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Empirical analyses of high-dimensional biomedical data, including genomics, proteomics,

microbiome, and neuroimaging data, consistently reveal the presence of strong modularity in

the dependence patterns. In these analyses, highly correlated features often form a few distinct

communities or modules, which can be interconnected with each other. While the intercon-

nected community structure has been extensively studied in biomedical research (e.g., gene co-

expression networks), its potential to assist in statistical modeling and inference remains largely

unexplored. To address this research gap, we propose novel statistical models and methods that

capitalize on the prevalent community structures observed in large covariance and precision ma-

trices derived from high-dimensional biomedical interconnected data.

The first objective of this dissertation is to delve into the algebraic properties of the pro-

posed interconnected community structures at the population level. Specifically, this pattern

partitions the population covariance matrix into uniform (i.e., equal variances and covariances)



blocks. To accomplish this objective, we introduce a block Hadamard product representation

in Chapter 2, which relies on two lower-dimensional “coordinate” matrices and a pre-specific

vector. This representation enables the explicit expressions of the square or power, determi-

nant, inverse, eigendecomposition, canonical form, and the other matrix functions of the original

larger-dimensional matrix on the basis of these lower-dimensional “coordinate” matrices.

Estimating a covariance matrix is central to high-dimensional data analysis. Our second

objective is to consistently estimate a large covariance or precision matrix having an intercon-

nected community structure with uniform blocks. In Chapter 3, we derive the best-unbiased

estimators for covariance and precision matrices in closed forms and provide theoretical results

on their asymptotic properties. Our proposed method improves the accuracy of covariance and

precision matrix estimation and demonstrates superior performance compared to the competing

methods in both simulations and real data analyses.

In Chapter 4, our goal is to investigate the effects of alcohol intake (as an exposure) on

metabolomics outcome features. However, similar to other omics data, metabolomic outcomes

often consist of numerous features that exhibit a structured dependence pattern, such as a co-

expression network with interconnected modules. Effectively addressing this dependence struc-

ture is crucial for accurate statistical inferences and the identification of alcohol intake-related

metabolomic outcomes. Nevertheless, incorporating the structured dependence patterns into mul-

tivariate outcome regression models remains difficulties in accurate estimation and inference. To

bridge this gap, we propose a novel multivariate regression model that accounts for the correla-

tions among outcome features using a network structure composed of interconnected modules.

Additionally, we derive closed-form estimators of regression parameters and provide inference

tools. Extensive simulation analysis demonstrates that our approach yields much-improved sen-



sitivity with a well-controlled discovery rate when benchmarking against existing multivariate

regression models.

Confirmatory factor analysis (CFA) models play a crucial role in revealing underlying latent

common factors within sets of correlated variables. However, their implementation often relies on

a strong prior theory to categorize variables into distinct classes, which is frequently unavailable

(e.g., in omics data analysis scenarios). To address this limitation, in Chapter 5, we propose

a novel strategy based on network analysis that allows data-driven discovery to substitute for

the lacking prior theory. By leveraging the detected interconnected community structure, our

approach offers an elegant statistical interpretation and yields closed-form uniformly minimum

variance unbiased estimators for all unknown matrices. To evaluate the effectiveness of our

proposed estimation procedure, we compare it to conventional numerical methods and thoroughly

validate it through extensive Monte Carlo simulations and real-world applications.
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Chapter 1: Introduction

1.1 Estimation of Large Covariance Matrix

Technological innovation has had a profound impact on scientific discoveries by integrat-

ing the analysis of large-scale datasets into various fields. Statistically, a covariance matrix or the

precision matrix (i.e., the inverse of a covariance matrix) is crucial in understanding the intricate

relationships among massive and dependent covariates. Thus, considerable attention has been

concentrated on the use of an appropriate covariance (or precision or correlation) matrix estima-

tor. A practical issue arises from the fact that the sample size n in research is often inadequate in

comparison to the number of covariates, say p. Thus, when the number of covariates exceeds the

sample size, i.e., p > n, the sample covariance matrix, which is a natural choice of the covariance

matrix estimator in the case p < n, fails to be a reliable estimator due to the absence of positive

definiteness (Dykstra, 1970) and the inconsistency of eigenvalues and eigenvectors (Johnstone,

2001; Johnstone and Lu, 2009; Johnstone and Paul, 2018). Consequently, Fan (2005) asserted

that it is essentially challenging to obtain an appropriate covariance estimator without imposing

a structure assumption on a large covariance matrix.
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1.2 Classical Covariance Structures

Focus has been devoted to structured or patterned matrices, not only because they hold

significance in theoretical analyses for multivariate models but also because they serve as funda-

mental tools in numerous applications. Many notable instances of structured matrices have found

applications in multivariate analysis.

One straightforward example involves testing a given (known) covariance matrix statisti-

cally based on multivariate normal observations (Korin, 1968). Another example is the adop-

tion of a sphericity structure by Mauchly (1940), where the diagonals are identical and the off-

diagonals are zero. Wilks (1946) then proposed an intraclass, or called uniform, or complete

symmetry structure, characterized by equal diagonals and equal off-diagonals. Wilks developed

likelihood ratio tests (LRTs) to statistically evaluate hypotheses related to population means or

population covariance structures. The estimation and hypothesis testing problems under the uni-

form covariance structures were further explored by Roy and Murthy (1960); Geisser (1964);

Aitkin et al. (1968); Haq (1974); Mathai and Katiyar (1979); Clement et al. (1981); Bhoj (1987),

and others. Building upon Wilks’ uniform structure, Votaw (1948) introduced two types of com-

pound symmetry structures, wherein the blocks exhibit uniform structures and derived the LRTs

for the corresponding hypotheses. The exact distributions of the LRTs were examined by Con-

sul (1968) and Mathai and Rathie (1970). From a symmetry perspective, matrices with Toeplitz

or circular Toeplitz structures have proven essential in various applications, including physics,

mathematics, and signal processing (Olkin and Press, 1969; Olkin, 1972).

Many classical covariance structures can be generalized to linear structured covariance

matrices, wherein only a few covariance parameters are unknown (Srivastava, 1966; Anderson,
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1969; Anderson et al., 1970; Anderson, 1973). Furthermore, reducible and totally reducible

matrices were investigated by Rogers and Young (1975), Young (1976), and Sinha and Wieand

(1979).

In addition to parameterizing the covariance matrix unknown up to serval parameters, an-

other approach to design the covariance matrix is by adopting blocks in the covariance structure.

For instance, Afifi and Elashoff (1969) partitioned the covariance matrix based on the dichoto-

mous and continuous variables. The block versions of Wilks’ uniform structure were discussed

by Fleiss (1966), Arnold (1973), and Rogers and Young (1974), while the block forms of Votaw’s

compound symmetry structures were extended by Szatrowski (1982) and Žežula et al. (2018).

1.3 Recent Developments of Covariance Structures

Recent statistical methods have made successful advancements in addressing the estimation

problem associated with high-dimensional structured covariance matrices within the asymptotic

framework where the number of covariates p grows with the sample size n together. For exam-

ple, a shrinkage method involves shrinking the sample covariance matrix to the identity matrix

(Ledoit and Wolf, 2004). Several penalty methods have also been established to estimate large-

scale covariance and precision matrices (Friedman et al., 2008; Rothman et al., 2008; Lam and

Fan, 2009; Ravikumar et al., 2011). Under the assumption of bandability, i.e., the entries in the

covariance matrix decrease to zero from the diagonal to the off-diagonal direction, the banding

or (its smooth version) tapering covariance estimator has been proposed (Wu and Pourahmadi,

2003; Bickel and Levina, 2008a; Bickel and Gel, 2011). Additionally, various versions of thresh-

olding covariance estimators, along with their theoretical properties such as optimal convergence
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rates under different matrix norms, have been studied (Karoui, 2008; Bickel and Levina, 2008b;

Rothman et al., 2009; Cai and Liu, 2011; Cai and Yuan, 2012).

However, the sparsity assumption may be violated in many real-life applications. For in-

stance, the financial returns and house prices studies (Fan et al., 2016), and the interactive features

in biomedical studies (Chen et al., 2018). The spiked sparse covariance matrix has been explored

by Johnstone (2001). Alternatively, the conditional sparsity assumption, i.e., a structure assump-

tion combined with sparsity and low-rank approximation, has been proposed, and the large co-

variance matrices have been consistently estimated using multi-factor models (Fan et al., 2008,

2013, 2018). Under another non-sparsity assumption, i.e., the Toeplitz structure (a special case

of bandable covariance structure), Cai et al. (2013) and Cai et al. (2016) have studied the problem

of estimating large covariance matrices and optimal convergence rates. Expository literature on

structured covariance matrix estimation can be found in Pourahmadi (2013), Wainwright (2019),

and Fan et al. (2020).

1.4 Interconnected Community Structure

The accumulating availability of community detection, network division, or clustering tech-

niques has led to enormous scientific discoveries and challenges in many studies involving large-

scale networks, such as biologics, biomedicine, plant science, computer science, finance, social

networks (Newman, 2006). Characterizing the structures or latent patterns in networked systems

is crucial as they may quantitatively describe the complex interactions among high-dimensional

features or variables (Wu et al., 2021). Novel discoveries based on structured networks could

deepen our understanding of the scientific mechanisms behind them, see various real examples in
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He et al. (2015), He et al. (2019), Pal et al. (2020), and Perrot-Dockès et al. (2022). Conventional

community detection methods typically impose an independence assumption that the latent com-

munities are not correlated, resulting in block-diagonal structures in networks, particularly when

the number of features in networks is extremely high (Zhao, 2017; Lee and Wilkinson, 2019).

However, modeling the networks with independent communities may mislead subsequent statis-

tical analysis due to oversimplification. Alternatively, an interconnected community structure is

much more flexible for network analysis by allowing non-null connections among features at the

community level. In other words, we may add non-null off-diagonal blocks to the structure of

networks to represent correlations among communities. Wu et al. (2021) examined the relation-

ships between the independent communities and interconnected communities, as well as between

overlapped communities and interconnected communities.

1.5 A New Interconnected Community Structure with Uniform Blocks

In the present dissertation, we propose an interconnected community structure that exists

in a wide range of high-dimensional datasets. This structure can be implemented in popula-

tion covariance matrices, correlation matrices, or weighted adjacency matrices in various fields,

including genetics, proteomics, brain imaging, and RNA expression data, among many others.

From a sample perspective, an interconnected community structure with well-organized

blocks is widely observed. It exhibits several characteristics: (1) it is latent, meaning that network

or community detection algorithms need to be employed to analyze the raw data in a preliminary

study; (2) it is non-sparse, i.e., the elements of the covariance or correlation matrix have small but

non-zero values; (3) it demonstrates an almost constant-valued block form, where the elements
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within each block are nearly identical, exhibiting low variability; and (4) it may contain single-

tons or isolated nodes. When the singletons are identified, we refer to the proposed structure as

an interconnected community structure with generalized well-organized blocks. In other words,

we can form an interconnected community structure with well-organized blocks from a gener-

alized version by extracting the features that are reordered by community detection algorithms

and excluding the singletons. The population versions of the interconnected community struc-

tures with (generalized) well-organized blocks are referred to as the interconnected community

structure with (generalized) uniform blocks.

Yeast Genome Study. One example of the interconnected community structure with well-

organized blocks (without singletons) is observed in the yeast genome study (Spellman et al.,

1998). We plot a heat map of the sample correlation matrix for 724 selected genes in Fig-

ure 1.1(B), where a K-medoids clustering algorithm was applied to the raw dataset, see Fig-

ure 1.1(A). Figure 1.1(C) represents the population correlation matrix may have 8 by 8 uniform

blocks.

Proteomics Study. Another example is from a proteomics study (Yildiz et al., 2007) in

Figure 1.1(D). The sample correlation matrix is analyzed, revealing an interconnected community

structure with generalized well-organized blocks among 184 protein features using the NICE

algorithm (Chen et al., 2018) in Figure 1.1(E). Extracting the structure without singletons results

in a sample correlation matrix with 107 protein features, shown in Figure 1.1(F). It suggests a

population correlation matrix with the corresponding uniform-block structure in Figure 1.1(G).

Seed Quality Study. A 923 by 923 sample correlation matrix is calculated from raw seed

quality data (Perrot-Dockès et al., 2022), plotted in Figure 1.1(H). An interconnected community

structure (without singletons), as shown in Figure 1.1(I) in the sample correlation matrix, is
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provided by a hierarchical clustering algorithm. This implies a population correlation matrix

with the corresponding 7 by 7 uniform-block structure. See the illustration in Figure 1.1(J).

NMR Study. We observe a 249 by 249 sample correlation matrix calculated from a subset

of raw NMR data (Ritchie et al., 2023) in Figure 1.1(K). An interconnected community structure

with generalized well-organized blocks is revealed in the sample correlation matrix by a commu-

nity detection algorithm (Chen et al., 2023). See Figure 1.1(L). A 170 by 170 sample correlation

matrix (of residuals) extracted in Figure 1.1(M), which implies a population correlation matrix

with the corresponding 5 by 5 uniform-block structure in Figure 1.1(N).

Exposome and Metabolites Study. Another real-data example of the pattern of well-organized

blocks in sample correlation matrices is found in a study involving the exposome and metabolites

(ISGlobal, 2021). Figures 1.1(O) and (S) are the heat maps of the correlation matrices among

exposome and metabolite features, respectively. In this study, there are 169 exposome variables

and 221 metabolite variables for 1192 subjects. In particular, Figure 1.1(P) contains the heat

map of the sample correlation matrix calculated by the clustering method (Wu et al., 2021) for

exposome variables, while Figure 1.1(T) contains the heat map of the sample correlation matrix

calculated by the clustering method for metabolite variables. Omitting the singletons, 89 out of

169 exposome variables are identified to form a 9 by 9 well-organized blocks (Figure 1.1(Q)) and

141 out of 221 metabolite variables (Figure 1.1(U)) are identified to form a 7 by 7 well-organized

blocks. We may assume that their population correlation matrices have block forms, as shown in

Figure 1.1(R) and (V), respectively.

EPSI Study. The presence of an interconnected community pattern is detected in the sample

correlation matrix for an echo-planar spectroscopic imaging (EPSI) dataset, including 445 com-

binations of neurometabolites and regions-of-interest (ROIs) detected by the NICE algorithm
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(Chen et al., 2018) and shown in Figure 1.1(W) and (X). Among these 445 combinations, the

sample correlation matrix of 227 combinations is extracted and implies the underlying popula-

tion correlation matrix has the structure of uniform blocks in Figure 1.1(Y) and (Z).

Other Studies. In addition to the above studies, analogs of the interconnected community

pattern were uncovered in a cutaneous melanoma dataset from the genome-wide association study

(He et al., 2015), a neuroimaging activation and connectivity dataset, a DNA methylation dataset

(Chen et al., 2016), and a gene expression profiling dataset from the host peripheral blood study

(Chen et al., 2018). Recently, it was extracted from a multiple myeloma dataset (He et al., 2019),

a citation network study (Pal et al., 2020), and an RNA-seq dataset from the cancer genome atlas

study of acute myeloid leukemia (Wu et al., 2021).

Throughout the current research, we concentrate on the population covariance matrices

having interconnected community structures with uniform blocks, as illustrated in Figure 1.1(C),

(G), (J), (N), (R), (V), and (Z). The proposed interconnected community structure with uniform

blocks has two-fold advantage. On the one hand, it leads to a dramatically reduced number of

covariance parameters (from p(p+1)/2 to K +(K +1)K/2 where K is the number of diagonal

blocks) but remains adequate flexibility to deal with the arbitrary dependency between covariates.

On the other hand, the non-sparse uniform correlations between blocks might represent some

stability (e.g., with respect to time or location in applications (Votaw et al., 1950)) and symmetry

in experimental quantities, therefore, improving the interpretations.
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1.6 Organization

The rest of the dissertation is organized as follows. The definitions and properties of

uniform-block matrices and their applications in hypothesis tests are presented in Chapter 2.

An estimation procedure for the covariance matrix that is assumed to have the uniform-block

structure is conducted under both low- and high-dimensional frameworks in Chapter 3. Multi-

variate outcomes having an interconnected community structure with uniform blocks are ana-

lyzed by using autoregressive regression models in Chapter 4. A semi-confirmatory factor model

with uniform-block interconnected community structure is studied and an estimation procedure

is proposed for the unknown matrices and factor scores in Chapter 5. All technical proofs and

supplementary materials are appended at the end of the dissertation.
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Figure 1.1: The plots in the first column are the heat maps of sample correlation matrices for the
raw datasets. The plots in the second column are the heat maps of sample correlation matrices
with reordered features/variables using community detection algorithms. We call these structures
interconnected community structures with (generalized) well-organized blocks (if the singletons
exist). The plots in the third column are the heat maps of sample correlation matrices with fea-
tures/variables that are extracted from the reordered ones. We call these structures interconnected
community structures with well-organized blocks. The plots in the fourth column are the heat
maps of population correlation matrices that are assumed to have the interconnected community
structures with uniform blocks.
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Chapter 2: A New Representation of Uniform-Block Matrix and Applications

2.1 Introduction

Covariance matrices with specific structures or patterns have been extensively studied for

their crucial roles in theoretical and practical applications of multivariate analysis. Numerous ex-

amples of structured covariance matrices have been employed in multivariate analysis. Mauchly

(1940) proposed a spherical covariance matrix with identical positive variance parameters along

the diagonal and zero correlation parameters off the diagonal. Wilks (1946) extended the spheric-

ity structure to have equal non-zero values for the off-diagonal correlation parameters, terming

it the uniform (intraclass or complete symmetry) structure in the application to parallel forms of

a test in educational studies. Furthermore, Votaw (1948) expanded Wilks’ complete symmetry

structure by incorporating the interchangeability of mutually exclusive subsets of variables, intro-

ducing two types of compound symmetry covariance structures, which were utilized in medical

experiments (Votaw et al., 1950). In addition to the spherical and intraclass symmetric structures,

Olkin and Press (1969) proposed another covariance structure known as circular symmetry, which

was applied in physical studies and time series analysis.

A number of technological breakthroughs have led to significantly large-dimensional vari-

ables in real-world practice, necessitating the consideration of more complex covariance struc-

tures to reduce dimensionality. Customarily, various covariance structures have been developed,
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including the bandability (Wu and Pourahmadi, 2003; Bickel and Levina, 2008a), the sparsity

(Karoui, 2008; Bickel and Levina, 2008b; Cai and Liu, 2011), and the combination of sparsity

and low-rank (Fan et al., 2008, 2011). Alternatively, to address the high dimensionality problem,

covariance matrices can be assumed to have a block structure, where the number of unknown

parameters is remarkably smaller than the original dimension. For instance, Rogers and Young

(1974) generalized Wilks’ intraclass structure to an arbitrary order in an educational study, such

that all diagonal blocks have the same intraclass form, as do all off-diagonal blocks. Szatrowski

(1976) studied covariance matrices with block compound symmetry structures, including type I

and type II, and applied them to the analysis of educational testing data (Szatrowski, 1982). Olkin

(1972) introduced circular symmetry structures in blocks and proposed a more general structure

known as block circular symmetry for applications in physics. Roy and Leiva (2011), Roy et al.

(2015), Roy et al. (2016), and Žežula et al. (2018) have extensively investigated a block structure

referred to as blocked compound symmetry or equicorrelation (partition) (Leiva, 2007; Roy and

Leiva, 2008), and applied it in brain imaging and bone densitometry studies. In this chapter, our

focus is on a covariance or correlation matrix with a particular block structure that is commonly

observed in empirical applications.

We concentrate on investigating a specific block pattern called uniform-block (UB) struc-

ture, motivated by its numerous real-world applications in Chapter 1. Specifically, the UB struc-

ture is characterized by diagonal and off-diagonal elements within each diagonal submatrix be-

ing equal to two constants and all elements within each off-diagonal submatrix being equal to a

constant. A partitioned matrix having a uniform-block structure is denoted as a uniform-block

matrix. The concept of UB structures is not completely new and has been introduced by various

researchers in different contexts. For instance, Geisser (1963) referred to it as the uniform case
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of order m and derived an information test statistic for the population mean vector, when the co-

variance matrix of a normal population has a UB structure of order m = 1 or 2. Morrison (1972)

extended Geisser’s information test statistic to a more general order. Huang and Yang (2010) in-

vestigated the random sampling issues in the presence of a UB structure in the correlation matrix.

Cadima et al. (2010) referred to it as a k-group block structure and studied the eigendecomposi-

tion of correlation matrices with a UB structure. Roustant and Deville (2017) named a correlation

matrix with UB structure a parametric block correlation matrix with p blocks, and provided nec-

essary and sufficient conditions for its positive definiteness. Roustant et al. (2020) investigated

the Gaussian process regression problems using the name of generalized compound symmetry

block covariance matrices for UB matrices. Recently, Archakov and Hansen (2022) examined

this structured matrix, referring to it as a block matrix with block partition, and provided canoni-

cal forms for both symmetric and nonsymmetric cases.

However, to the best of our knowledge, there have been limited comprehensive studies on

the algebraic properties of UB matrices, which restricts their applications in various fields, in-

cluding statistics, biometrics, economics, finance, and others. For example, Geisser (1963) was

the first to derive the null distributions of the information test statistics concerning the population

mean vector(s) for both single and multiple samples, given a covariance matrix with a 2 by 2

UB structure. Specifically, Geisser (1963) derived an analogous version of Hotelling’s (general-

ized) T 2-statistic regarding the population mean vector based on a single normal sample, and an

analogous version of Hotelling’s (generalized) T 2
0 -statistic, known also as the Hotelling-Lawley

trace (Lawley, 1938; Hotelling, 1947, 1951), for testing the equality of population mean vectors

based on multiple normal samples. Under the null hypotheses, both of Geisser’s information

test statistics follow identical distributions as linear combinations of independent F -variates. Al-
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though Geisser (1963) and Morrison (1972) also extended these results to a general case with an

arbitrary number of diagonal blocks, proofs were omitted.

In this study, we presented the algebraic properties of UB matrices through a novel block

Hadamard product representation. In essence, given a vector consisting of the block sizes, a UB

matrix can be uniquely determined by a diagonal matrix and a symmetric matrix of much smaller

dimensions. Moreover, these two lower-dimensional matrices (and the block-size vector) can

be viewed as the “coordinates” of a UB matrix since many important algebraic calculations on

UB matrices only depend on their “coordinate” matrices. As a result, this representation greatly

simplifies the algebraic operations, including the power computation, inverse calculation, eigen-

values determination, and determinant evaluation of a UB matrix, by leveraging its “coordinate”

matrices. As an application in statistics, we revisited and rigorously established the exact null dis-

tributions of Geisser’s information test statistics for a general number of orders, including single

and multiple sample cases.

We organize the remainder of this chapter as follows. Section 2.2 presents the definitions

and properties of UB matrices. Section 2.3 and Section 2.4 demonstrate the exact null distribu-

tions of Geisser’s information test statistics for one-sample and multiple-sample cases, respec-

tively. Lastly, we summarize our findings and provide remarks and discussions in Section 2.5.

Technical proofs are given in Chapter A. Throughout this chapter, let ⊤ denote the transpose

of a vector or matrix. Let In, Jn ∈ Rn×n denote the identity matrix and all-one matrix, respec-

tively. Let 0n×m, 1n×m ∈ Rn×m denote the all-zero matrix and all-one matrix, respectively. Let

diag(·) and Bdiag(·) denote the diagonal matrix and the block-diagonal matrix, respectively. Let

tr(·) and det(·) denote the trace and determinant of a square matrix, respectively. Let sum(·)

denote the sum of all elements of a matrix. Let corr(Σ) = diag−1/2 (σ11, . . . , σpp) × Σ ×
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diag−1/2 (σ11, . . . , σpp) denote the correlation matrix of covariance matrix Σ with diagonal el-

ements σ11, . . . , σpp.

2.2 Uniform-Block Structure and Uniform-Block Matrix

In this section, we begin by defining a uniform-block structure and matrix. Next, we intro-

duce a block Hadamard product representation for uniform-block matrices, which unveils their

algebraic properties.

Definition 2.2.1 (partition-size vector and partitioned matrix by a partition-size vector). Given a

p by p matrix N ∈ Rp×p and a positive integer K ∈ Z+ such that K < p, we define:

(1) a column vector p = (p1, . . . , pK)
⊤ ∈ ZK

+ is a partition-size vector, if pk > 1 for every

k and p = p1 + · · ·+ pK;

(2) the K by K partitioned matrix (Nkk′) of N is the partitioned matrix of N by p, if the

(k, k′)-th block Nkk′ has dimensions pk by pk′ for k, k′ = 1, . . . , K.

Definition 2.2.2 (uniform-block structure and matrix). Given a partition-size vector p = (p1, . . . , pK)
⊤

and the K by K partitioned matrix (Nkk′) of a symmetric matrix N by p, we define:

(1) the structure of (Nkk′) is a uniform-block structure, if there exist real numbers akk and

bkk′ satisfying that the diagonal block Nkk = akkIpk+bkkJpk for every k = k′ and the off-diagonal

block Nkk′ = bkk′1pk×pk′
with bk′k = bkk′ for every k ̸= k′;

(2) the partitioned matrix (Nkk′) is a uniform-block matrix if it has the structure of uniform-

block. Furthermore, let N [A,B,p] = (Nkk′) denote this uniform-block matrix, where A =

diag (a11, . . . , aKK) is a K by K diagonal matrix and B = (bkk′) is a K by K symmetric matrix

with bk′k = bkk′ for every k ̸= k′.
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Remark (non-symmetric uniform-block structure and matrix). We impose the condition of sym-

metry on a uniform-block structure or matrix, as defined in Definition 2.2.2, because we will be

considering covariance or correlation matrices with this structure. However, it is worth noting that

a non-symmetric uniform-block structure and matrix can also be defined by removing the condi-

tion bk′k = bkk′ for every k ̸= k′, i.e., allowing B to be an arbitrary K by K matrix. Nonetheless,

throughout this chapter, unless explicitly stated otherwise, we refer to a uniform-block structure

or matrix as symmetric.

Following Definition 2.2.2, we introduce two important instances of UB matrices: the par-

titioned matrices of an identity matrix Ip and an all-one matrix Jp are UB matrices, by a pre-

determined partition-size vector p = (p1, . . . , pK)
⊤. For simplicity, we will use I [p] and J [p]

instead of I [IK , 0K×K ,p] and J [0K×K , JK ,p] throughout the chapter.

I [p] = I [IK , 0K×K ,p] = Ip =



Ip1 0p1×p2 . . . 0p1×pK

0p2×p1 Ip2 . . . 0p2×pK

...
... . . . ...

0pK×p1 0pK×p2 . . . IpK


,

J [p] = J [0K×K , JK ,p] = Jp =



Jp1 1p1×p2 . . . 1p1×pK

1p2×p1 Jp2 . . . 1p2×pK

...
... . . . ...

1pK×p1 1pK×p2 . . . JpK


.

Using the notations I[p] and J[p], we propose the following novel block Hadamard product

representation of a UB matrix, which extremely simplifies the algebraic calculations involving
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UB matrices.

Lemma 2.2.1 (block Hadamard product representation of a UB matrix). Given a pre-determined

a partition-size vector p = (p1, . . . , pK)
⊤, suppose the K by K partitioned matrix (Nkk′) of a p

by p symmetric matrix N by p is a UB matrix N [A,B,p], where A = diag (a11, . . . , aKK) is a

diagonal matrix and B = (bkk′) is a symmetric matrix with bk′k = bkk′ for every k ̸= k′. Then,

N [A,B,p] = A ◦ I [p] + B ◦ J [p] ,

holds uniquely for A and B, where ◦ denotes the block Hadamard product satisfying that A◦ I [p]

is the block-diagonal matrix Bdiag (a11Ip1 , . . . , aKKIpK ) and B ◦ J [p] is the symmetric block

matrix
(
bkk′1pk×pk′

)
.

Remark (block Hadamard product representation). The matrix operator ◦ can be regarded as a

specialized form of block Hadamard product that is specifically tailored for block matrices, as

discussed in works (Horn et al., 1991; Günther and Klotz, 2012). We provide an illustration of

Lemma 2.2.1 in Figure 2.1. A proof of Lemma 2.2.1 is available in Chapter A. From the proof,

it is evident that the block Hadamard product representation holds (except for uniqueness) when

pk = 1 for some k. Furthermore, the representation also holds for non-symmetric uniform-block

matrices.

By Lemma 2.2.1, the block Hadamard product representation is crucial for a UB matrix,

as it provides an explicit expression involving the diagonal matrix A, the symmetric matrix B,

and the partitioned-size vector p. Therefore, we suggest utilizing the notation N [A,B,p] in Def-

inition 2.2.2 (instead using the usual notation N (A,B,p)) throughout this chapter to emphasize
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Figure 2.1: Illustration of the block Hadamard product representation of a UB matrix
Σ [A,B,p] = A ◦ I[p] + B ◦ J[p], where p = (2, 3)⊤, K = 2, p = 5, each square repre-
sents an element of Σ [A,B,p], different colors represent different values.

the importance of this representation. As demonstrated below, A, B, and p are sufficient and

necessary for determining the expressions for the power, inverse (if it exists), and eigenvalues of

a UB matrix N [A,B,p].

Corollary 2.2.1 (algebraic properties of UB matrices). Given a common partition-size vector

p = (p1, . . . , pK)
⊤, suppose N = N [A,B,p], N1 = N1 [A1,B1,p] and N2 = N2 [A2,B2,p]

are UB matrices with K by K diagonal matrices A = diag (a11, . . . , aKK), A1, A2, K by K

symmetric matrices B = (bkk′), B1, B2. Let ∆ = A+B×P ∈ RK×K with P = diag(p1, . . . , pK).

(1) (Addition/Subtraction) suppose N∗ = N1 ± N2, then the partitioned matrix of N∗ by p

is a UB matrix, denoted by N∗ [A∗,B∗,p], where A∗ = A1 ± A2 and B∗ = B1 ± B2;

(2) (Product) suppose N∗ = N1 × N2, in general, N∗ is not a UB matrix. But, if N1 and N2

are commute, i.e., N1 × N2 = N2 × N1, then N∗ is a UB matrix, denoted by N∗ [A∗,B∗,p], where

A∗ = A1 × A2 = A∗,⊤ and B∗ = A1 × B2 + B1 × A2 + B1 × P × B2 = B∗,⊤; in particular,

(2-1) (Square) suppose N∗ = N×N, then the partitioned matrix of N∗ by p is a UB matrix,

denoted by N∗ [A∗,B∗,p], where A∗ = A × A and B∗ = A × B + B × A + B × P × B;
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(2-2) (Power) suppose N∗ = N × · · · × N = Nm with integer m ≥ 2, then the partitioned

matrix of N∗ by p is a UB matrix, denoted by N∗ [A(m),B(m),p
]
, where A(1) = A, B(1) = B,

A(m′) = A(m′−1)×A and B(m′) = A(m′−1)×B+B(m′−1)×A+B(m′−1)×P×B form′ = 2, . . . ,m;

(3) (Eigenvalues) N [A,B,p] has p real eigenvalues in total, those are akk with multiplicity

(pk − 1) for k = 1, . . . , K and the rest K eigenvalues are identical with those of ∆;

(4) (Determinant) N [A,B,p] has the determinant
(∏K

k=1 a
pk−1
kk

)
× det (∆);

(5) (Inverse) suppose N is invertible and N∗ = N−1, then the partitioned matrix of N∗ by p

is a UB matrix, denoted by N∗ [A∗,B∗,p], where A∗ = A−1 and B∗ = −∆−1 × B × A−1.

(6) (Canonical Form) let p̄0 = 0, p̄k =
∑k

k′=1 pk for k = 1, . . . , K (then p̄K = p), and λj

denote the j-th eigenvalue of N [A,B,p], where λ1 = · · · = λp̄1−1 = a11, λp̄1+1 = · · · = λp̄2−1 =

a22, . . ., λp̄K−1+1 = · · · = λp̄K−1 = aKK and the rest λp̄1 , λp̄2 , . . . , λp̄K are identical with the

eigenvalues of ∆ (in the decreasing order). Thus, there exists an p by p orthogonal matrix Γ

satisfying that Γ × N [A,B,p] × Γ⊤ = diag (λ1, λ2, . . . , λp) and Γ can be constructed by K

Helmert submatrices and K row vectors as follows:

Γ =



H̃1 0(p1−1)×p2 . . . 0(p1−1)×pK

ξ1,111×p1 ξ1,211×p2 . . . ξ1,K11×pK

...
... . . . ...

0(pK−1)×p1 0(pK−1)×p2 . . . H̃K

ξK,111×p1 ξK,211×p2 . . . ξK,K11×pK


,

where H̃k ∈ R(pk−1)×pk is the submatrix of a standard Helmert matrix of order pk without the first

row (Lancaster, 1965) and ξk = (ξk,1, ξk,2, . . . , ξk,K)
⊤ ∈ RK×1 is the eigenvector (normalized to
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the unit length) of ∆ corresponding to the eigenvalue λp̄k for every k.

Remark (sufficient and necessary condition for positive definiteness). Let P = diag(p1, . . . , pK).

We observe that the term ∆ = A + B × P plays a critical role in determining the eigenvalues,

determinant, and inverse of an invertible UB matrix N [A,B,p]. Although ∆ is not symmetric

in general, it has K real eigenvalues because ∆ =
(
AP−1 + B

)
P is similar to a real symmetric

matrix P1/2
(
AP−1 + B

)
P1/2 (because they have the same characteristic polynomial), which has

K real eigenvalues. Therefore, N [A,B,p] is positive definite or invertible, if and only if A is

positive definite (i.e., akk > 0 for every k) and ∆ has K positive eigenvalues.

Remark (quadratic subspace). Consider the trace as an inner product, and let A denote the finite-

dimensional Hilbert space of p by p real symmetric matrices. A subspace B of A is said to be a

quadratic subspace of A , if B ∈ B implies that B2 ∈ B (Seely, 1971). By the square property

in Corollary 2.2.1, the collection of all UB matrices having a common partition-size vector forms

a quadratic subspace. Quadratic subspaces are useful in studying the completeness of minimal

sufficient statistics in a family of multivariate normal distributions (Seely, 1971, 1977; Zmyślony,

1980). For example, Szatrowski (1980) explored the relationship between the quadratic subspace

and the explicit representation of maximum likelihood estimators for covariance matrices in a

normal model. Roy et al. (2016) proved the optimal properties of the unbiased estimator that they

derived for estimating a blocked compound symmetry covariance matrix.

