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1 IntroductionParallel processing promises to o�er a quantum leap in computational power thatis likely to have a substantial impact on various aspects of the computing �eld, andthat in particular can be exploited to investigate a wide range of what has been called\grand challenge" problems in science and engineering. It is widely recognized [23]that an important ingredient for the success of this technology is the emergence ofcomputational models that can be used for algorithms development and for accuratelypredicting the performance of these algorithms on real machines. We take a similarview as in [24] in that the computation model should be a \bridging model" that linksthe two layers of hardware and software. Existing computation models tend to bebiased towards one or the other layer, except for very few exceptions. The Bulk Syn-chronous Parallel (BSP) model advocated by Valiant [24] is one of the few exceptions.In this paper, we introduce a computation model that speci�cally attempts to be abridging model between the shared memory (single address) programming model andthe distributed-memory message passing architectures. Distributed memory systemscon�gured as a single address space are usually referred to as (scalable) shared mem-ory multiprocessors. These machines achieve the scalability of distributed memoryarchitectures and the simple programming style provided by the single address space.Our model can also be used for predicting performance of data parallel algorithmsrunning on distributed memory architectures.Since a computation model should predict performance on real machines, we startwith a discussion on the basis of our measure of communication costs incurred byaccessing remote data. As indicated in [8], the hardware organizations of massivelyparallel processors (MPPs) seem to be converging towards a collection of powerfulprocessors connected by a communication network that can be modeled as a com-plete graph on which communication is subject to the restrictions imposed by thelatency and the bandwidth properties of the network. According to this common or-ganization, the communication between the di�erent processors is handled by point-to-point messages whose routing times are controlled by parameters related to thenetwork latency, processor communication bandwidth, overhead in preparing a mes-sage, and network capacity. Such a model avoids a description of the exact structureof the network since algorithms exploiting speci�c features of the network are lesslikely to be robust enough to work well on a variety of architectures and to adapteasily to possible future technological changes. However programming the machineat the message-passing level imposes a heavy burden on the programmer and makesalgorithms development and evaluation quite complicated. On the other hand, thedata-parallel and the shared-memory programming models are appealing in terms oftheir ease of use and in terms of their close relationship to sequential programming.Both models assume a single address space.The Block Distributed Memory (BDM) model introduced in the next section cap-tures the performance of shared memory (single address space) algorithms by incor-porating a cost measure for interprocessor communication caused by remote memoryaccesses. The cost is modeled using the latency and the communication bandwidth ofeach processor. Since a remote memory access involves the transmission of a packet1



that typically contains a number of consecutive words, our model encourages the useof spatial locality by incorporating a parameter m that represents a cost associatedwith accessing up to m consecutive words; this cost will be incurred even if a singleword is needed. Our model allows the initial placement of input data and includesthe memory latency hiding technique of pipelined prefetching. Since we measure theamount of local computation and the amount of communication separately, we areable to normalize the communication cost and drop one parameter so as to makethe analysis of the corresponding algorithms simpler. We use our model to developparallel algorithms for various data rearrangement problems, load balancing, sort-ing, the Fast Fourier Transform (FFT) computation, and matrix multiplication. Weshow that most of these algorithms achieve optimal or near optimal communicationcomplexity while simultaneously guaranteeing an optimal speed-up in computationalcomplexity.In the next section, we provide the details of our model while Section 3 describesa collection of algorithms for handling data rearrangements that occur frequentlyin shared memory algorithms. The load balancing problem is addressed in Section 4where a communication e�cient algorithm is presented, and Section 5 is devoted to thepresentation of e�cient algorithms for sorting, FFT, and matrix multiplication. Mostof the resulting algorithms seem to share a common structure with high-performancealgorithms that have been tested on real machines.2 The Block Distributed Memory (BDM) ModelOur computation model, the Block Distributed Memory (BDM), will be de�ned interms of four parameters p, � , �, and m. As we will see later, the parameter � canbe dropped without loss of generality. The parameter p refers to the number of pro-cessors; each such processor is viewed as a unit cost random access machine (RAM).In addition, each processor has an interface unit to the interconnection network thathandles communication among the di�erent processors. Data are communicated be-tween processors via point-to-point messages; each message consists of a packet thatholds m words from consecutive locations of a local processor memory. Since we areassuming the shared memory programming model, each request to a remote loca-tion involves the preparation of a request packet, the injection of the packet intothe network, the reception of the packet at the destination processor, and �nally thesending of a packet containing the contents of m consecutive locations, including therequested value, back to the requesting processor. We will model the cost of handlingthe request to a remote location ( read or write) by the formula � + m�, where �is the maximum latency time it takes for a requesting processor to receive the ap-propriate packet, and � is the rate at which a processor can inject (receive) a wordinto (from) the network. Moreover, no processor can send or receive more than onepacket at a time. As a result we note the following two observations. First, if � isany permutation on p elements, then a remote memory request issued by processorPi and destined for processor P�(i) can be completed in � +m� time for all processorsPi, 0 � i � p � 1, simultaneously. Second, k remote access requests issued by k2



