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Microprocessors are increasingly used in a variety of applications from small

handheld calculators to multi-million dollar servers. With our increasing dependence

on microprocessor-based systems, greater importance needs to be given not only to

a processor’s performance but also to its dependability. With each new technology

generation, we witness a consistent increase in cosmically induced soft errors per

chip. Earlier, only memory structures were affected significantly by soft errors. But

today, most memories are well protected by error detection and correction codes.

However, unprotected logic state elements, which were not a great concern in older

technology generations, are increasingly becoming a concern due to the technology

scaling trend. Although the fault rate per transistor has been remaining roughly the

same across generations, the increasing number of transistors per chip is resulting

in a steady increase in the raw error rates. Thus, the increased functionality and

performance as dictated by Moore’s Law comes at the cost of an exponentially

increasing soft error rate.



In this thesis, we present techniques to reduce a processor’s soft error rate. We

focus on one of the major contributors of the on-chip soft error rates - the Instruc-

tion Issue Queue(IQ), which is proven to have a significantly higher vulnerablility

factor (32.7% as measured by our work) compared to other microarchitectural struc-

tures like the register file (18.65%), re-order buffer (28%) and execution units (9%).

Modern processors often aggressively fetch and decode instructions, in order to ex-

ploit as much parallelism as possible. However, this often results in instructions

being fetched much earlier than necessary, causing valid instructions to reside in the

vulnerable IQ for many needless cycles, waiting for dependencies to be resolved or

to be squashed on a mis-speculation event. Additional ILP that may get exposed

as a result of this aggressive front-end design, often does not result in any major

performance benefits. We exploit this inefficiency by slowing down the front-end of

the pipeline when it is not likely to affect the performance significantly. For this,

we explore a set of reliability-aware front-end throttling schemes, to bring down the

utilization of the IQ, and hence the soft error rates.

We observe the improvement in the structure’s Architectural Vulnerability

Factor(AVF), which is defined as the probability that a fault in the structure will

result in an externally visible error, on employing the throttling techniques. Our

simulations show the AVF of a microprocessor’s instruction queue to be 32.7%. Upon

introducing front end throttling schemes, we observe a reduction in the AVF and

hence the soft error rates by up to 26.3% with an average performance degradation

of less than 2.6%.
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Chapter 1

INTRODUCTION

Performance has been the driving force of modern microprocessor design for

several decades. Over the past several technology generations, we have witnessed an

exponential increase in the transistor count per chip as per Moore’s law and corre-

spondingly a tremendous progress in the performance and functionality of semicon-

ductor devices in general, and microprocessors in particular. However, at present,

this fast-paced progress is challenged by a multitude of factors, among which radi-

ation induced soft errors is a major one.

1.1 Soft Errors

Even if a microprocessor is shipped without any manufacturing defects or

hardware design errors, environmental conditions can result in temporary hardware

failures. These failures, called soft errors (or transient errors, or single event up-

sets (SEUs)) are caused by radiation, mainly from neutron particles due to cosmic

rays that come from deep outer space [1]. Other causes for soft errors are alpha

particles, which arise from naturally occurring radioactive sources, such as contami-

nants in the chip packaging itself. These energetic radiations, while passing through

a semiconductor device, generate electron-hole pairs, which in turn cause charge

accumulation at the transistor source and diffusion nodes. Sufficient amounts of
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accumulated charge can potentially flip the state of a logic device such as an SRAM

cell or a latch. Thus they result in transient, non-repetitive errors in data that are

unrelated to components or manufacturing failures. These types of errors are termed

as transient, as they do not result in a permanent failure of the victim device.

Among the various device circuit parameters that influence the soft error rate

are, the quantity of charge stored and the vulnerable cross-section area. As fea-

ture size diminishes, the amount of charge per device also reduces, making it more

likely for a particle strike to cause an error. But on the other hand, the reduced

cross-section area makes a strike on any given device less likely. Hence, the soft

error rate of an individual transistor is expected to remain more or less constant,

across technology generations in the near future [3], [1]. However, the per chip soft

error rates would increase steadily, in direct proportion to the number of transis-

tors per chip, unless we add better error detection/correction schemes or use more

robust technology such as partially depleted SOI. Thus, the exponential increase

in transistor count and performance given by Moore’s law comes at the expense of

exponential increases in error rates for unprotected chips.

As soft errors can cause systems to malfunction with complete unpredictability,

extensive techniques are employed to ensure high soft error tolerance for safety

critical applications such as aerospace and nuclear systems. But, employing similar

techniques for commercial processors is not practical. Physical solutions such as

shielding within the IC packaging are hard, since there are no feasible practical

absorbents for the neutron particles. In short, cost and performance cannot be

sacrificed beyond a point, while the level of fault tolerance should be high enough.
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In most cases, soft errors can draw the line between commercial success and failures.

Hence, soft errors are now considered as a serious issue by most commercial processor

manufacturers.

1.2 Addressing Soft Errors

Intuitively, memory elements would be most susceptible to soft error failures,

because of the smaller transistor sizes preferred for them. But, today, most memories

are well protected by error detection and correction codes. However, unprotected

logic state elements, which were not a great concern in older technology genera-

tions due to their bigger sizes, are also increasingly becoming a concern due to the

technology scaling trend.

The most obvious method to address the soft error problem is to add more

error correction and recovery mechanisms, to the design. Unfortunately, this has

side effects in the form of significant degradation of performance, and increased

power consumption. Logic level redundancy techniques such as Dual Interlocked

Cell [15] can approximately double the number of transistors needed per device.

Traditional error correction schemes employed for memory elements have significant

storage and time overheads. Redundancy-based schemes (e.g., [17], [18]) would be

an over-design for most of today’s commercial processors, since these processors can

tolerate some level of soft-errors and do not really require bullet-proof operation

[19].
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1.3 Our Contribution

In a modern superscalar processor, the front-end instruction delivery forms

a significant part of the pipeline. Instructions are fetched in program order and

dispatched into an issue queue (IQ), from where they are issued into functional

units in an out of order fashion. In our work, we propose methods to reduce the soft

error vulnerability of an instruction issue queue. Our effort to address the soft errors

in microprocessors can be divided into two steps. First, we developed a method to

measure and accurately quantify the soft error vulnerability of the IQ. Secondly, we

explored methods to bring down the soft error rate.