Remark (algebraic properties for non-symmetric UB matrices). Most results in Corollary 2.2.1

also hold for non-symmetric uniform-block matrices. Specifically, the sum, difference, and prod-

uct of two non-symmetric UB matrices are still a non-symmetric UB matrix with the same ex-

pressions of A∗ and B∗ as in Corollary 2.2.1. The determinant and inverse (if it exists) of a
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non-symmetric UB matrix are also a non-symmetric UB matrix with the same expressions of A∗

and B∗. However, it is worth noting that although a non-symmetric UB matrix N [A,B,p] still

has p eigenvalues, i.e., akk with multiplicity (pk − 1) for every k and K eigenvalues of ∆, some

of the K eigenvalues of ∆ may be complex. Subsequently, we may rearrange the K Helmert

submatrices in Γ below the remaining K row vectors, resulting in a block-diagonal canonical

form for a non-symmetric UB matrix (please see Theorem 1 in Archakov and Hansen (2022)). If

∆ is diagonalizable, the canonical form will have a diagonal structure, and Γ remains the same

as in Corollary 2.2.1, where λp̄1 , . . . , λp̄K may be ordered in decreasing real parts.

The results in Corollary 2.2.1 highlight the following two-fold advantage of using the block

Hadamard product representations of UB matrices. First, calculations on K byK matrices A and

B can replace calculations on a larger p by p matrix N, where K is typically much smaller than

p, e.g., a proteomics study has K = 7 and p = 107 and a brain imaging study has K = 5 and

p = 227 in Chapter 3. This reduction in matrix size can significantly improve computational

efficiency. Second, the results involving addition or subtraction of UB matrices with a com-

mon partition-size vector, as well as operations such as taking the square (or power), computing

eigenvalues, determinant, and inverse (if it exists) of a UB matrix can be expressed in terms of

the “coordinates” A, B, and p. These results greatly facilitate the use of UB matrices in various

fields of applications. For example, in Chapter 3, we proposed the best-unbiased covariance- and

precision-matrix estimators when the number of diagonal blocksK is fixed, as well as a modified

hard-thresholding covariance matrix estimator when K grows with the sample size, respectively.

Before proceeding to hypothesis testing problems in the next sections, we specify the rela-

tionships between a covariance matrix and its precision and correlation matrix.
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Corollary 2.2.2 (covariance matrix with a UB structure). Given a partition-size vector p =

(p1, . . . , pK)
⊤, suppose Σ = Σ [A,B,p] is a p by p positive definite covariance matrix with

a uniform-block structure, where A = diag (a11, . . . , aKK) and B = (bkk′) with bk′k = bkk′

for every k ̸= k′. Then, the partitioned matrix of Θ = Σ−1 by p is a UB matrix, denoted

by Θ [AΘ,BΘ,p]; the partitioned matrix of Ξ = corr (Σ) by p is a UB matrix, denoted by

Ξ [AΞ,BΞ,p], where


AΘ = A−1

BΘ = −∆−1 × B × A−1

,


AΞ = C−1/2 × A × C−1/2

BΞ = C−1/2 × B × C−1/2

,

with ∆ = A + B × P, P = diag(p1, . . . , pK), C = diag(c11, . . . , cKK), and ckk = akk + bkk for

every k.

2.3 Testing A Specific Mean for One-Sample

In the case where the number of diagonal blocksK = 1 orK = 2, Geisser (1963) proposed

an information test statistic for testing a specific mean vector based on a multivariate normal sam-

ple and derived its exact null distribution in closed form. The distribution of Geisser’s information

test statistic under the null hypothesis is identical to the distribution of a sum of several indepen-

dent F -variates. However, for the general case K > 2, Geisser (1963) provided an algorithm

for calculating the information test statistic and explicitly formulated the exact null distribution,

but omitted the proofs. In this section, we present the exact null distribution of the one-sample

Geisser’s information test statistic using the notations of UB matrices: this exact null distribu-

tion is equivalent to the distribution of a linear combination of mutually independent F -variates,
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where the last variate is exactly the Hotelling’s T 2 statistic.

Specifically, given p-dimensional normal vectors X1, . . . ,Xn
i.i.d.∼ N (µ,Σ [A,B,p]), the

null and alternative hypotheses are given by

H0 : µ = µ0 versus H1 : µ ̸= µ0, (2.3.1)

where the covariance matrix is known to have a UB stricture, A = diag (a11, . . . , aKK) is an

unknown diagonal matrix, B = (bkk′) is an unknown symmetric matrix with bk′k = bkk′ for every

k ̸= k′, p = (p1, . . . , pK)
⊤ is a known partition-size vector, and µ0 ∈ Rp is a pre-determined

vector. To guarantee positive definiteness of Σ [A,B,p], we assume A is positive definite and

∆ = A + B × P has positive eigenvalues only, with P = diag (p1, . . . , pK).

Before deriving Geisser’s information test statistic for a specific mean vector, we introduce

the maximum likelihood estimator of Σ [A,B,p] based on a multivariate normal sample. Let

X̄ = n−1 (X1 + · · ·+Xn), S = (n − 1)−1
∑n

i=1(Xi − X̄)(Xi − X̄)⊤, and (Skk′) denote

the sample mean, the (unbiased) sample covariance matrix, and the partitioned matrix of S by p,

respectively. If the sample size is larger than the total number of unknown covariance parameters,

i.e., n > K + (K +1)K/2, then we can obtain the best-unbiased estimators of A and B, denoted

by Â = diag (â11, . . . , âKK) and B̂ =
(
b̂kk′
)

with b̂k′k = b̂kk′ for every k ̸= k′, respectively,

where âkk and b̂kk′ are given by

âkk =
pk × tr (Skk)− sum (Skk)

pk × (pk − 1)
, b̂kk′ =


sum (Skk′)

pk × pk′
, k ̸= k′

sum (Skk′)− tr (Skk′)

pk × (pk′ − 1)
, k = k′

(2.3.2)
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for every k and every k, k′ respectively (see the details in Chapter 3). It is clear that the maximum

likelihood estimator âkk is exactly the average of the off-diagonal elements within the (k, k)-

th diagonal block of (Skk′); b̂kk is exactly the average of diagonal elements within the (k, k)-

th diagonal block minus âkk; and b̂kk′ is the average of all elements within the (k, k′)-th off-

diagonal block. By Corollary 2.2.2, the plug-in estimators of Σ [A,B,p] and Θ [AΘ,BΘ,p] are

Σ̂
[
Â, B̂,p

]
and Θ̂

[
ÂΘ, B̂Θ,p

]
, where Â and ∆̂ = Â+B̂×P are assumed to be positive definite

and have positive eigenvalues only, respectively, and ÂΘ and B̂Θ are given by ÂΘ = Â
−1

and

B̂Θ = −∆̂−1 × B̂ × Â
−1

.

Theorem 2.3.1 (exact null distribution of Geisser’s one-sample information test statistic). Geisser’s

one-sample test statistic for the hypotheses in (2.3.1) is given by

U = n×
(
X̄ − µ0

)⊤ × Θ̂
[
ÂΘ, B̂Θ,p

]
×
(
X̄ − µ0

)
.

Under H0, it follows a distribution U that is identical with the distribution of

K∑
k=1

(pk − 1)F
(k)
(pk−1),(pk−1)(n−1) + T 2,

where T 2 = K(n − 1)(n −K)−1F
(K+1)
K,n−K is the Hotelling’s T 2-statistic and F (k)

df1,df2
are (K + 1)

mutually independent F -variates with degrees of freedom df1 and df2 for k = 1, . . . , K + 1.

Remark (information test statistic U ). Geisser’s information criterion was proposed by Geisser

(1963) to test the hypotheses in (2.3.1) using analysis of variance tables. In the distribution U ,

the last variate is precisely Hotelling’s (generalized) T 2-statistic, which is most likely used in

multivariate inference (Anderson, 1992).
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Remark (related distributions under H0). (1) As n→ ∞, U asymptotically follows a chi-square

distribution χ2
p where p = p1 + · · ·+ pK (Geisser, 1963);

(2) Given a significance level α and an arbitrary vector a ∈ Rp, the 100(1− α)% simulta-

neous confidence interval for a measurable function a⊤µ has the form

a⊤X̄ +±
√

U(α)× a⊤Σ̂
[
Â, B̂,p

]
a/n,

where U(α) denotes the upper α-th percentile of the distribution U (Morrison, 1972);

(3) An approximate of U is suggested as the distribution of C1F(p,C2) by Morrison (1971),

where the scale coefficient C1 and the second degree of freedom C2 are determined by equating

the first two cumulants of C1F(p,C2) to those of U . The specific values of C1 and C2 for K = 2

can be found in Spjøtvoll (1972) and Young (1976). Furthermore, Dyer (1982) considered the

distribution of the sum of generalized F variates and Lee and Hu (1996) extended the above result

to independent F -variates with arbitrary coefficients and degrees of freedom.

Remark (related distributions under H1). (1) The non-null distribution was analogous to the null

distribution U , except that one or more F -variates are non-central (Geisser, 1963);

(2) An approximate non-null distribution of U can be represented as D1F(p,D2)(δ), where

the noncentrality parameter δ = n (µ− µ0)
⊤Θ [AΘ,BΘ,p] (µ− µ0), and the scale coefficient

D1 and the second degree of freedom D2 are determined by equating the first two cumulants of

D1F(p,D2)(δ) to the non-null distribution of U .
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2.4 Testing the Equality of Means for Multiple-Sample

We consider a general M -sample mean test (M > 1), where the samples are drawn from

M normal distributions with means µ(m) ∈ Rp, for m = 1, . . . ,M , and an equal covariance

matrix with a UB structure Σ [A,B,p] ∈ Rp×p.

Specifically, suppose them-th sample X(m)
1 , . . . ,X

(m)
nm has a size of nm, form = 1, 2, . . . ,M .

Thus, the grand sample size is denoted by n = n1 + · · ·+ nM and we assume n > max{M,K +

(K + 1)K/2}. Let X̄(m) = n−1
m

(
X

(m)
1 + · · ·+X

(m)
nm

)
, X̄ = n−1

(
n1X̄

(1) + · · ·+ nMX̄(M)
)
,

and S = (n −M)−1
∑M

m=1

∑nm

j=1

(
X

(m)
j − X̄(m)

)(
X

(m)
j − X̄(m)

)⊤
denote the m-th sample

mean, the grand sample mean, and the (pooled) unbiased estimator of the common covariance

matrix, respectively. The maximum likelihood estimators Â, B̂ can be obtained similarly to those

in (2.3.2), yielding the estimators ÂΘ, B̂Θ, and Θ̂
[
ÂΘ, B̂Θ,p

]
, respectively. Therefore, the null

and alternative hypotheses can be written as

H
(M)
0 : µ(1) = · · · = µ(M) versus H

(M)
1 : µ(m′) ̸= µ(m) for some m′ . (2.4.1)

Theorem 2.4.1 (exact null distribution of Geisser’s multiple-sample information test statistic).

Geisser’s multiple-sample information test statistic for the hypotheses in (2.4.1) is given by

UM =
M∑

m=1

nm

(
X̄(m) − X̄

)⊤
Θ̂
[
ÂΘ, B̂Θ,p

] (
X̄(m) − X̄

)
.
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Under H(M)
0 , it follows a distribution UM that is identical with the distribution of

K∑
k=1

(M − 1)(pk − 1)F
(k)
(M−1)(pk−1),(n−M)(pk−1) + T 2

0

where T 2
0 is the Hotelling’s T 2

0 -statistic, F (k)
df1,df2

are K mutually independent F -variates (and

independent from T 2
0 ) with degrees of freedom df1 and df2 for k = 1, . . . , K.

Remark (information test statisticUM ). The Hotelling’s (generalized) T 2
0 -statistic, also known as

the Hotelling-Lawley trace, is commonly used to test the equality of multiple populations means,

assuming these multiple normal populations have the same (arbitrary) population covariance ma-

trices (Lawley, 1938; Hotelling, 1947, 1951). However, it is intractable to obtain the exact null or

non-null distribution of Hotelling’s T 2
0 -statistic, and various approximations have been proposed

in the literature (Ito, 1956, 1960; Pillai and Young, 1971; Siotani, 1971; McKeon, 1974).

2.5 Discussion

In this chapter, we concentrate on the algebraic properties of a specific type of block ma-

trices, where each block is uniform. We chose to parameterize the matrices in this way for two

key reasons. First, the uniform-block pattern has been popularly discovered in plenty of large-

scale biological data. Second, from a biological perspective, the variables that are clustered into

the same community may exhibit stochastic equivalence or comparable patterns, while variables

from different communities may have coherent connections at the community level. Compared

to the conventional diagonal or block-diagonal structure, the proposed uniform-block structure

offers more flexibility and is better suited for real data analysis, since the information contained

27



in the non-zero off-diagonal blocks can potentially provide valuable insights into the scientific

mechanisms.

In addition to defining a uniform-block structure, we have discovered a unique block

Hadamard product representation for a uniform-block matrix. This representation plays an im-

portant role because it allows for the transformation of a large-scale uniform-block matrix into

two lower-dimensional matrices and an integer-valued vector. The block Hadamard product rep-

resentation simplifies the computations related to uniform-block matrices. With these algebraic

properties, the uniform-block matrices are applicable to various statistical problems. For exam-

ple, covariance estimation with the uniform-block structure in Chapter 3, hypothesis testing for

the information test statistics, the multivariate linear regression models in Chapter 4, and confir-

matory factor analysis models in Chapter 5.

In conclusion, a uniform-block matrix (or structure), its associated algebraic properties, and

the block Hadamard product representation have broad applications in a range of fields, including

linear algebra, statistics, economics, and many others.
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Chapter 3: Covariance Matrix Estimation for High-Throughput Biomedical Data

with Dependence Structure of Interconnected Communities

3.1 Introduction

Technological innovations in biomedicine have facilitated the generation of high-dimensional

datasets with simultaneous measurements of up to millions of biological features (Fan and Lv,

2008). In the past few decades, numerous statistical methods have been developed to analyze

these large-dimensional datasets. Estimating a covariance matrix (or a precision matrix) is fun-

damental to these analyses (Fan et al., 2016; Cai et al., 2016; Wainwright, 2019) because a covari-

ance matrix not only describes the complex interactive relations among variables but also leads

to accurate inferential and predictive results for clinical outcomes (He et al., 2019; Ke et al.,

2022). Since the dimensionality of the variables is much larger than the sample size, we resort to

advanced statistical methods rather than traditional covariance estimation strategies (Johnstone,

2001; Johnstone and Paul, 2018). The shrinkage and thresholding methods can provide a reliable

and robust covariance estimator under the sparsity assumption (Ledoit and Wolf, 2004; Bickel

and Levina, 2008b; Rothman et al., 2009; Cai and Liu, 2011). In addition, prior knowledge

of a covariance structure can greatly improve the accuracy of estimation and statistical infer-

ence (Fan, 2005; Bien, 2019). For example, recent methods can accommodate Toeplitz, banded,
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block-diagonal covariance structures (Cai et al., 2013; Bickel and Levina, 2008a; Devijver and

Gallopin, 2018).

In the present research, we consider a widely prevalent covariance structure in a large

body of high-dimensional datasets (see the examples in Figure 3.1, extra examples in Chapter B,

and more examples in Figure 1.1). A well-organized block pattern is widely observed in most

commonly used biomedical data types, including genetics, proteomics, brain imaging, and RNA

expression data, among many others (Spellman et al., 1998; Yildiz et al., 2007; Chiappelli et al.,

2019; Chen et al., 2016; He et al., 2019, 2015; Wu et al., 2021). This block pattern exhibits several

properties of highly organized networks. For example, there is high modality as some variables

are clustered in the multiple and coherently correlated communities; there is small-worldness as

these communities are interconnected; and the network is scale-free as the remaining variables are

isolated if singletons (see the top parts of Figure 3.1(B) and (C)) are detected (Newman, 2006).

Therefore, we can specify this well-organized block pattern by assigning the high-dimensional

variables to multiple interconnected communities (see the middle parts of Figure 3.1(B) and (C)),

which are more informative, and a set of detected singletons. The interconnected community

structures might not be directly available from the high-dimensional biomedical data, but they can

be estimated by several clustering algorithms and network detection methods (Magwene, 2021;

Wu et al., 2021). Although there are potential benefits to leveraging the estimated interconnected

community structure to enhance the estimation of large covariance matrices, existing statistical

methods are restricted to establishing a connection between this structure and the covariance or

precision parameters and providing precise estimates. To address this methodological gap, we

propose a novel statistical procedure that enables closed-form estimators of large covariance and

precision matrices and supports robust statistical inference.
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Figure 3.1: A: top, heat map of the sample correlation matrix calculated by a K-medoids cluster-
ing algorithm for Spellman’s yeast genome study, showing 8 by 8 well-organized blocks (without
singletons) in the structure; bottom: an assumed population correlation matrix with an 8 by 8
uniform-block structure. B and C: top, heat maps of the sample correlation matrices calculated
by a network detection algorithm for proteomics and brain imaging datasets, respectively, show-
ing the block patterns (with singletons); middle, heat maps in the black frames in the top parts,
showing 7 by 7 and 5 by 5 well-organized blocks respectively in the structure; bottom, assumed
population correlation matrices with a 7 by 7 and a 5 by 5 uniform-block structures, respectively.
D: top, illustration of a network model with 5 communities; bottom, a corresponding population
matrix with a 5 by 5 uniform-block structure.
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We propose a parametric covariance model that subdivides the covariance matrix into

blocks or submatrices and assigns each block to either a community or an interconnection be-

tween two communities based on the observed interconnected community structure. Linking

the covariance parameters and the underlying network topological structure, we can facilitate a

closed-form estimator of each covariance parameter (using only the elements within the corre-

sponding block) and can establish the asymptotic properties for the proposed estimators. Specif-

ically, we derive the explicit estimators using advanced matrix theories including the block

Hadamard product representation of a covariance matrix with the above structure, and the thresh-

olding covariance regularization in the high-dimensional setting, where the number of covariance

parameters in all blocks exceeds the sample size.

Our method makes at least three novel contributions. Firstly, we have developed a fast

(closed-form) and accurate procedure for estimating a large covariance (and precision) matrix

with a particular structure that is applicable to various high-throughput biomedical data includ-

ing genomics, metabolomics, proteomics, neuroimaging data, and many others. Our method

quantitatively characterizes the interconnected community structure by estimating parameters in

both diagonal sub-matrices (i.e., communities) and off-diagonal sub-matrices (i.e., interactions

between communities), and thus better reveals the interactive mechanisms of a complex biosys-

tem. By utilizing this interconnected community structure, our large covariance matrix estimation

procedure also outperforms comparable methods in terms of accuracy and is numerically robust

to model misspecification. Consequently, our approach can lead to a more precise selection

of biological features of interest (e.g., cancer-related gene expressions) in the context of multiple

testing which relies on the accurate and reliable large covariance- and precision-matrix estimation

(Fan et al., 2012; Fan and Han, 2017). Secondly, we have derived the exact variance estimators

32



of the covariance parameter estimators and established the asymptotic properties, which enables

us to evaluate covariance patterns and provide confidence intervals. Lastly, we have extended our

method to accommodate scenarios where the number of diagonal blocks exceeds the sample size,

allowing for scalability to accommodate ultra-high-dimensional datasets.

The rest of the chapter is organized as follows. Section 3.2 introduces our proposed method.

We first mathematically define the uniform-block structure and the uniform-block matrix in Sec-

tion 3.2.1. Then, in Section 3.2.2, we derive the best-unbiased covariance- and precision-matrix

estimators for small K by taking advantage of the block Hadamard product representation. We

generalize the estimating procedure to large K with a diverging number of diagonal blocks in

Section 3.2.3. Section 3.3 contains thorough numerical evaluations of our method under various

scenarios. Section 3.4 illustrates the use of our method in two real-world applications. We pro-

vide a discussion in Section 3.5. Additional data examples, the exact covariance estimators for

the covariance parameters in the blocks, more simulation studies, and all the technical proofs are

given in Chapter B.

3.2 Methodology

3.2.1 A parametric covariance model with a uniform-block structure

Suppose X ∈ Rn×p is an n by p observed data matrix containing n independent and identi-

cally distributed p-variate normal vectors X1, . . . ,Xn ∼ N(µ,Σ) with mean µ := E(X1) ∈ Rp,

positive definite covariance matrix Σ := cov(X1) ∈ Rp×p (denoted by Σ ≻ 0), and precision

matrix Ω := Σ−1. Let S∗ and S denote the biased and unbiased versions of the sample covariance

matrix, respectively: S := (n − 1)−1
∑n

i=1(Xi − X̄)(Xi − X̄)⊤ and S∗ := n−1(n − 1)S with
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X̄ := n−1(X1 + · · ·+Xn), where M⊤ denotes the transpose of a matrix (or a vector) M. More-

over, we require that the covariance matrix has the uniform-block structure described below. The

parameterization of this covariance structure is illustrated in two steps.

We specify the parametric covariance matrix based on our previous discussions of the

uniform-block structure. First, we use a vector to characterize the community sizes. Specifi-

cally, given the dimension p of the covariance matrix Σ and the number of communities K, let

p1, . . . , pK be positive integers satisfying pk > 1 (k = 1, . . . , K) and p = p1 + · · · + pK and

let p := (p1, . . . , pK)
⊤ be the partition-size vector, which is assumed to be fixed throughout the

paper. Given p, we can express Σ partitioned by p in block form:

(Σkk′) :=



Σ11 Σ12 . . . Σ1K

Σ21 Σ22 . . . Σ2K

...
... . . . ...

ΣK1 ΣK2 . . . ΣKK


, (3.2.1)

where Σkk′ ∈ Rpk×pk′ (k, k′ = 1, . . . , K). Second, following (3.2.1), we specify the diagonal

submatrix Σkk := akkIpk + bkkJpk for every k and the off-diagonal submatrix Σkk′ := bkk′1pk×pk′

with bkk′ = bk′k for every k ̸= k′, where Is, Js, and 1s×t are an s by s identity matrix, an s by s

all-one matrix, and an s by t all-one matrix, respectively. Using K < p1 + · · ·+ pK = p, we can

represent a large covariance matrix Σ by a smaller diagonal matrix A := diag(a11, . . . , aKK), a
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smaller symmetric matrix B := (bkk′) with bkk′ = bk′k for every k ̸= k′, and a known vector p:

Σ(A,B,p) := (Σkk′) =



a11Ip1 + b11Jp1 b121p1×p2 . . . b1K1p1×pK

b211p2×p1 a22Ip2 + b22Jp2 . . . b2K1p2×pK

...
... . . . ...

bK11pK×p1 bK21pK×p2 . . . aKKIpK + bKKJpK


.

(3.2.2)

In this chapter, we say that the pattern in (3.2.2) is a uniform-block structure. If Σ(A,B,p)

has the structure in (3.2.2), it is a uniform-block matrix. This covariance parameterization strat-

egy based on Σkk and Σkk′ has been widely used in the statistics literature. For example, the

generalized estimation equations where the working correlation structure has a compound sym-

metry as well as linear mixed-effects models with a random intercept both have this pattern. In

practice, this parameterization strategy can characterize the covariance structure well using a par-

simonious model (as shown in Figure 3.1). In Section 3.3, we demonstrate that the performance

of this parameterization is robust under misspecification and matrix perturbation. By building the

parsimonious and effective covariance-matrix specification, we can develop reliable and accurate

covariance-matrix estimations using the likelihood approach and achieve optimistic properties.

Notice that the partition-size vector p is assumed to be known throughout this chapter.

In practice, it can be learned by a preliminary algorithm (for example, a K-medoids clustering

algorithm (Magwene, 2021) or a network detection algorithm (Wu et al., 2021)) before estimating

the covariance matrix. Also, the above definition of a uniform-block matrix does not guarantee its

positive definiteness in general. Thus, additional constraints should be imposed on the uniform-

block matrix Σ(A,B,p) to ensure that it is a valid covariance matrix. We defer the discussion of
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these constraints to the next section.

3.2.2 Matrix estimation for the uniform-block structure with a small K

Given a partition-size vector p and the parametric covariance matrix Σ(A,B,p) with the

uniform-block structure (3.2.2), we define a q-dimensional parameter vector

θ := (a11, . . . , aKK , b11, . . . , b1K , b22, . . . , bKK)
⊤

consisting of the covariance parameters in the blocks. That is, the parameters of interest are in

the upper triangular part of Σ(A,B,p). Also, q = K + K(K + 1)/2. Thus, the problem of

estimating a p by p symmetric covariance matrix reduces to that of estimating the q-dimensional

parameter vector θ. In practice, q is considerably smaller than p(p + 1)/2, thereby remarkably

reducing the dimensionality of the parameters of interest.

The small K setting can be specified as follows: q < n while K, p, and q are fixed and p

can be greater than n. In other words, both the number of diagonal blocks K and the number of

parameters in the blocks q = K + K(K + 1)/2 are smaller than the sample size n. Moreover,

we require that K and the dimension of the covariance matrix p, which is proportional to K, are

fixed, so that q is also fixed. Also, p can be large enough to exceed nwith smallK. In this section,

we first introduce an explicit maximum likelihood estimator of θ with asymptotic properties and

then refine it to be the best-unbiased estimator, whose exact variance estimator is also provided in

closed form. Finally, we provide the best unbiased covariance- and precision-matrix estimators

for small K.

We start with the maximum likelihood estimation. Specifically, let (S∗
kk′) be the block form
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of the biased sample covariance matrix S∗ partitioned by p. If the data X are normally distributed,

then the log-likelihood function of the data can be expressed by

ℓn(θ;X) ∝ n

2
log
(
det
[
{Σ(A,B,p)}−1])− n

2
tr
[
(S∗

kk′)× {Σ(A,B,p)}−1] .
A typical way to estimate θ in the literature is to derive the score function by taking the first-order

partial derivative of the log-likelihood function with respect to θj:

∂

∂θj

ℓn(θ;X) =
n

2
tr

[
{Σ(A,B,p)− (S∗

kk′)} ×
∂ {Σ(A,B,p)}−1

∂θj

]
(j = 1, . . . , q), (3.2.3)

where θj ∈ {a11, . . . , aKK , b11, . . . , b1K , b22, . . . , bKK} denotes the jth component of θ and

∂{Σ(A,B,p)}−1/∂θj ∈ Rp×p is a matrix whose entries are functions of θj .

However, solving the score equation (3.2.3) is challenging. Although the unknown entries

akk and bkk′ are uniformly and elegantly arranged in Σ(A,B,p), they are entangled in a complex

way in the precision matrix Ω = {Σ(A,B,p)}−1. In other words, θj is implicit in Ω so that

the closed form of Ω is not accessible in general. The complexity of the calculation increases if

the scale of the precision matrix increases. Alternatively, the existing numerical algorithms for

solving θ (for example, the method of averaging (Szatrowski, 1980)) rely on iterative updating

schemes, which require a long computational time and may lead to unstable estimates. These

facts motivate us to reconsider the possibility of deriving a closed-form estimator of θ. Thus,

we aim to find an explicit expression for Ω in terms of akk and bkk′ by taking advantage of the

special covariance structure in (3.2.2). More precisely, we speculate that Ω has an analogous

form to (3.2.2), which indeed can be fulfilled by realizing the following representation of the
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block Hadamard product.

Lemma 3.2.1. Given a partition-size vector p = (p1, . . . , pK)
⊤ satisfying pk > 1 for every k

and p = p1 + · · · + pK , Ip and Jp partitioned by p are uniform-block matrices, expressed by

I(p) := Ip(IK , 0K×K ,p) = Bdiag(Ip1 , . . . , IpK ) and J(p) := Jp(0K×K , 1K×K ,p) = (1pk×pk′
),

respectively, where 0r×s denotes the r by s zero matrix and Bdiag(·) denotes a block-diagonal

matrix. Suppose a p by p matrix N partitioned by p is a uniform-block matrix of the form (3.2.2),

expressed by N(A,B,p), then the following representation is unique,

N(A,B,p) = A ◦ I(p) + B ◦ J(p),

where ◦ denotes the block Hadamard product satisfying that A◦I(p) := Bdiag (a11Ip1 , . . . , aKKIpK )

and B ◦ J(p) :=
(
bkk′1pk×pk′

)
.

Based on Lemma 3.2.1, we derive several basic properties of a uniform-block matrix, which

are summarized in Chapter 2. These properties reveal how A, B, and p determine the algebraic

operations for a uniform-block matrix N(A,B,p) and how a collection of uniform-block matri-

ces with the same p form a quadratic subspace (Seely, 1971). If we view A, B, and p as the

“coordinates” of a uniform-block matrix, then using the notation N(A,B,p) can simplify the

mathematical operations between p by p uniform-block matrices into those between their cor-

responding lower-dimensional K by K “coordinates”. Following Chapter 2, we get two useful

results for the covariance and precision matrices.

Corollary 3.2.1. (1) Given Σ(A,B,p) defined in (3.2.2), Σ(A,B,p) ≻ 0 if and only if A ≻ 0

and ∆ has positive eigenvalues only, where ∆ := A + B × P and P := diag(p1, . . . , pK).
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(2) Suppose Σ(A,B,p) ≻ 0 and Ω = {Σ(A,B,p)}−1 is the precision matrix. Then, Ω

partitioned by p is a uniform-block matrix as well, which can be written by Ω(AΩ,BΩ,p) =

AΩ ◦ I(p) + BΩ ◦ J(p), where

AΩ = A−1, BΩ = −∆−1 × B × A−1. (3.2.4)

The first assertion of Corollary 3.2.1 finalizes the additional constraints that guarantee that

Σ(A,B,p) ≻ 0. The second assertion confirms that the precision matrix Ω = {Σ(A,B,p)}−1

partitioned by p is a uniform-block matrix, expressed by Ω(AΩ,BΩ,p). Furthermore, (3.2.4)

provides the relations between AΩ, BΩ, and A, B.

Therefore, applying the representation of the precision matrix in Corollary 3.2.1, we can

rewrite the partial derivative of the log-likelihood in (3.2.3) as

∂

∂θj

ℓn(θ;X) =
n

2
tr

[
{Σ(A,B,p)− (S∗

kk′)} ×
{
∂AΩ

∂θj

◦ I(p) +
∂BΩ

∂θj

◦ J(p)
}]

, (3.2.5)

where θj ∈ {a11, . . . , aKK , b11, . . . , b1K , b22, . . . , bKK} (j = 1, . . . , q). In contrast to (3.2.3), the

derivatives in (3.2.5) can be calculated by:

∂AΩ

∂akk
= −a−2

kk Ekk,
∂BΩ

∂akk
= ∆−1Ekk∆

−1BA−1 + a−2
kk∆

−1BEkk (k = 1, . . . , K),

∂AΩ

∂bkk′
= 0K×K ,

∂BΩ

∂bkk′
=


−∆−1EkkP∆−1P−1, k = k′

−∆−1(Ekk′ + Ek′k)P∆−1P−1, k ̸= k′

(k, k′ = 1, . . . , K),

where Ekk′ ∈ RK×K denotes a matrix with 1 in the (k, k′) entry and 0 otherwise. The explicit
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forms of the derivatives highlight the advantage of (3.2.5) over (3.2.3). Owing to (3.2.5), we can

explicitly derive the analytic form of the maximum likelihood estimator for θ:

ã∗kk :=
tr(S∗

kk)

pk − 1
− sum(S∗

kk)

pk × (pk − 1)
, b̃∗kk′ :=


sum(S∗

kk′)

pk × pk′
, k ̸= k′

sum(S∗
kk′)− tr(S∗

kk′)

pk × (pk′ − 1)
, k = k′

, (3.2.6)

for every k and k′, where sum(M) =
∑r

j=1

∑s
j′=1mjj′ denotes the sum of all entries in M :=

(mjj′) ∈ Rr×s. Technical details are referred to Chapter B. We denote the maximum likelihood

estimator of θ as

θ̃∗ := (ã∗11, . . . , ã
∗
KK , b̃

∗
11, . . . , b̃

∗
1K , b̃

∗
22, . . . , b̃

∗
KK)

⊤.

The strong consistency, the asymptotic efficiency, and normality for θ̃∗ can similarly be derived

by standard procedures in the literature (Ferguson, 1996; van der Vaart and Wellner, 1996; van der

Vaart, 2000). Please refer to Chapter B.

Despite its asymptotic property, θ̃∗ is biased under a finite sample size and, therefore, is not

a uniformly minimum variance unbiased estimator. Namely, θ̃∗ is not the best unbiased estimator

for θ. Thus, it is natural to consider an unbiased estimator of θ by replacing S∗ with the unbiased

version S in (3.2.6). Specifically, let (Skk′) be the block form of S partitioned by p. Substituting

Skk′ for S∗
kk′ in (3.2.6), for every k and k′, we have

ãkk :=
tr(Skk)

pk − 1
− sum(Skk)

pk × (pk − 1)
, b̃kk′ :=


sum(Skk′)

pk × pk′
, k ̸= k′

sum(Skk′)− tr(Skk′)

pk × (pk′ − 1)
, k = k′

. (3.2.7)

We denote the above unbiased estimator as θ̃ := (ã11, . . . , ãKK , b̃11, . . . , b̃1K , b̃22, . . . , b̃KK)
⊤.
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Alternatively, since S = n(n − 1)−1S∗, we have a relation between the maximum likelihood

estimator θ̃∗ and the unbiased estimator θ̃:

ãkk =
n

n− 1
ã∗kk, b̃kk′ =

n

n− 1
b̃∗kk′ (k, k′ = 1, . . . , K), θ̃ =

n

n− 1
θ̃∗.

Moreover, the following theorem summarizes the optimal property of θ̃.

Theorem 3.2.1 (Optimal property of θ̃). θ̃ is the best-unbiased estimator of θ, and

µ̃ := X̄, Σ̃(Ã, B̃,p) = Ã ◦ I(p) + B̃ ◦ J(p) (3.2.8)

are the best unbiased estimators of µ and Σ(A,B,p), where Ã := diag(ã11, . . . , ãKK) and B̃ :=

(̃bkk′) with b̃kk′ = b̃k′k for every k ̸= k′ are the best unbiased estimators of A and B.

Geisser (1963) and Morrison (1972) derived the same estimator θ̃ based on an analysis

of the variance table, but they did not show the above optimal property. Furthermore, after

calculating ∆̃ := Ã + B̃ × P with the best unbiased estimators Ã and B̃, we derive the best-

unbiased estimator for the precision matrix, as summarized in the following corollary.

Corollary 3.2.2. If both Ã and ∆̃ are positive definite, then

Ω̃(ÃΩ, B̃Ω,p) = ÃΩ ◦ I(p) + B̃Ω ◦ J(p) (3.2.9)

is the best unbiased estimator of Ω(AΩ,BΩ,p), ÃΩ := Ã
−1

and B̃Ω := −∆̃−1 × B̃ × Ã
−1

.