distinct processors and destined to the same processor will require k(� +m�) time tobe completed; in addition, we do not make any assumption on the relative order inwhich these requests will be completed.Most current interconnection networks for multiprocessors use several hardwareand software techniques for hiding memory latency. In our model, we allow pipelinedprefetching for hiding memory latency. In particular, k prefetch read operations issuedby a processor can be completed in � + km� time.The underlying communication model for BDM is consistent with the LogP andthe postal models [8, 13, 5] but with the addition of the parameterm that incorporatesspatial locality. However, our model does not allow low-level handling of messagepassing primitives except implicitly through data accesses. In particular, an algorithmwritten in our model can specify the initial data placement among the local memoriesof the p processors, can use the processor id to refer to speci�c data items, and can usesynchronization barriers to synchronize the activities of various processors whenevernecessary. Remote data accesses are charged according to the communication modelspeci�ed above. As for synchronization barriers, we make the assumption that, onthe BDM model, they are provided as primitive operations. There are two mainreasons for making this assumption. The �rst is that barriers can be implemented inhardware e�ciently at a relatively small cost. The second is that we can make thelatency parameter � large enough to account for synchronization costs. The resultingcommunication costs will be on the conservative side but that should not a�ect theoverall structure of the resulting algorithms.The complexity of a parallel algorithm on the BDM model will be evaluated interms of two measures: the computation time Tcomp, and the communication timeTcomm. The measure Tcomp refers to the maximum of the local computation per-formed on any processor as measured on the standard sequential RAM model. Thecommunication time Tcomm refers to the total amount of communication time spentby the overall algorithm in accessing remote data. Our main goal is the design of par-allel algorithms that achieve optimal or near-optimal computational speedups, thatis, Tcomp � O(Tseqp ), where Tseq is the sequential complexity of the problem underconsideration, in such a way that the total communication time Tcomm is minimized.Since Tcomm is treated separately from Tcomp, we can normalize this measure bydividing it by �. The underlying communication model for BDM can now be viewedas the postal model [5] but with the added parameter m re
ecting spatial locality.Hence an access operation to a remote location takes � +m time, and k prefetch readoperations can be executed in � + km time. Note that the parameter � should nowbe viewed as an upper bound on the capacity of the interconnection network, i.e.,an upper bound on the maximum number of words in transit from or to a processor.In our estimates of the bounds on the communication time, we make the simplifying(and reasonable) assumption that � is an integral multiple of m.We believe that locality is an important factor that has to be taken into consid-eration when designing parallel algorithms for large scale multiprocessors. We haveincorporated the parameter m into our model to emphasize the importance of spatiallocality. The notion of processor locality also seems to be important in current mul-tiprocessor architectures; these architectures tend to be hierarchical, and hence the3



latency � is much higher for accessing processors that are further up in the hierarchythan those that are \close by". This feature can be incorporated into our model bymodifying the value of � to re
ect the cost associated with the level of hierarchy thatneeds to be used for a remote memory access. This can be done in a similar fashionas in the memory hierarchy model studied in [2] for sequential processors. Howeverin this paper we have opted for simplicity and decided not to include the processorlocality into consideration.Several models that have been discussed in the literature, other than the LogPand the postal models referred to earlier, are related to our BDM model. Howeverthere are signi�cant di�erences between our model and each of these models. Forexample, both the Asynchronous PRAM [9] and the Block PRAM [1] assume thepresence of a shared memory where intermediate results can be held; in particular,they both assume that the data is initially stored in this shared memory. This makesdata movement operations considerably simpler than in our model. Another exampleis the Direct Connection Machine (DCM) with latency [14] that uses message passingprimitives; in particular, this model does not allow pipelined prefetching as we do inthe BDM model.3 Basic Algorithms for Data MovementsThe design of communication e�cient parallel algorithms depends on the existence ofe�cient schemes for handling frequently occurring transformations on data layouts.In this section, we consider data layouts that can be speci�ed by a two-dimensionalarray A, say of size q�p, where column i of A contains a subarray stored in the localmemory of processor Pi, where 0 � i � p � 1. A transformation � on the layout Awill map the elements of A into the layout �(A) not necessarily of the same size. Wepresent optimal or near optimal algorithms to handle several such transformationsincluding broadcasting operations, matrix transposition, and data permutation. Allthe algorithms described are deterministic except for the algorithm to perform ageneral permutation.We start by addressing several broadcasting operations. The simplest case is tobroadcast a single item to a number of remote locations. Hence the layout A canbe described as a one-dimensional array and we assume that the element A[0] hasto be copied into the remaining entries of A. This can be viewed as a concurrentread operation from location A[0] executed by processors P1; P2; : : : ; Pp�1. The nextlemma provides a simple algorithm to solve this problem; we later use this algorithmto derive an optimal broadcasting algorithm.Lemma 3.1 Given a p-processor BDM and an array A[0 : p� 1] where A[j] residesin processor Pj , the element A[0] can be copied into the remaining entries of A in� +m(p� 1) communication time.Proof: A simple algorithm consists of p � 1 rounds that can be pipelined. Duringthe rth round, each processor Pj reads A[(j + r) mod p], for 1 � r � p� 1; however,only A[0] is copied into A[j]. Since these rounds can be realized with p� 1 pipelined4



