness of the model to changes in knot allocation and with

respect to the choice of smoothing parameter.

Chapter 5 focuses on the differential equation models. We model the price

curves and capture the dynamics in online auctions using differential equation mod-

els. A novel test is presented to compare multiple dynamic models for auction sub-
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populations. We accomplish the modeling task within the framework of principal

differential analysis and functional data analysis.

In Chapter 6, we give a brief overview of tree techniques and associated termi-

nologies for univariate, multivariate, and functional responses. A brief introduction

is also given to model-based recursive partitioning method from which our method

extend. We employ a tree-structured model to better embed the influences of cross-

sectional factors. A functional-tree framework based on differential equation models

is presented and applied to our eBay data. The results are compared and contrasted

with those from the methods mentioned above.

Chapter 7 concludes this thesis and discusses future work.
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Chapter 2

Literature Review

2.1 Empirical Studies on eCommerce and Online Auctions

Electronic commerce, and in particular online auctions, have received an ex-

treme surge of popularity in recent years. While a large amount of extensive research

on classical auction theory (see [66] and [56] for an introduction and overview) has

been conducted, most research has been focused on a game-theory perspective, and

the involvement of statisticians in the field is scarce. Empirical research in this area

can be seen for example in [38]. The lack of previous statistical research in the

field is most likely due to the absence of widely available data. However, the recent

surge of online auctions and the capability of collecting data conveniently over the

internet have made more and more bidding data become available. The popularity

of online auctions and the easy data availability online have stirred a great num-

ber of empirical studies in economics and information systems. For instance, [11]

uses clustering analysis and finds that significant heterogeneity exists in the users of

electronic markets like eBay and develops a stable taxonomy of bidding behavior in

online auctions. The determinants of bidder and seller behavior are also explored by

[9] using regression models. Moreover, an interesting phenomenon is the winner’s

curse. With the existence of a common value, the winner’s curse occurs when bid-

ders are not aware that they will only win the auction when they have the highest

10



evaluation of the product and as a consequence, inexperienced bidders frequently

overpay. This is seen as manifestation of informational asymmetry in electronic

markets [10]. A structural econometric model of bidding to measure the extent of

the winner’s curse is used in [9]. Feedback mechanisms are a popular feature of on-

line auctions and can decrease the informational asymmetries between buyers and

sellers. Proper feedback mechanisms can induce trust and trust can reduce informa-

tion asymmetry by reducing transaction-specific risks [8]. A detailed discussion of

important differences between internet-based feedback mechanisms and traditional

“word-of-mouth” networks can be found in [22]. That author also surveys impor-

tant issues related to design, evaluation and use of online feedback mechanisms. In

an investigation of the determining factors of price, [88] finds that, via regression

models, a seller’s feedback rating has a measurable effect on auction prices, with

a few negative ratings having a much greater impact than many positive ratings.

They also find that the magnitude of the opening bid and the use of secret reserve

prices tend to have a positive effect on the final auction price. Other empirical work

observes the prevalence of “bid sniping” in eBay’s auctions (see [90], [10], [88]).

Bidders hold back their bids as long as possible, resulting in a huge amount of bids

placed in the last moments of the auction. Last-moment bidding may be a response

by rational bidders against naive bidders or a form of “tacit collusion” by the bid-

ders against the seller. Generally, bidders feel that they increase their chances of

winning by revealing their valuation as late as possible during the auction. Despite

the prevalence of bid sniping, “early bidding” also exists. People may bid early to

establish their time priority on multiunit auction sites like Ubid.com or perhaps to
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assess their competition [11]. In either case, both “late bidding” and “early bid-

ding” indicate that the dynamics change tremendously over the course of an online

auction.

While online auctions experience an increasing amount of interest in the eco-

nomics and information systems literature, relatively little work, with a few recent

exceptions, has been done from a statistical point of view. To deal with the over-

whelming amount of data found on auction sites like eBay.com, [95] introduces

graphical methods such as profile plots and statistical-zooming to visualize online

auctions in an informative way. Their visualizations allow for a straightforward

inspection of bidding heterogeneity, manifested in “early bidding” and “sniping”.

Modeling bid arrivals during an auction, [96] introduces a class of 3-stage non-

homogenous Poisson processes to describe the heterogeneous stages of bid arrivals

within a finite time period. Furthermore, recent study by [50] proposes the use of

modern statistical methods, in particular functional data analysis, to investigate the

dynamics of the price process rather than just looking at the auction statically. The

authors utilize functional cluster analysis and find that the price-dynamics, like the

price-velocity and price-acceleration, can be quite different for different auctions. In

an extension of that work, [93] employs functional regression to investigate the effect

of covariates like the opening bid on the dynamics of the auction. Interestingly, it

was found that during the beginning of the auction, high opening bids are associ-

ated with faster acceleration in the bidding process while towards the auction end,

high opening prices are associated with a slow-down of the price-dynamics. All of

these previous observations have been made using a modern statistical methodology,
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called Functional Data Analysis (FDA). In the following, we review the basics of

FDA in detail.

2.2 Functional Data Analysis

Methodological and applied research related to the analysis of functional data

is currently receiving a tremendous amount of interest in the statistics literature.

Functional data analysis (FDA) is a tool set that, although based on the ideas of

classical statistics, differs from it (and, in a sense, generalizes it), especially with

respect to the type of data structures that it encompasses. While the underlying

ideas for FDA have been around for a longer time, the surge in associated research

can be attributed to the monographs of [85, 86]. In FDA, the interest centers around

a set of curves, shapes, images, or, more generally, a set of functional objects. There

is a number of recent studies devoted to the generalization of standard statistical

methodology to the context of functional observations. For instance, [31] develops

a measure of centrality for a given functional observation within a group of curves.

A principal component approach for a set of sparsely-sampled curves is developed

in [43] (see also [70]). Other exploratory tools have been developed such as curve-

clustering (see [1, 47, 103]) and curve-classification (see [36, 44]). Classical statistical

methods have also been generalized to functional canonical correlation analysis [37],

functional ANOVA [28, 34], functional regression [29, 107, 20, 77], and functional

generalized linear models [46, 76]. Differential equation models are fitted to data of

functional form in [83] (see also [84]). This list is only a small part of the current
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methodological efforts in this emerging field.

Functional data analysis has been applied to many areas, such as the agri-

cultural sciences [73], the behavioral sciences [89] as well as medical research [74].

The method has been applied to a wide range of areas from analyzing the dynamics

of seasonally-varying production indices [84] to predicting El Niño [14]. However,

while there exist many more applications in which functional data methods have

been fruitful, it appears that this set of tools has not yet been explored extensively

to analyse price behavior in online auctions or data originating from electronic com-

merce. One exception is the recent work of [50], which applies functional clustering

to bid histories of eBay auctions to differentiate main clusters. Along that same

stream of research, [52] uses functional regression analysis to explore process dy-

namics in eCommerce like eBay online auctions (see also [87] for examples of ex-

ploring bid dynamics in auctions for modern Indian art via FDA). State-of-the-art

functional data methodology is proposed in [51] for directly modeling temporal bid-

ding information and its dynamic change. These examples prove that FDA is slowly

finding its way into the empirical exploration and modeling of online auction data.

More discussion on the versatility of this tool set in the broader context of electronic

commerce research can be found in [51]. In this dissertation, we set out to create

a formal platform for investigating eCommerce data using FDA. In particular, we

set out to create a platform for investigating dynamics of eCommerce transactions

using FDA.
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Chapter 3

Online Auction Data and Their Pre-Processing

3.1 Data Availability

As we mentioned in Chapter 1, eBay posts information of closed auctions for a

duration of at least 15 days on its web site. These publicly available postings make

eBay an invaluable source of rich bidding data.

A typical bid history for a closed auction (see e.g., Figure 3.1) includes infor-

mation about the magnitude and time when a bid was placed. Additional informa-

tion that is made available includes information about the seller and the bidders

(e.g., username, feedback ratings), information about the item sold (e.g., name, de-

scription), and information about the the auction format (e.g., auction duration,

magnitude of the opening bid). In the following, we will give a brief introduction to

collect online transaction data.

3.2 Data Collection

Every day on eBay, there are several million items for sale, which means that

large amounts of data are available. While such data could at least in principle be

collected “manually” by simply browsing through individual web pages, in practice

this can be very time consuming, and therefore data are often collected automatically
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Figure 3.1: Partial bid-history for an eBay Palm-515 auction. On the left-most side
of the table we can see a bidder’s username, followed by the bidder’s rating. The
stars indicate that this eBay member has achieved 10 or more feedback points. The
amount and time of the bids appear on the right.
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using so-called web agents or web crawlers.

Web crawlers are software programs that visit a number of pages automatically

and extract (or “parse”) the required information. That way, high quality informa-

tion on a large number of auctions can be gathered in a short period of time. In

general, crawlers start with a list of URLs to visit, called the seeds. And the list

of URLs will be recursively visited based on a certain schedule. In our context, we

focus on the bid information of one specific item. Thus, we will be crawling a URL

instead of a list. Since it is often difficult to retrace the bid history after the end

of the auction, we have to make our crawler recursively visit the destination before

the auction ends. Of course, it is good practice to keep the frequency as low as

possible in order to avoid overloading the opposite server. With this in the back of

our minds and using a basic crawling package created by Dr. Gove N. Allen (see

[2] and http://www.gove.net for details.), we wrote two short programs. Sample

scripts used for our eBay data collection are provided in Appendix A. The scripts

collect eBay bid information and bid histories during 2005.

3.3 Data Used in this Study

The data used in this study are 190 7-day auctions of Microsoft Xbox gaming

systems and Harry Potter and the Half-Blood Prince books. The data were obtained

via the web crawler described previously during the months of August and Septem-

ber of 2005. Xbox systems are popular items on eBay and had a market price of

$179.98 (based on Amazon.com). Harry Potter books are also very popular items
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and sold for about $27.99 on Amazon.com. We can thus consider Xbox systems

high-valued items and can compare results to the lower-valued Harry Potter books.

For each auction in our dataset we collect the bid history which reveals the

temporal order and magnitude of bids, and which forms the basis of our models

and the cross-sectional data. Figure 3.2 shows a scatterplot of the bid history

for a typical auction. We can see that bids arrive at very irregularly spaced time

intervals. While the number of incoming bids is sparse during some periods of the

7-day auction (especially in the middle), it can be very dense at other times such

as at the very beginning and especially at the auction-end. Figure 3.3 shows the

scatterplot of bids, aggregated over all of our 190 auctions. Note that most of the

bids arrive in the last minutes of the auction, which, as we have pointed out earlier,

is a typical feature of eBay’s auctions.

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0
12

0

Day of Auction

B
id

 A
m

ou
nt

Figure 3.2: The bids placed in auction number 75 of a Microsoft Xbox auction. The
horizontal axis denotes time (in days); the vertical axis denotes bid amount (in $).
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Figure 3.3: Data for the 190 7-day auctions: The graph on the left shows the
amount of the bid vs the time of the bid, aggregated across all Microsoft Xbox
gaming systems auctions. The graph on the right shows the amount of the bid vs
the time of the bid, aggregated across all Harry Potter books auctions.

Every auction in our data resulted in a sale. In addition to the bid history, we

also collected information on a wide variety of other auction characteristics such as

the opening bid and the final price, the number of bids, and the seller and bidder

ratings (see top of Table 3.1 for a summary of these continuous variables). We also

recorded item condition (used vs. new), whether or not the seller sets a secret reserve

price, and whether or not the auction exhibited early bidding or jump bidding (see

bottom of Table 3.1 for these categorical variables).

From Table 3.1, we can see that auctions vary considerably. For instance,

while some auctions only received 2 bids, others received as many as 75 bids. We

also see considerable variation in final prices which is not surprising since we are

considering items of different value. Unsurprisingly, the high-valued items (Xbox)
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have, on average, a higher opening bid and a higher final auction price. However, it

is noteworthy that the high-valued items see, on average, more competition (i.e., a

larger number of bids), but feature auction participants with lower average bidder

and seller ratings. The variation in the opening bid is more intriguing since it has

been found to have a direct and indirect effect on price [13]. The opening bid

directly influences final prices in that higher valued items often see higher opening

bids. However, its indirect influence has the opposite direction: lower opening bids

attract more bidders and the increased competition often results in a higher price.

We can also see that the seller rating varies between 0 and almost 10,000. On eBay,

a seller’s rating is often associated with trust, and higher rated sellers often extract

price premiums associated with this higher level of trust. Similarly, bidder ratings,

which vary between 0 and almost 800 in our data, are often taken as a measure of

“experience,” and one typically hypothesizes that more experienced bidders make

smarter bidding decisions. More interestingly, most of the high-valued items are

used (over 90%), compared to only 46% of the used Harry Potter books.

Table 3.1 allows for additional insight into the data. We can see that for only

2% of all auctions the seller set a secret reserve price. Secret reserve prices act as an

insurance for the seller in that s/he is not obligated to sell if the price stays below

that level. The magnitude of a secret reserve prices is not known to the bidders and

it has been found that imposing a reserve price on the one hand leads to increased

revenue (in the event that the object is sold) but on the other hand it also lowers

the likelihood of selling the object (see [88, 72]).

More directly related to bidding dynamics are the phenomena of early bidding
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and jump bidding. Table 3.1 also shows the distribution for the two variables “early

bidding” and “jump bidding”. Note that these two variables are not directly observed

but are derived from the bid history. We comment on how we derived these two

variables next.

Early bidding: The timing of a bid plays an important role in bidders’ strategic

decision making. For example, [90] finds evidence that many bidders place their bids

very late in the auction, resulting in what is often called “bid-sniping”. According

to [96], an auction often consists of 3 relatively distinct parts: an early part with

some bidding activity, a middle part with very little bidding and a final part with

intense bidding. In particular, they find that the early bidding part of the auction

typically extends until about day 1.5 of a 7-day auction. In [11], bidders’ strategies

are characterized by, among other things, the timing of their bids. Bidders of the

“early evaluators” type place their first bid on average on day 1.4 of a 7-day auction.

Following this empirical evidence, we define an auction as characterized by early

bidding if the first bid is placed within the first 1.5 days. Table 3.1 shows the

distribution of auctions with early bidding. We see that among the high-valued

auctions (Xbox), over 50% exhibit early bidding while this number is much lower

(28%) for the low-valued items (Harry Potter). It may well be that bidders for

high-valued items are more inclined to bid early in order to establish a time priority,

since, in the case of two bidders with identical bids, the bidder with the earlier bid

wins the auction.

Jump bidding: We also include information about jump bidding. To that end,

one has to define what exactly determines a “jump bids,” that is, what magnitude of
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difference between two consecutive bids constitutes an unusually high increase in the

bidding process. The unusual nature of a jump bid is that it increases the auction by

much more than what would be required by the prescribed bid increment. There are

different theories as to why a bidder may employ jump bidding. One possible reason

is to emphasize their determination for winning this auction and, as a consequence,

to deter competing bidders. There exists little prior investigation on that topic. For

instance, [24] studies jump bidding as a strategy in ascending auctions and define

jump bids as bid increments that are larger than the minimum increment required

by the auctioneer (see also [42, 21]). Bid increments larger than the minimum

increment are relatively common on eBay (see Figure 3.4). We therefore focus here

on increments that result in a very unusual “jump”. In order to define “unusual”,

we take the following approach. For all auctions in our data set, we first examine

all differences in bid magnitudes between pairs of consecutive bids. The difference

in consecutive bids leads to a step function of bid increments. Figure 3.4 shows

this step function for all Xbox and Harry Potter auctions. We can see that most

auctions are characterized by only very small bid increments (i.e., only very small

steps). But we can also see that the relevance of a jump depends on the scale (i.e.,

value of the item, which is the final price of the item.) and should be considered

relative to this value.

The distribution of the relative jumps, relative to the average final price, is

displayed in Figure 3.5. We see that the distribution for both high- and low-valued

items is very skewed. In addition, the great majority of relative jumps, regardless

of item-value, are smaller than 30% (see right graph in Figure 3.5). We therefore
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Figure 3.4: Step function of bid-increments for Microsoft Xbox systems (upper
panel) and Harry Potter books (lower panel).
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define a jump bid as a bid that is at least 30% higher than the previous bid. We

define a corresponding indicator variable for auctions that have at least one jump

bid (i.e. the variable “Jump Bidding” in Table 3.1 equals one if and only if the

auction has at least one jump bid). Table 3.1 shows that over 25% of the low-valued

auctions (Harry Potter) see jump bidding, while this number is only about 9% for

the high-valued auctions.

The data described in the previous section correspond to the cross-sectional

attribute data that accompany every auction. However, our main focus in this

dissertation is on the functional data produced by online auctions. That is, our

focus is on the time series of bids placed over time. We will think of this time

series of bids as the price evolution or the price path. In order to arrive at a smooth

representation of the price path, we employ smoothing techniques. This is described

next.

3.4 Creation of Smooth Functional Objects

Functional data consist of a collection of continuous functional objects such

as the price which increases in an online auction. Despite their continuous nature,

limitations in human perception and measurement capabilities allow us to observe

these curves only at discrete time points. Moreover, the presence of error results in

discrete observations that are noisy realizations of the underlying continuous curve.

In the case of online auctions, we observe only bids at discrete times which can be

thought of as realizations from an underlying continuous price curve. Thus, the
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first step in every functional data analysis is to recover, from the observed data,

the underlying continuous functional object. This is typically done using smoothing

techniques. Before using smoothing methods, our data has to be pre-processed

suitably, which we will describe next.

3.4.1 Data Pre-Processing

In this subsection, we give a brief review of some techniques for converting

raw functional data into true functional form. The recovery stage is often initi-

ated by some data pre-processing steps (e.g., [83]). The bid data that are dis-

played on eBay’s website are the so-called “proxy bids.” Proxy bids are the highest

bids that bidders are willing to pay for an item. eBay’s automated bidding sys-

tem records a proxy bid but displays, during the live auction, only an increment

above the second highest proxy bid. According to eBay, there are several advan-

tages to the proxy bidding system: On the one hand, bidders do not constantly

have to monitor the auction site; another reason is that the winner only pays (an

increment above) the second highest bid (see http://pages.ebay.com/help/buy/proxy-

bidding.html). From a conceptual point of view, proxy bids are not what the

bidders see and react to during the live auction. For that reason, we first re-

construct the live bids from the proxy bids by using eBay’s bid increment table

(http://pages.ebay.com/help/buy/bid-increments.html).

Figure 3.6 shows the difference between live and proxy bids for a sample auc-

tion. The “+”’s denotes the proxy bids, the solid circles denote the corresponding
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live bids, and the dashed line shows the live bid function which is a step function

with steps at the time of a new bid. R code for transforming proxy bids into a live bid

step function is available online at www.smith.umd.edu/ceme/statistics/code.html.
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Figure 3.6: “Proxy bids”, “live bids” and the corresponding step function for a
sample auction.

We denote the time that the ith bid was placed, i = 1, . . . , Nj, in auction j

(j = 1, . . . ,N ) by tij. Note that due to the irregular spacing of the bids, the tij’s

vary for each auction. In our data, N = 190 and 0 < tij < 7. Let y
(j)
i denote the bid

placed at time tij. To better capture the bidding activity, especially at the end of

the auction, we transform bids into log-scores. In order to account for the irregular

spacing, we linearly interpolate the raw data and sample it at a common set of time

points ti, 0 6 ti 6 7, i = 1, . . . , G. Then we can represent each auction by a vector

of equal length

y(j) = (y
(j)
1 , . . . , y

(j)
G ), (3.1)
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where y
(j)
i = y(j)(ti) denotes the value of the interpolated bid sampled at time ti.

Once the preprocessing step is done, we convert the raw functional data into

true functional form using various smoothing techniques, which we describe in the

next section.

3.4.2 Representing Functional Data as Smooth Functions

The basic philosophy of functional data analysis is that we should think of

observed data functions as single entities, rather than merely a sequence of individual

observations. The term functional refers to the intrinsic structure of the data rather

than to their explicit form. But in practice, functional data are usually observed

and recorded discretely as we showed in previous sections. Since some observational

noise is part of most data, the functional representation of raw data usually involves

some smoothing.

There are three basic approaches for approximating discrete data by a smooth

function. The first, which is one of the most common smoothing procedures, is

using a set of basis functions; a second approach is via local expansion smoothing

techniques; and a third approach is via the roughness penalty approach. We explore

different smoothing approaches in this dissertation for different applications. We

describe these approaches next.

The basis approach involves representing the function by a linear combination

of K known basis functions φk (see [86, 35] for details). As pointed out in [86], basis

expansions work well if the basis functions have the same essential characteristics
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as the process generating the data. The disadvantage is that basis expansions have

clumsy discontinuous control over the degree of smoothing and can be expensive to

compute if the basis exhibits neither orthogonality nor local support.

Local expansion smoothing techniques, i.e., standard kernel smoothing and

local polynomial fitting techniques, are based on appealing, efficient and easily un-

derstood algorithms that are fairly simple modifications of classic statistical tech-

niques (see [86, 35] for details). They offer continuous control of the smoothness

of the approximation, but they are seldom optimal solutions to an explicit statisti-

cal problem, such as minimizing a measure of total squared error, and their rather

heuristic character makes extending them to other smoothing situations difficult.

In this work, we use the third approach since the roughness penalty or regu-

larization approach retains the advantages of the basis function and local expansion

smoothing techniques, but circumvents some of their limitations. Like the basis

expansion approach, roughness penalty methods are based on an explicit statement

of what a smooth representation of the data is trying to do, but the need to have a

smooth representation is expressed explicitly at the level of the criterion being opti-

mized. More importantly, they can be applied to a much wider range of smoothing

problems than simply estimating a curve y from observations y(ti) at certain points

ti. The book [35] discusses a variety of statistical problems that can be approached

using roughness penalties, including those where the data’s dependence on the un-

derlying curve is akin to the dependence on parameters in generalized linear models.

The scope of roughness penalty methods is extended still further in [86] by discussing

various functional data analysis contexts where roughness penalties are an elegant
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way to introduce smoothing into the analysis.

In the following, we give a brief introduction to the roughness penalty ap-

proaches that we use in our work.

Penalized Spline Smoothing

In this part, we briefly introduce the penalized spline smoothing method which

we use in Chapter 4 (see [98, 86] for more details).

Consider a polynomial spline of degree p

f(t) = β0 + β1t + β2t
2 + . . . +

L∑

l=1

βpl(t− τl)
p
+, (3.2)

where τ1, . . . , τL is a set of knots and u+ denotes the positive part of a function

u. The choices of L and p strongly influence the departure of f from a straight

line. The degree of departure can be measured by the roughness penalty PENm =

∫
Dmf(s)2ds. The penalized smoothing spline minimizes the penalized residual sum

of squares. That is the jth smoothing spline f (j) satisfies

PENSS
(j)
λ,m =

n∑
i=1

(y
(j)
i − f (j)(ti))

2 + λPEN (j)
m , (3.3)

where the smoothing parameter λ controls the trade-off between data fit and smooth-

ness of f (j).

We base the selection of the knots on the bid arrival distribution. Consider

again Figure 3.3, which shows that over 60% of the bids arrive during the last day
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of the auction. Moreover, the phenomenon of bid sniping [90] suggests that auctions

should be sampled more frequently at their later stages. Also, in [96], it was found

that the bid-intensity changes significantly during the last 6 hours. Motivated by

this empirical evidence, we place a total of 14 knots and distribute the first 50%

equally over the first 6 auction days. Then, we increase the intensity by placing the

next 3 knots at every 6 hours, between day 6 and day 6.75. We again increase the

intensity over the final auction moments by placing the remaining 4 knots every 3

hours, up to the end of the auction. This results in a total set of smoothing spline

knots given by Υ = {0, 1, 2, 3, 4, 5, 6, 6.25, 6.5, 6.75, 6.8125, 6.875, 6.9375, 7}.