The covariance matrix of the proposed estimator θ̃ can be calculated from the Fisher infor-

mation matrix based on the asymptotic normality. Given a small K (say, K ≤ 3, empirically),
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the Fisher information matrix and its inverse may have explicit expressions. For some real ap-

plications in which K is relatively large (say, K > 3), a calculation of the inverse of the Fisher

information matrix might be burdensome and unstable. Alternatively, we provide the exact vari-

ance and covariance estimators of the elements of θ̃ in Corollary 3.2.3 and Chapter B under a

finite sample size, respectively.

Corollary 3.2.3. The exact variance estimators of ãkk and b̃kk′ are

var(ãkk) =
2a2kk

(n− 1)(pk − 1)
,

var(̃bkk′) =


2

(n−1)pk(pk−1)
{(akk + pkbkk)

2 − (2akk + pkbkk)bkk} , k = k′

1

2(n− 1)pkpk′
{pkpk′(b2kk′ + b2k′k) + 2(akk + pkbkk)(ak′k′ + pk′bk′k′)} , k ̸= k′

for every k and k′. The exact covariance estimators of ãℓℓ and b̃kk′ for every ℓ, k and k′ are given

in Chapter B.

At the end of this section, we briefly introduce how we can extend the above estimation

procedure to situations with singletons. In addition to the communities assumed to follow the

uniform-block structure (for example, the blocks in the black frames in the top parts of Fig-

ure 3.1(B) and (C)), the other singletons on the diagonal are also commonly detected in real ap-

plications (see the diagonal entries outside the black frames in the top parts of Figure 3.1(B) and

(C)), such as a proteomics study (Yildiz et al., 2007) and a brain imaging study (Chiappelli et al.,

2019). Notice that a structure of well-organized communities with singletons may imply that a

population covariance matrix of the form Σ(full) := {Σ(A,B,p),D1;D⊤
1 ,D2}, where D1 ∈ Rp×d,

D2 ∈ Rd×d, and Σ(full) ∈ R(p+d)×(p+d), and d denotes the number of singletons. Following the
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decomposition idea in Fan et al. (2013), we can estimate Σ(full) in two steps. First, we partition

the unbiased sample covariance matrix S(full) := {(Skk′),S1;S⊤
1 ,S2} in the same way. Second, we

obtain the best unbiased estimator Σ̃(Ã, B̃,p) based on (Skk′) and obtain the hard-thresholding

estimator R̃(full) of the matrix R(full) := {0p×p,S1;S⊤
1 ,S2} (Bickel and Levina, 2008a), yielding

the consistent estimator Σ̃(full) := Bdiag{Σ̃(Ã, B̃,p), 0d×d} + R̃(full) under a matrix norm if p is

fixed and d may grow with the sample size n.

3.2.3 Matrix estimation for the uniform-block structure with a large K

In Section 3.2.2, we estimated the covariance matrix with the uniform-block structure and

its precision matrix for small K. However, there are applications where the covariance matrices

are uniform-block matrices with more diagonal blocks than the sample size. More specifically,

a large K occurs when K, q > n and K, p, and q grow with n. In other words, the number of

diagonal blocks K is greater than the sample size n, and so is the number of covariance param-

eters in the blocks: q = K + K(K + 1)/2. Moreover, we require that K, the dimension p of

the covariance matrix (which is proportional to K), and q grow with n and diverge as n goes to

infinity. In this section, we generalize the proposed estimation procedure for small K and intro-

duce a consistent covariance-matrix estimator by modifying the hard-thresholding method with

largeK. Denote ∥M∥F = (
∑r

j=1

∑r
j′=1m

2
jj′)

1/2 and ∥M∥S = max∥x∥2=1∥Mx∥2 as the Frobenius

norm and spectral norm of M := (mjj′) ∈ Rr×r respectively, where ∥x∥2 := (
∑r

j=1 x
2
j)

1/2 for

x := (x1, . . . , xr)
⊤ ∈ Rr.

For normal data X ∈ Rn×p with population mean µ = 0p×1, the unbiased sample covari-

ance matrix S = X⊤X/n, and the population covariance matrix with the uniform-block structure
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Σ(A,B,p) for large K, we propose a new thresholding approach based on the work by Bickel

and Levina (2008b). Since covariance matrix Σ(A,B,p) is fully determined by A, B, and p

according to Lemma 3.2.1, we threshold the estimates of A and B, rather than S, to yield a

covariance-matrix estimate. Specifically, given a thresholding level λ = λn > 0, let

âkk(λ) := ãkk × I(|ãkk| > λ), b̂kk′(λ) := b̃kk′ × I(|̃bkk′ | > λ) (3.2.10)

be the hard-thresholding estimators of akk and bkk′ , respectively, where ãkk and b̃kk′ are the best

unbiased estimators for every k and k′ and I(·) is the indicator function. We regard the new

covariance-matrix estimator

Σ̂λ(Âλ, B̂λ,p) = Âλ ◦ I(p) + B̂λ ◦ J(p) (3.2.11)

as the modified hard-thresholding estimator of Σ(A,B,p), where Âλ := diag{â11, . . . , âKK},

B̂λ := {b̂kk′(λ)} with b̂kk′(λ) = b̂k′k(λ) for every k ̸= k′. The consistency of this modified

hard-thresholding estimator is summarized below.

Theorem 3.2.2 (Consistency of the modified hard-thresholding estimator). Given a positive-

definite covariance matrix with the uniform-block structure Σ(A,B,p) = (σjj′) defined as (3.2.2),

suppose K = K(n) > n → ∞ and log(K)/n → 0 as n → ∞, and there exist constants

0 < Cp0 , Cq0 < ∞ such that
∑p

j=1

∑p
j′=1 |σjj′ |

p0 ≤ Cp0 and max
j

∑p
j′=1 |σjj′ |

q0 ≤ Cq0 for
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0 < p0 < 2 and 0 < q0 < 1, then

∥Σ̂λ(Âλ, B̂λ,p)−Σ(A,B,p)∥2F ≤ OP (1)Cp0

{
log(K)

n

}1− p0
2

,

∥Σ̂λ(Âλ, B̂λ,p)−Σ(A,B,p)∥S ≤ OP (1)Cq0

{
log(K)

n

} 1−q0
2

,

where we choose λ = C{log(K)/n}1/2 for some positive constant C.

The performance of the modified hard-thresholding estimator (3.2.10) relies on the choice

of λ, which can be determined by applying the resampling rule in Bickel and Levina (2008a,b).

3.3 Numerical Studies

3.3.1 Simulations

To evaluate the performance of the proposed method comprehensively, we simulate data

and benchmark them against comparable estimation methods for large covariance (and precision)

matrices in the following three scenarios.

In Scenario 1 (Section 3.3.2), we generate normal data using a covariance matrix with a

uniform-block structure Σ0,1(A0,B0,p1) for n subjects for small K. That is, the number of

diagonal blocks K is small so that the number of covariance parameters in the blocks q is smaller

than the sample size n, whereas the dimension of the covariance matrix p can be greater than n.

We first focus on evaluating the finite-sample performance of the parameter vector estimator θ̃

in (3.2.7) by comparing the estimates with the ground truth. We also assess the accuracy of the

exact covariance estimator for θ̃, as presented in Chapter B. We then present the performance of

the covariance estimator Σ̃1(Ã1, B̃1,p1) in (3.2.8) and the precision estimator Ω̃1(ÃΩ,1, B̃Ω,1,p1)
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in (3.2.9) by comparing their losses in the matrix norms with those of existing covariance- and

precision-matrix estimators.

In Scenario 2 (Section 3.3.3), we simulate normal data using the covariance matrix Σ0,2(A0,B0,p2)

with the structure of uniform blocks for large K. That is, the number of diagonal blocks K is

greater than and grows with the sample size n, as does the number of parameters in the blocks q

and the dimension of the covariance matrix p. Then, we compare the modified hard-thresholding

estimator Σ̂2(Â2, B̂2,p2) in (3.2.11) with its competitors by computing the losses in the matrix

norms.

In Scenario 3 (Section 3.3.4), we perform a misspecification analysis for Σ̃3(Ã3, B̃3,p3)

and Ω̃3(ÃΩ,3, B̃Ω,3,p3) when the covariance matrix is not a uniform-block matrix.

3.3.2 Scenario 1: comparison for small K covariance matrix

We first set the true covariance uniform-block matrix as Σ0,1(A0,B0,p1) = A0 ◦ I(p1) +

B0 ◦ J(p1), where the number of diagonal blocks K = 5; the partition-size vector

p1 := (pind, pind, pind, pind, pind)
⊤ = pind × 1K×1

with individual component pind = 30, 45, or 60; the number of parameters in the blocks q =

K + K(K + 1)/2 = 20; the dimension of the covariance matrix p = K × pind = 150, 225, or
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300; and A0 := diag(a0,11, . . . , a0,KK) and B0 := (b0,kk′) with b0,kk′ = b0,k′k for k ̸= k′:

A0 = diag(0.016, 0.214, 0.749, 0.068, 0.100), B0 =



6.731 −1.690 0.696 −2.936 1.913

5.215 3.815 −1.010 0.703

4.328 −3.357 −0.269

6.788 0.000

3.954


.

The true precision matrix Ω0,1(AΩ,0,BΩ,0,p1) = AΩ,0 ◦ I(p1) +BΩ,0 ◦ J(p1) is given by (3.2.4),

that is, AΩ,0 := A−1
0 and BΩ,0 := −(A0+B0×P0,1)

−1×B0×A−1
0 , where P0,1 := diag(pind, pind, pind, pind, pind).

Specifically, we let n = 50, 100, or 150 satisfying q = 20 < n. We generate the data matrix X by

drawing an independent and identically distributed sample from N(0p×1,Σ0,1(A0,B0,p1)) and

repeat this procedure 1000 times.

For each replicate, we calculate ãkk and b̃kk′ using (3.2.7) to obtain Ã1 := diag(ã11, . . . , ãKK),

B̃1 := (̃bkk′), ÃΩ,1 := Ã
−1

1 , and B̃Ω,1 := −(Ã1 + B̃1 × P0,1)
−1 × B̃1 × Ã

−1

1 and then cal-

culate their standard errors by substituting the estimates ãkk and b̃kk′ for akk and bkk′ , respec-

tively, in Corollary 3.2.3. We also calculate the estimates of the covariance matrix and pre-

cision matrices using (3.2.8) and (3.2.9) and denote them by Σ̃prop. := Σ̃1(Ã1, B̃1,p1) and

Ω̃prop. := Ω̃1(ÃΩ,1, B̃Ω,1,p1), respectively. In addition, we estimate the covariance matrix us-

ing the conventional methods including the soft-thresholding method (soft; Antoniadis and Fan,

2001), the hard-thresholding method (hard), the adaptive-thresholding method (adaptive), and the

principal orthogonal complement thresholding method (POET), as shown in Figure 3.2. We also

estimate the precision matrix using the graphical lasso method (glasso; Friedman et al., 2008), the
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bandwidth test (banded; An et al., 2014), Bayesian frameworks with G-Wishart prior (BayesG;

Banerjee and Ghosal, 2014) or with the k-banded Cholesky prior (BayesKBC; Lee and Lee,

2021), as also shown in the figure. Finally, we evaluate the performance of all methods using

the losses in the Frobenius and spectral norms respectively, that is, ∥Σ̃∗ − Σ0,1(A0,B0,p1)∥F,

∥Σ̃∗ −Σ0,1(A0,B0,p1)∥S, ∥Ω̃∗ −Ω0,1(AΩ,0,BΩ,0,p1)∥F, and ∥Ω̃∗ −Ω0,1(AΩ,0,BΩ,0,p1)∥S for

the method ∗.

For the 1000 replicates, we assess the relative bias, the Monte Carlo standard deviation, the

average standard error, and the empirical coverage probability based on 95% Wald-type confi-

dence intervals for each covariance parameter, as presented in Table 3.1. The results in Table 3.1

demonstrate that the proposed best-unbiased estimators ãkk and b̃kk′ achieve satisfactory perfor-

mance: the relative bias in the parameter estimations are generally small in contrast to the Monte

Carlo standard deviations; as the sample size n increases, the average standard errors become

smaller for all covariance parameters; the average standard errors are approximately equal to the

Monte Carlo standard deviations with comparable corresponding 95% empirical coverage proba-

bilities. We demonstrate the performance of covariance- and precision-matrix estimators in terms

of the Frobenius and spectral norms and computational times for the proposed procedure and the

competing methods in Figure 3.2. Our estimating procedure outperforms the existing meth-

ods as it is much faster and has smaller matrix norms losses. Compared with the conventional

precision-matrix estimators, the proposed precision-matrix estimator has much lower losses be-

cause the true precision matrix has many non-sparse blocks (that is, the off-diagonal entries in

BΩ,0 are very small but different from 0). As the dimension p increases, the matrix norms losses

between the proposed covariance estimate and Σ0,1(A0,B0,p1) increase while those between the

proposed precision estimate and Ω0,1(AΩ,0,BΩ,0,p1) decrease slightly. One possible explanation
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is that we fix n and q, then Σ̃prop. is determined by Ã1, B̃1, and p1 while Ω̃prop. is determined by

Ã
−1

1 , B̃1, (Ã1 + B̃1 × P0,1)
−1, and p1.

p = 150 p = 225 p = 300
n bias MCSD ASE CP bias MCSD ASE CP bias MCSD ASE CP

a0,11 0 0.1 0.1 95.5 0 0 0 95.2 0 0 0 95.7
a0,22 0 0.8 0.8 93.9 0 0.7 0.7 95 0 0.6 0.6 94.7
a0,33 0.1 2.8 2.8 95.7 0.1 2.3 2.3 95.3 0 1.9 2 96.3
a0,44 0 0.3 0.3 94.8 0 0.2 0.2 95.3 0 0.2 0.2 95.4
a0,55 0 0.4 0.4 94.6 0 0.3 0.3 94.7 0 0.3 0.3 94.3
b0,11 -1.7 139.4 135.7 91.4 0.8 135.3 136.2 93.1 -0.4 134.1 135.9 93.2
b0,12 6 86.9 87.5 94.8 4.3 85.7 87.2 95.1 1 86.2 88.2 95
b0,13 5.6 79.4 78 95.4 3.5 77.7 77.9 95.9 2.3 75.9 78 96.9
b0,14 -2.6 110.3 105.1 91.8 -0.8 104 105.3 93.7 -0.1 103.6 104.8 95

50 b0,15 -2 80.7 78.2 93.5 1.9 78.1 78.4 94 -3.3 77.6 78.4 93.7
b0,22 -0.9 105.7 105.3 93.2 -7.4 105.7 104 91.2 5.7 106.3 106.6 93.9
b0,23 -0.1 88.6 87.1 92.7 -3.1 86.6 86.3 93.3 4.1 89.5 87.8 93.7
b0,24 1.3 85.6 86.1 95.4 -2.7 86.2 85.8 95.3 -0.4 88.7 86.4 95.2
b0,25 3.2 66.1 65.5 95.7 -3.3 63.4 64.9 95.4 2.9 67.9 66.1 95.7
b0,33 0.7 88.1 88.1 93.6 -0.5 86.6 87.7 93.3 3.3 90.1 88.3 93.5
b0,34 0.4 91.6 91.1 94.4 -2.6 91.3 91.3 93 1.2 91.4 90.9 93.5
b0,35 2.9 61.4 59.3 95.6 -0.9 58.1 59.1 95.8 1.9 60.2 59.5 96.3
b0,44 0.1 140.5 137.2 92.1 2.6 137 137.7 94.2 -4.9 132.2 136.2 93.1
b0,45 -0.5 78.6 74 94.2 -1.5 73.5 73.9 96.2 -2.1 73.8 73.8 96
b0,55 -1.6 80.7 79.6 92.7 -2.2 81.4 79.5 92.7 0.4 80.4 80 93
a0,11 0 0 0 95.1 0 0 0 94.9 0 0 0 95.2
a0,22 0 0.6 0.6 95.8 0 0.4 0.5 96.2 0 0.4 0.4 94.8
a0,33 0 2.1 2 94.2 0 1.6 1.6 94.9 0.1 1.4 1.4 95.3
a0,44 0 0.2 0.2 96.3 0 0.1 0.1 95.5 0 0.1 0.1 95.4
a0,55 0 0.3 0.3 95.3 0 0.2 0.2 95.1 0 0.2 0.2 95.3
b0,11 0.3 97.6 95.7 93.5 7.1 97.3 96.7 93.5 -1.1 93.7 95.5 94.6
b0,12 1.2 59.6 61.8 95.4 -2.1 61.3 62.4 95.8 2.3 62.5 61.9 94.7
b0,13 1.1 52.2 54.7 96.8 -0.4 54.3 55 95.6 1.2 55 54.8 94.9
b0,14 -0.4 72.5 74.1 95.4 -3.1 75.4 74.3 94.3 -0.2 74.5 73.9 94.8

100 b0,15 -0.8 55.6 55.2 93.8 3.7 56 55.9 96 0.7 56.8 55.3 94.8
b0,22 -1.6 71.5 74 95.1 2.3 73.4 74.5 94 1.8 76.5 74.4 94
b0,23 -2.3 58.3 61 94.1 -0.1 60.6 61.3 94.2 1.5 64.3 61.4 93.8
b0,24 1.7 59.9 60.6 95.3 3.3 61.7 60.6 95.5 -0.1 61.8 60.7 94.5
b0,25 1.8 45.4 46.1 95.6 1.9 48.3 46.6 94.8 1.7 46.2 46.3 95
b0,33 -2.6 58.9 61.5 95.3 -1.6 60.7 61.5 93.9 0.5 64 61.8 94.1
b0,34 1.4 63.3 64 94.9 3.5 62.7 63.7 94.8 0.6 66.7 64 93.5
b0,35 1.2 39.8 41.6 96.2 1.5 43.9 41.9 94.8 2 41.9 41.7 95.4
b0,44 0.8 93.1 96.6 96.3 -3.9 93.8 95.9 94.7 -0.8 98.8 96.4 93
b0,45 0 50.2 52.1 96 -1.9 54.5 52.2 93.3 -1.2 53.9 52 94.7
b0,55 -0.8 57.1 56.1 94 4.1 56.7 56.8 94.9 0 56.6 56.2 93.9
a0,11 0 0 0 95 0 0 0 96 0 0 0 94.6
a0,22 0 0.5 0.5 93.7 0 0.4 0.4 95.5 0 0.3 0.3 94.1
a0,33 0 1.6 1.6 95.1 0 1.3 1.3 93.6 0 1.1 1.1 96.3
a0,44 0 0.1 0.1 94.7 0 0.1 0.1 95.1 0 0.1 0.1 96
a0,55 0 0.2 0.2 95.3 0 0.2 0.2 95.2 0 0.2 0.2 94.4
b0,11 2.6 75.1 78.3 95.6 -2.8 77.3 77.7 94.3 -5.8 76.5 77.3 94.3
b0,12 1.1 49.7 50.6 95.1 1.3 49.4 50.2 95.1 1.1 51.6 50.3 93.7
b0,13 2.3 44.1 44.9 96.1 1 44.4 44.7 96.2 -1.5 45.9 44.4 94
b0,14 -3.6 58.3 60.6 95.9 -0.5 61.9 60.4 94.2 4.6 60.3 59.8 93.7

150 b0,15 0.6 46.1 45.1 94.5 -1.6 45.9 44.9 94.9 -1.4 44.9 44.9 93.7
b0,22 1.1 61.7 60.6 95 -2.7 60.5 60.2 93.6 1.2 61.7 60.6 93.9
b0,23 1.1 51.4 50.1 94.6 -0.8 49.5 49.9 94.2 0.9 50 50 94.2
b0,24 -0.5 48.6 49.6 95.8 -2 48.3 49.5 95.3 -1.2 49.5 49.4 94.4
b0,25 1.4 36.7 37.7 95.2 -1.1 37.2 37.5 94.5 2.1 38.7 37.8 95.6
b0,33 1.1 52.1 50.6 94.4 1.3 49.5 50.5 94.7 -0.2 49.3 50.3 94.4
b0,34 -1 52.4 52.4 94.9 -3.6 51.5 52.6 95.1 1 51.4 52.1 94.4
b0,35 2.3 33.2 34.1 95.6 -1.8 33.7 34.1 95.3 1 35.5 34 94.1
b0,44 1.5 77.2 78.8 95 3.2 81.2 79 93.9 -3.9 79.7 78.2 93.2
b0,45 -2.6 42.3 42.5 95.5 2.7 43.1 42.5 94.5 0.4 42.9 42.4 95.2
b0,55 -0.6 46.9 45.8 93.4 -0.7 46.8 45.8 94.2 0.7 46.4 45.9 94.5

Table 3.1: Estimation results (×100) for a0,kk and b0,kk′ in Scenario 1 under n = 50, 100, or
150, where bias denotes the average bias, MCSD denotes the Monte Carlo standard deviation,
ASE denotes the average standard errors, CP denotes the coverage probability based on a 95%
Wald-type confidence interval.
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Figure 3.2: Results of the losses in the Frobenius and spectral norms and the execution time
for the proposed covariance- and precision-matrix estimators and the conventional estimators in
simulation studies. The proposed estimators outperform the competitors regarding fewer losses
and shorter computational times.

3.3.3 Scenario 2: comparison for large K covariance matrix

The true covariance matrix is Σ0,2(A0,K ,B0,K ,p2) = A0,K ◦ I(p2) + B0,K ◦ J(p2), where

K = 30, 40, or 50; p2 := (pind, . . . , pind)
⊤ = pind×1K×1 with the individual component pind = 10;

q = K+K(K+1)/2 = 495, 860, or 1325; p = K× pind = 300, 400, or 500; and A0,K and B0,K

are generated depending on the value of K. For each K, we first generate a K by K diagonal

matrix A0,K and a symmetric matrix B0,K satisfying Σ0,2(A0,K ,B0,K ,p2) ≻ 0, or equivalently,
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A0,K ≻ 0 and ∆0,K := A0,K + B0,K × P0,K is invertible, where P0,K := diag(pind, . . . , pind) ∈

RK×K . Then, we simulate the data matrix X based on an independently and identically dis-

tributed sample of size n = 30 from N(0p×1,Σ0,2(A0,K ,B0,K ,p2)), where all K, p, q ≥ n. For

eachK, the above generation procedure is repeated 1000 times. To estimate Σ0,2(A0,K ,B0,K ,p2),

we adopt the modified hard-thresholding estimator in (3.2.11). The thresholding level λ is cho-

sen by following a similar procedure to that in Bickel and Levina (2008a,b). We also compare

our method with the estimation methods for large covariance matrices used in Scenario 1 (Sec-

tion 3.3.2). For 1000 replicates, we plot the average losses in terms of matrix norms in Figure 3.2.

The results in Figure 3.2 show that the proposed modified estimator produces the smallest loss

by taking advantage of the underlying structure.

3.3.4 Scenario 3: simulation analysis under model misspecification

In this scenario, we assess the performance of the proposed covariance- and precision-

matrix estimators under the model misspecification when the true covariance matrix does not have

a uniform-block structure. Specifically, we set the true covariance matrix Υ0,σ := Σ0,3(A0,B0,p3)+

Mσ ≻ 0, where K = 5; p3 := pind × 1K×1 with pind = 30; q = 20; p = K × pind = 150; and A0

and B0 are identical with those in Scenario 1 (Section 3.3.2). Matrix Mσ follows a Wishart distri-

bution with p degrees of freedom and parameter σIp, where σ = 0.1, 0.5, or 0.8. It is clear that if

σ = 0, then Υ0,σ = Σ0,3(A0,B0,p3) is a uniform-block matrix; if σ > 0, then Υ0,σ and the true

precision matrix Υ−1
0,σ are not uniform-block matrices because the uniformity does not hold. For

each σ, we generate X based on a random sample with a size of n = 50 (satisfying q = 20 < n)

by drawing from N(0p×1,Υ0,σ). We fit the data using the covariance-matrix estimator in (3.2.8),
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the precision-matrix estimator in (3.2.9), and the other estimators for large covariance and pre-

cision matrices described in Scenario 1 (Section 3.3.2). We simulate 1000 replicates for each σ.

The average losses ∥Σ̃∗−Υ0,σ∥F, ∥Σ̃∗−Υ0,σ∥S, ∥Ω̃∗−Υ−1
0,σ∥F, and ∥Ω̃∗−Υ−1

0,σ∥S are calculated

among 1000 replicates for the method ∗. The results are plotted in Figure 3.2.

The results in Figure 3.2 show that the proposed covariance-matrix estimator works well

under the misspecified covariance structure. Compared with the traditional covariance-matrix

estimators, the losses in terms of matrix norms are smaller for our proposed method. The losses

in terms of matrix norms for our precision-matrix estimator are comparable with those for the

other methods. One possible reason is that the inverse of a non-uniform-block matrix is not a

uniform-block matrix so the proposed precision-matrix estimator cannot take benefit from the

underlying structure.

In summary, our method can robustly and accurately estimate covariance matrices with the

dependence structure of interconnected communities. Since recent multiple testing correction

methods, e.g., to control the false discovery proportion (FDP; Fan et al., 2012; Fan and Han,

2017), are based on the covariance matrix estimate, we also evaluated the influence of covariance

estimation on the accuracy of feature selection (see the extra simulation study in Chapter B). Our

simulation results showed that our approach can largely improve the sensitivity while preserving

the FDP compared to competing methods.
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3.4 Data Examples

3.4.1 Proteomics data analysis

We apply the proposed method to estimate the covariance matrix of high-throughput pro-

teomics data for cancer research (Yildiz et al., 2007). Specifically, 288 subjects (180 male and

108 female, aged 62.4 ± 9.4 years) participated in this case–control study. Matrix-assisted laser

desorption ionization mass spectrometry was utilized to identify the abundant peptides in human

serum between case and control samples. After preprocessing (Chen et al., 2009), 184 features

in the serum were selected as candidate proteins and peptides. Of these, 107 were identified by

the network detection algorithm (Chen et al., 2018) and used to form a sample correlation matrix

with 7 by 7 well-organized blocks (see the first two heat maps of Figure 3.3(A)). Our aim was

to estimate the large correlation matrix and to understand the interactive relations between these

107 features.

We focus on the p = 107 features in the K = 7 communities for the n = 288 participants,

therefore q = 35. The partition-size vector p = (34, 18, 14, 14, 13, 10, 4)⊤ was provided by

the network detection algorithm (Chen et al., 2018). Let A0 = diag(a0,11, . . . , a0,KK) and B0 =

(b0,kk′) with b0,kk′ = b0,k′k for k ̸= k′ denote theK byK unknown diagonal matrix and symmetric

matrix, respectively. We assume that the p by p population correlation matrix is a uniform-

block matrix whose diagonal entries are 1 (that is, a0,kk + b0,kk = 1 for every k), expressed

by R0(A0,B0,p). Since q = 35 < n = 288, the estimates and standard errors of a0,kk and

b0,kk′ can be obtained by the best unbiased estimators (3.2.7) and Corollary 3.2.3, respectively.

We summarize the results in the third and fourth plots of Figure 3.3(A), where the sum of the
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estimates of a0,kk and b0,kk is equal to 1 for every k because the diagonal entries in the sample

correlation matrix are 1. The fourth plot of Figure 3.3(A) shows that the 95% confidence intervals

of the correlations between the (1, 2), (2, 4), and (6, 7) blocks contain 0. The (1, 3), (1, 4), (1, 5),

(1, 6), (2, 3), (2, 5), (3, 4), (3, 5), (3, 6), (3, 7), and (5, 7) blocks have negative correlations while

the remaining blocks have positive correlations.

3.4.2 Brain imaging data analysis

The second example is a brain imaging study based on echo-planar spectroscopic imaging,

which can simultaneously measure multiple neurometabolites in the regions of a whole brain

(Chiappelli et al., 2019). The data were collected from 78 participants (39 male and 39 female,

aged 42.1 ± 18.8 years). Five neurometabolites were identified in 89 brain regions: choline,

myo-inositol, creatine-containing compounds, N -acetylaspartate, and glutamate–glutamine. We

first estimated the sample correlation matrix for the combinations of the neurometabolites and

brain regions (that is, 445 = 5× 89) and applied the approach developed by Chen et al. (2018) to

extract a structure for the latent well-organized blocks with 227 combinations from the possible

445 (see the first heat map of Figure 3.3(B)). This structure has five diagonal blocks and 10 off-

diagonal blocks (see the second heat map of Figure 3.3(B)). We next applied the proposed method

to estimate the correlation matrix.

For this application, we obtained n = 78 and p = (77, 49, 36, 33, 32)⊤ from the prelim-

inary network detection algorithm (Chen et al., 2018), so K = 5, p = 227, and q = 20. We

estimated a0,kk and b0,kk′ with (3.2.7) and their standard errors with Corollary 3.2.3. The re-

sults are plotted in the third and fourth plots of Figure 3.3(B). The third plot of Figure 3.3(B)
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shows all the estimated correlations. The correlations within all diagonal blocks and those be-

tween the (1, 2), (1, 4), (2, 4), and (3, 5) blocks are positive with the 95% confidence intervals

not containing 0. The correlations between the (1, 3), (1, 5), and (2, 5) blocks are negative with

the 95% confidence intervals not containing 0. The (2, 3), (3, 4), and (4, 5) the blocks have the

95% confidence intervals for the correlations containing 0. The five diagonal blocks are as fol-

lows: (1) 74 regions with choline (including three regions with other metabolites), (2) 49 regions

with myo-inositol, (3) 26 regions with N -acetylaspartate (including 10 regions with glutamate–

glutamine), (4) 33 regions with creatine-containing compounds, and (5) another 32 regions with

N -acetylaspartate. The off-diagonal blocks show the positive relations among choline, myo-

inositol, and creatine-containing compounds, and also betweenN -acetylaspartate and glutamate–

glutamine across the brain. There is also a global negative correlation relation between two sets

of metabolites across the brain: (1) choline, myo-inositol, and creatine-containing compounds

and (2) glutamate–glutamine and N -acetylaspartate. The region-level correlations may assist in

providing an understanding of the neurophysiological mechanisms relating to metabolites in the

central nervous system.

3.5 Discussion

We have developed a computationally efficient method for estimating large covariance and

precision matrices with a uniform-block structure. In our empirical analyses of multiple types

of high-throughput biomedical data, we found that most of these datasets, including gene ex-

pression, proteomics, neuroimaging, and exposome data, among many others, exhibit a latent

yet well-organized block pattern (see the examples in Figure 3.1 and Chapter B). By leverag-
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Figure 3.3: A: the first two are the heat maps of the sample correlation matrices for the proteomics
dataset, the third one exhibits the estimates of b0,kk′ (their standard errors are between 0.03 and
0.07; for each k, the estimate of a0,kk is one minus the estimate of b0,kk with standard errors
around 0.01), and the fourth one contains the confidence intervals for b0,kk′ (+ refers to the 95%
confidence interval on the right of 0, − refers to the 95% confidence interval on the left of 0,
0 refers to the 95% confidence interval containing 0). B: the first two are the heat maps of the
sample correlation matrices for the brain imaging dataset, the third one exhibits the estimates of
b0,kk′ (their s.e. are between 0.07 and 0.11; for each k, the estimate of a0,kk is equal to one minus
the estimate of b0,kk with standard errors around 0.01), and the fourth one contains the confidence
intervals for b0,kk′ (+ refers to the 95% confidence interval on the right of 0, − refers to the 95%
confidence interval on the left of 0, 0 refers to the 95% confidence interval containing 0).

ing the uniform-block structure, we provide an accurate estimate of the parameter vector for

a large covariance matrix with a drastically reduced number of parameters. We further derive

the covariance- and precision-matrix estimators in closed forms, which significantly reduce the

computational burden and improve the accuracy of statistical inference.

In a uniform-block structure, we assign one parameter for the diagonal entries and one pa-

rameter for the off-diagonal entries in a diagonal block, and one parameter for all entries in an

off-diagonal block. This parameterization strategy is driven by the fact that the intra-block and

the inter-block variances are relatively small in a large sample correlation matrix (see the box

plots in Chapter B). Given the strong block patterns in the correlation matrices (see the examples

in Figure 3.1 and Chapter B), this parameterization strategy appears valid. It is also analogous to

the commonly used compound symmetry covariance structure in linear mixed-effect models and
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generalized estimating equation models. In addition, we demonstrated that our method generally

performs well when there are multiple parameters within each block, as in Scenario 3 (Sec-

tion 3.3.4). Therefore, our approach is, overall, robust and fast for high-dimensional biomedical

data as it considers the commonly observed block-wise covariance structures.
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Chapter 4: Modeling Multivariate Outcomes with Interconnected Modules: Eval-

uating the Impact of Alcohol Intake on Plasma Metabolomics

4.1 Introduction

Simultaneous measurement of hundreds of thousands of biological features has revealed

complex scientific mechanisms across various fields (He et al., 2019; Ke et al., 2022). Numerous

statistical methodologies have been developed to address the challenges associated with high-

dimensional data analysis. For instance, shrinkage and penalty techniques have been employed

in linear regression models, leading to the establishment of theoretical properties for the sparse

estimators (Tibshirani, 1996; Efron et al., 2004; Hastie et al., 2015). Similarly, analogous reg-

ularization methods have successfully extended to estimate large-scale covariance or precision

matrices while incorporating assumptions of bandability, sparsity, or low-rank structures (Wu

and Pourahmadi, 2003; Bickel and Levina, 2008a,b; Bickel and Gel, 2011; Fan et al., 2011,

2013). From an inference perspective, multiplicity-adjusted procedures have been proposed to

enable the simultaneous testing of numerous hypotheses, irrespective of whether the underlying

test statistics are independent (Benjamini and Hochberg, 1995; Storey et al., 2004; Efron, 2004)

or heavily correlated (Benjamini and Yekutieli, 2001; Efron, 2007; Leek and Storey, 2008; Fan

et al., 2012; Fan and Han, 2017).
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Conventionally, statistical methods for handling high-dimensional variables can be broadly

categorized into two classes. In the first class, high-dimensional variables are considered as

predictors. For example, regression shrinkage methods, e.g., the lasso (Tibshirani, 1996) and

its many variants, are commonly used to select the variables of interest (Yuan and Lin, 2007;

Fan and Lv, 2008; He et al., 2019). In the second class, high-dimensional variables are treated

as multivariate outcomes in regression models. For example, high-dimensional imaging data

are often modeled as outcomes while spatial dependence is taken into account. In addition,

multiple testing methods widely used in omics data analysis can be categorized into this class

(Leek and Storey, 2008; Fan et al., 2012; Fan and Han, 2017). In this chapter, our focus lies

within the second category of data analysis, as we aim to investigate the effect of alcohol intake

on metabolomic profiles. Specifically, our goal is to incorporate the structured dependence among

the multivariate outcomes into exposures or predictors of interest.

