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Heme is an essential cofactor for diverse biological processes such as oxygen transport, 

xenobiotic detoxification, and circadian clock control. Since free heme is hydrophobic 

and cytotoxic, we hypothesize that within eukaryotic cells, specific trafficking pathways 

exist for the delivery of heme to different subcellular destinations where hemoproteins 

reside. To identify molecules that may be involved in heme homeostasis, we conducted a 

C. elegans microarray experiment on RNA extracted from worms grown at different 

concentrations of heme in axenic liquid medium. Analysis of the microarrays revealed 

that the mRNA levels of heme-responsive gene-2 (hrg-2) and hrg-3 increased more than 

70 fold when worms were grown at 4 µM compared to 20 µM heme. hrg-2 is expressed 

in hypodermal tissues in the worm, and the protein localizes to the endoplasmic reticulum 

and the apical plasma membrane. In vitro hemin agarose pull-down experiments indicate 

that HRG-2 binds heme. Deletion of hrg-2 in C. elegans leads to reduced growth rate at 

low heme. Moreover, expression of HRG-2 in hem1Δ, a heme-deficient yeast strain, 



  

results in growth rescue at submicromolar concentrations of exogenous heme. These 

results indicate that HRG-2 may either directly participate in heme uptake or facilitate 

heme delivery to another protein. Unlike hrg-2, hrg-3 is exclusively expressed in the 

worm intestine under heme deficiency. Following its synthesis, HRG-3 is secreted into 

the body cavity pseudocoelom. Deletion of hrg-3 results in increased heme levels in the 

worm intestine, suggesting that HRG-3 may function in intercellular heme transport in C. 

elegans. To identify the functional network or pathways for HRG-2 and HRG-3, we 

performed a genome-wide microarray analysis using RNA samples prepared from the 

worms grown at different concentrations of heme and oxygen. The results showed that a 

total of 446 genes were transcriptionally altered by heme and/or oxygen. Among them, 

41 and 29 genes exhibited similar expression profiles to hrg-2 and hrg-3, respectively. 

We postulate that these genes may function in conjunction with hrg-2 and hrg-3. Taken 

together, we have identified two novel heme-responsive genes in metazoa that may play 

critical roles in modulating organismal heme homeostasis in C. elegans.  
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Chapter 1:  Introduction 

 

Iron deficiency is one of the most common nutritional disorders in humans. It is 

estimated that 60-80% of the world population may be iron deficient. Although there is 

an abundant amount of iron in the earth’s crust, the absorption of inorganic iron in the 

intestine is limited because of its incomplete solubility at the pH of the duodenum. In 

addition, the presence of chelators such as phytates in the food further decreases the 

bioavailability of iron. Heme (iron protoporphyrin IX) is the major source of dietary iron 

for humans, because it can be absorbed more easily in the human intestine than inorganic 

iron (1,2). However, in drastic contrast to well-studied iron trafficking pathways, it is still 

unclear how heme is absorbed in the intestinal cells.   

Heme is a critical cofactor for many proteins and plays critical roles in various 

biological processes such as oxygen transport, electron transport, gas sensing, xenobiotic 

detoxification, signal transduction, microRNA processing, and circadian clock control (3-

6). Within eukaryotic cells, heme is synthesized via a conserved eight-step biosynthetic 

pathway. The last step of heme biosynthesis, the insertion of ferrous iron into the 

protoporphyrin IX (PPIX) ring, occurs inside the mitochondrial matrix (Figure 1.1). 

However, target proteins which require or bind heme such as guanylate cyclases, 

catalases, cytochrome P450 and certain transcription factors are present in extra-

mitochondrial compartments including the cytoplasm, peroxisomes, the secretory 

pathway and the nucleus. Since free heme is hydrophobic and cytotoxic (7), it is highly 

possible that specific heme trafficking pathways exist for delivering heme to different 

subcellular destinations within eukaryotic cells (Figure 1.1).  
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Figure 1.1. A schematic model of the heme trafficking pathways in a eukaryotic cell. 

In eukaryotic cells, the last step of heme biosynthesis occurs inside the mitochondrial 

matrix. Heme must be translocated across membranes to multiple subcellular 

compartments where target hemoproteins reside. Heme transporters that have been 

identified are highlighted in green. The question marks “?” represent the pathways that 

are currently unknown. COX: cytochrome c oxidase. CYP450: cytochrome P450. Cyb5: 

cytochrome b5.  
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Although heme biosynthesis and its regulation have been well-characterized, little is 

known about heme trafficking pathways in eukaryotes (8). In contrast, the heme uptake 

systems have been well characterized in many bacteria. The mechanistic findings in 

prokaryotes have provided a framework that may contribute to the understanding of heme 

transport in higher organisms. 

Uptake and intracellular transport of heme 

Heme uptake in bacteria 

In most cases, bacteria, pathogenic or non-pathogenic, live in iron-restricted 

environments. The iron in their natural habitat is predominantly in the form of insoluble 

Fe3+. In the hosts, iron that can be readily utilized by pathogens is also limiting. For 

example, it was estimated that free iron in the plasma of human hosts is at the order of 

~10-18 M (9). To satisfy their iron demands, bacteria have developed several distinct and 

functionally redundant pathways for iron acquisition such as direct uptake through 

receptors for iron and heme, or sequestering iron and heme by secreting small 

extracellular proteins called siderophores and hemophores.      

Gram-negative bacteria 

The first well-characterized heme uptake system in pathogenic Gram-negative 

bacteria comprises a specific outer membrane receptor that can directly bind heme or 

hemoproteins and ATP-binding cassette (ABC) transporters that can translocate heme 

into the cell (10) (Figure 1.2A). A number of Gram-negative bacteria have been shown to 

have this set of direct heme uptake pathways, including hemR-hemSTUV in Yersinia 

enterocolitica, hmuRSTUV in Yersinia pestis, shuASTUV in Shigella dysenteriae, and 
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phuRSTUVW in Pseudomonas aeruginosa (11). In general, the outer membrane 

receptors (e.g. HemR) first bind heme or hemoproteins and transport them into the 

periplasm using energy provided by the TonB-ExbB-ExbD complex. Once across the 

outer membrane, heme is bound by periplasmic heme transport proteins (e.g. HemT) and 

then delivered to specific ABC transporters on the cytoplasmic membrane (e.g. HemU 

and HemV). When the periplasmic heme transporter associates with the ABC transporter, 

they form heme permeases that can actively transport heme across the cytoplasmic 

membrane. In the cytoplasm, heme is catabolized by either heme oxygenase (HO)-like 

enzymes (e.g. HemS and HemO) or non-HO like enzymes (e.g. YfeX) to release iron 

(12). HemS may also function as a cytoplasmic heme chaperone to prevent heme toxicity.  

The second heme uptake system in Gram-negative bacteria is a hemophore 

combined with outer membrane transporters. The hemophore HasA has been identified in 

Serratia marcescens, Pseudomonas fluorescens, P. aeruginosa, Y. pestis, and Y. 

enterocolitica and HxuA has been reported in Haemophilus influenzae (11). HasA is 

secreted by ABC exporter machinery that includes an ABC protein HasD, a membrane 

fusion protein HasE, and an outer membrane protein HasF (13,14). It can sequester heme 

with high affinity, and the bound heme is then delivered to the outer membrane receptor 

HasR for internalization. Similar to other TonB-dependent heme receptors, HasR has 

been shown to transport both free heme and heme non-covalently bound to proteins 

(15,16). However, HasR only has low binding affinity for heme. The efficiency of heme 

uptake is dramatically increased in the presence of HasA. HasA can form exergonic 

complexes with HasR and heme is transferred to HasR (17,18).  
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Figure 1.2. Heme uptake systems in bacteria. (A) Gram-negative bacteria. The outer 

membrane receptors bind heme or hemoprotein and transport it into periplasm using 

energy provided by TonB-ExbB-ExbD complex. Some bacteria secrete hemophores to 

sequester heme and to deliver it to an outer membrane receptor. The periplasmic heme 

transporter relays heme to the ABC transporter on the cytoplasmic membrane. They form 

permeases that translocate heme into the cytoplasm where chaperones and heme 

degrading enzymes reside. OMR: outer membrane receptor; OM: outer membrane; PP: 

periplasm; CM: cytoplasmic membrane; PHT: periplasmic heme transporter. (B) Isd 

system in Gram-positive bacteria S. aureus. The surface receptors IsdB and IsdH bind 

hemoproteins and transfer heme to IsdA. IsdC accepts heme from IsdA and delivers it to 

IsdE. Heme is then transported by the cell membrane transporter complex into the 

cytoplasm where heme is degraded by IsdG and IsdI to release iron. B. anthracis secretes 

hemophore-like molecules, IsdX1 and IsdX2, to retrieve heme from hemoproteins. The 

figures are modified from Tong and Guo (11).  
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The bacterium Neisseria meningitidis has a unique heme acquisition system HpuAB 

in which both components reside on the outer membrane. HpuB is a TonB-dependent 

outer membrane receptor, whereas HpuA is an accessory lipoprotein.  Both HpuA and 

HpuB are required for the transport of heme from hemoglobin and haptoglobin-

hemoglobin complexes (19). 

In addition to transporters and chaperones, cysteine proteases such as the gingipains 

Rgp and Kgp are essential for heme acquisition from hemoglobin, hemopexin and 

haptoglobin in Porphyromonas gingivalis (20,21). These two gingipains share identical 

hemoglobin binding domains but the catalytic domains are divergent (22). Smalley et al. 

(2007) found that Rgp converted hemoglobin (Fe2+) into methemoglobin (Fe3+), which 

was subsequently degraded by Kgp (23).  

Gram-positive bacteria 

Recently, significant progress has been made in identifying heme uptake pathways 

in Gram-positive bacteria. Gram-positive bacteria have thick, multilayered cell walls, 

which provide additional barriers for nutrient uptake. In addition to utilizing ABC 

transporters, these bacteria have evolved more complex surface proteins to bind and 

transfer heme or hemoproteins.  

The iron-regulated surface determinants (Isd) comprise heme acquisition machinery 

in the human pathogen Staphylococcus aureus (24) (Figure 1.2B). The Isd system 

includes surface proteins IsdABC and IsdH/HarA, membrane transporters IsdDEF, and 

heme-degrading enzymes IsdGI. The surface receptors have different binding affinities 

for distinct heme sources. For example, IsdB is a hemoglobin receptor, whereas IsdH 

binds haptoglobin-hemoglobin (25,26). IsdA accepts heme from IsdB or IsdH and 
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transfers it to IsdC (27,28). Subsequently, heme is delivered to the lipoprotein IsdE and 

translocated by the cell membrane transporter complex into the cytoplasm, in which 

heme is degraded by IsdG and IsdI to release iron (11,28).  

Instead of presenting heme receptors on the cell surface, the spore-forming bacteria 

Bacillus anthracis secretes two heme-binding molecules, IsdX1 and IsdX2, to retrieve 

heme from hemoglobin (29). This mechanism is homologous to the hemophore systems 

in Gram-negative bacteria.  

The heme uptake pathway in another human pathogen, Streptococcus pyogenes, 

consists of the cell wall proteins Shr and Shp, as well as ABC transporters HtsABC. In 

this system, Shr interacts with host hemoproteins and relays heme to Shp (30). Heme then 

is delivered to HtsA and subsequently transported into the cytoplasm (31,32). Similarly, 

the heme binding proteins HtaAB on the cell wall and ABC transporters HmuTUV 

constitute a heme uptake system in Corynebacterium diphtheria (33).   

Heme uptake in yeast 

In contrast to our knowledge of bacterial heme uptake, the trafficking pathways in 

eukaryotes are much less well understood. 

Heme uptake molecules have been identified in the pathogenic yeast Candida 

albicans. Weissman et al. (2002) first revealed that C. albicans can utilize heme and 

hemoglobin through a pathway that is distinct from iron uptake pathways (34). Heme 

uptake in C. albicans exhibits a rapid initial binding phase followed by a slower uptake 

phase (35). It was subsequently discovered by a genome-wide screen that Rbt51 and Rbt5 

are involved in heme uptake in C. albicans (36). RBT5 is highly induced by iron 

limitation and its deletion in C. albicans impairs the utilization of heme. Both Rbt51 and 
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Rbt5 are glycosylphosphatidylinositol (GPI)-anchored proteins mainly localized to the 

plasma membrane, suggesting that they might function as receptors for heme and 

hemoglobin (37). After being taken up by Rbt5/Rbt51, heme and hemoglobin are 

delivered to the vacuole through an endocytosis-mediated pathway (37). Heme is then 

degraded by HO. The heme oxygenase enzyme CaHMX1 was identified and 

characterized both in C. albicans and in vitro (35,38). The expression of CaHMX1 is 

positively regulated by heme and hemoglobin (39).  

In contrast to fungal pathogens, the budding yeast Saccharomyces cerevisiae 

utilizes exogenous heme very poorly. This indicates that S. cerevisiae lacks high-affinity 

heme transport systems. However, under conditions of heme starvation or hypoxia, an 

energy-dependent pathway for heme uptake has been detected (40). Protoporphyrin 

uptake gene 1 (PUG1) was identified by microarray analysis on S. cerevisiae grown 

under heme starvation conditions. Overexpression of PUG1 resulted in decreased cellular 

heme levels and increased PPIX content in both wild type and heme-deficient strains. 

However, heme uptake was not affected in PUG1∆ strain. Taken together, these data 

suggest that Pug1 is involved in PPIX influx and heme efflux. 

Heme transport and detoxification in insects 

Adult hematophagous arthropods ingest enormous amount of blood in a single meal 

(41). Accordingly, hemoglobin is undoubtedly the sole major source of iron for blood-

feeding insects. In the mosquito Aedes aegypti, >98% of iron in the insect body and the 

eggs come from heme (42). On the other hand, free heme is toxic to cells because it can 

cause lipid peroxidation. To minimize the toxicity of the heme released by hemoglobin 
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digestion, these insects have evolved efficient strategies to excrete, transport, and 

sequester heme. 

 The first defense against free heme occurs in the gut. According to an inductively 

coupled plasma-mass spectrometry (ICP-MS) study in A. aegypti, 87% of total ingested 

heme iron was excreted by the end of the first gonotrophic cycle (42). In addition, insects 

have specialized structures in the gut to sequester and detoxify heme. In the lumen of the 

intestine, ferrous heme can be converted into ferric heme and aggregate into an insoluble 

structure called hemozoin (43). Hemozoin has been identified in the malarial parasite, 

Plasmodium falciparum, the parasitic worm, Schistosoma mansoni, the parasitic 

protozoan, Haemoproteus columbae, and the kissing bug, Rhodnius prolixus (43,44). In 

R. prolixus, the hemozoin in the lumen of midgut is the first defense against toxicity from 

free heme (45). Inhibition of hemozoin formation by chloroquine led to increased levels 

of free heme and therefore, increased lipid peroxidation (46). In vitro studies further 

confirmed that, compared with free heme, hemozoin generated fewer free radicals, 

caused less lipid peroxidation, and did not lead to the lysis of red blood cells (47).  

Instead of forming hemozoin, the mosquito A. aegypti has a layer of peritrophic 

matrix covering the intestinal epithelium. This structure separates intestinal cells from the 

food and it has been shown to be associated with high levels of heme after feeding (48). 

Devenport et al. (2006) identified a heme-binding protein, A. aegypti intestinal mucin 1, 

in peritrophic matrix that might be one of the major molecules required for heme 

sequestration (49).  

Heme uptake has been characterized at the cellular level by following fluorescent 

hemoglobin conjugates or heme analogs in Boophilus microplus. In contrast to most 
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eukaryotes and even the kissing bug R. prolixus, the cattle tick B. microplus lacks the 

heme biosynthetic pathway (50). Hemoglobin is taken up by the specialized digestive 

cells in the midgut through receptor-mediated endocytosis (51). After the endosomes fuse 

with primary lysosomes, hemoglobin is degraded (52). The released heme is sequestered 

in specialized intracellular membrane-bound organelles called hemosomes (41,51). 

Hemosomes provide a sequestration mechanism for heme and prevent it from forming 

free radicals.   

After absorption, a fraction of heme in the digestive cells is translocated into the 

open circulatory system hemocoel. It has been shown that several heme-binding 

lipoproteins may play a role in the transport and sequestration of heme in the 

hemolymph. The major hemolymph protein in B. microplus has been characterized as a 

heme lipoprotein (HeLp). The gene encoding HeLp is expressed in both male and female 

ticks after host-attachment and blood feeding (53). The protein contains two molecules of 

heme and has the capacity to bind six more heme molecules (54). By injecting HeLp 

labeled with 55Fe-heme into the hemocoel, a quick drop of the radioactivity in 

hemolymph and a simultaneous increase in oocytes were observed, suggesting that HeLp 

might play a role in delivering heme across tissues (54). In the American dog tick, 

Dermacentor variabilis, the homolog of HeLp, hemolymph carrier protein (CP), is also 

the major hemolymph protein and has been suggested to play a role in sequestering heme 

(53,55,56). In vitro assays indicated that HeLp/CP-bound heme induced less oxidative 

damage to phospholipids than free heme (57). These data suggest that HeLp/CP may be 

involved in the sequestration and transport of heme. 
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In ticks and other insects, the major yolk protein vitellogenin has heme-binding 

activity. Binding by vitellogenin strongly inhibited heme-induced lipid peroxidation (58). 

After blood feeding, vitellogenin is primarily produced in the fat body and midgut of 

female ticks and is then transferred to developing oocytes (59,60). Therefore, insect 

vitellogenin may play a role in transferring heme and other nutrients to eggs (56,58,59). 

In the eggs, heme is released when vitellogenin is degraded by endopeptidases such as 

vitellin-degrading cysteine endopeptidase, Boophilus yolk cathepsin and tick heme-

binding aspartic proteinase (61,62).  

Besides HeLp/CP and vitellogenin, other proteins such as Rhodnius heme-binding 

protein may bind heme and decrease toxicity of free heme in insect hemolymph (63,64).  

Cellular heme transport in mammals 

So far, only a small number of molecules that may play a role in heme uptake, 

delivery, and export have been characterized in mammals.   

Heme uptake  

It has been long thought that duodenal enterocytes internalize heme through a 

receptor-mediated endocytic pathway. Existence of heme receptors or heme uptake 

proteins has been shown in the microvilli of upper small intestine, cultured enterocytes 

and non-intestinal cells (65). Heme carrier protein (HCP1) and heme-responsive gene 

(HRG-1) are two newly identified molecules that may function to import heme into the 

cells (Figure 1.1).   

Hcp-1 was initially identified from a suppression subtractive hybridization screen 

using hypotransferrinaemic mice (66). It encodes the protein HCP1 (also named as 

SLC46A1) that has nine transmembrane domains with a molecular size of ~50 kDa. 
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Expression of HCP1 in Xenopus oocytes and HeLa cells resulted in a 2-3 fold increase in 

heme uptake with an apparent Km of 125 μM. Furthermore, blocking with HCP1 

antibodies significantly reduced the uptake of radiolabeled heme by everted duodenal 

sacs. However, Qiu et al. (2006) have shown that SLC46A1 was in fact a high affinity 

folate/proton symporter and therefore was re-named as PCFT/HCP1 (67). Expression of 

SLC46A1 in Xenopus oocytes, HepG2 cells, and HeLa cells increased folate uptake by 

>200, >30, and >13 fold, respectively. Knock-down of Pcft/ Hcp-1 in Caco-2 cells led to 

60-80% reduction in pH-dependent folate uptake. The high-affinity folate transport 

activity (Km ~1.3 μM at pH 5.5) suggests that folate may be the physiological ligand for 

PCFT/ HCP-1. It is still unclear whether low affinity heme transporting activity of 

PCFT/HCP-1 has any physiological relevance. 

HRG-1 (SLC48A1), the first bona fide heme importer, was initially identified by a 

Caenorhabditis elegans microarray experiment (68). RNAi of the hrg-1 paralog, hrg-4 

significantly reduced the uptake of a fluorescent heme analog in worm intestine, while 

knocking down the zebrafish hrg-1 ortholog resulted in severe anemia, hydrocephalus, 

and a curved body with shortened yolk tube. In addition, heme-dependent transport 

across the plasma membrane was observed in Xenopus oocytes expressing hrg-1. Only 

one hrg-1 gene is present in the human genome, whereas worms have three hrg-1 

paralogs. This indicates that worms might have evolved redundant heme acquisition 

pathways since they lack the ability to synthesize heme.  

Heme export  

The existence of a heme exporter has been speculated for two reasons: 1) efflux 

may be one of the main mechanisms for heme detoxification, since the accumulation of 
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excess heme is highly toxic to the cells; 2) efflux may facilitate inter-cellular heme 

transfer and heme iron recycling. For example, when macrophages phagocytize senescent 

red blood cells and degrade hemoglobin to release heme, a portion of the iron is exported 

from macrophages as intact heme-iron (69).  

The cell surface receptor for feline leukemia virus subtype C (FLVCR) belongs to 

the major facilitator superfamily (70). Suppression of FLVCR by the virus FLV-C in 

feline embryonic fibroblasts significantly increased the cellular heme content, while 

ectopic expression of FLVCR in renal epithelial cells reduced the intracellular heme 

levels (70). This result was further confirmed by heme export assays using a fluorescent 

heme analog and 55Fe-heme in renal epithelial and K562 cells. FLVCR was highly 

expressed in hematopoietic cells, and heme efflux mediated by FLVCR was essential for 

erythroid differentiation (70,71). Cats infected with FLV-C developed pure red cell 

aplasia in which erythroid progenitor cells failed to mature from burst-forming units to 

the colony-forming-units erythroid cells. No erythropoiesis was observed in FLVCR 

knock-out mice, and these mice died at midgestation (72). Deletion of FLVCR also 

perturbed the heme efflux from macrophages and therefore blocked the recycling of heme 

and iron from senescent red blood cells (72). 

The ABC transporter ABCG2, also named as BCRP, was originally identified as a 

drug resistance protein in breast cancer cells. Krishnamurthy et al. (2004) showed that 

heme interacts with ABCG2 by using hemin-agarose pull-down assays (73). PPIX levels 

in the erythrocytes of ABCG2-null mice were ten times higher than that in wild type mice 

(74), suggesting that ABCG2 might function as an exporter for porphyrin compounds. 

However, no evidence has directly confirmed that ABCG2 can export heme.   
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Intracellular heme transport 

Whether synthesized within cells or taken up from the environment, heme in all 

eukaryotic cells has to be translocated across membrane barriers for either storage and 

sequestration, or utilization and incorporation into hemoproteins. The molecules and the 

mechanisms involved in intracellular heme trafficking remain poorly understood. One 

molecule, ABCB6, could play a role in heme transport between mitochondria and the 

cytoplasm.  

ABCB6 was initially identified as a mammalian ortholog for yeast ATM1, a 

mitochondrial iron transporter important for Fe-S cluster biogenesis (75). However, 

Krishnamurthy et al. (2006) revealed that ABCB6 was more likely a porphyrin/heme 

transporter in mitochondria (76). In cells expressing ABCB6, 55Fe-heme was readily 

transported into mitochondria from the cytoplasm in an energy-dependent manner. 

Another tetrapyrrole compound, coproporphyrin III, competed with ABCB6 for heme 

binding and inhibited heme uptake into mitochondria.  

More recently, two molecular weight forms of ABCB6 of 79 kDa and 104 kDa 

were identified (77). Using specific ABCB6 antibodies, it was shown that while the light 

form localized to the mitochondrial outer membrane, the heavy form predominantly 

resided on the plasma membrane. Transfection of the plasma membrane form of ABCB6 

reduced the cellular accumulation of another porphyrin compound pheophorbide A but 

not heme. It is possible that two ABCB6 forms have distinct functions at different 

subcellular locations, but further studies are required to pinpoint their physiological roles 

in the cell. 
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Heme binding proteins 

Heme has peroxidase activity and the iron in heme can generate reactive oxygen 

species through Fenton reactions. In addition, as a small lipophilic molecule, free heme 

can easily intercalate with, and disrupt the lipid bilayers of cell membranes. Therefore, 

heme-binding proteins or heme chaperones may be required to prevent the toxicity 

associated with free heme. The heme-binding proteins may function to sequester or 

transport heme.    

Cytoplasmic heme binding proteins 

Glutathione S-transferases (GSTs) catalyze the conjugation of glutathione to 

various electrophilic substrates and play essential roles in xenobiotic detoxification. 

Besides their enzymatic functions, GSTs have also been known for their ability to bind a 

variety of ligands in the cytoplasm. In fact, GSTs were first identified in mammalian liver 

as “ligandins” that can selectively bind steroids, bilirubin and organic anions (78). 

Subsequent studies showed that GSTs interact with heme and porphyrins (79-81).  

In malarial parasites and helminths, GSTs are highly abundant in the cytoplasm. A 

GST from P. falciparum (Pf-GST) is capable of interacting with heme (82). This Pf-GST 

was subsequently shown to contain both high- and low-affinity heme binding sites (83). 

In the rodent malarial parasite, Plasmodium berghei, heme but not PPIX can inhibit GST 

activities (84). Furthermore, an inverse correlation between heme levels and GST 

activities has been shown both in vitro and in P. berghei (84,85). van Rossum et al. 

(2005) discovered a novel GST from the blood-feeding helminth Haemonchus contortus 

(Hc-GST-1) that is able to interact with heme (86). The homologous protein in 
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Ancylostoma caninum, Ac-GST-1, also binds heme (87). These GSTs have been 

postulated to play critical roles in the detoxification and transport of heme (82,86,88).  

A murine 22 kDa protein, p22HBP, was identified as a cytosolic heme-binding 

protein ubiquitously expressed in various tissues with high levels in the liver (89). In 

mouse erythroleukemia (MEL) cells, p22HBP was induced during erythroid 

differentiation and knock-down of the gene resulted in reduced heme content in MEL 

cells.  In addition to heme, the protein binds other porphyrin compounds such as PPIX 

(89,90). It was revealed by a structural analysis that a hydrophobic cleft was responsible 

for tetrapyrrole binding in p22HBP (90). Two homologous proteins in Arabidopsis 

thaliana, cHBP1 and cHBP2, were also found to bind tetrapyrroles reversibly in vitro 

(91). These two HBPs may play similar roles in different plant tissues since cHBP1 is 

highly expressed in leaves whereas the highest level of cHBP2 is detected in roots (91).  

The murine heme-binding protein SOUL has 27% sequence identity to p22HBP. In 

contrast to p22HBP, which is a monomer protein, SOUL forms dimers in the absence of 

heme and hexamers in the presence of heme (92,93).  In addition, SOUL is specifically 

expressed in the retina and pineal gland and uses histidine as an axial ligand to coordinate 

the heme (92,93). Although p22HBP/SOUL proteins were proposed to be involved in 

intracellular heme trafficking or heme sequestration, the definite biological functions of 

this family remains undefined. 

HBP23 belongs to the peroxiredoxin family of peroxidases and is also called mouse 

stress-inducible 23 kDa protein or proliferation-associated gene product. The protein was 

originally identified from rat liver using chromatography on hemin-agarose and was 

shown to have a high binding affinity for heme (94). On the protein surface, two 
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hydrophobic regions, both containing histidine residues, might be responsible for heme 

binding (95). The protein is highly expressed in the cytoplasm of the liver and also 

present in kidney, spleen, small intestine, and heart. Heme, PPIX, and other 

metalloporphyrins are able to stimulate HBP23 expression in rat primary hepatocytes 

(96). Furthermore, incubation of rat liver HBP23 with heme inhibited its antioxidant 

activity (97).  

Fatty acid binding proteins have also been show to bind heme (98,99). However, 

the cellular functions of heme-binding activities in these cytosolic proteins are still 

unclear.   

Extracellular heme binding proteins 

Heme and hemoglobin are released into the plasma during the destruction of 

senescent erythrocytes and enucleation of erythroblasts. Under pathological conditions 

such as hemoglobinopathies, trauma, and infections, more severe intravascular hemolysis 

is induced. To prevent tissues from experiencing heme toxicity and to increase the 

recycling of heme iron, mammalian cells secrete specific molecules to bind heme and 

hemoglobin in the circulation.   

Haptoglobin (hapto- “bind to”), primarily synthesized by hepatocytes, is a plasma 

glycoprotein with hemoglobin-binding capacity. There are three major subtypes of 

haptoglobin (100), all of which can form soluble complexes in an equimolar ratio with 

hemoglobin dimers (Kd ~10-12 M) (11,101,102). Haptoglobin-hemoglobin complexes 

bind to the CD163 receptor on the surface of monocytes and macrophages, and these 

complexes are subsequently endocytosed (103). Receptors for the haptoglobin-

hemoglobin complex also exist in hepatocytes and hepatoma cell lines (104,105). After 
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entering the cells, iron is released by heme degradation, whereas the remaining protein 

complex is degraded by lysosomes (106-108). Physiologically, binding of haptoglobin 

reduces the loss of hemoglobin and heme iron (108,109).  

Hemopexin is a heme-binding plasma protein that binds heme with high affinity (Kd 

~10-13 M) (110). Hemopexin-heme complexes are endocytosed in response to the binding 

with LRP/CD91 (LDL receptor-related protein, or CD91) in a variety of cells including 

hepatocytes, macrophages, and syncytiotrophoblasts (111). Unlike haptoglobin, 

hemopexin is recycled back into the circulation after the release of heme during 

endocytosis (111,112). In response to heme overload, hemopexin null mice exhibited 

increased oxidative stress and altered regulation of HO-1 as well as ferritin, suggesting 

critical roles of hemopexin in heme detoxification (113).  

Human serum albumin (HSA), a 66 kDa protein, binds a wide variety of proteins as 

well as heme (Kd ~10-8 M) (114,115). The crystal structure shows that a hydrophobic 

cleft in one of its three sub-domains binds heme. Three basic residues at the entrance to 

this cleft form charge pair interactions with the propionate side chains of heme, and the 

iron in heme is coordinated by a tyrosine residue (116).  

Two additional serum proteins, high-density and low-density lipoproteins, bind 

heme faster than both hemopexin and HSA with an affinity that is higher than that of 

HSA for heme (Kd ~10-11 M) (114,117). It is thought that this rapid binding is critical to 

prevent damage by heme during the initial release of heme and provides a buffer period 

for hemopexin and HSA to steadily but tightly bind heme. Eventually, hemopexin and 

HSA remove all but a residual amount of heme from the lipoproteins (117).  
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Transcription factors and genes regulated by heme 

Heme regulates the expression of many genes that are involved in erythropoiesis, 

heme biosynthesis, oxidative stress, energy metabolism, and circadian rhythm control 

(4,118-120). It is capable of inducing and inhibiting gene expression at the levels of 

transcription, translation, and post-translation. The mammalian transcription repressor 

Bach1, the circadian clock gene Rev-erbα, and the yeast transcriptional activator Hap1 

are three well-studied transcription factors that are regulated by heme.  

Bach1 

Bach1, a basic leucine zipper protein (bZip), was the first mammalian transcription 

factor shown to bind heme (121). Bach1-Maf heterodimers bind to Maf recognition 

elements (MAREs) and repress the expression of target genes such as globins and HO-

1(119,121,122) (Figure 1.3A). Heme can interact with Bach1 and de-repress 

transcription. Bach1 has six putative heme regulatory motifs, four of which surround the 

C-terminal bZip domain and are responsible for heme binding (123). The net effect of 

heme in this pathway is the activation of hemoglobin, myoglobin, neuroglobin genes as 

well as HOs (124-126). 

Heme negatively regulates Bach1 activity through three major mechanisms (Figure 

1.3A). First, heme displaces Bach1-Maf complexes from enhancers (123,127). The DNA-

binding activity is almost completely lost in the presence of 1 µM heme (123). In this 

case, the activators NF-E2 or Nrf2 can be recruited to MAREs with Mafs and induce 

gene transcription (121,127). Expectedly, when all HRMs are mutated, Bach1 can still 

attach to MAREs even when there is excess heme (123). Second, heme stimulates Bach1 

export from the nucleus. Under basal growth conditions, Bach1 is localized to the nucleus 
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in the presence of MafK. Heme treatment triggers Bach1 translocation from the nucleus 

to the cytoplasm, whereas the majority of MafK is retained in the nucleus. A region with 

two HRMs is thought to be essential for Bach1 translocation and this process depends on 

the nuclear exporter Crm1 (128). Third, heme binding induces Bach1 degradation. 

Zenke-Kawasaki et al. (2007) showed that the levels of endogenous Bach1 protein were 

significantly decreased in the presence of heme (129). In contrast, succinylacetone, the 

inhibitor of heme biosynthesis, resulted in higher Bach1 levels in murine embryonic 

fibroblasts. Further analysis suggested that heme stimulates the polyubiquitination and 

degradation of Bach1 protein (129).     