Researchers have come up with various techniques to diminish or even elimi-

nate the soft errors, but they all come at a price - substantial degradation in cost

and performance. In our work, we propose a novel low-cost method for depend-

ability enhancement by bringing down the soft error vulnerability of the instruction

issue queue of a modern microprocessor. We show that the performance and hard-

ware overhead for this is negligible, while the improvement in the soft error rates is

substantial. We present the improvement observed on the soft error sensitivity of

the IQ on employing our method. We also estimated the relative trade-offs between

performance and reliability achieved by measuring the MITF (mean instructions to

failure). The hardware and performance overhead caused, if any, are quantified.
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1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 describes the back-

ground and terminology related to soft errors. Chapter 3 discusses the motivation

behind our work, and related prior work. Chapter 4 explains the methodology used

to quantify the AVF of the IQ and discusses simple schemes to bring down the same.

In chapter 5, we discuss our experimental results and Chapter 6 summarizes and

concludes our work.
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Chapter 2

SOFT ERRORS: BACKGROUND AND TERMINOLOGY

This chapter describes the background and the soft error terminology which

we have followed throughout the remainder of this thesis. Also explained are the

metrics used to quantify the soft error rates.

2.1 SDC and DUE Errors

Figure 2.1 [2] illustrates the outcomes that are possible due to a faulty bit.

As the figure shows, several of the possible outcomes do not result in a user-visible

error in the final program output. When the bit has no error protection, and this bit

influences the program outcome as well, an error in that bit results in a Silent Data

Corruption or SDC. This is the most deleterious form of error, since it results in a

visible error and goes undetected. To avoid SDC, error detection mechanisms such

as parity can be employed, which can detect an error, but not correct it. When

the faulty bit has only error protection, and not correction, this is said to result

in a Detected Unrecoverable Error or DUE. Here, a possible error happening at

the output can be avoided, by stopping the application on detecting an error. DUE

errors can be further classified into false DUE and true DUE errors. As the names

imply, true DUE errors affect the final outcome of the execution while false DUE

errors are benign errors. The detection-only scheme does not reduce the error rate,

but ensures that the output is not corrupted. In our work, we explore methods to
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reduce the SDC rates.

Figure 2.1: Possible Outcomes due to a Faulty Bit in a Microprocessor

Currently the industry specifies soft error rates in terms of SDC and DUE

numbers, and these are typically expressed using different metrics by vendors. Tra-

ditionally, MTTF (Mean Time to Failure) is used as the appropriate metric to

measure system reliability. Other units commonly used are FIT and MTBF. MTBF

(Mean time between failures) is based on the interval between failures. MTBF of a

component, as the name suggests, is the average time between failures. FIT (Failure

in Time) is inversely related to MTBF. One FIT specifies one error in one billion

operating hours. A zero error rate implies infinite MTBF and zero FIT. The over-

all FIT rate of a chip is calculated as the sum of the effective FIT rates of all the

structures on-chip. Currently, typical FIT rate numbers for latches and SRAM cells
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vary from 0.001 FIT/bit to 0.01 FIT/bit at sea level and are projected to remain

the same in the next several technology generations [1], [3], [5], [6].

2.2 Architectural Vulnerability Factor

Not all faults in a microarchitectural structure would affect a program’s final

outcome. Hence, we cannot come up with an error rate estimate based only on

raw device fault rates. Such a pessimistic estimate might lead to over-design of

the processor’s fault handling features. The net fault rate per bit depends on the

device’s vulnerability factors.

A structure’s Architectural V ulnerability Factor (AV F ) or soft error sen-

sitivity factor is formally defined as the probability that a fault in that processor

structure will result in a user visible error in the final program output [6]. In our

work, we explore the SDC AVF, specifically for the Instruction Issue Queue. The

reader should interpret any reference to AVF as the SDC AVF. In order to estimate

the AVF of a structure, we need to figure out which bits in the structure affect the

final outcome of the program and which bits doesn’t matter.

Mukherjee et al introduced a classification of all the bits in a structure into

two groups: ACE bits and un-ACE bits [6]. ACE bits are those bits (in the struc-

ture) that are required for Architecturally Correct Execution. On the other hand,

un-ACE bits are those bits that are un-necessary for Architecturally Correct

Execution. For example, a valid bit in the IQ, which distinguishes between an

empty entry and a valid instruction entry in the IQ, will always be ACE. If a bit flip
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happens in this bit, it will almost certainly affect the program execution. On the

other hand, the bits in a speculatively loaded wrong path instruction entry would

be classified un-ACE, since these will not affect the program outcome at all. Hence,

if the bit flip happens to an un-ACE bit, the program outcome will be un-affected.

The AVF of a structure at any time can thus be expressed as:

AVF = number of ACE bits in the structure
total number of bits in the structure

2.3 Computing SDC Rates

This section explains how a microprocessor’s SDC rate can be computed, given

the raw error rate of the underlying circuit technology. Vendors usually specify

targets for the error rates of a processor. For example, IBM targets 1000 years

MTBF for SDC errors. Raw error rates as well as the SDC rates are typically

expressed in FIT. In our work, we assume a Single Event Upset fault model. That

is, we consider only errors caused by single-bit flips. Multi-bit faults are caused by

single/multiple particle strikes which affect multiple bits in the structure. They can

potentially cause SDC events in structures with single bit error detection like parity.

We assume that the probability of multi-bit faults is negligible in comparison to that

of single bit faults.

The SDC rate of a processor is the sum of the SDC rate contributions from all

its devices. The SDC rate of a device, in turn, is the product of its raw error rate and

SDC AVF. A device that has any form of error detection or correction will have zero
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SDC AVF and hence zero SDC rate. The SDC AVF of unprotected devices varies

according to their nature. For example, the Committed Program Counter will have

100% AVF. This is because any fault in the Program Counter will certainly cause

a wrong instruction to be executed, changing the program execution path itself.

Whereas, if you consider a branch predictor, even if a fault happens in the predictor

structures, the only effect that this might have is that the branch predictions will be

wrong. This error will be detected at a stage further down the pipeline, up on which,

the necessary remedial action will be taken. The overall program outcome remains

unaffected and hence, the AVF of the branch predictor structure is 0%. However,

the AVF of other structures on-chip like the Instruction Queues and Register Files,

are not as directly intuitive. The AVF figures for these complex structures fall

in between 0% and 100%. As mentioned previously, the fault rate of a structure

is the product of its raw error rate and its AVF. And, the overall processor fault

rate is obtained by summing up the contributions by its individual devices. The

knowledge of the effective error rates of a processor will help a designer to achieve

the processor’s target error rates in a cost effective manner. Further, a knowledge of

the error rates of the individual microarchitectural structures is essential to prioritize

the fault tolerance features.