The challenge of incorporating the dependence structure into a multivariate regression

model is twofold. First, the pattern of dependence structure can be latent and complex, which

implies that we need to detect or estimate this structure before modeling. For example, gene

co-expression network analysis (Wu et al., 2021) and seed quality analysis (Perrot-Dockès et al.,

2022). On the other hand, given a detected dependence structure of data, it is also challeng-

ing to utilize the pattern in a multivariate regression model, since the covariance structure of

(marginal) outcomes is implicitly influenced by the detected pattern. In our empirical analyses

of various high-dimensional datasets, including gene expression, proteomics, brain imaging, and

seed quality, among others in Chapter 3, a particular structure, called the interconnected commu-

nity structure, is most prevalent (please see a real example in Figure 4.1(C)). In particular, the

pattern has several characteristics: it is latent, i.e., it is the output of applying network detection
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algorithms to the raw data; it is non-sparse, i.e., elements of the covariance or correlation matrix

have small but non-zero values; it has an almost constant-valued block form, i.e., elements of

each block are almost the same, exhibiting low variability; and it may have many singletons or

isolated nodes (see a real example with the singletons in Figure 4.1(B)). But, as we discussed,

due to the existence of this structured covariance or correlation matrix in data, it is essential to

incorporate the corresponding structured dependence into a statistical model to obtain reliable

and accurate results. A few questions naturally arise: given this pattern in the covariance or cor-

relation structure, (1) does the matrix consisting of all dependence parameters have a specific

structure? (2) what is the relationship between the dependence structure and the covariance or

correlation structure at the population level? (3) how can we estimate the dependence parameters

and the other parameters, e.g., the regression coefficients, simultaneously?

To address these questions, we propose a Multivariate Autoregressive regression model with

Uniform-block Dependence (MAUD) that incorporates the above latent dependence structure

found in data into a parametric regression model, and we furthermore develop an estimation

procedure for the dependence parameters and regression coefficients and establish the finite- and

large-sample properties of the proposed estimators.

The MAUD makes at least three contributions. First, biological features in outcomes are

divided into communities (or groups, or clusters) based on a preliminary study (e.g., a network de-

tection algorithm), and the dependence parameters both within and between communities are de-

fined in the MAUD. We notice that the dependence structure is naturally a uniform-block structure

(see Chapter 2) rather than an arbitrary one. A uniform-block structure brings two advantages.

One is that structures preserved under common algebraic operations, i.e., the corresponding co-

variance, correlation, and precision matrices also have uniform-block structures with explicit
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Figure 4.1: A: 249 by 249 sample correlation matrix (of residuals) calculated from a subset of raw
NMR data (Ritchie et al., 2023); B: an interconnected community structure with generalized (with
singletons) well-organized blocks in the sample correlation matrix provided by a community
detection algorithm (Chen et al., 2023); C: a 170 by 170 sample correlation matrix (of residuals)
extracted from the black frame in B, which is called an interconnected community structure with
well-organized blocks; D: a population correlation matrix with an interconnected community
structure with (5 by 5) uniform blocks; E: a partition-size vector ℓ = (L1, L2)

⊤ = (2, 3)⊤ with
R = 5 and G = 2; F: an illustration of the block Hadamard product representation N (A,B, ℓ) =
A ◦ I(ℓ) + B ◦ J(ℓ); G: an illustration of a uniform-block matrix N (A,B, ℓ), where the cells
with different colors in the matrices represent the elements with different values, the cells with
different colors in ℓ represent the features in different communities.

expressions in terms of the dependence parameters. The other one is that computations become

efficient, i.e., computations of uniform-block matrices are simplified in the estimation procedure

due to both dimensionality reduction and closed-form expressions. The second contribution is

that the regression coefficient estimator is derived by the ordinary least-squares (OLS) method,

which is identical to the generalized least-square (GLS) estimator and the feasible generalized

least-square (FGLS) estimator, so it has an exact covariance matrix. Simultaneously, the depen-

dence parameter estimators are derived by the maximum likelihood (ML) method and have an
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asymptotic covariance matrix in closed form. The third contribution is that the covariance matrix

of the regression coefficient estimator is exact and explicit in terms of the dependence parameters

and the design matrix. In summary, compared to the conventional models that use a diagonal or

block-diagonal structure to model dependence in network data (i.e., ignoring the non-null off-

diagonal elements), the proposed MAUD offers more accurate estimates and inferences.

This chapter continues with Section 4.2, which is concerned with our methodology of de-

pendence modeling, estimation, and statistical inference: Section 4.2.1 introduces a simultaneous

autoregressive regression model for multivariate outcomes; Section 4.2.2 specifies the multivari-

ate autoregressive regression model with a uniform-block structure and establishes the relation-

ship between the dependence parameters and the covariance matrix; Section 4.2.3 describes the

estimation procedure with theoretical properties; Section 4.2.4 presents the hypothesis tests for

the regression coefficients and dependence parameters. In Section 4.3, we conduct simulation

studies to evaluate the proposed methodology. We then apply the proposed method to real data

in Section 4.4 and provide a discussion in Section 4.5. All proofs, additional figures, and tables

are given in Chapter C.

4.2 Methodology

4.2.1 A simultaneous autoregressive regression model

Let Y∗ = (y∗
1, . . . , y∗

n) ∈ RS×n denote the data matrix, where y∗
i = (yi1, . . . , yiS)

⊤ ∈ RS×1

denotes the S-dimensional multivariate outcomes of features for a participant i = 1, . . . , n. Let

y(r) ∈ R1×n denote the r-th row vector of Y∗. We assume that the dependence structure of

the S-dimensional multivariate features reflects an interconnected community structure (see Fig-
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ure 4.1(B)). Without loss of generality, the r-th feature (within the first R features) can be as-

signed to community g with ϕ : {1, 2, . . . , R} → {1, . . . , G}, r 7→ g as the community assigning

function, i.e., ϕ(r) = g. The interconnected community structure demonstrates that: (1) any two

pairs of features r1 and r2, r3 and r4 within community g are coherently and positively corre-

lated, i.e., cor
(
y(r1), y(r2)

)
≈ cor

(
y(r3), y(r4)

)
> 0 if ϕ(r1) = ϕ(r2) = ϕ(r3) = ϕ(r4) = g; (2)

communities g and g′ can further be interconnected, denoted by g ∼ g′, if cor
(
y(r), y(r′)

)
̸= 0

for ϕ(r) = g and ϕ(r′) = g′; (3) as demonstrated in Figure 4.1(B), a subset of features (i.e.,

indexed by {R+ 1, . . . , S}) belongs to none of the communities, for which we denote a general-

ized community assigning function ϕ∗ : {1, 2, . . . , S} → {0, 1, . . . , G} with ϕ∗(r) = ϕ(r) = g

if r ∈ {1, . . . , R} and ϕ∗(r) = 0 if r ∈ {R + 1, . . . , S}. We further let Lg denote the cardinality

of the community g for g = 1, . . . , G and L0 refer to the number of features in no communities

and S = R + L0 with R = L1 + · · · + LG. We assess the association between the multivariate

outcomes y∗
i and covariate vector xi ∈ Rp×1 for i = 1, . . . , n while accounting for the complex

dependence structure by the following simultaneous autoregressive regression model:

yir = β⊤
r xi +

1

Lg − 1

∑
r′ ̸=r:ϕ(r′)=ϕ(r)=g

ρgg
(
yir′ − β⊤

r′xi

)
︸ ︷︷ ︸

within community g

+
∑

g′:g′∼g

1√
(Lg − 1) (Lg′ − 1)

∑
r′′:ϕ(r′′)=g′

ρgg′
(
yir′′ − β⊤

r′′xi

)
︸ ︷︷ ︸

between communities g and g′

+ϵir, (4.2.1)

where yir ∈ R denotes an outcome of r-th feature (e.g., a biomarker), βr ∈ Rp×1 denotes

the feature-specific regression coefficient vector, ⊤ denotes the transpose of a vector or matrix,

xi ∈ Rp×1 denotes the covariate vector across all features for the i-th participant (e.g., intercept,

63



age, and sex), ρgg ∈ R denotes the autoregressive dependence parameter within g-th commu-

nity, ρgg′ = ρg′g ∈ R denotes the autoregressive dependence parameter between g-th and g′-th

communities, ϵir ∈ R denotes an independently and identically distributed (i.i.d.) error following

N (0, ωr), and ωr > 0 denotes the feature-specific variation for i = 1, . . . , n and r = 1, . . . , S.

We note that model (4.2.1) reduces to a general linear model for feature r that belongs

to none of the communities. Model (4.2.1) builds upon the conventional autoregressive model

used in neuroimaging studies (Bowman, 2005; Derado et al., 2010; Risk et al., 2016; Lee et al.,

2023) and it extends the model to a generalized form that includes community-wise dependence.

If all autoregressive dependence parameters, both within and between communities, are equal

to 0, then model (4.2.1) reduces to a general linear model (Worsley and Friston, 1995; Friston

et al., 1995). If the autoregressive dependence parameters within communities ρgg ̸= 0 but those

between communities ρgg′ = 0 for every g ̸= g′, then model (4.2.1) resembles other existing

models in the literature (Bowman, 2005; Derado et al., 2010; Lee et al., 2023).

4.2.2 The MAUD

Due to the complex dependence pattern, a matrix representation of (4.2.1) is required for

parameter estimation. Without loss of generality, we focus on the features in communities only,

because the features in no communities (i.e., ϕ∗(r) = 0) can be modeled separately. We express

the Multivariate Autoregressive regression model with Uniform-block Dependence (MAUD) as
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follows:

yi =


β⊤
1

...

β⊤
R


R×p

xi +Υ×

yi −


β⊤
1

...

β⊤
R


R×p

xi

+ ϵi, ϵi
i.i.d.∼ N (0R×1,Σϵ) , (4.2.2)

for i = 1, . . . , n, where yi = (yi1, . . . , yiR)
⊤ ∈ RR×1; ϵi = (ϵi1, . . . , ϵiR)

⊤ ∈ RR×1; Σϵ =

cov(ϵi) = diag (ω1, . . . , ωR) ∈ RR×R with the covariance matrix notation cov(·) and the diagonal

matrix notation diag(·); the autoregressive dependence matrix Υ is a partitioned matrix:

Υ =



Υ11 Υ12 . . . Υ1G

Υ21 Υ22 . . . Υ2G

...
... . . . ...

ΥG1 ΥG2 . . . ΥGG


,

Υgg = γgg
(
JLg − ILg

)
∈ RLg×Lg , γgg =

ρgg
Lg − 1

, g′ = g,

Υgg′ = γgg′JLg×Lg′
∈ RLg×Lg′ , γgg′ = γg′g =

ρgg′√
(Lg − 1)(Lg′ − 1)

, g′ ̸= g,

γgg′ is the autoregressive dependence parameter ρgg′ scaled by a constant, I and J denote the

identity matrix and matrix of ones, respectively. We can further present Υ in terms of γgg′:

Υ (AΥ,BΥ, ℓ) = AΥ ◦ I(ℓ) + BΥ ◦ J(ℓ), with


AΥ = diag (−γ11, . . . ,−γGG)

BΥ = (γgg′)

(4.2.3)
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where I(ℓ) = Bdiag (IL1 , . . . , ILG
) with the block diagonal notation Bdiag(·), J(ℓ) =

(
JLg×Lg′

)
,

and ◦ denotes the block Hadamard product satisfying AΥ◦I(ℓ) = Bdiag (−γ11IL1 , . . . ,−γGGILG
)

and BΥ ◦ J(r) =
(
γkk′JLg×Lg′

)
. The above matrix Υ(AΥ,BΥ, ℓ) is also known as the uniform-

block matrix (see Chapter 2) The autoregressive dependence parameter matrix Υ is intrinsically

linked with the covariance matrix Σ as below:

yi ∼ N (BR×pxi,Σ) , Σ = (IR −Υ)−1 (IR −Υ)−1 , (4.2.4)

for i = 1, . . . , n, where B⊤ = (β1, . . . ,βR) ∈ Rp×R and we set Σϵ = IR (i.e., ωr = 1 for all r)

in (4.2.2) for the sake of easy presentation. We present the case of Σϵ ̸= IR in Chapter C. Suppose

Σ in (4.2.4) is positive definite, denoted by Σ ≻ 0, we define Ω as the precision matrix, i.e., Ω =

Σ−1. We aim to reparametrize Σ and Ω by γgg′ , and thus the parameters of Ω in the likelihood

function can be substituted by scaled autoregressive dependence parameters γgg′ . Consequently,

γgg′ can be directly estimated by maximizing the likelihood function. However, the connections,

between γgg′ and Σ, between γgg′ and Ω, are not explicit. We resort to Corollary 4.2.1 for the

derivation.

Corollary 4.2.1 (express Σ and Ω by γgg′). Both Ω and Σ partitioned by ℓ are uniform-block
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matrices, with the following block Hadamard product representations (see Chapter 2):

Ω (AΩ,BΩ, ℓ) = AΩ ◦ I(ℓ) + BΩ ◦ J(ℓ), with


AΩ = (IG − AΥ)

2

BΩ = −2BΥ + AΥBΥ + BΥAΥ + BΥLBΥ

,

(4.2.5)

Σ (AΣ,BΣ, ℓ) = AΣ ◦ I(ℓ) + BΣ ◦ J(ℓ), with


AΣ = A−1

Ω

BΣ = −∆−1
Ω BΩA−1

Ω

, (4.2.6)

where AΥ, BΥ are defined in (4.2.3), AΣ, AΩ are diagonal matrices, BΣ, BΩ are symmetric

matrices, L = diag (L1, . . . , LG) ∈ RG×G, and ∆Ω = AΩ + BΩL.

Corollary 4.2.1 establishes the closed-form representation of Ω and Σ in terms of Υ (or

γgg′) by leveraging several derived properties of the block Hadamard product of the uniform-

block matrices (see Chapter 2).

4.2.3 Estimation of the MAUD parameters

The goal of this section is to estimate the vector of scaled autoregressive dependence pa-

rameters γ = (γ11, . . . , γ1G, γ22, . . . , γ2G, . . . , γGG)
⊤ ∈ RG(G+1)/2×1 and the regression coef-

ficient vector β = vec
(
B⊤) ∈ R(Rp)×1 simultaneously in the MAUD of form (4.2.4), where

vec(·) denotes the vector of columns of a matrix (Henderson and Searle, 1979). We further de-

note θ =
(
β⊤,γ⊤)⊤ ∈ R[(Rp)+G(G+1)/2]×1 as the vector consisting of all unknown parameters.
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We consider the following multivariate normal distribution for the MAUD:

y(nR)×1 ∼ N
(
x(nR)×(Rp)β(Rp)×1, In ⊗Σ

)
,

where y =
(
y⊤
1 , . . . , y⊤

n

)⊤ ∈ R(nR)×1, x =
((

IR ⊗ x⊤
1

)⊤
, . . . ,

(
IR ⊗ x⊤

n

)⊤)⊤ ∈ R(nR)×(Rp), and

⊗ denotes the Kronecker product. Consequently, the likelihood function is

ℓn (θ; x, y) =
n

2
[−R log(2π) + log det (Ω)− tr (SΩ)] , (4.2.7)

where S = n−1
∑n

i=1 (yi −Bxi) (yi −Bxi)
⊤ ∈ RR×R is the residual matrix.

Typically, we adopt the feasible generalized least-square (FGLS) approach to estimate θ

iteratively. Specifically, at iteration t ≥ 1, the FGLS estimator of β is straightforward by

β̂(t) =
{

x⊤
[
In ⊗ Ω̂(t−1)

]
x
}−1

x⊤
(

In ⊗ Ω̂(t−1)
)

y ∈ R(Rp)×1,

where Ω̂(t−1) = Ω̂
(
γ̂(t−1)

)
and γ̂(t−1) are the estimators of Ω and γ at the (t − 1)-th itera-

tion, respectively. Based on β̂(t), we further update γ̂(t) by maximizing the log-likelihood func-

tion (4.2.7) while plugging β̂(t):

γ̂(t) ∈ argmax
γ∈Θγ

ℓn

(
β̂(t),γ; x, y

)
,

where Θγ ⊂ RG(G+1)/2×1 is the parameter space of γ.

The above estimation of γ by optimizing of (4.2.7) is challenging because estimating the

large covariance or precision matrix is essentially difficult (Fan et al., 2016; Cai et al., 2016).
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On the other hand, the advanced methods for large covariance or precision matrix estimation

(e.g., shrinkage and thresholding approaches) are not applicable, because they may yield biased

estimate of autoregressive dependence parameters in the model (i.e., as constraints, the diagonals

of each Υgg are 0). Therefore, Corollary 4.2.1 plays a critical role in the MAUD autoregressive

dependence parameter estimation using the likelihood approach. Specifically, plugging β̂(t), we

rewrite the likelihood function in (4.2.7) as below:

ℓn

(
β̂(t),γ; x, y

)
=
n

2

{
−R log(2π) +

G∑
g=1

(Lg − 1) log (aΩ,gg) + log det (∆Ω)

− sum
[
AΩ ⊙ diag

(
tr
(

S(t)
11

)
, . . . , tr

(
S(t)
GG

))
+ BΩ ⊙

(
sum

(
S(t)
gg′

))]}
,

(4.2.8)

where aΩ,gg is the (g, g)-th diagonal element of AΩ = AΩ (γ) ∈ RG×G, expressed in terms of

γ in (4.2.5); BΩ = BΩ (γ) ∈ RG×G, ∆Ω = ∆Ω (γ) = AΩ (γ) + BΩ (γ)L ∈ RG×G with

L = diag (L1, . . . , LG), also expressed in terms of γ in (4.2.5);
(

S(t)
gg′

)
is the G by G parti-

tioned matrix of S(t) by ℓ, sum(·) denotes the sum of all elements of a matrix,
(
sum

(
S(t)
gg′

))
=(

sum
(

S(t)
gg′

))G
g,g′=1

∈ RG×G; and ⊙ denotes the (entry-wise) Hadamard product. Compared to

the log-likelihood function in (4.2.7), the alternative form in (4.2.8) largely reduces the number

of parameters from R(R + 1)/2 of Ω to G(G+ 1)/2 of γ (e.g., from 14, 535 to 15 for the NMR

data with R = 170 and G = 5).

In addition to simplifying the matrix calculations in the log-likelihood function, the follow-

ing theorems state that we can obtain the estimator of θ without using the iteration algorithm.

Theorem 4.2.1 (properties of β̂). Suppose Conditions 1, 2, 3, 4, 5, and 6 hold. Then, the FGLS

estimator of β is equal to the generalized least-square (GLS) estimator of β, while it is equal to
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the OLS estimator, denoted by β̂, namely,

β̂(t) =
{

x⊤
(

In ⊗ Ω̂(t−1)
)

x
}−1

x⊤
(

In ⊗ Ω̂(t−1)
)

y

=
{

x⊤ (In ⊗Ω) x
}−1 x⊤ (In ⊗Ω) y

=
(
x⊤x

)−1 x⊤y (4.2.9)

= β̂,

for all t ≥ 1. In addition, β̂ is (weakly) consistent, asymptotically normally distributed, asymp-

totically efficient, and

β̂ ∼ N

β,Σ (AΣ,BΣ, ℓ)⊗

(
n∑

i=1

xix⊤
i

)−1
 . (4.2.10)

We remark here that in general, the explicit variance estimator or the finite-sample proper-

ties of an FGLS estimator is intractable (Hayashi, 2011).

Consequently, based on the OLS estimator β̂, classical optimization algorithms (e.g., Newton–

Raphson) can be straightforwardly implemented to obtain γ̂:

γ̂ ∈ argmax
γ∈Θγ

ℓn

(
β̂,γ; x, y

)
, (4.2.11)

where the log-likelihood function is given by (4.2.8). Accordingly, we obtain ρ̂ = (ρ̂11, . . . , ρ̂GG)
⊤ ∈

RG(G+1)/2×1 of ρgg′ in (4.2.1) with ρ̂gg = (Lg−1)γ̂gg for g′ = g and ρ̂gg′ = ρ̂g′g =
√

(Lg − 1) (Lg′ − 1)γ̂gg′

for g′ ̸= g, which completes the MAUD parameter estimation.

Theorem 4.2.2 (properties of γ̂). Suppose Conditions 1, 2, 3, 4, 5, and 6 hold. Then, γ̂ in (4.2.11)
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is the unique ML estimator, (weakly) consistent, asymptotically normally distributed, and asymp-

totically efficient.

Then, ρ̂ is (weakly) consistent, asymptotically normally distributed, and asymptotically

efficient under the mild regularity conditions.

Theorem 4.2.3 (properties of θ̂). Suppose Conditions 1, 2, 3, 4, 5, and 6 hold. Then, θ̂ =(
β̂⊤, γ̂⊤

)⊤
satisfies the score equation with respect to θ, i.e.,

∂

∂θ
ℓn (θ; x, y)

∣∣∣∣
θ=θ̂

= 0.

In addition, the Fisher information matrix of the log-likelihood function ℓn (θ; x, y) is

Ψ =

 Ψβ 0(Rp)×[G(G+1)/2]

0[G(G+1)/2]×(Rp) Ψγ

 ,

and it is positive definite, where

Ψβ = x⊤ [In ⊗Ω (AΩ,BΩ, ℓ)] x = Ω (AΩ,BΩ, ℓ)⊗

(
n∑

i=1

xix⊤
i

)
∈ R(Rp)×(Rp),

Ψγ =
(
ψ

(γ)
jj′

)
, ψ

(γ)
jj′ =

n

2
tr

{[
∂Ω (AΩ,BΩ, ℓ)

∂γj

]
Σ (AΣ,BΣ, ℓ)

[
∂Ω (AΩ,BΩ, ℓ)

∂γj′

]
Σ (AΣ,BΣ, ℓ)

}
,

γj ∈ {γ11, . . . , γ1G, . . . , γ2G, . . . , γGG} denotes the j-th component of γ for j = 1, . . . , G(G +

1)/2, and ψ(γ)
jj′ is simplified to a closed-form expression in Chapter C.

4.2.4 Inference about the MAUD parameters

In this section, we describe statistical inferences about β and γ.
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Inference about β. We conduct statistical tests for β using the estimator presented in (4.2.9).

Without loss of generality, we are simultaneously testing the following Rp covariate-wise hy-

potheses:

H0,r,q : β
(q)
r = 0 versus H1,r,q : β

(q)
r ̸= 0, q = 1, . . . , p, r = 1, . . . , R, (4.2.12)

where β(q)
r is the q-th component of the r-th regression coefficient vector, i.e., βr =

(
β
(1)
r , . . . , β

(p)
r

)⊤
.

An exact covariance matrix of β̂ is available from (4.2.10):

Σβ̂ = cov
(
β̂
)
= Σ (AΣ,BΣ, ℓ)⊗

(
n∑

i=1

xix⊤
i

)−1

∈ R(Rp)×(Rp). (4.2.13)

In general, given a pre-determined matrix C∗ ∈ Rs×(Rp) with a full rank, we can test a secondary

parameter (SP) ϱ∗ = C∗β ∈ Rs×1:

H0,SP : ϱ∗ = ϱ∗
0 versus H1,SP : ϱ∗ ̸= ϱ∗

0.

We construct a Wald-type test statistic using the estimator ϱ̂∗ = C∗β̂ that follows a multivariate

normal distribution with mean C∗β ∈ Rs×1 and covariance matrix C∗Σβ̂C∗,⊤ ∈ Rs×s.

Inference about γ. By applying Theorem 4.2.3 and utilizing the log-likelihood function

in (4.2.8), we can compute the observed information matrix to estimate the asymptotic standard

errors of γ̂. Subsequently, we perform G(G + 1)/2 Wald-type tests to evaluate the null and

alternative hypotheses:

H0,gg′ : γgg′ = 0 versus H1,gg′ : γgg′ ̸= 0, g ≤ g′ = 1, . . . , G. (4.2.14)
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Multiple testing correction procedures (e.g., false discovery rate, FDR) can be further performed

to account for the multiplicity and dependence of the simultaneous tests (Benjamini and Hochberg,

1995; Leek and Storey, 2008).

4.3 Simulation Studies

In this section, we use Monte Carlo simulation studies to (1) evaluate the performance of

MAUD for parameter estimation; (2) assess the performance of statistical inference about regres-

sion coefficients of MAUD, and compare it with those of competing linear regression models,

including the ordinary least-square regression model (OLS; Worsley and Friston, 1995), the au-

toregressive model for multivariate block-diagonal outcomes (AMBD; Lee et al., 2023), and the

mixed model for repeated measures (MMRM; Bove et al., 2022); and (3) perform sensitivity

analysis for the MAUD under model misspecification when the underlying covariance matrix

does not have the interconnected community structure.

4.3.1 Data generation

We generate the multivariate outcomes yi from N (Bxi,Σ), where i = 1, . . . , n. We firstly

specify the mean vectors by sampling xi from a standard normal distribution and specifying the

regression coefficients B⊤ = (β1, . . . ,βR)p×R with p = 2. We vary the regression coefficients

associated with the covariates of interest (i.e., β(2)
r ) across communities while setting the other

non-zero regression coefficients different from β
(2)
r . Specifically, we set β(1)

r ̸= β
(2)
r and β(2)

r

depending on κ in βr =
(
β
(1)
r , β

(2)
r

)⊤
for the first two features within each community and

set βr as zero for the other features, where κ is the effect size (i.e., the mean over standard
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deviation). We consider various settings with n ∈ {100, 300, 500}, R ∈ {10, 100, 200}, and

κ ∈ {0.4, 0.6, 0.8}. Next, we set the covariance matrix Σ = Σ (AΣ,BΣ, ℓ) with

AΥ =


−0.77

−1.15

−0.24

 , BΥ =


0.77 0.11 −0.57

1.15 1.12

0.24

 .

This covariance structure has G = 3 interconnected communities. For R ∈ {10, 10, 200}, we set

the communities sizes ℓ⊤ ∈ {(3, 3, 4), (30, 30, 40), (60, 60, 80)}, respectively. We simulate 100

replicates for this setting.

4.3.2 Evaluation of estimation of the scaled autoregressive dependence param-

eters by the MAUD

For each replicated dataset, we apply the MAUD to estimate β using (4.2.9) and γ us-

ing (4.2.11). We evaluate whether the MAUD provides an accurate scaled autoregressive depen-

dence vector γ. To assess the performance of estimator γ̂, we use the evaluation metrics includ-

ing the average relative bias (denoted by “bias”), the Monte Carlo standard deviation (denoted

by “MCSD”), the average asymptotic standard error (denoted by “ASE”), and the 95% coverage

probability based on the Wald-type confidence interval (denoted by “95% CP”) for each element

of γ.

Table 4.1 summarizes the estimate of γ (the complete results are available in Chapter C).

The results demonstrate that the biases are relatively small, especially when compared with the

Monte Carlo standard deviations, and the asymptotic standard errors are close to the Monte Carlo
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(n,R) parameter bias MCSD ASE 95% CP
γ11 0.0077 0.0459 0.0492 0.96
γ12 -0.0022 0.0376 0.0397 0.93

(100, 10) γ13 -0.0072 0.0417 0.0375 0.93
γ22 0.0197 0.0908 0.0947 0.97
γ23 0.0143 0.0682 0.0622 0.94
γ33 0.0107 0.0533 0.0492 0.93
γ11 0.0195 0.0240 0.0233 0.87
γ12 -0.0126 0.0583 0.0679 0.99

(100, 100) γ13 0.0099 0.0781 0.0776 0.94
γ22 0.0152 0.0304 0.0280 0.92
γ23 0.0283 0.0793 0.0725 0.89
γ33 0.0125 0.0130 0.0141 0.89
γ11 0.0168 0.0148 0.0164 0.85
γ12 -0.0092 0.0648 0.0698 0.99

(100, 200) γ13 0.0128 0.0898 0.0795 0.91
γ22 0.0192 0.0180 0.0198 0.89
γ23 0.0257 0.0808 0.0723 0.86
γ33 0.0130 0.0097 0.0099 0.78

Table 4.1: Estimation results of γ under n = 100, where “bias” denotes the average of esti-
mation bias, “MCSD” denotes the Monte Carlo standard deviation, “ASE” denotes the average
asymptotic standard error, “95% CP” denotes the coverage probability based on a 95% Wald-type
confidence interval.

standard deviations. As the number of features increases, the biases slightly increase, and there-

fore, the coverage probabilities based on 95% Wald-type confidence intervals are slightly smaller

than the nominal level. As the sample size increases, the asymptotic standard errors decrease and

are closer to the Monte Carlo standard deviations, and the coverage probabilities based on 95%

Wald-type confidence intervals become closer to the nominal level.

4.3.3 Evaluation of statistical inference about the regression coefficients by the

MAUD

We also evaluate the statistical inference about the regression coefficients by the MAUD

and compare it with those of the OLS, AMBD, and MMRM. In contrast, we also use the true
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covariance matrix Σ (AΣ,BΣ, ℓ) as an “estimator”, denoted by “TRUE”. Since we are interested

in selecting a subset of features that are associated with the covariates of interest, we evaluate the

statistical inference from the perspective of variable selection. In general, the false positive rate

(FPR) and the true positive rate (TPR), defined below:

TPRα =
#
{
(q, r) : β

(q)
r ̸= 0, H0,r,q is rejected at α, 1 ≤ q ≤ p, 1 ≤ r ≤ R

}
#
{
(q, r) : β

(q)
r ̸= 0, 1 ≤ q ≤ p, 1 ≤ r ≤ R

} ,

FPRα =
#
{
(q, r) : β

(q)
r = 0, H0,r,q is rejected at α, 1 ≤ q ≤ p, 1 ≤ r ≤ R

}
#
{
(q, r) : β

(q)
r = 0, 1 ≤ q ≤ p, 1 ≤ r ≤ R

} ,

are commonly used criteria to evaluate variable selection with a given cutoff α ranging from 0

to 1. To avoid making an ad-hoc choice of cutoff, we utilize receiver operating characteristic

(ROC) curves, as a statistical model with a higher area under the curve indicates a more accurate

statistical inference.

We demonstrate the results in the first two rows of Figure 4.2 for R = 100 and R = 200.

In general, the MAUD has the closest behavior to TRUE, and the ROC curves produced by the

MAUD uniformly outperform the other methods which are followed by those of the AMBD,

MMRM, and OLS, respectively. The difference between their TPRs becomes larger at the same

FPR when the effect size increases. When κ = 0.8, the AMBD yields a slightly higher TPR

than that of the MAUD at the same FPR. One possible explanation is the AMBD gains statistical

power probably because it uses fewer parameters to model γ than the MAUD does. The OLS

and MMRM have unreasonable performances due to the lowest TPRs.
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Figure 4.2: ROC curves under various levels of effect size κ for different covariance matrix
estimators, different statistical models, and different noise levels of covariance matrices.

4.3.4 Misspecification analysis of the MAUD

We assumed a known interconnected community structure for the MAUD in the last two

studies. However, the latent covariance structure may deviate from the interconnected community

structure in practice. Here, we assess the robustness of the MAUD under model misspecification.

In particular, we introduce a perturbation term Eσ ∼ Wishart (R, σIR) for σ ∈ {1, 2, 3} × 10−4

and Eσ = 0R×R for σ = 0. We generate the simulated datasets 100 times with covariance matrix
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Σ = Σ (AΣ,BΣ, ℓ) + Eσ under n = 500 and R = 100.

For each simulated dataset, we calculate the estimates of β and Σβ̂. Then, we similarly

test the covariate-wise hypotheses and plot the ROC curves in Figure 4.2 based on all replicates.

As expected, the ROC curves in the third row of Figure 4.2 show that the TPR increases

at the same FPR when the effect size increases. As the noise level becomes larger, the TPR

decreases. We note that when σ = 10−4, the elements of Eσ nearly have the same order of

magnitude as those of the true covariance matrix. It implies that the MAUD can handle slight and

moderate levels of noise on the covariance structure.

4.4 Investigation of the Effect of Alcohol Intake on Plasma Metabolomics

To investigate the influence of alcohol consumption on plasma metabolomics, we apply the

proposed method to a nuclear magnetic resonance (NMR) plasma metabolomics dataset, with a

particular focus on the associations between the NMR metabolic biomarkers and alcohol intake.

The dataset is accessible at UK Biobank and described in Ritchie et al. (2023). It comprises

S = 249 NMR metabolic biomarker measurements as outcomes; alcohol intake frequency (912

participants daily, 1175 three or four times a week, 1017 once or twice a week, 424 one to three

times a month, 300 special occasions only, and 156 never) as the exposure; and the intercept, age

(when attended assessment center, 63.39± 7.61 in year), sex (1840 male and 2144 female), BMI

(body mass index, 26.28 ± 4.11), and heavy smoking (883 participants yes, and 3101 no) as the

covariates. This dataset has p = 6 and n = 3984 participants.

Detecting the interconnected community structure of NMR data. We fit the data to a multi-

variate linear regression model using the least-square method and obtain the estimated regression
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coefficient matrix B̃∗
249×6. We next calculate the residual matrix and apply a network detection

algorithm proposed by Chen et al. (2023). After reordering the biomarkers, the correlation matrix

of the residuals demonstrates R = 170 biomarkers are categorized into 5 communities with sizes

of L1 = 77, L2 = 47, L3 = 19, L4 = 11, and L5 = 16, and the remaining L0 = 79 biomarkers

are in no communities, regarded as the singletons (see the heat map in Figure 4.1(B)). We also

obtain the estimated regression coefficient matrix B̂∗
249×6, which is calculated based on B̃∗

249×6

by arranging its rows according to the reordered biomarkers, i.e., the first R = 170 rows of

B̂∗
249×6 are the estimates for the biomarkers in communities and the last L0 = 79 rows are the

estimates for the singletons. The names of the biomarkers, their community indexes, and their

source communities, defined by Ritchie et al. (2023), and B̂∗
249×6, are available in Chapter C.

Statistical inference about B249×6. Based on the detected interconnected community struc-

ture, we aim to estimate and conduct statistical inference about the regression coefficient matrix

B∗
249×6 =

B170×6

B†
79×6

 based on the proposed MAUD and the general linear model, separately.

Firstly, we partition B̂∗
249×6 =

B̂170×6

B̂†
79×6

. Then, we estimate the standard errors for B̂170×6

using the proposed MAUD and those for B̂†
79×6 using the general linear model (see the results

in Chapter C). Finally, we select alcohol intake-related NMR biomarkers based on the inference

results at FDR level 0.05. We also plot the 95% confidence intervals for all regression coefficients

in Figure 4.3.