prefetch read operations, the resulting communication complexity is � +m(p� 1). 2We are now ready for the following theorem that essentially establishes the factthat a k-ary balanced tree broadcasting algorithm is the best possible for k = �m + 1(recall that we earlier made the assumption that � is an integral multiple of m).Theorem 3.1 Given a p-processor BDM, an item in a processor can be broadcast tothe remaining processors in � 2�d log plog( �m+1)e communication time. On the other hand,any broadcasting algorithm that only uses read, write, and synchronization barrierinstructions requires at least (� logplog( �m+2) +m log p) communication complexity.4Proof: We start by describing the algorithm. Let k be an integer to be deter-mined later. The algorithm can be viewed as a k-ary tree rooted at location A[0];there are dlogk pe rounds. During the �rst round, A[0] is broadcast to locationsA[1]; A[2]; : : : ; A[k � 1], using the algorithm described in Lemma 3.1, followed by asynchronization barrier. Then during the second round, each element in locationsA[0]; A[1]; : : : ; A[k�1] is broadcast to a distinct set of k�1 locations, and so on. Thecommunication cost incurred during each round is given by � + (k � 1)m (Lemma3.1). Therefore the total communication cost is Tcomm � (� + (k � 1)m)dlogk pe. Ifwe set k = �m + 1, then Tcomm � (� + �mm)d logplog( �m+1)e = 2�d logplog( �m+1)e.We next establish the lower bound stated in the theorem. Any broadcastingalgorithm using only read, write, and synchronization barrier instructions can beviewed as operating in phases, where each phase ends with a synchronization barrier(whenever there are more than a single phase). Suppose there are s phases. Theamount of communication to execute phase i is at least � + kim, where ki is themaximum number of copies read from any processor during phase i. Hence the totalamount of communication required is at least Psi=1(� + kim). Note that by theend of phase i, the desired item has reached at most (k1 + 1)(k2 + 1) � � � (ki + 1)remote locations. It follows that, if by the end of phase s, the desired item hasreached all the processors, we must have p � (k1 + 1)(k2 + 1) � � � (ks + 1). Thecommunication time Psi=1(� + kim) is minimized when k1 = k2 = � � � = ks = k, andhence (k + 1)s � p. Therefore s � log plog(k+1) and the communication time is at leasts(� + km) � (� + km) logplog(k+1) . We complete the proof of this theorem by proving thefollowing claim.Claim: �+kmlog(k+1) � �log( �m+2) +m, for any k � 1.Proof of the Claim: Let r = �m , f1(k) = �log(k+1) , f2(k) = kmlog(k+1), and f(k) =f1(k) + f2(k) = �+kmlog(k+1). Then,f 0(k) = m(k + 1) log(k + 1) � (log e)(� + km)(k + 1) log2(k + 1) :(Case 1) (1 � k � r + 1): Since f1(k) is decreasing and f2(k) is increasing in thisrange, the claims follows easily by noting that f1(k) � f1(r + 1) = �log( �m+2) and4All logarithms are to the base 2 unless otherwise stated.5



f2(k) � f2(1) = m.(Case 2) (k > r+1): We show that f(k) is increasing when k > r+1 by showing thatf 0(k) > 0 for all integers k � r + 1. Note that since k � �m + 1, we have that m(k +1) log(k+1)�(log e)(�+km) is at least as large as m[(k+1) log(k+1)�(log e)(2k�1)]which is positive for all nonzero integer values of k. Hence f(k) � f( �m + 1) and theclaim follows. 2The sum of p elements on a p-processor BDM can be computed in at most 2�d logplog( �m+1)ecommunication time by using a similar strategy. Based on this observation, it is easyto show the following theorem.Theorem 3.2 Given n numbers distributed equally among the p processors of aBDM, we can compute their sum in O(np + � logpm log �m ) computation time and at most2�d log plog( �m+1)e communication time. The computation time reduces to O(np ) wheneverp log p � n� . 2Another simple broadcasting operation is when each processor has to broadcastan item to all the remaining processors. This operation can be executed in minf� +m(p� 1); 2� + (m2 + p)g communication time as shown in the next lemma.Lemma 3.2 Given a p-processor BDM and an array A[0 : p� 1] distributed one ele-ment per processor, the problem of broadcasting each element of A to all the processorscan be done in minf� +m(p� 1); 2� +m2 + pg communication time.Proof: The bound of � + m(p � 1) follows from the simple algorithm described inLemma 3.1. If p is signi�cantly larger than m, then we can use the following strategy.We use the previous algorithm until each processor has m elements. Next, each blockofm elements is broadcast in a circular fashion to the appropriate (d pme�1) processors.One can verify that the resulting communication complexity is 2� +m2 + p. 2Our next data movement operation is the matrix transposition that can be de�nedas follows. Let q � p and let p divide q evenly without loss of generality. The datalayout described by A is supposed to be rearranged into the layout A0 so that the �rstcolumn of A0 contains the �rst q=p consecutive rows of A laid out in row major orderform, the second column of A0 contains the second set of q=p consecutive rows of A,and so on. Clearly, if q = p, this corresponds to the usual notion of matrix transpose.An e�cient algorithm to perform matrix transposition on the BDM model issimilar to the algorithm reported in [8]. There are p � 1 rounds that can be fullypipelined by using prefetch read operations. During the �rst round, the appropriateblock of q=p elements in the ith column of A is read by processor P(i+1)modp into theappropriate locations, for 0 � i � p � 1. During the second round, the appropriateblock of data in column i is read by processor P(i+2)modp, and so on. The resulting totalcommunication time is given by Tcomm = �+(p�1)md qpme � �+(q� qp)+(p�1)m andthe amount of local computation is O(q). Clearly this algorithm is optimal wheneverpm divides q. Hence we have the following lemma.6