2.4 Estimating Reliability-Performance Trade-off

Traditionally, MTTF (Mean Time to Failure) is used as the appropriate metric

to measure system reliability. It is defined as:
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MTTF = 1
raw error rate×AVF

But, this metric fails to accurately capture the relative trade-offs between

performance and reliability. For example, if there are two systems where the first

system is twice as fast as the second but half as reliable, then the probability of a

fault occurring in both systems, during the execution of an application, is the same.

In this perspective, both systems are equally reliable. However, the MTTF values

would suggest that the second, slower system is more reliable, which is not really

the case. In order to address this, Weaver et al. [19] introduced a new metric called

the Mean Instructions To Failure (MITF ). This metric effectively captures the

trade-off between performance and reliability.

As the name implies, MITF gives the number of instructions that a processor

will commit, on average, between two errors. In [19], Weaver et al defines MITF as:

MITF = number of committed instructions
number of errors encountered

= number of committed instructions
total execution time in cycles

frequency×MTTF

= IPC × frequency × MTTF

= IPC×frequency
raw error rate×AVF

=
frequency

raw error rate × IPC
AVF

Assuming a constant raw error rate and frequency, MITF is directly propor-

tional to IPC

AV F
. Hence, any method which reduces both AVF and IPC, can be proven

as worthwhile only if it also improves the MITF, so that the performance degrada-

tion (if any) can be proven lesser in comparison with the decrease in AVF.

11



Chapter 3

MOTIVATION AND RELATED WORK

3.1 Motivation

Soft errors due to cosmic rays have already made an impact in industry. There

are a handful of documented events in industry to substantiate this. In the fifth

generation SPARC64 processor, Fujitsu have protected 80% of the total 200k latches

by parity check error detection, to counter cosmic ray strikes. The multiply/divide

units are protected with residue check and parity prediction circuits [8]. Normand,

E [5] has published several incidents of cosmic ray strikes in 1996. Sun Microsystems

had acknowledged, in year 2000, that cosmic ray strikes on unprotected L2 cache

memories on UltraSPARC IIs caused its Ultra Enterprise servers to crash randomly

at several customer sites (AOL, eBay, Verisign and dozens of other corporations

were affected) [16]. Sun’s UltraSPARC T1 processor has its integer and floating

point register files protected by ECC, an extensive level of protection matched only

by mainframe-class processors [24].

AVF impacts the extent of error protection required in a microprocessor. Ven-

dors typically specify system error-rate targets at a reference altitude. For example,

for its Power4 processor-based systems, IBM’s system SDC error-rate target is 1000

years MTBF (equivalent to 114 FIT). Figure 3.1 illustrates why improving the AVF

of a structure is important and how it impacts the error protection features of a pro-
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cessor. In the figure, we assume 400000 bits to be vulnerable to cosmic ray strikes,

and an FIT/bit rate of 0.001. The number of vulnerable bits grows in accordance

to Moore’s law. As we can observe from the figure, the IBM goal of 114 FIT can

be achieved in year 2007 with 100% AVF with 80% of its bits protected; and in

2008 with 10% AVF and no error protection. However, with 10% AVF in 2007, we

don’t need to incorporate any error protection at all, to meet the 114 FIT target.

Similarly, in 2013, this goal can be met with 80% bits protected against errors, if

the AVF is reduced to 10%. This underscores the importance of reducing the AVF,

and its impact in the error protection features of a processor.

Figure 3.1: Impact of AVF on SDC Rates

For our work, we chose to fully investigate the Instruction Issue Queue because

the AVF of this structure was observed to be greater than that of most of the other

structures, and hence is one among the highly vulnerable hardware structures on-
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chip. An evaluation of the AVF of several microarchitectural structures has been

reported previously by the research community [6], [25]. The AVF of the register files

was reported as 18.65% by Reis et al [25] and those of the ROB and functional units

were estimated as 28% and 9% respectively by Mukherjee et al [6]. In our work, we

estimated the AVF for the Instruction Issue Queue as 32.7%, which is significantly

higher than the AVFs of the other microarchitectural structures mentioned above.

The next question that needs to be answered is how to reduce the AVF of a

hardware structure. As discussed in Chapter 1, physical solutions to the problem

of reducing soft error rates are hard. Even though special shielding materials can

dramatically reduce the impact of alpha particles on semiconductor devices, sev-

eral feet of concrete is required to shield neutrons, which is not possible for most

applications.

To detect or recover from faults, designers typically introduce redundant hard-

ware. Storage structures such as caches, TLBs and memory are protected by error

correction codes (ECC) or parity. However, adding such fine-grained protection to

all hardware structures can be prohibitively expensive. Other techniques to tackle

this problem include duplicating certain hardware structures such as functional units

or processor cores, introducing significant penalty in performance, power, die area

and design complexity. We focus on alternative techniques to reduce the soft error

rates.

We make the key observation that if we can keep valid bits out of the vulnerable

structures, a reduction in the soft error rate is guaranteed. In a modern micropro-

cessor, instructions are often fetched and decoded aggressively, and entered into the
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IQ, so that they can be issued as early as possible to achieve maximum possible

performance benefits. However, instructions are often un-necessarily fetched much

earlier than essential, causing valid instructions to reside in the vulnerable IQ for

many needless cycles, rather than in a better-protected Instruction Cache, waiting

for dependencies to be resolved or to be aborted following a misprediction event.

In this work, we propose front end throttling techniques, to reduce the resi-

dency cycles of a given instruction in the Instruction Issue Queue before issue. By

this, we reduce the total time any given bit would be vulnerable to neutron or alpha

particle strikes, thereby reducing the AVF and hence the soft error rate. However,

this would indirectly imply degradation in performance as well, which is undesir-

able. We investigated a set of previously proposed fetch/decode gating schemes with

appropriate adaptations to the reliability perspective.

3.2 Related Work

In this section, we discuss prior research related to our work, and the signifi-

cance of our research.

Our work is related to two broad fields of research in computer architecture.

The first field is related to measuring the AVF of a typical microprocessor. For their

studies, prior research groups in the fault-tolerance area of research mainly used

two approaches: the Statistical Fault Injection(SFI) model based approach, or the

Performance Model based approach. Our work is based on the latter approach.