Result. Our findings reveal that at FDR level 0.05, most high-density lipoprotein (HDL)

biomarkers and Apolipoprotein A1 biomarkers have significant positive associations with alcohol

intake.
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Figure 4.3: Forest plot of 95% confidence intervals for 249 biomarkers regression coefficients,
biomarkers in “black” refer to the significant ones in 5 communities, biomarkers in “blue” refer
to the significant singletons, biomarkers in “grey” refer to the non-significant ones.
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Specifically, among all 249 NMR biomarkers, there are 12, 80, 44, and 58 NMR biomarkers

associated with the intermediate-density lipoprotein (IDL), very-low-density lipoprotein (VLDL),

low-density lipoprotein (LDL), and HDL, respectively. In Table 4.2, we report the numbers of

biomarkers by the communities (i.e., within the 5 communities or no communities), the statistical

decisions, and the signs of estimated regression coefficients.

In 5 Communities In No Communities
Totalsignificant

non-significant
significant

non-significant
+ − + −

IDL 8 0 2 1 1 0 12
VLDL 4 1 56 2 6 11 80
LDL 13 0 21 2 3 5 44
HDL 36 3 3 10 4 2 58

Table 4.2: Statistical results of the effect of alcohol intake frequency on the biomarkers associated
with the lipoprotein at level α = 0.05, where “IDL” refers to the intermediate-density lipoprotein,
“VLDL” refers to the very-low-density lipoprotein, “LDL” refers to the low-density lipoprotein,
“HDL” refers to the high-density lipoprotein, and + and − refer to the signs of estimated regres-
sion coefficients.

For LDL, the coefficients of 13 significant NMR biomarkers among the first 170 ones are

positive, the coefficients of the rest 5 significant NMR biomarkers (i.e., phospholipids to total

lipids in small/medium/large LDL percentage, and cholesterol to total lipids in small/medium

LDL percentage) negative and positive, respectively.

For HDL, 36 NMR biomarkers (out of the 39 significant ones) are positively associated

with, and the rest 3 (i.e., triglycerides to total lipids in small/medium/large HDL percentage),

are negatively associated with the alcohol intake frequency. Among the 14 remaining signifi-

cant biomarkers, the alcohol intake frequency is negatively associated with phospholipids to total

lipids in medium HDL percentage, cholesterol to total lipids in very large HDL percentage, free

cholesterol to total lipids in very large HDL percentage, and cholesteryl esters to total lipids in

81



small HDL percentage only, is positively associated with the other ones. In summary, among 58

HDL biomarkers, there are 36 ones positively associated with alcohol intake frequency. There-

fore, the increasing frequency of alcohol intake significantly has a positive effect on the above

36 biomarkers. In addition to the biomarkers associated with lipoprotein, we also observe that

there is a significant association between alcohol intake and Apolipoprotein B to Apolipoprotein

A1 ratio, while the association between alcohol intake and Apolipoprotein A1 is significantly

positive, that between alcohol intake and Apolipoprotein B is not significant at level 0.05. This is

agreed with the result that apolipoprotein A1 may play an important role when increasing alcohol

consumption raises HDL cholesterol levels (Silva et al., 2000).

In contrast, we also apply the AMBD and MMRM to the NMR dataset. Their inference

results and the forest plots are presented in Chapter C.

4.5 Discussion

We developed a new multivariate regression technique MAUD to jointly model correlated

multivariate outcomes. Compared to the classic linear regression approaches that model each

outcome separately, the MAUD can effectively improve the statistical inference, i.e., the MAUD

produces higher statistical powers and fewer false positive findings than the competing ones. This

framework is applicable for various omics data analyses (e.g., differential expression analysis)

because these datasets often exhibit latent interconnected community structures.

We build the MAUD based on the autoregressive model while accounting for the intercon-

nected community structure. We bridge the gap between the autoregressive dependence parame-

ters and the parameters in a large covariance model. By leveraging the interconnected community
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structure, we develop efficient (i.e., closed form) estimators for the dependence parameters in the

autoregressive model. By accounting for the dependence of multivariate outcomes, we obtain

more accurate inference and thus can select the omics features with improved accuracy. This

may also lead to potentially improved reproducibility and replicability for high-throughput data

analysis. Based on the simulation studies, the MAUD is also robust to model misspecification.

Although we use the interconnected community structure for the MAUD, a more general frame-

work can be developed for the covariance structure under the autoregressive model.

In our data application, we found that alcohol intake can increase the level of “good choles-

terol” HDL which may protect the cardiovascular condition. In addition, our findings on HDL and

related pathways of Apolipoprotein A1 and Apolipoprotein B are biologically sensible. However,

we may cautiously consider the potential cancer risks of over intake of alcohol. These jointly may

provide a new perspective on alcohol intake for public health.

In conclusion, our proposed MAUD, estimation, and inference procedures are applicable

to a wide range of network studies where an interconnected community structure with uniform

blocks is present.
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Chapter 5: Semi-Confirmatory Factor Analysis for Multivariate Data with In-

terconnected Community Structures

5.1 Introduction

Factor analysis is a widely utilized technique in multivariate data analysis, aimed at de-

composing observed data into linear combinations of unobserved common factors and describing

the relationship between observations in terms of common factors (Anderson, 2003). It is com-

monly categorized into two classes: exploratory factor analysis (EFA) and confirmatory factor

analysis (CFA). In applications where there is no prior theory guiding the analysis, EFA is typ-

ically the preferred choice to explore the relationship between intercorrelated observations and

latent common factors. On the other hand, CFA is employed when there is strong evidence sup-

porting a specific factor structure in the data, i.e., the covariance matrix of the common factors

has a particular structure rather than a diagonal one. As extensively discussed in the literature,

CFA offers two primary advantages. First, it effectively reduces the dimensionality of the data

by utilizing common factors. Second, unlike EFA, a CFA model allows for flexible design of the

factor loading matrix, making it possible to leverage knowledge gained from preliminary studies,

particularly in cases where the common factors are found to be correlated in a particular form.

Detailed justifications and further references on the advantages of CFA can be found in classi-
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cal works (Lawley, 1958), overviews (Schreiber et al., 2006; Jackson et al., 2009), and related

literature (Basilevsky, 2009; Brown, 2015; Gana and Broc, 2019).

In statistical literature, factor analysis is inherently associated with the estimation of large

covariance matrices (Fan et al., 2013; Fan and Han, 2017; Fan et al., 2019). EFA allows us to

express a large population covariance matrix Σp×p of p-dimensional observations in terms of the

factor analysis parameters: Lp×K (the factor loading matrix), Σf (the covariance matrix of K

common factors), and Σu (the covariance matrix of error terms). The relationship is given by

Σ = LL⊤ + Σu (refer to Figure 5.1), under the identification conditions L⊤L is diagonal and

Σf = IK (Bai and Li, 2012; Fan et al., 2013, 2020). However, in practice, the prior knowledge

necessary for CFA is often unavailable. As a result, EFA has gained widespread popularity

(Friguet et al., 2009; Bai and Li, 2012; Fan et al., 2012).

Figure 5.1: Illustration of the workflow for the SCFA, CFA, and EFA models: we first apply
a community detection algorithm to the raw data; if the interconnected community structure is
detected, then we use the SCFA model; otherwise, we consider the conventional EFA or CFA
models.
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Interestingly, in a CFA model, the large population covariance matrix Σ, determined by

L, Σf , and Σu, exhibits a particular structure that finds extensive application in network data

analysis. Specifically, we consider two cases: the orthogonal or oblique common factors, re-

spectively, under the conditions L has a block-diagonal form (where non-zero column vectors lie

along the diagonal) and Σf is arbitrary positive definite. First, we consider a CFA model with

the orthogonal common factors. From a network analysis perspective, Σ possesses a commu-

nity structure, that is, the variables between communities are independent, consequently, Σ is a

block-diagonal matrix (Newman and Girvan, 2004; Fortunato, 2010). Second, when the common

factors in a CFA model are dependent, we refer to the structure of Σ as an interconnected com-

munity structure. In this scenario, the variables between communities exhibit correlation, leading

to a uniform-block structure in Σ (see real examples in Figure 5.2). Both the community struc-

ture and interconnected community structure commonly manifest in large network data. Each

community represents a scientific mechanism, such as a biological pathway (Wu et al., 2021), or

a social tie within social groups (Homans, 2013).

In practice, on the one hand, the interconnected community structure can be extracted from

the sample covariance matrix using community detection algorithms (Chen et al., 2018; Wu et al.,

2021; Perrot-Dockès et al., 2022), while the corresponding population covariance matrix has a

uniform-block structure. On the other hand, a CFA model is unavailable due to a lack of the

requisite knowledge, while the covariance matrix of the observations Σ has a “similar” pattern to

the uniform-block structure. Motivated by this intriguing covariance structure similarity, current

research focuses on exploring whether a CFA model can be informed by the detected intercon-

nected community structure and the corresponding (uniform-block) covariance matrix. Thus, a

CFA model, assisted by prior knowledge from the empirical interconnected community detec-
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Figure 5.2: Real examples of the interconnected community structures (the first row) and the
corresponding assumed population covariance matrices (the second row). A: the sample and
assumed population covariance matrices for a seed quality study (Perrot-Dockès et al., 2022); B:
the sample and assumed population covariance matrices for a nuclear magnetic resonance study
(Ritchie et al., 2023); C: the sample and assumed population covariance matrices for an echo-
planar spectroscopic imaging study (Chiappelli et al., 2019); D and E: the sample and assumed
population covariance matrices for an environmental study involving exposome and metabolites
(ISGlobal, 2021).

tion, may offer both scientifically and statistically explainable dimension reduction for the data.

However, a statistical framework for this purpose is currently unavailable. Although numerous

software and computational packages have been developed (Fox, 2006; Rosseel, 2012; Oberski,

2014; Huang, 2020), the computational burden often becomes unmanageable for many applica-

tions, particularly in high-dimensional data scenarios. To address this gap, we propose a novel

semi-confirmatory factor analysis (SCFA) model.

The SCFA model first estimates the factor loading matrix L by leveraging the particular

pattern (i.e., a uniform-block structure) and the community sizes obtained from the detected in-

terconnected community structure. Additionally, it estimates the factor scores, as well as the co-

variance matrices of common factors and error terms. The presence of interconnected community

structures has been observed in diverse domains, including brain imaging, biology, plant science,

computer science, gene expression, and others (Girvan and Newman, 2002; Colizza et al., 2006;
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Simpson et al., 2013; Levine et al., 2015; Huttlin et al., 2017; Zitnik et al., 2018; Perrot-Dockès

et al., 2022). Real examples showcasing these structures can be found in Figure 5.2. Therefore,

SCFA demonstrates considerable potential for wide-ranging applications.

The SCFA model offers several significant contributions to the field. First, the proposed

model provides a unique and elegant decomposition representation for the covariance matrix of

the observations Σ with valuable guidance by integrating the data-driven interconnected com-

munity structure. As the prior theory for the observations, we apply clustering or community

detection algorithms to access the detected interconnected community structure in preliminary

studies. Second, we demonstrate that the factor loading matrix L, covariance matrix of com-

mon factors Σf , and covariance matrix of the error terms Σu can be explicitly determined using

some elements of Σ only (illustrated in Figure 5.1). The determination potentially enhances the

estimation procedure and leads to more accurate and reliable results. Third, we derive explicit es-

timators for all unknown matrices in the SCFA model, significantly reducing the computational

burden. Furthermore, we establish both finite-sample and large-sample theoretical guarantees

for the proposed estimators. These offer assurance regarding the computational time and the

accuracy and reliability of the estimated parameters. Fourth, the SCFA model provides a more

comprehensive and nuanced understanding of the relationships between the observed variables

and common factors.

The remainder of the chapter is organized as follows. Section 5.2 presents the SCFA model

with specifications in the factor loading matrix, and details the estimation procedure for all un-

known matrices and factor scores. The following two sections, Section 5.3 and Section 5.4, eval-

uate the proposed estimation procedure using simulated and real data, respectively. All technical

proofs are presented in Chapter D.
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5.2 Methodology

5.2.1 A confirmatory factor analysis model

Let X = (X1, . . . , Xp)
⊤ denote a p-dimensional vector of observations, f = (f1, . . . , fK)

⊤

denote a K-dimensional vector of common factors (1 < K < p), and u = (u1, . . . , up)
⊤ denote

a p-dimensional vector error terms. A (strict) factor model can be defined as

Xp×1 = µp×1 + Lp×KfK×1 + up×1,

satisfying E(f) = 0K×1, E(u) = 0p×1, cov(u) = Σu, cov (f ,u) = 0, (5.2.1)

where µ is a p-dimensional mean vector, without loss of generality, we assume µ = 0p×1; L =

(ℓjk) is a p by K factor loading matrix; and Σu is a p by p diagonal matrix. Furthermore, let

Σ = cov(X) and Σf = cov(f) denote the p by p covariance matrix of X and the K by K

covariance matrix of f , respectively. Thus, based on specifications (5.2.1), we have

Σ = LΣfL⊤ +Σu, (5.2.2)

where ⊤ denotes the transpose of a vector or matrix. In particular, the common factors are said

to be orthogonal if Σf = IK or to be oblique if Σf is not diagonal.

Given the prior theory, we may consider zero elements in specified positions of L. For

example, if we set a condition ℓjk = 0, then it implies that the k-th factor does not affect the j-th

response, where j = 1, . . . , p and k = 1, . . . , K. Under these zero conditions, Jöreskog (1969)

called the above factor analysis as confirmatory factor analysis. In the present paper, we specify

89



the factor loading matrix L as below:

Lp×K = Bdiag (ℓ1, . . . , ℓK)

=



ℓp̄0+1,1 0 . . . 0

...
... . . . ...

ℓp̄1,1 0 . . . 0

0 ℓp̄1+1,2 . . . 0

...
... . . . ...

0 ℓp̄2,2 . . . 0

...
... . . . ...

0 0 . . . ℓp̄K−1+1,K

...
... . . . ...

0 0 . . . ℓp̄K ,K



, ℓp̄k−1+1,k = ιk ̸= 0, k = 1, . . . , K, (5.2.3)

where Bdiag(·) denotes a block-diagonal matrix; p1, . . . , pK are integers such that p = p1+ · · ·+

pK ; p̄k =
∑k

k′=1 pk′ is the cumulative sum (we define p̄0 = 0); ℓk =
(
ℓp̄k−1+1,k, . . . , ℓp̄k,k

)⊤ is the

pk-dimensional non-zero sub-vector of columns of L; the first element of ℓk is a known non-zero

number ℓp̄k−1+1,k = ιk ̸= 0 but the other elements of ℓk are unknown, for k = 1, . . . , K.

Typically, we estimate the (p − K) non-zero elements of L, the K(K + 1)/2 elements

of symmetric Σf , and the p elements of diagonal Σu in a CFA model (5.2.2) with (5.2.3) by

using a likelihood-based approach. Furthermore, we also estimate the common factor f using a

least-square-based approach.
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5.2.2 The SCFA model

Specifications of factor loading matrix L in (5.2.3), i.e., the positive integer values p1, . . . , pK

are determined by the detected interconnected community structure in the raw data. Specifically,

we apply the community detection algorithm to the raw data, yielding an interconnected com-

munity structure (precisely, we refer to this interconnected community structure at the sample

level as one with well-organized blocks, see the first row in Figure 5.2). These well-organized

blocks imply the population covariance matrix has also an interconnected community structure

(precisely, we refer to this interconnected community structure at the population level as one

with uniform blocks, see the second row in Figure 5.2). Thus, our prior knowledge includes

that the population covariance matrix has an interconnected community structure (with uniform

blocks), the sizes of the communities p1, . . . , pK satisfying p = p1 + · · · + pK , and the number

of communities K.

Incorporating the interconnected community structure in the covariance matrix of observa-

tions, Σ is a uniform-block matrix (see Chapter 2):

Σ = Σ (A,B,p) = A ◦ I(p) + B ◦ J(p), (5.2.4)

where p = (p1, . . . , pK)
⊤ is the K-dimensional partition-size vector satisfying p = p1 + · · · +

pK (see Chapter 2); A = diag (a11, . . . , aKK) and B = (bkk′) are K by K diagonal matrix

and symmetric matrix, respectively (see Chapter 2); I(p) = Bdiag (Ip1 , . . . , IpK ) and J(p) =(
1pk×pk′

)
with identity matrix I and all-one matrix 1; ◦ is the block Hadamard product, i.e.,

A ◦ I(p) = Bdiag (a11Ip1 , . . . , aKKIpK ) and B ◦ J(p) =
(
bkk′1pk×pk′

)
(see Chapter 2).
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Substituting covariance matrix (5.2.4) into the parametric covariance model (5.2.2), we

obtain the following confirmatory covariance analysis model:

Σ (A,B,p) = LΣfL⊤ +Σu. (5.2.5)

Moreover, we refer to model (5.2.1) with (5.2.5) as a semi-confirmatory factor analysis (SCFA)

model. The following corollary describes the relationship between Σ (A,B,p) between L, Σf ,

and Σu, respectively.

Corollary 5.2.1 (Parametrize L, Σf , and Σu in terms of A, B, and p). Suppose p-dimensional

vector X with zero mean and known covariance matrix Σ (A,B,p), satisfies a SCFA model,

where p = (p1, . . . , pK)
⊤ is a known with pk > 2 for every k, A = diag (a11, . . . , aKK) ≻ 0

is known and positive definite, and B = (bkk′) ≻ 0 is also known and positive definite with

bk′k = bkk′ for every k ̸= k′. Then, we have the analytic solutions:

ℓk = ιk1pk×1, i.e., ℓp̄k−1+1,k = · · · = ℓp̄k,k = ιk, k = 1, . . . , K;

Σf = diag
(
ι−1
1 , . . . , ι−1

K

)
B diag

(
ι−1
1 , . . . , ι−1

K

)
=

(
bkk′

ιkιk′

)
;

Σu = A ◦ I(p) = Bdiag (a11Ip1 , . . . , aKKIpK ) .

In particular, if we assume ι1 = · · · = ιK = 1, then ℓk = 1pk×1 for all k, Σf = B, and

Σu = A ◦ I(p).

Let ι = (ι1, . . . , ιK)
⊤ ∈ RK×1 denote the vector of the first elements of ℓ1, . . . , ℓK . Under

the condition ι = 1K×1, we refer to model (5.2.1) with (5.2.5) as a standard SCFA model.

Corollary 5.2.1 demonstrates the following facts for a standard SCFA model. We would like
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to decompose a p-dimensional vector X with zero mean and covariance matrix Σ into a confir-

matory factor model (5.2.1). Given the knowledge from preliminary research, covariance matrix

Σ has an interconnected community structure (with uniform blocks), i.e., Σ = Σ (A,B,p), and

factor loading matrix L has preassigned 0’s as (5.2.3). Furthermore, if Σ (A,B,p) is known

with A ≻ 0 and B ≻ 0 (therefore Σ (A,B,p) ≻ 0, see Chapter 2), and ι = 1K×1, by Corol-

lary 5.2.1, then: (1) the covariance matrix of K common factors is exactly the K by K positive

definite matrix B; (2) the non-zero sub-vectors of L in (5.2.3) are equal to all-one vectors; and (3)

the covariance matrix of error terms or idiosyncratic components is exactly the diagonal matrix

Bdiag (a11Ip1 , . . . , aKKIpK ) (or expressed by A ◦ I(p)).

In other words, given L in (5.2.3), symmetric Σf , and particular diagonal Σu, the under-

lying Σ = LΣfL⊤ + Σu has the interconnected community structure (with uniform blocks) as

Σ (A,B,p). On the other hand, Corollary 5.2.1 substantiates that Σ (A,B,p) in a standard SCFA

can be uniquely decomposed into L = Bdiag (1p1×1, . . . , 1pK×1), Σf = B, and Σu = A ◦ I(p)

satisfying Σ (A,B,p) = LΣfL⊤ +Σu.

Therefore, for a fixed k in a standard SCFA model: (1) the k-th set of responses {Xp̄k−1+1, . . . , Xp̄k}

has equal influence on the k-th common factor fk only (while has no influences on the other

common factors); (2) the k-th set of error terms {up̄k−1+1, . . . , up̄k} has a common variance akk

(akk > 0 due to A ≻ 0) and are uncorrelated to the other sets of error terms; and (3) the k-th

common factor fk has a variance bkk and has a covariance bkk′ with the other k′-th common factor

fk′ for k′ ̸= k.
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5.2.3 The estimation procedure

Let Xn×p denote the data matrix. Applying a community detection algorithm to the raw

data, we assume an interconnected community structure is detected, which implies the population

covariance matrix has the uniform-block structure in (5.2.4). Based on the detected structure, we

obtain the prior knowledge of the specific pattern in the covariance matrix (i.e., the interconnected

community structure), the number of communities, i.e., K̂, and the community sizes, i.e., p̂ =

(p̂1, . . . , p̂K)
⊤ satisfying p = p̂1 + · · ·+ p̂K and p̂k > 2 for k = 1, . . . , K̂. Theoretical properties

related to the detected communities can be found in Chen et al. (2018) and Wu et al. (2021). For

ease of presentation, we suppress the notation ·̂ and use K = K̂ and p = p̂.

Suppose its rows X1, . . . ,Xn are independently and identically distributed and satisfy the

proposed standard SCFA (5.2.1) with (5.2.5):

Xi = Lfi + ui, i = 1, . . . , n;

Σ (A,B,p) = LΣfL⊤ +Σu, with ι = 1K×1.

Let Sp×p = X⊤X/n denote the sample covariance matrix. In this section, we would like to

estimate the factor loading matrix L, the covariance matrix of common factors Σf , the covariance

matrix of error terms Σu, and the factor scores fi.

Theorem 5.2.1 (The proposed matrix estimators). Let (Skk′) is partitioned matrix of S by p (see

Chapter 2). The maximum likelihood estimators of L, Σf , and Σu are

L̂ = Bdiag (1p1×1, . . . , 1pK×1) , Σ̂f = B̂, Σ̂u = Â ◦ I(p) = Bdiag (â11Ip1 , . . . , âKKIpK ) ,

(5.2.6)
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where Â = diag (â11, . . . , âKK), B̂ =
(
b̂kk′
)

with b̂kk′ = b̂k′k, and

âkk =
pk tr (Skk)− sum (Skk)

pk(pk − 1)
, b̂kk′ =


sum (Skk′)

pk × pk′
, k ̸= k′

sum (Skk)− tr (Skk)

pk(pk − 1)
, k = k′

,

for all k and k′, tr(·) and sum(·) denote the trace and the sum of all elements of a matrix,

respectively.

We remark here that the proof of Theorem 5.2.1 is straightforward by Corollary 5.2.1. In

addition, the derivation of maximum likelihood estimators âkk and b̂kk′ , and their exact closed-

form variance estimators, i.e., var (âkk) and var
(
b̂kk′
)

, are presented in Chapter 3.

Theorem 5.2.2 (Properties of the proposed matrix estimators). The proposed matrix estimators

L̂, Σ̂f , and Σ̂u are uniformly minimum-variance unbiased estimators (UMVUE).

The proof of Theorem 5.2.2 depends on the fact that all âkk and b̂kk′ are the UMVUE of

akk and bkk′ . See the details in Chapter 3.

Theorem 5.2.3 (The proposed factor score estimator and its properties). The proposed factor

score estimator of fi is

f̂i =
(

L̂
⊤

L̂
)−1

L̂
⊤
Xi =

(
L̂
⊤
Σ−1

u L̂
)−1

L̂
⊤
Σ−1

u Xi =
(

L̂
⊤
Σ̂−1

u L̂
)−1

L̂
⊤
Σ̂−1

u Xi, (5.2.7)

for i = 1, . . . , n, where Σu = A ◦ I(p) and Σ̂u = Â ◦ I(p) are diagonal matrices. So, the

proposed OLS estimator is identical to the generalized least-square (GLS) estimator and the

feasible generalized least-square (FGLS) estimator. In addition, under mild regularity conditions,
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f̂i is (weakly) consistent, asymptotically normally distributed, asymptotically efficient as p→ ∞.

The proof of Theorem 5.2.3 follows the arguments in Chapter 4.

5.3 Simulation Studies

We first assess the finite-sample performance of the proposed estimators in (5.2.6) for a

standard SCFA model and compare it with a standard CFA model numerical solved by function

“cfa()” in the R package lavaan (Rosseel et al., 2023). Then, we evaluate the performance of esti-

mation of the factor scores in (5.2.7). In contrast, we also compare it with a standard CFA model

numerically solved by the “cfa()” function, and with a standard EFA model numerically solved

by the “fa()” function in the package psych (Revelle, 2023). Lastly, we perform a misspecifica-

tion analysis for the SCFA under the scenario where the underlying interconnected community

structure is violated.

5.3.1 Data generation procedure

We randomly generate the vectors of observations Xi = Lp×Kfi + ui, where the fac-

tor loading matrix L = Bdiag (1p1×1, . . . , 1pK×1), the common factor fi ∼ N (0K×1,BK×K),

and the error term ui ∼ N (0p×1,AK×K ◦ I(p)) for i = 1, . . . , n. Specifically, we set p⊤ ∈

{(15, 15, 20), (30, 30, 40)} with K = 3 and p ∈ {50, 100}, n ∈ {200, 500, 800}, and

A =


0.1

0.2

0.5

 , B =


2.02 0.79 1.15

3.13 1.63

3.69

 .
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We repeat the above data generation procedure 100 times.

5.3.2 Study 1: performance of parameter estimation

We fit the standard SCFA model (i.e., ι = (1, 1, 1)⊤) to each simulated dataset using the

estimators in (5.2.6).

In contrast, we also fit a standard CFA model to each simulated data using the function

“cfa()” in R package lavaan. Specifically, we use the function “cfa()” to estimate all ℓk in the

factor loading matrix L, all diagonal elements of A ◦ I(p), all elements of B.

To evaluate the estimation performance for L, Σf , and Σu, it is equivalent to access the

estimation performance for all akk and bkk′ . So, we consider the following metrics: the aver-

age bias, Monte Carlo standard deviation, average standard error, and 95% Wald-type empirical

coverage probability, using the proposed estimates, for each akk and bkk′ in Table 5.1. We also

compute the average bias and asymptotic standard error using the results produced by lavaan,

for all elements of ℓk, A ◦ I(p) (in Chapter D), and each bkk′ in Table 5.2. The execution time for

both methods is calculated.

The estimation results, as presented in Tables 5.1 and 5.2, demonstrate that our estimation

procedure produces the expected estimates. Specifically, for each parameter, the bias is relatively

small when compared to the Monte Carlo standard deviation, while the average standard error

is close to the Monte Carlo standard deviation. Furthermore, both the bias and average stan-

dard error decrease as the sample size increases, and the 95% coverage probability approaches

the nominal level as the sample size grows. The proposed estimators are comparable with the

estimates produced by lavaan and are computationally less expensive.
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(n, p) bias MCSD ASE 95% CP (n, p) bias MCSD ASE 95% CP
(200, 50) (200, 100)

a11 0.0002 0.0027 0.0027 0.95 a11 0.0002 0.0018 0.0019 0.95
a22 0.0009 0.0051 0.0054 0.95 a22 0.0003 0.0035 0.0037 0.94
a33 0.0000 0.0107 0.0115 0.98 a33 -0.0001 0.0082 0.0080 0.94
b11 0.0045 0.2133 0.2037 0.95 b11 0.0265 0.2193 0.2056 0.97
b12 -0.0224 0.1746 0.1855 0.97 b12 -0.0071 0.1822 0.1868 0.97
b13 -0.0048 0.2155 0.2108 0.97 b13 0.0126 0.2117 0.2112 0.95
b22 -0.0123 0.3570 0.3140 0.91 b22 -0.0025 0.3440 0.3143 0.93
b23 -0.0195 0.2983 0.2671 0.92 b23 0.0078 0.2598 0.2670 0.96
b33 -0.0128 0.3785 0.3715 0.95 b33 -0.0319 0.3512 0.3683 0.94

(500, 50) (500, 100)
a11 0.0002 0.0015 0.0017 0.96 a11 0.0000 0.0011 0.0012 0.96
a22 -0.0001 0.0035 0.0034 0.94 a22 -0.0004 0.0024 0.0023 0.92
a33 0.0002 0.0067 0.0073 0.97 a33 0.0004 0.0054 0.0051 0.95
b11 -0.0006 0.1280 0.1283 0.96 b11 -0.0104 0.1175 0.1275 0.97
b12 -0.0280 0.1123 0.1171 0.97 b12 -0.0135 0.1071 0.1171 0.99
b13 -0.0122 0.1475 0.1323 0.93 b13 -0.0060 0.1350 0.1327 0.92
b22 -0.0135 0.1878 0.1982 0.97 b22 0.0030 0.1936 0.1988 0.95
b23 -0.0517 0.1775 0.1674 0.94 b23 -0.0023 0.1501 0.1693 0.98
b33 -0.0490 0.2359 0.2323 0.95 b33 0.0034 0.2153 0.2348 0.96

(800, 50) (800, 100)
a11 -0.0003 0.0012 0.0013 0.97 a11 0.0000 0.0009 0.0009 0.94
a22 -0.0002 0.0029 0.0027 0.94 a22 -0.0001 0.0017 0.0019 0.96
a33 0.0008 0.0053 0.0057 0.96 a33 -0.0004 0.0043 0.0040 0.92
b11 -0.0102 0.1086 0.1009 0.90 b11 0.0122 0.1024 0.1019 0.95
b12 -0.0148 0.0858 0.0926 0.95 b12 -0.0042 0.0931 0.0934 0.93
b13 -0.0150 0.1052 0.1050 0.94 b13 0.0200 0.1010 0.1059 0.97
b22 -0.0020 0.1423 0.1572 0.96 b22 0.0294 0.1561 0.1585 0.96
b23 0.0061 0.1308 0.1343 0.97 b23 0.0396 0.1201 0.1352 0.97
b33 0.0109 0.1732 0.1866 0.97 b33 0.0204 0.1489 0.1864 0.98

Table 5.1: Estimation results of A = diag (a11, a22, a33) and B = (bkk′) with bk′k = bkk′ for
k ̸= k′ in Study 1 by using the proposed method under various n and p, where “bias” denotes the
average of estimation bias, “MCSD” denotes the Monte Carlo standard deviation, “ASE” denotes
the average asymptotic standard error, “95% CP” denotes the coverage probability based on a
95% Wald-type confidence interval. The computational times of 100 replicates are around 0.05
seconds and 0.07 seconds for p = 50 and p = 100, respectively.

5.3.3 Study 2: performance of factor scores estimation

We also examine the proposed estimation procedure for the factor scores in (5.2.7) in a

standard SCFA model. As the competing methods, we fit the standard CFA and EFA models using
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(n, p) bias MCSD ASE (n, p) bias MCSD ASE
(200, 50) (200, 100)

b11 -0.0105 0.2255 0.2107 b11 0.0055 0.2331 0.2124
b12 -0.0274 0.1734 0.1846 b12 -0.0132 0.1819 0.1856
b13 -0.0138 0.2161 0.2114 b13 0.0071 0.2114 0.2126
b22 -0.0266 0.3711 0.3300 b22 -0.0206 0.3728 0.3302
b23 -0.0300 0.2976 0.2694 b23 0.0032 0.2581 0.2705
b33 -0.0399 0.3922 0.4122 b33 -0.0256 0.3617 0.4126

(500, 50) (500, 100)
b11 -0.0078 0.1254 0.1335 b11 -0.0134 0.1221 0.1331
b12 -0.0303 0.1128 0.1170 b12 -0.0124 0.1089 0.1176
b13 -0.0137 0.1486 0.1337 b13 -0.0078 0.1382 0.1341
b22 -0.0236 0.1951 0.2088 b22 0.0166 0.2167 0.2113
b23 -0.0532 0.1824 0.1699 b23 -0.0007 0.1540 0.1724
b33 -0.0445 0.2697 0.2605 b33 -0.0026 0.2515 0.2633

(800, 50) (800, 100)
b11 -0.0151 0.1103 0.1051 b11 0.0103 0.1097 0.1064
b12 -0.0156 0.0842 0.0928 b12 -0.0058 0.0938 0.0936
b13 -0.0155 0.1032 0.1063 b13 0.0190 0.1038 0.1072
b22 0.0001 0.1496 0.1663 b22 0.0200 0.1772 0.1673
b23 0.0082 0.1316 0.1367 b23 0.0364 0.1249 0.1373
b33 0.0193 0.1987 0.2092 b33 0.0180 0.1718 0.2092

Table 5.2: Estimation results of A = diag (a11, a22, a33) and B = (bkk′) with bk′k = bkk′ for
k ̸= k′ in Study 1 by using the lavaan package under various n and p, where “bias” denotes the
average of estimation bias, “MCSD” denotes the Monte Carlo standard deviation, “ASE” denotes
the average asymptotic standard error. The computational times of 100 replicates are around 97
seconds and 1776 seconds for p = 50 and p = 100, respectively.

the function “cfa()” in R package lavaan and the function “fa()” in R package psych, respectively.

We compute the average and standard deviation of the Euclidean loss
∑n

i=1

∥∥∥f̂i − fi

∥∥∥ based on

100 replicates for each method in Tabel 5.3.

The results demonstrate that the proposed method outperforms the standard CFA and EFA

numerical approaches due to the smallest loss. Compared with the standard EFA model, both

the proposed SCFA and standard CFA model take advantage of the dependent structure of the

common factors. We also note here the conventional numerical approaches may not handle the

case of a large dimension p.
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(n, p)
SCFA CFA EFA

mean
standard
devation mean

standard
devation mean

standard
devation

(200, 50) 38.52 1.20 56.44 14.82 502.35 24.94
(200, 100) 27.31 0.82 48.80 13.60 504.62 19.48
(500, 50) 96.43 2.15 114.17 14.09 1267.38 21.55
(500, 100) 68.21 1.36 93.59 19.34 1266.60 23.55
(800, 50) 154.59 2.41 173.20 14.24 2026.37 31.64
(800, 100) 109.31 1.83 134.56 21.73 2024.54 30.97

Table 5.3: Euclidean losses of
∑n

i=1

∥∥∥f̂i − fi

∥∥∥ in Study 2 by using a standard SCFA model, CFA
model, and EFA model, respectively, under various n and p, based on 100 replicates.

5.3.4 Study 3: misspecification analysis

We assess the robustness of the proposed SCFA model because the interconnected com-

munity structure may not hold in real applications. Therefore, we generate Xi ∼ N (0p×1,Σσ)

with Σσ = Σ (A,B,p) + Eσ, where n = 500 is fixed, σ ∈ {0.1, 0.3, 0.5} is the noise level and

Eσ ∼ Wishart (p, σIp) We also repeat this data generation procedure 100 times.

For each simulated dataset, we compute the average bias, Monte Carlo standard deviation,

average standard error, and 95% coverage probability for each parameter using the proposed

method, similarly to Study 1, in Table 5.4. Table 5.4 shows that when the assumption of a

uniform-block structure is violated, the proposed SCFA is still robust for the estimates of bkk′ .

5.4 Real Application

We fit the standard SCFA model to an echo-planar spectroscopic imaging (EPSI) dataset.