Lemma 3.3 A q � p matrix transposition can be performed on a p-processor BDMin � + (p� 1)md qpme; this bound reduces to � + (q � qp) whenever pm divides q. 2We next discuss the broadcasting operation of a block of n elements residing ona single processor to p processors. We describe two algorithms, the �rst is suitablewhen the number n of elements is relatively small, and the second is more suitablefor large values of n. Both algorithms are based on circular data movement as usedin the matrix transposition algorithm. The details are given in the proof of the nexttheorem.Theorem 3.3 The problem of broadcasting n elements from a processor to p proces-sors can be completed in at most 2[2�d logplog( �m+1)e + n] communication time by usinga k-ary balanced tree algorithm. On the other hand, this problem can be solved inat most 2[� + (p � 1)md npme] communication time by using the matrix transpositionalgorithm.Proof: For the �rst algorithm, we use a k-ary tree as in the single item broadcastingalgorithm described in Theorem 3.1, where k = �m+1. Using the matrix transpositionstrategy, distribute the n elements to be broadcast among k processors, where eachprocessor receives a contiguous block of size nk . We now view the p processors aspartitioned into k groups, where each group includes exactly one of the processorsthat contains a block of the items to be broadcast. The procedure is repeated withineach group and so on. A similar reverse process can gradually read all the n itemsinto each processor. Each forward or backward phase is carried out by using thecyclic data movement of the matrix transposition algorithm. One can check that thecommunication time can be bounded as follows.Tcomm � 2[(� + (k � 1)md nkme) + (� + (k � 1)md nk2me) + � � �]� 2[2�d log plog( �m + 1)e+ n]If n > pm, we can broadcast the n elements in 2[� + (p � 1)md npme] communicationtime using the matrix transposition algorithm of Lemma 3.3 twice, once to distributethe n elements among the p processors where each processor receives a block of sizenp , and the second time to circulate these blocks to all the processors. 2The problem of distributing n elements from a single processor can be solved byusing the �rst half of either of the above two broadcasting algorithms. Hence we havethe following corollary.Corollary 3.1 The problem of distributing n elements from one processor to p � 1processors such that each processor receives np elements can be completed in at mostminf(2�d log plog( �m+1)e+ n); (� + (p� 1)md npme)g communication time. 27



We �nally address the following general routing problem. Let A be an np �p arrayof n elements initially stored one column per processor in a p-processor BDMmachine.Each element of A consists of a pair (data,i), where i is the index of the processor towhich the data has to be relocated. We assume that at most �np elements have to berouted to any single processor for some constant � � 1. We describe in what followsa randomized algorithm that completes the routing in 2(� + cnp ) communication timeand O(np ) computation time, where c is any constant larger than maxf1+ 1p2 ; �+p�2 g.The complexity bounds are guaranteed to hold with high probability, that is, withprobability � 1� n��, for some positive constant �, as long as p2 < n6 lnn , where ln isthe logarithm to the base e.The overall idea of the algorithm has been used in various randomized routingalgorithms on the mesh. Here we follow more closely the scheme described in [20] forrandomized routing on the mesh with bounded queue size.Before describing our algorithm, we introduce some terminology. We use an aux-iliary array A0 of size cnp �p for manipulating the data during the intermediate stagesand for holding the �nal output, where c > maxf1 + 1p2; � + p�2 g. Each column ofA0 will be held in a processor. The array A0 can be divided into p equal size slices,each slice consisting of cnp2 consecutive rows of A0. Hence a slice contains a set of cnp2consecutive elements from each column and such a set is referred to as a slot. We areready to describe our algorithm.Algorithm Randomized RoutingInput: An input array A[0 : np � 1; 0 : p � 1] such that each element of A consists ofa pair (data,i), where i is the processor index to which the data has to be routed. Noprocessor is the destination of more than �np elements for some constant �.Output: An output array A0[0 : cnp � 1; 0 : p� 1] holding the routed data, where c isany constant larger than maxf1 + 1p2 ; �+ p�2 g.begin[Step 1 ] Each processor Pj distributes randomly its np elements into the p slots of thejth column of A0.[Step 2 ] Transpose A0 so that the jth slice will be stored in the jth processor, for0 � j � p � 1.[Step 3 ] Each processor Pj distributes locally its � cnp elements such that every elementof the form (*,i) resides in slot i, for 0 � i � p � 1.[Step 4 ] Perform a matrix transposition on A0 (hence the jth slice of the layout gener-ated at the end of Step 3 now resides in Pj).endThe next two facts will allow us to derive the complexity bounds for our random-ized routing algorithm. For the analysis, we assume that p2 < n6 lnn .8