Rev-erbs 

Rev-erbα and Rev-erbβ were initially discovered as orphan members of the nuclear 

hormone receptor family twenty years ago (130,131). Rev-erbs can form monomers, 

homodimers, and heterodimers and recognize retinoic acid receptor-related orphan 

receptor response elements or Rev-erb response elements (132,133). Recently, heme has 

been identified as the physiological ligand for both Rev-erbs and it can reversibly 

associate with the ligand-binding domain in the proteins (4,134). In fact, Rev-erbs serve 

as intracellular heme sensors that regulate circadian rhythm, glucose homeostasis and 

heme biosynthesis. In the presence of the co-repressor NcoR-HDAC3 complex, Rev-erbα 

negatively regulates the expression of BMAL1, a key player in the mammalian circadian 

clock (4,135). Heme is required for the efficient recruitment of the NcoR-HDAC3 

complex (Figure 1.3B). The interaction between Rev-erbs and NcoR significantly 

decreases in heme-depleted conditions, and the mutation of the heme binding site 

abolishes recruitment of both NcoR and HDAC3 (4,134). In a similar way, heme also
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Figure 1.3. Heme-regulated transcription factors in mammals. (A) Bach1. At low 

heme, Bach1-Maf heterodimers bind to MAREs in the enhancer region and repress the 

expression of target genes such as globins and HO-1. In the presence of heme, Bach1 is 

displaced whereas the activator NF-E2 or Nrf2 is recruited to MAREs to induce the gene 

transcription. Heme also stimulates the nuclear export and degradation of Bach1. (B) 

Rev-erbα. In the presence of heme and co-repressor NcoR-HDAC3 complex, Rev-erbα 

binds to retinoic acid receptor-related orphan receptor response elements and negatively 

regulates the expression of downstream genes that are involved in circadian rhythm 

control, glucose homeostasis and heme biosynthesis.  
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represses the expression of gluconeogenic genes including phosphoenolpyruvate 

carboxykinase and glucose 6-phosphatase through Rev-erbα.  

In addition to Rev-erbs, two other clock proteins NPAS2 and PER2 contain heme as 

a prosthetic group (136,137). NPAS2 activates the expression of ALAS1, the rate-

limiting enzyme in the heme biosynthesis pathway. The presence of heme inhibits this 

transcriptional activity and heme synthesis (136). 

Hap1 

In biological systems, heme and oxygen are closely intertwined with each other in 

many respects. Oxygen is required as an electron acceptor in heme biosynthesis (138), 

whereas hemoproteins are responsible for the transport of oxygen molecules. In addition, 

heme participates in a variety of oxygen-related biological functions such as oxidative 

phosphorylation and oxidative stress control. In S. cerevisiae, heme also plays critical 

roles in oxygen-regulated gene expression through the transcription factor Hap1.  

Aerobic genes and anaerobic or hypoxic genes are two general classes of oxygen-

regulated genes (139). In response to changes in oxygen levels, Hap1 can activate aerobic 

genes and inhibit anaerobic genes in a heme-dependent manner (119) (Figure 1.4). Heme 

promotes the binding of Hap1 homodimers to the upstream activation sequences and 

increases the expression of the target genes (119). Hap1 contains a C6 zinc cluster motif 

and a dimerization element at the amino terminus. In addition, there is an activation 

domain at the carboxyl terminus, as well as three repression modules and seven heme-

responsive motifs (HRM) dispersed in the protein (140,141). The HRMs and non-

regulatory regions, as well as two molecular chaperones Hsp90 and Hsp70, are required 

for heme-dependent regulation of Hap1 activity (140,142). Under hypoxic conditions, 
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Hap1 recruits co-repressors Tup1/Ssn6 and directly inhibits the transcription of ergosterol 

biosynthesis genes (143). The presence of heme relieves this transcriptional repression 

(143). Taken together, these results suggest that heme is required for both activation and 

repression activities of Hap1, depending on the oxygen levels. However, Hap1 can bind 

to its promoter and repress its own expression, but this negative regulation is independent 

of heme concentrations (141).   

Heme also directly regulates the activities of other transcription factors such as the 

bacterial iron response regulator protein Irr (144), the CAAT box-binding factor NF-Y 

(145), and the heme-responsive Ku protein complex (146,147).  

In addition to heme biosynthesis genes and heme-containing enzymes, heme 

transporters may also be regulated by heme levels in order to maintain heme homeostasis. 

For example, the heme uptake gene hrg-1 is transcriptionally upregulated when C. 

elegans is grown at low concentrations of heme (68). This regulation is similar to that of 

transporters for other ligands. The transcription of the copper uptake molecule ctr1B in 

flies is induced in response to copper deficiency and repressed in response to copper 

repletion (148). In yeast, copper down-regulates CTR1 through repressing the activation 

domain of the transcription factor Mac1p (149). In addition, the divalent metal ion 

transporter 1 is regulated post-transcriptionally through IRP-IRE machinery in response 

to changes in iron levels (150).  



 

 27 
 

 Figure 1.4. Heme-dependent transcription factor Hap1. (A) Under aerobic 

conditions, heme promotes the binding of Hap1 to the upstream activation sequences and 

the aerobic genes are induced. Small chaperones such as Hsp70 and Hsp90 are involved 

in this regulation. (B) Under hypoxic conditions, Hap1 recruits co-repressors Tup1/Ssn6 

and inhibits the transcription of ergosterol biosynthesis genes. The presence of heme 

relieves this transcriptional repression. 

 



under aerobic conditions:
A

- heme

Hsp90  Hap1

+ heme

t l

nucleus

Hsp70/Sro9/Ydj1

t l

nucleus

UAS                 geneUAS                 gene

B

cytoplasm cytoplasm

under hypoxic conditions:

- heme

Tup1/Ssn6

+ heme

UAS                 gene

nucleus

Hap1

nucleus

UAS                 gene
×

cytoplasm cytoplasm

28



 

 29 
 

Parasitic worms and heme 

Parasitic worms are a major cause of chronic infections in humans, farm animals 

and plants. More than a quarter of the world’s population is affected by one or more of 

the 20 most common parasites including Ascaris, Ancylostoma, Trichuris and 

Schistosome (151,152). In addition, animal parasites and plant parasites cause enormous 

economic loss in agricultural production every year. Traditional drugs are becoming more 

and more ineffective in helminthic control as drug-resistant nematodes are already 

prevalent in humans and other animals (153,154).  

Heme and iron play essential roles in development, reproduction and pathogenicity 

of parasitic worms. For example, iron supplement stimulates the growth of the fluke S. 

mansoni in vitro (155). Due to the fact that free iron is tightly controlled in animal hosts 

and S. mansoni ingests huge amount of blood, it is highly possible that these parasites 

acquire iron predominantly in the form of heme from the blood (156). In the hookworm, 

Ancylostoma ceylanicum, host iron status has been shown to be a key mediator of 

pathogenicity. Challenged animal hosts supplied with iron-restricted diet had a significant 

reduction in the intestinal load of worms (157). 

 In the intestine of the canine hookworm A. caninum, hemoglobin is degraded by a 

cascade of proteolytic reactions involving aspartic proteases (APR-1), cysteine proteases 

and metalloproteases (158). Vaccination of dogs with APR-1 dramatically reduced the 

hookworm burdens, fecal egg counts, as well as host blood loss, after challenging with A. 

caninum larvae (159).  

Recently, Rao et al. discovered that parasitic worms including Strongyloides, 

Ancylostoma, Haemonchus, Trichuris and Ascaris are unable to synthesize heme de novo, 
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despite requiring this tetrapyrrole nutritionally (160). Analysis of the genomes for these 

nematodes indicates that they encode abundant hemoproteins such as globins, 

cytochrome P450s, catalases and guanylate cyclases. Therefore, worms must have 

developed an efficient heme uptake system to meet their nutritional requirement and a 

heme storage system to store essential but cytotoxic heme. In addition, since none of the 

cells have the ability to synthesize heme, an intercellular heme transport system is 

required to mobilize heme from intestinal cells – the site of absorption – to other cell 

types including neurons, muscles, hypodermis, and developing embryos. Thus, worm-

specific molecules involved in heme homeostasis, especially in heme uptake, could be 

potential drug targets for helminthic control.  

The free-living roundworm C. elegans is a unique animal model for interrogating 

heme trafficking pathways. C. elegans has been used as a model organism to study RNA 

interference, apoptosis, development, aging, toxicology, neurobiology, sex determination, 

and membrane trafficking. Similar to the parasitic worms, C. elegans lacks the ability to 

synthesize heme and acquires it from the diet (160). Thus, the organismal heme levels are 

dependent upon the heme concentration in the food. This “clean” genetic background, in 

combination with other advantages, such as a fully sequenced genome and a 

comprehensive map of all cell lineages, makes C. elegans a valuable model system for 

delineating the cellular pathways and biochemical mechanisms of heme homeostasis. 

By using this genetic model, we have identified two heme-responsive genes, hrg-2 

and hrg-3, as candidate genes involved in heme homeostasis. At the molecular level, 

HRG-2 may play a role in heme uptake or intracellular heme allocation, whereas HRG-3 

may be involved in heme-regulated signaling or intercellular heme transport.  
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Chapter 2:  Materials and Methods 

 

Worm experiments 

Worm culture 

Routine maintenance, synchronization, genetic crosses and microscopic observation 

were described by Epstein and Shakes (1995) (161). Wild type N2 Bristol strain, deletion 

strains and transgenic worms were maintained at 20°C either on nematode growth 

medium (NGM) agar plates or in axenic modified C. elegans Habitation and 

Reproduction (mCeHR-2) medium supplemented with hemin chloride (161,162). 

Continuous shaking was provided for all liquid worm cultures. Hemin chloride was 

prepared as a 10 mM stock by dissolving it in 0.3 M NH4OH and adjusting the pH to 8.0 

with HCl (160).  

Worms for microarray experiments were prepared by Dr. Wayne Van Voorhies 

(New Mexico State University). All worms were maintained in mCeHR-2 medium in 

metabolic chambers at 20°C. Oxygen levels were controlled by pre-mixing oxygen and 

nitrogen at different ratios and directing the air mixture to individual chambers through 

Luer fittings (163). 

In CdCl2 induction assays, synchronized stage 1 (L1) larvae were grown at 1.5 and 

20 μM hemin for 7 d. The worms were then treated with no or 100 μM CdCl2 for 24 h 

before harvesting. 
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Deletion worm strains 

The deletion strains hrg-2 (tm3798) and hrg-3 (tm2468) were isolated in 

mutagenesis screens by the Japanese deletion consortium (National Bioresource Project 

for the Experimental Animal Nematode C. elegans) (164). The allele cdr-4 (ok863) was 

provided by Caenorhabditis Genetics Center, University of Minnesota, Minneapolis. All 

alleles were confirmed by sequencing and outcrossed eight times with the N2 Bristol 

strain. Progeny from genetic crosses were genotyped by single worm polymerase chain 

reaction (PCR). During the final outcross, both homozygous mutants and their wild type 

brood mates were saved for further analysis.  

For single worm PCR, the individual worms were transferred to 200 μL PCR tubes 

containing 5 μL of lysis buffer (50 mM KCl, 10 mM Tris-HCl, 2.5 mM MgCl2, 0.45% 

NP-40, 0.45% Tween-20, 0.01% gelatin, and 1mg/mL fresh proteinase K). Worms were 

lysed by freezing and heating (2 h at -80°C, 1 h at 65°C, and 30 min at 95°C) and the 

lysates were subjected to PCR reactions. Genotyping primers are shown in Appendix I.  

Transgenic worm lines 

Transcriptional reporter constructs were generated either by fusion PCR or by the 

multisite Gateway system (Invitrogen). The constructs utilized in this study are shown in 

Appendix II. For example, the transcriptional fusion hrg-2::gfp comprises the 1.5 kb 

promoter region upstream of the hrg-2 start codon, a nuclear localization signal, a green 

fluorescent protein (GFP), and an unc-54 3’UTR or a hrg-2 3’UTR. Translational 

reporter constructs and ectopic expression constructs were generated by the multisite 

Gateway system (Appendix II). Worms with extra-chromosomal arrays or stable 

transgenic lines were obtained by microinjection (165) or by microparticle bombardment 
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(166). At least two lines were analyzed for each construct. A worm strain with the 

intestinal Golgi marker (RT1315, vha-6::MANS-GFP) was a gift from Dr. Barth Grant 

(Rutgers University).   

Bombardment 

One week before biolistic transformation, ~106 unc-119 (ed3) worms were 

transferred to fresh mCeHR-2 medium with 20 µM hemin. For bombardment, worms 

were harvested by centrifugation at 800×g for 2 min. The pellets were resuspended in M9 

buffer (86 mM NaCl, 42 mM Na2HPO4, 22 mM KH2PO4, and 1 mM MgSO4), and the 

adult worms were allowed to settle for 15 min on ice. The supernatant was aspirated, and 

the washing process was repeated 3 times or until the majority of the worms in the pellet 

were adult worms. The worms were then evenly plated on a dry, ice-chilled 10 cm NGM 

agar plate seeded with JM109 bacteria.   

Biolistic transformation of C. elegans was carried out following the protocol 

described by Praitis et al. (166). Briefly, 8 µg of reporter plasmid and 5 µg of unc-119 

rescue plasmid were mixed with 6 mg of ~2.2 µm gold particles (Degussa). The DNA-

gold mixture was delivered into unc-119 (ed3) worms by bombardment using the PDS-

1000/He particle delivery system with the Hepta adaptor (Bio-Rad). Worms from each 

bombardment were grown at 25 °C in 20 10 cm NGM agar plates containing JM109 

bacteria for two weeks. unc-119 (ed3) mutants are immobile, and they can not survive 

dauer formation in the absence of food. Only those mutant worms transformed with a 

wild type unc-119 gene can survive the starvation. The surviving worms with wild type 

movement were isolated and examined for the expression of reporter genes.  
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RNA extraction and Northern blotting 

Synchronized worms were grown at different concentrations of hemin chloride in 

mCeHR-2 medium. After two generations, all F2 worms were harvested at the late L4 

stage. To analyze the expression of hrg-3 at different developmental stages, synchronized 

F1 worms were grown in the presence of 4 µM heme for one generation. An aliquot of the 

eggs from bleaching the F1 gravids was saved for RNA extraction. Synchronized L1 

worms at the F2 generation were grown with 4 µM heme for another 84 h. Aliquots of 

worms were harvested every 12 h. L4 stage worms grown with 20 µM heme were used as 

control.    

Total RNA was isolated with TRIzol reagent (Invitrogen), purified with RNeasy 

Midi kit (Qiagen), and DNase-treated with RQ1 DNase (Promega). RNA quality was 

assessed by gel electrophoresis and by measuring the absorbance at 260 nm and 280 nm 

using a UV-visible spectrophotometer (Shimadzu). Twenty micrograms of denatured 

RNA was electrophoresed on a 1% formaldehyde agarose gel and blotted onto a nylon 

membrane (Zeta Probe, Bio-Rad). The [32P] α-dCTP (Amersham) labeled cDNA probes 

were generated using Prime-It II random primer labeling kits (Stratagene) with primers 

shown in Appendix III. The RNA membrane was incubated with probes in ULTRAHyb 

(Ambion) for 16 h. After washing the membrane, the signals were analyzed using a 

PhosphoImager (Storm 860, Molecular Dynamics). 

cDNA synthesis and quantitative Real-Time PCR 

After DNase digestion, 2 μg total RNA was used to synthesize cDNA using oligo 

(dT) primers and a SuperScript First-Strand Synthesis kit (Invitrogen). Quantitative real- 

time polymerase chain reaction (qRT-PCR) was performed in triplicate in an iCycler iQ 
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Multicolor Real-time PCR Detection System (Bio-Rad) with SYBR Green as the 

detection dye. Gene-specific PCR primers were designed by Beacon Designer version 4.0 

(Appendix III and Appendix IV). Each 20 μL PCR reaction contained 1 μL template 

cDNA, 350 nM primers, 0.12 U/µL Taq polymerase, 40 nM fluorescein (Invitrogen), and 

a 1:10,000 dilution of SYBR Green I Nucleic Acid Gel Stain (Invitrogen). The PCR 

program was 30 sec at 94°C, 30 sec at 60°C and 15 sec at 72°C. The purity of PCR 

products was determined by melting curve analysis and gel electrophoresis. The relative 

gene expressions were calculated using the comparative cycle threshold (Ct) method or 

ΔΔCt method by normalizing to glyceraldehyde 3-phosphate dehydrogenase-2 (gpd-2) 

(167).  

Rapid Amplification of cDNA ends  

To identify the full length mRNA of hrg-2 and hrg-3, we performed both 5’ rapid 

amplification of cDNA ends (RACE) and 3’ RACE using the SMART RACE kit 

(Clontech). Total RNA isolated from worms grown at 4 μM heme was reverse 

transcribed into first strand cDNA using modified oligo (dT) primers. RACE PCR was 

performed with one universal primer and one hrg specific primer. The PCR products 

were cloned into the PCR II plasmid using a TA cloning kit (Invitrogen) and sequenced. 

Each cDNA end was confirmed by sequencing at least three positive clones.   

RNA interference 

RNAi experiments were performed either by feeding the worms with bacteria 

expressing double-stranded RNA (dsRNA) or by directly soaking worms in dsRNA 

transcribed in vitro. For RNAi feeding, hrg-2 and hrg-3 open reading frames (ORFs) 

were first cloned into the L4440 plasmid (Fire Vector kit, Addgene) that contains the T7 
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promoter in both 5’ and 3’ flanking regions. RNase III-deficient bacteria HT115(DE3) 

transformed with either empty vector or hrg constructs were spotted onto NGM plates 

containing 50 µg/mL carbenicillin, 12 µg/mL tetracycline and 2 mM isopropyl-beta-D-

thiogalactopyranoside (IPTG). L1 larvae were placed onto RNAi plates and incubated at 

20°C. The phenotype was investigated in 3-4 d.  

In preparation for soaking RNAi, dsRNA was transcribed from 2 µg of L4440-hrg 

plasmids using the MEGAscript RNAi kit (Ambion). The reaction was subsequently 

treated with DNase I and RNase to remove DNA and ssRNA. Free nucleotides and 

proteins were removed by column purification. RNA quality was determined by gel 

electrophoresis and by measuring the absorbance at 260 nm and 280 nm in a UV-visible 

spectrophotometer. Soaking RNAi was performed using the conditions described by 

Ahringer (168). Synchronized L1 larvae were placed into 50-200 ng/ µL dsRNA in the 

soaking buffer (21.5 mM NaCl, 10.5 mM Na2HPO4, 5.5 mM KH2PO4, 15 mM 

spermidine, and 0.25% gelatin). After 24-48 h, the worms were removed for examination 

of phenotypes or for subsequent growth assays at different heme concentrations.   

GFP quantitation and zinc mesoporphyrin IX uptake assay  

GFP-expressing strains were grown at varying heme concentrations in mCeHR-2 

medium. After 4 d, worms were washed with M9 buffer and harvested for protein 

extraction. Total worm lysates were subjected to GFP fluorescence measurements using 

the Victor 1420 Multilabel counter (Perkin Elmer). Measurements were performed in 

triplicate and all fluorescence intensities were normalized to the protein concentrations 

(Bio-Rad).  



 

 37 
 

For zinc mesoporphyrin IX (ZnMP, Frontier Scientific) uptake assays, synchronized 

L1 worms were grown at 2 μM heme in mCeHR-2 medium. At the early L4 stage, they 

were washed with M9 buffer and incubated with 10 μM ZnMP in the presence of 1.5 μM 

heme. After 16 h, worms were washed twice with M9 buffer, paralyzed in 10 mM 

levamisole, and mounted on 1.2% agarose pads on glass slides. After placing a coverslip 

on the agar pad, the worm samples were analyzed with a Leica DMIRE2 epifluorescence/ 

DIC microscope. Images were obtained using a Retiga 1300 cooled Mono 12-bit camera 

and quantitated using SimplePCI version 6.2.0 software (Compix Inc). 

Worm lysis for immunoblotting 

Transgenic worms were maintained at low heme (≤4 µM) for at least one 

generation to ensure hrg-2 or hrg-3 expression. Worms were then harvested, washed once 

with M9 buffer, and resuspended in M9 buffer with protease inhibitor cocktail set III 

(Calbiochem). The samples were transferred to 2 mL tubes containing Lysing Matrix D 

beads and subjected to FastPrep-24 (MP Biomedicals) bead beater disruption (four pulses 

of 60 s at 6.5 m/s). The homogenates were centrifuged at 16,000×g for 30 min to remove 

worm debris and the total protein concentrations were measured using the Bradford 

reagent (Bio-Rad). 

Iron and protoporphyrin IX response assays  

An iron response experiment was performed in iron-depleted mCeHR2 medium. To 

make iron-depleted medium, all stock components except for Fe(NH4)2(SO4)2·6H2O 

were assembled following mCeHR-2 protocol (162). The medium was incubated with 1 

mM ferrozine (Sigma), a membrane impermeant iron chelator, for 3-5 d at 20°C in order 

to chelate any residual iron from the medium. To test whether iron regulates hrg 
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expression, transgenic worms were grown in iron-depleted medium supplemented with 

either 0.1 or 20 µM ammonium ferric citrate (C6H8O7·Fe·NH3) in combination with 1.5 

or 20 µM hemin chloride for 48 h.   

PPIX (Frontier Scientific) was prepared as a 1 mM stock solution following the 

same procedure used for preparing the hemin stock (160). Transgenic worms were treated 

with 20 µM PPIX in mCeHR-2 medium in the presence of 1.5 µM hemin. After 48 h, the 

animals from these two experiments were analyzed for GFP fluorescence by confocal 

microscopy.    

Mammalian cells  

Cell culture, plasmids and transfection 

Mammalian cells were cultured at 37°C in a humidified incubator with 5% CO2. 

Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco's modified 

Eagle's medium (DMEM, GIBCO/BRL) supplemented with 10% fetal bovine serum 

(FBS) and penicillin/streptomycin/glutamine. DNA constructs were transiently 

transfected into HEK293 cells using Lipofectamine 2000 (Invitrogen) for western 

blotting studies and FuGENE 6 (Roche) for immunofluorescence assays. 

DNA cloning 

Total worm RNA was first reverse transcribed into cDNA using oligo (dT) primers. 

hrg-2 and hrg-3 ORFs were amplified with primers flanked by BamHI and XhoI 

restriction sites. Sequences for hemagglutinin (HA) or FLAG epitope tags were included 

in the primers to generate tagged HRG proteins. Following restriction digestion and DNA 

purification, the PCR products were cloned into the pcDNA3.1(+) zeo vector (Invitrogen) 
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and the pEGFP-N1 vector as well as its equivalent GFP variant living color vectors 

(Clontech). Truncated constructs, including HRG-2N, HRG-2Δ1, HRG-2Δ2, HRG-2ΔN, 

HRG-3N, and HRG-3ΔN were introduced into mammalian expression plasmids in a 

similar way.  

Immunofluorescence 

Transfected HEK293 cells grown on coverslips were fixed with 4% 

paraformaldehyde for 20 min. After permeabilization with 0.2% Triton X-100 for 10 min, 

the cells were blocked in 3% bovine serum albumin and 50% SuperBlock solution 

(Pierce). Samples were incubated in a primary polyclonal anti-HA antibody (Sigma) at 

1:2,000 dilution for 1 h at room temperature, followed by goat anti-rabbit IgG secondary 

antibodies conjugated to either Alexa 488 or Alexa 568 at 1:6,000 dilution for 30 min. 

Coverslips were mounted onto slides using ProLong Antifade (Invitrogen). For GFP 

fluorescence studies, cells were directly mounted onto slides after fixation. The 

specimens were examined and photographed on a laser scanning confocal microscope 

LSM 510 (Zeiss). 

Protein preparation for immunoblotting 

For western blotting, transiently transfected cells were lysed with cell lysis buffer 

(150 mM NaCl, 0.5% Triton X-100, 20 mM HEPES, pH 7.4) for 5 min on ice. Cell 

lysates were collected after centrifugation at 10,000×g for 10 min at 4°C. The total 

protein concentration was quantified with the Bradford reagent (Bio-Rad). 
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Fluorescence protease protection assay 

The procedure for fluorescence protease protection (FPP) assay was modified from 

the protocol by Lorenz et al. (169). HRG-2-GFP, HRG-3-GFP, and control plasmid 

pCFP-CD3δ-YFP (a gift from Dr. Jennifer Lippincott-Schwartz, NIH) were transfected 

into HEK293 cells growing in Lab-Tek chambered coverglass (Nunc). After 24 h, the 

cells were washed with KHM buffer (110 mM potassium acetate, 2 mM MgCl2, and 20 

mM HEPES, pH 7.3) and the cell chambers were moved to a DMIRE2 epifluorescence 

microscope (Leica) connected with a Retiga 1300 cooled Mono 12-bit camera. The 

plasma membrane was permeabilized with 30 μM digitonin for 2 min and the cells were 

immediately incubated in 50 μg/ml proteinase K for 2 min. Images were taken before 

digitonin treatment, after digitonin treatment, and after proteinase K digestion.   

Heme depletion in HEK293 cells 

To deplete heme, HEK293 cells were grown in heme-depleted growth medium 

supplemented with 0.5 mM succinylacetone for 24 h. The FBS (10%) for this medium 

was depleted of endogenous heme by incubating with 10 mM ascorbic acid for 7 h at 

37°C, followed by dialysis for 3 times in phosphate buffered saline (PBS) (170). 

Hemin-agarose chromatography 

Hemin-agarose pull-down assays were performed according to the procedure 

outlined by Rajagopal et al. (68). Briefly, transfected HEK293 cells were lysed in MS 

buffer (210 mM mannitol, 70 mM sucrose, 10 mM HEPES, pH 6.4 or 7.4), in the 

presence of Protease Inhibitor Cocktail III (Calbiochem) on ice for 30 min. Following 

centrifugation at 100×g for 5 min, the post-nuclear supernatant was subjected to SDS-

PAGE and immunoblotting with a rabbit anti HA antibody (Sigma). The expression level 
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of each HA-tagged protein was quantified using Image Quant software version 5.1. 

Hemin-agarose was prepared following methods described by Tsutsui (171). Each 

binding reaction contained 300 nmol hemin-agarose, as well as 500 μg HRG-2 cell lysate 

or the equivalent amount of target proteins from other cell lysates. Cell lysates from 

untransfected HEK293 were added to bring the total protein content of all samples to 500 

μg. The binding reactions were incubated with gentle rocking at room temperature for 30 

min and then centrifuged at 800×g for 3 min. The pellets were washed three times with 1 

ml wash buffer (150 mM NaCl, 1% NP-40, and 50 mM Tris-HCl, pH 8.0) and three times 

with RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 

and 50 mM Tris-HCl, pH 7.9). The bound proteins were eluted by incubating in 8 M urea 

and Laemmli sample-loading buffer containing 100 mM DTT for 5 min at room 

temperature and boiling for 3 min. Equivalent amounts of input protein, the flow-through 

after RIPA washes, and the eluted protein were subjected to electrophoresis in 4-10% 

polyacrylamide gels and immunoblotting with HA antibodies. Each hemin-binding assay 

was done in ≥ 2 replicates.   

Yeast experiments 

Strains and growth 

The heme-deficient S. cerevisiae strain, DY1457 hem1Δ(6D), was provided by Dr. 

Caroline Philpott (NIH). This hem1Δ strain lacks the gene encoding δ-aminolevulinic 

acid synthase, which is the rate-limiting enzyme in the heme biosynthesis pathway (172). 

Yeast were maintained on enriched yeast extract-peptone-dextrose (YPD) plates or YPD 

liquid medium at 30°C. Solid and liquid synthetic complete (SC) media comprised 0.17% 

yeast nitrogen base (YNB, BIO 101), 2% dextrose, 0.5% (NH4)2SO4, and amino acids, as 
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described by Sherman (173). The regular growth medium was supplemented with 250 

μM δ-aminolevulinic acid (ALA). 

Cloning and yeast transformation 

Untagged or tagged versions of hrg-2 and hrg-3 ORFs were cloned into either the 2 

micron plasmid pYES-DEST52 (Invitrogen) by Gateway cloning or a modified plasmid 

pJBS7 (provided by Dr. Caroline Philpott, NIH) using primers engineered with BamHI 

and XbaI restriction sites. cdr-1 and truncated hrg constructs were cloned into the pJBS7 

vector. HA-tagged hrg-4 was cloned into pYES-DEST52 using the Gateway system and 

pRS423Gal plasmid (a gift from Dr. Daniel Kosman, University at Buffalo) by using SalI 

and NotI restriction sites. The reporter construct pRS314m-CYC1-lacZ was generated by 

homologous recombination using the PCR product of CYC1::LacZ and the plasmid 

pRS314m-CYC1-HIS (gifts from Dr. Caroline Philpott). These expression plasmids were 

transformed into yeast using polyethylene glycol and lithium acetate at 42°C for 20 min. 

Positive clones were isolated by plating the transformants onto the selective SC medium. 

In this SC medium, uracil was dropped out for single transformation with pYES-DEST52 

constructs. For co-transformation with pRS423Gal constructs or pRS314m-CYC1-lacZ, 

the selective medium lacks uracil plus histidine or uracil plus tryptophan, respectively. 

ALA was supplemented to all of the transformations.  

Heme rescue assay 

Expression plasmids containing vector only or HRG constructs were transformed 

into hem1Δ yeast. After 3 d, individual yeast colonies were transferred onto selective SC 

agar plates containing raffinose instead of glucose. Residual ALA was removed by 

incubating the transformants in SC liquid medium without ALA for 16 h. Equal numbers 
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of transformed yeast were inoculated onto growth assay plates containing 4% galactose 

for gene induction as well as different concentrations of hemin chloride or ALA. Yeast 

growth was analyzed after incubation at 30°C for 3-5 d.  

β-Galactosidase assay  

β-Galactosidase was assayed as described (174). The transformed yeast was grown 

in 10 mL selective SC medium containing 2% galactose for 7-8 h or until an optical 

density (O.D.) of 0.5 at 600 nm had been reached. Cells were harvested and resuspended 

in 250 µL breaking buffer (1 mM dithiothreitol, 20% glycerol, and 100 mM Tris-HCl, pH 

8.0) with 2.5% protease inhibitor cocktail set III. Cells were then disrupted using a 

FastPrep-24 (MP Biomedicals) Bead Beater (three 30 s pulses at 6.5 m/s) in the presence 

of acid-washed glass beads. Yeast lysates were centrifuged at 16,000×g for 10 min and 

the supernatant used immediately to determine the enzyme activity. β-Galactosidase 

activity was measured by incubating an equal volume of yeast lysate at 30°C with 0.4 

mg/mL ο-nitrophenyl-β-D-galactopyraniside in Z buffer (60 mM Na2HPO4·7H2O, 40 

mM NaH2PO4·H2O, 10 mM KCl, 1 mM MgSO4·7H2O, and 40 mM β-mercaptoethanol 

with pH adjusted to 7.0). After 5 min, 0.2 M Na2CO3 was added to stop the reaction. The 

O.D.420 of the assay solutions were measured in a UV-visible spectrophotometer and 

normalized to total protein measured by the Bradford assay. Enzyme activity was 

expressed as nmol/min/mg protein. 

Yeast immunofluorescence 

Transformed yeast cells were grown under inducing conditions in liquid SC 

medium to mid-log phase. After fixing with 4% formaldehyde for 1 h, cells were 

harvested by centrifugation and washed twice with PBS. Cells were subsequently 
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resuspended in 500 µL of 1.2 M sorbitol with 1 mM dithiothreitol, and were then treated 

with 3 μL of 10 mg/mL zymolyase-100T (US biological) at 30°C for 30 min. The 

resulting spheroplasts were washed twice with sorbitol buffer and finally resuspended in 

100 μL sorbitol buffer. Ten microliter aliquots of the spheroplasts were added to poly-L-

lysine-coated 8-well slides and incubated for 10 min to allow attachment. Spheroplasts 

were incubated with rabbit polyclonal anti-HA antibody at a 1:2,000 dilution (Sigma) for 

1 h and then Alexa 488-conjugated polyclonal goat anti-rabbit IgG antibody at a 1:5,000 

dilution for 30 min. ProLong Antifade solution (Invitrogen) and a coverslip were applied 

to each slide.  

Microarray analysis 

Microarray design and worm growth 

The microarray experiment used a 3×3 full factorial arrangement with triplicates for 

each treatment (Figure 2.1A). Heme levels were 1.5, 20, and 500 µM, and oxygen 

concentrations were 4%, 21%, and 100%. N2 worms maintained at 20 µM heme, 21% O2 

were bleached to obtain F1 larvae (Figure 2.1B). Equal numbers (3,000 worms/mL) of L1 

larvae were inoculated into mCeHR-2 medium for all of the nine treatments. After one 

generation, the worms were synchronized again and the F2 larvae received the same 

treatment as their mothers. When the F2 worms reached late L4 stage, they were washed 

once with M9 buffer and flash frozen in liquid nitrogen followed by storage at -80°C.  