We use smoothing splines of order m = 5 since this choice allows for a reliable

estimation of at least the first three smooth derivatives of f [86]. Note that our

results are robust to changes in the knot-allocation and with respect to the choice

of λ (see Appendix B for a sensitivity study of analyses in Chapter 4).

Figure 3.7 shows the recovered functional object for a typical auction. The

plot in the upper left panel shows the curve pertaining to the price evolution f(t) on

the log-scale (solid line), together with the actual bids (crosses), and the remaining

plots show the first, second and third derivatives of f(t), respectively. The price

evolution shows that price, as expected from an auction, increases monotonically

towards the end. However, the rate of increase does not remain constant. While the

price evolution resembles almost a straight line, the finer differences in the change

of price increases can be seen in the price velocity f ′(t) (the first derivative of f(t))

or in the price acceleration f ′′(t) (its second derivative). For instance, while the

price velocity increases at the beginning of the auction, it stalls after day three and
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remains low until the end of day five, only to rise again and to sharply increase

towards the auction-end. Acceleration precedes velocity and we can see that a price

deceleration over the first day is followed by a decline in price velocity after day

one. In a similar fashion, the third derivative (f ′′′(t)) measures the change in the

second derivative. The third derivative is also referred to as the “jerk,” and we can

see that the jerk increases steadily over the entire auction duration, indicating that

price acceleration is constantly experiencing new forces that influence the dynamics

of the auction. Similar changes in auction dynamics have also been noted in [50].
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Figure 3.7: Price dynamics for Xbox auction number 10.

The Regularized Basis Approach

In Chapters 5 and 6, we use a regularized basis approach, which is a more

general approach of which spline smoothing is a special case. In the standard basis
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expansion method, the function y is forced to lie in a relatively low dimensional

space, defined in terms of a suitable basis. In local expansion smoothing, it is not

assumed that the whole function is in the span of a particular basis, but rather

a local basis expansion is considered at any given point. In the regularized basis

approach, the function is allowed to have a higher dimensional basis expansion, but

a roughness penalty is used in fitting the function to the observed data (see [86] for

details).

In the regularized basis approach, a set of basis functions, φk, k = 1, . . . , K is

used to represent the function.

In order to arrive at a smooth representation, we approximate yi by a linear

combination of basis functions. Write

yi(t) = fi(t) + εi(t) (3.4)

where the error term εi(t) is assumed to be the only cause of roughness for an

otherwise smooth object. Using an appropriate basis functions expansion, we can

represent fi(t) as

fi(t) =
K∑

k=1

cikφk(t) (3.5)

for a set of known basis functions φ = (φ1(t), . . . , φK(t)) and a coefficient vector

ci = (ci1, . . . , ciK)T . Then the K × N estimated coefficient matrix ĉ = (ĉ1, . . . , ĉN)
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minimizes the penalized sum of squares

PENSSEλ(c) =
N∑

i=1

n∑
j=1

(yi(tj)− fi(tj))
2 + λ

∫
(Lf (t))

2dt. (3.6)

In [35], it is shown that for Lf (t) = f
′′
(t), ĉ is given by

ĉ = (BT B + λH)−1BT Y (t), (3.7)

where B is the n × K basis matrix, Y (t) is the n × N matrix of responses, and

λ is a smoothing parameter that controls the trade off between data fit and the

smoothness. Note that the elements of H are given by Hkl =
∫

c
′′
k(t)c

′′
l (t)dt (see also

[86]). In Chapter 4, we use p-splines and in Chapters 5 and 6 we use B-splines.

In Chpater 6, we use B-splines of order 6 to allow for a reliable estimation of at

least the first three smooth derivatives of f [86]. B-splines of order 6 are equivalent

to P-splines of order 5. The R package “fda” contributed by Ramsay and Wick-

ham, uses the regularized basis approach to convert functional data as functional

data objects and to perform different types of analyses based on those objects. In

particular, we employ principal differential analysis in Chapters 5 and 6. In order

to represent our data using the specific form of functional representation in the

“fda” package, we choose to use B-splines in those two chapters. The selection of

the knots and smoothing parameter are driven by visual inspection of the resulting

functional objects. The knots for the B-splines can be chosen to satisfy a criterion

on the fit of the approximation, or knots can be placed on a fixed grid based on
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information about the behavior of the functional curve. For example, our selection

of the knots is based on the bid arrival distribution. As explained earlier, we use

the knots {0, 1, 2, 3, 4, 5, 6, 6.25, 6.5, 6.75, 6.8125, 6.875, 6.9375, 7}.A sensitivity anal-

ysis (see Appendix C) shows that our results for Chapter 5 are stable across different

parameter choices.

The left panel in Figure 3.8 shows the functional objects for the 190 auc-

tions in our data. In the following, we also refer to these objects simply as the

“price curves”. One advantage of having smooth functional objects is that one can

readily obtain estimates for their dynamics via their derivatives. First and second

derivatives of the price curve correspond to the price-velocity and -acceleration, re-

spectively. The middle panel in Figure 3.8 shows that most price velocities are close

to zero, especially during mid-auction. A near-zero price-velocity implies a price

process that is in linear motion. Conversely, while velocities are low during the

middle of the auction, they can be very high at the auction-start and especially at

the end. Yet, Figure 3.8 also shows that although there are overall trends in the

data, on an individual level, variation is quite large. For instance, while for some

auctions price-acceleration is positive (and increases) towards the end, it is negative

for others. A negative acceleration (=deceleration) indicates auctions for which the

price movement slows down significantly. In the following we use phase-plane plots

to investigate differences among auction dynamics more carefully. The insight drawn

from this investigation will also be our starting point for our subsequent modeling

work.

In the following chapters, we use the functional objects derived in this section
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Figure 3.8: Price curves for the 190 7-day auctions on Xbox play stations and Harry
Potter books, together with their estimated first two derivatives.

in a variety of ways. In Chapter 4, we develop a method to forecast a partially

observed functional object. In Chapter 5, we propose several new tests to study

differences between dynamic models based on functional data. And in Chapter 6,

we incorporate dynamics into tree models for functional data.
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Variable Item Count Mean Median Min Max StDev.

Opening Bid
Xbox 93 36.22 24.99 0.01 175.00 37.96

Harry Potter 97 4.13 4.00 0.01 10.99 3.26

Final Price
Xbox 93 134.58 125.00 28.00 405.00 66.03

Harry Potter 97 11.56 11.50 7.00 20.50 2.40

Number of bids
Xbox 93 20.01 19.00 2.00 75.00 12.76

Harry Potter 97 8.47 8.00 2.00 24.00 4.30

Seller Rating
Xbox 93 232.04 49.00 0.00 4604.00 613.07

Harry Potter 97 325.99 126.00 0.00 9519.00 995.78

Bidder Rating
Xbox 93 30.33 4.00 -1.00 2736.00 135.06

Harry Potter 97 83.21 14.00 -1.00 2258.00 226.21

Variable Item Case Count Proportion

Reserve Price
Xbox

Yes 4 4.3%
No 89 95.7%

Harry Potter
Yes 1 1.0%
No 96 99.0%

Condition
Xbox

New 8 8.6%
Used 85 91.4%

Harry Potter
New 52 53.6%
Used 45 46.4%

Early Bidding
Xbox

Yes 53 57.0%
No 40 43.0%

Harry Potter
Yes 28 28.9%
No 69 71.1%

Jump Bidding
Xbox

Yes 9 9.7%
No 84 90.3%

Harry Potter
Yes 25 25.8%
No 72 74.2%

Table 3.1: Summary statistics for all categorical variables. “Case” is the category
for the particular variable.
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Chapter 4

Explaining and Forecasting Online Auction Prices and their

Dynamics using Functional Data Analysis1

4.1 Introduction

In this Chapter we develop a dynamic forecasting model to predict price in

online auctions. By dynamic we mean a model that operates during the live auc-

tion and forecasts price at a future time point of the ongoing auction, and, as a

by-product, also at the end of the auction. This is in contrast to static forecast-

ing models that predict only the final price, and that take into consideration only

information available at the start of the auction. Such information may involve

the length of the auction, its opening price, product characteristics or the seller’s

reputation, and may be modelled using standard least-squares regression analysis.

However, a static approach cannot account for information that becomes available

after the start of the auction, e.g. the amount of competition or current price level,

and it cannot incorporate such information “on the fly.” As we explain through-

out this essay, we find functional data analysis a very suitable tool for developing

dynamic price predictions.

Forecasting price in online auctions can have benefits to different auction par-

ties. For instance, price forecasts can be used to dynamically score auctions for the

1Forthcoming in the Journal of Business and Economic Statistics
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same (or similar) item by their predicted price. On any given day, there are sev-

eral hundred, or even thousand, open auctions available, especially for very popular

items such as Apple iPods or Microsoft Xboxes. Dynamic price scoring can lead to

a ranking of auctions with the lowest expected price. Such a ranking could help bid-

ders focus their time and energy on only a few select auctions, namely those which

promise the lowest price. Auction forecasting can also be beneficial to the seller or

the auction house. For instance, the auction house can use price forecasts to offer

insurance to the seller. This is related to the idea of [33], which suggests offering

the seller an insurance that guarantees a minimum selling price. In order to do so

though, it is important to correctly forecast the price, at least on average. While

Ghani and Simmons’ method is static in nature, our dynamic forecasting approach

could potentially allow more flexible features like an “Insure-It-Now” option, which

would allow sellers to purchase an insurance either at the beginning of the auction,

or during the live-auction (with a time-varying premium). Price forecasts can also

be used by eBay-driven businesses that provide service to buyers or sellers. Recently

the authors were contacted by a company that provides brokerage services for eBay

sellers, about using the dynamic forecasting system to create a secondary market

for eBay-based derivatives.

While there has been some work related to price forecasting in online auctions,

our approach is novel particularly because of its dynamic nature (see also [40] for

related work on the dynamics of seller reputation ). As pointed out earlier, [33],

using data-mining methods, also predicts the end-price of online auctions, however

that method is static and cannot account for newly arriving information in the live-
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auction. Structural models to recover the bid distribution [9], while able to more

explicitly account for mechanism design, are also focused on the final price. The

dynamic nature of our forecasting approach is founded within the framework of

functional data analysis (FDA).

Our forecasting approach presents several methodological additions to this

stream of literature. First, to the best of our knowledge, forecasting functional data

is a topic that has not been sufficiently addressed in the FDA literature to date.

In fact, the use of functional data analysis presents several practical and concep-

tual advantages for online auction data. Traditional methods for forecasting time

series, such as exponential smoothing or moving averages, cannot be applied in the

auction context, at least not directly, due to the special data structure. Traditional

forecasting methods assume that data arrive in evenly-spaced time intervals such as

every quarter or every month. In such a setting, one trains the model on data up to

the current time period t, and then uses this model to predict at time t+1. Implied

in this process is the important assumption that the distance between two adjacent

time periods is equal, which is the case for quarterly or monthly data. Now consider

the case of online auctions. Bids arrive in very unevenly-spaced time intervals, de-

termined by the bidders and their bidding strategies, and the number of bids within

a short period of time can sometimes be very sparse and other times be extremely

dense. In this setting, the interval between bids can sometimes be more than a

day, and at other times only seconds. And secondly, online auctions, even for the

same product, can experience price paths with very heterogeneous price dynamics.

By price dynamics we mean the speed at which price increases during the auction
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and the rate at which this speed changes. Traditional models do not account for

instantaneous change and its effect on the price forecast. This calls for new methods

that can measure and incorporate this important dynamic information.

Another appeal of the functional data framework is the observation that the

price dynamics change quite significantly over the course of an auction [50]. By

treating auction price as a functional object and recovering the underlying price

curve, we obtain reliable estimates of the price dynamics via derivatives of the

smooth functional object, and we can consequently incorporate these dynamics into

the forecasting model. This results in a novel and potentially very powerful fore-

casting system. While one may also approximate dynamics differently, e.g. by using

the first forward difference or the central difference, such an approach is likely to

be much less accurate, especially for applications with very unevenly spaced data

(as in the case of online auction), and even more so for approximating higher order

derivatives.

The Chapter is organized as follows. In Section 4.2 we provide a systematic

description of the empirical regularities in online bidding dynamics. Section 4.3

develops the forecasting model and we apply the method to our data in Section 4.4.

Section 4.5 concludes with final remarks.

4.2 Functional Regression and Auction Dynamics

In order to understand the motivation for our forecasting model, it is useful

to first take a closer look at eBay auction data. We have pointed out earlier that
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the data are characterized by rapidly changing price dynamics. We illustrate this

phenomenon in this section by investigating the relationship between eBay’s auction

dynamics and other auction-related information. This will also lay the ground for

the forecasting model which we describe in the next section.

We investigate the empirical regularities in eBay’s auction dynamics using

functional regression analysis. Functional regression analysis is similar to classical

regression in that it relates a response variable to a set of predictors. However, in

contrast to classical regression where the response and the predictors are vector-

valued, functional regression operates on functional objects which can be a set of

curves, shapes, or objects. In our application, we refer to the continuous curve

that describes the price evolution between the start and end of the auction as the

functional object. More details on functional regression can be found in [86].

Functional regression analysis involves two basic steps. In the first step, the

functional object is recovered from the observed data. This has been described

in Chapter 3. After recovering the functional object, we model the relationship

between a response-object and a predictor-object in a way that is conceptually very

similar to classical regression. We describe that step in Subsection 4.2.1.

4.2.1 The Mechanics of Functional Regression Models

In this section we briefly review the general mechanics of functional regres-

sion models for a functional response variable. For a more detailed description see

Chapter 11 of [86].
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Our starting point is an N×1 vector of functional objects y(t) = [y1(t), . . . , yN(t)]

where N denotes the sample size, the total number of auctions in this case. We use

the symbol yj(t) in a rather generic way to model the price evolution of an auction

by setting yj(t) ≡ fj(t). However, one of the advantages of functional data is that

we also have estimates of the dynamics. For instance, to model an auction’s price

acceleration we set yj(t) ≡ f ′′j (t), and so forth. Classical regression models the re-

sponse as a function of one (or more) predictor variables and that is no different in

functional regression. Let xi = [xi1, . . . , xiN ] denote a vector of p predictor variables,

i = 1, . . . , p. xij can represent the value of the opening bid in the jth auction or,

alternatively, its seller rating. Time-varying predictors can also be accommodated in

this setting. For instance, xij(t) can represent the number of bids in the jth auction

at time t, which we refer to as the current number of bids at t. Operationally, one

can include such a time-varying predictor into the regression model by discretiz-

ing it over a finite grid. Let xijt denote xij(t) evaluated at t, for a suitable grid

t = t1, . . . , tG. We collect all predictors (time-varying and time-constant) into the

matrix X. Typically, this matrix has a first column of ones for the intercept. Also,

we could write X = X(t) to emphasize the possibility of time-varying predictors but

we avoid it for ease of notation. We then obtain the functional regression model

y(t) = XT β(t) + ε(t) (4.1)

where the regression coefficient β(t) is time-dependent, reflecting the potentially

varying effect of a predictor at varying stages of the auction. In this setting, β
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is defined for the finite grid t = t1, . . . , tG, while it is also defined for continuous

time t. The residual function ε = (ε1, . . . , εN)T is the unexplained variation with

independent components and each component is specific to each functional response.

Estimating the model (4.1) can be done in different ways (see [86] for a de-

scription of different estimation approaches). We choose a pointwise approach, that

is, we apply ordinary least squares to (4.1) for a fixed t = t∗, and repeat that process

for all t on a grid, t = t1, . . . , tG. By smoothing the resulting sequence of parameter

estimates β̂(t1), . . . , β̂(tG), we obtain the time-varying estimate β̂(t).

While functional regression is, at least in principle, very similar to classical

least-squares regression, attention has to be paid to the interpretation of the estimate

β̂(t). We reemphasize that since the response is a continuous curve, so is β̂(t). This

makes reporting and interpreting the results different from classical regression and

slightly more challenging. We show how this is done in the next subsection.

4.2.2 Empirical Application and Results

We fit the functional regression model (4.1) to our data and investigate two

different models: The first model investigates the effect of different predictor vari-

ables on the price evolution; that is, we set yj(t) ≡ fj(t). The results are shown in

Figure 4.1. The second model investigates the effect of the same set of predictors on

the price velocity, that is yj(t) ≡ f ′j(t). Those results are shown in Figure 4.2. For

both models, we use the nine predictor variables described in Table 3.1. Figures 4.1

and 4.2 show the estimated parameter curves β̂(t) (solid lines) together with 95%
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confidence bounds (dotted lines) indicating the significance of the individual effects.

The confidence bounds are computed pointwise by adding plus/minus 2 standard

errors at each point of the parameter curve ([86]).

Interpretation of the parameter curves has to be done with care. At any

time point t, β̂(t) evaluated at t indicates the sign and strength of the relationship

between the response (i.e. price in Figure 4.1, and velocity in Figure 4.2) and

the corresponding predictor variable. The time-varying curve underlines the time-

varying nature of this relationship. The confidence bounds help in assessing the

statistical significance of that relationship.

The insight from Figures 4.1 and 4.2 is summarized below:

Mechanism Design We see that the choices that a seller makes regarding the

opening bid and inclusion of a secret reserve price affects price according to

what auction theory predicts: higher opening bids and inclusion of a secret

reserve price are associated with higher price, at any time during the auction

(see Figure 4.1). What has not been shown in previous studies though is the

fact that this relationship, for both predictors, holds throughout the auction,

rather than only at the end. Even more interesting is the observation that

high opening bids and usage of a reserve price influence the price dynamics

negatively towards the auction end by depressing the price velocity (see the

negative coefficients in Figure 4.2). In both cases, this is most likely because

price has already been inflated by the high opening bid and/or the driving

bidding-force of the unobserved reserve price. We describe each of these two
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effects in more detail below.

Opening bid: The coefficient for opening bid in the regression on price evolu-

tion curves is shown in the middle-left panel in Figure 4.1. Throughout

the entire auction the coefficient is positive, indicating a positive relation-

ship between the opening bid and price at any time during the auction.

However, the coefficient does decrease towards the auction-end, indicat-

ing that while the positive relationship between opening bid and price is

strong at the auction start, it weakens as the auction progresses. One

possible explanation is that at the auction-start, in the absence of other

bids, auction participants derive a lot of information from the opening

bid about their own valuation. As the auction progresses this source of

information decreases in importance and participants increasingly look

to other sources (e.g. number of competitors, number of bids and their

magnitude, communication with the seller, etc.) for decision-making. In

addition, the coefficient for opening bid in the regression on price velocity

(Figure 4.2) is negative throughout the auction and strongest at the start

and end of the auction. This indicates that higher opening bids depress

the rate of price increase, especially at the start and end of the auction.

Thus, although higher opening bids are generally associated with higher

prices at any time in the auction (Figure 4.1), the auction dynamics are

slowed down by high opening bids. In some sense, higher opening bids

leave a smaller gap between the current price and a bidder’s valuation,
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and therefore less incentive to bid.

Reserve price: Using a similar rationale as above, auctions with a secret re-

serve price tend to have a higher price throughout the auction, but a

reserve price, similar to the high opening bid, appear to negatively influ-

ence price dynamics.

Seller Characteristics The anonymity of the internet makes it hard to establish

trust. A seller’s rating is typically the only sign that bidders look to in order

to evaluate a seller’s trustworthiness [22].

Seller rating: Empirical research has shown that higher seller ratings are asso-

ciated with higher final prices (e.g. [88, 8]). Figures 4.1 and 4.2 though

show that higher seller ratings are associated with lower prices during

the entire auction, except for the auction end. Moreover, higher seller

ratings are associated with faster price increases, but again only towards

the auction-end.

Item Characteristics The items in our dataset are characterized by condition

(used vs. new) and by value (high for Xbox, and low for Harry Potter).

Used/new Condition: Overall, new items achieve higher prices, which may

not be surprising. However, the relationship between item condition and

price velocity is negative. The price of new items appears to increase

faster than used items earlier, but slows down later in the auction when

used item prices increase at a faster pace. Perhaps the uncertainty asso-
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ciated with used items leads bidders to search for more information (such

as contacting the seller or waiting for other bids to be placed) thereby

leading to delays in the price spurts.

Item value: As one might expect, high-value items see higher prices than low-

value items throughout the auction, and this gap increases as the action

proceeds. More interestingly, the price dynamics are very similar in both

low- and high-value items until about day 6, but then price increases

much faster for low-value items. This is indicative of later bidding on

low-value auctions, a phenomenon that we observed in the exploratory

analysis. Bidders are more likely to bid early on high-value items, perhaps

to establish their time priority.

Bidding Characteristics Our data contains four variables that capture effects

of bidders and bidding, namely the current number of bids as a measure of

level of competition, the current average bidder rating as a measure of bidder

experience, and early and jump bidding as a measure of different bidding

strategies. All variables share the feature that their impact changes sometime

during the auction, thereby creating two phases in how they affect the price

evolution and the price velocity. In some cases, different strategies (such as

early vs. late bidding) lead to direct impacts on the price, but to more subtle

effects on the price dynamics. For instance, the current number of bids affects

the price evolution directly during the first part of the auction, while during the

second part of the auction it affects price only through the price dynamics. The
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opposite phenomenon occurs with early bidding. Thus, functional regression

reveals that (1) bidding appears to have two phases, and (2) price can be

affected either directly or indirectly by the bidding process.

Current number of bids: This factor influences the price evolution during the

first part of the auction, with more bids resulting in higher prices. How-

ever, this effect decreases towards the end of the auction where it only

influences price through increasing price dynamics.

Early bidding: The effect of this factor switches its direction between the first

and second part of the auction: At first, auctions with early bidding have

higher dynamics but lower price evolution, but later this effect reverses.

This means that early bidding manifests itself as early increased price

dynamics, which later turn into higher price curves.

Jump bidding: Auctions with jump bidding tend to have generally higher price

curves, and especially high price dynamics close to the auction end. The

jump bidding obviously causes the price curve to jump and the price

velocity to peak at the time of the jump bid. When averaging over the

entire set of auctions, the effect of a jump bid has its highest impact on

price at the auction end. This is not necessarily in contrast to [24], which

examines the timing of jump bidding (rather than the time of its highest

impact). It was found that jump bidding is more prevalent early in the

auction, which is explained by the strategic value of jump bidding for

bidders.
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Current average bidder rating: It appears that higher rated bidders are more

likely to bid when the price at the start of the auction is high, compared

to lower rated bidders (as reflected by the positive coefficient during the

first day). But then they are able to keep the price lower throughout the

auction (the coefficient turns negative). Towards the end of the auction,

though, participation of high-rated bidders leads to faster price increases,

which reduces the final price gap due to bidder rating.

4.3 Dynamic Auction Forecasting via Functional Data Analysis

We now describe our dynamic forecasting model. We have shown in the pre-

vious section how unequally spaced data can be overcome by moving into the func-

tional context, and also that online auctions are characterized by changing price

dynamics. Our forecasting model consists of four basic components that capture

price dynamics, price lags, and information related to sellers, bidders, and auction

design. First we describe the general forecasting model which is based on the avail-

ability of price dynamics. Then, we describe how to obtain forecasts for the price

dynamics themselves.