Lemma 3.4 At the completion of Step 1, the number of elements in each slot is nomore than cnp2 with high probability, for any c > 1 + 1p2 .Proof: The procedure performed by each processor is similar to the experiment ofthrowing np balls into p bins. Hence the probability that exactly cnp2 balls are placedin any particular bin is given by the binomial distributionb(k;N; q) =  Nk ! qk(1� q)N�k;where k = cnp2 , N = np , and q = 1p . Using the following Cherno� bound for estimatingthe tail of the binomial distributionXj�(1+�)Nq b(j;N; q) � e��2Nq=3;we obtain that the probability that a particular bin has more than cnp2 balls is upperbounded by e�(c�1)2 n3p2 :Therefore the probability that any of the bins has more than cnp2 balls is bounded byp2e�(c�1)2 n3p2 and the lemma follows. 2Lemma 3.5 At the completion of Step 3, the number of elements in any processorwhich are destined to the same processor is at most cnp2 with high probability, for anyc > �+ p�2 .Proof: The probability that an element is assigned to the jth slice by the end ofStep 1 is 1p . Hence the probability that cnp2 elements destined for a single processorfall in the jth slice is bounded by b( cnp2 ; �np ; 1p) since no processor is the destination ofmore than �np elements. Since there are p slices, the probability that more than cnp2elements in any processor are destined for the same processor is bounded bype�( c��1)2 �n3p2 ;and hence the lemma follows. 2>From the previous two lemmas, it is easy to show the following theorem.Theorem 3.4 The routing of n elements stored initially in an np � p array A of ap-processor BDM such that at most �np elements are destined to the same processorcan be completed with high probability in 2(� + cnp ) communication time and O(np )computation time, where c is any constant larger than maxf1 + 1p2; � + p�2 g, andp2 < n6 lnn . 2Remark: Since we are assuming that p2 < n6 lnn , the e�ect of the parameter m isdominated by the bound cnp (as np > 6p ln n � mp, assuming m � 6 ln n). 29



4 Load BalancingBalancing load among processors is very important since poor balance of load gen-erally causes poor processor utilization [19]. The load balancing problem is also im-portant in developing fast solutions for basic combinatorial problems such as sorting,selection, list ranking, and graph problems [12, 21].This problem can be de�ned as follows. The load in each processor Pi is givenby an array Ai[0 : ni � 1], where ni represents the number of useful elements in Pisuch that maxp�1j=0fnjg = M and Pp�1j=0 nj = n. We are supposed to redistribute then elements over the p processors such that np elements are stored in each processor,where we have assumed without loss of generality that p divides n.In this section, we develop a simple and e�cient load balancing algorithm for theBDM model. The corresponding communication time is given by Tcomm � 5� +M +np + p + 2m2. The overall strategy is described next.Let ni;1 = bnim cm and ni;2 = ni�ni;1, for 0 � i � p� 1. Then, the overall strategyof the load balancing algorithm can be described as follows: First, the load balancingproblem of the (n0;1+n1;1+ � � �+np�1;1) elements stored in the p arrays Ai[0 : ni;1�1],0 � i � p�1, is considered and hence an output array A0i[0 : np �1] of Pi is generated.The array A0i may have km or (k � 1)m useful elements, where k = npm (steps 2 and3). Next, processors with (k�1)m useful elements read m elements from appropriateprocessors (Step 4). The details are given in the next algorithm. We assume forsimplicity that all of n, p, and m are powers of two.Algorithm Load BalancingInput : Each processor Pi contains an input array Ai[0 : ni � 1].Output : The elements are redistributed in such a way that np elements are storedin the output array A0i[0 : np � 1] of Pi, for 0 � i � p� 1.begin[Step 1 ] Each processor Pi reads the p � 1 values n0; : : : ; ni�1; ni+1; : : : ; np�1 held inthe remaining processors. This step can be performed in at most 2� +m2 + pcommunication time by Lemma 3.2.[Step 2 ] Processor Pi performs the following local computations:2.1 for j = 0 to p � 1 dof nj;1 = bnjm cm; nj;2 = nj � nj;1;g2.2 Compute the pre�x sums s0; s1; : : : ; sp�1 of n0;1; n1;1; : : : ; np�1;1, andcompute t = b sp�1�n+pmm c;2.3 if (i < t) thenf li = min fjjinp < sjg;ri = min fjj(i+ 1)np � sjg;gelsef li = min fjji(np �m) + tm < sjg;10



ri = min fjj(i+ 1)(np �m) + tm � sjg;gRemark: The index t is chosen in such a way that, for i < t, processor Pi willread np elements, and for i � t, Pi will read np �m elements. The indices li andri will be used in the next step to determine the locations of the np or np �melements that will be moved to Pi. Notice that this step takes O(p) computationtime.[Step 3 ] Processor Pi reads Ali+1; Ali+2; : : : ; Ari�1, and reads appropriate numbers ofelements from Ali and Ari respectively.Remark: This step needs a special attention since there are cases when a set ofconsecutive processors read their elements from one processor, say Pi. Assumethat h processors, Pi0 ; Pi0+1; : : : ; Pi0+h�1, have to read some appropriate elementsfrom Pi. Notice that h � d Mn=p�me+ 1. Then this step can be divided into twosubsteps as follows: In the �rst substep, h� 1 processors, Pi0 ; Pi0+1; : : : ; Pi0+h�2,read their elements from each such Pi; this substep can be done in � + Mcommunication time by applying Corollary 3.1. In the second substep, the restof the routing is performed by using a sequence of read prefetch operations sincethe remaining elements in each processor are accessed only by a single processor.Hence the total communication time required by this step is (�+M)+(�+ np ) =2� +M + np .[Step 4 ] Processor Pi, (i � t), reads the remaining m elements from the appropriateprocessors; the corresponding indices l0i and r0i can be computed locally as inStep 2.Remark: This step can be completed in (� + m2) communication time sinceeach processor reads its m elements from at most m processors, and these readscan be prefetched.endThus, one can show the following theorem.Theorem 4.1 The load balancing of n elements over p processors, such that at mostM elements reside in any processor, can be realized in 5� +M + np + p + 2m2 com-munication time . 25 Sorting, FFT, and Matrix MultiplicationIn this section, we consider the three basic computational problems of sorting, FFT,and matrix multiplication, and present communication e�cient algorithms to solvethese problems on the BDM model. The basic strategies used are well-known but theimplementations on our model require a careful attention to several technical details.11