RNA preparation and hybridization 

Frozen worm pellets were ground into a fine powder using a mortar and pestle and 

subsequently homogenized using a Dounce homogenizer. Total RNA was isolated using 
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TRIzol reagent (Invitrogen), purified with an RNeasy Midi kit (Qiagen), and DNase-

treated by RQ1 DNase (Promega).  

The RNA samples were subjected to cRNA synthesis and hybridization to 

Affymetrix C. elegans whole genome arrays (Figure 2.1B). RNA quality assessment, 

RNA labeling, hybridization, and signal quantitation were carried out in the Genomics 

Core Facility at the National Institute of Diabetes and Digestive and Kidney Diseases, 

NIH.  

Data analysis and model fitting 

The raw data were background-adjusted and normalized using a Robust Multichip 

Average (RMA) algorithm in R statistical environment (175). ANOVA analyses and 

estimations of contrasts and false discovery rates (FDR) were conducted using the 

statistical package MAANOVA version 1.4.1 in R environment version 2.8.0 (175,176). 

Each probe set was first fitted against the full two-way ANOVA model including the 

main effects of heme (H) and oxygen (O) as well as the interaction (H*O). If no 

interaction was observed, only main effects were examined for the probe set. Otherwise, 

simple effects in each treatment were tested. The cut-off value for differential expression 

was fold change ≥2.0 and FDR q value <0.05. Since FDR was estimated based on the 

subset of genes with significant P values (<0.05), we used it to reduce the type I error. 

Differentially expressed genes were clustered into groups based on whether the gene was 

up- or down- regulated at different heme or O2 concentrations in comparison to the 

control level. Fold changes were converted into heat maps using Multiexperiment viewer 

version 4.3 (177).  
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Figure 2.1. Design and procedure of microarray experiments. (A) Experimental 

design. The microarray experiment used a 3×3 full factorial arrangement with triplicates 

for each treatment. Heme levels were 1.5, 20, and 500 µM and oxygen concentrations 

were 4%, 21%, and 100%. (B) Procedure of worm growth, RNA preparation and 

microarray.  
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Gene ontology, protein domain, and protein interaction analyses 

Enrichment for gene ontology (GO) terms and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways were determined using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID program) (178-180). The genes 

regulated by 1.5 µM heme (189), 500 µM heme (289), 4% oxygen (4), and 100% oxygen 

(94) were analyzed separately. The list of 22,625 probe sets in the Affymetrix C. elegans 

whole genome array was used as the background dataset for the calculation of the 

statistical significance and the fold enrichment. GO terms and protein families were 

considered significantly over-represented in the gene lists if they had >2.0 fold 

enrichment and a P value of <0.05. Protein-protein interactions were identified for the 

products of significantly changed genes by mapping them to Worm Interactome version 8 

using Cytoscape version 2.6 (181,182).  

Clustering of genes with similar expression profiles to hrg-2 and hrg-3 

The normalized microarray data were subjected to analysis with Genespring 

software version 7.3 (Agilent). Distinct sets of genes with expression patterns similar to 

hrg-2 or hrg-3 were identified based on the correlation coefficient (r) calculated for the 

pairwise comparisons between their signals and those of hrg-2 or hrg-3 across all 27 

chips. Genes with r >0.8 were included in the gene clusters. 

General procedures  

Immunoblotting 

Protein samples were separated by SDS-PAGE on 4-20% Tris-HCl criterion gels 

and transferred to nitrocellulose membrane (Bio-Rad). After blocking in 5% non-fat dried 
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milk, the membranes were incubated in rabbit anti-HA (Sigma) at a 1:2,000 dilution or 

mouse anti-GFP at a 1:5,000 dilution for 16 h at 4°C. HRP-conjugated secondary 

antibodies diluted to 1:20,000 were applied to the membrane for 30 min at room 

temperature. Signal was detected by SuperSignal chemiluminescence reagents (Thermo 

Scientific) in the Gel documentation system (Bio-Rad). The molecular weights of protein 

bands in the blots were determined with Precision Plus Protein Kaleidoscope Standards 

(Bio-Rad) using Quantity One software (Bio-Rad).  

Confocal microscopy 

GFP, mCherry and Alexa fluorophores were examined in a laser-scanning confocal 

microscope LSM 510 with Ar (458 nm and 488 nm) and HeNe (543 nm and 633 nm) 

lasers (Zeiss). Samples of mammalian cells, worms and yeast were examined using 63× 

and 100× oil immersion objective lenses. Images with a z resolution of 1 µm were 

acquired and processed in the LSM image browser (Zeiss). 

In vitro transcription and translation 

HA-tagged hrgs in the pcDNA3.1(+) Zeo vector were transcribed and translated in 

vitro using the TNT Coupled Wheat Germ Extract System (Promega). One microgram of 

each plasmid DNA was added to wheat germ lysates in the presence of amino acids and 

TNT RNA polymerase. The reactions were incubated at 30°C for 2 h. The samples were 

subjected to SDS-PAGE and immunoblotting.    

Protein expression in bacteria 

Amino terminus-deleted HRG-2 and HRG-3 constructs were cloned into the 

expression vector pET14b (Invitrogen) between NdeI and BamHI restriction sites. DNA 
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constructs were transformed into the E. coli strain BL21(DE3) or C43(DE3) for protein 

expression. The cells were grown aerobically in liquid Luria-Bertani medium until a 

O.D.600 ~0.5 had been reached. Gene expression was induced by the addition of 1 mM 

IPTG and the cells were incubated at 18°C for 16 h. The cells were harvested, washed 

with binding buffer (20 mM Tris–HCl, pH 7.9, 5 mM imidazole, and 500 mM NaCl) and 

stored at -80°C. Samples in 1 mL aliquots of bacteria before and after induction were 

lysed by heating for 5 min in Laemmli sample buffer with 2% SDS. Lysates were 

separated by SDS-PAGE and the proteins detected by either Coomassie blue staining or 

immunoblotting.  

Purification of His-tagged HRGs 

The frozen cell pellets were resuspended in binding buffer containing protease 

inhibitor cocktail set III (Calbiochem). Immediately after adding 1 mM 

phenylmethylsulphonyl fluoride, cells were homogenized by three passages through a 

French pressure cell (SLM Aminco) at an internal pressure of up to 15,000 psi (1 psi = 

6.89 kPa). Bacterial supernatants were obtained by centrifugation at 14,000×g for 20 min 

at 4°C followed by filtration through a 0.45 μm filter. Lysates were applied to the 

His·Bind columns preloaded with charged His bind Resin (Novagen). After washing with 

binding buffer and washing buffer (20 mM Tris–HCl, pH 7.9, 60 mM imidazole, and 

500 mM NaCl), the bound proteins were eluted with 1.0 M imidazole. Fractions of 

eluates were analyzed by Bradford assay for total protein concentration and by 

Coomassie blue staining following SDS-PAGE.  
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Bioinformatics 

BLAST searches were applied to identify homologous genes of hrg-2 and hrg-3. A 

putative ortholog was assigned when it had a significant E value (< 10-4) and met the 

criterion of reciprocal best BLAST hit. Putative hrg-3 homologs in C. briggsae and C. 

remanei were predicted by the GeneMark.hmm program (183). Binding sites for 

transcription factors in hrg-3 promoter were predicted using the TFSEARCH program 

(http://www.cbrc.jp/research/db/TFSEARCH.html). Molecular weights and isoelectric 

points were calculated in the Compute pI/Mw program (184). Transmembrane domains, 

signal peptides, protein motifs, and protein secondary structures were predicted using the 

Transmembrane prediction with Hidden Markov Model (TMHMM) program 

(www.cbs.dtu.dk/services/TMHMM/), the eukaryotic linear motif (185), the conserved 

domain database (CDD, www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), and the Jpred3 

(186), respectively. Multiple sequence alignment was performed using the ClustalW 

(187) and was visualized with the BoxShade program 

(www.ch.embnet.org/software/BOX_form.html). Following the multiple sequence 

alignment of HRG-2 and CDR-1 proteins, a phylogenetic tree was constructed using the 

neighbor-joining method in MEGA 4 (Molecular Evolutionary Genetics Analysis, 

Version 4.0) with 1000 pseudoreplicates (188,189).  

Statistics 

All data are presented as mean ± S.E. Statistical significance was tested using one-

way ANOVA followed by the Tukey-Kramer Multiple Comparisons Test in GraphPad 

INSTAT version 3.01 (GraphPad, San Diego). A P value of <0.05 was considered as 

statistically significant.  
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Chapter 3:  Delineating the role of C. elegans hrg-2 in heme 

homeostasis 

 

Summary 

Heme is an essential cofactor for diverse biological processes such as oxygen 

transport, xenobiotic detoxification, microRNA processing, circadian clock control and 

gene regulation. Since free heme is hydrophobic and cytotoxic, we hypothesize that 

within eukaryotic cells, specific intracellular trafficking pathways exist for the delivery of 

heme to different subcellular destinations where hemoproteins reside. To identify 

molecules that may be involved in heme homeostasis, an Affymetrix C. elegans genome 

array experiment was performed using RNA extracted from worms that were grown at 

low (4 µM), optimal (20 µM) and high (500 µM) heme in axenic liquid growth medium. 

From the 288 genes that showed significant changes in gene expression, the mRNA 

levels of heme-responsive gene-2 increased more than 70 fold when worms were grown 

at 4 µM compared to 20 µM heme. Results from quantitative real-time PCR and Northern 

blot confirmed the expression profile. In C. elegans, hrg-2 shows high sequence 

similarity to a group of genes previously named cadmium-responsive genes (cdrs). 

However, these cdrs are not heme responsive. Deletion of hrg-2 in C. elegans resulted in 

reduced growth rate at low heme. Using reporter constructs, we found that hrg-2 is 

expressed in hypodermal tissues and the protein localizes to the endoplasmic reticulum 

and apical plasma membrane. In addition to studies in the worm, fluorescence protease 

protection assays performed using transiently transfected mammalian cells confirmed that 
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HRG-2 is a type I membrane protein. In vitro hemin agarose pull-down experiments 

indicated that HRG-2 binds heme. Furthermore, expression of HRG-2 in hem1Δ yeast 

resulted in growth rescue of the heme-deficient strain at submicromolar concentrations of 

heme. Taken together, these results suggest that HRG-2 may play a critical role in the 

uptake or intracellular trafficking of heme in the hypodermal tissues of C. elegans. 

Results 

Identification of hrg-2 as a heme-responsive gene in C. elegans 

Within eukaryotic cells, proteins that require or bind heme are present in various 

compartments including the cytoplasm, the nucleus, lysosomes, peroxisomes, and the 

secretory pathway. Since free heme is hydrophobic and cytotoxic (7), it is highly possible 

that specific heme trafficking pathways exist for delivering heme to different subcellular 

destinations within eukaryotic cells. The free-living roundworm C. elegans is a unique 

genetic model for interrogating heme trafficking pathways because this animal lacks the 

ability to synthesize heme and thus acquires heme from the diet (160). 

To identify molecules that may be involved in heme homeostasis, an Affymetrix 

genome-wide microarray experiment was performed using the RNA extracted from C. 

elegans grown at 4, 20 or 500 μM heme in axenic mCeHR-2 liquid culture (68). The 

microarray result revealed that heme-responsive gene-2 (hrg-21) (WormBase accession 

number K01D12.14) was significantly induced by heme deficiency in C. elegans (72.08 

fold induction). To confirm this regulation, we performed RNA blotting analysis and 

found that hrg-2 mRNA (~0.9 kb transcript) was highly expressed at 4 μM heme, 

whereas no hrg-2 message was detected at 20 and 500 μM heme (Figure 3.1A). 

                                                 
1 Worm gene names are shown in lower case italics, and protein names are shown in capital letters.  
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Quantitative real-time PCR showed that the hrg-2 gene was upregulated more than 200 

fold at 1.5 μM heme but was almost completely repressed at 8 μM heme (Figure 3.1B).  

Heme consists of a PPIX ring and an iron atom. To test whether iron regulates hrg-

2 expression, we generated a translational fusion construct that contained the 1.5-kb 

promoter region of hrg-2, hrg-2 gene, yellow fluorescent protein (YFP) coding region 

and hrg-2 3’ untranslated region (UTR) (Figure 3.2A). This hrg-2::HRG-2-YFP 2 

construct was predominantly expressed in hypodermal tissues when the transgenic worms 

were maintained at 1.5 μM heme (Figure 3.2B). However, no YFP expression was 

observed at 20 μM heme. This regulation pattern is consistent with the results from 

Northern blot analysis and qRT-PCR. The transgenic worms were grown in iron-depleted 

liquid medium supplemented with 0.1 or 20 μM ammonium ferric citrate for 2 d. We 

found that different iron concentrations did not exhibit any effect on the expression of 

hrg-2::HRG-2-YFP (Figure 3.2B). This experiment was performed at both low (1.5 μM) 

and optimal (20 μM) concentrations of heme. Under both conditions, there was no 

difference in HRG-2-YFP expression when worms were treated with either 0.1 or 20 μM 

iron. We next grew this transgenic strain in 1.5 μM heme plus 20 μM PPIX. No decrease 

in hrg-2 expression was observed in this treatment compared to 1.5 μM heme (Figure 

3.2C). These results suggest that the regulation of hrg-2 is specific to heme. 

                                                 
2 The transcriptional constructs are shown in the format promoter::gfp, and the translational constructs are 

shown as promoter::GENE-YFP. 
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Figure 3.1. hrg-2 is induced by heme deficiency. (A) Northern blot analysis of hrg-2 

expression in response to different heme concentrations. gpd-2 was used as a loading 

control. (B) Quantitation of hrg-2 mRNA by qRT-PCR. Relative fold changes were 

derived by normalizing the cycle threshold values to gpd-2 and then to the control heme 

level of 20 µM using ∆∆CT methods. The experiment was performed in triplicate, and 

the data were represented as the mean ± S.E.  
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Figure 3.2. Regulation of hrg-2 is specific to heme. (A) Schematic representation of the 

hrg-2 translational construct. UTR: untranslated region. (B) hrg-2 expression at different 

concentrations of iron. The transgenic worms with the hrg-2::HRG-2-YFP construct were 

treated with 0.1 and 20 µM ammonium ferric citrate in iron-depleted medium for 48 h. 

YFP signal was examined as a direct reporter for the activity of the hrg-2 promoter. This 

experiment was performed at both 1.5 and 20 µM heme. Representative images of the tail 

region in adult worms are shown. (C) Response of hrg-2 expression to PPIX. 

hrg2::HRG-2-YFP transgenic worms were grown at 1.5 µM heme with or without 20 µM 

PPIX in mCeHR-2 medium. The expression levels were analyzed by confocal 

microscopy in 48 h. Representative images of the worm body in larvae are shown. DIC: 

differential interference contrast. (scale bar = 20 µm)  
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The hrg-2 gene encodes a protein of 279 amino acids with a predicted molecular 

mass of 31.9 kDa and an isoelectric point of 6.83, as calculated using the Compute 

pI/Mw program (184). The TMHMM algorithm and the CDD program predicted that 

HRG-2 has an amino (N)-terminal transmembrane domain (TM), a GST-N metaxin-like 

domain and a GST-C metaxin domain (Figure 3.3A and 3.3B). In addition, HRG-2 

protein has five putative N-linked glycosylation sites after the N-terminal transmembrane 

domain (Figure 3.3C). 

In WormBase, hrg-2 has been named cadmium-responsive gene-5 (cdr-5) because it 

has sequence homology to the cdr-1 gene (WormBase accession number F35E8.11). This 

putative cdr family contains seven gene members in C. elegans. HRG-2 shares ~45% 

identity with each of the other CDR proteins, and the homology is throughout the peptide 

sequence (Figure 3.3B). Based on the prediction by CDD, all seven proteins have a GST-

N metaxin-like domain and a GST-C metaxin domain, suggesting they may be involved 

in similar biological processes. Two proteins in C. briggsae (CBP20711 and CBP26243) 

show the highest homology to HRG-2 in C. elegans, suggesting that the hrg-2 gene was 

duplicated in the C. briggsae genome (Figure 3.3C and 3.3D). Putative HRG-2 orthologs 

were also identified in C. remanei (RP30064) and C. brenneri (CN06811). They share 

>70% identity with HRG-2 at the protein level. No HRG-2 orthologs have been found in 

non-nematode species based on BLAST searches and homology comparison. Using 

BLAST, we found that C. briggsae, C. remanei, C. brenneri, and Pristionchus pacificus 

all have multiple cdrs, but it is difficult to assign all the cdr gene names solely based on 

the protein sequences (Figure 3.3D).  
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Figure 3.3. Protein domains and conservation of HRG-2. (A) Putative domains in 

HRG-2. The TM domain was predicted by the TMHMM program and GST-like domains 

were predicted using Conserved Domain Database. Numbers above the schematic 

indicate the positions of amino acids in HRG-2. (B) Comparison of HRG-2 and CDR-1. 

TMs and GST-like regions are indicated in both proteins. TM II is only present in CDR-1 

but not in HRG-2. GST-like domains were drawn based on the amino acid positions in 

HRG-2 and are boxed. (C) Multiple sequence alignment of HRG-2 proteins among 

Caenorhabditis species. C. briggsae has two putative HRG-2 orthologs, of which the 

most similar one (WormBase protein ID CBP20711) is shown in the alignment. The 

protein IDs for HRG-2 in C. remanei and C. brenneri are RP30064 and CN06811, 

respectively. Sequences were aligned by the ClustalW program and visualized with 

BoxShade program. Conserved histidines and tyrosines are marked as H or Y. ∆ indicates 

putative N-linked glycosylation sites. The numbers at the end of the alignment indicate 

percentage identities, which were derived from the pairwise alignment between C. 

elegans HRG-2 and its putative orthologs. (D) Evolutionary relationships of HRG-2, 

CDRs, and their homologs in nematodes. Protein sequences were aligned using the 

ClustalW program, and the phylogenetic tree was constructed with neighbor-joining 

method in MEGA 4. The branch lengths of the tree reflect the evolutionary distances, 

which are in the units of the number of amino acid substitutions. The scale bar represents 

10% sequence divergence. HRG-2 and CDRs in C. elegans are marked with a box or 

asterisks. Cel: C. elegans. CBP: C. briggsae. CN: C. brenneri. RP: C. remanei. PP: P. 

pacificus. 
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Differential regulation of hrg-2 and cdrs 

In C. elegans, all cdrs except for cdr-1 are clustered together on chromosome V. 

This suggests that these genes might be regulated by an operon, which has been shown to 

regulate ~15% of the genes in C. elegans (190). However, a previous study has suggested 

that cdr genes were not within an operon because none of the mRNAs were trans-spliced 

with the SL2 splice leader sequence (191), which is a hallmark for downstream mRNAs 

within an operon. Besides hrg-2, no significant changes were observed for any of the cdrs 

in response to heme (Figure 3.4A). qRT-PCR results confirmed that the expression of 

cdr-4 (WormBase accession number K01D12.11) and cdr-7 (WormBase accession 

number K01D12.13), the two cdrs that flank hrg-2 gene in the genome, did not show any 

response to heme (Figure 3.4B). Furthermore, the genomic structure of hrg-2 was 

confirmed by 5’ and 3’ rapid amplification of cDNA ends, indicating that the gene is not 

trans-spliced (Figure 3.4C). These results indicated that hrg-2 is not transcribed as part of 

an operon.  

To further understand the differential regulation of cdrs by cadmium and heme, we 

grew N2 worms at 1.5 or 20 μM heme in the presence or absence of 100 μM CdCl2. qRT-

PCR result indicated that cdr-1 was induced only by cadmium whereas hrg-2 responded 

only to heme (Figure 3.4D). These results suggest that the transcriptional regulation of 

both hrg-2 and cdr-1 is specific to distinct environmental cues despite the fact that these 

two genes are highly similar by sequence.  

HRG-2 is required for worm growth at low heme 

To characterize the functions of hrg-2 in C. elegans, we examined the phenotype of 

the hrg-2 (tm3798) deletion allele (164). This allele has a 502-base pair deletion that 
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Figure 3.4. Differential regulations of hrg-2 and cdrs. (A) Expression profiles of hrg-2 

and cdrs by microarray analysis. All data are presented as mean ± S.E. (B) Quantitation 

of cdr-4 and cdr-7 expression by quantitative RT-PCR. cdr-4 and cdr-7 genes are 

adjacent to the hrg-2 gene in the worm genome. qRT-PCR was performed using RNA 

from worms grown at different heme concentrations. The gene expression was 

normalized to the internal control gpd-2. No significant difference was observed across 

heme levels (P >0.05). (C) Genomic structure of hrg-2 revealed by RACE analysis. 

Exons are depicted as empty boxes, and untranslated regions are shown as gray boxes. 

The number indicates the size of each region in nucleotides. (D) Transcriptional 

responses of hrg-2 and cdr-1 to heme and CdCl2. N2 worms grown at 1.5 and 20 μM 

heme were treated with 0 or 100 μM CdCl2 for 24 h. Total RNA was extracted and 

subjected to qRT-PCR analysis. Data above the dotted line are significantly different 

from those below the line for hrg-2 and cdr-1, respectively (P <0.001).  
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includes the putative TATA box, the transcription start site and first two exons (Figure 

3.5A). The mutant worm was outcrossed with the N2 Bristol strain eight times to remove 

possible mutations in other genomic locus. During the final outcross, both homozygous 

mutants and their wild type brood mates were saved. At low concentrations of heme, hrg-

2 (tm3798) worms tended to grow slower than both wild-type N2 worms and the wild-

type brood mate controls (Figure 3.5B). Only marginal difference was observed when 

these worms were maintained at 20 µM heme. Furthermore, deletion of the homologous 

gene cdr-4 did not lead to any developmental delay under the same conditions.    

hrg-2 is expressed in hypodermal cells 

The cell-specific expression of hrg-2 was investigated in C. elegans using gfp 

reporters. We generated transcriptional fusion constructs that contain the 1.5-kb promoter 

region of hrg-2, a nuclear localization signal (NLS), GFP and either the unc-54 3’ UTR 

or the hrg-2 3’ UTR (Figure 3.6A). These hrg-2::gfp constructs predominantly expressed 

in the worm hypodermis (Figure 3.6B). The hypodermal cells in the head body, and tail 

all had GFP expression when the transgenic worms were maintained at low heme 

conditions. In contrast, when the worms were grown at 20 μM or higher concentrations of 

heme, these transcriptional reporters were inactive (Figure 3.6C). No difference in 

expression pattern or heme response was observed between the two tested UTRs.  

As is shown in Figure 3.6A, the putative 1.5-kb promoter contains a cdr-7 gene and 

a 0.5-kb intergenic region. To exclude the possibility that the transgene expression was 

driven by introns of the cdr-7 gene, we fused only the intergenic sequence with NLS-gfp. 

The expression pattern is similar to those observed using the 1.5-kb promoter (Figure 
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3.6D). These data suggest that the heme response was conferred by the 0.5-kb region 

upstream of hrg-2. 

To understand the subcellular distribution of HRG-2 in C. elegans, we analyzed the 

IQ8122 strain, which has the translational reporter hrg-2::HRG-2-YFP. Similar to the 

transcriptional reporter, this transgene is active only when the worms are grown at low 

heme. Confocal studies revealed that within hypodermal cells, HRG-2 is localized to the 

hemi-adherens junction structures fibrous organelles, endoplasmic reticulum (ER), and 

apical plasma membrane (Figure 3.6E). Fibrous organelles are composed of intermediate 

filament arrays that associate with cuticle, muscle, and neurons (192). The ER 

localization has been confirmed by analyzing another transgenic strain, IQ8123, which 

expresses both hrg-2::HRG-2-YFP and an ER marker in hypodermal cells dpy-

7::mCherry-TRAM (Figure 3.6F). Additionally, HRG-2 localizes to the apical surface of 

the plasma membrane in the hypodermis.  

Our previous study with HRG-1 and HRG-4 has permitted us to develop several 

reporter constructs and heme analog assays to interrogate intestinal heme homeostasis in 

C. elegans (68). To test whether heme exerts any effect on HRG-2, we ectopically 

expressed hrg-2 in the intestine by using the intestine-specific promoter of vha-6. In the 

intestine, the majority of HRG-2 resided in the apical plasma membrane, whereas a small 

portion localized to cytoplasmic membrane structures (Figure 3.7A). These structures 

could be ER, considering the localization patterns of HRG-2 in hypodermal tissues. 

These transgenic worms were exposed to 0 and 20 µM heme for either 3 h or 2 d, but the 

presence or absence of heme did not evoke any apparent changes in the subcellular 

localization patterns of HRG-2 (Figure 3.7B). 
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Figure 3.5. Analysis of a hrg-2 deletion worm. (A) Location of tm3798 deletion in hrg-

2 gene. In the tm3798 allele, part of the promoter region and the first two exons of hrg-2 

gene are deleted. Exons are depicted as empty boxes and untranslated regions are shown 

as gray boxes. “+1” is the confirmed transcription start site. (B) Growth rate of hrg-2 

deletion worm. The worms were first grown at 2 µM heme for one generation in 

mCeHR-2 medium. Synchronized L1 larvae were inoculated into the liquid medium 

containing 0, 4, and 20 µM heme. After 9 d of growth, worms in all treatments were 

counted, and the numbers were normalized to the actual input (0 µM). The experiment 

was done in duplicate. Brood mate is the wild-type worm saved from the final outcross of 

the mutant. No statistical difference was observed (P >0.05). 
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Figure 3.6. Expression and localization patterns of HRG-2 in C. elegans. (A) 

Schematic representation of the hrg-2::gfp reporter constructs. Genomic structures of 

hrg-2 and cdr-7 are shown on the top. NLS: nuclear localization signal. (B) hrg-2::gfp is 

predominantly expressed in hypodermal cells in C. elegans. This IQ8021 worm strain 

contains the construct that has the 1.5-kb promoter region of hrg-2 fused with NLS-gfp. 

Arrow: hypodermal cells. (C) Responses of hrg-2::gfp reporter to heme levels. GFP can 

be detected only when the transgenic worms are maintained at low concentrations of 

heme, while 20 μM heme fully turns off the gene expression within 48 h. (D) Expression 

pattern of GFP in IQ8023 strain. The construct in this strain is identical to that in IQ8021 

worms except that it contains the 0.5-kb promoter region of hrg-2. Arrow: hypodermal 

cells. (E) Subcellular localization of HRG-2 in hypodermal cells. Three representative 

fluorescence images from a confocal z-stack are displayed. HRG-2-YFP presents in 

fibrous organelles, apical plasma membrane and ER. White vertical lines indicate the 

positions for cross-section images, which are shown to the right. (F) Co-localization of 

HRG-2 with the ER marker mCherry-TRAM. The translational reporter hrg-2::HRG-2-

YFP and the hypodermal ER marker construct  dpy-7::mCherry-TRAM were introduced 

into worms together by bombardment. Localization patterns of YFP and mCherry were 

analyzed after incubating the worms at 2 μM heme for 4 d. mCherry-TRAM is not 

present in fibrous organelles or plasma membrane. TRAM: translocating-chain associated 

membrane protein.  (G) Schematic representation of the hypodermal cell (hyp7) in a 

cross-section of worm body. The schematic was modified from Labouesse (193).  
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Figure 3.7. Ectopic expression of hrg-2 in the intestine. (A) hrg-2-mCherry was placed 

after vha-6 promoter. This construct was introduced into worms by bombardment. 

Examination using confocal microscope revealed that the majority of HRG-2-mCherry 

presents on the apical plasma membrane, while some localizes to cytoplasmic structures, 

possibly ER. (B) Transgenic worms with vha-6::HRG-2-mCherry construct were 

subjected to the following treatments in mCeHR-2 medium: 1) 0 µM heme for 48 h; 2) 0 

µM heme for 45 h and then 20 µM heme for 3 h; 3) 20 µM heme for 45 h and then 0 µM 

heme for 3 h; or 4) 20 µM heme for 48 h. Subcellular localizations of mCherry were 

analyzed by confocal microscopy.   
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HRG-2 is a type Ib membrane protein 

To explore the subcellular localization in more detail, we expressed HRG-2 with 

HA epitope or GFP variants at the C-terminus in HEK293 cells. SDS-PAGE and 

immunoblotting analyses revealed that the tagged proteins were readily expressed in 

mammalian cells and they migrated as monomers with the predicted sizes (Figure 3.8A). 

Confocal microscopy showed that HRG-2 co-localized with the ER marker CD3δ-GFP, 

whereas no plasma membrane localization was observed (Figure 3.8B). The absence of 

HRG-2 at the plasma membrane of HEK293 cells could plausibly be due to the fact that 

HEK293 cells are nonpolarized, unlike the polarized hypodermal cells in C. elegans.  

As a first step toward understanding the signal for ER localization of HRG-2, a 

series of truncated constructs were generated and analyzed in HEK293 cells (Figure 

3.8B). When the GST-C domain was removed, the resultant N-terminal protein (HRG-

2∆2) still localized to ER. However, deletion of the N-terminal transmembrane portion of 

HRG-2 resulted in an unstable protein that was undetectable by immunofluorescence 

(Figure 3.8B) and western blotting (not shown). Further results indicated that the first 27 

amino acids were able to target YFP to ER (Figure 3.8B). These results revealed that the 

N-terminal portion of HRG-2 is sufficient and necessary for ER targeting.  

As described earlier, in silico hydropathy analysis predicted that HRG-2 has an N-

terminal transmembrane domain. To confirm this prediction and to determine the 

topology of HRG-2, FPP assays were performed on HRG-2 tagged with GFP at the C-

terminus. In this assay, the plasma membrane was first permeabilized with digitonin, 

which forms complexes with hydroxysterols in cholesterol-rich membranes (169). Then 

the cells were treated with protease to digest any peptide that is exposed to the cytoplasm. 
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Figure 3.8. Expression of HRG-2 in mammalian cells. (A) Western blot of HRG-2 

transiently expressed in HEK 293 cells. The lysates of transfected cells were subjected to 

SDS-PAGE and western blotting using anti-HA or anti-GFP antibodies. (B) 

Immunofluorescence analysis of HRG-2 constructs in HEK293 cells. HA-tagged HRG-2 

was detected using anti-HA and fluorophore-conjugated anti-rabbit IgG antibodies in the 

fixed cells. Images were acquired using a confocal microscope. HRG-2 co-localizes with 

the ER markers CD3δ-CFP or CD3δ-YFP. In the HRG-2∆2 construct, the GST-C like 

domain was removed. (scale bar = 10 µm)  
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When the FPP assay was performed on the control construct pCFP-CD3δ-YFP that 

contains both ER lumenal CFP and cytoplasmic YFP, CFP was resistant to the protease, 

whereas YFP was degraded (Figure 3.9A). After digitonin and protease treatment, the 

fluorescent tag in HRG-2-GFP was degraded, indicating that the C-terminus of HRG-2 is 

cytoplasmic (Figure 3.9B). The same pattern was observed in HRG-2N-YFP construct, 

which has only the N-terminal 27 amino acids of HRG-2 fused with YFP.  

When produced using an in vitro transcription and translation system, HRG-2-HA 

exhibited identical molecular size to the same construct expressed in mammalian cells 

(Figure 3.9C). Accordingly, HRG-2 protein does not undergo such modifications as 

signal peptide cleavage or N-linked glycosylation during or after translation. We 

concluded that HRG-2 contains a single transmembrane domain with a cytoplasmic C-

terminus facing the cytoplasm. Since the N-terminal transmembrane domain is not 

processed, it belongs to the class of type Ib membrane proteins.  

HRG-2 binds heme 

Heme has been shown to interact with amino acid residues such as histidines, 

tyrosines, cysteines, aspartates and glutamates in heme-containing proteins. HRG-2 has 7 

histidines and 8 tyrosines, as well as many cysteines, aspartates and glutamates, that are 

conserved among Caenorhabditis species (Figure 3.3C). To test whether HRG-2 can bind 

heme, hemin-agarose pull-down assays were performed using the cell lysates from 

HEK293 cells transiently transfected with HRG-2 constructs. The eight TM protein 

human zinc transporter hZIP-4 was used as negative control for nonspecific hydrophobic 

interactions, and the newly identified heme transporter HRG-4 was used as the positive 

control (68,194). At both pH 6.4 and pH 7.4, HRG-2 showed higher affinities to hemin 
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agarose than hZip-4 (Figure 3.10A). In comparison to pH 6.4, pH 7.4 tends to increase 

the association of HRG-2 to hemin agarose. This result is in agreement with the 

subcellular localization pattern of HRG-2, as we would expect an optimum pH for the 

function of HRG-2 around the cytoplasmic pH or pH 7.3~7.4 (195).   