A description of the complete dataset and basic statistical analysis can be found in Chiappelli

et al. (2019). There are 78 participants (average age is 42.1 with standard deviation 18.8) with

227 measurements of combinations of neurometabolites and brain regions, including 39 male
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noise
level (n, p) bias MCSD ASE 95% CP (n, p) bias MCSD ASE 95% CP

(500, 50) (500, 100)
a11 4.9805 0.2932 0.0860 0 a11 10.0059 0.2839 0.1188 0
a22 5.0391 0.3023 0.0886 0 a22 9.9546 0.2984 0.1194 0
a33 5.0162 0.2659 0.0801 0 a33 9.9940 0.2492 0.1064 0

σ = 0.01 b11 -0.0261 0.1755 0.1478 0.91 b11 0.0031 0.1589 0.1495 0.93
b12 -0.0052 0.1373 0.1318 0.96 b12 -0.0060 0.1433 0.1322 0.94
b13 0.0241 0.1618 0.1463 0.92 b13 -0.0148 0.1377 0.1454 0.95
b22 0.0097 0.2276 0.2210 0.97 b22 0.0027 0.2398 0.2199 0.96
b23 -0.0064 0.1872 0.1821 0.94 b23 -0.0114 0.1842 0.1805 0.93
b33 0.0164 0.2629 0.2523 0.93 b33 -0.0299 0.2445 0.2485 0.96

(500, 50) (500, 100)
a11 14.9683 0.8653 0.2550 0 a11 30.0094 0.9440 0.3540 0
a22 14.7400 0.7478 0.2528 0 a22 30.0733 0.8624 0.3559 0
a33 14.9031 0.7004 0.2237 0 a33 29.9873 0.7588 0.3091 0

σ = 0.03 b11 -0.0093 0.2663 0.1917 0.83 b11 -0.0043 0.2296 0.1916 0.89
b12 0.0273 0.2271 0.1623 0.82 b12 -0.0288 0.1998 0.1615 0.90
b13 0.0042 0.2061 0.1728 0.94 b13 0.0102 0.1957 0.1725 0.92
b22 0.0363 0.3749 0.2641 0.83 b22 0.0043 0.3045 0.2626 0.88
b23 0.0267 0.2335 0.2073 0.93 b23 0.0169 0.2201 0.2063 0.91
b33 0.0322 0.3338 0.2848 0.92 b33 0.0121 0.2709 0.2829 0.96

(500, 50) (500, 100)
a11 25.1933 1.4343 0.4280 0 a11 50.0152 1.6098 0.5892 0
a22 24.9853 1.2179 0.4261 0 a22 50.0171 1.5973 0.5904 0
a33 25.0542 1.2210 0.3712 0 a33 49.9621 1.3609 0.5116 0

σ = 0.05 b11 -0.0384 0.4052 0.2340 0.75 b11 -0.0077 0.3684 0.2340 0.79
b12 0.0306 0.2730 0.1920 0.84 b12 -0.0229 0.2394 0.1908 0.88
b13 0.0186 0.2879 0.1982 0.82 b13 0.0013 0.2263 0.1985 0.94
b22 0.0499 0.4656 0.3090 0.78 b22 -0.0036 0.4390 0.3046 0.84
b23 0.0507 0.3120 0.2325 0.86 b23 -0.0096 0.2986 0.2307 0.90
b33 -0.0018 0.3781 0.3151 0.85 b33 0.0301 0.3836 0.3158 0.88

Table 5.4: Misspecification analysis results of A = diag (a11, . . . , a33) and B = (bkk′) with bk′k =
bkk′ for k ̸= k′ in Study 3 by using the proposed method under various σ and p, where “bias”
denotes the average of estimation bias, “MCSD” denotes the Monte Carlo standard deviation,
“ASE” denotes the average asymptotic standard error, “95% CP” denotes the coverage probability
based on a 95% Wald-type confidence interval.

participants and 39 female participants. We adopt Chen et al. (2018)’s community detection

algorithm to the dataset. These 227 measurements of combinations are categorized into K = 5

interconnected communities with sizes of 77, 49, 36, 33, and 32, illustrated as Figure 5.2(C).

Next, we fit the dataset to a standard SCFA model with ι = 15×1. The estimation results are

summarized in Table 5.5.

The results demonstrate that 227 combinations of neurometabolites and brain regions can

be decomposed into 5 unobserved common factors: (1) the first common factor influences choline

(74 out of 77 are measurements of choline across brain regions); (2) the second common factor

influences myo-inositol (49 out of 49 are measurements of myo-inositol across brain regions);

(3) the third common factor influences “mixed” neurometabolites (26 out of 36 and 10 out of

36 are measurements of N -acetylaspartate and glutamate–glutamine, respectively, across brain
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regions); (4) the fourth common factor influences creatine-containing compounds (33 out of 33

are measurements of creatine-containing compounds across brain regions); and the fifth common

factor influencesN -acetylaspartate (32 out of 32 measurements ofN -acetylaspartate across brain

regions). In addition to the classification of combination measurements, these 5 common factors

can be furthermore classed into 2 groups: the first group contains the first, second, and fourth

common factors, and the second group contains the third and fifth common factors. Among each

group, the common factors are significant positive associated with each other. Between the two

groups, the common factors are significantly negative associated.

estimate (SE) 95% CI estimate (SE) 95% CI
a11 0.3386 (0.0063) (0.3264, 0.3509) b22 0.6092 (0.0995) (0.4142, 0.8041)
a22 0.3908 (0.0091) (0.3730, 0.4086) b23 -0.1159 (0.0730) (-0.2591, 0.0272) †

a33 0.3666 (0.0100) (0.3470, 0.3862) b24 0.3290 (0.0804) (0.1715, 0.4865)
a44 0.3812 (0.0109) (0.3599, 0.4025) b25 -0.2863 (0.0786) (-0.4404, -0.1322)
a55 0.3736 (0.0108) (0.3524, 0.3948) b33 0.6334 (0.1037) (0.4301, 0.8367)
b11 0.6614 (0.1073) (0.4511, 0.8717) b34 0.0426 (0.0727) (-0.1000, 0.1851) †

b12 0.3823 (0.0851) (0.2156, 0.5490) b35 0.5172 (0.0938) (0.3333, 0.7011)
b13 -0.2494 (0.0798) (-0.4059, -0.0930) b44 0.6188 (0.1016) (0.4197, 0.8179)
b14 0.4389 (0.0892) (0.2641, 0.6136) b45 -0.1256 (0.0737) (-0.2701, 0.0188) †

b15 -0.3354 (0.0835) (-0.4992, -0.1717) b55 0.6264 (0.1028) (0.4248, 0.8279)

Table 5.5: Estimation of the correlation matrix of 227 combinations of neurometabolites and brain
regions, where “SE” denotes the estimated standard error, “95% CI” denotes the 95% Wald-type
confidence interval, and † denotes the 95% CI containing 0.

5.5 Discussion

We propose a semi-confirmatory factor analysis model by incorporating a widely observed

interconnected community structure in real applications. It is more computationally efficient

than the conventional numerical methods by leveraging closed-form solutions and exact variance

estimators. Our proposed model is available for diverse data applications.
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The proposed model provides an elegant decomposition representation for the covariance

matrix of the observations, which bridges the gap in the conventional CFA models. Under the

guidance of the detected interconnected community structure, we derive the uniformly minimum-

variance unbiased matrix estimators for the standard SCFA model. In addition, we develop the

factor score estimators by a least-square method, which is identical to the GLS and FGLS es-

timators with expected optimal properties. We examine the performance of estimation and the

robustness of the proposed estimators and compare the proposed model with the traditional com-

peting ones. Using a real EPSI dataset, we validate the SCFA model and find the observations

can be clustered into five unobserved common factors, which can be furthermore categorized into

two significant negative associated classes.

Lastly, the proposed SCFA model can be applied to a rich variety of studies with latent

interconnected community structures.
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Chapter 6: Conclusions

Recent advancements in community detection and structure characterization have provided

valuable insights into the complex interactive relations among features in various large-scale net-

work data, including biology, biomedicine, computer science, finance, plant science, and many

others. Incorporating the detected community structures into statistical models can lead to a better

understanding of the underlying scientific mechanisms. However, subsequent statistical analy-

ses are challenging due to the high dimensionality of features, the dependence structure of the

detected communities, and the heavy-computational burden. Our focus is on an interconnected

community structure with uniform blocks that allows non-null connections among features at the

community level and is frequently observed in high-dimensional network data.

In Chapter 2, we proposed a block Hadamard product model to represent a covariance

matrix with a uniform-block structure. This representation is critical for unraveling the uniform-

block matrix and simplifying operations with matrices with unknown parameters, e.g., the prod-

uct, the inverse, and the eigendecomposition of a covariance matrix.

In Chapter 3, we have developed a computationally efficient method for estimating large

covariance and precision matrices with a uniform-block structure. Building on the algebraic prop-

erties of uniform-block matrices, we formulate closed-form solutions to the unknown covariance

(and precision) parameters in the blocks. Then, we established exact variance estimators and the
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asymptotic properties of the covariance parameters, including strong consistency, convergence

rate, asymptotic efficiency, and normality. We also have extended this approach to a large num-

ber of diagonal blocks and obtained a consistent covariance-matrix estimator under some regular-

ity conditions. Finally, by capitalizing on the uniform-block structure, our estimating approach

outperforms the conventional large covariance- and precision-matrix estimation methods.

In Chapter 4, we proposed a novel multivariate regression model that accounts for the

dependency parameters among features within and between groups, leveraging the preliminary

community analysis. We also derived efficient estimators of regression coefficients in close-

form and dependence parameters simultaneously and present a statistical inference procedure.

Extensive simulation studies and an analysis of nuclear magnetic resonance (NMR) data validated

our proposed method with accurate inferences.

In Chapter 5, we proposed an adaptive confirmatory factor analysis model for intercon-

nected data with a uniform-block structure. Under mild conditions, we provided an elegant sta-

tistical interpretation and derived the best-unbiased estimators for the confirmatory factor analysis

model with uniform blocks in closed form. We compared the proposed estimation procedure to

conventional numerical methods and validated it through various Monte Carlo simulations and

real applications.
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Appendix A: Supplementary Materials for Chapter 2

A.1 Technical Proofs

A.1.1 Proofs in Section 2.2

Proof of Lemma 2.2.1. The proof of the block Hadamard product representation is straightfor-

ward. To show the uniqueness, consider two equal UB matrices N1 [A1,B1,p] = (N1,kk′) and

N2 [A2,B2,p] = (N2,kk′) with a common pre-determined partition-size vector p = (p1, . . . , pK)
⊤

satisfying that pk > 1 for every k and p = p1 + · · · + pK , where Ai = diag (ai,11, . . . , ai,KK)

is a diagonal matrix and Bi = (bi,kk′) is a symmetric matrix with bi,k′k = bi,kk′ for i = 1, 2. By

the equality, N1,kk′ = N2,kk′ for every k and k′. If k ̸= k′, then b1,kk′1pk×pk′
= b2,kk′1pk×pk′

and

therefore b1,kk′ = b2,kk′ . If k = k′, then a1,kkIpk + b1,kkJpk = a2,kkIpk + b2,kkJpk , equivalently,

[(a1,kk − a2,kk) + (b1,kk − b2,kk)] Ipk+(b1,kk − b2,kk) Jpk = 0pk×pk . Due to pk > 1, off-diagonally,

b1,kk = b2,kk; diagonally, a1,kk = a2,kk. Eventually, A1 = A2 and B1 = B2. ■

Proof of Corollary 2.2.1. (1) holds and the proof is straightforward. (2), (2-1), and (2-2) hold

because of the following equalities

(A1 ◦ I [p])× (A2 ◦ I [p]) = (A1 × A2) ◦ I [p] , (B1 ◦ J [p])× (B2 ◦ J [p]) = (B1 × P × B2) ◦ J [p] ,

(B1 ◦ J [p])× (A2 ◦ I [p]) = (B1 × A2) ◦ J [p] , (A1 ◦ I [p])× (B2 ◦ J [p]) = (A1 × B2) ◦ J [p] ,
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which are easy to verify since Ai and P are diagonal matrices for i = 1, 2 and Bi is a symmetric

matrix for i = 1, 2.

(3) and (4) are proved by using induction with respect to the number of diagonal blocks

K. Specifically, we assume that both (3) and (4) hold for the case of K and check whether

they hold for the case of K + 1. Let η = (η1, . . . , ηK)
⊤ ∈ RK , a, b ∈ R, q ∈ N and

q > 1. Denote A∗ = Bdiag (A, a) ∈ R(K+1)×(K+1), P∗ = Bdiag (P, q) ∈ R(K+1)×(K+1),

and B∗ =
(
B,η;η⊤, b

)
∈ R(K+1)×(K+1). We would like to obtain the eigenvalues of the (p + q)

by (p + q) UB matrix N∗ [A∗,B∗,p∗] with (K + 1) diagonal blocks, where p∗ =
(
p⊤, q

)⊤.

By definition, the eigenvalues of N∗ [A∗,B∗,p∗] are the solutions to the characteristic equation

det (N∗ [A∗,B∗,p∗]− λIp+q) = 0. Equivalently,

0 = det (N∗ [A∗,B∗,p∗]− λIp+q) = det

(A − λIK) ◦ I [p] + B ◦ J [p] (ηk1pk×q)

(ηk1q×pk) (a− λ) Iq + bJq

 ,

where (ηk1pk×q) ∈ Rp×q and (bk1q×pk) ∈ Rq×p.

Without loss of generality, assume that ((a− λ) Iq + bJq) is invertible, or we can consider

ϵ > 0 satisfying that ((a− λ) Iq + bJq) + ϵIq is positive definite and let ϵ → 0+. Then, the

characteristic equation can be written as

0 = det [(a− λ) Iq + bJq] (A.1.1)

× det
{
[(A − λIK) ◦ I [p] + B ◦ J [p]]− (ηk1pk×q) [(a− λ) Iq + bJq]

−1 (ηk1q×pk)
}
. (A.1.2)

In other words, the eigenvalues of N∗ [A∗,B∗,p∗] consist of some eigenvalues of (aIq + bJq) and

some roots of the rational equation (A.1.2) = 0 (not a polynomial equation, i.e., not a character-
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istic equation).

First, it is easy to observe that the eigenvalues of (aIq + bJq) are exactly a with multiplicity

(q− 1) and (a+ bq). We will discard (a+ bq) because it is not the eigenvalue of N∗ [A∗,B∗,p∗].

Second, using the fact [(a− λ) Iq + bJq]
−1 = (a− λ)−1 Iq − b (a− λ)−1 (a− λ+ bq)−1 Jq, we

simplify (A.1.2) to (A.1.3) as below,

det

{
(A − λIK) ◦ I [p] +

(
B − q

a− λ+ bq
ηη⊤

)
◦ J [p]

}
, (A.1.3)

which is the determinant of a UB matrix withK diagonal blocks. Thus, use the induction assump-

tion and A = diag (a11, . . . , aKK), this determinant equals to the product of
∏K

k=1 (akk − λ)pk−1

and (A.1.4), which is

det

{
(A − λIK) +

(
B − q

a− λ+ bq
ηη⊤

)
P
}

= det

{
(∆− λIK)−

q

a+ bq − λ
ηη⊤P

}
.

(A.1.4)

Thus, (A.1.2) = 0 yields the solutions consist of akk with multiplicity (pk − 1) for k = 1, . . . , K

and the roots of (A.1.4) = 0, which are the eigenvalues of ∆∗ = A∗ + B∗ × P∗. It is because,

∆∗ =

 A 0K×1

01×K a

+

 B η

η⊤ b

×

 P 0K×1

01×K q

 =

 ∆ qη

η⊤P a+ bq

 .
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Assuming that (a+ bq − λ) is invertible, we obtain

0 = det (∆∗ − λIK+1)

= det (a+ bq − λ) det
{
(∆− λIK)− (qη) (a+ bq − λ)−1 (η⊤P

)}
= det (a+ bq − λ) det

{
(∆− λIK)−

q

a+ bq − λ
ηη⊤P

}
.

Since (a+ bq) cannot be the eigenvalue of ∆∗, all eigenvalues of ∆∗ are the roots of the ra-

tional equation (A.1.4) = 0. In summary, the eigenvalues of N∗ [A∗,B∗,p∗] consist of a with

multiplicity (q − 1), akk with multiplicity (pk − 1) for k = 1, . . . , K, and all eigenvalues of

∆∗ = A∗ + B∗ × P∗.

(5) Let A∗ = A−1 and B∗ = −∆−1×B×A−1, where the inverses exist by the assumption.

Thus, A∗ is a diagonal matrix and B∗ is a symmetric matrix. It is because both A and P are

diagonal matrices, so they are commute, and the following equalities are equivalent

B × P × A−1 × B = B × A−1 × P × B,

(A + B × P)× A−1 × B = B × A−1 × (A + P × B) ,

−A−1 × B × (A + P × B)−1 = − (A + B × P)−1 × B × A−1,

B∗,⊤ = B∗.

Then, follow the analogous lines of arguments for the square formula,

A × A∗ = IK , A × B∗ + B × A∗ + B × P × B∗ = 0K×K ,

thus, (A ◦ I [p] + B ◦ J [p])× (A∗ ◦ I [p] + B∗ ◦ J [p]) = IK ◦ I [p] + 0K×K ◦ J [p] = Ip.
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Finally, the proof of (6) is straightforward, noting that H̃kH̃⊤
k = Ipk−1, H̃k1⊤

1×pk
= 0(pk−1)×1

for every k, and suppose λ is the common eigenvalue of ∆ and N [A,B,p], if ξ = (ξ1, . . . , ξK)
⊤

is the corresponding eigenvector of ∆, then the corresponding eigenvector of N [A,B,p] is

(ξ111×p1 , . . . , ξK11×pK )
⊤. ■

A.1.2 Proofs in Section 2.3 and Section 2.4

Before proving the main theorems, we present two lemmas below.

Lemma A.1.1 (Craig’s Theorem). Suppose X ∈ Rp is a normal vector with mean µ ∈ Rp and

positive definite covariance matrix Σ ∈ Rp×p. Let Y1,Y2 ∈ Rp×p be two real symmetric matrices.

Then, X⊤Y1X and X⊤Y2X are independently distributed if and only if Y1ΣY2 = 0p×p.

Proof of Lemma A.1.1. This result was originally proposed by Craig (1943). Please refer the

corrected proof and discussion in Ravishanker and Dey (2002, page 175, proof of Result 5.4.4),

Mathai and Provost (1992, page 209, proof of Theorem 5.2.1), Driscoll and Gundberg (1986) and

Ogawa and Olkin (2008). ■

Lemma A.1.2. Suppose X ∈ Rp is a normal vector with mean µ ∈ Rp and positive definite

covariance matrix Σ ∈ Rp×p. Let Y ∈ Rp×p be a real symmetric matrix. Then, X⊤YX follows

a non-central chi-squared distribution with degree of freedom m and noncentrality parameter

δ = 1
2
µ⊤Yµ if and only if YΣ is idempotent with rank m.

Proof of Lemma A.1.2. Please refer the proof and discussion in Muirhead (2005, page 31, proof

of Theorem 1.4.5), Mathai and Provost (1992, page 199, proof of Theorem 5.1.3) and Zhang

(2018). ■
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Proof of Theorem 2.3.1. The proof can be divided into three steps. First, we need to decompose

U into a sum of several components. Second, we examine the independence of these components.

Third, we determine the distribution of each component.

Step 1: decomposition of U . The following equality demonstrates an elegant way to de-

compose U : (
Â × P

)−1

− ∆̂−1 × B̂ × Â
−1

=
(

P × ∆̂
)−1

. (A.1.5)

Equality (A.1.5) holds if and only if P−1 × Â
−1

− ∆̂−1 × B̂ × Â
−1

= ∆̂−1 × P−1. First, right-

multiple Â on both sides of (A.1.5) and switch P−1 and Â on the right hand side since both Â and

P are diagonal matrices, yielding that (A.1.5) holds if and only if P−1−∆̂−1×B̂ = ∆̂−1×Â×P−1.

Then, right-multiple P on the both sides, (A.1.5) holds if and only if IK − ∆̂−1 × B̂ = ∆̂−1 × Â.

Next, left-multiple ∆̂ on the both sides, yielding that (A.1.5) holds if and only if ∆̂− B̂×P = Â,

which holds by the definition of ∆̂.

Using (A.1.5) and substituting ÂΘ and B̂Θ, we have

Θ̂
[
ÂΘ, B̂Θ,p

]
= Â

−1
◦ I[p]−

(
Â × P

)−1

◦ J[p] +
(

P × ∆̂
)−1

◦ J[p].

Since both Â and P are diagonal matrices, Â
−1

◦ I[p] −
(

Â × P
)−1

◦ J[p] is a block diagonal

matrix Bdiag
(
â−1
11 Ip1 − â−1

11 p
−1
1 Jp1 , . . . , â

−1
KKIpK − â−1

KKp
−1
K JpK

)
.

Let Wk = Bdiag
(
0p1×p1 , . . . , â

−1
kk Ipk − â−1

kk p
−1
k Jpk , . . . , 0pK×pK

)
for every k, which is a

UB matrix, expressed by Wk = Wk [Ak,Bk,p] for every k, where both Ak = diag
(
0, . . . , â−1

kk , . . . , 0
)

and Bk = diag
(
0, . . . ,−âkkp−1

k , . . . , 0
)

have the non-zero values on the (k, k)-th elements.
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Herein, U can be written as a sum of (K + 1) components:

U = n
(
X̄ − µ0

)⊤( K∑
k=1

Wk

)(
X̄ − µ0

)
+ n

(
X̄ − µ0

)⊤ [(P × ∆̂
)−1

◦ J[p]
] (

X̄ − µ0

)
=

K∑
k=1

n
(
X̄ − µ0

)⊤ Wk

(
X̄ − µ0

)
+ n

(
X̄ − µ0

)⊤ [(P × ∆̂
)−1

◦ J[p]
] (

X̄ − µ0

)
≡ F1 + F2 + · · ·+ FK + FK+1,

where Fk denotes n
(
X̄ − µ0

)⊤ Wk

(
X̄ − µ0

)
, for k = 1, . . . , K, and FK+1 denotes the last

term n
(
X̄ − µ0

)⊤ [(P × ∆̂
)−1

◦ J[p]
] (

X̄ − µ0

)
. Next, we will show these Fk are mutually

independent in Step 2 and each follows a F -distribution in Step 3.

Step 2: independence. Recall X̄ − µ0 follows N (µ− µ0, n
−1Σ [A,B,p]). To show

F1, . . . , FK+1 are mutually independent, by Lemma A.1.1, we need to check Wk×(n−1Σ [A,B,p])×

Wk′ = 0p×p for every k ̸= k′ and Wk × (n−1Σ [A,B,p]) ×
[(

P × ∆̂
)−1

◦ J[p]
]
= 0p×p for

every k. It is easy to check the former holds by using the representation of Wk = Wk [Ak,Bk,p]:

Wk ×Σ [A,B,p]× Wk′

= (Ak ◦ I[p] + Bk ◦ J[p])× (A ◦ I[p] + B ◦ J[p])× (Ak′ ◦ I[p] + Bk′ ◦ J[p])

= [(AkA) ◦ I[p] + (AkB + BkA + BkPB) ◦ J[p]]× (Ak′ ◦ I[p] + Bk′ ◦ J[p])

= (AkAAk′) ◦ I[p]

+ [(AkB + BkA + BkPB)Ak′ + AkABk′ + (AkB + BkA + BkPB)PBk′ ] ◦ J[p]

= 0K×K ◦ I[p] + 0K×K ◦ J[p]

= 0p×p.
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To check if the latter one holds,

Wk ×Σ [A,B,p]×
[(

P × ∆̂
)−1

◦ J[p]
]

= (Ak ◦ I[p] + Bk ◦ J[p])× (A ◦ I[p] + B ◦ J[p])×
[(

P × ∆̂
)−1

◦ J[p]
]

= [(AkA) ◦ I[p] + (AkB + BkA + BkPB) ◦ J[p]]×
[(

P∆̂
)−1

◦ J[p]
]

=

[
AkA

(
P∆̂
)−1

+ (AkB + BkA + BkPB)P
(

P∆̂
)−1
]
◦ J[p]

=

[
((Ak + BkP)A + (Ak + BkP)BP)

(
P∆̂
)−1
]
◦ J[p]

= 0K×K ◦ J[p]

= 0p×p,

using Ak + BkP = 0K×K .

Step 3: distribution. Now, we specify the distributions for F1, . . . , FK+1 respectively. Fur-

thermore, let X̄ =
(
X̄(1),⊤, . . . , X̄(K),⊤)⊤ and µ0 =

(
µ

(1),⊤
0 , . . . ,µ

(K),⊤
0

)⊤
, where X̄(k),µ

(k)
0 ∈

Rpk for every k. Focus on the firstK component, i.e., Fk for k = 1, . . . , K. Substituting the block

diagonal matrix Wk, we have

Fk = n
(
X̄ − µ0

)⊤ Wk

(
X̄ − µ0

)
=
(
X̄(k) − µ

(k)
0

)⊤( n

âkk
Ipk −

n

âkkpk
Jpk

)(
X̄(k) − µ

(k)
0

)
.

Let Uk = n
(
X̄(k) − µ

(k)
0

)⊤
[(1/akk)Ipk − 1/(akkpk)Jpk ]

(
X̄(k) − µ

(k)
0

)
and Vk = (pk−1)(n−

1)(âkk/akk) for every k. Thus, Uk/Vk = Fk/((pk−1)(n−1)) for every k. Let Mk = Ipk−Jpk/pk

for every k. It is clear that M2
k = (Ipk − Jpk/pk)

2 = Ipk + Jpk/pk − 2Jpk/pk = Mk therefore Mk
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is idempotent. We can observe that

tr (MkSkkMk) = tr (MkSkk) = tr
(
Skk − 1pk×11⊤

pk×1Skk/pk
)
= tr (Skk)− tr

(
1⊤
pk×1Skk1pk×1

)
/pk

= tr (Skk)− sum (Skk) /pk = (pk − 1)âkk.

Thus, by the fact that (n − 1)Skk ∼ Wishart (n− 1,Σkk), where Σkk is positive definite for

every k because
(
01×p1 , . . . ,α

⊤, . . . , 01×pK

)
Σ
(
01×p1 , . . . ,α

⊤, . . . , 01×pK

)⊤
= α⊤Σkkα > 0

for any α ∈ Rpk . So, (n − 1)Skk can be expressed as
∑n−1

j=1 Z
(k)
j Z

(k),⊤
j where Z

(k)
1 , . . . ,Z

(k)
n−1

are mutually independently distributed as N (0pk×1,Σkk) for every k. We then observe that

akkVk = (n− 1)(pk − 1)âkk = tr (Mk [(n− 1)Skk]Mk) = tr

(
Mk

(
n−1∑
j=1

Z
(k)
j Z

(k),⊤
j

)
Mk

)

=
n−1∑
j=1

Z
(k),⊤
j MkZ

(k)
j .

On the one hand, X̄ and S are independent, so Uk and Vk for every k are mutually in-

dependent. On the other hand,
√
n
(
X̄(k) − µ

(k)
0

)
∼ N

(
µ(k) − µ

(k)
0 ,Σkk

)
. By Lemma A.1.2

and

(
1

akk
Ipk −

1

akkpk
Jpk

)
Σkk =

(
1

akk
Ipk −

1

akkpk
Jpk

)
(akkIpk + bkkJpk) = IpK − p−1

k Jpk ,

which is idempotent with rank (pk − 1). Therefore, Uk follows a χ2(λk) distribution with degree

of freedom (pk − 1), and the noncentrality parameter is given by

δk =
1

2

(
µ(k) − µ

(k)
0

)⊤ (
a−1
kk Ipk − a−1

kk p
−1
k Jpk

) (
µ(k) − µ

(k)
0

)
, k = 1, . . . , K.
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Since Mk = Ipk − p−1
k Jpk is also idempotent with rank (pk − 1). Therefore, akkVk follows a

central χ2-distribution with degree of freedom (n− 1)(pk − 1). Furthermore,

Fk = (pk − 1)
Uk/(pk − 1)

Vk/((pk − 1)(n− 1))
∼ (pk − 1)F

(k)
(pk−1),(n−1)(pk−1)(δk), k = 1, . . . , K.

For FK+1 = n
(
X̄ − µ0

)⊤ [(P∆̂
)−1

◦ J[p]
] (

X̄ − µ0

)
, consider a transformation Y =

CX , where C = Bdiag (11×p1/p1, . . . , 11×pK/pK) ∈ RK×p. As X ∼ N (µ,Σ[A,B,p]), Y ∼

N (µy,Σy), where

µy = Cµ =


11×p1µ

(1)/p1

...

11×pKµ
(K)/pK

 , Σy = C ×Σ[A,B,p]× C⊤ = A × P−1 + B.

Furthermore, let ν0 = C×µ0 =
(

11×p1µ
(1)
0 /p1, . . . , 11×pKµ

(K)
0 /pK

)⊤
. By noting that (PC)⊤×

Γ× (PC) = Γ ◦ J[p] for any Γ ∈ RK×K , then,

FK+1 = n
(
X̄ − µ0

)⊤ [(P∆̂
)−1

◦ J[p]
] (

X̄ − µ0

)
= n

(
X̄ − µ0

)⊤ [
(PC)⊤

(
P∆̂
)−1

(PC)

] (
X̄ − µ0

)
= n

(
X̄ − µ0

)⊤ [C⊤P∆̂−1P−1PC
] (

X̄ − µ0

)
= n

(
Ȳ − ν0

)⊤ (P∆̂−1
) (

Ȳ − ν0

)
= n

(
Ȳ − ν0

)⊤ (
Σ̂−1

y

) (
Ȳ − ν0

)
,

where P∆̂−1 = P
(

ÂP−1P + B̂P
)−1

= P
[(

ÂP−1 + B̂
)

P
]−1

= PP−1
(

ÂP−1 + B̂
)−1

= Σ̂−1
y .
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By the definition of the Hotelling’s T 2-statistic, FK+1 ∼ T 2 = K(n−1)
n−K

F
(K+1)
K,n−K(δK+1), where

δK+1 =
1
2
n (µy − ν0)

⊤Σ−1
y (µy − ν0).

Finally, by the mutual independence of F1, . . . , FK , FK+1, U is decomposed as a linear

combination of mutually independentF -variates, distributed as
∑K

k=1(pk−1)F
(k)
(pk−1),(n−1)(pk−1)(δk)+

K(n−1)
n−K

F
(K+1)
K,n−K(δK+1). Under H0, δk = 0 for K = 1, . . . , K + 1. ■

Proof of Theorem 2.4.1. We also divide the proof into three steps.

Step 1: decomposition ofUM . Let Z =
(
X̄(1),⊤, . . . , X̄(M),⊤)⊤ denote a (pM)-dimensional

normal vector with mean µZ =
(
µ(1),⊤, . . . ,µ(M),⊤)⊤ and covariance matrix ΣZ = N−1 ⊗

Σ [A,B,p], where N = diag (n1, . . . , nM) ∈ RM×M and ⊗ denotes the Kronecker product.

Thus, there exits CZ =
[
N1/2 × (IM − n−1JM × N)

]
⊗ Ip ∈ R(pM)×(pM) such that

(√
n1

(
X̄(1) − X̄

)⊤
, . . . ,

√
nM

(
X̄(M) − X̄

)⊤)⊤
= CZ ×Z.

Therefore, UM can be rewritten as

UM = (CZ ×Z)⊤
{

IM ⊗ Θ̂
[
ÂΘ, B̂Θ,p

]}
(CZ ×Z) .

Using the same decomposition, Θ̂
[
ÂΘ, B̂Θ,p

]
= Â

−1
◦I[p]−

(
Â × P

)−1

◦J[p]+
(

P × ∆̂
)−1

◦
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J[p], UM can be expressed by

UM = (CZ ×Z)⊤
[

IM ⊗

(
K∑
k=1

Wk

)]
(CZ ×Z) + (CZ ×Z)⊤ (IM ⊗ WK+1) (CZ ×Z)

=
K∑
k=1

(CZ ×Z)⊤ (IM ⊗ Wk) (CZ ×Z) + (CZ ×Z)⊤ (IM ⊗ WK+1) (CZ ×Z)

≡ F1 + · · ·+ FK + FK+1,

where Wk = Bdiag
(
0p1×p1 , . . . , â

−1
kk − â−1

kk p
−1
k Jpk , . . . , 0pK×pK

)
= Wk [Ak,Bk,p] with Ak =

diag
(
0, . . . , â−1

kk , . . . , 0
)
∈ RK×K and Bk = diag

(
0, . . . ,−â−1

kk p
−1
k , . . . , 0

)
∈ RK×K having the

non-zero values on the (k, k)-th elements, and WK+1 =
(

P × ∆̂
)−1

◦ J[p]. Next, we need to

prove the mutual independence between F1, . . ., FK+1 and specify the distribution for each of

them.

Step 2: independence. By Lemma A.1.1, we need to check

[
C⊤

Z(IM ⊗ Wk)CZ

] (
N−1 ⊗ [A,B,p]

) [
C⊤

Z(IM ⊗ Wk′)CZ

]
= 0(pM)×(pM), k ̸= k′, k, k′ = 1, . . . , K[

C⊤
Z(IM ⊗ Wk)CZ

] (
N−1 ⊗Σ[A,B,p]

) [
C⊤

Z(IM ⊗ WK+1)CZ

]
= 0(pM)×(pM), k = 1, . . . , K.

Let M = N1/2 × (IM − n−1JM × N). Given k ̸= k′ and CZ = M ⊗ Ip and the fact (A⊗B)⊤ =

A⊤ ⊗B⊤, we can observe that

C⊤
Z(IM ⊗ Wk)CZ =

(
M⊤IMM

)
⊗ (IpWkIp) =

(
M⊤M

)
⊗ Wk,

C⊤
Z(IM ⊗ Wk′)CZ =

(
M⊤M

)
⊗ Wk′ .
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On the one hand, we can calculate the following result:

[
C⊤

Z(IM ⊗ Wk)CZ

] (
N−1 ⊗Σ[A,B,p]

) [
C⊤

Z(IM ⊗ Wk′)CZ

]
=
[(

M⊤M
)

N−1
(
M⊤M

)]
⊗ [WkΣ [A,B,p]Wk′ ] .

Noting that Wk = Wk [Ak,Bk,p] and Wk′ = Wk′ [Ak′ ,Bk′ ,p], we have the result Wk×Σ [A,B,p]×

Wk′ = 0p×p. Therefore,
[
C⊤

Z(IM ⊗ Wk)CZ

] (
N−1 ⊗Σ[A,B,p]

) [
C⊤

Z(IM ⊗ Wk′)CZ

]
= 0(pM)×(pM).