In the SFI based approach, detailed RTL based processor models are used.
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Faults are intentionally created in the processor with special software and/or hard-

ware tools and the operations are monitored. Kim and Somani [21] measured the

soft error sensitivity(SES) of the various hardware structures using the example of

Sun Microsystem’s publicly disclosed picoJava II RTL model through a software sim-

ulated fault injection study. Using SFI, Saggese et al [36] experimentally studied the

effects of transient faults on two microprocessors: a DLX processor, representative

of a microprocessor for an embedded system, and an Alpha processor, representative

of a high-performance microprocessor.

The Intel FACT group used a generalized performance model based approach

to compute the architectural vulnerability of various microarchitectural structures

[6]. In their work, Mukherjee et al proposed a generalized systematic analysis scheme

by which, bits in a structure can be classified into those which are required for cor-

rect program execution and those which does not matter. The SFI approach is

advantageous over the performance based model since an RTL model of a processor

will model in detail, every structure that is required to build a processor; while a

performance model usually simulates only those components which affect the pro-

cessor’s performance. This limits the application of the performance model based

approach. But, the SFI approach would require a significant number of fault in-

jections to achieve statistical significance. Compared to SFI, the latter approach

would give faster and more sophisticated analyses, in a single experiment, providing

reasonably tight AVF estimates.

In our work, we used the performance model based approach to quantify the

architectural vulnerability of the Issue Queue. Inspired by the work of Mukherjee
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et al [6], we developed a methodology to measure the AVF, specifically for the IQ.

We discuss this in detail in Chapter 4.

The second field to which our work is related is power-aware front-end throt-

tling techniques. Various fetch/decode throttling schemes have been published by

different research groups, specifically to reduce the power dissipated by the Issue

Queue. Banisadi and Moshovos [12] studied a set of frond-end throttling schemes

which make use of the instruction flow information, to employ throttling. In [14],

Karkhanis et al proposed a just in time instruction delivery scheme, by dynami-

cally limiting the total number of in-flight instructions. They reported a 40% power

reduction in the Issue Queue with only 3% degradation in performance.

We apply techniques which were originally proposed to reduce the power con-

sumption of a microprocessor, to reduce the AVF. Our methods were developed

based on the schemes proposed earlier by Banisadi and Moshovos [12], Buyukto-

sunoglu et al [13], Karkhanis et al [14]. We modified these techniques to suit the

reliability context inspired from the work of Balasubramonian et al [20] for finding

optimal cache sizes. We implemented adaptive schemes with varied throttling levels

based on the program behavior, instead of a fixed-threshold based throttling. Most

of the front-end throttling techniques target at eliminating un-necessary speculative

instructions being fetched into the IQ. Since these wrong path instructions will not

contribute towards the AVF of a structure, we do not stand to gain by eliminating

the wrong-path instructions alone. However, by using appropriate triggers to initi-

ate the throttling, and by using an adaptive method to suit the various phases of

within and across applications, we found that we can significantly reduce the aver-
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age number of cycles for which each instruction resides in the IQ before its issue.

This, in turn, would serve greatly to bring down the AVF.

Redundancy in the form of software or hardware, have been the most widely

proposed solution to enhance the fault-tolerance features of microprocessors. Austin

proposed the DIVA design [38] where a main out-of-order processor core executed

instructions in the normal fashion, and a second simpler one validated the execution.

Oh et al [39] proposed a purely software technique called EDDI(Error Detection by

Duplicated Instructions) where each instruction is duplicated during compilation,

and these checker instructions executed for validation. Oh et al [40] also developed

a software control-flow checking scheme called CFCSS(Control Flow Checking by

Software Signatures) where each control flow generates a run-time signature which

is validated by error-checking code generated by the compiler for every block. Al-

most all redundancy based techniques report as much as 98% fault coverage, but

accompanied by heavy performance loss.

Weaver et al introduced a different approach to improve the soft-error induced

unreliability. In their work [23], Weaver et al introduced methods to distinguish

false detected errors, which do not influence the final system output, from true

detected errors to improve the DUE AVF of the system. They reported the im-

provement in the AVF of the re-order buffer(ROB) on detecting and eliminating the

false DUE errors. In addition, they proposed selective instruction squashing as a

method to reduce undetected SDC errors in the ROB of a simple in-order processor.

In this method, on a cache miss, the authors propose to flush out the instructions

in the ROB which are younger than the load that missed. Because they examined
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an in-order machine, this squashing of all instructions after a load miss had a lesser

impact on performance, compared to an out-of-order machine. For the above tech-

niques the authors reported an IPC loss of up to 10%, for a soft error improvement

of 35% for SDC errors, when instructions were squashed on load misses from L0

cache.

In addition, we draw on prior work in measuring the architectural behav-

ior of processors, for our ACE analysis. Several publications (e.g., [34], [35]) have

reported the percentage of dynamically dead instructions, with modern micropro-

cessors. Butts and Sohi [34] reported 3 to 16% of dynamically dead instructions in

their evaluation of SPEC2000 benchmarks. We exploit logical masking of operand

bits in our ACE analysis. Previously, Scarbrough et al [37] used logical masking to

avoid un-necessary fault-detection checks, in their work.
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Chapter 4

ENHANCING RELIABILITY

This thesis aims to enhance the dependability of the Issue Queue, using front-

end throttling. For this, we first require a method to quantify the soft error vul-

nerability of the Issue Queue, in order to estimate the improvement achieved by

the proposed methods. No ready-to-use tools are available to measure the AVF of

a structure. Hence, this chapter first presents the AVF computation methodology

that we have developed to accurately quantify the soft error vulnerability of the

Issue Queue. Secondly, we explain in detail, the three different throttling schemes

explored to bring down the soft error rates.

4.1 AVF Computation

The AVF of a hardware structure is the average AVF of all the bits in that

structure, assuming all bits in the structure have the same structure and circuit

composition, and hence the same raw FIT rate.

In order to compute the AVF of the structure IQ, we need to first identify the

ACE and un-ACE bits in the structure, i.e., figure out which bits affect the final

output of the program. For this ACE analysis, we need to clearly define the term

final output. We define this term in a general sense as: the output of a program

is nothing but the values conveyed by the program to I/O. However, in our work,
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we do not track values as far as the I/O. But, we track values well past the commit

point, to decide whether they will affect the final output or not. We analyze only a

uniprocessor system in this work.

4.1.1 ACE Analysis

Given the above definition of a program’s output, we need to categorize the

ACE and un-ACE bits in the IQ structure. In our work, we strive to unearth as

many sources for un-ACE bits as possible. We believe that we have managed to

capture all the major contributors of un-ACE bits.