Ligands and proteins can have either stable covalent conjugations or more transient 

non-covalent interactions. The binding of ligands to transporters and chaperones is 

commonly transient and dynamic. To explore the possible binding kinetics of HRG-2 for 

heme, the effects of cellular heme status on the heme-binding activity were studied by 

growing the transfected cells in heme-depleted medium with 0.5 mM succinylacetone, 

the inhibitor of heme synthesis pathway, or with 10 µM added heme. Heme-depletion 

was confirmed using a heme-sensor construct containing horseradish peroxidase attached 

to the signal sequence of human growth hormone (ssHRP). Heme binding was observed 

for HRG-2 in both heme depletion and heme repletion at comparable levels (Figure 

3.10A). This indicated that the heme binding by HRG-2 is not affected by the heme status 

in the cell.  

We next performed heme binding experiments on the truncation constructs of 

HRG-2 and its homologous protein CDR-1. HRG-2 proteins were still able to bind heme 

when the GST-C domain was removed, although the truncated proteins tended to have 

decreased binding (Figure 3.10B). Interestingly, the homologous protein CDR-1 also 

exhibited moderate heme binding activity although its gene is not regulated by heme.  
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Figure 3.9. Topology mapping of HRG-2 in mammalian cells. (A) Fluorescence 

protease protection assays on the cells expressing pCFP-CD3δ-YFP. In this assay, the 

transfected cells were treated with 30 μM digitonin for 2 min followed by 50 μg/ml 

proteinase K for 2 min. Images were acquired throughout the process by epifluorescence 

microscopy. (B) FPP assays on HRG-2 constructs. (C) Western blot of HRG-2 proteins 

produced by in vitro transcription and translation system (IVT) or by expression in 

HEK293 cells. There is no difference in the sizes of HRG-2 proteins (arrow). (scale bar = 

10 µm) 
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Figure 3.10. HRG-2 proteins bind heme. (A) Hemin agarose pull-down assays on full-

length HRG-2. Heme binding assays were performed by incubating the lysates of 

HEK293 cells expressing HRG-2-HA or control plasmids with hemin agarose. 

Equivalent amounts of input lysates (input), the final washes before elution (wash), and 

the eluates (bound) were subjected to SDS-PAGE and western blotting using anti-HA 

antibodies. Each hemin-binding assay was done in duplicate and one representative 

binding result is shown. Human zinc transporter hZip-4 and C. elegans heme transporter 

HRG-4 were used as negative and positive controls, respectively. The panel below the 

western blots shows the quantification results of the signals as bound fraction relative to 

the input for each protein. (B) Heme binding assays on HRG-2 deletion constructs and 

CDR-1. This assay was performed at pH 7.4. Images on the left are the western blot 

results. Quantitation is shown in the right top panel and the architectures of the deletion 

constructs are in the right bottom. HRG-2∆1 and HRG-2∆2 are two HRG-2 truncation 

constructs in which the GST-C like domain was deleted. No statistical difference was 

observed among the binding conditions or among HRG-2 constructs (P >0.05). All data 

were represented as mean ± S.E. 
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HRG-2 rescues the growth of a heme-deficient yeast strain 

A heme-deficient S. cerevisiae strain, DY1457 hem1Δ(6D), was utilized to further 

probe the molecular function of HRG-2 (172). This hem1Δ yeast strain lacks the rate-

limiting enzyme in the heme biosynthetic pathway and therefore requires external heme 

for growth (172). In comparison to the vector control, the expression of HRG-2 

significantly increased the growth of hem1Δ yeast at low concentrations of heme (Figure 

3.11A). This result was highly reproducible and was consistent among untagged, HA-

tagged, and HIS-tagged HRG-2. The maximum rescuing activity by HRG-2 was 

observed at 0.1 µM heme. As heme concentration increased, the difference between yeast 

transformed with hrg-2 and the vector control diminished. At 5.0 µM heme, no 

noticeable effect of HRG-2 expression was observed. However, when grown at 40 µM 

heme, yeast transformed with hrg-2 displayed darker pink color than the negative control. 

This hem1Δ strain inherited the mutation in ADE2 from the parent strain W303 

(172,196). Mutations in the ADE2 locus lead to the accumulation of P-

ribosylaminoimidazole, an intermediate product in adenine biosynthesis pathway, which 

is converted into a red pigment in the presence of oxidative phosphorylation or 

mitochondrial respiration (197,198). Yeast transformed with hrg-2 and grown at higher 

heme concentration (40 µM) revealed more pigment accumulation than the control, 

indicating that the cells were able to utilize exogenous heme for mitochondria respiration. 

As a positive control, the heme importer HRG-4 dramatically increased the growth of 

hem1Δ at all tested concentrations of heme and showed greater accumulation of red 

pigment than HRG-2. In contrast, the rescue effects by HRG-2 were mostly seen at low 

heme.  
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Figure 3.11. Characterization of HRG-2 in heme deficient S. cerevisiae. (A) HRG-2 

rescues the growth of hem1Δ yeast at low heme. The DY1457 hem1Δ(6D) yeast strain 

transformed with indicated constructs was spotted in 10-fold serial dilutions on synthetic 

complete medium plates lacking uracil. The empty vector pYES-DEST52 and the heme 

transporter HRG-4 were used as controls. The plate with glucose and 250 µM δ-

aminolevulinic acid was used as positive control for yeast growth. Plates with different 

concentrations of heme supplemented with 2% galactose to induce expression of 

transformed genes. Yeast grown on the positive control plate and the plate with 40 µM 

heme displayed red pigment accumulation due to mutation in the ADE2 locus. HRG-2∆1 

and HRG-2∆3 are two HRG-2 truncation constructs in which the GST-C like domain and 

the GST-N like domain were deleted, respectively. (B) Western blot of HRG-2 proteins 

and CDR-1 expressed in the yeast. Arrowhead indicates the band of predicted molecular 

weight for each protein. Two asterisks show putative dimers and tetramers for HRG-2∆1. 

The lower bands on the last lane are degradation products of CDR-1 in yeast cells. (C) 

Immunofluorescence assays of HRG-2 proteins and CDR-1 in yeast. The transformed 

yeast was fixed and spheroplasted. Anti-HA and fluorophore-conjugated anti-rabbit IgG 

antibodies were applied to detect the proteins. Images were acquired with different 

settings of laser power and detection gain on confocal microscope. (scale bar = 2 µm)   
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Interestingly, when the GST-C like domain (HRG-2∆1) or the GST-N like domain 

(HRG-2∆3) was deleted, the truncated HRG-2 did not have any detectable effects on the 

growth of hem1Δ yeast (Figure 3.11A). Furthermore, the expression of CDR-1 in hem1Δ 

strain did not increase the yeast growth at any heme concentrations, although CDR-1 is 

highly homologous to HRG-2.    

Western blot and immunofluorescence assays were performed using yeast 

transformed with HA-tagged constructs. All constructs except for HRG-2∆3 were 

robustly expressed in the yeast (Figure 3.11B). In HRG-2∆1 samples, we also detected 

bands with higher molecular sizes, which could be dimers or tetramers. 

Immunofluorescence results showed that the majority of HRG-2 was detected at the 

periphery of yeast, while only a small portion resided inside the cells (Figure 3.11C). 

This indicated that, when ectopically expressed in yeast, HRG-2 predominantly localized 

to the plasma membrane. HRG-2∆3 and CDR-1 exhibited similar localization patterns to 

HRG-2, whereas HRG-2∆1 presented as puncta. Taken together, these results suggest 

that expression of HRG-2 in the yeast may help facilitate the uptake or sequestration of 

heme.  

Discussion 

hrg-2 is induced by heme deficiency in C. elegans 

The nematode C. elegans lacks the heme biosynthetic pathway, but it requires heme 

for various biological functions and growth (160). Therefore, worms must have a robust 

system to acquire heme from food and the environment. The efficiency of heme uptake in 

C. elegans is significantly increased in response to low heme (68). Here we have 

identified hrg-2 as a nematode-specific gene that is highly inducible by heme deficiency, 
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suggesting it might play a role in the uptake or sequestration of heme. It has been shown 

indirectly that C. elegans possesses a heme degradation system, and heme can be used for 

iron nutrition (160). However, the repression of hrg-2 expression is not due to PPIX or 

iron, the structural components of heme. 

HRG-2 is conserved in the Rhabditidae family 

HRG-2 is 45.5% identical to CDR-1 at the amino acid level. In C. elegans, these 

two proteins are also homologous to five other proteins (191). These seven homologous 

genes may respond to distinct environmental cues and function in developmental-stage or 

tissue-specific manners. For example, cadmium induces cdr-1 expression whereas heme 

represses hrg-2 gene activity. cdr-1 and cdr-4 are expressed in the intestine (199,200), 

while hrg-2 is expressed in hypodermal tissues. Although CDRs have been proposed to 

play roles in cadmium detoxification, their relevant biological functions are still largely 

unknown (199). 

Using reciprocal BLAST, we have identified putative hrg-2 orthologs in C. 

briggsae, C. remanei, and C. brenneri, which belong to the Rhabditidae family. In 

addition, CDR homologs were also found in P. pacificus, one species in Diplogasterida 

family. These two families also contain parasitic nematodes such as the human thread 

worm Strongyloides stercoralis and the common insect parasite Heterorhabditis 

bacteriophora. It will be interesting to see whether these parasitic species have a hrg-2 

gene. The genome of Brugia malayi, a parasitic nematode in another order Spirurida, was 

annotated to contain cdr-5, or hrg-2 (201). However, the BLAST search of this gene 

against C. elegans database did not retrieve hrg-2 as the best hit. It still remains to be 

determined whether hrg-2 is conserved in B. malayi and other helminths.    
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HRG-2 also displayed ~25% identity to failed axon connection (FAX) protein in D. 

melanogaster. FAX was identified as an enhancer of the tyrosine kinase abl in a forward 

genetic screen (202). Flies with mutations in both fax and abl displayed severe 

disruptions in axon connections. However, FAX proteins may not be HRG-2 orthologs 

for three reasons. First, a non-CDR protein, CE22631, was identified as the best hit when 

these insect or vertebrate FAX proteins were used to BLAST against the C. elegans 

database. Second, in contrast to HRG-2, none of the FAX proteins contain putative 

transmembrane domains. Third, when expressed in mammalian cells, putative human 

FAX protein is associated with mitochondria, which is distinct from the ER localization 

of C. elegans HRG-2 (Appendix V).  

Potential functions of HRG-2 in heme transport 

The S. cerevisiae strain hem1Δ lacks the first enzyme in the heme biosynthetic 

pathway and, therefore, its growth is solely dependent on the heme levels in the 

environment (172). This provides a quick way to assay for heme transport activities of 

protein molecules (203). We found that HRG-2 can rescue the growth of hem1Δ yeast at 

low concentrations of heme, indicating that the presence of HRG-2 enhances the 

availability of exogenously-supplied heme to this yeast. However, no rescuing effect was 

detected for CDR-1, which was due to either the difference in the protein topologies or 

different biological functions of HRG-2 and CDR-1. The presence of HRG-2 on the 

membrane of yeast cells suggested that the growth rescue may be due to increased heme 

uptake through HRG-2 at low heme. Deletion of hrg-2 in C. elegans resulted in reduced 

growth rates at low concentrations of heme. This further demonstrated the involvement of 



 

 90 
 

HRG-2 in heme homeostasis, possibly in heme acquisition into hypodermal cells (Figure 

3.12).  

Since the GST-N metaxin-like domain belongs to thioredoxin superfamily, it is 

possible that HRG-2 functions as a membrane-associated hemin reductase (Figure 3.12). 

Reductases have been shown to be essential for the uptake of metals. For example, 

duodenal cytochrome b (Dcytb) and six transmembrane epithelial antigen of the prostate 

3 (Steap3) were identified as ferric reductases that were associated with efficient iron 

uptake into cells (204,205). Subsequent studies found that Dcytb and proteins in the 

Steap family also function as cupric reductases (206,207). Studies have indicated that 

hemin (heme with an oxidized iron molecule) has to be reduced for its covalent 

attachment to such hemoproteins as cytochrome c (208,209). In Gram-negative bacteria, 

cytochrome c synthetase CcmF was recently proposed to function as a quinol:heme 

oxidoreductase (209). In addition, the lipocalin α1-microglobulin also has the ability to 

reduce hemin in cytochrome c and methemoglobin (210). However, plasma membrane-

associated hemin reductases that might play a role in hemin uptake remain elusive. HRG-

2 could be one of the candidates for these hemin reductases.  

In addition, HRG-2 could play a role in intracellular heme trafficking by 

contributing to the redistribution of heme among cellular compartments (Figure 3.12). 

HRG-2 presents on the ER membrane as a type Ib protein, a topology identical to that of 

microsomal cytochrome P450s. HRG-2 could be involved in heme delivery to 

cytochrome P450s or even to the secretory pathway. It has been shown recently that the 

heme-binding protein Dap1p in yeast and its human ortholog PGRMC1 can interact with 

cytochrome P450s and increase their activities (211,212). We have standardized a 
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protocol for ssHRP construct, in which the signal sequence from human growth hormone 

was fused with horseradish peroxidase (213). The activity of secreted ssHRP enzymes 

was solely controlled by the heme in the medium. The expression of HRG-2 in the ER of 

mammalian cells increased the activity of the ssHRP, suggesting an increased amount of 

heme was loaded into the secretory pathway.  

Implications of GST-like domains in HRG-2 and CDRs 

All HRG-2, CDR, FAX, CE22631, and CE02505 proteins contain GST-N metaxin-

like and GST-C metaxin domains, suggesting that they may function in similar biological 

processes. Metaxin was originally identified as a gene essential for normal embryonic 

development in mice (214). Subsequent study showed that it resided on the outer 

mitochondria membrane and was involved in the import of proteins into mitochondria 

(215). 

GSTs catalyze the conjugation of glutathione to various electrophilic substrates and 

play essential roles in xenobiotic detoxification. Besides their enzymatic functions, GSTs 

are also able to bind a variety of ligands such as steroids and porphyrins in the cytoplasm 

(78-80). A number of heme-binding GSTs have been identified in malarial parasites and 

nematodes, and they have been suggested to play a role in the detoxification and transport 

of heme (82,86,216). HRG-2 also has heme-binding activity. Since it is induced by heme 

deficiency rather than heme overload, HRG-2 may play a role in transport but not heme 

detoxification.   

Proteins with GST-like structures can adopt diverse functions. The chloride 

intracellular channels (CLICs) are a newly-identified family in which all members 

contain GST-N CLIC and GST-C CLIC domains. As confirmed by crystal structures, 



 

 92 
 

CLIC1, CLIC2, and CLIC4 all have thioredoxin folds and are structurally analogous to 

GSTs (217-219). Interestingly, these CLICs can either present as intracellular soluble 

proteins or as chloride channels on the membrane (217,220). In vitro studies indicated 

that CLICs significantly increased the chloride efflux from phospholipid vesicles (220-

222). HRG-2 and CDRs all contain both GST-N metaxin-like and GST-C metaxin 

domains. The two domains and the GST-like domains in CLICs belong to the same 

thioredoxin-like and GST-C superfamilies. Furthermore, HRG-2 and most CDRs (except 

for CDR-7) are membrane proteins with at least one putative transmembrane domain, 

suggesting that they are more likely to be involved in transport or other membrane-

associated activities.  

In summary, we have identified hrg-2 as a novel heme-responsive gene in C. 

elegans. Genetic, biochemical, and cell biological results suggest that HRG-2 may play a 

critical role in heme uptake or intracellular heme trafficking in C. elegans. 
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Figure 3.12. Proposed model of HRG-2 in heme homeostasis in C. elegans. HRG-2 

localizes to the apical plasma membrane and ER in the hypodermal cells. On the plasma 

membrane, HRG-2 may function as a heme transporter or hemin reductase and play a 

role in heme uptake. On the ER membrane, HRG-2 may contribute to the sequestration or 

redistribution of intracellular heme.  
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Chapter 4:  Identification and characterization of hrg-3 in 

C. elegans 

 

Summary 

Heme regulates the expression of many genes that are involved in erythropoiesis, 

heme biosynthesis, oxidative stress, energy metabolism, and circadian rhythm control. 

The regulation can occur at the levels of transcription, translation, and protein stability. 

Here we identified a novel heme-responsive gene, hrg-3, that may play a critical role in 

heme homeostasis. Results from microarray, quantitative real-time PCR, and Northern 

blotting revealed that hrg-3 is highly induced by heme deficiency in C. elegans. Analysis 

of the hrg-3 promoter suggests that a 43-bp element is both necessary and sufficient for 

its intestinal expression and that the heme-dependent regulation is mediated by the stress-

responsive transcription factor SKN-1. Following its synthesis in the intestine, HRG-3 is 

secreted into the body cavity pseudocoelom. Fluorescence protease protection assays and 

immunoblotting revealed that HRG-3 is specifically targeted to the Golgi via its amino 

terminal signal peptide which is then cleaved to generate a mature 45-amino acid protein. 

hrg-3 mutant worms exhibit reduced growth rate independent of heme concentrations in 

axenic liquid culture. Additionally, deletion of hrg-3 results in increased heme levels in 

the worm intestine. Furthermore, expression of epitope-tagged HRG-3 in hem1Δ yeast 

dramatically reduced cell viability at all tested heme concentrations. Based on our results 

we speculate that HRG-3 may function in intracellular heme transport or as a signaling 

molecule under heme deficiency.  



 

 96 
 

Results 

Heme deficiency induces hrg-3 expression in C. elegans 

Heme regulates the expression of many genes that are involved in erythropoiesis, 

heme biosynthesis, heme trafficking, oxidative stress, energy metabolism, and circadian 

rhythm control (4,68,118-120). To identify genes that are transcriptionally regulated by 

heme in C. elegans, total RNA extracted from worms that were grown at low (4 µM), 

optimal (20 µM), and high (500 µM) heme in axenic liquid medium was hybridized to 

Affymetrix genome arrays (68). F58E6.7 was identified because it was greatly 

upregulated at low heme. In comparison to 20 μM heme, low heme increased the 

F58E6.7 mRNA level by 71 fold. Results from Northern blotting further confirmed this 

expression pattern (Figure 4.1A). In contrast to the strong signal at 4 μM heme, the hrg-3 

message was undetectable at 20 and 500 µM heme. Therefore, we named this gene heme-

responsive gene-3 (hrg-3). qRT-PCR analysis on total RNA isolated from worms grown 

at different concentrations of heme revealed that compared to 20 μM heme, 1.5 and 4 μM 

increased the abundance of hrg-3 mRNA by more than 900 fold and 400 fold, 

respectively (Figure 4.1B). At ≥10 μM heme, the gene was not expressed. Thus, results 

from microarray, Northern blotting and qRT-PCR results consistently showed that heme 

deficiency induces hrg-3 expression in C. elegans.  

We analyzed the temporal expression pattern of hrg-3 across all developmental 

stages by using qRT-PCR. In comparison to optimal heme level, 4 μM heme increased 

hrg-3 expression by at least 100 fold at all stages (Figure 4.1C). In addition, the highest 

expression level of hrg-3 was detected in young adult worms, whereas the lowest level 

was detected in the larvae. 
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Figure 4.1. hrg-3 is induced by heme deficiency in C. elegans. (A) Northern blot 

analysis of hrg-3 expression in response to different heme concentrations. gpd-2 was 

used as a loading control. The detected hrg-3 mRNA is ~370 nucleotides. (B) 

Quantitation of hrg-3 mRNA by qRT-PCR. Relative fold changes were derived by 

normalizing the cycle threshold values to gpd-2 and then to the control heme level of 20 

µM using ∆∆CT methods. The experiment was performed in triplicate, and the data are 

presented as mean ± S.E. (C) Expression of hrg-3 at different developmental stages. 

Synchronized L1 worms were grown at 4 µM heme and were harvested every 12 h for 

RNA extraction. Fold change was calculated by normalizing the ∆CT values to the 

control RNA sample, which was isolated from L4 worms grown at 20 µM heme. Asterisk 

indicates P <0.05 when compared to the expression value at LL3 stage. EL3: early L3; 

LL3: late L3; EL4: early L4; LL4: late L4; AD: young adult; GR: gravids.  
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Sequence analysis of hrg-3 

The sequence of full-length hrg-3 cDNA was determined by the 5’ and 3’ RACE. 

The mature hrg-3 mRNA is 375 nucleotides (Figure 4.2A), which is consistent with the 

observed size displayed on Northern blot (~370 nucleotides, Figure 4.1A). The hrg-3 

gene is comprised of a 7-nucleotide 5’ UTR, three exons and a 155-nucleotide 3’ UTR.  

The hrg-3 transcript encodes a 70-amino acid protein with predicted molecular 

mass of 8.1 kDa. The amino terminus of HRG-3 contains a stretch of hydrophobic amino 

acids, which could serve as either a transmembrane region or a signal peptide (Figure 

4.2B). Based on the prediction using the program Jpred3 (186), HRG-3 has an α-helix in 

the N-terminal region and a β-sheet in the C-terminal region (Figure 4.2B). However, the 

majority of the protein was predicted to be random coils. Genomic sequences highly 

similar to hrg-3 were identified in C. briggsae, C. remanei, C. brenneri and C. japonica 

using TBLASTN in NCBI (E values <10-6). Putative HRG-3 orthologs in C. briggsae and 

C. remanei were predicted by using GeneMark.hmm program (183). These nematode 

HRG-3 proteins share >50% sequence identity at the amino acid level (Figure 4.2B).  

hrg-3 is expressed in the intestine 

Transcriptional reporters were constructed using the 3.0-kb putative promoter 

region of hrg-3 fused to a NLS, GFP, and either unc-54 3’ UTR or hrg-3 3’ UTR (Figure 

4.3A). The constructs were introduced into worms by either microinjection (165) or 

bombardment (166). These hrg-3::gfp reporters were exclusively expressed in the 

intestine, as illustrated by the IQ8031 transgenic worms (Figure 4.3B). The highest level 

of GFP was present in the mid anterior (int2 and int3) and middle intestinal cells (int4, 5, 

and 6). In contrast, the most anterior (int1) and the most posterior gut cells (int7-int9) 
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Figure 4.2. Genomic structure and conservation of hrg-3 in Caenorhabditis species. 

(A) Genomic structure of hrg-3 revealed by RACE analysis. The full-length hrg-3 

mRNA is 375 nucleotides in length. Exons are depicted as empty boxes and untranslated 

regions are shown as gray boxes. The number indicates the size of each region. (B) 

Multiple sequence alignment of HRG-3 proteins among C. elegans, C. briggsae and C. 

remanei. Putative HRG-3 orthologs were predicted in the GeneMark.hmm program using 

homologous genomic sequences. Sequences were aligned by ClustalW and visualized 

with BoxShade. The secondary structure of HRG-3 was predicted using Jpred3. 

Arrowhead marks the putative signal peptidase cleavage site predicted by the Eukaryotic 

Linear Motif database. The gray underline depicts the transmembrane region predicted by 

the TMHMM program. The secondary structures are marked with the underlines. The 

numbers indicate the identity to CelHRG-3. 
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Figure 4.3. hrg-3 is expressed in the intestine and specifically regulated by heme. (A) 

Schematic representation of the hrg-3::gfp construct. NLS: nuclear localization signal. 

UTR: untranslated region. Both the unc-54 3’UTR and hrg-3 3’UTR were tested in the 

constructs. (B) Expression of the hrg-3 transcriptional reporter in C. elegans. The IQ8031 

strain containing the transcriptional construct was maintained at 2 µM heme. GFP 

expression was analyzed in 3~4 d. (C) Expression of hrg-3 at low and normal 

concentrations of iron. The IQ8031 transgenic worms were treated with 0.1 or 20 µM 

ammonium ferric citrate in iron-depleted medium for 48 h. The GFP signal was examined 

as a direct reporter for the activity of the hrg-3 promoter. This experiment was performed 

at both 1.5 and 20 µM heme. All images were taken using same confocal settings. (D) 

Response of the hrg-3 reporter to PPIX. The IQ8031 worms were grown at 1.5 µM heme 

with or without 20 µM PPIX in mCeHR-2 medium. The expression levels were analyzed 

by confocal microscopy after 48 h and representative images of anterior and middle 

regions of the worms are shown. Same regions are shown for all the following figures of 

transcriptional reporters. (scale bar = 20 µm)  
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only weakly expressed this construct (Figure 4.3B). GFP signal could be observed only 

when the transgenic worms were maintained at ≤6 μM heme. When the worms were 

grown at 20 μM or higher concentrations of heme, no GFP expression was detected. No 

difference in expression pattern or heme response was observed between the two 3’ 

UTRs tested. These results suggested that heme-dependent hrg-3 expression is mediated 

by cis-acting elements within the 3-kb upstream flanking region.  

Regulation of hrg-3 is specific to heme 

We examined the effects of PPIX and iron, two structural components of heme, on 

the activity of the hrg-3 promoter. IQ8031 worms were treated with either 0.1 or 20 μM 

ammonium ferric citrate in combination with 1.5 or 20 μM heme for 2 d in iron-depleted 

liquid medium. Results showed that the GFP intensity was solely dependent on heme 

concentrations (Figure 4.3C). Twenty micromolar iron did not inhibit the promoter 

activity at low heme, and even 0.1 μM iron could not turn on GFP expression in the 

presence of 20 μM heme. In addition, the transgenic worms grown at 1.5 μM heme and 

with 20 μM PPIX for 2 d retained robust GFP expression (Figure 4.3D). These data 

indicated that heme, rather than heme substrates, regulates hrg-3 promoter activity. 

Analysis of hrg-3 promoter 

We have shown that the 3.0-kb upstream flanking region is sufficient for heme 

response in hrg-3 reporters. To narrow down the heme-responsive region, we constructed 

a series of gfp reporters that contained truncated sequences of the hrg-3 promoter region. 

Removal of the region -2992 to -133 bp upstream of hrg-3 did not affect the expression 
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pattern. The transgenic worm lines with hrg-3Δ732 3 ::gfp, hrg-3Δ295::gfp, hrg-

3Δ194::gfp, and hrg-3Δ132::gfp all had GFP expression in the mid anterior intestine at 

low heme (Figure 4.4), which is similar to the GFP pattern observed in worms 

transformed with constructs containing up to 3.0-kb upstream sequences. The expression 

of each of these constructs was repressed by high heme. The transgene hrg3Δ112::gfp 

also showed intestinal expression of GFP and an obvious response to heme levels, 

although there was a ~30% decrease in total GFP intensity at lower heme concentrations 

in comparison to the reporters with longer 5’ sequences.   

Among these reporter constructs, the 112-bp upstream sequence of hrg-3 was the 

shortest functional promoter that directed intestine-specific expression and responses to 

heme. When an additional 20 bp was deleted, as in the line hrg-3Δ92::gfp, we found that 

<5% of worms had the GFP signal in one or two intestinal cells. The majority of the 

worms did not have any GFP expression even at 2 μM heme (Figure 4.4).  

Heme regulation of the hrg-3 promoter is conserved in Caenorhabditis species. In 

the hrg-3 transcriptional reporter construct, we replaced the C. elegans upstream 

sequence with the 300-bp sequence upstream of C. briggsae hrg-3. The IQ8631 worm 

line with this construct exhibited GFP expression in the intestine and the expression was 

inhibited at 20 µM heme (Figure 4.5A). This expression pattern is similar to that of the 

transcriptional constructs with the hrg-3 promoter. Through alignment of hrg-3 

promoters among C. elegans, C. briggsae and C. remanei, we found that the 112-bp C. 

elegans minimal promoter is highly conserved (Figure 4.5B). Out of 81 nucleotides 

upstream of the putative TATA element, 48 are identical across these three species. 

However, the sequence between -69 and -49 bp is not conserved in C. remanei. When 
                                                 
3 The number indicates the removal of sequence upstream of this position. 
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Figure 4.4. Deletion analysis of the hrg-3 promoter. Different lengths of hrg-3 

upstream sequence were used for the transcriptional reporter constructs. At least two 

transgenic worm lines for each transgene were analyzed for GFP expression at 2 and 20 

µM heme. The confirmed transcription start site is marked as “+1”.  
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Figure 4.5. A 43-bp conserved region is critical for heme-regulated expression of 

hrg-3. (A) The promoter of C. briggsae hrg-3 is regulated by heme in C. elegans. The 

IQ8631 transgenic worms containing 300-bp sequence upstream of cbrhrg-3 fused with 

NLS-GFP were grown at 2 and 20 µM heme, and GFP expression was analyzed at 4 d. 

Small green puncta in the image of 20 µM heme are the autofluorescent gut granules in 

the intestine. (B) Multiple sequence alignment of ~112-bp upstream sequences of hrg-3 

among C. elegans, C. briggsae and C. remanei. Sequences were aligned by ClustalW and 

visualized with BoxShade. Numbers are the nucleotide positions relative to the C. 

elegans transcription start site, which is marked as “+1”. (C) Heme response by the hrg-

3Δ112Δ49::gfp transgenic worms. In this construct, the non-conserved region between -

69 and -49 bp was removed. (D) Analysis of enhancer activities using the egl-18 basal 

promoter. The constructs contain egl-18 basal promoter fused to either the hrg-3Δ132 

sequence or the concatemers of the 43-bp conserved region. The transgenic worms were 

analyzed for GFP expression at 2 and 20 µM heme. The egl-18 basal promoter is shown 

as control. (scale bar = 10 µm) 
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this 20-bp sequence was deleted in the C. elegans minimal promoter (hrg-3Δ112Δ49:: 

gfp), the resultant construct was still responsive to changes in heme levels (Figure 4.5C). 

We next examined whether the 43-bp conserved region (-112 to -69 bp) was 

sufficient for heme response by constructing a concatemer that has four repeats of this 

sequence. This concatemer was cloned upstream of the minimal promoter egl-18 in the 

plasmid pKKMCS. The constructs egl-18::gfp and hrg-3Δ132::egl-18::gfp were used as 

negative and positive controls, respectively. These constructs were introduced into worms 

by bombardment transformation. In the worm with the egl-18 minimal promoter alone, 

the first 4 and last 2 intestinal cells had moderate levels of GFP (Figure 4.5D), a pattern 

common to many C. elegans reporter genes that is unrelated to hrg-3. As expected, the 

expression was independent of heme levels. In contrast, the GFP expression in the 

transgenic worm with the concatemer construct hrg-3con1::egl-18::gfp was regulated by 

heme in the same pattern as the hrg-3Δ132 promoter (Figure 4.5D). When the worms 

were maintained at 2 μM heme, strong GFP expression was observed in anterior and mid 

intestinal cells. At higher concentrations of heme, there was no GFP expression in the 

intestine. Furthermore, the minimal transcription due to the egl-18 promoter alone was 

also inhibited in the intestine. These results suggested that the cis-elements in this 43-bp 

sequence were sufficient for heme-dependent gene regulation.  

This 43-bp region is highly conserved across the three Caenorhabditis species; 39 

bp out of 43 bp were identical (Figure 4.6A). This region contains one consensus ELT-2 

GATA site (TGATAA) and a putative SKN-1 binding site (AATCATCATCA). The 

exclusive expression of hrg-3 constructs in the intestine supports that this GATA motif is 

a functional binding site for ELT-2, the major intestinal-specific transcription factor 
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(223,224). To test whether hrg-3 is regulated by SKN-1, the putative SKN-1 binding site 

was mutated in the context of the 139-bp promoter region. The resulting IQ8531 (hrg-

3mut1) worms did not display any GFP expression even at low heme concentrations 

(Figure 4.6B). To confirm the requirement for SKN-1, we examined the effect of 

knocking down SKN-1 by the RNAi on the activity of the 3.0-kb hrg-3 promoter in the 

IQ8031 strain. Compared to the vector control, knockdown of skn-1 significantly reduced 

the GFP expression when the worms were maintained on RNAi plates, which contain an 

equivalent of ~5 µM heme (Figure 4.6C). These results suggested that SKN-1 was 

essential for the heme-dependent regulation of hrg-3.  

HRG-3 is a secreted protein 

To identify the subcellular distribution of HRG-3 in C. elegans, we introduced the 

translational reporter hrg-3::HRG-3-YFP into the worm by bombardment. In this 

construct, the protein product is a HRG-3-YFP chimera. Similar to the transcriptional 

reporters, this transgene was active only when the worms were grown at ≤ 4 μM heme. 