On the other hand, we can calculate that

[
C⊤

Z(IM ⊗ Wk)CZ

] (
N−1 ⊗Σ[A,B,p]

) [
C⊤

Z(IM ⊗ WK+1)CZ

]
=
[(

M⊤M
)

N−1
(
M⊤M

)]
⊗ [WkΣ [A,B,p]WK+1]

= 0(pM)×(pM)

using the result WkΣ [A,B,p]WK+1 = 0p×p.

Step 3: distribution. By definition, for k = 1, . . . , K

Fk = Z⊤ ×
[
C⊤

Z(IM ⊗ Wk)CZ

]
×Z = Z⊤ [(M⊤M

)
⊗ Wk

]
Z,

Let W̃k = Bdiag
(
0p1×p1 , a

−1
kk Ipk − a−1

kk p
−1
k Jpk , . . . , 0pK×pk

)
have non-zero values on the (k, k)-

th element for every k. Let Uk = Z⊤
((

M⊤M
)
⊗ W̃k

)
Z and Vk = (n −M)(pk − 1)âkk/akk,

and therefore, Uk/Vk = Fk/ [(n−M)(pk − 1)] for k = 1, . . . , K.

Since S is independent from X̄(1), . . . , X̄(M), then S is independent from Z, and therefore

Uk and Vk are independent for every k. By Lemma A.1.2 and Z ∼ N
(
µZ ,N−1 ⊗Σ[A,B,p]

)
,
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we obtain that

[(
M⊤M

)
⊗ W̃k

] [
N−1 ⊗Σ [A,B,p]

]
=
(
M⊤MN−1

)
⊗
(

W̃k ×Σ[A,B,p]
)
,

whose square equals
(
M⊤MN−1

)2⊗(W̃k ×Σ[A,B,p]
)2

=
(
M⊤MN−1

)
⊗
(

W̃k ×Σ[A,B,p]
)

since

M⊤MN−1 =

(
N1/2

(
IM − 1

n
JMN

))⊤

×
(

N1/2

(
IM − 1

n
JMN

))
× N−1

=

(
IM − 1

n
NJM

)
× N

1
2 × N

1
2 ×

(
IM − 1

n
JMN

)
× N−1

=

(
N − 1

n
NJMN

)
×
(

N−1 − 1

n
JM

)
= IM − 1

n
NJM − 1

n
NJM +

1

n2
NJMNJM

= IM − n−1NJM ,

and using JMNJM = nJM . It is clear that IM − n−1NJM is an idempotent matrix since its

square equals IM + n−2NJMNJM − 2n−1NJM = IM − n−1NJM . Also, the result shows that

W̃k ×Σ[A,B,p] is an idempotent matrix.

Therefore, Uk follows a noncentral χ2-distribution with the noncentrality parameter δk =

1
2
µ⊤

Z

[(
M⊤M

)
⊗ W̃k

]
µZ and a degree of freedom rank

((
M⊤M

)
⊗ W̃k

)
= rank

(
M⊤M

)
×

rank
(

W̃k

)
= (M − 1)(pk − 1) by using the fact that rank (A⊗B) = rank(A)rank(B).

Given akkVk = (n −M)(pk − 1)âkk, the result that (pk − 1)âkk = tr (MkSkkMkk), and

the fact that (n −M)Skk ∼ Wishart(n −M,Σkk), we obtain that akkVk follows a central χ2-
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distribution with a degree of freedom (n−M)(pk − 1). Therefore, for k = 1, . . . , K,

Fk = (n−M)(pk − 1)
Uk

Vk

= (n−M)(pk − 1)
χ2
(M−1)(pk−1)(δk)

χ2
(n−M)(pk−1)

=
χ2
(M−1)(pk−1)(δk)/[(M − 1)(pk − 1)]

χ2
(n−M)(pk−1)/[(n−M)(pk − 1)]

(n−M)(pk − 1)× (M − 1)(pk − 1)

(n−M)(pk − 1)

= (M − 1)(pk − 1)F
(k)
(M−1)(pk−1),(n−M)(pk−1)(δk).

Let CY = Bdiag (11×p1/p1, . . . , 11×pK/pK), let ν(m) = CY µ
(m), and let Y (m)

j = CY X
(m)
j for

every j and m with mean ν(m) = CY ×µ(m) and ΣY = CY ×Σ[A,B,p]×C⊤
Y = AP−1 +B =

(A + BP)P−1 = ∆P−1 = (P∆−1)
−1. Thus, Ȳ (m) = CY X̄

(m) for every m and Ȳ = CY X̄ .

Finally, FK+1 can be expressed by

FK+1 =
M∑

m=1

nm

(
X̄(m) − X̄

)⊤ WK+1

(
X̄(m) − X̄

)
=

M∑
m=1

nm

(
X̄(m) − X̄

)⊤ [C⊤
Y P∆̂−1P−1PCY

] (
X̄(m) − X̄

)
=

M∑
m=1

nm

(
Ȳ (m) − Ȳ

)⊤ (P∆̂−1
) (

Ȳ (m) − Ȳ
)

= tr

[(
Σ̂Y

)−1
M∑

m=1

nm

(
Ȳ (m) − Ȳ

) (
Ȳ (m) − Ȳ

)⊤]
,

which is Hotelling’s T 2
0 -statistic. ■
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Appendix B: Supplementary Materials for Chapter 3

B.1 Extra Data Examples

(a) correlations for exposome data

(b) correlations for metabolite data

Figure B.1: Heat maps for exposome and metabolite data in an environmental research

We present two extra real-data examples for the pattern of well-organized blocks in sample

correlation matrices. In this study, there are 169 exposome variables and 221 metabolite variables
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for 1192 subjects. First, 89 out of 169 exposome variables are identified to form a 9 by 9 well-

organized blocks. Second, 141 out of 221 metabolite variables are identified to form a 7 by 7

well-organized blocks. In particular, Figure B.1a contains the heat maps of the sample correlation

matrix calculated by the clustering method (Wu et al., 2021) for exposome variables from the

ISGobal dataset (ISGlobal, 2021). Figure B.1b contains the heat maps of the sample correlation

matrix calculated by the clustering method for metabolite variables from the ISGobal dataset. All

data examples can be found at https://github.com/yiorfun/UBCovEst.

B.2 Exact Covariance Estimators for θ̃

Corollary B.2.1. Given a partition-size vector p = (p1, . . . , pK)
⊤ and a UB matrix Σ = (Σkk′)

partitioned by p, let αkk = tr(Σkk)/pk = akk + bkk denote the average of the diagonal entries in

Σkk, let βkk = sum(Σkk)/(p
2
k) = akk/pk + bkk denote the average of all entries in Σkk for every

k, and let βkk′ = sum(Σkk′)/(pkpk′) = bkk′ denote the average of all entries in Σkk′ for every

k ̸= k′. Let α̃kk = tr(Skk)/pk, β̃kk = sum(Skk)/p
2
k for every k, and β̃kk′ = sum(Skk′)/(pkpk′)

for every k ̸= k′.

(1) α̃kk, β̃kk′ are the best unbiased estimators of αkk, βkk′ for every k and k′; the variances

of α̃kk and β̃kk′ are

var (α̃kk) =
2

(n− 1)pk

(
a2kk + 2akkbkk + pkb

2
kk

)
,

var
(
β̃kk′

)
=


2

(n− 1)p2k
(akk + pkbkk)

2 , k = k′

1

2(n− 1)pkpk′
{pkpk′ (b2kk′ + b2k′k) + 2 (akk + pkbkk) (ak′k′ + pk′bk′k′)} , k ̸= k′

,
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respectively, for every k and k′; the covariance between α̃kk, α̃k′k′ , β̃kk, and β̃k′k′ are

cov (α̃kk, α̃k′k′) =
2

n− 1
bkk′bk′k, cov

(
β̃kk, β̃k′k′

)
=

2

n− 1
bkk′bk′k, k ̸= k′

cov
(
α̃kk, β̃k′k′

)
=


2

(n− 1)p2k
(akk + pkbkk)

2 , k = k′

2

n− 1
bkk′bk′k, k ̸= k′

,

respectively, for every k and k′; the covariance between β̃kk′ and the other estimators are

cov
(
α̃kk, β̃k′k′′

)
=

1

(n− 1)pk′pk′′



pk′pk′′ (bk′kbkk′′ + bk′′kbkk′) , k ̸= k′, k ̸= k′′

pk′′ (bk′k′′ + bk′′k′) (akk + pkbkk) , k = k′

pk′ (bk′k′′ + bk′′k′) (akk + pkbkk) , k = k′′

,

cov
(
β̃kk, β̃k′k′′

)
=

1

(n− 1)pk



pk (bk′kbkk′′ + bk′′kbkk′) , k ̸= k′, k ̸= k′′

(akk + pkbkk) (bk′k′′ + bk′′k′) , k = k′

(akk + pkbkk) (bk′k′′ + bk′′k′) , k = k′′

,
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respectively, for every k, k′ ̸= k′′; and

cov
(
β̃k1k2 , β̃l1,l2

)
=

1

2(n− 1)

bl1k1bk2l2 + bl2k1bk2l1 + bl1k2bk1l2 + bl2k2bk1l1 ,

(1-1) k1 ̸= l1, l2; k2 ̸= l1, l2

1
pl1

(ak2k2bl2k1 + ak2k2bk1l2) + bl1k1bk2l2 + bl2k1bk2l1 + bl1k2bk1l2 + bl2k2bk1l1 ,

(1-2) k1 ̸= l1, l2; k2 = l1

1
pl2

(ak2k2bl1k1 + ak2k2bk1l1) + bl1k1bk2l2 + bl2k1bk2l1 + bl1k2bk1l2 + bl2k2bk1l1 ,

(1-3) k1 ̸= l1, l2; k2 = l2

1
pl1

(ak1k1bl2k2 + ak1k1bk2l2) + bl1k2bk1l2 + bl2k2bk1l1 + bl1k1bk2l2 + bl2k1bk2l1 ,

(2-1) k1 = l1; k2 ̸= l1, l2;

switch k1, k2 in (1-2)

(b2l1l2 + b2l2l1) +
2

pl1pl2
(al1l1 + pl1bl1l1) (al2l2 + pl2bl2l2) ,

(2-2) k1 = l1; k2 = l2;

i.e., var
(
β̃l1,l2

)
1
pl2

(ak1k1bl1k2 + ak1k1bk2l1) + bl1k2bk1l2 + bl2k2bk1l1 + bl1k1bk2l2 + bl2k1bk2l1 ,

(3-1) k1 = l2; k2 ̸= l1, l2;

switch k1, k2 in (1-3)

(
b2l2l1 + b2l1l2

)
+ 2

pl2pl1
(al2l2 + pl2bl2l2) (al1l1 + pl1bl1l1) ,

(3-2) k1 = l2; k2 = l1;

i.e., var
(
β̃l2,l1

)
.
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for every k1 ̸= k2 and l1 ̸= l2.

(2) Furthermore, using the below transformations

ãkk
b̃kk

 =
1

pk − 1

 pk −pk

−1 pk


α̃kk

β̃kk

 for every k, b̃kk′ = β̃kk′ for every k ̸= k′,

the q by q covariance matrix of θ̃ consisting the variance and covariance estimators for θ̃, can

be obtained by var(θ̃) = Φp × var{(α̃11, . . . , α̃KK , β̃11, . . . , β̃1K , β̃22, β̃KK)
⊤} × Φ⊤

p , where

Φp ∈ Rq×q is a matrix containing the elements of p only. In particular, by rearranging the order

of the elements of θ̃, we can obtain the results in Corollary 3.2.3.

B.3 Technical Proofs

B.3.1 Proof of Lemma 3.2.1

Proof of Lemma 3.2.1. See the proofs in Chapter 2. ■

B.3.2 Proof of Corollary 3.2.1

Proof of Corollary 3.2.1. The result can be obtained immediately from the properties of UB ma-

trices in Chapter 2. ■
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B.3.3 Derivations of the maximum likelihood estimator and its property

Starting from

∂

∂θj

ℓn(θ;X) =
n

2
tr

[
{Σ(A,B,p)− (S∗

kk′)} ×
{
∂AΘ

∂θj

◦ I(p) +
∂BΘ

∂θj

◦ J(p)
}]

,

let (Mkk′) denote M = Σ(A,B,p) − (S∗
kk′) partitioned by p. Then the system of the score

equations is

Sn (θ;X) =
n

2



tr
{
(Mkk′)× ∂Θ(AΘ,BΘ,p)

∂a11

}
tr
{
(Mkk′)× ∂Θ(AΘ,BΘ,p)

∂a22

}
...

tr
{
(Mkk′)× ∂Θ(AΘ,BΘ,p)

∂aKK

}
tr
{
(Mkk′)× ∂Θ(AΘ,BΘ,p)

∂b11

}
...

tr
{
(Mkk′)× ∂Θ(AΘ,BΘ,p)

∂bKK

}



= 0q×1. (B.3.1)

Recall the notations P = diag(p1, . . . , pK) and ∆ = A + B × P. Using a fact that (A × P)−1 −

∆× B × A−1 = (P ×∆)−1, and doing some algebra, we obtain the following derivatives,

∂AΘ

∂akk
= −a−2

kk Ekk,
∂BΘ

∂akk
= ∆−1Ekk∆

−1BA−1 + a−2
kk∆

−1BEkk, for every k,

∂AΘ

∂bkk′
= 0K×K ,

∂BΘ

∂bkk′
=


−∆−1EkkP∆−1P−1, k = k′

−∆−1(Ekk′ + Ek′k)P∆−1P−1, k ̸= k′

, for every k and k′.
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Then, the individual equations (B.3.1) can be simplified as

tr

{
(Mkk′)×

∂Θ(AΘ,BΘ,p)

∂akk

}
=
(
−a−2

kk

)
tr (Mkk) +

K∑
ℓ=1

K∑
ℓ′=1

sum(Mℓℓ′)

(
∂BΘ

∂akk

)
ℓ′,ℓ

= 0,

tr

{
(Mkk′)×

∂Θ(AΘ,BΘ,p)

∂bkk′

}
=

K∑
ℓ=1

K∑
ℓ′=1

sum(Mℓℓ′)

(
∂BΘ

∂bkk′

)
ℓ′,ℓ

= 0,

for every k and k′, where (∂BΘ/∂akk), (∂BΘ/∂bkk′) ∈ RK×K and the subscript (ℓ′, ℓ) denotes

the (ℓ′, ℓ) element of (∂BΘ/∂akk) or (∂BΘ/∂bkk′).

Now, we claim the system of score equations (B.3.1) has a unique solution. Since A =

diag (a11, . . . , aKK), then −A−2 = diag
(
−a−2

11 , . . . ,−a−2
KK

)
, denoted by A⋆. Let β⋆ ∈ Rq×1

denote a vector as below,

β⋆ = {tr(M11), . . . , tr(MKK), sum(M11), . . . , sum(M1K), sum(M22), . . . , sum(MKK)}⊤ .

Let B(1),⋆ ∈ RK×(q−K) denote a matrix with k th row

{(
∂BΘ

∂akk

)
1,1

,

(
∂BΘ

∂akk

)
1,2

+

(
∂BΘ

∂akk

)
2,1

, . . . ,

(
∂BΘ

∂akk

)
1,K

+

(
∂BΘ

∂akk

)
K,1

,

(
∂BΘ

∂akk

)
2,2

, . . . ,(
∂BΘ

∂akk

)
K−1,K

+

(
∂BΘ

∂akk

)
K,K−1

,

(
∂BΘ

∂akk

)
K,K

}
,

for k = 1, . . . , K, and let B(2),⋆ ∈ R(q−K)×(q−K) denote a matrix with rows

{(
∂BΘ

∂bkk′

)
1,1

,

(
∂BΘ

∂bkk′

)
1,2

+

(
∂BΘ

∂bkk′

)
2,1

, . . . ,

(
∂BΘ

∂bkk′

)
1,K

+

(
∂BΘ

∂bkk′

)
K,1

,

(
∂BΘ

∂bkk′

)
2,2

, . . . ,(
∂BΘ

∂bkk′

)
K−1,K

+

(
∂BΘ

∂bkk′

)
K,K−1

,

(
∂BΘ

∂bkk′

)
K,K

}
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for every k ≤ k′. Thus, the system of the score equations (B.3.1) can be rewritten as

Sn (θ;X) =

 A⋆ B(1),⋆

0(q−K)×K B(2),⋆

β⋆ = 0q×1,

and rank

 A⋆ B(1),⋆

0(q−K)×K B(2),⋆

 = rank(A⋆)+rank(B(2),⋆) due to IK−A⋆(A⋆)−1 = 0K×K , which

satisfies the condition provided in Buaphim et al. (2018, Theorem 3.10, p.334).

On the one hand, rank(A⋆) = K by the positive definiteness that akk > 0 for every k. On

the other hand, to compute rank(B(2),⋆), use the fact vech(AXB) = (B⊤⊗A)×vech(X), where

the matrices A,B and X with suitable sizes, and ⊗ denotes the Kronecker product. Since

∂BΘ

∂bkk′
=


−∆−1EkkP∆−1P−1, k = k′

−∆−1(Ekk′ + Ek′k)P∆−1P−1, k ̸= k′

,

for every k and k′, where Ekk and Ekk′ +Ek′k span the entire matrix space of symmetric matrices

with the size of K by K. Thus, rank(B(2),⋆) = (K + 1)K/2 due to the equivalence of the

matrix space and the vector space spanned by the matrices. Therefore, the coefficients matrix

of the given homogeneous system of linear equations has full rank and has a unique solution

β⋆ = 0q×1. Finally, the solution to equation (B.3.1), denoted by θ̃∗, must be the maximum

likelihood estimator due to the uniqueness.

Following equation (B.3.1), the first-order partial derivative of the score function with re-
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spect to θ is

∂Sn (θ;X)

∂θ
=


∂2ℓn(θ;X)

∂θ(A)∂θ(A),⊤
∂2ℓn(θ;X)

∂θ(A)∂θ(B),⊤

∂2ℓn(θ;X)

∂θ(B)∂θ(A),⊤
∂2ℓn(θ;X)

∂θ(B)∂θ(B),⊤

 =
n

2

H1 H2

H⊤
2 H3

 , (B.3.2)

where θ(A) = (a11, . . . , aKK)
⊤, θ(B) = (b11, . . . , b1K , b22, . . . , bKK)

⊤, and therefore θ = (θ(A),⊤,θ(B),⊤)⊤,

the blocks H1 ∈ RK×K , H2 ∈ RK×(q−K), and H3 ∈ R(q−K)×(q−K). In particular, given k and k′,

H1 =



2a−3
kk tr(Mkk)− a−2

kk

{
∂

∂amm

tr(Mkk)

}
+
∑K

ℓ=1

∑K
ℓ′=1

[{
∂

∂amm

sum(Mℓℓ′)

}(
∂BΘ

∂akk

)
ℓ′,ℓ

+ sum(Mℓℓ′)

{
∂

∂amm

(
∂BΘ

∂akk

)}
ℓ′,ℓ

]
, m = k

∑K
ℓ=1

∑K
ℓ′=1

[{
∂

∂amm

sum(Mℓℓ′)

}(
∂BΘ

∂akk

)
ℓ′,ℓ

+ sum(Mℓℓ′)

{
∂

∂amm

(
∂BΘ

∂akk

)}
ℓ′,ℓ

]
, m ̸= k

for m = 1, 2, . . . , K; and

H2 =
K∑
ℓ=1

K∑
ℓ′=1

[{
∂

∂amm

sum(Mℓℓ′)

}(
∂BΘ

∂bkk′

)
ℓ′,ℓ

+ sum(Mℓℓ′)

{
∂

∂amm

(
∂BΘ

∂bkk′

)}
ℓ′,ℓ

]
,

H3 =
K∑
ℓ=1

K∑
ℓ′=1

[{
∂

∂bmm′
sum(Mℓℓ′)

}(
∂BΘ

∂bkk′

)
ℓ′,ℓ

+ sum(Mℓℓ′)

{
∂

∂bmm′

(
∂BΘ

∂bkk′

)}
ℓ′,ℓ

]
,

form,m′ = 1, 2, . . . , K. The first-order partial derivatives ∂ sum(Mℓℓ′)/∂amm and ∂ sum(Mℓℓ′)/∂bmm′

are easily computed, where Mℓℓ′ = Σℓℓ′ − S∗
ℓℓ′ for m,m′, ℓ, ℓ′ = 1, 2, . . . , K. The second-

order partial derivatives ∂(∂BΘ/∂akk)/∂amm, ∂(∂BΘ/∂bkk′)/∂amm, and ∂(∂BΘ/∂bkk′)/∂bmm′

129



are matrices for m,m′, k, k′ = 1, 2, . . . , K, shown respectively as below.

∂

∂amm

(
∂BΘ

∂akk

)
=



−∆−1Ekk∆
−1
(
2Ekk∆

−1BA−1 + BA−1EkkA−1
)

−
(
2a−3

kk IK + a−2
kk∆

−1Ekk

)
∆−1BEkk, k = m

−∆−1 (Emm∆
−1Ekk + Ekk∆

−1Emm)∆
−1BA−1

−∆−1Ekk∆
−1BA−1EmmA−1 − a−2

kk∆
−1Emm∆

−1BEkk, k ̸= m

,

and,

∂

∂amm

(
∂BΘ

∂bkk′

)
=



∆−1Emm∆
−1EkkP∆−1P

−∆−1EkkP∆−1(Emm∆
−1B − PEmm)A−1, k = k′

∆−1Emm∆
−1 (Ekk′ + Ek′k)P∆−1P

−∆−1 (Ekk′ + Ek′k)P∆−1(Emm∆
−1B − PEmm)A−1, k ̸= k′

and,

∂

∂bmm′

(
∂BΘ

∂bkk′

)

=




∆−1(Emm + Ekk)P∆−1(Ekk + Emm)P∆−1P, m = m′

∆−1(Emm′ + Em′m + Ekk)P∆−1(Ekk + Emm′ + Em′m)P∆−1P, m ̸= m′

, k = k′


∆−1(Emm + Ekk′ + Ek′k)P∆−1(Ekk′ + Ek′k + Emm)P∆−1P, m = m′

∆−1(Emm′ + Em′m + Ekk′ + Ek′k)P∆−1(Ekk′ + Ek′k + Emm′ + Em′m)P∆−1P, m ̸= m′

, k ̸= k′

.

By the unbiasedness from Theorem 3.2.1, the expectations of H1, H2, and H3 depend
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on the terms E(sum(Mℓℓ)) = (1 − cn)pℓ(aℓℓ + bℓℓpℓ), E(sum(Mℓℓ′)) = (1 − cn)pℓpℓ′bℓℓ′ and

E(tr(Mℓℓ)) = (1 − cn)pℓ(aℓ + bℓ) only, where cn = (n − 1)/n. Then Fisher’s information ma-

trices for n observations and one observation can be calculated by In(θ) = −E(∂Sn(θ;X)/∂θ)

and I1(θ) = In(θ)/n, respectively. Since both a determinant operator and a trace operator are

continuous, the log-likelihood function ℓn(θ;X) is continuous with respect to θ. In addition,

there is a unique solution to the likelihood equation for every n. Thus, θ̃∗ is strongly consistent,

asymptotically normal, and asymptotically efficient, following the classical arguments in Fergu-

son (1996); van der Vaart and Wellner (1996); Stuart. et al. (1999); Bickel and Doksum (2015a,b),

i.e., θ̃∗ → θ almost surely as n → ∞ and
√
n(θ̃∗ − θ) → N(0q×1, I−1

1 (θ)) in distribution as

n→ ∞.

B.3.4 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. Recall an i.i.d. random sample Xi ∼ N(µ,Σ(A,B,p)) for i = 1, . . . , n,

where Σ(A,B,p) is supposed to be a UB matrix with diagonal matrix A and symmetric matrix

B, and p = (p1, . . . , pK)
⊤ is a given partition-size vector with pk > 1 for every k and p = p1 +

· · ·+ pK . Let X ∼ N(µ,Σ(A,B,p)) and X̄ = (X1 + · · ·+Xn)/n. Let Xi,pk , X̄pk ,µpk ∈ Rpk

satisfying Xi = (X⊤
i,p1
, . . . ,X⊤

i,pK
)⊤, X̄ = (X̄⊤

p1
, . . . , X̄⊤

pK
)⊤, and µ = (µ⊤

p1
, . . . ,µ⊤

pK
)⊤, re-

spectively.

First, we prove that θ̃ is unbiased. By Σ(A,B,p) = (Σkk′), we can obtain that

Σkk′ = cov(Xpk ,Xpk′
) = E{(Xpk − µpk)(Xpk′

− µpk′
)⊤},

Σkk′/n = cov(X̄pk , X̄pk′
) = E{(X̄pk − µpk)(X̄pk′

− µpk′
)⊤}.
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for every k and k′. Let Ckk′ =
∑n

i=1(Xi,pk − X̄i,pk)(Xi,pk′
− X̄i,pk′

)⊤ for every k and k′, which

can be simplified to

Ckk′ =
n∑

i=1

(Xi,pk − µpk)(Xi,pk′
− µpk′

)⊤ − n(X̄pk − µpk)(X̄pk′
− µpk′

)⊤.

Taking expectation on the both sides, we have E (Ckk′) = (n− 1)Σkk′ for every k and k′. Recall

that, given k and k′, Σkk = akkIpk + bkkJpk for k = k′ and Σkk′ = bkk′1pk×pk′
. Define

αkk = akk + bkk = tr (Σkk′) /pk, βkk′ =


akk/pk + bkk = sum (Σkk) /p

2
k, k = k′

bkk′ = sum(Σkk′)/(pkpk′), k ̸= k′

.

By (n− 1)Skk′ = Ckk′ , we have the following results:

α̃kk = p−1
k tr(Skk), β̃kk = p−2

k sum(Skk), β̃kk′ = (pkpk′)
−1 sum(Skk′)

are unbiased estimators for αkk, βkk for every k and for βkk′ for every k ̸= k′. Furthermore,

ãkk = α̃kk −
pkβ̃kk − α̃kk

pk − 1
, b̃kk′ =


pkβ̃kk − α̃kk

pk − 1
, k = k′

β̃kk′ , k ̸= k′

,

are unbiased estimators for akk and bkk′ every k and k′.

Next, we prove the optimal property of θ̃. Let Y = (X⊤
1 , . . . ,X

⊤
n )

⊤ ∈ Rpn denote a

vector consisting of all observations. By normality assumption, Y ∼ N(µy,V), where µy =

(1n ⊗ Ip)× µ ∈ Rpn and V = In ⊗Σ(A,B,p) ∈ Rpn×pn.
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First, we prove µ̃ = X̄ is the best linear unbiased estimator (BLUE). Equivalently, we need

to check the conditions of Theorem 1 and Corollary 2 in Zmyślony (1976). Since Σ(IK , 0K×K ,p) =

Ip, the identity matrix In ⊗ Ip ∈ span(V). Let M− denote the generalized inverse for some ma-

trix M , and let P0 = (1n ⊗ Ip){(1n ⊗ Ip)⊤ (1n ⊗ Ip)}−(1n ⊗ Ip)⊤, which can be simplified to

n−1Jn ⊗ In by using the fact 1−
n = 1⊤

n /n. Thus, P0 is an orthogonal projector because

P2
0 = (n−1Jn ⊗ Ip)(n−1Jn ⊗ Ip) = n−2(Jn × Jn)⊗ Ip = n−1Jn ⊗ Ip = P0,

P⊤
0 = n−1J⊤

n ⊗ I⊤p = P0.

Then, V and P0 are commutative, because

P0V = (n−1Jn ⊗ Ip){In ⊗Σ(A,B,p)} = n−1(JnIn)⊗ {IpΣ(A,B,p)} = n−1Jn ⊗Σ(A,B,p),

VP0 = {In ⊗Σ(A,B,p)}(n−1Jn ⊗ Ip) = n−1(InJn)⊗ {Σ(A,B,p)Ip} = n−1Jn ⊗Σ(A,B,p).

Hence, all estimable functions have the best estimator, which can be expressed in terms of the

solution to the following normal equation

(1n ⊗ Ip)⊤(1n ⊗ Ip)µ = (1n ⊗ Ip)⊤Y .

So, µ̃ = X̄ is BLUE. This coincides with the arguments of the proofs in Roy et al. (2016) and

Koziol et al. (2017).

Second, we can prove α̃kk and β̃kk′ are best quadratic unbiased estimator (BQUE) for αkk

and βkk′ for every k and k′. We need to check the conditions of Theorem 2 in Zmyślony (1976),

or the lines of analogous arguments in Roy et al. (2016) and Koziol et al. (2017), that is, given
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P0V = VP0 and R0 = Ipn − P0, there exist BQUE for the parameters of quadratic covariance if

and only if span (P0VP0), i.e., the smallest linear space containing P0VP0, is a quadratic space.

Since Σ(A,B,p) is a UB matrix, {Σ(A,B,p)}2 is a UB matrix, expressed by (Σ2) (A2,AB +

BA+BPB,p), so span{Σ(A,B,p)} is a quadratic subspace and the identity matrix I(p) belongs

to it. So, span (V) is a quadratic subspace. In addition, it is clear that P0 is idempotent, because

P2
0 = (Ipn − P0)

2 = I2pn − IpnP0 − P0Ipn + P2
0 = Ipn − 2P0 + P0 = Ipn − P0 = P0. By the result

(2.e) from Seely (1971), span(P0VP0) = {P0VP0 : V ∈ span(V)} is a quadratic subspace. Since

span{Σ(A,B,p)} and span(V) are quadratic subspaces, we can find bases for them respectively.

Recall the definition of the block Hadamard product. Σ(A,B,p) has a base as follows:

Ekk ◦ I(p), Ekk ◦ J(p), for every k, (Ekk′ + Ek′k) ◦ J(p), for every k ̸= k′,

where Ekk′ denotes a K by K matrix in which (k, k′) entry is 1 and the other entries are 0’s for

every k and k′. Thus, the base for span (V) is

In ⊗ {Ekk ◦ I(p)} , In ⊗ {Ekk ◦ J(p)} , for every k, In ⊗ {(Ekk′ + Ek′k) ◦ J(p)} , for every k ̸= k′.

By Result 2 from Roy et al. (2016); Koziol et al. (2017), (1⊤
n ⊗ Ip)Y is the complete and minimal

sufficient statistic for µ, and

Y ⊤ × P0 × [In ⊗ {Ekk ◦ I(p)}]× P0 × Y , Y ⊤ × P0 × [In ⊗ {Ekk ◦ J(p)}]× P0 × Y , for every k,

Y ⊤ × P0 × [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}]× P0 × Y , for every k ̸= k′,

are the complete and minimal sufficient statistics for Σ. Given the above base for span(V), we
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follow the arguments about the coordinate-free approach (Roy et al., 2016; Koziol et al., 2017;

Wichura, 2006), the BQUEs for αkk and βkk′ are the least square estimators satisfying the normal

equations as below.

vec (P0 × [In ⊗ {Ekk ◦ I(p)}])⊤ × vec (P0 × [In ⊗ {Ekk ◦ I(p)}])× αkk

= vec (P0 × [In ⊗ {Ekk ◦ I(p)}])⊤

× vec
{
(P0 × Y )× (P0 × Y )⊤

}
,

vec (P0 × [In ⊗ {Ekk ◦ J(p)}])⊤ × vec (P0 × [In ⊗ {Ekk ◦ J(p)}])× βkk

= vec (P0 × [In ⊗ {Ekk ◦ J(p)}])⊤

× vec
{
(P0 × Y )× (P0 × Y )⊤

}
,

vec (P0 × [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}])⊤ × vec (P0 × [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}])× βkk′

= vec (P0 × [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}])⊤

× vec
{
(P0 × Y )× (P0 × Y )⊤

}
,

for every k, every k, and every k ̸= k′, respectively, where vec(M) denotes a single vec-

tor by stacking the columns of M (Henderson and Searle, 1979). In addition to the fact that

vec(A)⊤ vec(B) = tr(A⊤B), the idempotent matrix P0 commutes with the base of span(V), the

above equations can be simplified as below.

tr
(
P0 [In ⊗ {Ekk ◦ I(p)}]2

)
αkk = (P0Y )⊤ [In ⊗ {Ekk ◦ I(p)}] (P0Y ), for every k,

tr
(
P0 [In ⊗ {Ekk ◦ J(p)}]2

)
βkk = (P0Y )⊤ [In ⊗ {Ekk ◦ J(p)}] (P0Y ), for every k,

tr
(
P0 [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}]2

)
βkk′ = (P0Y )⊤ [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}] (P0Y ), for every k ̸= k′.
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Define the residual vector r0 = P0 × Y ∈ Rpn, the solutions to the simplified normal equations

are

α̃kk =
r⊤
0 [In ⊗ {Ekk ◦ I(p)}] r0

tr
(
P0 [In ⊗ {Ekk ◦ I(p)}]2

) , β̃kk =
r⊤
0 [In ⊗ {Ekk ◦ J(p)}] r0

tr
(
P0 [In ⊗ {Ekk ◦ J(p)}]2

) for every k,

β̃kk′ =
r⊤
0 [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}] r0

tr
(
P0 [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}]2

) for every k ̸= k′,

where the denominators can be further simplified respectively:

tr
(
P0 [In ⊗ {Ekk ◦ I(p)}]2

)
= (n− 1) tr{Ekk ◦ I(p)} = (n− 1)pk for every k,

tr
(
P0 [In ⊗ {Ekk ◦ J(p)}]2

)
= (n− 1) tr{(EkkPEkk) ◦ J(p)} = (n− 1)p2k for every k,

tr
(
P0 [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}]2

)
= (n− 1)(2pkpk′) for every k ̸= k′.

Let ri = (r⊤
i,p1
, r⊤

i,p2
, . . . , r⊤

i,pK
)⊤ ∈ Rp denote the i th subvector of r0 satisfying that r0 =

(r⊤
1 , r

⊤
2 , . . . , r

⊤
n )

⊤. For every k and k′,

α̃kk =
n∑

i=1

r⊤
i,pk

ri,pk/{(n− 1)pk},

β̃kk =
n∑

i=1

sum(ri,pk) sum(ri,pk)/{(n− 1)p2k} =
n∑

i=1

sum2(ri,pk)/{(n− 1)p2k},

β̃kk′ =
n∑

i=1

2(sum(ri,pk) sum(ri,pk′ ))/{2(n− 1)pkpk′} =
n∑

i=1

{sum(ri,pk) sum(ri,pk′ )}/{(n− 1)pkpk′}.