In our experiments, we followed the conservative path. Unless proven other-

wise, we assume that every bit in the structure is ACE. We identified the following

classes of un-ACE bits in the IQ entries.

Idle Bits

Idle bits are the ones that do not contain any valid information. In the case of

an IQ, several of the IQ slots may be empty at any given cycle. For such cases, only

the status bits showing whether the slot is empty/full are ACE bits. If these status

bits are flipped, the empty instruction entry may get issued and the final output will

be affected. All other bits are classified as un-ACE. We always assume the control

bits as ACE.

21



Wrong Path Bits

At any time, there may be several instructions that are executed in a specu-

lative fashion. Branch prediction and speculative loads are examples of this. These

instructions reside in the IQ for several cycles, and later a subset of these may get

squashed after being discovered to be in the incorrect path. The bits in the IQ

corresponding to an incorrectly speculated instruction are un-ACE.

Dynamically Dead Bits

The instructions whose results do not get used are said to be dynamically dead.

Instructions whose results do not get read by any other instructions at all are termed

as First-Level Dynamically Dead (FDD) instructions. The results of Transitively

Dynamically Dead (TDD) instructions are read only by FDD instructions or other

Transitively Dynamically dead instructions. Instructions can be dynamically dead

through registers or memory, depending on whether the result is written to an

architectural register or to a memory location. For example, consider an instruction

(I1), which writes a value into the register R1. If another instruction (I2) writes into

the same register R1, without any intervening reads between I1 and I2, then I1 is

and FDD instruction (through register R1). Even if I1 gets a fault, and is executed

incorrectly, it does not matter as far as the final outcome is concerned. In a similar

fashion, we can define FDD instructions with respect to memory. If I1 writes to a

memory location M, and I2 over-writes M, before any other instruction reads M,

then I1 is FDD through memory. The only bits that matter in a dynamically dead
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instruction would be the destination specifier bits. If the destination gets changed

due to a fault, the final output may be affected. In our experiments, we track down

both FDD and TDD instructions through registers as well as memory. We assume

that the opcode bits and the destination register/memory specifier bits as well as

any control bits as ACE bits. The rest of the bits in a dynamically dead instruction

are classified as un-ACE.

Unused Bits

There are several instances when bits within valid instruction entries are not

used. In an IQ slot occupied by a valid instruction, not all bits are required for

architecturally correct execution. For example, if the instruction is a NOP, all bits

other than the opcode bits are un-ACE. The operand value bits of an instruction

whose operands are not ready will be unused until they are ready. We term such

bits which do not matter within a valid instruction entry as unused bits.

Performance Enhancing Instruction Bits

Modern ISAs include performance enhancing instructions like pre-fetch. A bit

flip in non-opcode fields of these instructions, while degrading performance, would

not affect the correctness of the program. Hence we consider the non-opcode bits of

such instructions as un-ACE.
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Masked Bits

Another source of un-ACE bits would be masked bits in operands. Consider

the following instruction:

ORI $R1, $R2, 0x00FF

Here, the lower 8 bits of R2 does not play a part in the result.

Consider another instruction as below:

ANDI $R1, $R2, 0x00FF

Here, all bits except the lower 8 bits of R2 do not influence the final result. The

bits which do not affect the final result are said to be masked and hence un-ACE.

In the above analysis, we assume that the user does not run the program under

a debugger. In such a case, even the intermediate program variables examined by

the debugger will count as outputs.

4.1.2 Computing AVF using a Performance Model

The AVF of a single bit storage cell is the fraction of time it holds ACE bits. If

a storage cell holds ACE bits for 5 million cycles out of a total of 10 million execution

cycles, then its AVF is 50%. We can generalize this notion to the whole structure.

The AVF of the full structure is the sum of the contributions from its individual

bits. We assume that all the bits in a structure are similar, having the same circuit

composition and hence the same raw error rate. The AVF of a hardware structure

is given by [6] as:
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sum of the residency (in cycles) of all ACE bits in the structure
total number of bits in the hardware structure×total execution cycles considered

In order to compute the AVF using the above equation, we need to measure

the following parameters: the number of cycles for which each instruction resides in

the IQ before its issue, the number of ACE bits in the IQ entry corresponding to

each instruction, the number of various classes of un-ACE bits in the IQ entry for

each instruction fetched, the total number of bits in the IQ and the total number

of execution cycles considered. Using a performance model, we can measure all the

above. As an instruction flows through the pipeline, we measure the residence cycles

of the instruction at each stage using a performance model.

In order to estimate dynamic deadness, we need information about the future

use of the instruction. For this, if the instruction commits, we enter it into an analy-

sis window. We estimated that, a size of 40000 instructions for the analysis window

would suffice to capture much of the needed information to estimate deadness. For

each architectural register/memory location, we maintain a usage list which is a

linked list of producers and consumers in the commit order. As soon as an instruc-

tion enters the analysis window after commit, we update the producer-consumer list.

If a register R has two consecutive producers in its usage list, then the first pro-

ducer instruction is marked dynamically dead(FDD). Transitive dynamic deadness

is estimated similarly from the usage list.
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4.2 Reliability-aware Front-end Throttling

In our work, we introduce a set of reliability-aware front-end throttling meth-

ods. These methods rely on the well-understood inefficiency of conventional front

end instruction delivery designs. Existing designs process instructions at the max-

imum possible rates to exploit as much parallelism as possible. Additional ILP

that may be exposed (if at all) by the aggressive instruction fetch and decode, does

not always improve performance. Often times, the processor is stalled waiting for

some other instructions to complete. We exploit this inefficiency by slowing down

the front end instruction delivery when it is not likely to affect performance signifi-

cantly. Instructions are fetched just-in-time to exploit the parallelism.

The idea of front-end throttling is not new. However, traditionally, these

techniques are employed largely for on-chip power-consumption reduction. But, as

one can clearly derive, throttling of the front-end of the pipeline would reduce the

number of cycles for which each instruction resides in the IQ before issue, which in

turn serves to directly reduce the vulnerability of the structure.