5.1 SortingWe �rst consider the sorting problem on the BDM model. Three strategies seem toperform best on our model; these are (1) column sort [15], (2) sample sort (see e.g.[6] and related references), and (3) rotate sort [18]. It turns out that the column sortalgorithm is best when n � 2p(p � 1)2, and that the sample sort and the rotate sortare better when p2 � n < 2p(p � 1)2.The column sort algorithm is particularly useful if n � 2p(p�1)2; it can be imple-mented in at most (4� + 3np +2pm) communication time with O(n lognp ) computationtime. When n < 2p(p � 1)2, the column sort algorithm is not practical since its con-stant term grows exponentially as n decreases. The sample sort algorithm is provablye�cient when p2 < n6 lnn ; it can be implemented in (3�+(p�1)d5 lnnm em+6np ) commu-nication time and O(n lognp ) computation time with high probability. The rotate sortalgorithm can be implemented in 8(� + np + pm) communication time with O(n lognp )computation time, whenever n � 6p2.We begin our description with the column sort algorithm.Column SortThe column sort algorithm is a generalization of odd-even mergesort and can bedescribed as a series of elementary matrix operations. Let A be an q � p matrix ofelements where qp = n, p divides q, and q � 2(p � 1)2. Initially, each entry of thematrix is one of the n elements to be sorted. After the completion of the algorithm,A will be sorted in column major order form. The column sort algorithm has eightsteps. In steps 1, 3, 5, and 7, the elements within each column are sorted. In steps2 and 4, the entries of the matrix are permuted. Each of the permutations is similarto matrix transposition of Lemma 3.3. Since q = np in this case, these two stepscan be done in 2(� + (p � 1)d nmp2 em) � 2(� + np + pm) communication time. Eachof steps 6 and 8 consists of a q2 -shift operation which can be clearly done in � + n2pcommunication time. Hence the column sort algorithm can be implemented on ourmodel within (4� + 3np + 2pm) communication time and O(n lognp ) computation time.Thus, we have the following theorem.Theorem 5.1 Given n � 2p(p�1)2 elements such that np elements are stored in eachof the local memories of a set of p processors, the n elements can be sorted in columnmajor order form in at most (4� + 3np + 2pm) communication time and O(n lognp )computation time. 2Sample SortThe second sorting algorithm that we consider in this section is the sample sortalgorithm which is a randomized algorithm whose running time does not depend onthe input distribution of keys but only depends on the output of a random numbergenerator. We describe a version of the sample sort algorithm that sorts on the BDMmodel in at most (3� + (p � 1)d5 lnnm em + 6np ) communication time and O(n lognp )computation time whenever p2 < n6 lnn . The complexity bounds are guaranteed withhigh probability if we use the randomized routing algorithm described in Section 3.12



The overall idea of the algorithm has been used in various sample sort algorithms.Our algorithm described below follows more closely the scheme described in [6] forsorting on the connection machine CM-2; however the �rst three steps are di�erent.Algorithm Sample SortInput: n elements distributed evenly over a p-processor BDM such that p2 < n6 lnn .Output: The n elements sorted in column major order.begin[Step 1 ] Each processor Pi randomly picks a list of 5 lnn elements from its local memory.[Step 2 ] Each processor Pi reads all the samples from all the other processors; henceeach processor will have 5p ln n samples after the execution of this step.[Step 3 ] Each processor Pi sorts the list of 5p ln n samples and pick (5 ln n + 1)st,(10 ln n+ 1)st, : : : samples as the p � 1 pivots.[Step 4 ] Each processor Pi partitions its np elements into p sets, Si;0; Si;1; : : : ; Si;p�1,such that the elements in set Si;j belong to the interval between jth pivot and(j + 1)st pivot, where 0th pivot is �1, pth pivot is +1, and 0 � j � p� 1.[Step 5 ] Each processor Pi reads all the elements in the p sets, S0;i; S1;i; : : : ; Sp�1;i, byusing Algorithm Randomized Routing.[Step 6 ] Each processor Pi sorts the elements in its local memory.endThe following lemma can be immediately deduced from the results of [6].Lemma 5.1 For any � > 0, the probability that any processor contains more than�np elements after Step 5 is at mostne�(1� 1� )2 5� ln n2 : 2Next, we show the following theorem.Theorem 5.2 Algorithm Sample Sort can be implemented on the p-processor BDMin O(n lognp ) computation time and in at most (3� + (p� 1)d5 lnnm em+ 6np ) communi-cation time with high probability, if p2 < n6 lnn .Proof: Step 2 can be done in � + (p � 1)d5 lnnm em communication time by using atechnique similar to that used to prove Lemma 3.2. By Lemma 5.1, the total numberof elements that each processor reads at Step 5 is at most 2np elements with highprobability. Hence, Step 5 can be implemented in 2� + 6np communication time withhigh probability using Theorem 3.4. The computation time for all the steps is clearlyO(n lognp ) with high probability if p2 < n6 lnn , and the theorem follows. 213