4.3.1 The General Forecasting Model

Our model combines all information that is relevant to price. We group this

information into four major components: a) static predictor variables; b) time-

varying predictor variables; c) price dynamics; and d) price lags.
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Static predictor variables are related to information that does not change over

the course of the auction. This includes the opening bid, the presence of a secret

reserve price, seller rating, and item characteristics. Note that these variables are

known at the start of the auction and remain unchanged over the auction-duration.

Time-varying predictor variables are different in nature. In contrast to static pre-

dictors, time-varying predictors do change during the auction. Examples of time-

varying predictors are the number of bids at time t, or the number of bidders and

their average bidder-rating at time t. Price dynamics can be measured by the price

velocity, the price acceleration, or both. And finally, price lags also carry important

information about the price development. Price lags can reach back to price at times

t− 1, t− 2, and so on. This corresponds to lags of order 1, 2, etc.

We obtain the following dynamic forecasting model based on the smoothed

functional data. Let y(t|t − 1) denote the price at time t, given all information

observed until t−1. For ease of notation, we write y(t) ≡ y(t|t−1). Our forecasting

model can then be formalized as

y(t) = α +

Q∑
i=1

βixi(t) +
J∑

j=1

γjD
(j)y(t) +

L∑

l=1

ηly(t− l) (4.2)

where x1(t), . . . , xQ(t) is the set of static and time-varying predictors, D(j)y(t) de-

notes the jth derivative of price at time t, and y(t − l) is the lth price lag. The

resulting h-step ahead prediction, given information up to time T, is then

ỹ(T+h|T ) = α̂+

Q∑
i=1

β̂ixi(T+h|T )+
J∑

j=1

γ̂jD̃
(j)y(T+h|T )+

L∑

l=1

η̂lỹ(T+h−1|T ). (4.3)
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The model (4.3) has two practical challenges: (1) price dynamics appear as

coincident indicators and must therefore be forecasted before forecasting ỹ(T +h|T );

(2) the static predictor variables among the xi’s do not change their value over

the course of the auction and must therefore be adapted to represent time-varying

information. We explain these two challenges in more detail below and present some

solutions.

4.3.2 Forecasting Price Dynamics

The price dynamics D(j)y(t) enter (4.3) as coincident indicators. This means

that the forecasting model for price at time t uses the dynamics from the same time

period! However, since we assume that the observed information extends only until

t− 1, we must obtain forecasts of the price dynamics before forecasting price. This

process is described next.

We model D(j)y(t) as a polynomial in t with autoregressive (AR) residuals.

We also allow for covariates xi. The rationale for these covariates is that dynamics

are strongly influenced by certain auction-related variables such as the opening bid

(see again Figure 4.2). This results in the following model for the price dynamics

D(j)y(t) =
K∑

k=0

akt
k +

P∑
i=1

bixi(t) + u(t), t = 1, . . . , T, (4.4)

where u(t) follows an autoregressive model of order R :

u(t) =
R∑

i=1

φiu(t− i) + ε(t), ε(t) ∼ iid N(0, σ2). (4.5)
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To forecast D(j)y(t) based on (4.4), we first estimate the parameters a0, a1, . . . , aK ,

b1, . . . , bP and estimate the residuals. Then, using the estimated residuals û(t), we

estimate φ1, . . . , φR. This results in a 2-step forecasting procedure: Given informa-

tion until time T , we first forecast the next residual via

ũ(T + 1|T ) =
R∑

i=1

φ̃iu(T − i + 1), (4.6)

and then use this forecast to predict the corresponding price derivative

D(j)ỹ(T + 1|T ) =
K∑

k=0

âk(T + 1)k +
P∑

i=1

b̂ixi(T + 1|T ) + ũ(T + 1|T ). (4.7)

In a similar fashion, we can predict D(j)y(t) h steps ahead:

D(j)ỹ(T + h|T ) =
K∑

k=0

âk(T + h)k +
P∑

i=1

b̂ixi(T + h|T ) + ũ(T + h|T ). (4.8)

4.3.3 Integrating Static Auction Information

The second structural challenge that we face is related to the incorporation

of static predictors into the forecasting model. Take, for instance, the opening bid.

The opening bid is static in the sense that its value is the same throughout the

auction, that is x(t) ≡ x, ∀t. Ignoring all other variables, model (4.2) becomes

y(t) = α + βx. (4.9)
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Because the right hand side of (4.9) does not depend on t the least-squares estimates

of α and β are confounded!

The problem outlined above is relatively uncommon in traditional time series

analysis since it is usually only meaningful to include a predictor variable into an

econometric model if the predictor variable itself carries time-varying information.

However, the situation is different in the context of forecasting online auctions and

may merit the inclusion of certain static information. The opening bid, for instance,

may in fact carry valuable information for predicting price in the ongoing auction.

Economic theory suggests that sometimes bidders derive information from the open-

ing bid about their own valuation, but the impact of this information decreases as

the auction progresses. What this suggests is that the opening bid can influence

bidders’ valuations and therefore also influence price. What this also suggests is

that the opening bid’s impact on price does not remain constant but should be

discounted gradually throughout the auction.

One way of discounting the impact of a static variable x is via its influence on

the price evolution. That is, if x has a stronger influence on price at the beginning

of the auction, then it should be discounted less during that period. On the other

hand, if x only barely influences price at the end of the auction, then its discounting

should be larger at the auction end. One way of measuring the influence of a static

variable on the price curve is via functional regression analysis, as described in

Section 4.2.1. Let β̃(t) denote the slope-coefficient from the functional regression

model y(t) = α(t)+β(t)x+ε, similar to (4.1), and thus β̃(t) quantifies the influence of

x on y(t) at any time t. We combine x and β̃(t) and compute the influence-weighted
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Figure 4.3: Flow-chart of dynamic forecasting model.

version of the static variable x as

x̃(t) = xβ̃(t). (4.10)

x̃(t) now carries time-varying information and can consequently be included as time-

varying predictor variable.

As pointed out earlier, our dynamic forecasting model consists of two basic

parts: one part forecasts the price dynamics, and the other part uses these forecasted

dynamics as input into the price forecaster. A flowchart of our algorithm is shown

in Figure 4.3.
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4.4 Empirical Application and Forecasting Comparison

We apply the forecasting methodology to our dataset of 190 eBay auctions.

Model fitting and prediction are implemented using modules of the R software pack-

age. We randomly partition our data into a training set (70% or 130 auctions) and a

validation set (30% or 60 auctions). We use the training set to estimate the model,

and test the method on the validation set. For testing, we first remove all price

information from the last auction day, and then compare our results with the true

price.

4.4.1 Model Estimation

Estimation of the model is done in two steps. We first estimate model (4.4)

and then use the forecasted dynamics as inputs into model (4.3).

Modeling Price Dynamics

Model (4.4) is fitted iteratively. This leads to a best-fitting model with a

quadratic trend (K = 2) and three predictors (P = 3), where x1, x2 and x3 are the

influence-weighted variants of the opening bid, the item value and jump-bidding,

respectively. The resulting residuals are AR(1), that is R = 1 in (4.5). Figure

4.4 shows the significance of x1, x2, x3 over the last auction day in the form of

significance curves. Since we use x1, x2 and x3 to predict price dynamics for all time

points between day 6 and 7, the significance of individual predictors may be different

at different time points. Indeed, Figure 4.4 shows that while jump bidding (line #3
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in the graph) is insignificant during the beginning of day 6 (with a huge spike around

day 6.3), it turns significant towards the auction-end. The opposite is true for the

item value, which becomes insignificant at the auction end. On the other hand, the

opening bid remains significant throughout the last day. This change in significance

suggests that the “burden of prediction” does not remain equally distributed over

all three predictors. In fact, the burden is heavier on item value at the beginning

of the auction and then shifts to jump bidding at the auction-end. Meanwhile, the

opening bid carries the same prediction burden throughout all of the last day.

Figure 4.5 illustrates the forecasting performance on the holdout sample. We

chose four representative auctions and compared the true price velocity over the last

day (solid line) with its prediction based on model (4.4) (broken line). We see that

the model captures the true price dynamics very well.

Modeling Price

We estimate model (4.2) using the following 11 predictor variables (grouped

by their type)

Influence-Weighted Static Predictors: Opening bid, Reserve price, Seller rating, Item

condition, Item value, Early bidding, Jump bidding

Time-Varying Predictors: Current number of bids, Current average bidder rating

Price-Dynamics: Price velocity

Price-Lags: Price at time t− 1

58



6.0 6.2 6.4 6.6 6.8 7.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Last Day of Auction

p−
va

lu
e

12

2

3

Figure 4.4: P-value curves for x1, x2 and x3 over the last auction day. Consistent
with the three predictors, we denote 1=opening bid; 2=item value; 3=jump bidding.
The dotted horizontal line marks the 5% significance level.
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four sample auctions.
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Figure 4.6: P-value curves for all 11 predictors over the last auction day. 1=opening
bid; 2=reserve price; 3=seller rating; 4=item condition; 5=item value; 6=early
bidding; 7=jump bidding; 8=current number of bids; 9=current avg.bidder rating;
10=price velocity; 11=price at time t − 1. The dotted horizontal line marks the
5% significance level. The right panel shows the information from the left panel
“zoomed-in” for p-values between 0 and 0.08.

Figure 4.6 shows the significance curves for all 11 predictors. Interestingly,

reserve price, seller rating, current number of bids and current average bidder rating

are insignificant at the auction start. While the significance of the latter two in-

creases towards the auction end, seller rating turns even more insignificant. On the

other hand, while reserve price becomes highly significant at the end, item condition,

which is significant at the start, becomes insignificant at the end. All remaining pre-

dictors remain at (or below) the 5% significance mark throughout the entire auction.

4.4.2 Price Forecasting

After estimating the model using the training set, we apply it to the validation

set to obtain forecasts for the price on the last day. Since we removed all price infor-
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mation from the last auction day, we can measure prediction accuracy by comparing

the true price with our forecast.

Figure 4.7 illustrates the forecasting method for 4 sample auctions. Each of

the 4 graphs in Figure 4.7 contains three separate pieces of information: a) the

actual current auction price (a step function); b) the functional price curve; and c)

the forecasted price curve. The actual current auction price is the price observed

during the live auction. The functional price curve is the smoothed functional object

based on the observed prices. And, the forecasted price curve is our forecast based

on model (4.2).

Note that Figure 4.7 reveals two levels of “truth.” The first is on the functional

level, which compares true and forecasted curves. Our forecasting method operates

on the functional objects and predicts the price curves. In that sense, the closer the

forecasted curve is to the functional price curve, the better its functional prediction

performance. Indeed, Figure 4.7 shows that the functional and forecasted curves are

generally very close. However, the functional price curve is merely an approximation

of the live auction price. Therefore, a second level of truth is revealed by comparing

the forecasted price curve with the actual current auction price. On this level, the

discrepancy is larger, which is not surprising: the quality of the forecasting output

is only as good as its input. If the quality of the input is poor (i.e. functional

objects that do not approximate the current auction price well), then not much can

be expected of the forecasted output. This underlines the importance of generating

high-quality functional objects. The most reliable way of checking the quality of the

functional objects is via visualization. Several ways of inspecting functional data
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visually are proposed in [53]. Another way of guaranteeing the quality of the results

is via sensitivity studies with respect to the allocation of knots and the choice of the

smoothing parameter (see Appendix B).

Forecast Accuracy

We measure forecast accuracy on the validation set using the mean-absolute-

percentage-error (MAPE). We compute the MAPE in two different ways, similar

to Figure 4.7, once between the forecasted curve and the true functional curve

(MAPE1), and then between the forecasted curve and the actual current auction

price (MAPE2). The result is shown in Figure 4.8.

Naturally, MAPE2 is higher than MAPE1, because it is harder to reach the

second level of “truth” compared with the first level. MAPE1 is, at least on average,

less than +5% for the entire prediction period (i.e. over the last day), implying that

our model has a very high forecasting accuracy. MAPE2 is a bit larger in magnitude

due to the inevitable variation in fitting smoothing splines to the observed data.

The width of the confidence bounds underline the heterogeneity across all auctions

in our data set.

Forecast Accuracy by Auction Characteristics

Forecast accuracy can lead to new insight about the empirical regularities

of bidding when breaking it up by different auction characteristics. We therefore

compare forecast accuracy for different levels of the opening bid, secret reserve
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Figure 4.7: Dynamic forecasting results of last day price for 4 sample auctions. x-
axes represent time of auctions and y-axes represent amounts of prices. Auctions
#5, #36 and #52 are all auctions on Harry Potter Books, and auction #11 is an
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price, item condition and value, seller reputation, bidder experience, competition,

and early and jump bidding. Table 4.1 shows the results. We find that the error is

generally relatively small, no larger than 20% of the true functional price curve, and

no larger than 36% of the actual final auction price. But there are subtle differences

across the different variables: the error is larger when forecasting new items as

compared to used items. High value items, on the other hand, have a smaller error

than low value items, which could be attributed to the fact that, when the stakes are

higher, bidders spend more time researching the item and thus price dispersion is

lower. Not surprisingly, auctions with a high opening bid have a smaller forecasting

error since, when the opening bid is high and the item’s value is relatively well-known

as in our situation, then there is less uncertainty about the possible outcomes of the

auction. Lower seller reputation results in more accurate forecasts. This may be

due to the fact that higher seller ratings often elicit price-premiums [88], thereby

increasing the price-variance. Bidder experience has a similar impact on forecasting

accuracy. As for bidding competition (captured by the number of bids), higher

competition results in larger variation in the forecast errors. It is also interesting

to note that early bidding has barely any effect on the predictability of an auction;

this again is different for jump bidding.
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Table 4.1: Mean absolute percentage errors (MAPEs) broken up by different vari-
ables. MAPE1 is the error between the forecasted final price and the functional final
price; MAPE2 is the error between the forecasted final price and the actual final
price. The standard error of reserve price is “NA” since there is only one auction
with a reserve price in the validation set.

Variable Case
MAPE1 MAPE2

Mean Std.Err. Mean Std.Err.

Reserve Policy
Yes 0.08 NA 0.16 NA
No 0.12 0.02 0.23 0.02

Condition
New 0.17 0.05 0.31 0.05
Used 0.09 0.01 0.19 0.02

Item Value
High 0.07 0.01 0.14 0.01
Low 0.16 0.04 0.31 0.04

Opening Bid
High 0.06 0.01 0.14 0.02
Low 0.20 0.04 0.36 0.04

Seller Rating
High 0.14 0.04 0.26 0.04
Low 0.09 0.02 0.20 0.03

Avg. Bidder Rating
High 0.15 0.04 0.30 0.04
Low 0.09 0.02 0.17 0.02

Number of Bids
High 0.13 0.03 0.24 0.03
Low 0.10 0.02 0.22 0.03

Early Bidding
Yes 0.11 0.02 0.22 0.03
No 0.12 0.03 0.24 0.04

Jump
Yes 0.09 0.01 0.27 0.03
No 0.13 0.03 0.21 0.03

Comparison with Exponential Smoothing designed for stationary pro-

cesses

To benchmark the performance of our method, we compare it to Double Ex-

ponential Smoothing. Double Exponential Smoothing is a popular short term fore-

casting method which assigns exponentially decreasing weights as the observation

become less recent and also takes into account a possible (changing) trend in the
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Table 4.2: Comparison of forecasting accuracy between our dynamic forecasting
model and exponential smoothing. The forecasting accuracy is measured by mean
absolute percentage error (MAPE).

Method
MAPE1 MAPE2

Mean Std.Err. Mean Std.Err.
Dynamic Forecasting 0.12 0.02 0.23 0.02

Exp. Smoothing 0.42 0.03 0.49 0.03

data. Following are two equations associated with Double Exponential Smoothing:

St = αyt + (1− α)(St−1 + bt−1) 0 6 α 6 1

bt = γ(St − St−1) + (1− γ)bt−1 0 6 γ 6 1. (4.11)

This method cannot be applied directly to the raw bid data due to its uneven

spacing. Functional objects once again come to the rescue. We apply double expo-

nential smoothing to a grid of evenly-spaced values from the functional curve. The

dashed lines in Figure 4.9 show the performance of exponential smoothing for the

same four auctions as in Figure 4.7. We see that the predictions based on exponen-

tial smoothing are very far from the true auction price and even far from the true

functional price curve. Table 4.2 compares our forecasting system with exponen-

tial smoothing in terms of MAPE. We find that the forecast error of exponential

smoothing is more than twice the error of our forecasting system.
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4.5 Conclusions and Future Directions

In this Chapter we propose a dynamic forecasting model for price in online

auctions. We set up the forecasting problem in the context of functional data anal-

ysis by treating the price-evolution in an auction as a functional object. This leads

to a novel use of FDA for forecasting which has not been considered in the literature

to date. It is also new in that it allows dynamic forecasting of an ongoing auction.

The functional setup allows us (1) to represent the extremely unevenly spaced se-

ries of bids in a compact form, (2) to estimate price dynamics via the derivatives

of the smooth functional objects, and integrate this dynamic information into the

forecaster, and (3) to incorporate both static and time-varying information about

the auction into the forecasting system. Combining the dynamics with the static

and time-varying information enables forecasting the price in ongoing live-auctions

for different types of products. The functional approach allows us also to investigate

regularities of the bidding dynamics as a function of relevant auction dimensions.

We apply our forecasting system to real data from eBay on a diverse set of

auctions and find that the combination of static and time-varying information cre-

ates a powerful forecasting system. The model produces forecasts with low errors,

and it outperforms standard forecasting methods like double exponential smoothing

which severely under-predicts the price-evolution. This also shows that online auc-

tion forecasting is not an easy task. While traditional methods are hard to apply,

they are also inaccurate since they do not take into account the dramatic change in

auction dynamics. Our model, on the other hand, achieves high forecasting accuracy
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and accommodates the changing price-dynamics well.

This work can be extended in several ways. In this work, we focus on auctions

of the same duration. The lessons learned from this work can be used to extend the

model to auctions of different length. Combining auctions of different durations is

challenging since it involves registration of misaligned curves (see e.g. [86] or [48]).

However, in the auction context the misaligned curves are of different length which

poses additional difficulties. Another extension is to incorporate a concurrency com-

ponent. In online auctions, bidders have the option to inspect and follow multiple

auctions at the same time. This places new challenges for modeling, especially in

the functional framework. In a related series of papers (see [52, 41]) we propose

some solutions via visualization of concurrent functional objects and modeling of

concurrent final prices. Finally, further research is required to better understand

the exact role of price dynamics and their impact on economic theory. One possible

avenue is the exploration of functional differential equation models in the auction

context (see [50]).

69



Chapter 5

Estimating Price Dynamics in Online Auctions Using

Differential Equation Models2

5.1 Introduction

Online auctions have become a major player in providing electronic commerce

services. EBay (www.eBay.com), the largest consumer-to-consumer auction site,

enables a global community of buyers and sellers to interact and trade with one

another. After less than ten years in existence, it already sees over $24 billion worth

of transactions annually (http://investor.ebay.com/ annuals.cfm). Online auctions

are different from their offline counterparts in their duration (typically several days),

anonymity of participants (bidders and sellers do not know each other’s identity),

low barriers of entry (all it takes to place a bid on eBay is a valid credit card or a

verified Paypal account), global reach and round-the-clock availability.

While online auctions have become a serious competitor to offline auctions,

they also create new and previously unknown phenomena that depart from and

cannot be explained by classical auction theory. These phenomena are related to

the bidding process and lead to a drastic variability in the bidding dynamics. Classic

auction theory, in a nutshell, says that the final price of an auction is determined by

the a priori calculations of all bidders. There is more and more evidence though that

2Submitted to the Journal of the American Statistical Association
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what happens during the auction also matters. For instance, [24] finds that jump

bidding is an effective strategy in winning an auction. Related studies on the role of

the starting bid and the bid increment (e.g., [12, 67]) find that both have a significant

effect on the final price. Similarly, bid-timing and auction-entry matter [15], and

[58] finds that the information revealed during the auction has a significant effect

on its outcome. Moreover, there is an increasing notion that the auction process

itself has social value for its participants (e.g. entertainment, competition) [99]. One

prominent example of changing auction dynamics is the prevalence of “last-minute

bidding” or “bid sniping” identified by several researchers [71, 90, 9, 10]. One can

think of bid sniping as a “burst” of energy transpiring from one or more bidding

parties in an attempt to “steal-away” the auctioned item in a last moment effort.

The result is a drastic change in the auction dynamics, that is, in the speed at which

the price moves and the rate at which new bids arrive.

These and other documented observed patterns suggest that online auctions

experience and exhibit new behaviors that are not explained by classical auction

theory. In particular, it also means that what happens during the auction process

matters. While some effects of this process can be observed directly (such as jump

bidding and bid sniping), we do not observe what motivates or causes these effects.

For instance, we cannot observe why bidders engage in bid sniping. Moreover, there

are additional effects (e.g., entertainment value, competitiveness) that we will never

be able to directly observe. For example, bidders’ competitiveness might result in

“auction fever” with one outbidding the other over and over again. While we are not

able to observe the factors that motivate the two bidders to act in this competitive
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way, we are able to observe the result: an increased speed of price movement and bid

placement. In other words, while we are not able to observe many of the underlying

factors that drive bidders’ behavior, auction dynamics capture many of their effects.

In that sense, we set out to develop a formal machinery to capture and model online

auction dynamics.

There is recent evidence that dynamics exist, that they vary from auction to

auction, and that they matter. Examples include [93], which finds that different

levels of the opening bid are associated with different price dynamics. Moreover,

[94] claims that price processes, even for auctions for an identical good, fall into one

of three groups each of which exhibits different dynamics (see also [87] for similar

results in auctions for modern Indian art). When considering the dynamics of bid

timings, [96] shows that the bid arrival process changes during an auction with three

stages of varying arrival-intensity. Additional evidence for a change in the bid arrival

process has been pointed out in [90] which observes a change in last minute bidding

activity. several types of bidder strategies that affect the number and timings of

bids that bidders place in an auction are described in [11]. And finally, it is shown

in [105] that the price dynamics, when incorporated into a forecasting model, can

lead to real-time predictions of ongoing auctions and can improve upon the accuracy

compared to classical forecasting methods.

In order to capture the dynamics of an online auction we employ, similar to

some of the aforementioned authors, a functional data analysis framework. In that

framework, we assume that the observed bids are realizations from an underlying

continuous price process. Functional data analysis (FDA) has become popular in
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recent years, particularly with the monographs of [85, 86]. In FDA, the interest

centers around a set of curves, shapes, images, or, more generally, a set of functional

objects. In the auction context our object of interest is the price curve. To illustrate

this, consider Figure 5.1 which shows price curves from 190 7-day online auctions

for Xbox play stations and Harry Potter books (details of the data can be found in

Chapter 3). We think of these 190 curves as a sample from a much larger population

of online auction price processes. The goal is to model the population dynamics and

to compare processes across different sub-populations. To do this, we directly model
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Figure 5.1: Price curves (on the log-scale) for 190 closed 7-day auctions of Xbox
play stations and Harry Potter books.

price dynamics. By dynamics we mean the speed of price increases and the rate at

which this speed changes.