As we know, different applications behave differently, and even a single appli-

cation has distinct phases differing in behavior, throughout its execution. Because

of this, we cannot expect the same level of throttling to work for all applications, or

even for multiple phases of a single application. Hence, we implement adaptive front

end throttling schemes in which the throttling level is changed at fixed intervals, de-

pending upon the behavior of the application. In each of the methods implemented,

we choose a suitable trigger based on the value of which the decision to throttle is
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made. We maintain a dynamic threshold for this trigger value, which specifies the

maximum value that the trigger can take at any point of time. At any cycle, if the

trigger surpasses its threshold value, we throttle the front end. We dynamically

tune for the least value of this threshold such that the performance degradation

does not exceed 2%. To perform this dynamic tuning, we use an algorithm derived

from the one proposed by Balasubramonian et al [20] for finding optimal cache sizes.

The entire program execution is divided into intervals (100K cycles in our simula-

tions). At the end of each interval, a hardware counter is examined which gives the

IPC experienced by the application in the past interval. Based on this information,

the threshold value is updated. The decision to throttle the front-end is done on a

cycle-by-cycle basis.

The selection mechanism for the threshold is as follows. For the very first

interval, we let the application run with the threshold set to the maximum possible

value, i.e., without any throttling employed. We record the IPC during this interval

as our base IPC. For the next interval, the threshold is set to the minimum possible

value, i.e., with maximum throttling employed. In subsequent intervals, threshold

is incremented by a fixed quantity called a step until the performance for an interval

falls within 2% of the base IPC. We call this as a tuning period. After this tuning

period, the threshold is kept at this optimum value. The base IPC is refreshed once

in every window of 20 intervals. This is done by resetting the threshold back to

the maximum value once in each window of 20 intervals and repeating the process

mentioned above. Typically a phase change occurs only once in several 100’s of

intervals or more. During any cycle, if the trigger value exceeds the set threshold,
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we disable the fetch and decode stages for that cycle.

We chose an interval size of 100K cycles so as to react quickly to changes

without letting the selection mechanism pose a high cycle overhead. We chose a

moderate window size of 20 intervals to ensure that any phase changes are captured

quickly enough. Since, a phase change can occur very early in a window, if the

window-size is set too high, the degradation in IPC becomes correspondingly higher.

With a window size of 20 intervals, we spend 5% of the total execution cycles (1 out

of every 20 intervals) in capturing the program behavior and the remaining 95% in

optimizing the AVF.

We simulated the following three schemes of front end throttling, as described

below, to reduce the AVF of the IQ.

(1) Occupancy based Throttling

(2) Flow based Throttling

(3) Rate based Throttling

4.2.1 Occupancy based Throttling

Intuitively, the most direct metric to use as a trigger to employ throttling would

be the occupancy of the Issue Queue itself, since we are aiming at reducing the IQ

utilization. Hence, in our first scheme, the front end of the pipeline is throttled based

on the number of instructions residing in the IQ, during each cycle. Hence, the oc-

cupancy of the issue queue is the trigger, and the maximum IQ occupancy possible

(MAX Occupancy) as our threshold. Initially, MAX Occupancy is set to the orig-
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Figure 4.1: Pipeline with Control Logic for Occupancy Based Throttling

inal IQ Size, which is the maximum value possible for the IQ occupancy (32 entries

in our case). As elaborated earlier, the base IPC is recorded after the first interval.

In the following interval, we set the minimum possible MAX Occupancy, which we

set as 10% of the original IQ Size. In subsequent intervals, MAX Occupancy is in-

creased by steps of 10% of the IQ size until the performance of a particular interval

comes within 2% of the base IPC. MAX Occupancy is then held at this optimum

value until a window of 20 intervals expires. Once the window expires, we resume
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the dynamic tuning, and repeat the process. The decision to throttle the front-end

is done on a cycle-by-cycle basis. If, in a particular cycle, the IQ occupancy exceeds

the MAX Occupancy threshold value, fetch and decode stages are disabled in that

cycle.

4.2.2 Flow based Throttling

Figure 4.2: Pipeline with Control Logic for Flow Based Throttling

With this technique, the trigger employed is the total number of in-flight

instructions, during each cycle. An instruction is said to be in-flight after it is
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decoded and before it is committed. This method is based on the observation that,

increasing the number of active instructions in the pipeline beyond a limit, does

not offer any significant performance benefits. Similar to the previously discussed

method, the threshold value is the maximum number of in-flight instructions pos-

sible (MAX Count). The MAX Count is initially set to the maximum possible

value (256 in our case). The IPC is recorded after one 100K cycle interval as the

base IPC. For the next interval, MAX Count is set to its minimum possible value,

which is 16 instructions. In subsequent intervals, MAX Count is increased by steps

of 16 instructions each until the performance for an interval falls within 2% of the

base IPC. MAX Count is held at this optimum value until a window of 20 inter-

vals expire. Once the window expires, we reset the MAX Count to its maximum

value of 256 and resume the dynamic tuning. The decision to throttle is done on

a cycle-by-cycle basis. If the total number of in-flight instructions in a particular

cycle exceeds the threshold value of MAX Count, the front-end is throttled for that

cycle.

4.2.3 Rate based Throttling

We observe from wide-issue superscalar simulations that in program phases

where instruction level parallelism (ILP) is limited, there is often a significant mis-

match between the front-end decode rate and the back-end retirement rate, leading

to an un-necessarily high utilization of the issue queue. In the rate based throttling

method, we estimate that sufficient amount of parallelism exists when the number of
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Figure 4.3: Pipeline with Control Logic for Rate Based Throttling

instructions that are decoded exceeds significantly the number of instructions that

are committed. We slow down the front end based on the Decode-rate to Commit-

rate ratio mismatch, on a cycle by cycle basis. In this method, our threshold

value is the maximum ratio of decode to commit rate (MAX Rate). Initially, the

MAX Rate is set to the maximum possible value (4 in our simulations). The IPC

is recorded after one 100K cycle interval as the base IPC. In the following inter-

val, the MAX Rate is set to minimum, which is 1, since a decode-to-commit ratio

less than 1 is sure to stall the execution. In subsequent intervals, MAX Rate is
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increased by steps of 0.5 until the performance for an interval falls within 2% of the

base IPC. MAX Rate is set at this optimum value until a window of 20 intervals

expire. Once the window expires, we reset the D-C Rate to the maximum value

and perform the dynamic tuning again.

4.3 Overhead Incurred

We propose that the selection mechanism be implemented in software. After

every interval of 100K cycles, a low-overhead software handler will be invoked that

examines the necessary hardware counter holding the IPC of the previous interval

and updates the threshold value as dictated by the specific algorithm. For this, the

hardware overhead imposed is negligible. At the same time, the software implemen-

tation allows flexibility in terms of modifying the selection mechanism. We estimate

a code size of only a few tens of static assembly instructions for the software handler.