However, even at 2 µM heme, the signals of HRG-3-YFP in the intestine were weaker 

than the autofluorescence of gut granules, which are lysosome-related organelles 

containing birefringent material (225). In the intestine cells, these weak HRG-3-YFP 

signals presented as small cytoplasmic puncta (Figure 4.7A, upper panel). This pattern is 

reminiscent of the C. elegans Golgi (226). In addition to intestinal localization, HRG-3-

YFP also accumulated as vesicular structures in the coelomocytes (Figure 4.7A). In C. 

elegans, coelomocytes function as macrophage-like scavenger cells that nonspecifically 

endocytose various substances from the body cavity pseudocoelom (227). The 

fluorescence intensity of HRG-3-YFP was much brighter in coelomocytes than in the
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Figure 4.6. A SKN-1 binding site is required for hrg-3 gene activation. (A) The 43-bp 

conserved sequence contains a GATA motif and a putative SKN-1 binding site (BS). (B) 

Mutation of the SKN-1 binding site abolished the gene activation normally observed at 

low heme. The first 9 bp in the gray box were mutated into TCGTCGTCG in the hrg-

3Δ132 promoter. The IQ8531 transgenic worms carrying this hrg-3mut1 construct were 

subjected to gene expression analysis at both heme concentrations. (C) skn-1 RNAi 

reduced hrg-3 gene activity. The IQ8031 worms were grown on HT115(DE3) bacteria 

expressing double-stranded RNA directed against L4440 vector or skn-1. The seeded 

RNAi plates contain an equivalent of ~5 µM heme. GFP levels were analyzed after 4 d.  
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Figure 4.7. HRG-3 localizes to intestinal cells and coelomocytes. (A) The localization 

pattern of HRG-3-YFP translational constructs. The schematic representation of the 

construct is shown on the top of each image panel. The transgenic worms were grown at 

2 µM heme for 4 d prior to confocal analysis. Two representative images are shown. The 

green channel shows HRG-3-YFP and the red channel shows the nonspecific 

autofluorescence of gut granules. (B) Ectopic expression of HRG-3-mCherry using the 

intestinal-specific vha-6 promoter. Part of a single worm containing the constructs HRG-

3-mCherry and vha-6::MANS-GFP is shown. Images on the bottom panel were acquired 

using higher laser power and detector gain in the confocal microscope. Arrow: vesicular 

localization in coelomocytes. Arrowhead: Golgi localization in the intestine.   
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intestine. Since the hrg-3 promoter is active only in the intestine, the most likely 

explanation is that HRG-3-YFP protein is translocated from the intestinal cells to the 

pseudocoelom for eventual uptake and accumulation in coelomocytes. 

Examination of HRG-3 protein in the secretory pathway 

HRG-3 contains a stretch of hydrophobic amino acids at its amino terminus (Figure 

4.2B). To uncover the potential role of this region, we expressed either the full-length 

HRG-3, or the N-terminal 29 amino acids (HRG-3N), or HRG-3 without the 29 amino 

acids (HRG-3ΔN). Each of these constructs was tagged with YFP and transfected into 

HEK293 cells (Figure 4.8A). Examination using confocal microscopy showed that the 

full-length HRG-3 co-localized with the Golgi marker CFP-Golgi. Interestingly, the 29-

amino acid region at the N-terminus was sufficient to target YFP to the Golgi. When this 

segment was removed from HRG-3, the rest of the protein predominantly localized to the 

cytoplasm. These results indicated that the N-terminal hydrophobic region is essential for 

targeting HRG-3 to the Golgi in HEK293 cells. 

To reveal the topology of HRG-3, we performed FPP assays in transfected HEK293 

cells. In this assay, the cells were sequentially incubated with digitonin and protease 

(169). Peptides exposed to the cytoplasmic side are susceptible to protease digestion, 

whereas Golgi lumenal proteins will be intact. In the FPP assays, the C-terminal YFP tags 

in both HRG-3 and HRG-3N were protected against protease digestion, indicating that 

the C-terminus of HRG-3 faces the lumen of the Golgi (Figure 4.8B).  

To examine whether the N-terminal targeting region is retained or cleaved in HRG-

3, full-length or deletion constructs of HRG-3-GFP were transfected into HEK293 cells 

and the lysates were subjected to analysis by SDS-PAGE and immunoblotting (Figure 
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4.8C). The full-length HRG-3 and the HRG-3ΔN proteins were found to be equivalent in 

size; a difference of <400 Da was observed between these two proteins. By contrast, 

expression of HRG-3N-GFP resulted in a protein that was indistinguishable from GFP 

alone in size. These results indicated that the N-terminal hydrophobic region is cleaved to 

produce the mature HRG-3-GFP protein.  

We expressed HA-tagged HRG-3 either by transfection into HEK293 cells or by in 

vitro transcription and translation. Western blot using anti-HA antibody showed that the 

HRG-3-HA protein had an apparent molecular weight of ~13.3 kDa when generated from 

an in vitro system (Figure 4.8D, lane 2). However, the protein product of the same 

construct expressed in mammalian cells was only ~10.1 kDa (Figure 4.8D, lane 1 and 3). 

This reduction of ~3.2 kDa correlates with the removal of N-terminal region. 

Interestingly, this N-terminal region was not cleaved when HRG-3-HA was expressed in 

S. cerevisiae (Figure 4.8D, lane 4). These results indicated that the N-terminal 

hydrophobic region acts as a signal peptide for HRG-3 targeting to the Golgi. Once the 

protein goes through the secretory pathway, this region is cleaved to give rise to the 

mature protein. In worms, the HRG-3 protein is secreted into the pseudocoelom. It still 

remains to be determined whether the secreted HRG-3-YFP protein expressed in C. 

elegans lacks the N-terminal region. 

Characterization of a hrg-3 deletion allele  

To understand the potential function of hrg-3 in heme homeostasis, we analyzed the 

worms in which hrg-3 was deleted (164). The tm2468 allele results in a 218-bp deletion 

that comprises a 70-bp promoter sequence, the first exon, the first intron, and part of the 

second exon in hrg-3 gene (Figure 4.9A). This mutant worm was outcrossed eight times 
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Figure 4.8. Analysis of C. elegans HRG-3 in mammalian cells. (A) Fluorescence 

analysis of HRG-3-YFP constructs in HEK293 cells. Schematics of the constructs are 

shown on the left and the confocal images are shown on the right. CFP-Golgi: Golgi 

marker. SP: signal peptide. (B) Fluorescence protease protection assays on HRG-3 

constructs. In this assay, the transfected cells were treated with 30 μM digitonin for 2 min 

followed by 50 μg/ml proteinase K for 2 min. Images were acquired throughout the 

process by epifluorescence microscopy. Resistance to protease digestion after digitonin 

treatment indicates that the C-terminal GFP is in the lumen of the Golgi complex. (C) 

Western blot of HRG-3-GFP constructs expressed in HEK293 cells. The difference 

between HRG-3-GFP (lane 1) and the top band of HRG-3∆N-GFP (lane 2) is ~0.4 kDa. 

Lane 2 contains a second band which could be the degradation production of HRG-3∆N-

GFP. The difference between HRG-3-GFP and GFP (lane 4), HRG-3N-GFP (lane 3), as 

well as the bottom band of HRG-3∆N-GFP is ~3.4 kDa. (D) Western blot of HRG-3-HA 

proteins generated in HEK293 cells, yeast, and an in vitro transcription and translation 

system (IVT). There is ~3.2 kDa difference in the sizes between HEK293-expressed 

species (lane 1 and 3) and HRG-3-HA generated by other systems (lane 2 and 4). (scale 

bar = 10 µm) 
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with the wild-type N2 worm. RT-PCR performed using primer sets against the last exon 

did not yield any product, confirming that tm2468 is a null mutant (Figure 4.9B). 

Phenotypic characterization did not reveal any overt defects in morphology, growth rate, 

and the number of progeny in tm2468 allele worms compared with N2 wild type strains 

when the worms were maintained on NGM agar plates (not shown). However, when 

these worms were grown in axenic mCeHR-2 medium, hrg-3 (tm2468) worms exhibited 

a delayed development that was independent of heme concentrations (Figure 4.9C). 

Although hrg-3 expression is highly induced at low heme, there may be some basal 

expression at higher heme concentrations. The growth delay in hrg-3 deletion worm 

could be due to the loss of basal levels of hrg-3 expression.   

To further characterize this allele, we crossed this mutant worm with a well-

characterized heme-sensor strain IQ6011 (hrg-1::gfp). In the sensor worm, the intestinal 

heme status is inversely correlated with the activity of the hrg-1 promoter and GFP 

expression (68). Similar to IQ6011 worms, the IQ8011 (hrg3;hrg-1::gfp) worms had 

reduced GFP intensities in response to higher heme levels. When highly synchronized 

IQ8011 (hrg3;hrg-1::gfp) worms were grown at 1.5 or 2 µM heme for 3 d, they displayed 

lower GFP intensities than IQ6011 (Figure 4.9D). To address whether a loss in hrg-3 also 

resulted in altered heme uptake in the intestine, we measured ZnMP, a fluorescent heme 

analog that has been used to indirectly report heme uptake (68). We found that the steady 

state levels of ZnMP were not changed in both hrg-3 (tm2468) and IQ8011 worms in 

comparison to the wild type strains (Figure 4.9E and 4.9F). These results indicated that 

the altered heme sensing in IQ8011 worms was not due to changes at the uptake level.  



 

 124 
 

Figure 4.9. Analysis of the hrg-3 deletion worm. (A) Location of the tm2468 deletion 

in hrg-3 gene. In the tm2468 allele, part of the promoter region, the first exon, the first 

intron, and part of the second exon of hrg-3 gene are deleted. Exons are depicted as 

empty boxes and untranslated regions are shown as gray boxes. “+1” is the confirmed 

transcription start site. (B) RT-PCR of hrg-3 in the deletion worm. Total RNA was 

extracted from the worms grown at low heme. RT-PCR was performed using the primer 

set shown as arrows. N2 wild type worms were used as a positive control. (C) The 

growth rate of the hrg-3 deletion strain. Developmental timing indicates the number of 

hours required for the worms to grow from the first larva (L1) stage to the end of the 

fourth larva (L4) stage. A higher number corresponds to slower growth. Developmental 

stages were analyzed both on plates and in liquid mCeHR-2 medium supplemented with 

the indicated amount of heme. (D) Comparison of GFP intensities between IQ8011 and 

IQ6011 worms. Synchronized L1 worms were grown in the indicated heme levels for 3 d. 

Total worm proteins were extracted and measured for GFP fluorescence. The 

fluorescence intensities were normalized to protein concentrations. Asterisk indicates P 

<0.05. (E) and (F) Measurement of ZnMP uptake. Synchronized L1 worms were grown 

at 2 μM heme in mCeHR-2 medium for 3 d. The worms were labeled with 10 μM ZnMP 

for 16 h. The intensity of ZnMP was measured by epifluorescence microscopy. Brood 

mate refers to the wild-type worm segregant from the final outcross of the mutant. 

IQ6011: heme sensor strain (hrg-1::gfp); IQ8011: heme sensor strain with hrg-3 deletion 

(hrg-3; hrg-1::gfp). 
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Characterization of HRG-3 in a heme-deficient yeast strain  

Yeast provides a comparatively simple genetic system to assay heme homeostasis. 

To understand the possible functions of HRG-3, we utilized a heme-deficient S. 

cerevisiae strain DY1457 hem1Δ(6D) (172). The rate-limiting enzyme in the heme 

biosynthetic pathway, δ-aminolevulinate synthase (ALAS), is deleted in this hem1Δ strain 

(172). Therefore, this yeast strain completely depends on heme or heme-synthesis 

intermediates from the environment for its heme-related functions and growth. Untagged 

or tagged versions of hrg-3 sequences were cloned into the 2 micron plasmid pYES-

DEST52 that contains a GAL1 promoter. All constructs were introduced into the hem1Δ 

yeast and tested for growth. Compared to the control vector, expression of HRG-3-HA 

resulted in significant reduction in yeast growth when the transformed yeast was grown 

on plates containing δ-aminolevulinic acid (ALA), the product of ALAS (Figure 4.10A, 

left panel). A similar effect was observed when the yeast was exposed to 0.25 µM heme. 

To test whether excess heme can restore the yeast growth, we also grew the yeast at 10 

and 40 µM heme. However, the yeast transformed with hrg-3-HA still exhibited a much 

slower growth than the control yeast. Furthermore, at all concentrations of ALA and 

heme, co-expression of a high-affinity heme importer HRG-4 did not restore the growth 

of the yeast expressing HRG-3-HA to the vector level (Figure 4.10A, right panel). 

Interestingly, this toxic effect was abrogated when the N-terminal portion of HRG-3 

was deleted (HRG-3∆N-HA), indicating that the growth arrest was specifically due to the 

expression of the full-length HRG-3-HA (Figure 4.10A). In addition, the untagged HRG-

3 did not lead to decreased yeast growth, which is different from the tagged construct. 
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However, we have not been able to confirm whether the untagged protein is actually 

produced in yeast cells.  

We next transformed HRG-3 constructs together with a CYC1::LacZ construct into 

hem1Δ yeast and measured the β-galactosidase activity. Since heme can induce the 

activity of CYC1 promoter through the transcriptional activator Hap1, the expression of 

LacZ positively correlates with intracellular heme levels. In contrast to the results 

observed on yeast growth, expression of HRG-3-HA increased β-galactosidase activities 

in the yeast (Figure 4.10B). This suggested that the arrest of yeast growth by the 

expression of HRG-3-HA is not because of overall heme deficiency, but may be due to 

perturbed intracellular heme homeostasis or heme-related signaling.   

HRG-3-HA expressed in yeast is a full-length protein in which the N-terminal 

sequence, unlike in mammalian cells, is not processed (Figure 4.9D). 

Immunofluorescence assays in yeast revealed that the majority of HRG-3-HA displayed 

intracellular localization, further excluding the possibility that HRG-3 either is excreted 

from the cells or affects the overall heme levels by regulation uptake at the plasma 

membrane (Figure 4.10C). In addition, this localization pattern of HRG-3-HA is different 

from the published punctate signals of Golgi apparatus in yeast (228,229). Similarly, the 

HRG-3∆N-HA construct also exhibited intracellular localization but seemed to have 

lower protein level than full-length HRG-3. 
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Figure 4.10. Characterization of HRG-3 in heme deficient S. cerevisiae. (A) 

Expression of HRG-3 reduces yeast growth. hem1Δ yeast transformed with the indicated 

constructs were spotted in 10-fold serial dilutions on synthetic complete medium plates 

lacking both uracil and histidine. Different concentrations of ALA and heme were added 

to the assay plates. The yeast growth was analyzed after 3 to 5 d. (B) β-galactosidase 

activity assays. HRG-3 constructs and the reporter construct CYC1::LacZ were 

transformed into yeast together. The transformed yeast was grown in different 

concentrations of ALA and heme for 14 h. Total protein extracts were subjected to a 

LacZ assay. β-galactosidase activity reflects the activity of the CYC1 promoter which is 

activated by heme. Asterisk indicates P <0.05 when compared to the vector control. (C) 

Immunofluorescence assays of HRG-3 proteins in yeast. The transformed yeast was fixed 

and spheroplasted. Anti-HA and fluorophore-conjugated anti-rabbit IgG antibodies were 

applied to detect the proteins. Images were acquired with different settings of laser power 

and detection gain on confocal microscope. (scale bar = 2 µm)   
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Discussion 

Identification of hrg-3 as a heme-regulated gene 

Heme regulates the activities of many genes that are involved in erythropoiesis, 

heme biosynthesis, oxidative stress, oxygen sensing, energy metabolism, and circadian 

rhythm control (4,118-120). Target genes can be regulated either at the transcriptional 

level through transcription factors such as Bach1, Rev-erbα, and Hap1 (4,119,123) or 

post-transcriptionally through regulatory molecules such as the iron regulatory protein 

IRP2 (230). In this study we have identified a novel C. elegans gene, hrg-3, that is 

transcriptionally repressed by heme. Results from microarray, qRT-PCR, Northern blot, 

and transgenic worms consistently showed that hrg-3 is highly induced at low heme, and 

its expression levels inversely correlate with heme concentrations. Neither PPIX nor iron, 

two structural components of heme, exhibited any regulatory effect on hrg-3 expression. 

These results confirmed that hrg-3 is a heme-responsive gene and the response is specific 

to heme.  

Identification of a 43-bp heme-responsive sequence 

Through systematic deletion and bioinformatics analyses, we have located a 43-bp 

DNA sequence in the hrg-3 promoter that is responsive to heme. Addition of this 

sequence to a non-heme regulated basal promoter confers a robust heme response. This 

sequence does not contain any recognizable binding elements to which known 

transcription factors Bach1, Rev-erbα, and Hap1 bind.  

However, the 43-bp sequence has a conserved GATA site and a SKN-1 binding 

site. The GATA factor ELT-2 is the predominant transcription factor regulating intestinal 

gene expression in worms (223,224). In our study, all the hrg-3 transcriptional reporters 
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showed GFP expression exclusively in the intestine. When the 20-bp sequence containing 

the GATA element was deleted, the majority of worms with hrg-3Δ92::gfp did not have 

GFP expression even at low concentration of heme (Figure 4.5). These results support the 

concept that ELT-2 most likely regulates hrg-3 intestinal expression. In addition, the 

conserved AATCATCATCA sequence closely resembles the consensus SKN-1 binding 

site, which comprises a (G/A)TCAT motif flanked by AT rich sequences (231). Mutating 

this sequence or knocking down skn-1 resulted in a dramatic reduction in the hrg-3 

promoter activity at low heme, further confirming the functionality of this SKN-1 binding 

site. Interestingly, the closest mammalian homolog of SKN-1, the erythroid transcription 

factor P45 NF-E2, is known to activate the transcription of globin genes in a heme-

dependent manner (232-234). In the absence of external heme, Bach1-Maf heterodimers 

bind to MAREs in the regulatory regions and repress the expression of globin genes 

(121,122). In response to heme treatment, P45 NF-E2 displaces Bach1 and activates gene 

expression (233,234). In C. elegans, the SKN-1 binding element in the promoter is 

required for hrg-3 gene expression at low heme, suggesting that this regulatory 

mechanism may be different from that of P45 NF-E2.      

HRG-3 is a secreted protein 

As revealed by all the transcriptional reporters, activity of the hrg-3 promoter is 

restricted to the intestine. In the case of translational fusion and ectopic expression 

constructs, we observed that the HRG-3 localized to the intestinal Golgi apparatus as well 

as in coelomocytes. In C. elegans, coelomocytes are scavenger-like cells that actively 

endocytose and accumulate a variety of foreign substances such as GFP or its variants 

from the pseudocoelom (227). Accumulation of GFP fluorescence in coelomocytes has 
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been used as an indirect way to measure its secretion from other tissues such as the 

intestine and neurons (227,235). However, this accumulation does not necessarily mean 

that the untagged endogenous protein is also taken up by coelomocytes. For instance, 

when the major yolk protein vit-2 was fused to gfp, the protein product accumulated in 

the pseudocoelom in addition to the oocytes (236). Accordingly, the presence of HRG-3-

YFP and HRG-3-mCherry in coelomocytes indicated that HRG-3 traffics to the basal 

plasma membrane of intestine cells and is secreted into the pseudocoelom.  

The amino termini of HRG-3 and its orthologs all meet the criteria for signal 

peptides (237,238). Within the cell, signal sequences can either undergo cleavage by 

signal peptidases or present as membrane anchors (239). By expressing HRG-3 in 

mammalian cells, we found that the N-terminal portion of HRG-3 is sufficient and 

necessary for Golgi localization of HRG-3. Furthermore, in the case of all HA-tagged and 

GFP-fused constructs, the mature HRG-3 proteins do not retain this N-terminal region. 

These results support the possibility that the 25 amino acids at the N-terminus functions 

as a signal peptide.     

Potential biological roles of HRG-3 

Following its synthesis in the intestine of worms, HRG-3 is secreted into the 

pseudocoelom, and presumably taken up by other cell types. Based on the heme response, 

expression pattern, and trafficking feature, HRG-3 could be involved in intercellular 

heme transport in C. elegans (Figure 4.11). The fact that none of the worm cells have the 

ability to synthesize heme suggests that other cells have to acquire heme, directly or 

indirectly, from intestinal cells (160). F1 progeny from parental worms grown at high 

concentrations of heme can grow to a later stage in liquid media without any added heme 
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than those progeny from parental worms grown at low heme, indicating that a proportion 

of heme is deposited into the developing embryos from somatic cells (Rao et al., 

unpublished data).  

C. elegans has six vitellogenin genes, namely vit-1 to vit-6 (240,241). Following 

synthesis in the intestine of adult hermaphrodites, the proteins are secreted into 

pseudocoelom and then taken up by the gonad (242,243). In ticks and other insects, 

vitellogenins have been shown to bind heme and they could be involved in delivering 

heme to embryos (58,59). Another lipid binding protein lbp-3 encodes a secreted protein 

that might function in sequestering or transporting small hydrophobic molecules (244). 

Interestingly, the expression of lbp-3 is also upregulated by heme deficiency (Microarray 

data, Chapter five). HRG-3 might play a similar role in C. elegans in cooperation with, or 

in addition to, vitellogenins or LBPs. Since HRG-3 encodes a secreted protein in 

response to heme deficiency, it may play a role in intercellular heme trafficking. We have 

observed that, although hrg-3 is expressed in male worms (Appendix VI), its expression 

level in males is much lower than that in hermaphrodites. A microarray analysis showed 

that hrg-3 mRNA was 5.4-fold more enriched in hermaphrodites than that in males (245). 

Moreover, the highest mRNA level of hrg-3 was detected in young adult, which is the 

stage when oogenesis and early embryogenesis start. It is possible that HRG-3 may be 

involved in efficient heme delivery to embryos under the conditions of heme deficiency. 

However, it remains to be determined whether HRG-3 binds heme. 

In hrg-3 deletion worms, the heme status within the intestine itself is not 

dramatically altered. This result supports our model that the major function of HRG-3 is 

not in the intestine, even though it is synthesized in the intestine. The expression of HRG-
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3, especially with a C-terminal epitope tag, dramatically arrested yeast growth across all 

heme concentrations (Figure 4.11). This negative effect on growth is probably not due to 

overall heme deficiency because high concentration of exogenous heme or co-expression 

of a high-affinity heme importer HRG-4 does not restore the normal yeast growth. 

Furthermore, as indicated by the activity of the heme-dependent reporter CYC1::LacZ, 

the yeast cells expressing HRG-3-HA sense even higher levels of heme in the cytoplasm 

and nucleus than the control. In yeast, HRG-3-HA accumulates as an unprocessed form 

within the cells. Therefore, HRG-3-HA may be involved in the sequestration or 

redistribution of heme within yeast cells such that heme is available for some 

compartments (e.g. cytoplasm), but not for others (e.g. mitochondria).   

We demonstrated that hrg-3 is regulated by the transcription factor SKN-1. skn-1 

was first identified as a maternal gene required for early embryonic development 

(246,247). Later studies found that SKN-1 induces the transcription of phase II 

detoxification genes and contributes to stress resistance and longevity (248,249). It is 

possible that heme deficiency induces cell stress, which activates hrg-3 expression 

through SKN-1. It will be interesting to see whether HRG-3 is involved in any of these 

pathways.  

One of the main functions for secreted peptides is signaling, which holds true in the 

cases of hormones, immune-response molecules and neurotransmitters. For example, in 

response of iron loading or inflammation, liver secretes a peptide hormone called 

hepcidin (250). Hepcidin binds the iron exporter ferroportin in enterocytes and 

macrophages, and leads to decreased uptake or recycling of iron (250). Heme is also a 

signaling molecule that modulates gene expression and regulates cellular processes (119). 
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At low concentrations of heme, HRG-3 is synthesized and secreted into the 

pseudocoelom as a 45-amino acid peptide. Therefore, HRG-3 may be involved in 

intercellular signaling as a response to heme deficiency.  
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Figure 4.11. Proposed model of HRG-3 in heme homeostasis. (A) In the intestinal 

cells of C. elegans, hrg-3 is induced by heme deficiency. The transcription factors SKN-1 

and ELT-2 are required for hrg-3 expression. Following its synthesis in the intestine, 

HRG-3 is secreted into the pseudocoelom. Deletion of hrg-3 increased the intestinal 

heme concentration, suggesting that HRG-3 plays a role in mobilizing heme out of the 

intestine. HRG-3 may function either as an intercellular heme carrier that directly binds 

heme, or as a signaling molecule that regulates heme transport indirectly. (B) When 

overexpressed in S. cerevisiae, HRG-3-HA reduces the growth and division of heme-

deficient yeast. This could be due to decreased heme content in certain compartments 

such as mitochondria. However, the cytoplasm and nucleus of this transformed yeast 

even sense higher levels of available heme, indicating that expression of HRG-3-HA may 

be involved in heme sequestration or compartmentalization within yeast cells.   
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Chapter 5:  Global analysis of heme- and oxygen- regulated genes 

in C. elegans 

 

Summary 

In biological systems, heme and oxygen are closely intertwined with each other in 

many respects. Oxygen is required as an electron acceptor in heme biosynthesis, whereas 

hemoproteins are responsible for the transport and storage of oxygen molecules. In the 

nematode C. elegans, heme-containing proteins such as guanylate cyclases and neural 

globin GLB-5 are crucial for oxygen sensing. In addition, alterations in either heme or O2 

concentrations affect the metabolic rates of worms. To understand the biological 

connections and the regulatory network between heme and oxygen, we performed a 

genome-wide microarray analysis using RNA samples prepared from worms grown at 

different heme and O2 concentrations. The results showed that 369 and 94 genes were 

significantly regulated by heme and oxygen, respectively. Among them, 18 genes were 

responsive to both factors. Unexpectedly, only four genes were differentially expressed in 

response to 4% O2. Quantitative real-time PCR on 20 genes showed consistent results 

with microarrays. Bioinformatics analysis indicated that the biological processes related 

to aging and lipid metabolism were highly enriched in heme-regulated genes, whereas 

many oxygen-responsive genes were associated with transferase activities. Additionally, 

the molecular function “transporter activity” was over-represented in the genes regulated 

by low heme, suggesting that heme uptake systems are upregulated in response to heme 

deficiency. A number of differentially expressed genes encode C-type lectins, UDP-
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glucuronosyl transferases, glutathione S-transferases, and cytochrome P450s. Worm 

interactome analysis indicated that the protein products of 55 heme-regulated genes and 9 

oxygen-regulated genes have been shown to interact with other proteins. These molecules 

may constitute the core heme oxygen regulatory network in C. elegans. In summary, 

these results demonstrate that C. elegans can adapt to varying concentrations of heme and 

O2 by inducing or repressing gene expression. Genes identified in this microarray could 

be candidates for the molecules or pathways involved in heme uptake, heme 

detoxification, and resistance to hyperoxia.     

Results 

In the previous chapter, we have shown that the expression of hrg-2 is regulated by 

heme concentrations. A preliminary microarray experiment with a single biological 

replicate also indicated that hrg-2 was regulated by oxygen concentrations (unpublished 

data, Dr. Wayne Van Voorhies and Dr. Harold Smith). In the experiment, hrg-2 mRNA 

showed a 12.5-fold decrease and a 1.8-fold increase in response to 4% and 100% O2, 

respectively. Thus, hrg-2 might be regulated by both heme and oxygen.  

Alterations in either heme or oxygen levels can affect the metabolic rates of C. 

elegans. Compared to normoxia, 1% O2 reduced the metabolic rates of worms by 50% 

(163). When C. elegans were maintained at 1.5 and 500 µM heme, they exhibited a 

40~50% reduction in metabolic rates in comparison to those grown at 20 µM heme 

(Appendix VII, unpublished data, in collaboration with Dr. Wayne Van Voorhies,). 

Interestingly, low concentrations of heme displayed more dramatic effects on the 

metabolic rates after the worms were exposed to hypoxia (Appendix VII). Little 

difference in metabolic rates was observed between 4 and 20 µM heme before hypoxia. 
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However, after hypoxia treatment for 5 h followed by 15 h recovery, worms from 4 µM 

heme had significant lower metabolic rates than those from 20 µM heme. Additionally, a 

further decrease of metabolic rate was observed in the worms maintained at 1.5 µM heme 

after hypoxia. 

 Identification of heme- and oxygen- responsive genes 

  To further understand the regulation of hrg-2 and the connections between heme 

and oxygen in C. elegans, global changes of gene expression in response to different 

heme and O2 concentrations were analyzed by using Affymetrix C. elegans Genome 

Arrays. The experiment design employed a 3×3 full factorial structure. The three 

concentrations of heme were 1.5 µM (low), 20 µM (optimal) and 500 µM (high), while 

the concentrations of O2 were 4% (hypoxic), 21% (normoxic), and 100% (hyperoxic). 

RNA samples were derived from wild type N2 worms grown under these nine treatments 

for two successive generations. In this microarray experiment, we found 446 genes that 

showed ≥2.0 fold change and a false discovery rate q value <0.05 in at least one treatment 

(Figure 5.1A and Appendix VIII). Among these were 351 genes that were 

transcriptionally regulated by heme and 76 genes that were affected by oxygen. In 

addition, 18 genes exhibited significant responses to both heme and O2. Statistically 

significant interaction between heme and oxygen was observed for only one gene (Figure 

5.1A), cyp-35B2, which encodes a cytochrome P450 enzyme. 

Detailed examination revealed that the mRNA levels of 109 genes were altered at 

both 1.5 and 500 µM heme in comparison to 20 µM heme (Figure 5.1B). In contrast, only 

two differentially expressed genes overlapped between hypoxic and hyperoxic 

conditions. We next arbitrarily grouped genes with similar expression profiles together 
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Figure 5.1. Overview of microarray results. (A) ANOVA models for differentially 

regulated genes. Based on their transcriptional responses, genes were categorized as 

regulated by heme, regulated by O2, regulated by both heme and O2, and regulated by O2 

in a heme-dependent manner. Cut-off: false discovery rate q value <0.05 and fold change 

≥2.0. yg: the expression value of a gene in a treatment; µg: basal expression value of the 

gene in treatment 20 µM heme/21% O2; H: effect of heme; O: effect of O2;  ε: random 

error.  (B) Venn diagram of overlapping genes from different categories. The categories 

of regulated genes are shown below the Venn diagram. (C) Clustering of regulated genes 

in the microarray.  Differentially expressed genes were grouped into 14 clusters based on 

their regulations by heme and/or oxygen. Fold changes were converted into heat maps 

using Multiexperiment Viewer version 4.3.  
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based on whether the gene was up- or down- regulated at each heme or O2 concentration 

compared to the control. The 446 genes were categorized into 14 clusters (Figure 5.1C). 

Cluster 8 was the largest group comprised of 91 genes that were induced by high heme. 

In addition, more than 80 genes were present in clusters 6 and 7. Surprisingly, only 4 

transcripts (cluster 9 and 10) exhibited increased expression in response to sustained 

hypoxia, whereas 61 genes (cluster 12) were significantly induced under 100% O2. One 

of the two genes in cluster 9, F22B5.4, contains four hypoxia response elements and has 

been identified as a target for hypoxia-inducible factor (HIF-1) (251,252).    

Validation by quantitative real-time PCR 

To confirm the microarray results, we performed qRT-PCR on 20 genes utilizing 

the RNA samples originally used for the microarray analysis (Figure 5.2). The genes 

tested were selected from each expression cluster. All 160 fold change values (relative to 

the control group 20 µM heme/ 21% O2) for the 20 genes were subjected to correlation 

analysis between qRT-PCR and Affymetrix microarrays. The microarray results showed 

that 92 of the 160 data points had fold changes ≥2.0. Out of these 92 data points, 79 were 

validated by qRT-PCR (r=0.86, P <0.0001). An example for the hrg-2 and the oxygen-

responsive gene F22B5.4 is depicted in Figure 5.2B.   

Enrichment of biological pathways 

Of the 446 genes regulated by heme and/or O2, 288 (65%) have been assigned GO 

terms. Each of the four gene sets, those regulated by 1.5 µM heme (189), 500 µM heme 

(289), 4% O2 (4), and 100% O2 (92), was subjected to GO enrichment analyses 

individually (Table 1). Interestingly, the GO terms “transporter activity” and           
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Figure 5.2. Validation of gene expression by quantitative real-time PCR. (A) 

Correlation of gene expression data between microarrays and qRT-PCR. All 160 fold 

change values (relative to the control group 20 µM heme/21% O2) for 20 genes were 

transformed into log scale. Correlation analysis was performed in GraphPad INSTAT 

version 3.01 (GraphPad, San Diego). Correlation coefficient (r) was calculated for the 

comparisons of the 160 data points between the microarray data and qRT-PCR results. 

(B) Expression profiles for a hrg-2 and an oxygen-responsive gene (F22B5.4) in 

microarray and qRT-PCR.  



A

Pearson r = 0.86, P <0.0001

oa
rr

ay
ch

an
ge

) b
y 

m
ic

ro

log2(fold change) by qRT-PCR

lo
g 2

(fo
ld

 
ng

e)

K01D12.14
(hrg-2)

B

lo
g 2

(fo
ld

 c
ha

n
ch

an
ge

)

F22B5.4

heme (µM)      1.5      20     500     1.5    500    1.5      20     500                 

lo
g 2

(fo
ld

 

(µ )
O2 (%)                          4                      21                     100                 

147



 

 148 
 

“proteolysis” were highly enriched only in the genes regulated by 1.5 µM heme, whereas 

GO terms related to carbohydrate metabolism were significantly over-represented in 

those genes regulated by high heme. In contrast to hrgs, many oxygen-responsive genes 

(orgs) were associated with the terms “transferase activity” and “oxidoreductase 

activity”. In addition, “catalytic activity” was the only GO term that was significantly 

associated with the genes regulated by 4% O2.  