In this Chapter we propose the use of differential equations for modeling on-
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line auction dynamics. Differential equations are a common tool in physics and

engineering for modeling the dynamics of a closed system. They are commonly used

for describing processes such as population growth, mixing problems, mechanics,

and electrical circuits [19]. Applications of differential equations are also found in

economics and finance. The Solow Model [100], for example, utilizes differential

equations to model the long-run evolution of the economy (see also [64]). In finance,

partial differential equations are used for pricing financial derivatives [54, 30, 4]. In

contrast, the use of differential equations in classical statistics is rather little. In this

Chapter we focus on the functional version of differential equations called principal

differential analysis (PDA) and introduced in [82]. The basics of PDA are described

in detail in the monograph [86]. We show that price dynamics in online auctions

can be captured well by a single family of differential equation models. In doing so,

we also propose a new test for multiple comparisons of differential equation models.

Our test shows that auction sub-populations can be quite heterogeneous especially

when considering different product-, auction- seller- or bidder-characteristics.

There are several practical implications of our work. As pointed out earlier,

dynamics capture many of the otherwise unobservable effects of an online auction.

In that sense, our work pioneers the formal modeling of dynamic bidding phenomena

such as “auction fever” or “bidding frenzy”. Moreover, knowledge about auctions

with different dynamics allows bidders to make more informed bidding decisions,

e.g., by choosing to participate in auctions that have low anticipated end-dynamics.

Knowledge of what drives dynamics can also help the seller in designing better auc-

tions, and it can help the auctioneer to make adjustments that change the auction-
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experience (e.g., by controlling bid increment policies which could avoid e.g. the

commonly experienced “bidding draughts” in the auction middle).

The Chapter is organized as follows. Section 5.2 provides an exploratory anal-

ysis using phase plane plots and motivates the employment of differential equation

models we use in the following study. In Section 5.3, we describe the differential

equation model, model-estimation and model-validation. We also introduce a new

multiple-comparison test for principal differential analysis. Section 5.4 shows the

results of fitting differential equations to online auction data and discusses insights

and implications. We conclude with further remarks in Section 5.5.

5.2 Exploratory Analysis via Phase Plane Plots

The study of this Chapter is based on the same data set, 190 closed 7-day auc-

tions for two different products, Microsoft Xbox gaming systems and Harry Porter

and the Half-Blood Prince books, which was used in the previous work in Chap-

ter 4 and which was described in detail in Chapter 3. At the heart of differential

equations are models that relate the function and its derivatives to one another. As

a preliminary step towards arriving at a suitable differential equation model, one

often studies graphs (similar to scatter plots) that plot the derivative of one order

versus the derivative of another order. These plots are often referred to as phase

plane plots (PPPs). In the functional context, where one has repeat observations

at each derivative level, one typically graphs the averages versus one another; for

instance, the average acceleration versus the average velocity (see [86]).
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Figure 5.2 shows a PPP for the average second derivative of price (or price-

acceleration) versus the average first derivative (price-velocity). The numbers along

the curve indicate the day of the auction (for 7-day auctions). We can see that the

price velocity is high at the beginning of the auction (days 0-1): At the auction-

start, it takes an instantaneous “burst of energy” to overcome the opening bid (which

can be considerably high). After this initial burst, the dynamics slow down: the

price acceleration is negative and since changes in acceleration precede changes in

velocity, we observe a consequent slow-down in the price-speed. This slow-down

continues until about day 4, after which the dynamics reverse: acceleration turns

positive and causes the velocity to increase. In fact, it increases quite rapidly until

the auction-end.

There are several interesting aspects that appear in Figure 5.2. First, the “C”-

shape of the PPP is typical of a an online auction: a phase of decrease in dynamics

followed by a transitional phase of change, and finally a phase of increase in dynam-

ics. Our subsequent analyses will show that these three phases are typical of online

auctions in general. However, we will also show that the magnitude/importance of

each phase varies quite significantly, depending on different auction characteristics.

We now consider a series of conditional PPPs (see Figure 5.3), where the

average derivatives are conditional on the auction characteristics described in Table

3.1. Note that we make a series of pairwise comparisons in the sense that we compare

a conditional PPP with a certain feature to one without that feature. For instance,

the two leftmost graphs in the second row contrast PPPs for auctions with and

without a secret reserve price. We see that, as pointed out earlier, the general “C”-
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Figure 5.2: Phase Plane Plot for the average price curve of the data: the second
derivative (acceleration) versus the first derivative (velocity).

shape of both PPPs is equivalent. However, the magnitude of the dynamics is very

different: For auctions with no reserve price, the range of dynamics is significantly

smaller, especially at the auction start. In particular, the price velocity is smaller

at the auction-start and, as a consequence, does not decrease as fast as in auctions

with a reserve price. Interestingly, towards mid-auction (at day 4) the dynamics

of both types of auctions turn identical, but then again diverge towards the end of

the auction, with reserve-price auctions exhibiting larger acceleration. The different

size of the “C”-shapes also indicates that the magnitude of the relationship between

velocity and acceleration differs: While in reserve-price auctions small changes in

acceleration have a large effect on velocity, this effect is much more depressed in

auctions without reserve prices.

In the following, we summarize the most important features we learn from

Figure 5.3. For item value, high-valued items appear to have a larger range of
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Figure 5.3: Conditional Phase Plane Plots (PPP) for the average price curve of the
data, conditional on 10 auction characteristics from Table 1.
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dynamics compared to lower-valued items. Early bidding seems to have a large effect

on the dynamics not only at the auction-start but throughout the entire auction.

For jump-bidding, we see that auctions that experience jump bids have a different

relationship between velocity and acceleration compared to auctions without jump

bids. Additional observations are that the opening bid and the number of bidders

both have an impact on the dynamics. Interestingly, while different bidder ratings

do not appear to make much of a difference, seller ratings do. We will revisit these

findings from a more formal statistical angle in Section 4.

The exploratory analysis shown in this section indicates that dynamics exist,

that they matter and that they are quite different from one auction to another.

Moreover, some of the variation in dynamics appears to be driven by characteristics

that are observable, such as characteristics of the product, the auction, the seller

or the bidder. We also find that while dynamics vary, the general functional rela-

tionship between acceleration and velocity is the same “C”-shape for all auctions.

The difference lies in the magnitude of that relationship. We take this as evidence

that dynamics in online auctions can be captured using a single family of models.

In the following, we derive dynamic models based on principal differential analysis

and discuss a particular class of models suitable for online auctions dynamics.

5.3 The Differential Equation Model

Differential equations are widely used in the areas of engineering and physics.

A differential equation describes a process with changing dynamics by finding rela-
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tionships among the function and its derivatives. Many complex mechanical systems

can be described in terms of differential equations. In the context of online auctions

we view the price process as a dynamic system with many observed and unobserved

factors acting upon it. We thus set out to find a differential equation model that

can capture online auction dynamics.

Due to their relative novelty in statistical modeling, we open with a summary

of how differential equation models are formulated, estimated, and evaluated in the

functional setting (Sections 5.3.1-5.3.2). More details can be found in [86] (Chapter

13, 14). We then move to discussing a particular model that is very suitable for the

auction context (Section 5.3.3). After that, we propose a new test for comparing

models of auction sub-populations (Section 5.3.4).

5.3.1 Model Formulation and Estimation

Let yi be the price function for auction i (i = 1, . . . , N), recovered from the

observed bid data, and let Dmyi be the mth derivative of yi. Our goal is the identi-

fication of a linear differential operator (LDO) of the form

L(t) = ω0(t)I + ω1(t)D + · · ·+ ωm−1(t)D
m−1 + Dm (5.1)

that satisfies the homogeneous linear differential equation Lyi(t) = 0 for each ob-

servation yi(t). In other words, we seek a linear differential equation model so that
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our data satisfy

Dmyi(t) = −ω0(t)− ω1(t)Dyi(t)− · · · − ωm−1(t)D
m−1yi(t). (5.2)

An important motivation for finding the operator L(t) is substantive: ap-

plications in the physical sciences, engineering, biology and elsewhere often make

extensive use of differential equation models of the form

Lyi(t) = fi(t). (5.3)

The function fi(t) is often called a forcing or impulse function, and it indicates the

influence of exogenous agents on the system defined by Ly(t) = 0. Returning to the

online auction setting, we can reason that variation in price is due to variation in

the forces resulting from bid placement and bid timing, and that these forces have

a direct or proportional impact on the acceleration of the price process.

In practice, due to the prevalence of noise, it will be virtually impossible to

find a model that satisfies (5.2) exactly. Hence, principal differential analysis adopts

a least squares approach to the fitting of the differential equation model. The fitting

criterion is to minimize the sum of squared norms

SSEPDA(L) =
N∑

i=1

∫
[Lyi(t)]

2dt (5.4)

over all possible models L. Notice that identifying L is equivalent to identifying the

m weight functions ωi that define the linear differential equation in (5.1).
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Linear differential operators L of degree m (of the form (5.1)) have m linearly

independent solutions uj(t) of the homogeneous equation Luj(t) = 0. Although

there is no unique way of choosing these m functions uj(t), any choice is related

by a linear transformation to any other choice. Therefore, any function y(t) that

satisfies Ly(t) = 0 can be expressed as a linear combination of the uj’s, and since

L(t) is chosen to minimize the Lyi(t)’s we expect to obtain a good approximation

of the yi(t)’s by expanding them in terms of the uj(t)’s.

There are generally two approaches for estimating the weight functions ωj(t).

The first, pointwise minimization, yields pointwise estimates of the weight functions

ωj(t) by minimizing the (pointwise) fitting criterion

PSSEL(t) = N−1
∑

i

(Lyi)
2(t) = N−1

∑
i

[
m∑

j=0

ωj(t)(D
jyi)(t)]

2, (5.5)

where ωm(t) = 1 for all t .

The pointwise approach can pose problems, especially if the ωj(t)’s are esti-

mated at a fine level of detail. An alternative approach, which is computationally

more efficient, is to use basis expansions. In the basis expansion approach, the weight

functions ωj are approximated by a fixed set of basis functions φk, k = 1, . . . , K. Let

φ denote a K-dimensional vector of basis functions (φ1, . . . , φK)′. Then we assume

that

ωj ≈
∑

k

cjkφk, (5.6)

where c denotes the (mK)-vector of all basis function coefficients cjk.
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Using this approximation for the weight functions, we can now approximate

SSEPDA(L) in (5.4) as a quadratic form in c, F̂ (c|y), that can be minimized by

standard numerical algebraic techniques. Specifically, we get

F̂ (c|y) = C + c′Rc + 2c′s, (5.7)

where the constant C does not depend on c, and hence the estimate ĉ is given by

the solution of the equation Rc = −s. Moreover, the symmetric matrix R is of order

mK, and consists of an m×m array of K ×K sub-matrices Rjk of the form

Rjk = N−1

∫
φ(t)φ(t)′

∑
i

Djyi(t)D
kyi(t)dt, (5.8)

for j = 0, . . . , m − 1. The integrals involved in these expressions often have to be

evaluated numerically (e.g., using the trapezoidal rule) over a fine mesh of equally-

spaced values of t. For more details on the estimation of differential equation models,

see [86] or [80].

5.3.2 Model Fit

An initial impression of the model fit can be obtained via visualization. If

the model represents the data well, then the identified differential operator L(t)

should be effective at annihilating variation in the yi(t), and this can be visualized

by plotting the empirical forcing functions Lyi(t). If the plotted Lyi(t)’s are small

and mainly noise-like, then the model provides good data-fit. As a point of reference
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for the magnitude of the Lyi(t)’s we use the size of the Dmyi(t)’s, since these are

the empirical forcing functions corresponding to ω0(t) = . . . = ωm−1(t) = 0.

To confirm visual impression, the quality of fit can also be gauged by more

quantitative statistics. In the differential equation context, this can be done via the

point-wise error sum of squares PSSEL(t) in (5.5). A logical baseline against which

to compare PSSEL is the error sum of squares defined by a theoretical baseline

model and its associated weight functions ωj:

PSSE0(t) =
∑

i

[
m−1∑
j=0

ωj(t)(D
jyi)(t) + (Dmyi)(t)

]2

. (5.9)

Since in this case there is no one particular model that forms the most reasonable

baseline, we set ωj(t) = 0 so that the comparison is simply with the sum of squares

of the Dmyi(t), which is analogous to the classical sum of squares in ANOVA. Thus,

we can assess the model fit of the differential equation by examining the pointwise

squared multiple correlation function

RSQ(t) =
PSSE0(t)− PSSEL(t)

PSSE0(t)
(5.10)

and the pointwise F-ratio

FRATIO(t) =
(PSSE0(t)− PSSEL(t))/m

PSSE0(t)/(N −m)
. (5.11)
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5.3.3 A Second-order Linear Differential Equation Model

We now discuss in further detail a special case of the above general differential

equation model: the second order linear differential equation. We focus particularly

on second-order differential equations since our exploratory analyses in Section 5.2

indicated varying relationships between the first and second derivatives of price.

Moreover, from a model-parsimony point of view, differential equation models of

lower order are, a priori, preferred over models of higher order. Consider the general

second-order differential equation

Lyi = ω0yi + ω1Dyi + D2yi = 0. (5.12)

Setting ω0 = 0, we get

Lyi = ω1Dyi + D2yi = 0, (5.13)

where ω1(t) is a Lebesque square integrable function, and which describes a strictly

monotone, twice-differentiable function f [81]. The class of monotone functions

discussed in this Chapter consists of those functions f for which ln(Df) is differen-

tiable and Dln(Df) = D2f/Df is Lebesque square integrable. Given that the live

bid is monotonically increasing, equation (5.13) appears to be a reasonable candi-

date for online auctions. From here on out, for ease of notation, we write ω = ω1

and ω∗ = −ω.
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Data Simulation

In order to investigate the appropriateness of this class of models for the auc-

tion context, we simulate data from the second-order linear differential equation

(5.13) and compare it to observed auction data. Simulating data from this model

is done by generating solutions evaluated at an evenly spaced grid over the inter-

val [0, 7]. We simulate the time-varying weight function ω∗(t) with overall linear

trend according to a straight line with intercept a = 1.647 and slope b = −0.407,

and local deviations from this trend using a linear combination of 4 Fourier basis

functions. This results in the weight function depicted in the left panel of Figure

5.4. We then add Gaussian noise with mean zero and standard deviation 0.01. The

resulting 190 simulated curves are shown in the middle panel of Figure 5.4. Also,

the resulting PPP of the average acceleration versus the average velocity for these

simulated curves is displayed in the right panel of Figure 5.4. We see that the simu-

lated PPP strongly resembles the observed “C”-shapes from Section 2. This further

supports the appropriateness of the class of differential equation models in (5.13)

for modeling auction dynamics.

Model Interpretation

A few comments on the implications of model (5.13) are in order. The coeffi-

cient function ω∗ = −ω = D2y/Dy measures the relative curvature of the monotone

function in the sense that it assesses the size of the curvature of D2y relative to the

slope Dy. The special case of ω∗ = −α leads to Y (t) = C0 + C1 exp(αt), whose ex-
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Figure 5.4: Simulation results for the monotone 2nd-order linear differential equation
(5.13). Left: weight function ω∗(t) used to simulate data; Middle: 190 simulated
curves; Right: resulting phase-plane plot.
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ponent has constant curvature relative to α, while ω∗ = 0 defines a linear function.

Thus, small or zero values of ω∗(t) correspond to locally linear functions, whereas

very large values correspond to regions of sharp curvature. In mechanical systems,

the latter type is generally caused by internal or external frictional forces or viscos-

ity. In the context of online auctions, sharp curvature in the price process can be

related to jump bids caused by bidders attempting to apply external force (“deter-

ment of other bidders”) to the bidding process. On the other hand, ω∗ = 0 indicates

a very slowly moving price process which is often observed during the middle of the

auction (“bidding drought”).

5.3.4 Multiple Comparisons for Differential Equation Models

One of the goals of our study is to investigate whether factors that are re-

lated to the characteristics of the auction, item, seller, and bidders are associated

with different dynamics. We therefore define J auction sub-populations with dy-

namic models D1, D2, . . . , DJ , that correspond to groupings according to the above

mentioned characteristics. For example, groupings can be defined by item value:

high-valued items vs. low-valued items. Another example is auctions where jump-

bidding is present versus absent. We are therefore interested in testing whether the

differential equation models of each of the J groups are different. Although it is

somewhat similar to multiple comparisons in the classical ANOVA setting, in our

case we want to test whether J population models are significantly different rather

than J population means. Our null hypothesis is therefore H0 : D1 = . . . = DJ vs.
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the alternative Ha: at least one of the Di’s is different. The problem that arises

is that within each group, we have an associated single differential equation model

and therefore there are no replications from which to estimate variances.

One possible approach is to use the functional shape test proposed by [49],

which tests whether a functional object is equivalent to a given underlying curve.

Rather than operating on mean functions as done in [49], we might compare the

differential equations’ coefficient functions. One important limitation of this test

in our dynamic context is that it can only answer the general question “Do two

differential equation models differ?”. If differences between J models exist, then

the magnitude of their difference might change over different areas of the parameter

space. For instance, for certain parameter values two models may be identical while

they might differ substantially for other values. Evidence that this phenomenon

exists in the online auction domain can be seen in Figure 5.3, where the relationship

between acceleration and velocity (and thus, the corresponding differential equation

models) is similar for some time periods, but very different for others.

Another difference between our context and the [49] setup is that we have a

multiple-sample curve comparison whereas they deal with testing the fit of a single

curve to a hypothesized curve.

We therefore propose a new multiple comparison test that is directly intended

for comparing multiple functional objects (such as differential equation models)

both locally and globally. The test captures not just overall curve difference but

also differences at local areas, thereby enabling to answer questions such as “where

do the curves differ and does the difference change over the range of the model
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parameters?”. Our multiple comparison functional test is inspired by the work

of [101] which considers multiple comparisons of several linear regression models.

To date, most of the work on simultaneous inference and multiple comparisons

has focused on comparing the means of K (> 3) populations. An exception is

the work of [101] and [61]. Spurrier [101] considers multiple comparisons of several

simple linear regression lines and derives sets of simultaneous confidence bands for all

possible contrasts between several simple linear regression lines over the entire range

(−∞,∞), assuming that the design matrices are the same. Liu et al [61] extend

Spurrier’s work to comparing multiple linear regression models that can have several

explanatory variables and different design matrices. In the following we extend the

work of [101] and [61] to multiple comparisons for differential equation models. We

derive simultaneous confidence bounds for several PDA models and propose a way

to implement the method in practice.

A Multiple Comparison Test for Functional Differential Equations

Suppose there are J groups in the population, and let i (i = 1, . . . , J) denote

the index of ith group. Suppose further that each group can be described by a

differential equation model of the form

−DmYi(t) = ωi
0(t)Yi(t) + ωi

1(t)DYi(t) + . . . + ωi
m−1(t)D

m−1Yi(t) + ei(t), (5.14)

where Yi(t)
T = (yi1, . . . , yini

), Dp (p = 0, . . . , m) is the p−th differentiation operator,

and ei(t)
T = (εi1, . . . , εini

) has components εij, j = 1, . . . , ni, i = 1, . . . , J , that are
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assumed iid N(0, σ2).

For i = 1, . . . , J , let Hi(t) = −(DmYi)(t), let Di(t) be an ni ×m full column

rank matrix with the pth (p = 0, . . . , m−1) column given by (Dpyi1(t), . . . , D
pyini

(t))T

defined at every single time point t ∈ T , and let ωi(t)
T = (ωi

0(t), . . . , ω
i
m−1(t)). Then

(5.14) can be expressed in matrix form as

Hi(t) = Di(t)ωi(t) + ei(t) i = 1, . . . , J. (5.15)

Holding t fixed, the classical least squares estimate of ωi(t) is

ω̂i(t) = [Di(t)
T Di(t)]

−1Di(t)
T Hi(t) i = 1, . . . , J. (5.16)

Let σ̂2 denote the pooled mean squared error estimate of σ2 with degrees of free-

dom ν =
J∑

i=1

(ni − m). Note that using classical linear models arguments, σ̂2 is

independent of ω̂.

The goal is to construct a set of simultaneous confidence bands for

zT ωi(t)− zT ωj(t) = (z0, . . . , zm−1)ωi(t)− (z0, . . . , zm−1)ωj(t) (i, j) ∈ Λ,

(5.17)

where Λ is an index set that determines the comparison of interest. Denote ∆ij =

(DT
i Di)

−1 + (DT
j Dj)

−1. Then Var(zT ωi − zT ωj) = σ2zT ∆ijz, and the simultaneous

confidence bands can be constructed as follows:

zT ωi(t)− zT ωj(t) ∈ zT ω̂i − zT ω̂j ± cσ̂
√

zT ∆ijz ∀(i, j) ∈ Λ (5.18)
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where c is the critical constant such that the confidence level is equal to 1− α. We

can compute c via the relation P (T < c), where

T = sup
(i,j)∈Λ

|zT [(ω̂i(t)− ωi(t))− (ω̂j(t)− ωj(t))]|
σ̂
√

zT ∆ij(t)z
. (5.19)

Finding an analytical representation for the distribution of T is involved. In the

following, we suggest a way of approximating it via simulation.

Let Pij be a m×m nonsingular matrix such that

P T
ij Pij = (DT

i Di)
−1 + (DT

j Dj)
−1 ∀1 6 i 6= j 6 J. (5.20)

Let Zi be independent normal random vectors distributed as N(0, (DT
i Di)

−1), i =

1, . . . , J , independent of σ̂. Let Zij = (P T
ij )

−1(Zi − Zj). Then the distribution of T

is the same as that of

sup
(i,j)∈Λ

|(Pijz)T Zij|
(σ̂/σ)

√
(Pijz)T (Pijz)

. (5.21)

We can then simulate a realization of the random variable T as follows:

1. Calculate Pij, 1 6 i 6= j 6 J .

2. Simulate independently

Zi ∼ N(0, (DT
i Di)

−1) i = 1, . . . , J (5.22)

and

σ̂/σ ∼
√

χ2
ν/ν (5.23)
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3. Calculate Zij = (P T
ij )

−1(Zi − Zj).

4. Compute T via (5.21).

Repeat steps 1-4 B times to obtain B iid replications of the random variable

T , T1, · · · , TB. Calculate the estimate ĉ of the critical constant c as the (1− α)Bth

largest simulated value of the Ti’s; that is, ĉ = T((1−α)B), where T(i) denotes the

ordered value of Ti.

Equation (5.18) defines simultaneous confidence bands for the difference be-

tween the coefficient functions of different differential equation models weighted by

the vector z with respect to a specific time t. Thus, for variable time, we should

have a set of time-varying simultaneous confidence bands. That is to say, when

time changes, the critical value c in Equation 5.18 should be a function of time t.

Repeat the procedure described above over a fine grid t ∈ [0, 7], to obtain a vector

of point-wise critical values ĉ(t) = (ĉ1, . . . , ĉn), where t = (t1, . . . , tn) and ĉj = ĉ(tj).

Using ĉ(t), we obtain the simultaneous confidence bands (5.18) as follows:

zT ωi(t)− zT ωj(t) ∈ zT ω̂i − zT ω̂j ± ĉ(t)σ̂
√

zT ∆ijz ∀(i, j) ∈ Λ. (5.24)

We consequently reject the null hypothesis that a set of models is identical if the

confidence bands do not include zero.
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5.4 Modeling eBay’s Online Auction Data

We now return to our auction dataset. Our first goal is to evaluate whether

auction dynamics can be captured by a differential equation. We therefore first es-

timate a model and evaluate its goodness-of-fit. Once such a model is established,

we fit differential equations to sub-populations of the data and compare their dy-

namics by testing the difference between the models, using the proposed multiple

comparison test. We describe each of these steps and the results next.