Rotate SortThe rotate sort algorithm [18] sorts elements on a mesh by alternately applying trans-formations on the rows and columns. The algorithm runs in a constant number ofrow-transformation and column-transformation phases (16 phases). We assume herethat n � 6p2.Naive implementation of the original algorithm on our model requires 14 simplepermutations similar to matrix transpositions, and 14 local sortings within each pro-cessor. We slightly modify the algorithm so that the algorithm can be implementedon our model with 8 simple permutations and at most 14 local sortings within eachprocessor. Since each such simple permutation can be performed on our model in(�+ np+pm) communication time, this algorithm can be implemented in 8(�+ np+pm)communication time and O(n lognp ) computation time on the BDM model.For simplicity, we assume that np = 2s and p = 22t, where s � 2t. The results canbe generalized to other values of n and p. A slice is a subarray of sizepp�p, consistingof all rows i such that lpp � i � (l+ 1)pp� 1 for some l � 0. A block is a subarrayof size pp �pp, consisting of all positions (i; j) such that lpp � i � (l + 1)pp � 1and rpp � j � (r + 1)pp � 1 for some l � 0 and r � 0.We now describe the algorithm brie
y; all the details appear in [18]. We beginby specifying three procedures, which serve as building blocks for the main algo-rithm. Each procedure consists of a sequence of phases that accomplish a speci�ctransformation on the array.Procedure BALANCE: Input array is of size v �w.(a) Sort all the columns downwards.(b) Rotate each row i (i mod w) positions to the right.(c) Sort all the columns downwards.Procedure UNBLOCK:(a) Rotate each row i ((i mod pp)pp) positions to the right.(b) Sort all the columns downwards.Procedure SHEAR:(a) Sort all even-numbered columns downwards and all the odd-numbered columnsupwards.(b) Sort all the rows to the right.The overall sorting algorithm is the following.Algorithm ROTATESORT1. BALANCE the input array of size np � p.2. Sort all the rows to the right.3. UNBLOCK the array.4. BALANCE each slice as if it were a p �pp array lying on its side.5. UNBLOCK the array.6. \Transpose" the array. 14



7. SHEAR the array.8. Sort all the columns downwards.For the complete correctness proof of the algorithm, see [18]. We can easily provethat this algorithm can be performed in at most 14 local sorting steps within eachprocessor. We can also prove that each of the simple permutations can be done in(� + np + pm) communication time in a similar way as in Lemma 3.3. Steps 1, 3, 5,and 6 can each be done with one simple permutation. Steps 2 and 4 also can each bedone with one simple permutation by overlapping their second permutations with the�rst permutations of steps 3 and 5 respectively. Originally, Step 7 is \Repeat SHEARthree times" which is designed for removing six \dirty rows" that are left after Step5; hence, this step requires 6 simple permutations on our model. Since we assumednp � 6p, the length of each column is larger than that of each row, and we can reducethe number of the applications of SHEAR procedure in Step 7 by transposing thematrix in Step 6. Thus, since the assumption np � 6p implies that there are at mosttwo dirty columns after the execution of Step 6, one application of procedure SHEARis enough in Step 7 for removing the two dirty columns and we have the followingtheorem.Theorem 5.3 Given n � 6p2 elements, np elements in each of the p processors of theBDM model, the n elements can be sorted in column major order form in 8(�+ np+pm)communication time and O(n lognp ) computation time. 2Notice that if p2 � n < 6p2, we need to repeat SHEAR dlog(1 + 6p2n )e times atStep 7 for removing the dirty columns, and the communication time for AlgorithmROTATESORT is at most k(� + np + pm), where k = 6 + 2dlog(1 + 6p2n )e.Other Sorting AlgorithmsWhen the given elements are integers between 0 and pO(1), the local sorting needed ineach of the previous algorithms can be done in O(np ) computation time by applyingradix sort. Hence we have the following corollary.Corollary 5.1 On a p-processor BDM machine, n integers, each between 0 and pO(1),can be sorted in column major order form in O(np ) computation time and in (1) (4� +3np + 2pm) communication time if n � 2p(p� 1)2, (2) k(� + np + pm) communicationtime if n � p2, where k = 6 + 2dlog(1 + 6p2n )e, or (3) (3� + (p � 1)d5 lnnm em + 6np )communication time with high probability, if p2 < n6 lnn . 2Two other sorting algorithms are worth considering: (1) radix sort (see e.g. [6]and related references) and (2) approximate median sort [2, 22]. The radix sort canbe performed on our model in O(( br )np ) computation time and ( br )Tcomm(n; p) commu-nication time, where b is the number of bits in the representation of the keys, r is suchthat the algorithm examines the keys to be sorted r-bits at a time, and Tcomm(n; p) isthe communication time for routing a general permutation on n elements (and hencethe bounds in the above corollary apply). The approximate median sort, which is15