The processes “lipid transport” and “aging” were significantly enriched in both sets 

of hrgs (Table 1), suggesting that heme may play an important role in regulating lipid 

homeostasis and life span. In addition, the GO terms “transferase activity, transferring 

glycosyl groups” and “coenzyme binding” overlapped between hrgs and the orgs. Due to 

the large numbers of C-type lectin (clec) genes and collagen genes, “carbohydrate 

binding” and “structural constituent of cuticle” were also observed as significantly 

enriched GO terms. 

We next examined these genes for association with the KEGG pathways (179). 

Consistent with the GO results, several pathways related to fatty acid metabolism were 

significantly enriched in the genes regulated by 500 µM heme (Table 2). In this gene set, 

the pathway “purine metabolism” was also recognized as a significantly enriched 

pathway. Three pathways including “metabolism of xenobiotics by cytochrome P450”, 

“glutathione metabolism”, and “fatty acid metabolism” were over-represented in the 

genes regulated by 100% O2. However, no KEGG pathway was significantly enriched in 

the genes regulated by 1.5 µM heme or 4% O2.  This probably was because that only few 

genes in these two categories have been mapped to the KEGG pathways.
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Table 1. Gene ontology analysis of hrgs and orgs. 

Gene ontology terms number 
of genes 

P 
value 

Fold 
enrichment

Genes regulated by 1.5 µM heme 
transporter activity 19 0.01 2 
carbohydrate binding 18 0.00 4.9 
sugar binding 14 0.00 4.5 
transferase activity, transferring glycosyl groups 11 0.00 4.9 
proteolysis 10 0.03 2.2 
transferase activity, transferring hexosyl groups 10 0.00 5 
peptidase activity 10 0.04 2.1 
lipid metabolic process 8 0.02 2.8 
cellular lipid metabolic process 6 0.04 3.2 
aging 6 0.04 3.2 
multicellular organismal aging 6 0.04 3.2 
determination of adult life span 6 0.04 3.2 
extracellular region 6 0.01 4.8 
lipid transport 5 0.00 28 
lipid transporter activity 5 0.00 40.4 
structural constituent of cuticle 5 0.05 3.6 
lipid glycosylation 3 0.03 11.2 
lipid modification 3 0.05 8.7 
sphingoid biosynthetic process 2 0.03 59.8 
ceramide biosynthetic process 2 0.03 59.8 
sphingomyelin catabolic process 2 0.04 44.9 
phospholipid catabolic process 2 0.04 44.9 
sphingomyelin phosphodiesterase activity 2 0.04 44.4 

Genes regulated by 500 µM heme
carbohydrate binding 17 0.00 3 
sugar binding 16 0.00 3.4 
carboxylic acid metabolic process 13 0.00 3.5 
organic acid metabolic process 13 0.00 3.5 
multicellular organismal aging 12 0.00 4.3 
determination of adult life span 12 0.00 4.3 
aging 12 0.00 4.3 
amine metabolic process 10 0.00 3.3 
nitrogen compound metabolic process 10 0.00 3.1 
carbohydrate metabolic process 9 0.04 2.3 
phosphate transport 8 0.01 3.3 
inorganic anion transport 8 0.02 2.9 
anion transport 8 0.03 2.8 
amino acid metabolic process 7 0.02 3.1 
amino acid and derivative metabolic process 7 0.04 2.8 
structural constituent of cuticle 7 0.02 3.3 
coenzyme binding 7 0.03 3 
lipid transport 6 0.00 22.6 
monocarboxylic acid metabolic process 6 0.01 5.2 
aromatic compound metabolic process 6 0.01 4.7 
lipid transporter activity 6 0.00 31.9 
ligase activity, forming carbon-nitrogen bonds 6 0.01 4.3 



 

 150 
 

embryonic pattern specification 5 0.00 14.4 
pattern specification process 5 0.00 7.5 
purine nucleotide biosynthetic process 5 0.02 4.7 
purine nucleotide metabolic process 5 0.02 4.6 
cell fate commitment 5 0.04 3.8 
glutamine metabolic process 4 0.00 20.1 
glutamine family amino acid metabolic process 4 0.00 12.1 
amino acid biosynthetic process 4 0.02 7.5 
nucleosome assembly 4 0.02 6.9 
chromatin assembly 4 0.03 6.2 
nitrogen compound biosynthetic process 4 0.03 5.7 
amine biosynthetic process 4 0.03 5.7 
heterocycle metabolic process 4 0.04 5.2 
carbohydrate catabolic process 4 0.04 5.1 
fatty acid metabolic process 4 0.04 5.1 
P granule 4 0.00 18.2 
pole plasm 4 0.00 18.2 
nucleosome 4 0.01 8.1 
'de novo' IMP biosynthetic process 3 0.00 45.2 
IMP biosynthetic process 3 0.00 45.2 
IMP metabolic process 3 0.00 45.2 
peptidoglycan metabolic process 3 0.00 30.1 
purine ribonucleoside monophosphate biosynthetic process 3 0.01 20.1 
purine ribonucleoside monophosphate metabolic process 3 0.01 20.1 
purine nucleoside monophosphate biosynthetic process 3 0.01 20.1 
purine nucleoside monophosphate metabolic process 3 0.01 20.1 
fatty acid beta-oxidation 3 0.01 18.1 
ribonucleoside monophosphate metabolic process 3 0.01 16.4 
ribonucleoside monophosphate biosynthetic process 3 0.01 16.4 
fatty acid oxidation 3 0.01 16.4 
nucleoside monophosphate biosynthetic process 3 0.02 13.9 
nucleoside monophosphate metabolic process 3 0.02 13.9 
peroxisome 3 0.04 9.1 
microbody 3 0.04 9.1 
acyl-CoA oxidase activity 3 0.01 21.9 
oxidoreductase activity, acting on the CH-CH group of donors 3 0.01 17.5 

Genes regulated by 4% heme 
catalytic activity 2 0.39 2.6 
Genes regulated by 100% heme 
transferase activity 16 0.01 2 
oxidoreductase activity 12 0.00 3.1 
sugar binding 10 0.00 5.4 
carbohydrate binding 10 0.00 4.6 
cofactor binding 6 0.01 4.6 
coenzyme binding 5 0.01 5.5 
transferase activity, transferring hexosyl groups 5 0.03 4.3 
transferase activity, transferring glycosyl groups 5 0.04 3.8 
transferase activity, transferring groups other than amino-acyl groups 4 0.04 5.1 
glutathione transferase activity 3 0.00 28.3 
transferase activity, transferring alkyl or aryl groups 3 0.02 13.7 
peptidoglycan catabolic process 2 0.01 138.1 
peptidoglycan metabolic process 2 0.03 69 
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cell wall catabolic process 2 0.05 41.4 
cell wall metabolic process 2 0.05 41.4 
lysozyme activity 2 0.02 100.7 
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Table 2. Enrichment of KEGG pathways in hrgs and orgs   

KEGG pathway Number 
of genes 

% of 
genes 

P 
value 

Fold 
enrichment 

Genes regulated by 500 µM heme     
Purine metabolism 6 2.1 0.043 2.9 
Fatty acid metabolism 5 1.7 0.025 4.1 
Polyunsaturated fatty acid biosynthesis 4 1.4 0.003 12.4 
alpha-Linolenic acid metabolism 3 1 0.015 14.5 

Genes regulated by 100% O2     
Metabolism of xenobiotics by cytochrome 
P450 6 6.5 0.000 18.4 

Glutathione metabolism 4 4.3 0.003 11.4 
Fatty acid metabolism 4 4.3 0.022 5.8 
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Gene annotation and protein families 

In WormBase, 206 out of the 446 regulated genes (46%) have been given gene 

names based on biological functions, expression patterns, homology to known proteins, 

or protein-protein interactions (www.wormbase.org, release WS205). Eighteen 

transcription factors, including 11 zinc finger proteins and 4 F-box A proteins (fbxa), 

were transcriptionally regulated in the microarrays (Table 3). Most of them were 

upregulated at both low and high heme concentrations, suggesting that these transcription 

factors may be required for maintaining heme homeostasis through modulating gene 

expression.  

Another interesting protein category regulated by heme was transporters (Table 3). 

Five out of six vitellogenins were induced at both heme concentrations, indicating that 

these lipid transport proteins may also play a role in intercellular heme delivery. Two 

recently identified heme uptake genes, hrg-1 and hrg-4, were induced under heme 

deficiency (68). In addition, low heme altered the expression levels of three ABC 

transporters. The multidrug resistance protein 5 (mrp-5) was upregulated, while two P-

glycoproteins (pgp-5 and pgp-6) were down-regulated. This differential regulation 

suggests that these transporter genes may play distinct roles in intracellular or 

intercellular heme transport.  

Several other known protein families such as clecs, UDP–glucuronosyl transferases 

(ugts), gsts, cytochrome P450s, and collagens were also highly enriched in the regulated 

genes (Table 3). In addition, a total of 57 differentially expressed genes have been 

identified as the targets of the insulin/IGF-1 receptor DAF-2 or the FOXO family 



 

 154 
 

 Table 3. Expression patterns of gene families  

Protein families Number 
of genes 

1.5 µM 500 µM  100% oxygen 
IN╪ DE IN DE  IN DE 

C-type lectin 33 6 10 13 4  7 5 
Transcription factors 18 6  10 5  2 2 
Transporters 15 9 3 6 1  2  
UDP–glucuronosyl transferase 15 7 4  3  4  
Glutathione S–transferase 12 2  1 2  8  
Cytochrome P450s 7 2 1  2  2  
Collagen 7 5  7     
         
Genes regulated by DAF-2 and DAF-16       
Class I genes╫ 24 1 7 3 10  8 2 
Class II genes 33 10 6 23 1  4 5 

   ╪: IN means increase and DE means decrease in gene expression.   
    ╫: Class I genes are induced by DAF-2 RNAi and repressed by DAF-16; DAF-2 double RNAi. 

Class II genes exhibited the opposite expression profiles.  
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transcription factor DAF-16 (253). Since DAF-2 and DAF-16 play key roles in regulating 

life span (254), heme and oxygen may be involved in regulating the aging process.   

As revealed by GO and KEGG results, many regulated genes are involved in fatty 

acid metabolism. For example, two fatty acid CoA synthetases, acs-2 and acs-7, were 

transcriptionally repressed at both altered heme concentrations. Acyl-CoA dehydrogenase 

(acdh-1) and carnitine palmitoyl transferase (cpt-5), two genes involved in β-oxidation of 

fatty acids, also showed decreased expression in at least one heme concentration. 

Furthermore, heme significantly changed expression of a number of genes that have 

potential roles in the metabolism and transport of lipids. These results indicate that lipid 

homeostasis may be perturbed by alteration of heme levels in C. elegans. 

Worm interactome analysis 

In order to understand the regulatory networks of heme and oxygen, all the 

identified genes were mapped to the worm interactome version 8 (WI8) by using the 

program Cytoscape (181,182). The WI8 dataset has ~116,000 protein-protein interactions 

that were derived from testing all the possible interactions among ~10,000 proteins by the 

yeast two-hybrid system (181,182).  Of the 446 regulated genes, 55 hrgs and 9 orgs were 

identified in the interaction network (Figure 5.3). These genes included 8 transcription 

factors. Two transcription factors upregulated at 500 µM heme, fbxa-88 and posterior 

alae in males (pal-1), both interacted with the kinase Aurora/Ipl1 related kinase-1. 

Proteins encoded by several other heme-regulated genes, including geminin-1 (gmn-1), 

dauer or aging adult over-expression (dao-3), and intestinal acid phosphatase (pho-11), 

formed a local network with other proteins that may be involved in regulation of the cell
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Figure 5.3. Interactome network of heme- and oxygen- regulated genes. Fifty five 

hrgs and 9 orgs were mapped to worm interactome version 8 using Cytoscape version 

2.6. Blue line indicates interaction. red circles: heme-responsive genes; blue circles: 

oxygen-responsive genes; white circles: other genes.  
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cycle and proliferation. Additionally, a small glutamine-rich tetratrico repeat protein (sgt-

1) directly interacted with five hrgs and formed another sub-network.  

The only possible local interactome network for proteins encoded by orgs was 

identified among Y39B6A.1, F53A9.1, and F53A9.2. They all interacted with the 

cysteine-rich motor neuron homolog-1 (crm-1). In addition, Y39B6.1 had another 25 

interacting partners which include four prion-like Q/N-rich (PQN) proteins and three 

activated in blocked unfolded protein (ABU). 

No direct interactions between proteins encoded by hrgs and orgs were observed by 

the interactome analysis. However, indirect connections may exist through intermediate 

proteins. For example, the ORG F07B7.2 may be associated with the HRGs intermediate 

filament protein (ifp-1) and C30F12.4 through T17H7.4 and R02F2.5, respectively. 

Another org encoded protein Y39B6A.1, may have indirect connections with the hrg 

encoded proteins NUMR-1, Y37D8A.21, and F54D10.7.  

 Identification of genes with similar expression patterns to hrg-2 and hrg-3 

Consistent with previous results, hrg-2 and hrg-3 were induced by heme deficiency 

(cluster 5, Figure 5.1C). However, we did not observe significant changes in hrg-2 

expression at different concentrations of oxygen. When all 27 gene chips were 

considered, the expression patterns exhibited significant correlation between these two 

genes (r =0.88); 41 and 29 other genes showed similar expression patterns to hrg-2 and 

hrg-3, respectively (r >0.80, Table 4 and Table 5). Genes with the highest correlation 

encode such proteins as transporters, UGTs, and GSTs. In mammals, UGT1A1 is 

involved in the conjugation and clearance of bilirubin, one of the final products from 

heme degradation (255,256). Some GSTs have been identified as heme binding proteins 
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(86,87). However, it still needs to be determined whether any of the worm UGTs can 

conjugate heme and how many of the GSTs we identified interact with heme. 

The ABC transporter mrp-5 had a similar overall expression profile to hrg-2 (r = 

0.96), although its induction at 1.5 µM heme was only 2.93 fold. Results from our lab 

indicated that mrp-5 is ubiquitously expressed in worm tissues, and it may play an 

essential role in heme transport (Severance et al., unpublished data). The newly identified 

heme uptake genes, hrg-1 and hrg-4, also displayed similar expression patterns to hrg-2. 

These similar expression profiles suggested that HRG-2 may be associated with heme 

transport.   

Genes with the highest correlation coefficients to hrg-3 included ugt-17, Na/Ca 

exchanger-6 (ncx-6), and lbp-3. Interestingly, lbp-3 encodes a secreted protein that might 

function in sequestering or transporting small hydrophobic molecules (244). Since HRG-

3 is also a secreted protein, they may have similar functions in heme trafficking 

pathways.   

Discussion 

C. elegans tolerates chronic moderate hypoxia 

Compared to 21% O2, 4% O2 upregulated the expression of only four transcripts in 

our experiment. This number is in drastic contrast to the 110 genes identified in the 

microarray analysis by Shen et al. (2005). In that experiment, 63 HIF-1 dependent and 47 

HIF-1 independent genes showed significant transcriptional responses to hypoxia in C. 

elegans (252). This discrepancy is plausibly due to the differences in the severity of 

hypoxia. Worms for the published microarray results were exposed to 0.1% O2 for 4 h, 
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 Table 4. Genes with similar expression profiles to hrg-2 

WormBase 
gene ID  

Gene 
name 

Function Correlation 
coefficient  

F14F4.3 mrp-5 Multidrug resistance-associated protein, ABC 
superfamily 0.961 

C29E4.7 gsto-1 Thiol oxidoreductase and dehydroascorbate reductase 0.955 
C08B6.1 ugt-17 UDP-glucuronosyltransferase 0.95 
R02E12.6 hrg-1 Heme transporter 0.949 
H23N18.1 ugt-13 UDP-glucuronosyltransferase 0.924 
F36H1.5 hrg-4 Heme transporter 0.923 
F40F4.4 lbp-3 Lipid binding protein 0.894 
C33A12.6  ugt-21 UDP-glucuronosyltransferase 0.888 
F58E6.7 hrg-3  0.881 
F37B1.6 gst-17  Glutathione S-transferase 0.88 
F58G6.2 srm-3 Serpentine receptor, class M 0.871 
C07A9.4 ncx-6 Na/Ca exchangers 0.848 
F42G9.5 alh-11 Aldehyde dehydrogenase 0.847 
ZC443.6  ugt-16 UDP-glucuronosyltransferase 0.839 
M02H5.4 nhr-202 Nuclear hormone receptor 0.818 
T07C5.1 ugt-50 UDP-glucuronosyltransferase 0.818 
C31H5.3 acr-19 Acetylcholine receptor 0.816 
C45B2.5 gln-1 Glutamine synthetase 0.802 
C02F12.1 tsp-17 Tetraspanin family 0.801 
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Table 5. Genes with similar expression profiles to hrg-3 

WormBase 
gene ID  

Gene 
name 

Function Correlation 
coefficient  

C08B6.1 ugt-17 UDP-glucuronosyltransferase 0.917 
K01D12.14 hrg-2  0.881 
C07A9.4 ncx-6 Na/Ca exchangers 0.878 
F40F4.4 lbp-3 Lipid binding protein 0.869 
C29E4.7 gsto-1 Thiol oxidoreductase and dehydroascorbate 

reductase 
0.863 

F07C4.9 clec-46 C-type lectin 0.859 
R02E12.6 hrg-1 Heme transporter 0.852 
ZC443.6  ugt-16 UDP-glucuronosyltransferase 0.847 
F37B1.6 gst-17  Glutathione S-transferase 0.844 
F14F4.3 mrp-5 Multidrug resistance-associated protein, ABC 

superfamily 
0.843 

H23N18.1 ugt-13 UDP-glucuronosyltransferase 0.826 
F36H1.5 hrg-4 Heme transporter 0.818 
T19H12.9 ugt-12  UDP-glucuronosyltransferase 0.813 
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which could be classified as severe acute hypoxia. In contrast, the worms for our study 

were treated with chronic moderate hypoxia (two successive generations at 4% O2).  

HIF-1 is the key regulator of the hypoxia responses in metazoans. Under normal 

oxygen levels, the HIF-prolyl hydroxylase, an enzyme that requires oxygen and iron, 

induces the hydroxylation of a proline residue in HIF-1α (257,258). Hydroxylated HIF-

1α is rapidly degraded though ubiquitylation by the von Hippel-Lindau tumor suppressor 

E3 ligase (257,258). When oxygen concentration decreases, HIF complexes are 

stabilized. In C. elegans, HIF-1 protein showed only a negligible increase when the O2 

level dropped to 5% for 16 h. Even at 1% O2 for 16 h, the increase in HIF-1 protein levels 

was very mild. The maximal induction of HIF-1 was only observed when the worms 

were grown at ≤ 0.5% O2 (257,258). Based on the stability of HIF-1 proteins, the 4% O2 

concentration used in our study did not induce a severe hypoxic response.  

Although C. elegans prefer an optimum concentration of 6% O2 (118), studies on 

the metabolic rates suggest that C. elegans can tolerate a broad range of oxygen levels. 

No obvious changes in metabolic rates were observed when worms were maintained at 

4% -100% O2 (163). Surprisingly, even under anoxic condition, worms can survive for 

>24 h (163). Our observation that only four genes were transcriptionally perturbed at 4% 

O2 further confirmed that C. elegans can easily adapt to moderate hypoxia. This 

adaptation could be due to the commonly low oxygen tension in the soil, which is the 

natural habitat for C. elegans (163).  

It is worth mentioning that one of the oxygen-regulated genes, F22B5.4, was among 

the top three HIF-1 targets identified in previous microarray analyses (251,252). In our 

study, the mRNA level of F22B5.4 was increased by 2.76 fold at 4% O2 and reduced by 
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3.44 fold at 100% O2. Another known HIF target, prolyl 4-hydroxylase α subunit (phy-2), 

showed a 1.62-fold induction at low oxygen and a 2.15-fold down-regulation at 100% O2. 

Knock-down of F22B5.4 or deletion of phy-2 led to higher embryonic lethality under 

hypoxic conditions, whereas no obvious embryonic phenotype was observed when these 

worms were maintained under normal O2 levels (252). These results strongly suggest that 

F22B5.4 and phy-2 play critical roles in the tolerance to hypoxic conditions.  

Oxygen-regulated genes play important roles in hyperoxia resistance 

High concentrations of oxygen are often applied to treat patients with ischemic 

stroke, brain trauma, neurologic and cardiopulmonary disorders (259). However, 

hyperoxia inevitably increases the levels of reactive oxygen species (ROS), and therefore 

leads to oxidative stress and even tissue damage. Cells have evolved multiple 

mechanisms to defend against hyperoxia. It has been shown in mammals that superoxide 

dismutases, catalases, heat shock proteins, and metallothioneins are induced under 

hyperoxic conditions (260-263). In addition, phase II detoxifying enzymes such as GSTs, 

UGTs, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase-1 have been suggested 

to play protective roles against oxidative stress (264,265).  

We have identified 69 genes (61 in clusters 12, 7 in cluster 13, and 1 in cluster 14) 

that were induced by hyperoxia in C. elegans. Interestingly, eight GSTs and three UGTs 

were significantly upregulated. All the eight GSTs were recently shown to be induced by 

oxidative stress in C. elegans (266). Knock-down of the bZip transcriptional factor skn-1 

reduced their expression by at least 60%, suggesting that the induction of GSTs by 

oxidative stress is dependent on this stress-responsive factor (266). These data are 

consistent with previous results in mice, which showed that the mRNA levels of both 
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GST-Yα and UGT in lungs were significantly increased after the animals were 

maintained in pure oxygen for 72 h (264). Another study in mice showed that GST-Pi1 

and GST-Mu2 were among the top in a list of genes induced by hyperoxia (267). These 

results suggested that induction of certain species of GSTs and UGTs under hyperoxic 

conditions may be important for cellular defense against oxidative stress.   

Two cytochrome P450 genes, cyp-35B2 and cyp-33C8, were also induced under 

hyperoxic conditions. Cytochrome P450 proteins are heme-containing enzymes 

catalyzing monooxygenase reactions, which are commonly associated with the generation 

of ROS (268). It has been shown that ROS negatively inhibited the CYP1A1 gene at the 

transcriptional level in hepatoma cell lines (269). In contrast to ROS, hyperoxia has been 

shown to induce the expression of CYP1A1. For example, increased levels of CYP1A1 

and CYP1A2 proteins have been observed in the livers of rats exposed to >95% O2 for 24 

and 48 h (270). Detailed examination confirmed that these two genes were induced by 

hyperoxia at the transcriptional level (271). In our microarray study, two cytochrome 

P450s were also induced by hyperoxia. One of the two genes, cyp-33C8, showed the 

highest fold change (41.9) among the 11 cytochrome P450 genes induced by oxidative 

stress (266). Furthermore, studies in human lung cell lines and rats showed that activation 

of CYP1A1/A2 significantly reduced cell death and lung injury caused by hyperoxia 

(272,273). It will be interesting to test whether CYP-35B2 and CYP-33C8 have 

protective effects against hyperoxia in C. elegans. 

Furthermore, two acyl-CoA dehydrogenases and three O-acyltransferase homologs 

were significantly upregulated by hyperoxia. acdh-1 showed the highest fold induction 

(17.74 fold) by 100% O2 among all the genes tested (Appendix VIII). Thus, alterations in 
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lipid metabolism may contribute to hyperoxia resistance, possibly by preventing the 

accumulation of lipid peroxides.   

Heme uptake systems induced by heme deficiency 

In this study, nineteen genes regulated by low heme were predicted to have 

transporter activities by GO analysis. Two more proteins in this regulatory category, 

HRG-1 and HRG-4, have recently been identified as heme importers in C. elegans (68). 

In the worm, HRG-4 transports heme across the apical plasma membrane and HRG-1 is 

responsible for mobilizing heme out of lysosome-like vesicles (68). Similar to the 

phenotype of hrg-4, knock-down of mrp-5 significantly increased the resistance to the 

toxic heme analog gallium protoporphyrin IX (Severance et al., unpublished data). This 

suggests that mrp-5 may also play an essential role in heme uptake. In addition, 

vitellogenin genes were highly induced by alterations in heme concentration. In ticks and 

other insects, vitellogenins have been shown to bind heme and they are thought to be 

involved in delivering heme to embryos (58,59). Maternal effects of heme have been 

observed in C. elegans, indicating that some heme is deposited into the developing 

embryos from somatic cells (Rao et al., unpublished data). Regulated expression of 

vitellogenins may indicate that they are one of the major players in this transport process.   

In addition to heme transporters, genes predicted to encode proteases were also 

induced by heme deficiency. These putative proteases include two cysteine proteinases 

cathepsin L (W07B8.1, F32H5.1), two serine carboxypeptidases cathepsin A (K10B2.2, 

Y40D12A.2), an aspartic protease (C15C8.3), and a metallopeptidase neprilysin 

(F18A12.4). It has been shown that in blood-feeding parasitic worms, the ingested 

hemoglobin is digested by a semi-ordered proteolytic pathway that contains aspartic 
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proteases, cysteine proteases, metalloproteases and exopeptidases (158,274). Knock-

down of aspartic protease cathepsin D in Schistosoma mansoni resulted in the 

accumulation of intact hemoglobin in the gut (275). Since the natural food for free-living 

worms is bacteria, C. elegans must have developed an efficient proteolytic system that is 

responsible for heme acquisition from bacterial hemoproteins. The increased expression 

of these putative proteases under heme-deficient conditions suggests that they could play 

important roles in hemoprotein digestion.  

Pulse-labeling experiments using zinc mesoporphyrin IX suggested that the heme 

uptake system was significantly upregulated in response to heme deficiency in C. elegans 

(68). This observation could be explained by the induction of heme transporters and 

diverse families of proteases.  

Biological connections between heme and oxygen in C. elegans 

In biological systems, heme and oxygen are closely intertwined with each other. On 

one hand, oxygen is required as an electron acceptor in the heme biosynthetic pathway 

(138). On the other hand, hemoproteins play critical roles in oxidative stress control as 

well as the transport and storage of oxygen. Moreover, heme has been shown to regulate 

the activity of mouse epithelial sodium channels in an oxygen-dependent manner (276). 

In C. elegans, oxygen sensing has been shown to be mediated predominantly by the 

heme-containing proteins, soluble guanylate cyclases and a neural globin (118,120,277). 

In a genome-wide RNAi screen, the org F22B5.4 was identified as an important 

modulator of heme sensor IQ6011 (Severance et al., unpublished data), suggesting it may 

play a role in both oxygen sensing and heme homeostasis. In addition, we have identified 

18 genes that were transcriptionally regulated by both heme and oxygen. Only 50% of 
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these genes have been named in WormBase. They include four clecs, two lysozymes, one 

ugt, one enoyl-CoA hydratase, and one saposin-like protein. Even though, the biological 

functions of most of these proteins are still unclear. It is likely that further studies of these 

genes may provide more mechanistic insights into the interplay between heme and 

oxygen sensing. 
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Chapter 6:  Conclusions and future directions 

 

Conclusions 

The long term objective of our lab is to dissect the heme trafficking pathways in 

eukaryotes. Toward this goal, the free-living worm C. elegans was used as a model 

system because it lacks the whole heme biosynthetic pathway and therefore provides a 

clean genetic background for studying heme homeostasis (160). An Affymetrix C. 

elegans genome array experiment was performed using RNA extracted from worms that 

were grown at low (4 µM), optimal (20 µM), and high (500 µM) heme in axenic liquid 

medium (68). Of the 288 genes that showed significant changes in gene expression, the 

mRNA levels of two genes, hrg-2 and hrg-3, increased by >70 fold when worms were 

grown at 4 µM compared to 20 µM heme. In the past several years, we performed 

extensive cell biological and genetic studies on these two novel genes and investigated 

their possible roles in heme homeostasis in C. elegans. The major findings in this study 

are listed and discussed as follows: 

hrg-2 

1) hrg-2 is induced by heme deficiency in C. elegans. It exhibits strong sequence 

homology to the family of cdrs. However, hrg-2 is only responsive to heme, whereas 

the heavy metal cadmium significantly induces cdr-1 expression.  

2) hrg-2 encodes a protein of 279 amino acids, which is a type I membrane protein with 

a single transmembrane domain at the amino-terminus. In addition, HRG-2 contains a 

GST-N metaxin-like domain and a GST-C metaxin domain.  
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3) Deletion of hrg-2 in C. elegans resulted in reduced worm growth at low 

concentrations of heme, indicating the requirement of HRG-2 under these conditions.  

4) In C. elegans, hrg-2 is expressed in the hypodermal tissues, and the protein localizes 

to fibrous organelles, the apical plasma membrane, as well as the ER. Possible 

interactions and heme transfer may exist between HRG-2 and the heme-containing 

enzymes cytochrome P450s because they have identical topology on the ER. HRG-2 

has similarities to Grx3/4 proteins which contain an N-terminal thioredoxin domain 

and a C-terminal glutaredoxin domain. The thioredoxin domain is essential for 

hydrophobic interactions with other proteins while the glutaredoxin domain binds and 

possibly delivers the Fe-S clusters (278,279).  

5) HRG-2 binds heme and may be involved in heme delivery or trafficking.  

6) Ectopic expression of HRG-2 rescues the growth of heme-deficient yeast strain 

hem1Δ at low concentrations of heme, possibly through increasing the availability 

and utilization of heme. The maximum rescuing effect was observed at 0.1 µM, 

indicating that HRG-2 functions under low heme concentrations, a feature supported 

by its transcriptional upregulation under low heme in C. elegans. 

hrg-3 

1) hrg-3 is transcriptionally activated in the intestine when C. elegans is grown at low 

concentrations of heme. hrg-3 specifically responds to heme but not to iron and 

protoporphyrin IX. 

2) We have identified a 43-bp region in hrg-3 promoter that is responsive to heme 

levels. This region contains a conserved GATA element, which is the binding site for 

the intestine-specific transcription factor ELT-2. In addition, we have confirmed a 
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functional element for the stress-responsive transcription factor SKN-1 within this 43-

bp region, suggesting that HRG-3 may be involved in responses to environmental 

stresses.  

3) The unprocessed full-length HRG-3 protein contains 70 amino acids. Following its 

synthesis in the intestine, HRG-3 is secreted into the body cavity pseudocoelom 

possibly as a 45-amino acid mature peptide.  

4) Deletion of hrg-3 in C. elegans led to an increase in the intestinal heme levels as 

reported by the heme sensor strain IQ6011.   

5) Ectopic expression of HA-tagged HRG-3 in hem1Δ yeast strain dramatically reduced 

the growth of yeast cells. However, this is not due to overall heme deficiency since 

we did not observe any decreased activity of the heme-activated CYC1 promoter. 

Since HRG-3 protein accumulates in the form of unprocessed preprotein inside yeast 

cells, it is possible that HRG-3 perturbed intracellular homeostasis or 

compartmentalization of heme within yeast cells. 

Heme oxygen microarray 

1) We identified 369 and 94 genes that are significantly regulated by heme and oxygen, 

respectively. Among them, 18 genes were responsive to both heme and oxygen. 

2) Only 4 genes were differentially expressed in response to 4% O2, confirming that C. 

elegans can tolerate moderate hypoxia.  

3) Hyperoxia induces the expression of 69 genes, which include 8 GSTs, 3 UGTs, and 2 

CYP450s. These genes may play a role in the resistance to hyperoxia. 

4) Results from the microarray indicate that heme uptake systems are upregulated when 

C. elegans is grown at low heme. More specifically, both the heme transporters and 
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the putative proteases involved in heme uptake are enriched in the genes regulated by 

1.5 µM heme.  

5) Based on the results from all 27 C. elegans genome arrays, we identified 41 and 29 

genes that showed similar expression profiles to hrg-2 and hrg-3, respectively. By 

knocking down these genes in the deletion background of hrg-2 or hrg-3, we may be 

able to see more dramatic phenotypes that are dependent on heme concentrations. 