5.4.1 eBay Dynamics

We start by fitting a differential equation to the pre-processed data described

in Chapter 3. We initially estimate model (5.13) using the entire set of auctions.

The estimated coefficient function ω∗ = −ω is displayed in Figure 5.5. We can

see that ω∗ has three phases of values: negative, zero, and finally positive. These

correspond to the three bidding phases during an auction: early activity, little mid-

auction activity, and high late activity. The typical bidding behavior during an eBay

auction consists of some early bidding, where bidders establish their time priority

(when the two highest bids are tied, the earliest bidder is the winner). Then comes

a period of “bidding drought”, where there are hardly any bids placed (one possible

reason is that bidders avoid revealing their willingness to pay too early to avoid

that the price increases too much), and finally, during the last hours of the auction,

bidding picks up again and dramatically peaks during the last auction minutes. This

last moment bidding is called “sniping” and there are various explanations as to why
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bidders engage in it. One of these is to avoid bidding wars, because last moment

bidding does not allow other bidders to respond. Returning to the shape of the

estimated ω∗ curve, recall that a value of zero indicates linear motion of the price

process (i.e., no dynamics), whereas large positive or negative values are indicative

of changes in the dynamics (oppressing them or increasing them, respectively). The

first phase (up to day 3) is characterized by a negative ω∗, with a dip on day 2.

This negative dip marks the change from early bidding to “bidding draught”, when

velocity decreases. Then, we have ω∗ = 0 during the bidding draught, until bidding

starts to increase again with a peak on day 6, in transition to high-intensity last

moment bidding.
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Figure 5.5: Estimated coefficient function of the monotone 2nd order differential
equation fitted to online auction data.

The fit of the differential equation model can be gauged from Figure 5.6 which
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shows the equivalence of residual analysis and goodness-of-fit. The top panels show

the observed price accelerations (left) and the estimated forcing functions (right)

of the differential equation in (5.13). These two should be identical under perfect

model-fit (similar to the observed and fitted observations in regression). We can see

that although the fit is not perfect, the range of the forcing functions is identical to

that of the observed accelerations during most of the auction. The fit is especially

close in the middle and end of the auction; only the auction-start does not seem to

be captured as well by the differential equation model.

As mentioned in Section 5.3.1, once the operator L has been computed by

estimating its weight functions ωj by either point-wise minimization or basis expan-

sion, we can compute a set of m (m = 2 in this case) linearly independent basis

functions uj satisfying Luj = 0. The plots in the second row of Figure 5.6 show

the two solutions to the homogeneous differential equation Lu = 0 (left) and their

corresponding derivatives (right). Recall that the price function is a linear com-

bination of the solutions. One solution (dashed line) is simply a constant, which

captures the overall monotone increasing nature of the price process. (Recall that

price is transformed to the log-scale.) The second solution and its derivative (solid

line) closely resemble the average bidding process and the average price velocity in

Figure 3.8.

Finally, another quantification of model fit is given by the point-wise R-squared

(RSQ) and F-ratio from (5.10) and (5.11). These are shown in the bottom panels of

Figure 5.6. The point-wise RSQ is larger than 0.99 throughout the entire auction,

indicating a very good global fit of the monotone second-order linear differential
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equation model (5.13). We see that the fit also varies: it is best at the beginning and

end of the auction, but somewhat weaker during mid-auction. A similar conclusion

can be drawn from the point-wise F-ratio. The somewhat weaker model fit during

mid-auction could be a result of the smaller number of observations during that

time period (the “bidding draught” phase).

In summary, we learn that a second order differential equation model fits

online auction data reasonably well. It captures the three phases of bidding and the

interplay of dynamics that change over the course of the auction. We also see that

the degree of model fit varies at different periods of the auction. This motivates

our next step, which looks at conditional models for sub-populations of auctions.

Perhaps the differences between these sub-populations can explain the variability

in goodness of fit. But more importantly, our goal is to learn about the impact of

different factors on the model parameters.

5.4.2 Dynamics of eBay Sub-Populations

Now that we have established that a differential equation model captures typ-

ical auction dynamics reasonably well, we explore the dynamics of different sub-

populations using the multiple-comparisons procedure laid out in Section 3. To

do this, we fit differential equation models separately to different auction sub-

populations and test whether the resulting models are statistically different. We

define sub-populations using characteristics of the auction, the item, the bidders,

and the seller. These factors should, according to auction theory, affect the final
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price. In our case, we want to assess whether they also affect the dynamics of the

entire price process. The factors that we consider are: item condition (new/used),

item value (high/low), reserve price (yes/no), opening bid (high/low), early bidding

(yes/no), jump bidding (yes/no), seller and bidder rating (high/low), winning bid

(high/low) and number of bids (high/low) (see also the conditional PPPs in Figure

6). The parameter estimates of the fitted models are shown in Figure 5.7.

We can see that for some factors (e.g., condition and value) the basic shapes of

the estimated coefficient functions ω∗ are very similar. However, what is different is

the timing and magnitude of this function. For instance, while new and used items

appear to have almost identical dynamics during the first half of the auction, they

differ in the second half. On the other hand, while low valued items appear to result

in slightly higher dynamics during the first auction half, high valued items have a

somewhat higher impact in the second half. Yet, while there are fine differences in

dynamics for auctions of different condition and value, the overall similarity suggests

that these two factors generally exhibit a very similar effect on auction dynamics,

regardless of their value (this finding is further supported by testing their statistical

difference, as shown below).

In contrast to the above factors, for other factors (e.g., winning bid or reserve

price) the coefficient functions are very different. For instance in the case of the

reserve price, auctions with a secret reserve price experience much more variability

in the dynamics compared to auctions without one. For winning bid, auctions that

end with a high winning bid see lower dynamics than those with a low winning bid.

This result is probably correlated with the result for opening bid.
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The above results indicate that among the various auction characteristics,

different factors carry different weights not only on the final price but also on the

price dynamics. They therefore possess different levels of explanatory power of

the price process and perhaps even on predictability of the process. Awareness of

this fact enables us to draw better inferences from the relationships between auction

characteristics and auction price processes and to find a more explicit way to describe

these relationships.

While Figure 5.7 suggests some differences between different auction sub-

populations, the question arise whether these differences are also statistically sig-

nificant. To that end, we employ the multiple comparison test derived in Section

5.3.4. The results are displayed in Figure 5.8. All confidence bands vary over time,

emphasizing the time-varying sensitivity of our estimation procedure. As with clas-

sical confidence intervals, wider bands indicate a larger uncertainty about the true

difference, and if the confidence band includes the value zero then the alternative of

a population difference cannot be rejected for the time period under question (at a

given significance level). Using these guidelines, we see the following: the presence

of an early bid or a secret reserve price results in the largest difference in auction

dynamics and this difference holds during most of the auction. Conversely, item

condition, item value, and bidder rating result in essentially no difference in the

auction dynamics during the entire auction period. For other factors (jump bid-

ding, opening bid, or number of bids, etc.) the message is mixed: differences exist

during some parts of the auction, but the difference is typically small.

In conclusion, it appears that different characteristics of the auction, the item,
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Figure 5.7: Estimated weight functions for the monotone 2nd order differential
equation fitted to different online auction sub-populations.
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the bidders and the seller lead to different price dynamics that change at different

points in the auction and at different magnitudes. The timing and magnitude of

the switching from early bidding to bidding draught, and from bidding draught to

high-frequency late bidding can be different when factors such as item condition are

considered.

5.5 Conclusions

In this work, we use linear differential equations to model the price process

and its dynamics in online auctions, using a dataset on eBay auctions for Xbox

play stations and Harry Potter books. We show that a monotone second-order

linear differential equation model describes the relationship between the price and

its dynamics well. We also explore the effect of different auction sub-populations

on the dynamics and find that although auctions generally adhere to a three-phase

process of price dynamics (early bidding, bidding draught, and bid sniping), certain

sub-populations affect the timing and magnitude of changes in dynamics more than

others.

This work is novel in several respects: To better understand the price dynamics

in online auctions, we use an approach that directly captures process dynamics.

Differential equations, in particular their functional version, are not (yet) a very

common tool in statistics. Our work unveils a new and important application of

this powerful tool set.

On the methodological side, we also propose a new multiple comparison test for
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functional models in the absence of replications. In our context, we use it to test the

heterogeneity of dynamics across different auction sub-populations. The advantage

of this new test is that it captures both global and local differences between models.

This allows for the identification of differences indicative of timing and magnitude

rather than merely overall shape.
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Chapter 6

Model-based Functional Differential Equation Trees 3

6.1 Introduction

In the previous chapter, we proposed a principal differential equation (PDA)

framework to characterize online auctions and the factors that distinguish them.

In doing so, we proposed a new multiple comparison test for differential equation

models. While we found that auctions with different characteristics are associated

with different dynamics, or more specifically, with different differential equation

models, we found it hard to embed these characteristics into a common model.

Thus, we now develop a novel modeling approach that can incorporate covariate

information into a dynamic model. We accomplish this by combining the ideas of

differential equations and regression tree models.

Tree models often give simple descriptions of complex, nonlinear relationships

between several predictors and a univariate or multivariate response. A classical ref-

erence is the monograph Classification and Regression Trees by [16]. Tree-structured

methods are extended in [91] to repeated measures and longitudinal data by modi-

fying the split function so as to accommodate multiple responses.

Fitting a multivariate regression tree can be unsuccessful when the response

is a high dimensional vector such as a continuous function. Two ways to fit trees to

3Paper in preparation
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functional data are explored in [107]. Both approaches proceed by first reducing the

dimensionality of the data and then fitting a standard multivariate tree to the re-

duced response. In the first approach, the dimensionality is reduced by representing

the response as a linear combination of spline basis functions, while in the second

one, the dimensionality is reduced using principal component analysis, retaining

only the first several principal components.

Because constant fits in each node tend to produce large and hard to inter-

pret trees (see e.g., [17]), research on incorporating (simple) parametric models into

trees has recently received attention. Researchers from both statistical and machine

learning communities have suggested algorithms to attach parametric models to

leaf nodes or employ linear combinations to obtain splits in inner nodes. Such ap-

proaches are known as functional trees [32] in machine learning field with the most

notable being ‘M5’ [75]. In statistics, Loh and his coworkers made key contribution

in attaching parametric models to terminal nodes (see [63, 57, 17]). Regression trees

with a constant fit in each terminal node are embedded into a maximum likelihood

estimation framework in [102], where such trees are called “maximum likelihood

trees”. Furthermore, [109] takes the integration of parametric models into trees

one step further by embedding recursive partitioning into statistical model estima-

tion and variable selection. Within their framework, every leaf is associated with a

conventionally fitted model such as, e.g., a maximum likelihood model or a linear

regression. The model’s objective function is used for estimating the parameters and

the split points. This approach provides us the benefits of using the same objective

function for partitioning as well as for parameter estimation. And the statistical
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formulation of the algorithm makes it easy to interpret the results.

Building on these ideas, we propose a functional-tree framework based on dif-

ferential equation models. Our method allows the incorporation of dynamic models

into the tree context. The incorporation of dynamics into trees of functional data

makes our method new and different from extant methods, that either only deal

with discrete observations, or only embed regular parametric models (such as linear

regression models and maximum likelihood models) into trees.

Section 6.2 gives a brief overview of how regression trees are developed in the

single-outcome setting and the modifications used to extend to multiple responses.

A review of the methods of fitting trees to functional data and model-based recursive

partitioning techniques is also given in this section. Section 6.3 presents our new

method for estimating functional differential equation tree models. Our method

attaches a differential equation model to every leaf node. Section 6.4 features a

comparison of different tree models applied to our online auction data. Section 6.5

gives a brief conclusion.

6.2 Review of Regression Tree Methodology

This section gives a brief overview of how regression trees are developed in the

single-outcome setting, the modifications necessary to extend to multiple responses,

and also to a functional response. In the third part of this section, a brief review of

the model-based recursive partitioning methods is given.
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6.2.1 Univariate Response

Consider the familiar regression setting with p predictors X1, X2, . . . , Xp and

continuous response Y . We assume that complete data are available on all subjects.

A regression tree is grown as follows. For each subgroup or node:

1. Examine every allowable split on each predictor variable.

2. Select and execute (create left and right daughter nodes) the best of these

splits.

Steps 1 and 2 are then reapplied to each of the daughter nodes, and so on. The initial

or root node comprises the entire sample. What constitutes an allowable split in

Step 1 is defined in Chapter 2 of [16]. In short, the covariates are examined one at a

time. For ordered covariates, an allowable split into two subsamples (nodes) is such

that the covariate values in one node are all greater than those in the complementary

node. The allowable splits therefore preserve ordering. For unordered categorical

variables, any split into two disjoint subsets of the categories is permitted. “Best” in

Step 2 is assessed in terms of the split function φ(s, g) that can be evaluated for any

split s of any node g. Two such split functions are espoused in [16]: least squares

(LS) and least absolute deviations (LAD). The LS split function is made explicit

below so that subsequent reformulations can be referenced.

Let g designate a node of the tree. That is, g contains a subsample {(x′i, yi)},

where x′i = (xi1, xi2, . . . , xip). Let Ng be the total number of cases in g and let

ȳ(g) = N−1
g

∑
i∈g yi be the response average for node g. Then, the within node sum-

of-squares is given by SS(g) =
∑

i∈g(yi − ȳ(g))2. Now suppose a split s partitions
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g into left and right daughter nodes gL and gR. The LS split function is φ(s, g) =

SS(g)−SS(gL)−SS(gR), and the best split s∗ of g is the split such that φ(s∗, g) =

max
s∈Ω

φ(s, g), where Ω is the set of all allowable splits s of g.

An LS regression tree is constructed by recursively splitting nodes so as to

maximize the above φ function. The function is such that we create smaller and

smaller nodes of progressively increased homogeneity on account of the nonnegativ-

ity of φ: φ > 0 since SS(g) > SS(gL) + SS(gR)∀s. This nonnegativity also holds

for least absolute deviations and is an essential property of a split function.

6.2.2 Multiple Responses

The regression tree methodology built in [16] was extended in [91] to repeated

measures and longitudinal data by modifying the split functions so as to accom-

modate multiple responses. Several split functions are developed based either on

deviations around subgroup mean vectors or on two sample statistics measuring

subgroup separation.

In the multiple response setting, we consider a situation in which, besides

the vector of covariances, each individual has a T × 1 vector of responses y′i =

(yi1, yi2, . . . , yiT ) is considered. Define V (θ, g) to be the model covariance matrix of

the responses for node g depending on unknown parameters θ. Allowing θ̂ to be the

T (T + 1)/2 sample covariances sjk enables us to proceed without making any as-

sumptions on the covariance structure. However, both efficiency and interpretation

gains can be made by restricting the dimension of θ. Considering the well known
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instability resulting from overparameterizing covariance matrices addressed in [23],

low dimensional θ is always preferred. We write µ(g) to denote the T × 1 vector of

response means for individuals within a given node g.

Two types of split functions are developed to handle multiple response data

by [91]: one that focuses on the mean structure with the covariance as nuisance,

and another that primarily focuses on the covariance structure.

Mean Structure

An immediate generalization of the least squares split function for the single

outcome case given above is obtained by replacing SS(g) with

SS(g) =
∑
i∈g

(yi − µ(g))T V (θ, g)−1(yi − µ(g)). (6.1)

Then, the split function φm for evaluating a split s of g into gL and gR is as before:

φm(s, g) = SS(g)− [SS(gL) + SS(gR)] . (6.2)

This function allows for a different covariance matrix for each of g, gL, and gR

because the parameter estimates θ̂, θ̂L, θ̂R can differ. To ensure that φm > 0 and

that maximizing φm improves homogeneity, it is required that for each candidate

split, the covariance parameters are determined from the parent node g so that

V (θ, g) = V (θL, gL) = V (θR, gR), (6.3)
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and only the mean function is updated. Having determined and implemented the

best split, the resulting daughter nodes become the new parent nodes and the co-

variance parameters are reestimated for each.

Covariance Structure

It has been pointed out by researchers that heterogeneity in longitudinal data

can also affect covariances. In [69] variance heteroscedasticity is modeled as a func-

tion of covariates in the generalized linear models framework with a univariate out-

come. For a multivariate outcome, covariance heteroscedasticity is described as a

function of covariates using the regression tree paradigm in [91]. First one accounts

for the mean structure, and then applies the split functions to residuals for detecting

covariance heterogeneity.

Analogous to the within node measures of loss, functions that assess how

closely the sample covariance matrix conforms to the hypothesized covariance matrix

are considered in [91]. Conformity is measured via a matrix norm:

φc(s, g) = log(‖S(g)−V (θ, g)‖)−[log(‖S(gL)− V (θL, gL)‖)− log(‖S(gR) + V (θR, gR)‖)] .

(6.4)

The preceding form is motivated by analogy with the normal theory of likelihood

ratio test for equality of covariance matrices. The matrix norm ‖ · ‖ can be selected

in accordance with what constitutes a meaningful distance measure for the problem

at hand. A common choice is the squared Euclidean norm, which affords simple

updating algorithms for several basic choices for V . An alternate loss function is

111



presented in [62].

6.2.3 Functional Response

While regression trees were successfully applied to longitudinal data in [91] and

[92], they could be unsuccessful if the response is a high dimensional vector that can

be thought of as a discretization of a continuos response (or so called functional

response). Such a problem is illustrated in [107] in an international call example.

The problem in [107] is to predict a customer’s time-of-day pattern for international

calling from the information in the customer’s first two international calls. In Sec-

tion 3 of [107], they show that fitting a standard multivariate tree to time of day

distributions represented as histograms gives a poor fit and decision rules that are

not sensible. The authors present two procedures that reduce the dimension of the

response and then fit a multivariate decision tree to lower dimensional responses. In

the first approach, each individual’s response curve is represented as a linear com-

bination of spline basis functions, penalizing for roughness, and then a multivariate

regression tree is fit to the coefficients of the basis functions. In the second, a mul-

tivariate regression tree is fit to the first several principal component scores of the

multivariate responses. It is shown that the decision rules based on the spline tree

and the principal component tree are similar and both lead to sensible results.
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Spline Trees

Denote the functional response for individual i by Yi(t), i = 1, . . . , N , where t =

(t1, . . . , tm) are the time points of the observed discretized response values. If Yi(t)

is smooth, then it can be approximated by a linear combination of basis functions

{β1, . . . , βq}, and the coefficients of the linear combination for each individual can be

used as the response for a multivariate tree. If a roughness penalty is imposed on the

approximation, then each response is approximated by only a few basis functions,

and the response vector is low dimensional. Generally, the lower the dimension of

the response vector, the faster multivariate trees can be fit.

To fit a spline tree, take

Yi(t) = fi(t) + εi(t), (6.5)

where

fi(t) =

q∑
j=1

δijβj(t) (6.6)

for a set of basis functions β = (β1(t), . . . , βq(t)) and a coefficient vector δi =

(δi1, . . . , δiq)
T , where εi(t) is white noise with mean zero and constant variance. Then

the q×N estimated coefficient matrix δ̂ =
[
δ̂1, . . . , δ̂N

]
minimizes the penalized sum

of squares

S(δ) =
N∑

i=1

m∑
j=1

(Yi(tj)− fi(tj))
2 + λ

∫
[D2f(t)]2dt. (6.7)
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Green and Silverman (1994) show that δ̂ is defined by

δ̂ = (βT β + λK)−1βTY(t), (6.8)

where β is the m × q basis matrix, Y(t) is the m × N matrix of responses, λ is a

smoothing parameter that is the same for all observations, and Kjk =
∫

D2βj(t)D
2βk(t)dt.

The estimated coefficients δ̂i, i = 1, . . . , N are then used as responses in the

multivariate regression tree. Fitting proceeds as in Section 6.2.2, except that now the

“responses” are the estimated coefficient vectors instead of the original responses of

long vectors and the “prediction” at a node is the mean estimated coefficient vector

for responses in the node. The least squares split function for the current node g is

thus given by

SS(g) = (δ̂i − ¯̂
δ)T βT β(δ̂i − ¯̂

δ) (6.9)

where δ̂i is the estimated coefficient and
¯̂
δ is the mean estimated coefficient vector

for responses in the current node. As before, splitting proceeds by comparing the

split function SS(g) before splitting to the split function SS(gL) + SS(gR) after

splitting, choosing the split that gives the largest decrease in the total least squared

loss. In other words, the best split s∗ of g is the split which maximizes φ(s, g) =

SS(g) − [SS(gL) + SS(gR)]. Namely, φ(s∗, g) = max
s∈Ω

φ(s, g), where Ω is the set of

all allowable splits s of g.
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Note that the predicted curve ˆf(t) at each node can be computed as

ˆf(t) =

q∑
j=1

¯̂
δjβj(t). (6.10)

Principal Components Trees

Instead of reducing the dimension of the response by treating it as a curve,

[107] also reduces the dimension by treating it as a vector and applying principal

components analysis, retaining only the first several principal components. The

authors take

γi =
m∑

j=1

θjYi(tj), (6.11)

where θj is the weighting coefficient and the principal component scores γi are the

uncorrelated linear combinations of the response Y (t) with variances that are as

large as possible. More details may be found in [5].

The first several principal components that explain a great portion of the total

variance are used as responses in a multivariate regression tree. In [107], the first

six principal components in their international call application were used to fit the

tree, since the first six components together explain 45% of the total variance. The

split function for the principal component tree is similar to the spline tree. And the

predicted curve ˆf(t) at each node is again computed by the average of the f̂i(t) in

the node as in equation (6.10).
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6.2.4 Model-Based Recursive Partitioning Methods

As mentioned in Section 6.1, incorporation of (simple) parametric models into

trees has received increasing interest over the past decade. Several algorithms have

been suggested both in the statistical and machine learning communities that attach

parametric models to terminal nodes or employ linear combinations to obtain splits

in inner nodes (see [32, 75, 63, 57, 17, 18, 102]). Based on the ideas of the above

research, in [109] the integration of parametric models into trees is carried one step

further. A rigorous theoretical foundation is provided by introducing a new unified

framework that embeds recursive partitioning into statistical model estimation and

variable selection. In this section, we give a brief review of that work.

A parametric model M(Y, θ) is considered in the work of [109], where Y are

(possibly vector-valued) observations and θ ∈ Θ is a k-dimensional vector of param-

eters. Given N observations Yi (i = 1, . . . , N) the model can be fitted by minimizing

some objective function Ψ(Y, θ) yielding the parameter estimate θ̂

θ̂ = arg min
θ∈Θ

N∑
i=1

Ψ(Yi, θ). (6.12)

Estimators of this type include various well-known estimation techniques, the most

popular being ordinary least squares (OLS) or maximum likelihood (ML) among

other M-type estimators. In the case of OLS, Ψ is typically the error sum of squares

and, in the case of ML, it is the negative log-likelihood.

Let (Z1, . . . , ZL) be a set of partitioning variables. It is assumed that a parti-

tion {βb}(b=1,...,B) of the space Z = Z1 × · · · × ZL exists with B cells (or segments)
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such that within each cell βb, a model M(Y, θb) with a cell-specific parameter θb

holds.

The basic idea of the recursive partitioning algorithm is that each node is

associated with a single model. First, the designated model M(Y, θ) is fitted to all

observations in the current node by estimating θ̂ via minimization of the objective

function Ψ. Second, a fluctuation test for parameter instability with respect to every

ordering Z1, . . . , ZL is performed to assess whether splitting the node is necessary.