similar to sample sort with no randomization used but with p � 1 elements pickedfrom each processor after sorting the elements in each processor, can be done onour model in O(n lognp ) computation time and in at most 3� + p2 + 2np + Tcomm(n; p)communication time, if n � 2p(p � 1)2.5.2 Fast Fourier TransformWe next consider the Fast Fourier Transform (FFT) computation. This algorithmcomputes the discrete Fourier transform (DFT) of an n-dimensional complex vectorx, de�ned by y = Wnx, where Wn(j; k) = wjkn , for 0 � j; k � n� 1, and wn = ei 2�n =cos 2�n + i sin 2�n , i = p�1, in O(n log n) arithmetic operations.Our implementation on the BDM model is based on the following well-known fact(e.g. see [17]). Let the n-dimensional vector x be stored in the np � p matrix X inrow-major order form, where p is an arbitrary integer that divides n. Then the DFTof the vector x is given byWp[Wn �WnpX]T ; (1)whereW n is the submatrix ofWn consisting of the �rst np rows and the �rst p columns(twiddle-factor scaling), and � is elementwisemultiplication. Notice that the resultingoutput is a p � np matrix holding the vector y = Wnx in column major order form.Equation (1) can be interpreted as computing DFT(np ) on each column of X, followedby a twiddle-factor scaling, and �nally computing DFT(p) on each row of the resultingmatrix.Let the BDM machine have p processors such that p divides n and n � p2. Theinitial data layout corresponds to the row major order form of the data , i.e., thelocal memory of processor Pi will hold xi; xi+p; xi+2p; : : : ; 0 � i � p � 1. Then thealgorithm suggested by (1) can be performed by the following three stages. The �rststage involves a local computation of a DFT of size np in each processor, followed bythe twiddle-factor scaling (elementwise multiplication by W n). The second stage is acommunication step that involves a matrix transposition as outlined in Lemma 3.3.Finally, np2 local FFTs each of size p are su�cient to complete the overall FFT com-putation on n points. Therefore we have the following theorem.Theorem 5.4 Computing an n-point FFT can be done in O(n lognp ) computation timeand (� + (p � 1)d np2mem) communication time if n � p2. When mp2 divides n, thecommunication time reduces to � + (np � np2 ). 2Remark: The algorithm described in [8] can also be implemented on our modelwithin the same complexity bounds. However our algorithm is somewhat simpler toimplement. 25.3 Matrix MultiplicationWe �nally consider the problem of multiplying two n�nmatricesA and B. We assumethat p � n3logn . We partition each of the matrices A and B into p 23 submatrices, say16



A = (Ai;j)0�i;j�p1=3�1 and B = (Bi;j)0�i;j�p1=3�1, where each of Ai;j and Bi;j is of sizenp1=3 � np1=3 assuming without loss of generality that p 13 is an integer that divides n. Forsimplicity we view the processors indices are arranged as a cube of size p 13 � p 13 � p 13 ,that is, they are given by Pi;j;k, where 0 � i; j; k � p 13 � 1. We show that productC = AB can be computed in O(n3p ) computation time and 6(2�d logp3 log( �m+1)e + n2p2=3 )communication time. The overall strategy is similar to the one used in [1, 10], wheresome related experimental results supporting the e�ciency of the algorithm appearin [10]. Before presenting the algorithm, we establish the following lemma.Lemma 5.2 Given p matrices each of size n � n distributed one matrix per proces-sor, their sum can be computed in O(n2) computation time and 2(2�d logplog( �m+1)e+ n2)communication time.Proof: We partition the p processors into pk groups such that each group containsk processors, where k = �m + 1. Using the matrix transposition algorithm, we putthe �rst set of n=k rows of each matrix in a group into the �rst processor of thatgroup, the second set of n=k rows into the second processor, and so on. Then for eachprocessor, we add the k submatrices locally. At this point, each of the processors in agroup holds an nk �n portion of the sum matrix corresponding to the initial matricesstored in these processors. We continue with the same strategy by adding each set ofk submatrices within a group of k processors. However this time the submatrices arepartitioned along the columns resulting in submatrices of size nk � nk . We repeat theprocedure d log plog( �m+1)e times at which time each processor has an npp � npp portion ofthe overall sum matrix. We then collect all the submatrices into a single processor.The complexity bounds follow as in the proof of Theorem 3.3. 2Algorithm Matrix MultiplicationInput: Two n� n matrices A and B such that p � n3logn . Initially, submatrices Ai;jand Bi;j are stored in processor Pi;j;0, for each 0 � i; j � p 13 � 1.Output: Processor Pi;j;0 holds the submatrixCi;j, whereC = A�B = (Ci;j)0�i;j�p1=3�1,and each Ci;j is of size np1=3 � np1=3 .begin[Step 1 ] Processor Pi;j;k reads blocks Ai;j and Bj;k that are initially stored in processorsPi;j;0 and Pj;k;0 respectively. Each such block will be read concurrently by p1=3processors. This step can be performed in 4(2�d logp3 log( �m+1)e+ n2p2=3 ) communicationtime by using the �rst algorithm described in Theorem 3.3.[Step 2 ] Each processor multiplies the two submatrices stored in its local memory. Thisstep can be done in O(n3p ) computation time.[Step 3 ] For each 0 � i; j � p 13 � 1, the sum of the product submatrices in the p 13processors Pi;j;k, for k = 0; : : : ; p 13�1, is computed and stored in processor Pi;j;0.17
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