Significance and speculations 

The free-living roundworm C. elegans and related helminths are unable to 

synthesize heme de novo, although they require this tetrapyrrole for diverse biological 

functions and growth (160). Accordingly, worms must have developed efficient pathways 

for the uptake and intercellular transport of heme, in order to meet their nutritional 

requirement. Our lab has previously discovered two heme transporters, HRG-1 and HRG-

4, which play an essential role for heme uptake in the worm intestine (68). In this 

dissertation, we identified two novel heme-responsive genes that are highly induced by 

heme deficiency in C. elegans. Our results support a model in which hrg-2 is involved in 

the heme uptake in hypodermal cells, and hrg-3 plays a role in intercellular heme 

trafficking. Due to the lack of genomic sequence information from parasitic nematodes, it 

is unclear whether homologs of hrg-2 and hrg-3 exist in helminths which are heme 

auxotrophs. The discovery of hrg-2 and hrg-3 has provided new insights into the heme 

trafficking pathways in worms. If these pathways are specific to nematodes, they could 

eventually be used as potential drug targets for helminthic infections. In addition, the 

findings in this work may help in defining a paradigm for heme homeostasis in other 

eukaryotes including mammals. 
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Heme regulates the expression of many genes that are involved in diverse biological 

processes. Bach1, Rev-erbα, and Hap1 are three heme-regulated transcription factors that 

have been well characterized. In this study, we identified a 43-bp heme-responsive 

sequence. This region contains the functional binding sites for ELT-2 and SKN-1. These 

two transcription factors may work in conjunction with other molecules and specifically 

regulate a subset of genes in a heme-dependent manner.  

To our knowledge, hrg-3 is the first heme-responsive gene that encodes a secreted 

protein. Beyond the possible role in intercellular heme trafficking, HRG-3 may be 

involved in heme-regulated signaling. It could work in a similar way to or in concert with 

the major yolk protein vitellogenins and thus deliver heme to oocytes and developing 

embryos. Alternatively, HRG-3 may resemble hepcidin, which is secreted into circulatory 

system to negatively regulate iron export.  

Finally, we have identified 446 genes that are differentially regulated by heme 

and/or oxygen. In addition to the list of genes with similar expression profiles to hrg-2 

and hrg-3, we also found several interesting cellular processes that are associated with 

heme regulated genes. Further study on the functions associated with heme-responsive 

genes may lead to deeper insights into the understanding of heme uptake and transport. 

The molecules upregulated by 100% O2 may have significance in the resistance to 

hyperoxia. The 18 genes regulated by both heme and O2, as well as the sub-interactome 

map, will provide a large-scale basis for dissecting the regulatory network between heme 

and O2.  
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Future directions 

Ectopic expression of HRG-2 in the worm intestine 

The functional characterization of HRG-2 in C. elegans was limited because there is 

no direct method to measure the heme content in hypodermal cells. In contrast, our lab 

has established tools to report the intestinal heme levels, such as IQ6011 heme sensor 

strain and the fluorescent heme analog ZnMP.   

We have engineered HRG-2-mCherry to be expressed in the intestine by using the 

intestine-specific vha-6 promoter. In the IQ8322 transgenic worm strain, HRG-2-

mCherry is predominantly localizes to the apical plasma membrane. It will be very 

interesting to see whether the intestinal heme levels are changed because of HRG-2 

expression. Based on the current results of HRG-2, we expect that the IQ8322 worms will 

have an increased ZnMP uptake and a higher sensitivity to gallium protoporphyrin IX 

(GaPP) toxicity. After crossing into the heme sensor strain, we would expect to see a 

decreased GFP intensity. These phenotypes may only be observed when the transgenic 

worms are grown at low heme. However, there are three caveats for this experiment. 

First, HRG-2-mCherry protein may not be functional due to the interference of the 

mCherry tag at the C-terminus. Second, heme uptake system in intestinal cells may be 

different to that in the hypodermal cells. Thus, the function of HRG-2 may require certain 

auxiliary molecules or interacting proteins that only present in the hypodermal tissues. 

Third, if HRG-2 is a reductase, ZnMP and GaPP assays will not provide meaningful 

results because neither heme analogs need to be reduced.  



 

 174 
 

Examination of the possible hemin reductase activity for HRG-2 

In the cells, hemin (heme containing an oxidized iron) has to be reduced for its 

covalent attachment to such hemoproteins as cytochrome c (208,209). HRG-2 may 

function as a membrane-associated heme reductase thereby increasing the efficiency of 

cellular heme utilization. An obstacle to directly testing this possibility has been the lack 

of success in expressing and purifying HRG-2 for biochemical assays. To circumvent this 

problem, we could express HRG-2 in either yeast or mammalian cells and determine the 

activity of hemin reductase in crude cell lysates.  

Identification of the possible target tissues for HRG-3  

When expressed under the intestine-specific promoters, both HRG-3-YFP and 

HRG-3-mCherry localized to coelomocytes in addition to the intestinal cells. These 

results suggest that HRG-3 is secreted from the intestinal cells into the pseudocoelom. 

However, the uptake of HRG-3 proteins by coelomocytes may be an artifact due to the 

presence of an YFP tag. Identification of HRG-3 target tissues will help in unveiling the 

biological functions of HRG-3 because we expect the phenotypes to be predominantly 

associated with the target cells in addition to the cells that synthesize HRG-3. 

Endogenous HRG-3 could either be located within the pseudocoelom, coelomocytes, or 

other target tissues. Following its secretion from the intestine, the majority of HRG-3 

may stay and function in the pseudocoelom. The fact that we have not yet observed any 

HRG-3 chimera proteins in pseudocoelom may be due to the quick clearance by 

coelomocytes. Second, we observed much higher signal of HRG-3-mCherry in 

coelomocytes than that in intestine cells, supporting the concept that HRG-3 is destined 

to reside in coelomocytes. Third, HRG-3 is taken up by other tissues such as oocytes and 
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developing embryos from the pseudocoelom and functions in a similar manner to 

vitellogenins. We have shown that young adult hermaphrodites have the highest mRNA 

level of hrg-3 and the male worms have reduced hrg-3 expression. We plan to knock 

down the genes responsible for the endocytosis in coelomocytes in transgenic worms 

expressing HRG-3-mCherry and examine whether the HRG-3-mCherry appears in other 

tissues.  

Heme binding assays for HRG-3 

As previously mentioned, HRG-3 could act as a heme carrier or a signaling 

molecule. One of the key experiments to differentiate between these two possibilities is to 

test whether the mature HRG-3 protein interacts with heme. By prediction, the majority 

of the 45-amino acid HRG-3 peptide is present as random coils. If HRG-3 is a heme 

carrier, we expect to see a more ordered structure in the presence of its cognate ligand. To 

examine this possibility, we synthesized a 45-amino acid HRG-3 peptide and plan to 

determine its secondary structures in the absence or presence of heme using NMR. We 

will corroborate this result with gel-filtration and reverse phase chromatography.  

Detailed understanding of the role SKN-1 plays in hrg-3 regulation 

We have shown that the activation of hrg-3 requires the transcription factor SKN-1, 

which is known to induce the expression of phase II detoxification genes (248). Thus, it 

is possible that heme deficiency results in cellular stress, which in turn induces hrg-3 

expression through SKN-1. 

Studies have shown that in response to oxidative stress, SKN-1 protein accumulates 

in the intestinal nuclei to activate downstream gene expression (280). We have received 

the transgenic line expressing SKN-1-GFP from Dr. Krause’s lab, and plan to grow the 
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worm in different concentrations of heme to test whether heme deficiency changes the 

subcellular localization of SKN-1.  

To further find out whether hrg-3 is a phase II detoxification gene, we plan to 

examine the expression of hrg-3 in the presence of stress inducers. The hrg-3::gfp 

transgenic worms will be treated with paraquat, which generates intracellular superoxide 

anions, and GFP intensity and localization will be monitored. To test the effect of thermal 

stress, which is another inducer of SKN-1 activity (248), we plan to grow these 

transgenic worms at 29 °C for 20 h and analyze the reporter activity.  

Knock-down of other genes in hrg-2 and hrg-3 deletion strains 

Both hrg-2 and hrg-3 deletion worms are viable, and they do not have apparent 

morphological phenotypes. This suggests that there may exist redundant molecules or 

parallel pathways. Our microarray results reveal 41 and 29 genes which show similar 

expression profiles to hrg-2 and hrg-3, respectively. It’s highly possible that some of 

these genes are coordinately regulated with hrg-2 or hrg-3 because they may function 

together. By depleting these genes in hrg-2/hrg-3 deletion worms, we may be able to 

observe synthetic phenotypes that are dependent on heme concentrations. Furthermore, 

RNAi of cdrs in hrg-2 deletion background may also lead to a dramatic phenotype. 
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Appendices 

Appendix I. Deletion worm strains and genotyping primers 

Strain Allele Deleted 
region 

Sense primer Anti-sense primer 

hrg-2 tm3798 -46 to +456 TTTATGCTCTTCCTGCGAG TATACCATGCATCCTCTGC 

cdr-4 ok863 -432 to +827 CTCAACTACACACGTTCTC ╪GAGATTAGATGGAACAAACC 

hrg-3 tm2468 -77 to +141 ACCCGTATCTTCATTCTCC GGATGAGAAATTTAACATTAT
CACTTACATC 

╪: PCR reactions for cdr-4 genotyping include two primers shown above and a third primer. The 
sequence of this anti-sense primer is “TCCTTATGAGGTTTGAGATC”.  
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Appendix II. Worm reporter constructs 

Gene Strain Vector Promoter Gene 3’ UTR 
hrg-2 IQ8021 pPD95.67 hrg-2, 1.5kb NLS-GFP unc-54 

 IQ8022 pPD95.67 hrg-2, 1.5 kb NLS-GFP hrg-2  

 IQ8023 pPD95.67 hrg-2, 0.5 kb NLS-GFP unc-54 

 IQ8024 pPD95.67 hrg-2, 3 kb NLS-GFP unc-54 

 IQ8025 pPD95.67 hrg-2, 6 kb NLS-GFP unc-54 

 IQ8122 pDEST-R4R3 hrg-2, 1.5 kb hrg-2::YFP hrg-2 

 IQ8123 
(double) 

pDEST-R4R3 hrg-2, 1.5 kb hrg-2::YFP hrg-2 

 pDEST-R4R3 dpy-7 mCherry::TRAM unc-54 

 IQ8321 pPD49.78 hsp-16 hrg-2::YFP hrg-2 

 IQ8322 pDEST-R4R3 vha-6 hrg-2::mCherry hrg-2 

      

hrg-3 IQ8031 pPD95.67 hrg-3, 3 kb NLS-GFP unc-54 

 IQ8032/ Δ1 pPD95.67 hrg-3, (-732 to +7) NLS-GFP unc-54 

 IQ8035/ Δ2 pPD95.67 hrg-3, (-295 to +7) NLS-GFP unc-54 

 IQ8036/ Δ3 pPD95.67 hrg-3, (-194 to +7) NLS-GFP unc-54 

 IQ8037/ Δ4 pPD95.67 hrg-3, (-132 to +7) NLS-GFP unc-54 

 IQ8038/ Δ6 pPD95.67 hrg-3, (-92 to +7) NLS-GFP unc-54 

 IQ8039/ Δ5 pPD95.67 hrg-3, (-112 to +7) NLS-GFP unc-54 

 IQ8532/ Δ7 pPD95.67 hrg-3, (-112 to -68; -
49 to +7) 

NLS-GFP unc-54 

 IQ8133 pDEST-R4R3 hrg-3, 3 kb hrg-3::YFP hrg-3 

 IQ8333 pDEST-R4R3 vha-6 hrg-3::mCherry hrg-3 

 IQ8531/mut1 pPD95.67 hrg-3, mut1╪ NLS-GFP unc-54 

 IQ8631 pPD95.67 Cbrhrg-3, (-300 to 0) NLS-GFP unc-54 

 IQ8731 pKKMCS hrg-3, (-132 to +7) NLS-GFP unc-54 

 IQ8732/con1 pKKMCS hrg-3, 43bp, 4mer╫ NLS-GFP unc-54 

 RT1315#  vha-6 MANS-GFP  
╪: This construct has the 139 bp hrg-3 promoter region (-132 to +7 bp) in which the putative 
SKN-1 binding motif (-92 to -84 bp) was mutated. ╫: This construct contains four repeats of the 
conserved region (-112 to -69 bp) from hrg-3 promoter. #: This strain was a gift from Dr. Barth 
Grant. UTR: untranslated region. NLS: nuclear localization signal. TRAM: translocating chain 
associated membrane protein. 
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Appendix III. Primers for Northern blot, qRT-PCR, and RACE 

Gene Experiment Sense primer Anti-sense primer 

hrg-2 qRT-PCR GCCTGGCTGATAATCATCTCTTG ATGGACCTTCTTCATAAATAACT
TTCG 

 Northern GCTGAAATGTTATGTCACAAAG   TTATTGCCACAGAGATACAGG 
 RACE GCCACTGCACTTTGTCGCCTGGC GCTTCATCTTCTGTGAAGTTTCCG

ATGGC 
cdr-1 qRT-PCR CGTACTTATACGATTTAAAATTG

CTGTC 
TCTGTGAAGAATCTCGTCGAGC 

cdr-2 qRT-PCR AAGGACACCGTCTACCTATACC GGAATTGAACCGTTTCTTGACC 
cdr-4 qRT-PCR CGGAGATTTTGAACCACAAGAA

C 
CGGTCAGATGAGAACGAATAGG 

cdr-7 qRT-PCR GCTTCTGCTGCTGCTATTTATG GAGACGGCGGAATTGATAGAG 
    
hrg-3 qRT-PCR TCTTGTAGTCTTTTAATCATACT

TCTTTTC 
ACCTTCTTCTGAATCAGTTTGC 

 Northern ATGGTCAATTTCACAAGGTC TTATCCACCAAAAAACGAGTCAC
TC 

 RACE CCAATGTGGAACTTCGGCCGGT
TATG 

TCCACCAAAAAACGAGTCACTCG
CAGTG 
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Appendix IV. qRT-PCR primers for microarray experiment 

Gene Sense primer Anti-sense primer 
K10B3.8 TGCTCACGAGGGAGACTAC CGGTGGACTCAACGACATAG 

W03G1.7 CACTTCACTTGACCGACCTTC CGCACGAACCAACACTTCC 

F09G2.3 ATTGCTCCGCTTGTTGCTC CCTGATGCTGGATTGACTTCG 

C15C8.3 
TCTCTCCGCTGAAGATGAATC TTAGACAATTAGGACCAGGAACT

C 

F15B9.6 AATCATCTTAGCGAAGCCGAAG CTTGTTCCAGTTGTTGAGAATGC 

C10G8.4 GCCGATTTCAACAGTCCTATTTC GGTTCACAAGCCGTTCCAC 

ZK813.1 CATCGTCCTCCTCGCTCTC ACTATGTCTTCTTCCATGTCTTCC 

F55G11.4 TCTCCAGACGCATTCACTCTC GCCACTGCTGACCACAAAC 

Y62H9A.6 TCTGTCACTTGCTCTTGTATGC CTCTCTTTCTTCACTGCTGTCG 

K01D12.14 GCCTGGCTGATAATCATCTCTTG ATGGACCTTCTTCATAAATAACTT
TCG 

F58E6.7 
TCTTGTAGTCTTTTAATCATACTTCTTTT
C 

ACCTTCTTCTGAATCAGTTTGC 

C10C5.5 TTAAATATGCTGACGAACTTGGAATC GCTCACGGAATGTTGGAACTAC 

K08F4.7 TTGATGCTCGTGCTCTTGC AATGGAGTCGTTGGCTTCAG 

C34H4.1 ACTCTGGTCTTGTTGAATGTTCG CTGCCTGCTGGTCTCCTG 

W06H8.2 AATGGGGAAATGGACAGTTTGG GAGAGCACCGTCTTGTTTGG 

F22A3.6 TGCCTGGAAGAGATGTGCTG TGGTCCTCCGTTGTGGTTAC 

F22B5.4 CGGTCACGCTTATGAAGTATATCC GTCACGAAGTCTCTCCCAGTC 

T24B8.5 TATCTCATCGGATTTGTGATTGTG GGAGTATCGGTAACGCAGAC 

F08F8.5 AACTGGAGGATTCGGAAGACC AAATCTGCGTTCAAATGGATGTTG 

F59D8.2 ATTCCACCGCTCTTACCTTCTC TCATCGTAGTTGCTCTCGTAGTC 

F15E11.15 CGAGACGGAAGGAACTATTGC CTTGGCGAAATGAACTGAACC 
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Appendix V. Localization of putative human FAX in HEK293 cells.  

(A) Putative hFAX did not co-localize with the ER marker CD3δ-YFP. (B) Putative hFAX shows 

the same localization pattern as the mitochondrial markers mito-YFP. Putative human FAX: 

C6orf168 (gene) or NP_115900.1 (protein). Blue color in the merged image on the bottom shows 

the plasma membrane of the cells. 
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Appendix VI. Detection of hrg-3 expression in male worms. 

The IQ8031 worms (rollers) carrying hrg-3 transcriptional fusion constructs were crossed with 

N2 males. Progeny male worms with the roller phenotype were moved to mCeHR-2 medium 

supplemented with 2 µM heme; GFP expression was analyzed 3 d after growth.   

 



GFP                                          merge with DIC
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Appendix VII. Effects of heme on the metabolic rates of C. elegans. 

Worms grown at five concentrations of heme were moved to 21% O2 for 2 h, and then exposed to 

graded hypoxia for 5 h followed by recovery at 21% O2 for 15 h. The metabolic rate was 

monitored by measuring CO2 production. This experiment was performed by Dr. Wayne Van 

Voorhies at New Mexico State University. N: normoxia. H: hypoxia. 



N H          N
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Appendix VIII. The expression profiles of hrgs and orgs 

 
heme (µM) Oxygen (%) 