If there is significant instability with respect to any of the partitioning variables Zl,

the variable Zl associated with the highest parameter instability is selected. Third,

the split point(s) that locally optimize Ψ is (are) computed. Finally, the node is

split into B locally optimal segments and the procedure is repeated. If no more

significant instabilities can be found, the recursion stops and returns a tree where

each terminal node is associated with a model of type M(Y, θ).

6.3 Model-Based Functional Differential Equation Trees

Following the idea of [109], we now establish a functional-tree framework based

on differential equation models. Our method allows the incorporation of dynamics

via differential equations into the tree context. We combine the PDA techniques

described in [86] for fitting differential equation models to functional data and the

recursive partitioning method proposed in the work of [109] to construct functional

trees with each terminal node associated with a certain differential equation model.

At the same time, both splitting of the nodes and estimation of the parameters are
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based on the same objective function. The incorporation of dynamics into trees of

functional data makes our method new and different from the methods described

previously. Previous methods either only deal with discrete observations or only

embed regular parametric models such as linear regression models and maximum

likelihood models into trees.

Consider a differential equation model

Dmyi = −ω0yi − ω1Dyi − . . .− ωm−1D
m−1yi (6.13)

where yi, i = 1, . . . , N are functional observations and coefficient functions ωj, j =

0, . . . , m − 1 are functions of time t. To find such a differential equation model we

need to identify a linear operator

L = ω0I + ω1D + . . . + ωm−1D
m−1 + Dm (6.14)

that comes as close as possible to satisfying the homogeneous linear differential

equation Lyi = 0 for each observation yi. Since we wish the operator L to annihilate

the given data functions yi as nearly as possible, we regard the function Lyi as the

residual error from the fit provided by the linear differential operator L. Then the

model can be fitted by minimizing the sum of squared norms

SSEPDA(L) =
N∑

i=1

∫
[Lyi(t)]

2dt =
N∑

i=1

∫
[

m∑
j=0

ωj(t)(D
jyi)(t)]

2dt (6.15)

which can be minimized over the m weight functions ωi. Note that ωm(t) = 1 for
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all t as in Eq. (6.14). We define Eq. (6.15) as our objective function and denote it

by Ψ(Y, ω). The parameter estimate for ω, given N observations Yi (i = 1, . . . , N),

can be represented by

ω̂ = arg min
ω∈Ω

N∑
i=1

Ψ(Yi, ω). (6.16)

For ease of reference, we denote the model (6.13) by M(Y, ω).

We have seen in the previous chapter that differential equations provide a good

representation of auction dynamics. But we have also seen that dynamics vary by

auction sub-populations such as items for high vs. low price. Our goal is to develop

a differential equation methodology that accounts for this variability.

The basic idea is that each node is associated with a single model. To assess

whether splitting the node is necessary, a fluctuation test for parameter instability is

performed. If there is significant instability with respect to any of the partitioning

variables Zl, we split the node into B locally optimal segments and repeat the

procedure. If no more significant instabilities can be found, the recursion stops and

returns a tree where each terminal node is associated with a differential equation

model M(Y, ω).

More formally, we assume that a partition {βb}(b=1,...,B) of the spaces Z =

Z1 × . . . × ZL exists with B cells (or segments) such that in each cell βb a dif-

ferential equation model M(Y, ω) with a cell-specific parameter ωb holds. We de-

note this segmented model by Mβ(Y, ω) where ω now the full combined parameter

ω = (ω1, . . . , ωB)T

The steps of the algorithm are as follows:
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1. Fit a differential equation model M(Y, ω) to all observations in the current

node by estimating ω̂ via minimization of the objective function Ψ.

2. Assess the stability of the parameters w.r.t. every ordering Z1, . . . , ZL. If there

is some overall instability, choose the variable Zl∗ associated with the smallest

p-value (or the highest parameter instability) for partitioning, otherwise stop.

3. Search for the locally optimal split point(s) in Zl∗ by minimizing the objective

function of the model ψ.

4. Split the node into daughter nodes and repeat the procedure.

The details for steps 1-3 are specified next. To keep notation simple, the

dependence on the current segment is suppressed and the symbols established for

the global model are used, i.e., N for the number of observations in the current node,

ω̂ for the associated parameter estimate and B = 2 for the number of daughter nodes

chosen.

6.3.1 Parameter Estimation via Basis Expansion

To get smooth estimates of the weight functions ωj, [86] uses a fixed set of

basis functions to approximate them. Let φk, k = 1, . . . , K be a set of K such basis

functions, and let φ denote the K-dimensional vector function (φ1, . . . , φK)T . We

assume that

ωj ≈
∑

k

cjkφk (6.17)
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where the mK-th coefficients cjk define the approximations and must be estimated

from the data. Let the (mK)-vector c contain these coefficients, where index k

varies within index j.

We can approximate the criterion SSEPDA(L) in terms of c as a quadratic

form F̂ (c|y) that can be minimized by standard numerical algebraic techniques. We

have

F̂ (c|y) = C + cT Rc + 2cT s (6.18)

where the constant C does not depend on c, and hence the estimate ĉ is given by

the solution of the equation Rc = −s:

ĉ = −RT s. (6.19)

The symmetric matrix R is of order mK, and consists of an m×m array of K ×K

submatrices Rjk of the form

Rjk = N−1

∫
φ(t)φ(t)T

∑
i

Djyi(t)D
kyi(t)dt (6.20)

for j = 0, . . . , m− 1.

6.3.2 Testing for Parameter Instability

We start partitioning based on some simple rule, i.e., the variances of the

variables. We do each splitting based on the variable which has the largest variance
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in the current node. For example, assume that there are N observations yi, i =

1, . . . , N in the current node and L partitioning variables Zl, l = 1, . . . , L. To decide

on which variable to split the current node, we compare the variance of those L

variables Zl, . . . , ZL. The Zl with the highest variance will be chosen as the splitting

variable. Using an exhaustive search, we find the minimal value of the objective

function Ψ(Y, ω).

While the rule described above is a simple enough starting point, there exist

cases that cannot be solved by this rule: There is no way to assess the stability

of the parameters with respect to every ordering Z1, . . . , ZL. The splitting step we

address is of no different from the classical regression tree except for the objective

function.

As an alternative, we adopt the parameter instability assessing method de-

scribed by [109]. The basic idea of their method is to check whether the score

functions ψ̂i (ψ̂i = ψ̂(Yi, ω̂), ψ = ∂
∂ω

Ψ(Y, ω)) fluctuate randomly around their mean

0 or exhibit systematic deviations from 0 over Zl. These deviations can be captured

by the empirical fluctuation process

Wl(t) = Ĵ−1/2N−1/2

bNtc∑
i=1

φ̂σ(Zil), (0 6 t 6 1) (6.21)

where Ĵ = N−1
∑N

i=1 ψ(Yi, ω̂)ψ(Yi, ω̂)T is an estimate of the covariance matrix

COV (ψ(Y, ω̂)), and σ(Zil) is the ordering permutation which gives the antirank

of the observation Zil in the vector Zl = (Z1l, . . . , ZNl)
T . Thus, Wl(t) is simply the

partial sum process of the scores ordered by the variable Zl, scaled by the number
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of observations n and a suitable estimate Ĵ of the covariance matrix COV (ψ(Y, ω̂)).

This empirical fluctuation process is governed by a functional central limit theorem

under appropriate assumptions and null hypothesis of parameter stability. These

assumptions include: (1) The N observations Yi’s are independent and distributed

according to some distribution F with m-dimensional parameter ω (The indepen-

dence is assumed here for convenience and can be weakened in practice); (2) The

observations are uniquely ordered by some external variable; (3) The estimate Ĵ of

the covariance matrix is non-singular. We are interested in testing the hypothesis

H0 : ωj = ω∗, j = 0, . . . , m − 1. As shown in [108] and [109], under the assump-

tions stated above and under H0, such empirical fluctuation process converges to

an m-dimensional Brownian bridge W 0. A test statistic can be derived by applying

a scalar functional λ(·) capturing the fluctuation in the empirical process to the

fluctuation process λ(Wl(·)) and the corresponding limiting distribution is simply

the same functional applied to the limiting process λ(W 0(·)). The corresponding

p-value pl can be computed. To test whether there is some overall instability in

the current node, we check whether the minimal p-value falls below a pre-specified

significance level α. If this is the case, the variable Zl∗ associated with the minimal

p-value is chosen for splitting the model in the next step of the algorithm.

The general framework for testing parameter stability described here (and also

in [109]) is called a generalized M-fluctuation test and has been established by [108].

A large number of structural change tests suggested both in the econometrics and

statistics literature has been shown to be encompassed in this framework, and [109]

give an overview of these tests. In principle, each of the tests from this framework
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can be used in the recursive partitioning algorithm, but two different test statistics

seem to be particularly attractive and we employ them to assess numerical and

categorical partitioning variables Zl respectively.

Assessing Numerical Predictor Variables: The supLM statistic proposed

by [6] is suitable for capturing the instabilities over a numerical variable Zl:

λ
supLM(Wl) = max

i=i,...,i

(
i

N

N − i

N

)−1

‖Wl

(
i

N

)
‖2

2, (6.22)

which is the maximum of the squared L2 norm of the empirical fluctuation process

scaled by its variance function. This type of statistic first appeared in [6], and can

be interpreted as the LM statistic against a single change point alternative where

the potential change point is shifted over the interval [i, i]. The interval is typically

defined by requiring some minimal segment size i and then i = N − i. The limiting

distribution of (6.22), as shown in [6], is given by the supremum of a squared,

m-dimensional tied-down Bessel process supt (t(1− t))−1 ‖W 0(t)‖2
2 from which the

corresponding p-value pl can be computed.

Assessing Categorical Predictor Variables: By definition, a categorical

variable Zl with C different levels or categories has ties and a total ordering of the

observations is not available. Therefore, a different statistic is needed to capture its

instability. An appropriate statistic is one that is insensitive to the ordering of the

C levels and of the ordering of observations within each level. As described in [39],

one such statistic can be developed as follows. Divide the span of category levels
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into C windows I1, . . . , IC . For component l, the test statistic is given by

λχ2(Wl) =
C∑

c=1

|Ic|
N

−1 ∥∥∥∥∆IcWl

(
i

N

)∥∥∥∥
2

2

(6.23)

where |Ic| is the length of interval Ic (namely, number of observations in category c),

and ∆IcWl is the increment of the empirical fluctuation process over the observations

in category c = 1, . . . , C (i.e., essentially the sum of the scores in category c). The

test statistic is then the weighted sum of the squared L2 norm of the increments

which has an asymptotic χ2 distribution with m · (C − 1) degrees of freedom. The

p-value pl can also be computed correspondingly. More details are given in [39, 109].

As mentioned above, the score function we use to assess the parameter in-

stability is ψ̂i (ψ̂i = ψ̂(Yi, ω̂), ψ = ∂
∂ω

Ψ(Y, ω)). Because problems arise when we

differentiate with respect to the infinite dimensional weight function ω(t), we use

the basis expansion method again to reexpress ψ.

It has been showed in Section 6.3.1 that the weight function can be represented

by (6.17), where φ = (φ1, . . . , φK)T is a K-dimensional vector of basis functions. Let

cj = (cj1, . . . , cjK)T be a K-vector of the coefficients. Then Eq. (6.17) can be

expressed in matrix form

ωj(t) ≈ cT
j φ(t). (6.24)

Substituting ωj(t) in the objective function Ψ(X,ω) = SSEPDA(L) as given in Eq.
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(6.15) with its matrix representation, we get

Ψ(X, c) =
N∑

i=1

∫ [
m∑

h=0

cT
h φ(t)Dhyi(t)

]2

dt. (6.25)

Then the j-th score function can be calculated as

ψj =
1

K

∂

∂cj

∫ [
m∑

h=0

cT
h φ(t)Dhyi(t)

]2

=
2

K

∫ [
m∑

h=0

cT
h φ(t)Dhyi(t)D

jyi(t)

]
φ(t)dt,

j = 1, . . . , m− 1. (6.26)

The integral involved in this expression can be evaluated numerically (e.g., using

the trapezoidal rule over a fine mesh of equally-spaced values of t).

6.3.3 Splitting

In this step the fitted model is split with respect to the variable Zl∗ into a

segmented model with B segments. For a fixed number of splits (e.g., we choose 2),

two rival segmentations can be compared easily by comparing the segmented objec-

tive function
∑B

b=1

∑
i∈Ib

Ψ(Xi, ωb). The optimal partition is found by performing

an exhaustive search over all conceivable partitions with B segments. See [109] for

more details.
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6.4 Comparison of Different Tree Models for Online Auction Dynam-

ics

We now apply the various tree methods to the data from Chapter 3.

First, we apply the multivariate tree from Section 6.2.2. We first sample the

step functions of the live bids (see Chapter 3 for description of live bid reconstruc-

tion) on a fine mesh (with 0.01 intervals) and obtain 190 vectors of length 71. A

multivariate regression tree is fitted to these vectors and pruned to seven nodes.

Figure 6.1 displays the fitted tree after pruning. Figure 6.2 shows the estimated

price curve at each terminal node. Two variables, the opening price and the win-

ning price are recruited into the tree splitting procedure. We see that the estimated

price curves for leaf nodes L4, L5 and L7 are very similar; the main difference is

their magnitude. Similarly, price curves for leaf nodes L1 and L6 are similar, except

for differences in magnitude. The multivariate regression tree thus partitions our

auctions into price paths of 3 or 4 different shapes where each shape can differ in

magnitude. The magnitude and shape of each price curve is determined by the

opening bid.

Next we implement the spline tree from Section 6.2.3. We first recover the

functional objects using B-splines of order 6. A tree is then fit to the 190×18 matrix

of estimated spline coefficients and pruned to seven nodes. Figure 6.3 displays the

resulting tree. The results appear very similar to the multivariate tree. One of

the main differences is the estimated price function for the 5th leaf node L5 which

differs significantly from the multivariate tree in magnitude and shape. But other
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Figure 6.1: The fitted multivariate regression tree. The number in each node is the
sample size. “L1, · · · , L7′′ denotes the 7 terminal/leaf nodes.
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Figure 6.2: Mean price curve for each leaf node of the fitted multivariate regression
tree shown in Figure 6.1. The panels from left to right and top to bottom correspond
to the terminal nodes reading from left to right in Figure 6.1. The x-axes represent
time of auctions and the y-axes represent amounts of prices on log scale.)
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than that, it appears that the spline tree, which is based on a smooth representation

of the auction’s price path, does not differ much from the multivariate tree for which

no smoothing was used.

Figure 6.3: The fitted spline tree. The number in each node is the sample size.
“L1, · · · , L7′′ denotes the 7 terminal/leaf nodes.

For comparison, we also investigate the principal component tree described

in Section 6.2.3. Figure 6.5 gives the first two principal component loadings of the

auction prices for our data. The first component contrasts prices during the duration

of an auction for three typical phases: the beginning phase, the middle phase and

the closing phase. This component alone explains 82.79% of the total variance. The

first two principal components together explain 93.48% of the total variance. A
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Figure 6.4: Mean price curve for each leaf node of the fitted spline tree shown in
Figure 6.3. The panels from left to right and top to bottom correspond to the
terminal nodes reading from left to right in Figure 6.3. The x-axes represent time
of auctions and the y-axes represent amounts of prices on log scale.
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multivariate tree is fit to the first two principal component scores and pruned to

eight leaf nodes. The resulting tree is shown in Figures 6.6 and 6.7. We can see

that interestingly, the distribution of the shapes of the price curves has changed:

almost all price shapes are now marked by little or no early activity and little late

activity (leaf nodes L2, L4, L5, L7, L8). The regression tree identifies one shape of

gradual price increase (leaf node L3) and one shape of intense early activity as well

as moderate late activity (leaf node L1 and L6).
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Figure 6.5: The first two principal component loadings of the auction prices are
displayed from left to right panels. PV indicates the amount of total variation
accounted for by each principal component.
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Figure 6.6: The fitted principal component tree. The number in each node is the
sample size. “L1, · · · , L8′′ denotes the 8 terminal/leaf nodes.
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Figure 6.7: Mean price curve for each leaf node of the fitted principal component
tree shown in Figure 6.6. The panels from left to right and top to bottom correspond
to the terminal nodes reading from left to right in Figure 6.6. The x-axes represent
time of auctions and the y-axes represent amounts of prices on log scale.
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Lastly, we fit the model-based functional differential equation tree proposed

in Section 6.3 to our data. The advantages of using this are: (1) The objective

function used for parameter estimation is also used for partitioning; (2) The recursive

partitioning allows for modeling of non-linear relationships and automated detection

of interactions among the explanatory variables; (3) The use of differential equation

models provides us with a segmented model that we can analyze and interpret by

sub-populations; (4) In contrast to the trees introduced previously, now we also

model the relationship between the dynamics.

Figure 6.8 gives the fitted functional differential equation tree (FDET), pruned

to eight leaf nodes. We see that it adds more explanatory power by introducing a

new splitting variable (the number of bids). We note first that the estimated price

curves now cover a wider range of different shapes (shape 1: fast initial increase

followed by a slow-down and then a late spurt; shape 2: little initial activity and

moderate late spurt; shape 3: almost linear increase; and more). We also note that

these shapes are separated into three groups by the covariate opening price. For

auctions with opening price lower than $0.99, most of the estimated price curves

follow shape 1 (leaf nodes L1 and L3); for auctions with opening price between

$0.99 and $4.99, the estimated price curves follow shape 2 (leaf nodes L4 and L5);

for those with opening price higher than $4.99, whether the estimated price curves

follow shape 2 or shape 3 is jointly determined both by opening price and number

of bids. For an auction opening at a price higher than $4.99, if the number of bids is

less than 23, its estimated price curve resembles shape 2 (leaf nodes L6 and L7). As

does an auction that opens at a price higher than $4.99 with number of bids more
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than 23, its estimated price curve looks like shape 3, a flat straight line (leaf node

L8). This indicates to us that the level of opening price plays a very important role in

partitioning the auction dynamics. In most cases, a low opening price easily attracts

people to place their bids in the auction, thus leading to large amount of bidding

activity at early stage of the auction (early bidding), which causes sharp increase in

price velocity and therefore, in price curve. Since much of the initial bidding energy

is used up in this case, there is few bidding energy left for the late stage of the

beginning of the auction, thus resulting a short period of slow-down in both price

velocity and price curve during the middle of the auction. However, low level of

opening price easily regenerates bidding energy and therefore leads to a huge spurt

towards the end of the auction. In contrast, for auctions with high opening prices,

the auction dynamics are interactively affected by number of bids and opening price.

In general, a high opening price suppresses bidding activity initially, while with the

progress on the auction, the impact of the opening price on the dynamics fades away

as more bids are place, resulting a spurt in the price velocity and consequently the

price curve (this leads to the cases shown in L6 and L7). Interestingly, too many

bids placed over the course of an auction with high opening price might not lead

late increase (leaf node L8).The number of bids, which is the second covariate that

enters the tree, further separates the shapes of estimated price curves into finer

groups, when the opening price is high. This suggests that the number of bids plays

an important role in categorizing the price dynamics conditional at the high level

of opening price.

We investigate the predictive performance of the functional differential equa-
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Figure 6.8: The fitted model-based differential equation tree. The number in each
node is the sample size. “L1, · · · , L8′′ denotes the 8 terminal/leaf nodes. The panels
associated with the leaf nodes are the mean price curves for corresponding leaf nodes
of the fitted differential equation tree. In these panels, the x-axes represent time of
auctions and the y-axes represent amounts of prices on log scale.
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tion tree on a holdout test sample of size 60 auctions (≈ 30% of the data set). A

tree is trained on a learning sample of 130 auctions (≈ 70% of the data set), and the

resulting rule is used to predict the price curves of the 60 auctions in the test sample

based on their auction-related characteristic information. We also measure forecast

accuracy on the test sample using the mean-absolute-percentage-error (MAPE). The

result is shown in Figure 6.9. MAPE is less than 5% for almost the entire auction

period, except at the very start of the auction. This exception may be attributed

to an instability which often appears at the auction start and noise caused by such

instability. On the other hand, spline instability may be another reason for this

exception.
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Figure 6.9: Mean Absolute Percentage Errors (MAPEs). MAPE is the error between
the forecasted price curve and the true functional price curve; The dotted lines
correspond to the 5th and 95th percentiles.
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6.5 Conclusions

In this Chapter, we give a brief overview of extant tree models, from a uni-

variate response, through multivariate response, to a functional response. A brief

review is also given of model-based recursive partitioning methods. Based on these

tree methods, we propose a functional-tree framework that is based on differential

equation models. We compare different tree models by applying them to online

auction dynamics. We show that our functional differential equation tree model

generates a well balanced tree which is more interpretable. This work is novel in the

sense that it incorporates dynamics into trees of functional data. The extant meth-

ods either only deal with discrete observations, or only embed regular parametric

models such as linear regression models or maximum likelihood into trees. While

our method fits trees to functional data, and incorporates dynamics into the tree by

embedding differential equation models into the tree. This allows for the efficient

extraction of meaningful subgroups of functional data based on their dynamics.
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Chapter 7

Conclusions and Future Research

This dissertation studies the price dynamics within and across online auctions

using a modern set of statistical analysis tools called Functional Data Analysis.

As a practical case study, exploratory analyses, statistical modeling and statistical

inference were performed for 190 7-day auctions on Xbox gaming systems and Harry

Potter and the Half-Blood Prince books on eBay.com.

This research was divided into three phases. In phase I, we used the functional

context to systematically describe the empirical regularities of auction dynamics. A

new dynamic forecasting system was developed to predict the price of an ongoing

auction. This model allows dynamic forecasting of an ongoing auction. We ap-

ply our forecasting system to real data from eBay on a diverse set of auctions and

find that the combination of static and time-varying information creates a powerful

forecasting system. The model produces forecasts with low errors, accomodates the

changing price-dynamics well, and outperforms standard forecasting methods like

double exponential smoothing which severely under-predicts the price-evolution. We

conducted a sensitivity analysis over the forecasting accuracy to different choices of

the knots and smoothing parameter, and found that the magnitude of the MAPE

values, the measurement of the forecasting accuracy, change very little in the stan-

dard errors.
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In phase II, we used differential equations models to capture the dynamics in

online auctions. As a preliminary step towards arriving at a suitable differential

equation model, we first performed exploratory analysis based on Phase Plane Plots

of price-dynamics. We showed that a second-order linear differential equation well-

approximates the three-phase dynamics that take place during an eBay auction.

We then use a novel multiple-comparison test to compare the dynamics models of

sub-populations of auctions, where the grouping is based on characteristics of the

auction, the item, the seller, and the bidders.

In phase III, to better incorporate the different characteristics of the auction,

item, bidders and seller information into the differential equation, we extended the

model-based recursive partitioning methods developed by [109] to the functional

context and proposed Model-based Functional Differential Equation Trees. We com-

pared this new tree-method with trees either based on high-dimensional multivariate

responses or functional responses.

7.1 Contributions

The contributions of the research in this dissertation are summarized as fol-

lows:

• Systematic investigation of the empirical regularities of auction dynamics using

a functional regression context.

• Development of a new dynamic forecasting system for the price of an ongoing

auction.
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• Identification and characterization of second-order linear differential equation

for modeling price dynamics of online auctions based on Phase Plane Plots

and simulations.

• Introduction of a new multiple comparison test for the dynamics heterogeneity

of functional data objects across different sub-populations, which captures

both global and local differences between objects.