This amounts to only a fraction of the instructions executed during each interval

between successive invocations of the handler, resulting in a net overhead of around

0.1% or less. In terms of hardware overhead, we require roughly 4 20-bit counters to

keep track of the number of instructions committed, the number of cycles elapsed,

the number of intervals elapsed and the trigger value. Additional registers are re-

quired to store intermediate values such as the threshold and the base IPC. The net

overhead amounts to less than 5000 transistors.
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Chapter 5

EXPERIMENTAL RESULTS

5.1 Simulation Model

For our microarchitectural simulations, we used a modified version of the Sim-

pleScalar 3.0 simulator [10], [11]. We modified the simulator to model the front end

instruction delivery in more detail, and with better accuracy than in the baseline

simulator. The Instruction Issue Queue (IQ) was modeled as a separate structure

from the re-order buffer (ROB). We use fetch, decode and issue widths of 6, 6 and 4,

respectively. Though these lower numbers for the machine widths served to diminish

the relative improvements in soft error rates to some extent, we believe they present

more realistic machine widths compared to wider machines assumed for related work

[29]. Table 5.1 summarizes the processor configuration used in all simulations. We

use a number or integer and floating point benchmarks from the SPEC2000 suite.

We implemented the IQ as a circular FIFO queue without any collapsing.

That is, if an instruction in the middle of the IQ is issued, the corresponding entry

becomes empty. Even though collapsing makes more effective use of the instruction

queue, it is much more energy-consuming since collapsing implies a shift of all the

entries between the empty entry and end of the IQ, and hence not preferred.

For our simulations, we used a subset of the SPEC2000 integer and floating

point benchmarks (gcc, gzip, vpr, mcf, bzip2, art, equake, mesa and swim). Table 5.2
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Table 5.1: Processor Configuration

PARAMETER VALUE

ROB Size 256 entries

IQ Size 32 entries

LSQ Size 128 entries

Fetch Width 6 instructions/cycle

Decode Width 6 instructions/cycle

Issue Width 4 instructions/cycle

Commit Width 4 instructions/cycle

Branch Predictor Combined predictor : bimodal (8K entry) +

2-level adaptive (8K entry), 8K meta predictor

Functional Units 4 Integer ALUs

1 Integer Mult/Div unit

4 FP ALUs

1 FP Mult/Div unit

L1 cache : Split I and D caches 64KB, 2 way associative (each)

L2 cache : Unified 1MB 4 way associative

lists the skip interval and input set selected for each of the benchmarks chosen.

We obtained the skip interval using the SimPoint Analysis [26], [27]. For each

benchmarks, we obtained a number of simpoints. The numbers presented are for

the first simpoint of each benchmark. For each simpoint, we executed 100million

instructions (excluding NOPs).

Our calculations assume each entry of the instruction queue to be approxi-

mately 160 bits. The number of bits required per IQ entry is always much higher

than the number of bits in the instruction itself. This is because a large number of
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Table 5.2: SPEC2000 Benchmarks used and Instructions skipped.

Benchmark Instructions skipped

(in millions)

gcc-166 400

gzip-graphic 39000

vpr 57000

mcf 28300

bzip2-graphic 49400

art 39000

equake 16800

mesa 76000

swim 96600

additional bits are required to capture the state of the in-flight instruction.

In our bit-level ACE analysis, we assume all control bits in the IQ entries to

be always ACE bits. Also, for all valid IQ entries, the eight opcode bits are always

assumed ACE. This is because any flip in the opcode bits will cause the instruction

to be interpreted wrongly and might affect the output. For the dynamically dead

instructions, the five destination register specifier bits are also considered ACE,

apart from the opcode specifier bits and the control bits.

5.2 AVF of the Instruction Queue

This section presents the results of the first phase of our work - the quantifica-

tion of the AVF of the Instruction Issue Queue (IQ). According to the methodology
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mentioned in Chapter 4, we classified the bits that occupy the IQ into several cate-

gories. We find that the AVF of the IQ ranges between 18% and 49%. We observe

that Floating Point programs, in general, exhibit a higher AVF (35%) in compari-

son with Integer Programs (30%). In general, floating point programs have a large

number of long-latency instructions and fewer branch mispredictions. This leads

to a greater instruction queue utilization for floating point programs and hence a

higher AVF.

Figure 5.1 shows the split-up of the total bits in the IQ. We observed 32.7% of

ACE bits, 33.8% idle bits, 4.9% mis-speculated instruction bits, 18.9% of un-used

bits in the IQ slots which does not matter, 0.8% of masked operand bits and 8.9%

of dynamically dead instruction bits.

Figure 5.1: Bit-level Classification of the IQ Contents
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5.3 Effects of Front-End Throttling

The effects of the three schemes of front-end throttling on (i) the average num-

ber of cycles that an instruction resides in the IQ before it is issued, (ii) performance,

(iii) AVF and (iv) MITF are discussed in this section.

5.3.1 Reduction in the Residency Cycles in IQ before Issue

Figure 5.2 shows the variation in the average number of cycles that an instruc-

tion resides in the Instruction Queue before issue. Since the intuition behind our

work was to deliver the instructions into the IQ just in time for issue, reduction in

the residency cycles in the IQ before issue is a direct pointer to the validity of our

reasoning.

On average, an instruction resided in the IQ for 8.52 cycles before issue with-

out any throttling employed. On employing the Instruction Decode-Retirement

Rate based throttling scheme, there was a 13.4% reduction in this value. The resi-

dency cycles in the IQ reduced to 7.40 cycles. The In-flight instruction Flow based

throttling and IQ Occupancy based throttling schemes yielded 18% and 24.3% im-

provements in the same, reducing the average number of residency cycles to 6.99

and 6.44 respectively.

5.3.2 Improvement in AVF

Figure 5.3 depicts the relative improvements in the architectural vulnerability

factor due to the different throttling methods explored. Without any throttling,
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Figure 5.2: Effect on the Average Number of Residence Cycles in IQ before Issue

we measured the original AVF of the instruction queue as 32.7%. By employing

the rate-based, flow-based and occupancy-based throttling schemes, we were able to

reduce the AVF figure to 27.4%, 25.8% and 24.1% respectively. Thus we obtained an

improvement in the AVF by 16.5%, 21.1% and 26.3% for the Decode-Commit Rate

based throttling, In-flight instruction flow based and IQ occupancy based throttling

respectively.