1.5 vs 20 500 vs 20 4 vs 21 100 vs 21
WormBase 
gene ID Gene name 

Fold 
change 

q 
value 

Fold 
change 

q 
value 

Fold 
change 

q 
value 

Fold 
changes 

q 
value 

AC3.8  ugt-2 1.77 0.01 -1.15 0.01 1.18 0.01 2.23 0.01 
B0024.4 1.24 0.03 2.25 0.03 1.28 0.64 1.06 0.64 
B0218.8 clec-52 -8.64 0.00 2.00 0.00 -1.02 0.74 1.04 0.74 
B0286.3 -1.45 0.00 -2.08 0.00 1.06 0.64 1.14 0.64 
B0286.6 try-9 -1.50 0.00 -2.35 0.00 -1.13 0.64 -1.07 0.64 
B0365.5 clec-225 -1.66 0.05 -2.15 0.05 -1.05 0.65 1.22 0.65 
B0365.6 clec-41 1.05 0.00 2.33 0.00 1.23 0.44 1.55 0.44 
C01F1.3 phi-41 -1.77 0.04 -2.70 0.04 1.09 0.71 1.19 0.71 
C01G6.3 3.02 0.04 6.17 0.04 -1.45 0.55 -2.69 0.55 
C01G6.7  acs-7 -2.49 0.02 -1.80 0.02 1.27 0.58 -1.12 0.58 
C01G8.1 2.17 0.04 4.04 0.04 -1.32 0.57 -1.90 0.57 
C02F12.4 tag-52 2.01 0.00 1.05 0.00 -1.02 0.57 1.17 0.57 
C03C10.3 rnr-2  2.05 0.01 2.01 0.01 -1.11 0.71 -1.09 0.71 
C03D6.6 1.81 0.05 3.69 0.05 -1.46 0.63 -1.58 0.63 
C03H5.1 clec-10 -1.07 0.01 2.16 0.01 1.31 0.35 -1.27 0.35 
C04B4.2 2.21 0.05 3.31 0.05 -1.30 0.53 -2.06 0.53 
C04F6.1 vit-5 3.34 0.04 14.54 0.04 -1.68 0.70 -1.48 0.70 
C04H5.7 3.12 0.03 7.71 0.03 -1.60 0.67 -1.04 0.67 
C05A9.1  pgp-5 -2.13 0.01 -1.48 0.01 1.36 0.07 1.94 0.07 
C05C10.4  pho-11 -1.22 0.00 -3.02 0.00 -1.00 0.71 1.09 0.71 
C05C10.5 2.18 0.05 4.30 0.05 -1.31 0.59 -1.96 0.59 
C05E11.4 amt-1  -1.01 0.00 -2.68 0.00 -1.39 0.00 1.91 0.00 
C05E4.1 srp-2 1.38 0.02 2.18 0.02 1.39 0.19 -1.34 0.19 
C05E4.9 gei-7 -1.19 0.01 -2.15 0.01 -1.14 0.58 1.15 0.58 
C06A12.5 lact-6 -1.24 0.01 -2.02 0.01 -1.04 0.53 1.28 0.53 
C06B3.7 -2.18 0.02 -2.15 0.02 -1.00 0.29 1.71 0.29 
C06C3.4 -1.54 0.04 -2.02 0.04 1.06 0.70 1.15 0.70 
C07A9.4 ncx-6 2.75 0.00 -1.06 0.00 1.07 0.68 1.15 0.68 
C07A9.8  -1.25 0.03 -2.49 0.03 1.17 0.26 1.99 0.26 
C07G1.7 3.00 0.00 1.29 0.00 1.01 0.00 3.47 0.00 
C08A9.7 sdz-2 -1.26 0.01 -2.88 0.01 1.15 0.71 1.13 0.71 
C08B6.1 ugt-17 6.23 0.00 -1.35 0.00 -1.01 0.51 1.21 0.51 
C08E3.1 -2.05 0.05 -1.11 0.05 1.18 0.70 1.11 0.70 
C08E3.6 fbxa-163 -1.05 0.00 3.33 0.00 1.18 0.56 1.46 0.56 
C08E8.4 1.07 0.26 1.21 0.26 1.20 0.01 2.53 0.01 
C09B8.4 -1.21 0.02 -1.91 0.02 -1.11 0.00 2.97 0.00 
C09G5.5  col-80 1.46 0.05 2.08 0.05 -1.02 0.68 1.17 0.68 
C10C5.5  1.08 0.26 -1.13 0.26 2.48 0.00 -2.18 0.00 
C10G8.4 4.44 0.03 13.20 0.03 -1.56 0.70 1.02 0.70 
C10H11.6 ugt-26 -2.21 0.00 -2.76 0.00 1.24 0.55 1.39 0.55 
C12D5.9 1.09 0.30 -1.07 0.30 -1.14 0.03 -2.58 0.03 
C14A6.1 clec-48  -1.76 0.00 -2.58 0.00 -1.13 0.69 -1.04 0.69 
C14C6.5 -1.14 0.00 2.79 0.00 -1.03 0.07 1.66 0.07 
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C14F5.1 dct-1 2.53 0.00 -1.08 0.00 1.11 0.67 -1.09 0.67 
C15A11.4  -1.26 0.17 -1.21 0.17 -1.06 0.00 2.54 0.00 
C15C8.3 6.30 0.00 -3.77 0.00 1.04 0.59 1.33 0.59 
C16C4.4 math-14  4.62 0.00 1.04 0.00 1.20 0.59 1.16 0.59 
C16D9.2 rol-3 -1.75 0.03 -2.73 0.03 1.21 0.69 1.20 0.69 
C17C3.12 acdh-2 -1.22 0.01 -1.63 0.01 -1.06 0.00 3.55 0.00 
C17C3.18 ins-13 -1.22 0.27 -1.63 0.27 -1.06 0.00 3.55 0.00 
C17F4.7 1.05 0.03 3.36 0.03 -1.67 0.39 -2.52 0.39 
C17H1.7 1.56 0.00 3.03 0.00 1.22 0.53 1.49 0.53 
C17H12.6 -1.32 0.00 2.23 0.00 1.01 0.71 1.08 0.71 
C18H9.6 -2.19 0.00 1.13 0.00 -1.17 0.03 1.80 0.03 
C24G7.2 -1.21 0.01 -3.36 0.01 1.02 0.62 1.37 0.62 
C25A1.8 clec-87 2.26 0.05 4.60 0.05 -1.43 0.60 -1.90 0.60 
C25A8.4 3.03 0.04 8.18 0.04 -1.40 0.71 -1.32 0.71 
C26C6.6  1.21 0.03 2.05 0.03 -1.09 0.73 -1.00 0.73 
C27A7.6 1.76 0.05 2.94 0.05 -1.23 0.67 -1.36 0.67 
C27D9.1 1.95 0.05 2.88 0.05 -1.12 0.58 -1.62 0.58 
C28D4.3 gln-6 1.90 0.05 3.53 0.05 -1.25 0.63 -1.52 0.63 
C29E4.7 gsto-1 9.81 0.00 -2.93 0.00 1.11 0.66 1.22 0.66 
C29E6.1 let-653 -1.43 0.05 -2.54 0.05 1.07 0.72 1.17 0.72 
C29F3.7 1.12 0.00 2.30 0.00 1.21 0.27 1.54 0.27 
C30F12.4 1.58 0.05 2.44 0.05 -1.21 0.55 -1.64 0.55 
C31A11.5 oac-6 -1.73 0.00 1.99 0.00 1.11 0.03 2.36 0.03 
C31C9.1 tag-10 5.05 0.00 -1.61 0.00 1.08 0.71 0.01 0.71 
C31C9.2  -1.73 0.00 -2.04 0.00 1.01 0.75 1.01 0.75 
C31H5.3 acr-19 2.58 0.00 -1.32 0.00 1.18 0.39 1.69 0.39 
C32E8.4  1.37 0.04 2.61 0.04 -1.22 0.69 1.00 0.69 
C32H11.10 dod-21 -1.07 0.00 2.71 0.00 -1.33 0.58 -1.24 0.58 
C32H11.12 dod-24 -2.69 0.00 3.07 0.00 1.77 0.51 1.35 0.51 
C32H11.4 -2.82 0.00 1.89 0.00 1.42 0.58 1.41 0.58 
C33A12.6  ugt-21 2.55 0.00 -1.38 0.00 1.19 0.32 1.57 0.32 
C34H4.1 -2.13 0.00 1.56 0.00 1.18 0.00 3.21 0.00 
C34H4.2 1.60 0.01 2.11 0.01 1.28 0.03 1.94 0.03 
C35A5.3  -1.11 0.05 -1.55 0.05 1.17 0.01 2.07 0.01 
C36B1.11 1.61 0.05 2.17 0.05 -1.16 0.59 -1.44 0.59 
C37C3.9 1.69 0.05 2.62 0.05 -1.19 0.57 -1.61 0.57 
C38D4.6 pal-1 1.67 0.05 2.33 0.05 -1.11 0.62 -1.39 0.62 
C43C3.1 ifp-1  -1.51 0.04 -2.17 0.04 1.19 0.67 -1.03 0.67 
C44B7.5 3.08 0.05 9.84 0.05 -1.74 0.67 1.09 0.67 
C44H9.1  ugt-15 -1.57 0.01 -2.25 0.01 1.18 0.64 1.20 0.64 
C45B2.1 3.39 0.03 10.20 0.03 -1.41 0.60 1.69 0.60 
C45E5.1 -1.49 0.02 -2.16 0.02 1.08 0.56 1.35 0.56 
C45G7.2 ilys-2 2.30 0.01 -1.09 0.01 -1.05 0.27 1.70 0.27 
C45G7.5 cdh-10 -1.76 0.04 -2.91 0.04 1.27 0.67 1.30 0.67 
C46A5.1 2.04 0.04 2.39 0.04 -1.00 0.68 1.24 0.68 
C46C2.5 2.08 0.04 4.17 0.04 -1.43 0.68 -1.34 0.68 
C47A10.5  2.79 0.00 -1.35 0.00 1.42 0.03 -1.37 0.03 
C49G7.7 -1.47 0.04 1.23 0.04 1.02 0.00 2.37 0.00 
C50A2.3 3.06 0.00 -1.24 0.00 1.29 0.26 1.55 0.26 
C50E3.11  2.01 0.05 2.96 0.05 -1.21 0.54 -1.86 0.54 
C50H11.15 cyp-33C9  2.11 0.00 -1.20 0.00 1.04 0.00 1.90 0.00 
C53B4.5 col-119 3.16 0.03 8.84 0.03 -1.30 0.73 -1.06 0.73 
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C54D1.2 clec-86  -1.80 0.00 1.80 0.00 -1.29 0.04 -2.14 0.04 
C54D10.1 cdr-2 1.39 0.12 1.21 0.12 -1.12 0.00 2.91 0.00 
C55A6.5 sdz-8  -1.05 0.13 -1.40 0.13 -1.00 0.01 2.29 0.01 
C55B7.4 acdh-1 1.12 0.05 -3.51 0.05 1.31 0.00 17.74 0.00 
C55F2.1 -1.54 0.00 -2.32 0.00 -1.03 0.51 1.21 0.51 
C55F2.2 ilys-4 -1.59 0.00 -2.37 0.00 -1.03 0.52 1.20 0.52 
D1054.11 3.75 0.05 11.64 0.05 -1.63 0.68 1.21 0.68 
D1086.3 -2.04 0.02 -2.20 0.02 -1.34 0.55 -1.43 0.55 
D2089.2 1.39 0.05 2.87 0.05 1.01 0.75 1.03 0.75 
E03H4.10 clec-17 1.76 0.08 1.71 0.08 1.11 0.04 2.84 0.04 
EEED8.3 2.80 0.04 6.51 0.04 -1.45 0.56 -2.60 0.56 
F01D4.1 ugt-43 -2.28 0.00 1.45 0.00 1.13 0.22 1.49 0.22 
F01D4.2  ugt-44 -2.68 0.00 1.49 0.00 1.45 0.37 1.20 0.37 
F01D5.1 -1.43 0.00 2.97 0.00 1.22 0.41 1.66 0.41 
F01D5.2 -1.71 0.00 2.97 0.00 1.27 0.52 1.51 0.52 
F01D5.3 -1.40 0.00 3.74 0.00 -1.08 0.51 1.42 0.51 
F01G10.3 ech-9  -1.50 0.00 3.60 0.00 1.76 0.00 -2.29 0.00 
F02E8.4 2.54 0.05 4.47 0.05 -1.38 0.55 -2.26 0.55 
F02H6.5 sqrd-1 -1.19 0.00 -3.09 0.00 -1.34 0.45 1.10 0.45 
F07B7.2  1.01 0.19 -1.14 0.19 1.09 0.00 2.18 0.00 
F07B7.8 -1.32 0.13 -1.65 0.13 3.03 0.01 -1.19 0.01 
F07C4.2 clec-45 10.81 0.00 1.64 0.00 -1.01 0.55 1.67 0.55 
F07C4.9 clec-46 11.37 0.00 1.68 0.00 -1.01 0.53 1.73 0.53 
F08A8.2  -2.21 0.03 -2.22 0.03 -1.06 0.55 -1.50 0.55 
F08A8.3 -1.39 0.00 -2.02 0.00 1.01 0.74 -1.03 0.74 
F08F8.5 numr-1 -1.30 0.00 10.52 0.00 1.10 0.59 1.71 0.59 
F08G5.6 -2.62 0.00 2.80 0.00 -1.50 0.48 1.20 0.48 
F08H9.5  clec-227 -2.03 0.00 -2.58 0.00 -1.03 0.32 -1.53 0.32 
F08H9.6 clec-57 -2.05 0.04 -1.61 0.04 1.56 0.03 -1.69 0.03 
F09B9.1 oac-14 1.25 0.27 1.14 0.27 1.29 0.01 3.36 0.01 
F09C8.1 -1.14 0.00 2.33 0.00 -1.41 0.43 -1.52 0.43 
F09E10.3 dhs-25  -1.30 0.00 -2.05 0.00 1.02 0.74 -1.01 0.74 
F09F3.9 cpt-5   -2.48 0.00 -2.39 0.00 1.24 0.51 -1.21 0.51 
F09G2.3 -1.85 0.00 -2.20 0.00 1.17 0.61 1.19 0.61 
F10A3.1 -1.06 0.00 3.25 0.00 1.12 0.56 1.43 0.56 
F10A3.2 fbxa-88 -1.21 0.00 2.38 0.00 1.25 0.21 1.54 0.21 
F10C2.7 -3.53 0.00 -1.97 0.00 -1.36 0.40 1.34 0.40 
F10F2.2  -1.45 0.00 -2.26 0.00 1.13 0.35 1.35 0.35 
F11A6.2 scrm-4 -1.50 0.03 1.05 0.03 1.05 0.00 2.63 0.00 
F11H8.3 col-8 2.41 0.05 6.98 0.05 -1.25 0.73 1.01 0.73 
F12E12.11 -1.05 0.15 -1.17 0.15 -1.11 0.00 2.09 0.00 
F13G3.3 -1.48 0.04 -2.06 0.04 1.14 0.71 1.13 0.71 
F14B8.3 pes-23 1.96 0.03 3.07 0.03 1.03 0.74 1.10 0.74 
F14F4.3 mrp-5 2.93 0.00 -1.37 0.00 1.06 0.09 1.31 0.09 
F14H3.6 3.51 0.03 10.32 0.03 -1.49 0.59 -2.50 0.59 
F15B9.1 far-3  -1.81 0.05 -2.18 0.05 1.14 0.02 2.96 0.02 
F15B9.6  2.42 0.01 1.85 0.01 1.32 0.01 2.82 0.01 
F15E11.1 -2.48 0.00 -1.03 0.00 1.01 0.02 -2.02 0.02 
F15E11.12 -10.48 0.00 -2.60 0.00 -1.30 0.17 -4.34 0.17 
F15E11.15 -10.17 0.00 -2.34 0.00 -1.29 0.04 -4.69 0.04 
F17B5.1 1.02 0.03 -2.13 0.03 1.18 0.60 1.40 0.60 
F17E9.4 3.01 0.05 9.30 0.05 -1.59 0.65 1.34 0.65 
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F18A1.7 1.94 0.05 3.45 0.05 -0.54 0.60 -1.72 0.60 
F18A12.4  2.84 0.01 1.75 0.01 1.01 0.68 1.20 0.68 
F20G2.1  1.39 0.06 1.46 0.06 1.01 0.00 2.64 0.00 
F21C10.7 -1.42 0.02 -2.15 0.02 1.06 0.70 -1.07 0.70 
F21D5.3  -1.47 0.09 1.03 0.09 2.07 0.03 -1.07 0.03 
F21F8.4 -1.47 0.01 2.36 0.01 -1.07 0.00 -3.64 0.00 
F21H7.1 gst-22 1.05 0.00 2.42 0.00 1.16 0.41 1.39 0.41 
F22A3.6 ilys-5 -1.44 0.21 -1.09 0.21 -1.22 0.00 -8.13 0.00 
F22B5.4 -1.82 0.12 -1.73 0.12 2.76 0.00 -3.44 0.00 
F22B7.4  fip-1 -1.13 0.04 -2.29 0.04 1.09 0.73 1.03 0.73 
F22B7.6 polk-1 1.71 0.03 2.03 0.03 -1.13 0.58 -1.36 0.58 
F25A2.1 -1.21 0.00 2.12 0.00 -0.04 0.23 1.59 0.23 
F26C11.1  -1.21 0.00 -2.56 0.00 1.31 0.59 1.12 0.59 
F26D10.10 gln-5  2.16 0.04 4.51 0.04 -1.36 0.54 -2.30 0.54 
F27C8.4 spp-18 -1.75 0.00 3.01 0.00 -1.55 0.12 -1.84 0.12 
F27D9.6 dhs-29 -1.40 0.03 -2.15 0.03 1.09 0.72 1.12 0.72 
F27E5.1 1.38 0.00 2.16 0.00 -1.00 0.52 -1.14 0.52 
F28D1.5 thn-2 1.37 0.01 -2.29 0.01 -1.19 0.49 -1.66 0.49 
F28F8.2 acs-2  -1.38 0.03 -2.65 0.03 -1.25 0.55 1.30 0.55 
F28G4.1 cyp-37B1  -2.52 0.00 1.41 0.00 -1.97 0.27 -1.21 0.27 
F28H7.3 -1.02 0.05 1.64 0.05 -1.32 0.01 -2.50 0.01 
F29D11.1 lrp-1 -1.41 0.04 -2.04 0.04 1.13 0.65 1.25 0.65 
F32A5.5 aqp-1 -2.03 0.01 -1.74 0.01 -1.01 0.60 -1.21 0.60 
F32H5.1  2.80 0.00 -1.19 0.00 1.03 0.72 -1.05 0.72 
F35C5.7 clec-64  1.02 0.29 1.14 0.29 1.12 0.02 2.27 0.02 
F35C5.8 clec-65  -1.35 0.00 1.56 0.00 1.07 0.00 2.15 0.00 
F35C5.9 clec-66 -1.16 0.02 1.95 0.02 1.16 0.00 3.94 0.00 
F35E12.8 -1.62 0.00 2.59 0.00 1.03 0.01 2.38 0.01 
F35E8.1 -2.63 0.01 -1.57 0.01 -1.48 0.15 1.41 0.15 
F35E8.8 gst-38 -1.84 0.00 1.73 0.00 -1.14 0.01 2.31 0.01 
F35G2.4 phy-2   -1.50 0.10 -1.86 0.10 1.62 0.03 -2.15 0.03 
F35H8.4 1.22 0.04 2.38 0.04 -1.08 0.74 -1.01 0.74 
F36A2.3 2.15 0.00 -1.30 0.00 -1.05 0.10 1.35 0.10 
F36D3.9 cpr-2  -4.33 0.02 1.01 0.02 1.07 0.14 3.54 0.14 
F36H1.5 hrg-4 8.83 0.00 -2.91 0.00 1.14 0.66 1.19 0.66 
F37B1.2 gst-12  1.28 0.10 1.14 0.10 -1.20 0.00 3.29 0.00 
F37B1.3 gst-14  1.14 0.26 1.11 0.26 1.01 0.00 5.35 0.00 
F37B1.5 gst-16  1.18 0.00 1.99 0.00 -1.17 0.00 2.10 0.00 
F37B1.6 gst-17  3.22 0.00 -1.08 0.00 -1.05 0.58 1.22 0.58 
F37B1.8 gst-19  1.09 0.00 -3.13 0.00 -1.17 0.52 -1.46 0.52 
F37B4.7  folt-2 1.15 0.22 -1.08 0.22 -1.07 0.02 2.04 0.02 
F38B6.4 -1.34 0.00 -2.21 0.00 1.11 0.67 1.03 0.67 
F40F4.4 lbp-3 2.54 0.00 -1.35 0.00 1.05 0.73 1.04 0.73 
F41C3.1 1.31 0.12 -1.08 0.12 1.15 0.01 2.41 0.01 
F41C3.11 -1.57 0.05 -2.09 0.05 1.20 0.67 1.24 0.67 
F41D3.3 nhr-265   -1.34 0.05 -2.61 0.05 1.12 0.73 1.13 0.73 
F42A10.7  -2.08 0.00 -1.10 0.00 -1.32 0.16 -1.48 0.16 
F42G2.2 2.52 0.00 -1.28 0.00 1.16 0.46 1.32 0.46 
F43H9.4 4.41 0.00 1.22 0.00 1.11 0.71 1.18 0.71 
F44F4.2  egg-3 1.85 0.05 3.36 0.05 -1.26 0.51 -2.11 0.51 
F44G3.10 1.04 0.00 2.67 0.00 -1.01 0.08 1.86 0.08 
F45F2.12 his-8 -1.33 0.00 -2.48 0.00 1.12 0.67 1.13 0.67 
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F45F2.2 his-39 -1.28 0.00 -2.08 0.00 1.07 0.71 1.07 0.71 
F46B6.8  -2.17 0.02 1.11 0.02 -1.73 0.30 -1.81 0.30 
F47C10.6 ugt-32  -1.01 0.00 -1.80 0.00 -1.27 0.00 2.04 0.00 
F47G4.3 gpdh-1  -1.18 0.14 -1.43 0.14 -1.04 0.00 2.59 0.00 
F48G7.8 -1.03 0.04 2.03 0.04 -1.11 0.67 1.15 0.67 
F49C12.7 -2.31 0.00 -1.20 0.00 1.13 0.00 -2.52 0.00 
F49E11.10  scl-2 -2.31 0.02 -1.25 0.02 1.40 0.57 1.17 0.57 
F49E12.1 2.65 0.05 5.97 0.05 -1.37 0.71 -1.40 0.71 
F49E12.10  -2.22 0.00 1.19 0.00 -1.16 0.17 1.49 0.17 
F49E12.2 dod-23 1.61 0.01 4.37 0.01 -1.42 0.62 -1.53 0.62 
F49E12.9 -1.81 0.00 1.57 0.00 -1.19 0.00 2.14 0.00 
F49F1.6 -1.00 0.00 2.05 0.00 1.10 0.49 1.31 0.49 
F52D1.1 -1.63 0.05 -2.10 0.05 1.16 0.66 1.27 0.66 
F52E1.1 pos-1  2.36 0.04 4.56 0.04 -1.36 0.60 -1.84 0.60 
F52E1.14 1.37 0.00 2.16 0.00 -1.16 0.66 -1.02 0.66 
F52F10.4 oac-32 1.13 0.17 1.34 0.17 1.16 0.05 2.10 0.05 
F53A9.1 -1.16 0.19 1.02 0.19 -1.10 0.00 2.39 0.00 
F53A9.2 1.29 0.06 1.49 0.06 1.20 0.00 2.16 0.00 
F53A9.6  -1.20 0.12 -1.21 0.12 1.03 0.00 2.07 0.00 
F53B3.6 -1.72 0.05 -2.94 0.05 1.38 0.64 1.44 0.64 
F53B6.7 1.22 0.04 2.24 0.04 -1.09 0.73 1.02 0.73 
F53C11.1 -1.09 0.00 2.08 0.00 1.09 0.01 1.64 0.01 
F53E10.4 -2.67 0.00 1.18 0.00 1.02 0.58 -1.17 0.58 
F53F8.3  2.46 0.05 3.57 0.05 -1.30 0.56 -1.99 0.56 
F53G12.5 mex-3 1.75 0.05 2.63 0.05 -1.13 0.51 -1.75 0.51 
F54B11.10 -1.55 0.04 -2.51 0.04 1.04 0.74 -1.01 0.74 
F54B8.4 -1.26 0.06 1.39 0.06 1.28 0.01 2.51 0.01 
F54C8.2 cpar-1  1.65 0.05 2.79 0.05 -1.28 0.53 -1.81 0.53 
F54C9.8 puf-5  2.44 0.04 5.24 0.04 -1.36 0.60 -1.99 0.60 
F54D10.5  1.52 0.04 2.18 0.04 -1.16 0.53 -1.54 0.53 
F54D10.7 2.07 0.05 3.01 0.05 -1.26 0.55 -1.84 0.55 
F54F3.3 -2.19 0.00 2.00 0.00 -1.41 0.59 -1.11 0.59 
F55B11.5 2.15 0.05 3.82 0.05 -1.24 0.71 -1.21 0.71 
F55G11.4 -1.16 0.00 3.94 0.00 -1.32 0.49 1.42 0.49 
F55G11.5 dod-22 -1.55 0.00 2.38 0.00 1.32 0.43 1.58 0.43 
F55G11.8 -1.96 0.00 1.35 0.00 1.48 0.00 2.89 0.00 
F56D5.3  1.12 0.13 -1.18 0.13 -1.07 0.00 2.59 0.00 
F56D6.15 clec-69 -1.72 0.00 2.37 0.00 1.20 0.56 1.42 0.56 
F56D6.2 clec-67 -1.74 0.00 2.37 0.00 1.17 0.62 1.34 0.62 
F57C2.4 2.87 0.05 6.77 0.05 -1.53 0.68 1.03 0.68 
F58B3.2 lys-5 -1.20 0.00 -4.07 0.00 -1.60 0.02 -3.87 0.02 
F58B3.3 lys-6 -1.53 0.01 -4.20 0.01 -1.67 0.02 -3.93 0.02 
F58E6.7 30.17 0.00 1.06 0.00 1.04 0.57 1.20 0.57 
F58E6.8 2.57 0.00 -1.03 0.00 -1.03 0.70 1.07 0.70 
F58G6.2 srm-3 2.29 0.00 -2.11 0.00 1.06 0.05 1.71 0.05 
F58G6.3 2.22 0.00 -2.22 0.00 -1.06 0.03 1.65 0.03 
F58G6.7 2.22 0.00 -2.22 0.00 -1.06 0.03 1.65 0.03 
F58G6.9 2.29 0.00 -2.11 0.00 1.06 0.05 1.71 0.05 
F59A7.2 -1.04 0.05 -1.66 0.05 1.15 0.01 2.42 0.01 
F59D8.1 vit-3 2.81 0.05 9.65 0.05 -1.66 0.50 -1.69 0.50 
F59D8.2 vit-4 3.64 0.04 18.07 0.04 -1.80 0.70 -1.28 0.70 
H02I12.5 2.11 0.05 3.56 0.05 -1.23 0.59 -1.79 0.59 
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H13N06.6 tbh-1  2.72 0.04 5.66 0.04 -1.21 0.72 -1.28 0.72 
H19M22.3 -1.60 0.04 -2.67 0.04 1.10 0.72 1.17 0.72 
H23N18.1 ugt-13 4.94 0.00 -1.50 0.00 1.25 0.53 1.43 0.53 
H38K22.5 gly-6 -1.50 0.02 -2.02 0.02 1.07 0.71 -1.03 0.71 
K01A2.3 -2.02 0.00 -3.70 0.00 1.04 0.53 -1.47 0.53 
K01A2.4 -1.89 0.00 -3.28 0.00 1.14 0.38 -1.44 0.38 
K01D12.14 cdr-5 52.78 0.00 -1.51 0.00 -1.05 0.20 1.50 0.20 
K02B9.1 meg-1 3.32 0.04 7.22 0.04 -1.42 0.51 -3.09 0.51 
K02D7.3 col-101  3.10 0.05 3.61 0.05 -1.23 0.71 -1.25 0.71 
K02E10.4 -1.73 0.05 -2.49 0.05 1.07 0.68 1.27 0.68 
K02E11.5 -1.17 0.04 -1.77 0.04 1.26 0.00 -2.12 0.00 
K05B2.4  -2.47 0.01 -1.32 0.01 1.20 0.51 1.48 0.51 
K06C4.4 his-20 -1.36 0.00 -2.50 0.00 1.11 0.67 1.15 0.67 
K07A1.6 3.43 0.04 10.34 0.04 -1.47 0.66 1.43 0.66 
K07C6.4 cyp-35B1 -1.56 0.02 -2.12 0.02 1.24 0.08 1.96 0.08 
K07E3.3 dao-3  -1.79 0.00 -2.48 0.00 1.11 0.60 1.21 0.60 
K07G5.5 -1.05 0.02 -2.01 0.02 1.01 0.71 1.10 0.71 
K07H8.6 vit-6 3.48 0.05 10.70 0.05 -1.55 0.71 -1.07 0.71 
K08B4.3 ugt-19  2.23 0.01 1.18 0.01 1.14 0.01 2.31 0.01 
K08F4.7 gst-4 -1.06 0.33 -1.03 0.33 -1.26 0.00 4.38 0.00 
K09C4.1 -2.06 0.00 -1.65 0.00 -1.04 0.17 -1.55 0.17 
K09F5.2 vit-1 2.78 0.04 7.38 0.04 -1.59 0.66 -1.69 0.66 
K10B2.2 8.36 0.00 1.22 0.00 -1.07 0.08 1.33 0.08 
K10B2.3 clec-88 2.24 0.05 4.24 0.05 -1.34 0.58 -2.02 0.58 
K10C2.3  -5.82 0.00 -1.29 0.00 -1.43 0.39 1.31 0.39 
K10D11.2  1.40 0.09 1.35 0.09 -1.12 0.00 2.22 0.00 
K10G4.3 2.19 0.00 -1.10 0.00 1.15 0.54 1.39 0.54 
K10H10.2 1.35 0.00 -3.25 0.00 -1.44 0.10 1.28 0.10 
K11G9.5 -1.63 0.03 -2.37 0.03 1.18 0.69 1.13 0.69 
K11H12.4 -1.56 0.01 2.69 0.01 1.31 0.27 2.45 0.27 
M01E11.6  klp-15 1.64 0.05 2.68 0.05 -1.08 0.51 -1.74 0.51 
M02D8.4 -2.02 0.01 -2.26 0.01 1.15 0.38 1.63 0.38 
M02D8.5 -1.82 0.00 -2.17 0.00 1.19 0.58 1.16 0.58 
M02F4.7 clec-265 1.20 0.04 2.10 0.04 1.32 0.00 3.64 0.00 
M02H5.4 nhr-202 2.27 0.00 -1.33 0.00 1.01 0.10 1.55 0.10 
M162.5 -1.09 0.00 -2.02 0.00 1.17 0.15 1.55 0.15 
M60.2 -4.22 0.00 -1.48 0.00 -1.08 0.30 -1.88 0.30 
M88.1  ugt-62 1.94 0.00 1.03 0.00 1.02 0.00 2.01 0.00 
R02E12.6 hrg-1 11.27 0.00 -2.35 0.00 1.13 0.59 1.25 0.59 
R03D7.6 gst-5  -1.05 0.01 1.58 0.01 -1.21 0.00 2.03 0.00 
R04D3.1 cyp-14A4 3.01 0.01 1.00 0.01 1.15 0.42 1.88 0.42 
R04D3.4 2.07 0.05 2.95 0.05 -1.26 0.53 -1.91 0.53 
R05H10.6 cdh-7 -1.73 0.04 -3.33 0.04 1.39 0.60 1.64 0.60 
R06C7.4 cpg-3 2.69 0.05 6.48 0.05 -1.50 0.63 -1.97 0.63 
R08A2.3  1.54 0.05 3.41 0.05 -1.20 0.67 1.20 0.67 
R08E5.3 1.17 0.00 -3.77 0.00 -1.68 0.00 1.31 0.00 
R08F11.3 cyp-33C8  1.83 0.02 -1.30 0.02 1.12 0.00 3.65 0.00 
R08F11.7 -1.23 0.04 -1.90 0.04 1.18 0.00 -2.28 0.00 
R09B5.4 fpn-1.2 -2.67 0.00 1.18 0.00 -1.42 0.29 -1.03 0.29 
R09B5.8 cnc-3 -1.68 0.04 -2.66 0.04 1.07 0.53 1.65 0.53 
R10D12.10 1.10 0.00 2.63 0.00 1.06 0.00 1.83 0.00 
R10D12.9 1.10 0.00 2.63 0.00 1.06 0.00 1.83 0.00 
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R11G11.2 nhr-58 -1.48 0.01 -2.12 0.01 1.30 0.43 1.49 0.43 
R186.1 1.71 0.00 -1.28 0.00 1.18 0.00 2.05 0.00 
R193.2 4.89 0.00 -2.08 0.00 1.09 0.69 1.13 0.69 
R52.8 math-36 2.37 0.00 2.69 0.00 1.26 0.24 1.68 0.24 
T01C3.3  2.63 0.04 5.83 0.04 -1.41 0.61 -2.01 0.61 
T01C3.4 fil-1 -1.97 0.00 3.48 0.00 -1.36 0.45 -1.06 0.45 
T02G5.11 2.26 0.05 3.64 0.05 -1.37 0.53 -2.10 0.53 
T04A8.5  -2.02 0.00 -2.16 0.00 -1.24 0.45 -1.32 0.45 
T04G9.7 2.22 0.05 4.41 0.05 -1.37 0.68 -1.43 0.68 
T04H1.9 tbb-6  -1.18 0.06 1.36 0.06 1.18 0.01 2.25 0.01 
T05A10.4  2.20 0.04 6.45 0.04 1.07 0.75 1.02 0.75 
T05A10.5  scl-22 2.11 0.05 6.26 0.05 1.15 0.74 1.18 0.74 
T05E12.3 2.58 0.03 1.33 0.03 -1.19 0.70 -1.06 0.70 
T05E12.6 -1.42 0.06 1.36 0.06 -1.12 0.00 4.18 0.00 
T05F1.2 2.27 0.04 3.66 0.04 -1.24 0.59 -1.77 0.59 
T05G5.7  rmd-1 2.29 0.04 5.68 0.04 -1.47 0.64 -1.79 0.64 
T06D4.1 2.31 0.05 3.72 0.05 -1.33 0.55 -2.11 0.55 
T06E6.2 cyb-3 1.75 0.05 2.61 0.05 -1.20 0.58 -1.58 0.58 
T08A9.8 spp-4  -1.30 0.14 -1.14 0.14 -1.32 0.00 -2.78 0.00 
T09F5.9 clec-47 2.24 0.00 -4.51 0.00 1.70 0.31 1.34 0.31 
T11F9.3 nas-20  2.32 0.05 6.25 0.05 -1.14 0.69 1.38 0.69 
T12G3.6 2.66 0.03 6.15 0.03 -1.49 0.56 -2.30 0.56 
T13F3.6 1.51 0.04 2.93 0.04 -1.30 0.45 -2.11 0.45 
T14B4.4 tsp-10 -1.51 0.00 -3.24 0.00 1.10 0.19 -1.55 0.19 
T14F9.4 peb-1 -1.43 0.04 -2.30 0.04 1.01 0.61 1.33 0.61 
T15B7.3 col-143 3.44 0.04 8.41 0.04 -1.38 0.71 -1.41 0.71 
T15B7.4  col-142 1.66 0.02 2.04 0.02 1.04 0.72 1.10 0.72 
T16G1.7 -2.72 0.00 -1.79 0.00 1.08 0.70 -1.04 0.70 
T19C4.1 -1.61 0.05 -2.41 0.05 1.23 0.67 1.27 0.67 
T19D12.4 -1.18 0.00 2.17 0.00 1.34 0.18 1.65 0.18 
T19D12.5 -1.18 0.00 2.17 0.00 1.34 0.18 1.65 0.18 
T19H12.9 ugt-12  2.49 0.00 -1.10 0.00 1.12 0.43 1.45 0.43 
T21C9.13 2.67 0.03 6.25 0.03 -1.40 0.57 -2.22 0.57 
T21E8.1 pgp-6 -3.34 0.01 -1.96 0.01 1.43 0.22 2.15 0.22 
T22A3.8 lam-3 -1.53 0.04 -2.13 0.04 1.07 0.73 -1.02 0.73 
T22B7.3 -1.86 0.03 -2.04 0.03 -1.28 0.34 1.35 0.34 
T22B7.7 1.00 0.03 2.24 0.03 1.06 0.29 -1.82 0.29 
T22E5.3 -1.52 0.04 -2.16 0.04 1.22 0.65 -1.01 0.65 
T22G5.7 spp-12 -2.13 0.04 -3.01 0.04 1.34 0.02 -3.16 0.02 
T23F4.1 -1.87 0.00 -2.31 0.00 1.12 0.61 1.23 0.61 
T23F4.3 -1.63 0.01 -2.03 0.01 1.05 0.69 1.13 0.69 
T24B8.5 -1.87 0.00 4.08 0.00 -1.14 0.28 1.70 0.28 
T24E12.5 1.04 0.03 1.99 0.03 1.70 0.00 3.20 0.00 
T25E12.5  gyg-2 2.35 0.05 4.46 0.05 -1.32 0.59 -1.93 0.59 
T26C5.1 gst-13  -1.33 0.06 1.00 0.06 -1.06 0.00 2.02 0.00 
T27B7.4 nhr-115  1.84 0.01 -1.06 0.01 1.15 0.01 2.24 0.01 
T28F3.4 1.44 0.03 -1.04 0.03 1.23 0.00 2.05 0.00 
T28H10.3  1.06 0.16 1.20 0.16 1.10 0.00 2.08 0.00 
W02D9.7 mex-1  2.47 0.04 4.30 0.04 -1.56 0.66 -1.39 0.66 
W02F12.3 2.14 0.05 3.93 0.05 -1.38 0.55 -2.16 0.55 
W03C9.7 1.93 0.05 3.32 0.05 -1.26 0.52 -1.85 0.52 
W03F11.1 3.69 0.04 8.51 0.04 -1.37 0.71 -1.38 0.71 
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W03G1.7 asm-3 -3.05 0.00 1.12 0.00 -1.79 0.13 -2.23 0.13 
W04E12.6 clec-49  -2.15 0.00 -1.55 0.00 -1.31 0.46 -1.27 0.46 
W04E12.8 clec-50 -2.06 0.00 1.20 0.00 -1.28 0.12 -1.70 0.12 
W05F2.3 2.10 0.05 4.39 0.05 -1.39 0.57 -2.11 0.57 
W06D11.1 1.52 0.05 2.15 0.05 -1.18 0.61 -1.38 0.61 
W06H8.2 1.02 0.15 -1.30 0.15 -1.05 0.00 5.15 0.00 
W06H8.8 ttn-1 -1.45 0.02 -2.27 0.02 1.27 0.63 -0.01 0.63 
W07B8.1  5.25 0.00 -3.38 0.00 1.15 0.59 1.27 0.59 
W07B8.5 cpr-5  1.60 0.00 -2.06 0.00 1.05 0.61 1.18 0.61 
W08E12.2 -1.22 0.15 1.23 0.15 -1.15 0.05 2.20 0.05 
W10G11.3 1.44 0.04 2.72 0.04 -1.13 0.66 -1.35 0.66 
Y105C5B.15  1.04 0.00 2.58 0.00 -1.21 0.00 1.78 0.00 
Y19D10A.4 1.15 0.17 1.05 0.17 1.09 0.00 2.36 0.00 
Y19D10A.9 clec-209 -1.84 0.00 3.31 0.00 1.02 0.71 1.15 0.71 
Y19D10B.7 -3.23 0.00 -1.04 0.00 -1.02 0.04 -2.23 0.04 
Y34D9A.11 spp-23 1.01 0.29 -1.15 0.29 -1.03 0.00 -3.06 0.00 
Y37D8A.19 3.46 0.04 9.18 0.04 -1.52 0.68 1.17 0.68 
Y37D8A.21 3.46 0.04 9.18 0.04 -1.52 0.68 1.17 0.68 
Y37H2A.11  1.03 0.00 4.25 0.00 1.06 0.32 1.76 0.32 
Y38E10A.5 clec-4 1.01 0.24 1.24 0.24 1.38 0.00 3.81 0.00 
Y38F1A.6  -1.17 0.02 -1.88 0.02 1.10 0.00 2.29 0.00 
Y39A1A.19 fmo-3  -1.65 0.05 -2.26 0.05 1.04 0.56 1.50 0.56 
Y39B6A.1 1.44 0.06 0.01 0.06 -1.09 0.00 -2.85 0.00 
Y39G10AR.6 ugt-31 -2.27 0.00 -1.96 0.00 1.33 0.51 1.39 0.51 
Y39G8B.7 -2.61 0.00 2.30 0.00 -1.02 0.06 2.00 0.06 
Y40B10A.6 -1.39 0.00 5.99 0.00 1.23 0.45 1.56 0.45 
Y40D12A.2 2.84 0.00 1.15 0.00 1.03 0.25 1.27 0.25 
Y41G9A.5 -1.24 0.03 -2.45 0.03 1.22 0.64 1.32 0.64 
Y43C5B.3 1.19 0.05 2.97 0.05 -1.17 0.70 1.11 0.70 
Y43D4A.3 1.59 0.04 2.28 0.04 -1.17 0.66 -1.28 0.66 
Y45F10C.2 1.80 0.04 4.04 0.04 -1.12 0.73 -1.20 0.73 
Y45F10C.3 fbxa-215 1.84 0.05 3.13 0.05 -1.27 0.55 -1.87 0.55 
Y45G12C.2 gst-10 -1.51 0.08 -1.33 0.08 -1.18 0.01 2.01 0.01 
Y46C8AL.2 clec-174 -1.67 0.00 3.39 0.00 -1.18 0.32 1.28 0.32 
Y46C8AL.3 clec-70 -2.63 0.00 1.16 0.00 1.86 0.00 -2.33 0.00 
Y46C8AL.5 clec-72 -2.24 0.02 1.09 0.02 1.34 0.58 -1.07 0.58 
Y46D2A.2 -1.23 0.00 2.24 0.00 -1.02 0.57 1.14 0.57 
Y46E12BL.3 1.91 0.05 2.82 0.05 -1.28 0.54 -1.81 0.54 
Y49E10.14 pie-1 1.84 0.05 2.83 0.05 -1.22 0.57 -1.65 0.57 
Y4C6B.6 -1.33 0.01 1.98 0.01 -1.98 0.00 -3.81 0.00 
Y51B9A.8  -1.68 0.00 2.54 0.00 1.15 0.06 2.42 0.06 
Y51F10.7 1.14 0.02 2.48 0.02 -1.47 0.55 -1.23 0.55 
Y51H7C.3  1.96 0.04 3.22 0.04 -1.29 0.53 -1.95 0.53 
Y51H7C.8 1.31 0.05 2.24 0.05 -1.14 0.67 1.12 0.67 
Y53H1B.1  cutl-10 -1.25 0.03 -2.25 0.03 1.13 0.60 1.38 0.60 
Y54F10AM.11 2.15 0.04 3.43 0.04 -1.25 0.63 -1.56 0.63 
Y54G11A.5  ctl-2 -2.26 0.00 -1.33 0.00 -1.04 0.70 1.04 0.70 
Y54G11A.7 4.21 0.00 -1.38 0.00 1.24 0.53 1.06 0.53 
Y54G2A.8 clec-82 -2.57 0.00 1.44 0.00 1.10 0.58 -1.14 0.58 
Y5H2A.1 -3.00 0.00 -2.33 0.00 -1.15 0.52 1.29 0.52 
Y62H9A.3 2.57 0.05 5.11 0.05 -1.43 0.70 -1.18 0.70 
Y62H9A.4 3.77 0.04 12.04 0.04 -1.52 0.67 1.27 0.67 
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Y62H9A.5 3.95 0.05 11.30 0.05 -1.56 0.70 1.02 0.70 
Y62H9A.6 4.49 0.04 12.47 0.04 -1.78 0.69 -1.08 0.69 
Y66A7A.6 gly-8 -1.77 0.05 -2.28 0.05 1.11 0.67 1.29 0.67 
Y69A2AR.13 1.26 0.03 2.42 0.03 -1.07 0.67 1.16 0.67 
Y69A2AR.25 1.23 0.03 2.39 0.03 -1.07 0.66 1.20 0.66 
Y70C5C.2 clec-9  1.19 0.04 2.09 0.04 -1.04 0.04 2.21 0.04 
Y75B8A.17 gmn-1 1.98 0.03 2.73 0.03 -1.17 0.56 -1.60 0.56 
Y75B8A.9 gly-11 -1.60 0.02 -2.07 0.02 1.07 0.70 1.13 0.70 
Y80D3A.5 cyp-42A1 -1.66 0.03 -2.13 0.03 1.09 0.73 1.06 0.73 
Y82E9BL.10 fbxa-14 -1.34 0.13 -1.01 0.13 1.22 0.00 2.52 0.00 
ZC308.4 2.33 0.05 4.45 0.05 -1.33 0.53 -2.33 0.53 
ZC410.1 nhr-11 -1.58 0.03 -2.02 0.03 1.02 0.63 1.24 0.63 
ZC443.6  ugt-16 5.24 0.00 1.18 0.00 1.24 0.15 2.22 0.15 
ZC455.4  ugt-6 -1.96 0.01 -2.33 0.01 1.23 0.65 1.19 0.65 
ZC513.6 oma-2 2.26 0.05 3.82 0.05 -1.23 0.52 -2.18 0.52 
ZK1025.9 nhr-113 -1.49 0.04 -2.27 0.04 1.13 0.66 1.27 0.66 
ZK1037.6 1.47 0.01 2.98 0.01 -1.05 0.74 -1.06 0.74 
ZK1127.1 nos-2  2.36 0.05 4.20 0.05 -1.44 0.57 -2.05 0.57 
ZK1193.1 col-19 3.11 0.05 9.74 0.05 -1.51 0.65 1.42 0.65 
ZK154.1 -1.03 0.05 -2.01 0.05 1.10 0.55 1.51 0.55 
ZK228.4 -1.10 0.14 -1.32 0.14 1.27 0.02 2.03 0.02 
ZK455.4 asm-2  -2.14 0.00 1.03 0.00 -1.05 0.55 1.15 0.55 
ZK550.2 1.08 0.29 -1.07 0.29 1.28 0.04 2.31 0.04 
ZK6.10 dod-19 -1.15 0.00 2.10 0.00 1.15 0.12 1.63 0.12 
ZK6.11 -2.28 0.00 1.37 0.00 1.10 0.71 1.11 0.71 
ZK637.11 cdc-25.3 2.59 0.04 4.70 0.04 -1.42 0.50 -2.56 0.50 
ZK666.6 clec-60 -2.99 0.00 1.55 0.00 1.46 0.01 -2.12 0.01 
ZK666.7 clec-61  -2.04 0.00 1.40 0.00 1.73 0.22 -1.06 0.22 
ZK669.3 1.75 0.01 3.28 0.01 1.00 0.62 1.33 0.62 
ZK673.9  clec-143 1.07 0.00 2.04 0.00 1.10 0.05 1.44 0.05 
ZK813.1 4.45 0.04 13.82 0.04 -1.55 0.72 -1.12 0.72 
ZK813.2 2.97 0.05 4.97 0.05 -1.41 0.65 -1.72 0.65 
ZK813.3 3.07 0.04 6.68 0.04 -1.57 0.69 -1.16 0.69 
ZK813.7 4.24 0.04 13.37 0.04 -1.58 0.70 1.06 0.70 
ZK829.5 tbx-36 2.09 0.05 2.74 0.05 -1.29 0.52 -1.89 0.52 
ZK829.9  3.05 0.04 5.73 0.04 -1.43 0.56 -2.40 0.56 
ZK858.3 clec-91 2.37 0.04 5.99 0.04 -1.46 0.56 -2.47 0.56 
ZK970.7  1.17 0.02 -2.56 0.02 1.10 0.68 1.29 0.68 

20 µM heme/100% O2 vs 20 µM heme/21% O2
K07C6.3           cyp-35B2 3.09  
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