• Extension of model-based recursive partitioning methods to functional data

objects based on differential equation models.

7.2 Future Work

Modeling online auctions using functional data analysis is still in the devel-

oping stage. The dynamic forecasting model, differential equation model and func-

tional differential equation tree model developed in this work are only implemented

on auctions of the same duration. But the lessons learned form it can be used to

extend the models to auctions of different length. Modeling auctions of different

durations is challenging since it involves registration of misaligned curves (see e.g.

[86] or [48]). However, in the auction context the misaligned curves are of different

length which poses additional difficulties.

Another extension is to incorporate a concurrency component. In online auc-

tions, bidders have the option to inspect and follow multiple auctions at the same

time. This places new challenges for modeling, especially in the functional frame-

work. Some solutions via visualization of concurrent functional objects and modeling
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of concurrent final prices are proposed in a related series of papers [52, 41]. Finally,

further research is required to better understand the exact role of price dynamics

and their impact on economic theory. One possible avenue is the exploration of

functional differential equation models in the auction context [50].

In this dissertation, we have tried to understand and explain the price dynam-

ics of online auctions using different FDA techniques. But more work still needs to

be done to better understand the exact role of price dynamics and their impact on

economic theory, therefore deriving a helpful platform for auction participants.

The models developed in this dissertation are general for many other functional

contexts. They can be easily adapted to functional data in the same fashion of online

auctions, although modeling and forecasting performances and results will likely be

application-dependent. We are interested in the future in investigating how our

models can be extended to those counterparts.

Finally, an enhancement world will be functional bivariate modeling. There

has been substantial research studying the relationship between a set of predictor

variables (e.g., the opening bid, the seller’s rating, condition of the item, ect.) and a

single response variable (e.g., the price) in online auctions via univariate regression

modeling. While there are interactions between the price process and the bidder

process, simple univariate modeling of the price process can cause information loss.

A bivariate functional model for online auctions is required, where both price and bid

time are modeled bivariatly. This is challenging because fitting a bivariate functional

model requires high dimensional smoothing, carefully checking of the model, and

thus new ways of checking model assumptions, residuals, etc. An integrated way
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of fitting and model checking for high dimensional functional data via a series of

classical statistical techniques could potentially fulfill this purpose.

144



Appendix A

Web Crawler

A web crawler is a program or automated script which browses the internet in

a methodical, automated manner. Many online services use them to create a copy

of all the visited pages for later processing. For instance, search engines index the

downloaded pages to provide faster searches. In general, crawlers start with a list

of URLs to visit, called the seeds. And the list of URLs will be recursively visited

based on a certain schedule.

In our context, we focus on the bid information of one specific item. Thus,

we will be crawling a URL instead of a list. Since it is often difficult to retrace the

bid history after the end of the auction, we have to make our crawler recursively

visit the destination before the auction ends. Of course, it is good practice to keep

the frequency as low as possible in order to avoid overloading the opposite server.

With this in the back of our minds and based on a basic crawling package created

by Dr. Gove N. Allen (see [2] and http://www.gove.net for details.), we wrote two

short programs. Sample scripts used for our eBay data collection are provided in

the following Sections. The scripts collect eBay bid information and bid histories

during 2005. There are two types of outputs: “bid information” and “bid history.”

“Bid information” (e.g., item id, start time, num of bids, start price, currency unit,

ship price, seller, rating, reserve status, item condition) for all collected items will be
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put into one file, while “bid history” for each item is written in another individual

separate file. Generally, most efforts are being put on the string retrieve and com-

parison. The script “secretagent.txt” contains the functions used in “ebay.crawler”

(see appendix A.1). Some of these functions are basic crawler functions used to

get the contents of a webpage. Others are utility functions used to help us identify

information on the webpage. And some IO functions are used to write the “bid

information” and “bid history” into separate formatted files like excel files. Finally,

“ebay.crawler” is a sample main function which controls the entire process. See

Appendix A.1 for detailed descriptions of these functions.

A.1 SECRET Agent

The script “secretagent.txt” contains the functions used in “ebay.crawler” (see ap-

pendix A.2). Some of these functions are basic crawler functions used to get the

contents of a webpage. Others are utility functions used to help us identify informa-

tion on the webpage. And some IO functions are used to write the “bid information”

and “bid history” into separate formatted files like excel files. This script was writ-

ten based on a basic crawling package created by Dr. Gove N. Allen (see [2] and

http://www.gove.net for details.), modifications were made to accommodate our

needs in collecting online auctions data from eBay.

General subprocedures:

sub print(TheData)

wscript.echo theData

end sub
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function file exists(filename)

# Create the File System Object

Set temp fso = CreateObject(“Scripting.FileSystemObject”)

if temp fso.FileExists(filename) then

file exists = true

else

file exists = false

end if

end function

#count the the number of occuerance of key str in the given string from start str to end str in doc

function count btw(doc, key str, start str, end str)

temp pos = doc.pos

doc.moveto(start str)

sub str = doc.gettext(end str)

start = 1

count = 0

do

count = count + 1

sp = instr(start, sub str, key str)

if sp = 0 then

count = count -1

end if

start = sp + len(key str)

loop while sp <> 0 and start <len(sub str)

doc.pos = temp pos

count btw = count

end function

#count the the number of occuerance of key str in the given string from current to end str in doc

function count till(doc, key str, end str)

temp pos = doc.pos

sub str = doc.gettext(end str)

start = 1
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count = 0

do

count = count + 1

sp = instr(start, sub str, key str)

if sp = 0 then

count = count -1

end if

start = sp + len(key str)

loop while sp <>0 and start < len(sub str)

doc.pos = temp pos

count till = count

end function

function stripWhiteSpace(theData)

dim retval, onechar, x

retval = ””

for x=1 to len(theData)

onechar=mid(theData, x, 1)

if asc(onechar) = chr(9) or asc(onechar) = chr(13) then

retval=retval & ” ”

elseif asc(onechar) > 31 then

retval=retval & onechar

end if

next

do while instr(1, retval, ” ”)>0

retval=replace(retval,” ”,” ”)

loop

stripWhiteSpace = trim(retval)

end function

function stripTags(theData)

dim retval, dataon, onechar, x

retval = ””

dataon = true

148



for x=1 to len(theData)

onechar=mid(theData, x, 1)

if onechar = ”<” then

dataon=false

elseif onechar=”>” then

dataon=true

elseif dataon then

retval=retval & onechar

end if

next

stripTags = retval

end function

function symbol trans(str)

newstr = replace(str,”&amp;”,”&”)

symbol trans = newstr

end function

function time adj(time1)

temp1 = left(time1, 9)

temp2 = right(time1, 12)

time adj = temp1&” ”&temp2

end function

function ship adj(price)

temp1 = left(price, len(price)-1 )

ship adj = temp1

end function

function price unit(temp str)

if left(temp str,1) = ”G” then

left temp = ”GBP”

elseif left(temp str,1) = ”U” then

left temp = ”US”
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elseif left(temp str,1) = ”E” then

left temp = ”EUR”

end if

price unit = left temp

end function

function price retr(temp str)

#print ”str”&temp str

right temp = right(temp str, len(temp str)-4)

price retr = right temp

end function

function gettext notag(sa, endchar)

nextstr = sa.getText(endchar)

nextstr = ltrim(nextstr)

if len(nextstr) < 1 then

sa.moveto ”>”

nextstr = sa.getText(endchar)

end if

gettext notag = symbol trans(nextstr)

end function

———-functions for retriving bid information ———-

function retr item num(subdoc)

subdoc.moveto ”<title>”

subdoc.moveto ”item ”

retr item num= subdoc.gettext next(10)

end function

function retr start time(subdoc)

subdoc.moveto ”Current bid:”

subdoc.moveto ”Start time:”

subdoc.moveto ”< td >”

start time= gettext notag(subdoc,”<”)
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retr start time = time adj(start time)

’print ”Start time: ” & start time

end function

function retr hist addr(subdoc)

subdoc.moveto ”History:”

subdoc.moveto ”<a href=”””

retr hist addr = gettext notag(subdoc, ””””)

end function

function retr ship price(subdoc)

temp1 = subdoc.pos

subdoc.moveto ”Shipping costs:”

temp2 = subdoc.pos

’the agent skips the situation without shipping cost

if (temp2 - temp1 = 0) or (temp2- temp1 >2000) then

ship price = ”N/A”

subdoc.pos = temp1

else

subdoc.moveto ”>< td >US $”

ship mv = subdoc.pos - temp2

if ship mv > 0 then

ship price= gettext notag(subdoc,”-”)

ship price = ship adj(ship price)

else

ship price=”N/A”

end if

end if

retr ship price = ship price

end function

function retr seller(subdoc)

subdoc.moveto ”Seller information”

subdoc.moveto ”< tr >”
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subdoc.moveto ”<td”

subdoc.moveto ”<td”

subdoc.moveto ”<a href”

subdoc.moveto ”>”

seller= gettext notag(subdoc,”<”)

’print ”Seller: ” & seller

retr seller = seller

end function

function retr rating(subdoc)

subdoc.moveto ”<a href”

subdoc.moveto ”>”

’print ”temp = ”&gettext notag(subdoc,”< /a >”)

retr rating= gettext notag(subdoc,”< /a >”)

’print ”Rating: ” & rating

end function

——– functions for retrieving bid history ——–

function retr user(doc)

doc.moveto ”<td”

doc.moveto ”<td”

if count till(doc, ”<a href”, ”<td”) > 0 then

doc.moveto ”<a href”

doc.moveto ”>”

retr user = gettext notag(doc, ”<”)

else

retr user = ”Private”

end if

end function

function retr user rating(doc)

temp pos = doc.pos

doc.moveto ”<a href”

doc.moveto ”>”
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retr user rating = gettext notag(doc,”<”)

if not isnumeric(retr user rating) then

retr user rating = ”N/A”

doc.pos = temp pos

end if

end function

function retr hist price(doc)

doc.moveto ”<td”

doc.moveto ”>”

retr hist price = gettext notag(doc,”<”)

end function

function retr bid time(doc)

doc.moveto ”<td”

doc.moveto ”<img”

doc.moveto ”>”

retr bid time = gettext notag(doc,”<”)

retr bid time = time adj(retr bid time)

end function

——– function for updating exist old record ——–

function update(filename, doc, v, num)

Dim xlApp, xlBook, xlSht

Set xlApp = CreateObject(”Excel.Application”)

set xlBook = xlApp.WorkBooks.Open(filename)

set xlSht = xlApp.activesheet

xlApp.DisplayAlerts = False

ind = false

update = false

nw = 0

end line = 0

do while xlSht.Cells(end line+1,12) = ”old” or xlSht.Cells(end line+1,12) = ”closed” or xlSht.Cells(end line+1,12)
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= ”updated” or xlSht.Cells(end line+1,12) = ”status”

if xlSht.Cells(end line+1,12) = ”updated” then

xlSht.Cells(end line+1,12) = ”old”

end if

end line = end line + 1

loop

for i = 1 to end line

if ((trim(xlSht.Cells(i,1)) = trim(v(0))) and (trim(xlSht.Cells(i,3)) <> trim(v(2)))) then

for j = 1 to 11

xlSht.Cells(i, j) = v(j-1)

next

xlSht.Cells(i, 12) = ”updated”

update = true

elseif (trim(xlSht.Cells(i,1)) <> trim(v(0))) then

nw = nw + 1

end if

next

if nw = end line then

for j = 1 to 11

xlSht.Cells(end line+1, j) = v(j-1)

next

xlSht.Cells(end line+1, 12) = ”updated”

if end line >num then

xlSht.Cells(end line+1-num, 12) = ”closed”

end if

update = true

end if

xlBook.Save

xlBook.Close SaveChanges=True

xlApp.Quit

#always deallocate after use...

set xlSht = Nothing

Set xlBook = Nothing
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Set xlApp = Nothing

end function

——– Classes ——–

#class definition for secretAgent

Class secretAgent

dim pos, formdata, text, url, http, from, useragent, fso, f

Sub create(agentName, studyURL, researcherEmail)

pos=1

from=researcherEmail

useragent=agentName & ”(” & studyURL & ”)”

set http=createObject(”MSXML2.ServerXMLHTTP.3.0”)

’set http=createObject(”WinHttp.WinHttpRequest.5”)

Set fso = CreateObject(”Scripting.FileSystemObject”)

End Sub

sub getdoc(theURL)

url=theURL

pos=1

http.open ”POST”, theURL, False

http.setRequestHeader ”user-Agent”, useragent

http.setRequestHeader ”From”, from

http.send ””

text=http.responseText

end sub

sub getImage(theURL, filename)

http.Open ”GET”, theURL, false

http.Send()

Set adodbStream = CreateObject(”ADODB.Stream”)

adodbStream.Open

adodbStream.Type = 1 ’adTypeBinary

adodbStream.Write http.responseBody

adodbStream.SaveToFile filename, 2 ’adSaveCreateOverWrite

adodbStream.Close

Set adodbStream = Nothing
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text=”Image saved to: ” & filename

end sub

sub savePage(filename)

Set f = fso.OpenTextFile(filename, 2, True)

f.write text

f.Close

end sub

sub openFile(filename)

pos=1

set f = fso.OpenTextFile(filename, 1, false)

text = f.ReadAll

f.close

end sub

function MoveBackTo(FindText)

If pos < 1 Then pos = 1

pos = InStrRev(text, FindText,pos) + Len(FindText)

If pos = Len(FindText) then

MoveBackTo=false

else

MoveBackTo=true

end if

End function

function moveTo(TheData)

sp=instr(pos,text,TheData)

if sp=0 then

moveto=false

else

moveto=true

pos = sp + len(theData)

end if

end function

function getText(theData)

sp=instr(pos,text,TheData)

if sp = 0 then
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’str not found

getText = ””

else

theLen=sp-pos

getText=mid(text, pos, theLen )

pos = sp + len(theData)

end if

end function

function getText next(length)

getText next=mid(text, pos, length )

pos = pos + length

end function

sub CreatData(filename, theData)

Set f = fso.OpenTextFile(filename, 2, true)’

f.writeLine theData

f.Close

end sub

sub recordData(filename, theData)

Set f = fso.OpenTextFile(filename, 8, true)’, -2)’True)

f.writeLine theData

’f.write theData

f.Close

end sub

sub clearData(filename)

if fso.FileExists (filename) Then fso.DeleteFile filename, true

end sub

Sub print()

WScript.Echo text

End Sub

sub AddFormData(theName, theValue)

if formData > ”” then formData=FormData&”&”

formData=FormData & theName & ”=” & urlencode(theValue)

end sub

sub clearFormData()
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formData=””

end sub

sub postdoc(theURL)

pos=1

url=theURL

http.open ”POST”, theURL, False

http.setRequestHeader ”Content-Type”, ”application/x-www-form-urlencoded”

http.setRequestHeader ”From”, from

http.setRequestHeader ”User-Agent”, useragent

http.send formdata

text=http.responseText

end sub

Function URLEncode(sRawURL)

Dim iLoop

Dim sRtn

Dim sTmp

Const sValidChars =”1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz:/. -$()”̃

If Len(sRawURL) > 0 Then

’ Loop through each char

For iLoop = 1 To Len(sRawURL)

sTmp = Mid(sRawURL, iLoop, 1)

If InStr(1, sValidChars, sTmp, vbBinaryCompare) = 0 Then

’ If not ValidChar, convert to HEX and p

’ refix with %

sTmp = Hex(Asc(sTmp))

If sTmp = ”20” Then

sTmp = ”+”

ElseIf Len(sTmp) = 1 Then

sTmp = ”%0” & sTmp

Else

sTmp = ”%” & sTmp

End If

End If

sRtn = sRtn & sTmp
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Next

URLEncode = sRtn

End If

End Function

End Class

Description of each utility function:

• “create” – initialize the ‘secretAgent’ by filling some user information into

variables

• “getDoc” – given a website, getting text of it and saving it. In this function,

we first set URL and start position (from where we start to retrieve content,

usually we start from 1). Then some of the http’s fields are defined, e.g. http

method is set to POST. Finally, we get the text from the website.

• “getImage” – similar to getDoc, this function retrieve the image and save it

to defined file. (I have not gotten a chance to use this function)

• “savePage” – save current content in ‘text’ to a specified file.

• “openFile” – inverse operation of “savePage” : open a file and put all its

contents into text.

• “moveTo” – It makes use of basic VB script function “instr”. Given a string,

the “moveTo” function will move current position pointer to the first occur-

rence that string. Actually the pointer will point to the position follow the

string.
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• “getText” – Given a string, retrieve all text before the first occurrence of the

string.

• “CreatData” – Open a file for writing data and start write data from the

beginning If the file already exists, the contents are overwritten.

• “recordData” – Open a file and start writing at the end. Contents are not

overwritten.

For more information of academic data collection in electronic environments,

please see [2].

A.2 ebay.crawler

Next, I wrote a sample script for retrieving the auctions on Xboxes on EBAY.COM.

The main script names ebay.crawler.wsf with secretagent.ws. To run this code,

• In WinXp click Start→All Programs→ Accessories→Command Prompt to

open terminal for input command line.

• In this terminal, change directory to where the scripts are.

• type: Wscript.exe ebay.crawler.wsf

• Finally, when executing the scripts, the top 3 hot books will prompted out

and will be recorded into temp.txt file.

General subprocedures:

<job>

<script language=“VBScript” src=“secretagent.ws”> ’can also use“JScript”
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dim sa ’documentation variable

dim subdoc

dim hisdoc

num = 6

Set sa = new secretAgent

Set subdoc = new secretAgent

set hisdoc = new secretAgent

sa.create “ECR Agent 1.0”, “http://www.smith.umd.edu/dit/statschallenges/”, “gshmueliumd.edu”

subdoc.create “ECR Agent 1.0”, “http://www.smith.umd.edu/dit/statschallenges/”, “gshmueliumd.edu”

hisdoc.create “ECR Agent 1.0”, “http://www.smith.umd.edu/dit/statschallenges/”, “gshmueliumd.edu”

folder name = “xbox”

page addr = “http://product.ebay.com/Microsoft-Xbox-Game-console-black W0QQfvcsZ1452QQsoprZ43557637”

if (not file exists(“../results ”&folder name&”/bid info.xls”)) then

sa.creatData ”../results ”&folder name&”/bid info.xls”, ”item num” & chr(9) & ”start time” & chr(9) &

”num bids” & chr(9) & ”start price” & chr(9) & ”unit” & chr(9) & ”ship price” & chr(9) & ”seller” & chr(9) &

”rating” & chr(9) & ”reserve” & chr(9) & ”condition” & chr(9) & ”title” & chr(9) & ”status”’records the data we just

collected

end if

sa.getDoc page addr

sa.pos = 1

k = 0

sa.moveto ”dSI(”

startTime = timer()

do

sa.getDoc page addr

sa.pos = 1

k = 0

sa.moveto ”dSI(”

if count till(sa, ”Optimize your selling success”, ”About eBay”) <> 0 then

sa.moveto ”Optimize your selling success”

end if

do

k = k + 1
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’The following loop skips the unwanted ”buynow” item

do

temp = sa.pos

sa.moveto ”compareLimitTest(this)”

temp2 = sa.pos

pt move = temp2 - temp

’print ”move : ”&pt move

sa.moveto ”<td”

sa.moveto ”<td”

sa.moveto ”<a href=”””

subaddr = gettext notag(sa,””””)

sa.moveto ”>”

title = gettext notag(sa,”<”)

’print ”Title: ” & title

sa.moveto ”<td”

sa.moveto ”>”

condition = rtrim(gettext notag(sa,”<”))

’print ”Condition: ” & condition

’sa.moveto ”<td”

’sa.moveto ”<td”

’sa.moveto ”<td”

sa.moveto ”ebcBid””>”

bids = trim(gettext notag(sa,”<”))

loop while (len(bids)<1) and pt move > 0

if pt move >0 then

’The agent goes to the page for current item

subdoc.getDoc subaddr

item num = retr item num(subdoc)

’print ”item num”&item num

if count btw(subdoc, ”Reserve”, ”Current bid:”, ”Time left:”) = 1 then

reserved = 1

else

reserved = 0

end if
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start time = retr start time(subdoc)

hist addr = retr hist addr(subdoc)

subdoc.moveto ”>”

num bids= trim(gettext notag(subdoc,”b”))

if (IsNumeric(num bids)) then

if num bids <> 0 then

’print ”1bids”&num bids

subdoc.moveto ”(”

temp str= gettext notag(subdoc,”s”)

unit = price unit(temp str)

’print ”unit : ” & unit

start price = price retr(temp str)

’print ”Starting bid: ” & unit &” ”&start price

end if

else

unit = ”N/A”

’if isnumeric(cint(bids)) then

’ num bids = bids

’else

num bids = ”N/A”

’end if

start price = ”N/A”

end if

ship price = retr ship price(subdoc)

seller = retr seller(subdoc)

rating = retr rating(subdoc)

v = array(item num,start time, num bids,start price,unit, ship price,seller,rating,reserved,condition, title)

’print ”item num”&v(0)

if ( len(trim(v(0))) = 10 )then

updated = update(”D:/crawler/results ”&folder name&”/bid info.xls”, sa, v, num)

else

updated = false

end if
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if (isnumeric(num bids) and updated ) then

if num bids <> 0 then

’———– retrieve bid history ————

hisdoc.getDoc hist addr

hisdoc.moveto ”<b>User ID</b>”

hisdoc.moveto ”</tr>”

hisdoc.creatdata ”../results ”&folder name&”/”&trim(item num)&”.xls”, ”item name”&”(”&item num&”)”&”

: ”&title

’total = cint(num bids)

i = 0

do while count btw(hisdoc, ”<td”, ”<tr”, ”</tr>”) < 4

hisdoc.moveto ”</tr>”

loop

do while (count till(hisdoc, ”About eBay”, ”</tr>”) = 0 )

i = i +1

hisdoc.moveto ”<tr”

user id = retr user(hisdoc)

user rating = retr user rating(hisdoc)

hist price = retr hist price(hisdoc)

hist unit = price unit(hist price)

hist price = price retr(hist price)

bid time = retr bid time(hisdoc)

hisdoc.moveto ”</tr>”

hisdoc.recorddata ”../results ”&folder name&”/”&trim(item num)&”.xls”, item num&chr(9)

&user id&chr(9)&user rating&chr(9)&hist price&chr(9)&hist unit&chr(9)&bid time

do while count btw(hisdoc, ”<td”, ”<tr”, ”</tr>”) <4 and count till(hisdoc, ”About eBay”, ”</tr>”) = 0

hisdoc.moveto ”</tr>”

loop

loop

end if

end if

end if

’print item num&” item(s) have been recorded!”
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loop while k < num

endTime = Timer()

intHours = Abs( (endTime-startTime)/3600)

’intMinutes = Abs( (endTime-startTime)/60)

’intSeconds = (endTime-startTime)

loop while intHours < 24

if (not file exists(”../results ”&folder name&”/bid history info.xls”)) then hisdoc.creatdata “..

/results ”&folder name&“/bid history info.xls”, “item #”&chr(9)&“user id”&chr(9)

&“user rating”&chr(9)&“bid price”&chr(9)&“price unit”&chr(9)&“bid time” end if

temp = gen hist file(“D:/crawler/results ”&folder name&“/bid info.xls”, “D:/crawler/results ”

&folder name&“/bid history info.xls”,“D:/crawler/results ”&folder name&“)̈

print “ items’ history have been combined into file ’bid history info.xls’”

</script>

</job>

Based on observation, most of the time, there will be more than 1 item that are

approaching to close. Thus, in this sample code, without missing any item, we set up

a strategy by which we always collect on the top 6 items that are about to be closed.