5.3.3 Degradation in Performance

Figure 5.4 depicts the degradation in performance as a result of the throttling

schemes employed. The maximum degradation in performance was observed with
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Figure 5.3: Improvement in AVF

the IQ Occupancy based throttling scheme. With this method, the average IPC

degradation of 2.6% was observed. The maximum degradation was recorded for

the benchmark gcc as 3.6%. For the In-flight Instruction flow based throttling, an

average IPC reduction of 2.1% was recorded. The maximum degradation occurred

was 2.6%. For the Decode-Retirement Rate based throttling, we observed an average

performance degradation of 1.6%. A maximum degradation of 2.2% was recorded

for this scheme.
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Figure 5.4: Degradation in Performance

5.3.4 Reliability-Performance Trade-off

The Mean Instructions to Failure (MITF) figures gives us the reliability-

performance trade-off. Assuming a constant value for the frequency of operation

and the raw error rate, we figure out the improvement in MITF as the improvement

in the ratio IPC

AV F
. Figure 5.5 shows the relative improvements in MITF due to the

three schemes of front-end throttling. We observed 13%, 16.3% and 22.7% increase

in the IPC

AV F
and hence the MITF due to Decode-Retirement based throttling, In-flight

instruction limit throttling, and IQ occupancy based throttling respectively.
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Figure 5.5: Improvement in MITF

5.4 Observations

The front-end throttling methods were observed to result in an increase in

the number of idle bits in the IQ, and to a lesser extent, reduction in the wrong-

path instruction bits. The increase in the idle bits aids the reduction of the AVF,

whereas the reduction in the wrong-path bits serves to decrease the total number

of un-ACE bits and hence increase the AVF. The throttling methods in the power-

reduction research area, aims mainly to reduce the speculative instructions being

fetched. However, in our case, the reduction in the wrong path bits serves to increase

the AVF, since these bits are already categorized as un-ACE. The reduction in the

wrong path bits was highest for the Decode-Commit rate based throttling technique.
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For this method, we observed the number of wrong path bits to be 2.9% of the total

bits, where-as for the flow based and occupancy based throttling, the figures were

3.6% and 3.9% respectively. The contribution of idle bits increased from 33.8% to

greater than 38% for all three cases. This substantiates the achievement of our goal

of reducing the IQ utilization, with minimal performance impact.

From the results of our experiments, we observe that the IQ Occupancy based

throttling gives the best improvement in AVF, without significant degradation in the

performance, as is made clear by the MITF figures. We reason that this is due to the

finer-grained throttling employed with this method. Since the maximum IQ occu-

pancy possible is 32 in our experiments, we get to establish the throttling threshold

very near to the ideal value for each phase in different applications. Whereas, in

the case of in-flight instruction flow based throttling, we can have a maximum of

256 in-flight instructions. Due to this, we had to opt for a coarse-grained step of 16

instructions, in our algorithm. A finer-grained control in this method increases the

tuning period beyond our chosen instruction window length, and this was observed

to negatively affect the results. The case is similar with the Decode-Retirement rate

based throttling. In this method, we observe the highest reduction in incorrectly

speculated instructions. While this serves greatly for other purposes like power

reduction, this does not help our cause of reducing the AVF of the IQ. Since we

already classify any wrong path instructions as un-ACE already, the reduction in

wrong path instructions serves to increase the AVF.
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Chapter 6

SUMMARY AND CONCLUSION

6.1 Summary

Transient faults due to energetic particle strikes have become a key challenge

in modern microprocessor design. Existing techniques to counter these faults come

at the cost of significant penalties in power, performance, die area and design time.

Even though the soft error rates of individual transistors are projected to remain as

roughly the same for the next several technology generations, the overall per-chip

fault rates will continue to increase exponentially in accordance to Moore’s law.

As a result, even logic elements, which were not a great concern in the reliability

perspective earlier, have become a major source of concern. In this thesis, we address

the question of bringing down the soft error rates in a cost-effective fashion.

Soft errors in microprocessors can be categorized as Silent Data Corruption

(SDC) and Detected Recoverable Errors (DUE). SDC errors occur when a structure

does not have any form of error detection or correction features. In such a case, a

soft fault would go undetected, and can potentially cause errors in the final output.

On the other hand, DUE errors happen, when the structure has only error detection

features. Error detection features do not serve to decrease the soft error rates, but

can ensure a clean output by providing a fail-stop behavior. Finally, if the structure

has error correction features, any fault that might happen will get corrected in
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time, preventing the manifestation of errors. The overall error rate of a processor

is given by the sum of its SDC and DUE error rates. The SDC and DUE error

rates of the processor are in turn, the sum of the contributions by its individual

components. In our work, we focused on improving the SDC error rate of a processor

by targeting logic structures, since most of today’s processors have their memory

structures well protected. We concentrated on the structure with the highest SDC

rate - the Instruction Issue Queue (IQ).

In this paper, we introduced a simple approach to reduce the SDC rate of

the IQ, and hence the overall soft error rates of a microprocessor. We reduced the

amount of time for which a valid instruction sits in the IQ before it issue, by disabling

the fetch and decode stages whenever we determine that fetching and dispatching

more instructions into the IQ will not hold any significant performance advantage.

We reason that a fault is less likely to occur in a structure, if it holds fewer valid bits.

We implemented our idea of front-end throttling with three different parameters as

the basis of the throttling decision: the occupancy of the IQ, the total number of

in-flight instructions and the decode-to-commit rate mismatch.

6.2 Conclusion

We proposed a novel cost-effective approach to reduce the SDC AVF and hence

the soft error rates of an Instruction Issue Queue. We exploit the design inefficiency

of the front end of the pipeline, by stalling the fetch and decode stages, when-

ever the IPC will not be affected significantly. This method, traditionally used as
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a power-reduction technique among the computer architecture research community,

was observed to reduce the average time that an instruction sits in the vulnerable in-

struction issue queue before its issue by up to 24.3%. Since this caused performance

degradation to a certain extent, we estimated the trade-off between performance

and reliability. The improvement in the performance to reliability (IPC/AVF) and

hence the Mean Instructions to Failure (MITF) was upto 22.7%. We observed a

reduction in the SDC AVF, and hence the SDC error rates of the IQ by upto 26.3%

using our schemes. The proposed method is cost-efficient as it does not incur signif-

icant hardware or software overheads. The average performance penalty recorded

was only at most 2.6%.
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