In the main loop, we also filter out the items marked as “buy-it-now.” After that, we

start to retrieve the bid information for each item and write these bid information

into the excel file “bid-information.xls.” For any one of these six auctions, if there

arrives a new bid, the old bid information recorded for this particular auction so far

will be updated accordingly. Meanwhile, if there is a incoming new bid, the script

will dig into the item link to find the bid history for this item. The corresponding

bid history will be recorded separately into another excel file “bid-history.xls.” To

have a diverse enough data set, we focus our collection on one high-valued product

(e.g. Xbox gaming systems) and one low-valued product (e.g. Harry Potter books).
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Remarks: It is necessary to check the format of the webpage.

Appendix B

Sensitivity Analysis for Penalized Spline Smoothing

In order to test the sensitivity of the penalized spline smoothing with respect

to changes in the knot-allocation and with respect to the choice of λ, we check the

robustness of the results of forecasting online auction price curves (see Chapter 4

for details). The choice of our smoothing parameters is governed by reasonable fit.

Since there is wide range of choices that lead to reasonable curve approximations,

we investigate the sensitivity of the forecasting accuracy to different choices of the

knots and smoothing parameter λ. Table B.1 shows the forecasting accuracy in

terms of MAPE1 (between the forecasted price and the functional curve) and MAPE2

(between the forecasted curve and the actual current auction price) for three different

sets of knots. Similarly, Table B.2 shows the sensitivity to the choice of λ. In both

cases we see that the magnitude of the MAPE values remains in the area of 10%-

30%, with very little change in the standard errors.

Appendix C

Sensitivity Analysis for Regularized Basis Approach

Since the regularized basis approach is used in the work of Chapter 5 and

Chapter 6, we base our sensitivity analysis on the contents of Chapter 5. We inves-

tigate the sensitivity of the model (the 2nd order linear differential equation model
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Table B.1: Sensitivity analysis of knot selection based on different knot scenarios.
Υ2 is the one used in this paper.

Set Knots
MAPE1 MAPE2

Mean Std.Err. Mean Std.Err.

Υ1
0,1,2,3,4,5,6,6.25,6.5,6.75 ,

0.18 0.05 0.29 0.04
6.8750,7

Υ2
0,1,2,3,4,5,6,6.25,6.5,6.75,

0.12 0.02 0.23 0.02
6.8125,6.8750,6.9375,7

Υ3
0,0.5,1,1.5,2,3,4,5,6,6.25,6.5,

0.26 0.04 0.31 0.03
6.75,6.8125,6.8750,6.9375,7

Table B.2: Sensitivity analysis of λ selection (knots fixed to Υ2).

λ
MAPE1 MAPE2

Mean Std.Err. Mean Std.Err.
0.1 0.28 0.04 0.32 0.04
0.3 0.23 0.03 0.28 0.03
0.5 0.21 0.03 0.28 0.03
0.7 0.18 0.02 0.26 0.03
0.9 0.16 0.02 0.25 0.02
1 0.16 0.03 0.27 0.03
5 0.15 0.03 0.27 0.03
10 0.12 0.02 0.24 0.02
15 0.12 0.02 0.23 0.02
20 0.12 0.02 0.23 0.02
25 0.12 0.02 0.23 0.02
30 0.12 0.02 0.23 0.02
40 0.11 0.02 0.23 0.02
50 0.11 0.02 0.23 0.02
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as described in Chapter 5) fit to different knot choices (Table C.1) and smoothing

parameter choices (Table C.2). Figure C.1 shows the estimated coefficient curves

ω∗ and the model-fit measures (RSQ and FRATIO) for the different sets of knots.

Similarly, Figure C.2 shows these measures for different choices of λ. We can see

that while the model is a bit more sensitive to λ, the qualitative nature of the fit

does not change by much for different knots or smoothing parameters.

Table C.1: Sensitivity to different sets of knots. Υ3 is the set used in this paper.

Set Knots
Υ1 0,1,2,3,4,5,6,7
Υ2 0,1,2,3,4,5,6,6.25,6.5,6.75 ,6.8750,7
Υ3 0,1,2,3,4,5,6,6.25,6.5,6.75,6.8125,6.8750,6.9375,7
Υ4 0,0.5,1,1.5,2,3,4,5,6,6.25,6.5,6.75,6.8125,6.8750,6.9375,7

Table C.2: Sensitivity to different values of λ (with a common set of knots Υ3).

Smoothing parameters
λ 0.1,0.3,0.5,0.7,0.9,1,5,10,20,25,30,40,50
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Figure C.1: Sensitivity of model fit to different knots.
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Figure C.2: Sensitivity of model fit to different smoothing parameters.

169



BIBLIOGRAPHY

[1] C. Abraham, P. A. Cornillion, E. Matzner-Lober and N. Molinari, “Unsu-

pervised curve-clustering using B-spline”, Scandinavian Journal of Statistics,

Vol.30, pp.581-595, 2003.

[2] G. N. Allen, D. L. Burk and G. B. Davis, “Academic data collection in electronic

environments: Defining acceptable use of internet resources”, MIS Quarterly,

30(3), 599-610, 12p, 1 chart (AN 21940319), Sep 2006.

[3] R. Almgren, “Financial derivatives and partial differential equations”, Ameri-

can Mathematical Monthly, 2002.

[4] R. Almgren, “Financial derivatives and partial differential equations”, Ameri-

can Mathematical Monthly, 2002.

[5] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd ed.,

New York: Wiley, 1984.

[6] D. W. K. Andrews, “Tests for parameter instability and structural change with-

unkown change point”, Econometrica, 61, 821-856, 1993.

[7] D. Ariely, A. E. Roth and A. Ockenfels, “An experimental analysis of ending

rules in internet auctions”, The RAND Journal of Economics, accepted, 2005.

[8] S. Ba and P. A. Pavlou , “Evidence of the effect of trustbuilding technology in

electronic markets: Price premiums and buyer behavior”, MIS Quarterly, 26,

269-289, 2002.

170



[9] P. Bajari and A. Hortacsu, “The winner’s curse, reserve prices and endogenous

entry: Empirical insights from eBay auctions”, Rand Journal of Economics,

3(2), 329-355, 2003.

[10] P. Bajari anad A. Hortacsu, “Economic insights from internet auctions”, Nber

working paper, No. ∼w10076, 2004.

[11] R. Bapna, P. Goes, A. Gupta and Y. Jin, “User heterogeneity and its impact on

electronic auction market design: An empirical exploration”, MIS Quarterly,

28(1), 2004.

[12] R. Bapna, P. Goes, and A. Gupta, “Analysis and design of business-to-consumer

online auctions”, Management Science, 49, 85-101, 2003.

[13] R. Bapna, W. Jank and G. Shmueli, “Consumer surplus in oline auctions”,

Working paper, University of Connecticut, 2004.

[14] P. C. Besse, H. Cardot and D. B. Stephenson, “Autoregressive forecasting of

some functional climatic variations”, Scandinavian Journal of Statistics, 27,

673-687, 2000.

[15] S. Borle, P. Boatwright and J. B. Kadane, “The timing of bid placement and

extent of multiple bidding: An empirical investigation using eBay online auc-

tions”, Statistical Science (Forthcoming), 2006.

[16] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and

Regression Trees, Belmont, CA: Wadsworth, 1984.

171



[17] K. Y. Chan and W. Y. Loh, “LOTUS: An algorithm for building accurate

and comprehensible logistic regression trees”, Journal of Computational and

Graphical Statistics, 13(4), 826-852, 2004.

[18] Y. Choi, H. Ahn and J. J. Chen, “Regression trees for analysis of count data

with extra poisson variation”, Computational Statistics & Data Analysis, 49,

893-915, 2005.

[19] E. A. Coddington and L. Levinson, Theory of Ordinary Differential Equations,

McGraw-Hill, New York, 1955.

[20] A. Cuevas, M. Febrero and R. Fraiman, “Linear functional regression: The case

of fixed design and functional response”, The canadian Journal of Statistics,

30, 285-300, 2002.

[21] K. D. Daniel and D. Hirshleifer, “A theory of costly sequential bidding”, Techni-

cal report, Kellogg Graduate School of Management, Northwestern University,

1998.

[22] C. Dellarocas, “The digitization of word-of-mouth: Promise and challenges of

online reputation mechanisms” Management Science, October, 2003.

[23] P. Diggle, “An approach to the analysis of repeated measures”, Biometrics, 44,

959-971, 1988.

[24] R. F. Easley and R. Tenorio, “Jump bidding strategies in internet auctions”,

Management Science, 50(10), 1407-1419, October, 2004.

172



[25] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chap-

man&Hall, 1993.

[26] R. F. Engle and J. R. Russel, “Autoregressive conditional duration: A new

model for irregularly spaced transaction data”, Econometrica, 66(5), 1127-

1162, 1998.

[27] M. Escabias, A. M. Aguilera and M. J. Valderrama, “Modeling environmental

data by functional principal component logistic regression”, Environmetrics,

16(1), 95-107, 2004.

[28] J. Fan anad S. K. Lin, “Test of significance when data are curves”, Journal of

the American Statistical Association, 93, 1007-1021, 1998.

[29] J. J. Faraway, “Regression analysis for a functional response”, Technometrics,

39, 254-261, 1997.

[30] J. P. Fouque, G. Papanicolaou and K. R. Sircar, Derivatives in Financial Mar-

kets with Stochastic Volatility, Cambridge University Press, 2000.

[31] R. Fraiman and C. Muniz, “Trimmed means for functional data”, Test, 10,

419-440, 2001.

[32] J. Gamma, “Functional trees”, Machine Learning, 55, 219-250, 2004.

[33] R. Ghani and H. Simmons, “Predicting the end-price of online auctions”,

Proceedings of the International Workshop on Data Mining and Adap-

tive Modeling Methods for Economics and Management, held in conjuction

173



with the 15th European Conference on Machine Learning (ECML/PKDDD),

http://www.accenture.com/xdoc/en/services/technology/publications

/priceprediction.pdf, 2004.

[34] W. Guo, “Inference in smoothing spline analysis of vairance”, Journal of the

Royal Statistical Society, Series B, 64, 887-898, 2002.

[35] P. J. Green and B. W. Silverman, Nonparametric Regression and Generalized

Linear Models, London: Chapman & Hall, 1994.

[36] P. Hall, D. S. Poskitt and B. Presnell, “A functional data-analytic approach to

signal discrimination”, Technometrics, 43, 1-9, 2001.

[37] G. Z. He, H. G. Muller and J. I. Wang, “Functional canonical analysis for square

integrable stochastic processes”, Journal of Multivariate Analysis, 85, 54-77,

2003.

[38] K. Hendricks and H. J. Paarsch, “A survey of recent empirical work concerning

auctions”, The Canadian Journal of Economics, 28(2), 403-426, 1995.

[39] N. L. Hjort and A. Koning, “Tests for constancy of model parameters over

time”, Nonparametric Statistics, 14, 113-132, 2002.

[40] A. Hortacsu and L. Cabral, “Dynamics of seller reputation: Theory and evi-

dence from eBay”, Working paper, University of Chicago, 2005.

[41] V. Hyde, W. Jank, and G. Shmueli, “Investigating concurrency in online auc-

tions through visualization”, The American Statistician, 60(3), 241-25, 2006.

174



[42] M. Isaac, T. C. Salmon and A. Zillante, “A theory of jump bidding in ascending

auctions”, Journal of Economic Behavior and Organization, 62(1), 144-164,

2007

[43] G. M. James, T. J. Hastie and C. A. Sugar, “Principal component models for

sparse functional data”, Biometrika, 87, 587-602, 2000.

[44] G. M. James and T. J. Hastie, “Functional linear discriminant analysis for

irregularly sampled curves”, Journal of the Royal Statistical Society, Series B,

Methodological, 63, 533-550, 2001.

[45] G. M. James, “Generalized linear models with functional predictors”, Journal

of the Royal Statistical Society, Series B,64, 411–432, 2002.

[46] G. M. James,“Generalized linear models with functional predictors”, Journal

of the Royal Statistical Society, Series B, 64, 411-432, 2002.

[47] G. M. James and C. A. Sugar, “Clustering sparsely sampled functional data”,

Journal of the American Statistical Association, 98, 397-408, 2003.

[48] G. M. James, “Curve alignment by moments”, Under review, http://www-

rcf.usc.edu/∼gareth, 2004.

[49] G. M. James, and A. Sood, “Performing hypothesis tests on the shape of func-

tional data”, Computational Statistics and Data Analysis, 50, 1774-1792,

2006.

175



[50] W. Jank and G. Shmueli, “Dynamic profiling of online auctions using curve

clustering”, Working paper, Robert H. Smith School of Business, University

of Maryland, http://www.rhsmith.umd.edu/dit/wjank/AuctionProfiling.pdf,

2004.

[51] W. Jank and G. Shmueli, “Functional data analysis in electronic commerce

research”, Statistical Science, 21(2), 155-166, 2005.

[52] W. Jank and G. Shmueli, “Modeling concurrency of events in online auctions

via spatio-temporal semiparametric models”, forthcoming in the Journal of the

Royal Statistical Society, Series C, 2006.

[53] W. Jank , G. Shmueli, C. Plaisant, and B. Shneiderman, Visualizing Func-

tional Data with an Application to eBay’s Online Auctions, Forthcoming in

Chen, Haerdle and Unwin (eds.) Handbook on Computational Statistics on Data

Visualization, Springer Verlag, Heidelberg, 2006.

[54] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-

Verlag, New York, Inc., 1998.

[55] V. Kargin and A. Onatski, “Curve forecasting by functional auto-regression”,

Discussion paper No.: 0405-18, Department of Economics, Columbia Univer-

sity, New York, http://www.columbia.edu/cu/economics/discpapr/DP0405-

18.pdf, 2004.

[56] P. Klemperer, “Auction theory: A guide to the literature”, Journal of Economic

Surveys, 13(3), 227-286, 1999.

176



[57] H. Kim and W. Y. Loh, “Classification trees with unbiased multiway splits”,

Journal of the American Statistical Association, 96(454), 589-604), 2001.

[58] O. Koppius, Information Architecture and Electronic Market Performance, in:

Ph.d. Thesis, Rsm / Erasmus University, Rotterdam, 2002.

[59] V. Krishna, Auction Theory, Academic Press, San Diego, 2002.

[60] X. Leng and H. G. Mueller, “Clasification using functional data analysis for

temporal gene expression data”, Bioinformatics, 22, 68-76, 2006.

[61] W. Liu, M. Jamshidian and Y. Zhang, “Multiple comparison of several linear

regression models”, Journal of the American Statistical Association, 99, 395-

404, 2004.

[62] W. L. Loh, “Estimating covariance matrices”, The Annals of Statistics, 19,

283-296, 1991.

[63] W. Y. Loh, “Regression trees with unbiased variable selection and interaction

detection”, Statistica Sinica, 12, 361-386, 2002.

[64] N. G. Mankiw, D. Romer, and D. N. Weil, “A contribution to the empirics of

economic growth”, Quarterly Journal of Economics, 107(2), 407-437, 1992.

[65] D. Meyer, F. Leisch and K. Hornik, “The support vector machine under test”,

Neurocomputing, 55(1-2), 169-186, 2003.

[66] P. R. Milgrom and R. J. Weber, “A theory of auctions and competitive bidding”,

Econometrica, 50(5), 1089-1122, 1982.

177



[67] S. Mithas and J. L. Jones, “Do auction parameters affect buyer surplus in

e-auctions for procurement?”, Production and Operations Management (Forth-

coming), 1-33, 2006.

[68] J. N. Morgan and J. A. Sonquist, “Problems in the analysis of survey data,

and a proposal”, Journal of the American Statistical Association, 58(302),

415-434, 1963.

[69] J. A. Nelder and D. Pregibon, “An extended quasi-likelihood function”,

Biometrika, 74, 221-232, 1987.

[70] F. A. Ocana, A. M. Aguilera and M. J. Valderrama, “Functional principal

components analysis by choice of norm”, Journal of Multivariate Analysis, 71,

262-276, 1999.

[71] A. Ockenfels and A. E. Roth, “Strategic late-bidding in continuous-time second-

price internet auctions”, Working Paper, University of Magdeburg, 2001.

[72] C. Octavian, “Reserve prices in repeated multi-unit auctions: Theory and es-

timation”, The Econometrics of Auctions, Toulouse, France, May 12-13, 2006.

[73] R. T. Ogden, C. E. Miller, K. Takezawa and S. Ninomiya, “Functional regres-

sion in crop lodging assessment with digital images”, Journal of Agricultural,

Biological, and Environmental Statistics, 7, 389-402, 2002.

[74] R. M. Pfeiffer, E.B ura, A. Smith and J. L. Rutter, “Two approaches to mu-

tation detection based on functional data”, Statistics in Medicine, 21, 3447-

3464, 2002.

178



[75] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publ.,

San Mateo, California, 1993.

[76] S. J. Ratcliffe, L. R. Leader and G. Z. Heller, “Functional data analysis with

application to periodically stimulated foetal heart rate data I: Functional re-

gression”, Statistics in Medicine, 21, 1103-1114, 2002.

[77] S. J. Ratcliffe, G. Z. Heller and L. R. Leader, “Functional data analysis with

application to periodically stimulated foetal heart rate data II: Functional re-

gression”, Statistics in Medicine, 21, 1115-1127, 2002.

[78] J. O. Ramsay, R. D. Bock and T. Gasser, “Comparison of height acceleration

curves in the fels, zurich, and berkeley growth data”, Annals of Human Biology,

22, 413-426, 1995.

[79] J. O. Ramsay and K. Munhall, V. Gracco and D. Ostry, “Functional data

analysis of lip motion”, Journal of Acoustical Society of America, 99, 3718-

3727, 1996.

[80] J. O. Ramsay, “Principal differential analysis: Data reduction by differential

operators”, Journal of the Royal Statistical Society, Series B, 58, 495-508.58,

pp., 1996.

[81] J. O. Ramsay, “Estimating smooth monotone functions”, Journal of the Royal

Statistical Society, Series B, 60, 365-375, 1998.

[82] J. O. Ramsay, “Differential equation models for statistical functions”, Canadian

Journal of Statistics, 28, 225-240, 2000.

179



[83] J. O. Ramsay, “Function components of variation in handwriting”, Journal of

the American Statistical Association, 95, 09-15, 2000.

[84] J. O. Ramsay and J. B. Ramsey, “Functional data analysis of the dynamics of

the monthly index of nondurable goods production”, Journal of Econometrics,

107, 327-344, 2001.

[85] J. O. Ramsay and B. W. Silverman, Applied Functional Data Analysis: Methods

and Case Studies, Springer-Verlag New York, Inc., 1st edition, 2002.

[86] J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer-Verlag

New York, 2nd edition, 2005.

[87] S. K. Reddy and M. Dass, “Modeling online auction dynamics of fina art using

functional data analysis”, Statistical Science, 21, 179-193, 2006.

[88] D. Lucking-Reiley, D. Bryan, N. Prasad and D. Reeves, “Pennies from eBay:

The determinants of price in online auctions”, Technical report, University of

Arizona,

http://www.vanderbilt.edu/econ/reiley/papers/PenniesFromEBay.pdf, 2000.

[89] N. Rossi, X. Wang and J. O. Ramsay, “Nonparametric item response func-

tion estimates with the EM algorithm”, Journal of Educational and Behavioral

Statistics, 27, 291-317, 2002.

[90] A. E. Roth and A. Ockenfels, “Last-minute bidding and the rules for ending

second-price auctions: Evidence from eBay and amazon on the internet”, em

American Economic Review, 92(4), 1093–1103, 2002.

180



[91] M. R. Segal, “Tree-structured methods for longitudinal data”, Journal of the

American Statistical Association, 87, 407-418, 1992.

[92] M. R. Segal, “Representative curves for longitudinal data via regression trees”,

Journal of Computational and Graphical Statistics, 3(2), 214-233, 1994.

[93] G. Shmueli and W. Jank, Modelling the Dynamics of Online Auctions: A Mod-

ern Statistical Approach, Forthcoming in Kauffman and Tallon (Eds.), Eco-

nomics Information Systems and Ecommerce Research II: Advanced Empirical

Methods, part of Advances in Management Information Systems Series, M.E.

Sharpe, Armonk, NY, 2005.

[94] W. Jank and G. Shmueli, Studying Heterogeneity of Price Evolution in eBay

Auctions via Functional Clustering, Forthcoming in Adomavicius and Gupta

(Eds.), Handbook of Information Systems Series: Business Computing, Else-

vier, 2006.

[95] G. Shmueli and W. Jank, “Visualizing online auctions”, Journal of Computa-

tional and Graphical Statistics, 14(2), 299–319, 2005.

[96] G. Shmueli, R. P. Russo and W. Jank, “The Barista: A model for bid arrivals

in online auctions”, Working paper, Robert H. Smith School of Business, Uni-

versity of Maryland,

http://www.rhsmith.umd.edu/dit/wjank/BARRISTA BidArrivals.pdf, 2005.

181



[97] G. Shmueli, W. Jank, A. Aris, C. Plaisant and B. Shneiderman, “Exploring

auction databases through interactive visualization”, Decision Support Systems,

to appear, 2006.

[98] J. S. Simonoff, Smoothing Methods in Statistics, Springer-Verlag, New York,

1st edition, 1996.

[99] C. W. Smith, Auctions: The Social Construction of Values. New York: Free

Press.

[100] R. M. Solow, “A contribution to the theory of economic growth”, Quarterly

Journal of Economics, 70(1), 65-94, 1956.

[101] J. D. Spurrier, “Exact confidence bounds for all contrasts of three or more

regression lines”, Journal of the American Statistical Association, 94, 483-

488, 1999.

[102] X. Su, M. Wang and J. Fan, “Maximum likelihood regression trees”, Journal

of Computational and Graphical Statistics, 13, 586-598, 2004.

[103] T. Tarpey and K. K. J. Kineteder, “Clustering functional data”, Journal of

Classification, 20, 93-114, 2003.

[104] M. J. Valderrama, F. A. Ocana and A. M. Aguilera, “Forecasting PC-ARIMA

models for functional data”, http://www.quantlet.de/scripts/compstat2002 wh

/paper/invited/F valderrama.pdf, 2002.

182



[105] S. Wang, W. Jank and G. Shmueli, “Explaining and forecasting online auc-

tion prices and their dynamics using functional data analysis”, forthcoming in

Journal of Business and Economic Statistics, 2006.

[106] S.Wang, W. Jank, G. Shmmueli and P. J. Smith, “Modeling price dynamics

in eBay auctions using principal differential analysis”, submitted to Journal of

the American Statistical Association, 2006.

[107] Y. Yu and D. Lambert, “Fitting trees to functional data, with an application

to time-of-day patterns”, Journal of Computational and Graphical Statistics,

8(4), 749-762, 1999.

[108] A. Zeileis and K. Hornik, “Generalized M-fluctuation tests for pa-

rameter instability”. Report 80, SFB “Adaptive Information Systems

and Modelling in Economics and Management Science”, 2003. URL

http://www.wu-wien.ac.at/am/reports.htm#80.

[109] A. Zeileis, T. Hothorn and K. HOrnik, “Model-based recursive partitioning”,

Research Report Series:Report 19, Department of Statistics and Mathematics,

Wirtschaftsuniversität Wien, http://statistik.wu-wien.ac.at, 2005.

183