By the facts that ri,pk = Xi,pk − X̄pk and Ckk′ =
∑n

i=1(Xi,pk − X̄pk)(Xi,pk′
− X̄pk′

)⊤ =
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∑n
i=1 ri,pkr

⊤
i,pk′

for every k and k′, then,

k ̸= k′ : sum(Ckk′) = sum

(
n∑

ı=1

ri,pkr
⊤
i,pk′

)
=

n∑
i=1

sum
(
ri,pkr

⊤
i,pk′

)
=

n∑
i=1

sum (ri,pk) sum
(
ri,pk′

)
,

k = k′ : sum(Ckk′) = sum

(
n∑

ı=1

ri,pkr
⊤
i,pk

)
=

n∑
i=1

sum
(
ri,pkr

⊤
i,pk

)
=

n∑
i=1

sum2(ri,pk),

k = k′ : tr(Ckk′) = tr

(
n∑

i=1

ri,pkr
⊤
i,pk

)
=

n∑
i=1

tr
(
ri,pkr

⊤
i,pk

)
=

n∑
i=1

r⊤
i,pk

ri,pk .

Finally, the estimators for µ and Σ are respectively BLUE and BQUE, but also they are functions

of complete statistics. Thus, we have the following best-unbiased estimators

µ̃ =
1

n

n∑
i=1

Xi, α̃kk =
1

n− 1

tr(Ckk)

pk
, β̃kk′ =


1

n− 1

sum(Ckk)

p2k
, k = k′

1

n− 1

sum(Ckk′)

pkpk′
, k ̸= k′

,

for µ, αkk, and βkk′ for every k and k′. ■

B.3.5 Proof of Corollary 3.2.2

Proof of Corollary 3.2.2. The result can be obtained immediately from the properties of UB ma-

trices in Chapter 2. ■

B.3.6 Proofs of Corollary 3.2.3 and Corollary B.2.1

of Corollary 3.2.3. Roy et al. (2016) and Koziol et al. (2017) provided their formula (4.17) for

calculating the variance of a quadratic form Y AY ⊤ for some matrix A satisfying A = P0AP0,

var
(
Y ⊤AY

)
= 2× tr (P0AVAV) ,
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where Y ∼ N (µy,V) and P0 = Ipn − P0 as defined in the proof of Theorem 3.2.1. Recall the

proof of Theorem 3.2.1,

α̃kk =
r⊤
0 [In ⊗ {Ekk ◦ I(p)}] r0

(n− 1)pk
, β̃kk =

r⊤
0 [In ⊗ {Ekk ◦ J(p)}] r0

(n− 1)p2k
, for every k

β̃kk′ =
r⊤
0 [In ⊗ {(Ekk′ + Ek′k) ◦ J(p)}] r0

(n− 1)(2pkpk′)
, for every k ̸= k′.

Let x = x(k, k), y = y(k, k), and z = z(k, k′) denote the terms Ekk ◦ I(p), Ekk ◦ J(p), and

(Ekk′ + Ek′k) ◦ J(p) respectively. Then, let ω denote any of x, y, and z and let Q = Q(ω) =

P0 × (In ⊗ ω)× P0. So, P0 × Q × P0 = P2
0 × (In ⊗ ω)× P2

0 = Q due to the fact that P2
0 = P0.

In addition, recall that P0V = VP0. Thus, var(Y ⊤QY ) = 2 × tr(P0QVQV), which can be

simplified as below:

2× tr (P0QVQV) = 2× tr [P0{P0(In ⊗ ω)P0}V{P0(In ⊗ ω)P0}V]

= 2× tr {P0(In ⊗ ω)V(In ⊗ ω)V} ,

where we use the fact that P0 commutes with In ⊗ ω and V, respectively. Therefore,

var
{
r⊤
0 (In ⊗ ω)r0

}
= var

[
Y ⊤{P0(In ⊗ ω)P0}Y

]
= 2× tr{P0(In ⊗ ω)V(In ⊗ ω)V}

= 2(n− 1)× tr{(ωΣ)(ωΣ)}

= 2(n− 1)sω,
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where sω denotes tr{(ωΣ)(ωΣ)}. Hence, using these notations,

var (α̃kk) =
1

(n− 1)2p2k
var
{
r⊤
0 (In ⊗ x)r0

}
=

2(n− 1)sx
(n− 1)2p2k

=
2sx

(n− 1)p2k
for every k,

var
(
β̃kk

)
=

1

(n− 1)2p4k
var
{
r⊤
0 (In ⊗ y)r0

}
=

2(n− 1)sy
(n− 1)2p4k

=
2sy

(n− 1)p4k
for every k,

var
(
β̃kk′

)
=

1

4(n− 1)2p2kp
2
k′
var
{
r⊤
0 (In ⊗ z)r0

}
=

2(n− 1)sz
4(n− 1)2p2kp

2
k′

=
2sz

4(n− 1)p2kp
2
k′

for every k ̸= k′,

where sx, sy and sz are the traces of (xΣ)2, (yΣ)2 and (zΣ)2 respectively. In fact, the expressions

of the covariances among α̃’s and β̃’s are associated with terms of the products of any two of

(xΣ), (yΣ) and (zΣ), where x = x(k, k), y = y(k, k), and z = z(k, k′) for every k and every

k ̸= k′. We focus on the calculations of (xΣ)2, (yΣ)2, and (zΣ)2 only.

First, we calculate the tr(xΣ)2 as below:

(xΣ)(xΣ) = {(EkkA) ◦ I(p) + (EkkB) ◦ J(p)} {(EkkA) ◦ I(p) + (EkkB) ◦ J(p)}

= {(EkkA)(EkkA)} ◦ I(p) + {(EkkA)(EkkB)} ◦ J(p) + {(EkkB)(EkkA)} ◦ J(p)

+ {(EkkB)P(EkkB)} ◦ J(p)

=
{
(EkkA)2

}
◦ I(p) + {(EkkA)(EkkB) + (EkkB)(EkkA) + (EkkB)P(EkkB)} ◦ J(p),

therefore, for every k,

tr {(xΣ)(xΣ)} = pk(a
2
kk + 2akkbkk + pkb

2
kk).

Then, we calculate the tr (yΣ)2 as below:
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(yΣ)(yΣ) = {(EkkA + EkkPB) ◦ J(p)} {(EkkA + EkkPB) ◦ J(p)}

= {(EkkA + EkkPB)P(EkkA + EkkPB)} ◦ J(p),

therefore, for every k,

tr {(yΣ)(yΣ)} = p2k(akk + pkbkk)
2.

Finally, we calculate the tr(zΣ)2 as below:

(zΣ)(zΣ) = [{(Ekk′ + Ek′k)A + (Ekk′ + Ek′k)PB}P {(Ekk′ + Ek′k)A + (Ekk′ + Ek′k)PB}] ◦ J(p),

therefore, for every k ̸= k′,

tr{(zkk′Σ)(zkk′Σ)} = b2k′kp
2
kp

2
k′ + b2kk′p

2
kp

2
k′ + 2pkpk′(akk + pkbkk)(ak′k′ + pk′k′bk′k′).

We complete the proof of variance estimators. ■

Proof of Corollary B.2.1. The expressions of the covariances among α̃’s and β̃’s are associated

with terms of the products of any two of (xΣ), (yΣ), and (zΣ), where x = x(k, k), y = y(k, k),

and z = z(k, k′) for every k and k ̸= k′. One may obtain the covariance estimators by calculating

tr{(xΣ)(yΣ)}, tr{(xΣ)(zΣ)}, and tr{(yΣ)(zΣ)}, respectively in a similar manner. ■
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B.3.7 Proof of Theorem 3.2.2

Lemma B.3.1. (Gaussian Hanson-Wright inequality) Let X ∈ Rp be a Gaussian vector with

mean zero and covariance matrix Σ and A ∈ Rp×p. Then, for every t ≥ 0, we have

pr
(∣∣X⊤AX − E

(
X⊤AX

)∣∣ ≥ t
)
≤ 2 exp

(
−Cmin

{
t2

∥Σ1/2AΣ1/2∥2F
,

t

∥Σ1/2AΣ1/2∥op

})
,

where the positive constant C does not depend on p, A, and t.

Proof of Lemma B.3.1. It can be derived from the case with a sub-Gaussian variable. See the

original proof in Hanson and Wright (1971) or Wright (1973) and a modern version in Rudelson

and Vershynin (2013) or Vershynin (2018, Theorem 6.2.1). ■

Proof of Theorem 3.2.2. We aim to prove it within 4 steps.

Step 1, we would like to find out the upper bounds for the absolute values of the biases for

the modified hard-threshold estimators under different cases.

Case 1: for a fixed λ and every fixed k and k′, let σ = bkk′ and σ̃ = b̃kk′ , hence let

σ̂ = σ̃I(|σ̃| > λ). Assuming that |σ̃ − σ| ≤ λ/2, or equivalently, σ − λ/2 ≤ σ̃ ≤ σ + λ/2,

we obtain: if σ ∈ [−λ/2, λ/2], then σ̃ ∈ [−λ, λ], or equivalently, |σ̃| ≤ λ, and therefore,

σ̂ = 0 and |σ̂ − σ| = |σ| ∈ [0, λ/2]; if σ ∈ (3λ/2,∞), then σ̃ ∈ (λ,∞), or equivalently,

|σ̃| > λ, and therefore, σ̂ = σ̃ and |σ̂ − σ| = |σ̃ − σ| ∈ [0, λ/2]; if σ ∈ (−∞,−3λ/2), then

σ̃ ∈ (−∞,−λ), or equivalently, |σ̃| > λ, and therefore, σ̂ = σ̃ and |σ̂ − σ| = |σ̃ − σ| ∈ [0, λ/2];

if σ ∈ (λ/2, 3λ/2], then σ̃ ∈ (0, 2λ] and it can be larger than λ or be smaller than λ, therefore
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σ̂ ∈ {0, σ̃} and |σ̂ − σ| =


|σ̃ − σ| ∈ [0, λ/2], σ̃ ∈ (λ, 2λ]

|σ| ∈ (λ/2, 3λ/2], σ̃ ∈ (0, λ]

, which is between 0 and 3λ/2;

if σ ∈ [−3λ/2,−λ/2), then σ̃ ∈ [−2λ, 0) and it can be larger than −λ or be smaller than −λ,

therefore σ̂ ∈ {0, σ̃} and |σ̂−σ| =


|σ̃ − σ| ∈ [0, λ/2], σ̃ ∈ [−2λ,−λ)

|σ| ∈ [λ/2, 3λ/2], σ̃ ∈ [−λ, 0)

, which is also between

0 and 3λ/2. Put the above arguments together, for a fixed λ, under the assumption |σ̃−σ| ≤ λ/2,

|σ̂ − σ| =



|σ̃ − σ| ∈ [0, λ/2] , σ ∈ (−∞,−3λ/2)

{|σ̃ − σ| , |σ|} ≤ |σ| ∨ (λ/2) , σ ∈ [−3λ/2,−λ/2)

|σ| ∈ [0, λ/2] , σ ∈ [−λ/2, λ/2]

{|σ̃ − σ| , |σ|} ≤ |σ| ∨ (λ/2) , σ ∈ (λ/2, 3λ/2]

|σ̃ − σ| ∈ [0, λ/2] , σ ∈ (3λ/2,∞)

,

therefore the maximum of |σ̂ − σ| might be either |σ| if λ/2 < |σ| ≤ 3λ/2 or λ/2 otherwise. In

other words, we may write |σ̂ − σ| ≤ |σ| ∧ (3λ/2).

Case 2: for a fixed λ and every fixed k, let σ = akk and σ̃ = ãkk, hence let σ̂ = σ̃I(|σ̃| > λ).

We assume that |α̃kk − αkk| ≤ λ/2 and |̃bkk − bkk| ≤ λ/2 holds simultaneously, then

|ãkk − akk| = |α̃kk − b̃kk − (αkk − bkk) | = | (α̃kk − αkk)− (̃bkk − bkk)| ≤ |α̃kk − αkk|+ |̃bkk − bkk| ≤ λ.

So, the above assumption is equivalent implies that |σ̃ − σ| ≤ λ, or equivalently, σ − λ ≤ σ̃ ≤

σ + λ: if σ ∈ (−∞,−2λ), then σ̃ ∈ (−∞,−λ) and therefore |σ̃| > λ, and σ̂ = σ̃, and thus
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|σ̂ − σ| = |σ̃ − σ| ∈ [0, λ]; if σ = 0, then |σ̃| ≤ λ and therefore σ̂ = 0, and |σ̂ − σ| = |σ| = 0;

if σ ∈ (0, 2λ], then σ̃ ∈ (−λ, 3λ] and therefore |σ̃| can be larger than λ or be smaller than λ,

thus σ̂ = {0, σ̃}, and thus |σ̂ − σ| =


|σ̃ − σ| ∈ [0, λ], σ̃ ∈ (λ, 3λ]

|σ| ∈ (0, 2λ], σ̃ ∈ (−λ, λ]

, which is between 0 and

2λ; if σ ∈ [−2λ, 0), then σ̃ ∈ [−3λ, λ) and therefore |σ̃| can be larger than λ or be smaller

than λ, thus σ̂ = {σ̃, 0}, and thus |σ̂ − σ| =


|σ̃ − σ| ∈ [0, λ], σ̃ ∈ [−3λ,−λ)

|σ| ∈ (0, 2λ], σ̃ ∈ [−λ, λ)

, which is

between 0 and 2λ; if σ ∈ (2λ,∞), then σ̃ ∈ (λ,∞) and therefore |σ̃| > λ, and σ̂ = σ̃, and thus

|σ̂− σ| = |σ̃− σ| ∈ [0, λ]. Put the above arguments together, for a fixed λ, under the assumption

|σ̃ − σ| ≤ λ,

|σ̂ − σ| =



|σ̃ − σ| ∈ [0, λ], σ ∈ (−∞,−2λ)

{|σ̃ − σ| , |σ|} ≤ |σ| ∨ λ, σ ∈ [−2λ, 0)

0, σ = 0

{|σ̃ − σ| , |σ|} ≤ |σ| ∨ λ, σ ∈ (0, 2λ]

|σ̃ − σ| ∈ [0, λ], σ ∈ (2λ,∞)

,

therefore the maximum of |σ̂ − σ| might be either |σ| if 0 < |σ| ≤ 2λ or λ otherwise. In other

words, we may write |σ̂ − σ| ≤ |σ| ∧ (2λ). Thus, at Step 1, we conclude that |âkk − akk| ≤

|akk| ∧ (2λ) and |̂bkk′ − bkk′ | ≤ |bkk′| ∧ (3λ/2) for a fixed λ and every k and k′ under the

assumptions: max1≤k≤K |α̃kk − αkk| ≤ λ/2 and max1≤k,k′≤K |̃bkk′ − bkk′ | ≤ λ/2. We denote the
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following event sets

E(0)
N =

{
max
1≤k≤K

|ãkk − akk| ≤ λ

}
, E(1)

N =

{
max
1≤k≤K

|α̃kk − αkk| ≤ λ/2

}
,

E(2)
N =

{
max
1≤k≤K

∣∣∣̃bkk − bkk

∣∣∣ ≤ λ/2

}
, E(3)

N =

{
max

1≤k ̸=k′≤K

∣∣∣̃bkk′ − bkk′
∣∣∣ ≤ λ/2

}
,

and the event sets E(1)
N and E(2)

N implies that E(0)
N . The probability of their complement sets can

be bounded as below:

pr
(

E(1),∁
N

)
= pr

(
max
1≤k≤K

|α̃kk − αkk| > λ/2

)
[1]

≤ K × pr (|α̃kk − αkk| > λ/2) ,

pr
(

E(2),∁
N

)
= pr

(
max
1≤k≤K

∣∣∣̃bkk − bkk

∣∣∣ > λ/2

)
≤ K × pr

(∣∣∣̃bkk − bkk

∣∣∣ > λ/2
)
,

pr
(

E(3),∁
N

)
= pr

(
max

1≤k ̸=k′≤K

∣∣∣̃bkk′ − bkk′
∣∣∣ > λ/2

)
≤ K × (K − 1)× pr

(∣∣∣̃bkk′ − bkk′
∣∣∣ > λ/2

)
,

where [1] holds due to the union bound.

Step 2, we would like to compute the upper bounds for the above three probabilities re-

spectively.

Let Ekk′ ∈ RK×K denote the matrix whose (k, k′) entry is 1 and the other entries are

0 for every k and k′. Then, let Akk = (p−1
k Ekk) ◦ I(p), Bkk = {−p−1

k (pk − 1)−1Ekk} ◦

I(p) + {p−1
k (pk − 1)−1Ekk} ◦ J(p) and Bkk′ = {(pkpk′)−1Ekk′} ◦ J(p) for every k and k ̸= k′.

Let W = (X⊤
1 , . . . ,X

⊤
n )

⊤ ∈ Rpn and decompose X = (X⊤
p1
, . . . ,X⊤

pK
)⊤, where Xpk =

(Xp̄k−1+1, . . . ,Xp̄k)
⊤ ∈ Rpk for every k, p̄0 = 0 and p̄k =

∑k
k′=1 pk′ denote the sum of the first
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k elements of p for k = 1, . . . , K. Note that µ = 0p×1 is known and S = X⊤X/n, thus,

W⊤ (In ⊗ Akk)W =
n∑

i=1

X⊤
i AkkXi =

1

pk

n∑
i=1

tr
(
Xi,pkX

⊤
i,pk

)
=

n

pk
tr(Skk) = nα̃kk,

W⊤ (In ⊗ Bkk)W =
n∑

i=1

X⊤
i BkkXi =

n

pk(pk − 1)
{sum(Skk)− tr(Skk)} = nb̃kk,

W⊤ (In ⊗ Bkk′)W =
n∑

i=1

X⊤
i Bkk′Xi =

1

pkpk′

n∑
i=1

sum(Xi,pkX
⊤
i,pk′

) =
n

pkpk′
sum(Skk′) = nb̃kk′ ,

for every k and for every k ̸= k′ respectively.

On the one hand, α̃kk, b̃kk′ are unbiased estimators of αkk and bkk′ for every k and k′, let

Q
(α)
kk = W⊤ (In ⊗ Akk)W − E

{
W⊤ (In ⊗ Akk)W

}
= n (α̃kk − αkk) ,

Q
(b)
kk′ = W⊤ (In ⊗ Bkk′)W − E

{
W⊤ (In ⊗ Bkk′)W

}
= n

(
b̃kk′ − bkk′

)
,
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for every k and k′. On the other hand, applying the result of Lemma B.3.1, given a δ > 0,

pr (|α̃kk − αkk| > δ)

= pr
(∣∣∣Q(α)

kk

∣∣∣ > nδ
)

≤ 2 exp

−Cmin

 (nδ)2∥∥∥(In ⊗Σ)1/2 (In ⊗ Akk) (In ⊗Σ)1/2
∥∥∥2

F

,
nδ∥∥∥(In ⊗Σ)1/2 (In ⊗ Akk) (In ⊗Σ)1/2

∥∥∥
op


 ,

pr
(∣∣∣̃bkk − bkk

∣∣∣ > δ
)

≤ 2 exp

−Cmin

 (nδ)2∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk) (In ⊗Σ)1/2
∥∥∥2

F

,
nδ∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk) (In ⊗Σ)1/2

∥∥∥
op


 ,

pr
(∣∣∣̃bkk′ − bkk′

∣∣∣ > δ
)

≤ 2 exp

−Cmin

 (nδ)2∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk′) (In ⊗Σ)1/2
∥∥∥2

F

,
nδ∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk′) (In ⊗Σ)1/2

∥∥∥
op


 ,

for every k, for every k, and for every k ̸= k′ respectively, where C is a positive constant. By the

properties of Kronecker product and Frobenius norm,

∥∥∥(In ⊗Σ)1/2 (In ⊗ Akk) (In ⊗Σ)1/2
∥∥∥2

F
=
∥∥(In ⊗Σ1/2

)
(In ⊗ Akk)

(
In ⊗Σ1/2

)∥∥2
F

= n
∥∥Σ1/2AkkΣ

1/2
∥∥2

F

= n× tr
{(

Σ1/2AkkΣ
1/2
) (

Σ1/2AkkΣ
1/2
)}

= n× tr
(
Σ1/2AkkΣAkkΣ

1/2
)

= n× tr (AkkΣAkkΣ) ,
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and

∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk) (In ⊗Σ)1/2
∥∥∥2

F
= n× tr (BkkΣBkkΣ) ,∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk′) (In ⊗Σ)1/2

∥∥∥2
F
= n× tr (Bkk′ΣBkk′Σ) .

Then, calculate the traces,

n× tr (AkkΣAkkΣ) =
n

pk

(
a2kk + 2akkbkk + pkb

2
kk

)
,

n× tr (BkkΣBkkΣ) =
n

pk(pk − 1)2
{
a2kk − 2akk(akk − bkk + pkbkk) + pk (akk + pkbkk − bkk)

2} ,
n× tr (Bkk′ΣBkk′Σ) = nb2k′k.

By the properties of the operator norm, let λmax(M) denote the largest eigenvalue of M ,

∥∥∥(In ⊗Σ)1/2 (In ⊗ Akk) (In ⊗Σ)1/2
∥∥∥2

op
=
∥∥In ⊗

(
Σ1/2AkkΣ

1/2
)∥∥2

op

= λmax
[{

In ⊗
(
Σ1/2AkkΣ

1/2
)} {

In ⊗
(
Σ1/2AkkΣ

1/2
)}]

= λmax
[
In ⊗

{(
Σ1/2AkkΣ

1/2
) (

Σ1/2AkkΣ
1/2
)}]

= λmax
{(

Σ1/2AkkΣ
1/2
) (

Σ1/2AkkΣ
1/2
)}

= λmax
(
Σ1/2AkkΣAkkΣ

1/2
)
,

and

∥∥∥(In ⊗Σ)1/2 (In ⊗ bkk) (In ⊗Σ)1/2
∥∥∥2

op
= λmax

(
Σ1/2BkkΣBkkΣ

1/2
)
,∥∥∥(In ⊗Σ)1/2 (In ⊗ Bkk′) (In ⊗Σ)1/2

∥∥∥2
op
= λmax

(
Σ1/2Bkk′ΣBkk′Σ

1/2
)
.

Therefore, under the assumption about Σ, there exist positive constants C1,∗ and C2,∗ satisfying
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that

C2
1,∗ = C2

A,B,p = max
K

max
1≤k,k′≤K{

λmax
(
Σ1/2AkkΣAkkΣ

1/2
)
, λmax

(
Σ1/2BkkΣBkkΣ

1/2
)
, λmax

(
Σ1/2Bkk′ΣBkk′Σ

1/2
)}

<∞,

and

C2
2,∗ = C2

A,B,p = max
K

max
1≤k,k′≤K

{tr (AkkΣAkkΣ) , tr (BkkΣBkkΣ) , tr (Bkk′ΣBkk′Σ)} <∞.

Therefore,

K × pr (|α̃kk − αkk| > δ) ≤ 2K exp

(
−Cmin

{
nδ2

C2
2,∗
,
nδ

C1,∗

})
,

K × pr
(∣∣∣̃bkk − bkk

∣∣∣ > δ
)
≤ 2K exp

(
−Cmin

{
nδ2

C2
2,∗
,
nδ

C1,∗

})
,

K × (K − 1)× pr
(∣∣∣̃bkk′ − bkk′

∣∣∣ > δ
)
≤ 2K(K − 1) exp

(
−Cmin

{
nδ2

C2
2,∗
,
nδ

C1,∗

})
.

Step 3, let U = Cnmin
{
λ2(2C2

2,∗)
−1, λ(2C1,∗)

−1
}

= Cnmin{λ2, λ}, where constants

C1,∗ and C2,∗ are absorbed into constant C. Set n−1 log(K) → 0 as K > n → ∞. Let λ =

η
√
log(K)/n→ 0+, then nλ2 = η2 log(K) → ∞, while λ2 < λ since λ→ 0+. So, we have

lim
n→∞

U

log(K)
= lim

n→∞

Cnλ2

log(K)
= lim

n→∞

Cη2 log(K)

log(K)
= Cη2.
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Therefore, the Forbenius norm is bounded as below,

∥∥∥Σ̂−Σ
∥∥∥2

F
=

K∑
k=1

pk (α̂kk − αkk)
2 +

K∑
k=1

pk(pk − 1)
(
b̂kk − bkk

)2
+
∑
k ̸=k′

pkpk′
(
b̂kk′ − bkk′

)2
≤

K∑
k=1

pk
{
α2
kk ∧ (2λ)2

}
+

K∑
k=1

pk(pk − 1)
{
b2kk ∧ (3λ/2)2

}
+
∑
k ̸=k′

pkpk′
{
b2kk′ ∧ (3λ/2)2

}
,

and the spectral norm is bounded below

∥∥∥Σ̂−Σ
∥∥∥

S
≤
∥∥∥Σ̂−Σ

∥∥∥
1

= sup
1≤j′≤p

∣∣αk(j′)k(j′)

∣∣ ∧ (2λ) +
(
pk(j′) − 1

) ∣∣bk(j′)k(j′)∣∣ ∧ (3λ/2) +
∑

k ̸=k(j′)

pk
∣∣bkk(j′)∣∣ ∧ (3λ/2)

 ,

where k(j′) = k if j′ ∈ {p̄k−1 + 1, p̄k−1 + 2, . . . , p̄k} for every k.

Finally, step 4, set 0 < p0 < 2 and therefore x2−p0 is monotonically increasing on (0,∞).

Let ω(α),2
kk = α2

kk ∧ (2λ)2, ω(b),2
kk′ = b2kk′ ∧ (3λ/2)2 for every k and k′. After doing some algebra,

we have

K∑
k=1

pk
{
α2
kk ∧ (2λ)2

}
=

K∑
k=1

pk

∣∣∣ω(α)
kk

∣∣∣p0 ∣∣∣ω(α)
kk

∣∣∣2−p0

≤
K∑
k=1

pk

∣∣∣ω(α)
kk

∣∣∣p0 ( max
1≤k≤K

∣∣∣ω(α)
kk

∣∣∣)2−p0

=

(
max
1≤k≤K

∣∣∣ω(α)
kk

∣∣∣)2−p0
(

K∑
k=1

pk

∣∣∣ω(α)
kk

∣∣∣p0)

≤ (2λ)2−p0

(
K∑
k=1

pk |αkk|p0
)
,

149



and

K∑
k=1

pk(pk − 1)
{
b2kk ∧ (3λ/2)2

}
≤
(

max
1≤k≤K

∣∣∣ω(b)
kk

∣∣∣)2−p0
{

K∑
k=1

pk(pk − 1)
∣∣∣ω(b)

kk

∣∣∣p0}

≤ (3λ/2)2−p0

{
K∑
k=1

pk(pk − 1) |bkk|p0
}
,

∑
k ̸=k′

pkpk′
{
b2kk′ ∧ (3λ/2)2

}
≤
(

max
1≤k ̸=k′≤K

∣∣∣ω(b)
kk′

∣∣∣)2−p0
(

K∑
k=1

pkpk′
∣∣∣ω(b)

kk′

∣∣∣p0)

≤ (3λ/2)2−p0

(∑
k ̸=k′

pkpk′ |bkk′ |p0
)
.

Put them together,

∥∥∥Σ̂−Σ
∥∥∥2

F

≤
K∑
k=1

pk
{
α2
kk ∧ (2λ)2

}
+

K∑
k=1

pk(pk − 1)
{
b2kk ∧ (3λ/2)2

}
+
∑
k ̸=k′

pkpk′
{
b2kk′ ∧ (3λ/2)2

}
≤ (2λ)2−p0

(
K∑
k=1

pk |αkk|p0
)

+ (3λ/2)2−p0

(
K∑
k=1

pk(pk − 1) |bkk|p0
)

+ (3λ/2)2−p0

(∑
k ̸=k′

pkpk′ |bkk′|p0
)

≤ (2λ)2−p0 ∥Σ∥p0,(vector)
p0

,
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where ∥ · ∥(vector)
p denotes the entrywise norm. For the spectral norm, consider 0 < q0 < 1,

∥∥∥Σ̂−Σ
∥∥∥

S

= sup
1≤j′≤p

∣∣αk(j′)k(j′)

∣∣ ∧ (2λ) +
(
pk(j′) − 1

) ∣∣bk(j′)k(j′)∣∣ ∧ (3λ/2) +
∑

k ̸=k(j′)

pk
∣∣bkk(j′)∣∣ ∧ (3λ/2)


≤ sup

1≤j′≤p

(2λ)1−q0
∣∣αk(j′)k(j′)

∣∣q0 + (3λ/2)1−q0
(
pk(j′) − 1

) ∣∣bk(j′)k(j′)∣∣q0 + (3λ/2)1−q0
∑

k ̸=k(j′)

pk
∣∣bkk(j′)∣∣q0


≤ (2λ)1−q0 sup

1≤j′≤p

∣∣αk(j′)k(j′)

∣∣q0 + (pk(j′) − 1
) ∣∣bk(j′)k(j′)∣∣q0 + ∑

k ̸=k(j′)

pk
∣∣bkk(j′)∣∣q0


≤ (2λ)1−q0 ∥Σq0∥1 ,

where ∥ ·q0 ∥1 denotes the maximum absolute column sum (with q0-th power entrywisely).

In summary, given log(K)/n → 0 as K = Kn > n → ∞, we select Cη2 = 5 and

λ = η
√

log(K)/n → 0, then 2K(K − 1) exp(−U) → 0. Furthermore, for 0 < p0 < 2

and 0 < q0 < 1, ∥Σ̂ − Σ∥2F ≤ (2λ)2−p0∥Σ∥p0,(vector)
p0 and ∥Σ̂ − Σ∥S ≤ (2λ)1−q0∥Σq0∥1 with

probability 1. ■

B.4 Extra Simulation Studies

B.4.1 Extra simulation studies in Scenario 1

Examination of the accuracy of the covariance estimator. Based on Corollary B.2.1, we

would like to verify the accuracy of covariance estimators in Scenario 1, for each pair of α0,11, . . . , α0,KK

and β0,11, . . . , β0,KK for the sample sizes n = 50, 100, or 150, with 1000 Monte Carlo replicates.

For each replicate, we compute the covariance estimate of every pair of α0’s and β0’s by sub-

stituting the estimates α̃kk and β̃kk′ in Corollary B.2.1. Based on 1000 replicates, the average
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of estimated covariance is obtained (denoted by AC) for every pair of α0’s and β0’s. We also

substitute the real values in the covariance formulas (denoted by RC) for every pair of α0’s and

β0’s. As a standard, the Monte Carlo covariance is also computed (denoted by MCC) for every

pair of α0’s and β0’s. The results of pairs involving α0’s, β0’s, and α0’s-β0’s are tabulated in an

Excel file, which is available at https://github.com/yiorfun/UBCovEst.

The results in the tables show that the covariances evaluated at the true values are almost

identical to the empirical ones computed by the Monte Carlo method. In addition, given a rela-

tively small sample size, say n = 50, the proposed method may slightly overestimate the covari-

ances for some pairs of α0’s and β0’s. It may be because the number of unknown parameters (i.e.,

q = 20) is much close to n = 50. As the sample size is larger than 50, the proposed method is

applicable to provide reasonable covariance estimation.

Evaluation of the estimated covariance matrix estimator on multiple testing. We also con-

duct an extra simulation study to investigate the advantage of a covariance matrix estimate with

less bias. In other words, a covariance matrix estimate with a larger bias might produce an in-

appropriate type 1 error or cause a loss in statistical power. Specifically, we set pind = 100

(therefore p = 500) and generate a sample with n = 50 from N (µ0,Σ0,1 (A0,B0,p1)), where

µ0 = (µ01, . . . , µ0p)
⊤, µ0j = 0.3 for j = 1, . . . , 10 and µ0j = 0 otherwise, and the other settings

are the same as those in Scenario 1. To simultaneously perform hypothesis tests

H0j : µj = 0, against H1j : µj ̸= 0, j = 1, . . . , p,

we apply the principal factor approximation (PFA) method to estimate the false discovery pro-

portion (FDP) due to the presence of the dependence among test statistics (Fan et al., 2012;
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Fan and Han, 2017). Among 100 Monte Carlo replicates, given a sequence of threshold val-

ues t, we calculate the medians and standard errors (s.d.) of the total number of rejections

R(t), the number of correct rejections S(t), and the false discovery proportion FDP(t) using

the true covariance matrix Σ0,1 (A0,B0,p1), its POET estimator Σ̃POET, and the proposed esti-

mator Σ̃prop. = Σ̃1

(
Ã1, B̃1,p1

)
, respectively.

The results presented in Table B.1 demonstrate that the proposed covariance matrix esti-

mator behaves more similarly with the true covariance matrix than the POET estimator due to the

less bias. For example, given a threshold value t = 0.0527, the approximate FDP(t) are 0.00,

0.79, and 0.13 for the truth, the POET estimator, and the proposed estimator, respectively. It im-

plies the bias of the POET estimator might lead to an inappropriate PDP. Also, S(t) is estimated

by 10, 4, and 10 for the truth, the POET estimator, and the proposed estimator, respectively, which

implies that there is a loss in statistical power for the POET estimator.
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B.4.2 Extra simulation study in Scenario 3

Justification of the proposed parameterization strategy. To justify the proposed parameter-

ization for the structure of uniform blocks, we compare the box plots of the off-diagonal entries

in the diagonal blocks and those of all entries in the off-diagonal blocks based on the real data

examples, to those based on the simulated datasets in Scenario 3 (Section 3.3.4). The box plots

are presented below, which demonstrate that although the true covariance matrix Υ0,σ is not a UB

matrix, the proposed estimation procedure can yield a more competitive estimate for the covari-

ance matrix and a not-worse estimate for the precision matrix than the conventional methods do,

if the variations in blocks are small. Therefore, these results show that it is reasonable to consider

the structure of uniform blocks for the real datasets because the variations in blocks are close to

those in the simulated data with σ = 0.8 for the proteomics study and the brain imaging study,

respectively.

To conduct simulations in Section 3.3 and in Section B.4, we load the R packages “pfa”

(Fan et al., 2012) (with some modifications), “CovTools” (Lee et al., 2021), “POET” (Fan et al.,

2016), “CVTuningCov” (Wang, 2015) (with some modifications), and implement the estimation

procedures by using the software R (R Core Team, 2021). R code for the numerical studies in

Section 3.3 and the data examples in Section B.4 are available at https://github.com/

yiorfun/UBCovEst.
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(a) Box plots for the proteomics dataset (b) Box plots for the brain imaging dataset

(c) Box plots for the Spellman dataset (d) Box plots for the simulated dataset with σ =
0.1 in Scenario 3

(e) Boxplots for the simulated dataset with σ =
0.5 in Scenario 3

(f) Boxplots for the simulated dataset with σ =
0.8 in Scenario 3

Figure B.2: Box plots of the off-diagonal entries in the diagonal blocks and of all entries in the
diagonal blocks.
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Appendix C: Supplementary Materials for Chapter 4

C.1 Definition

Definition C.1.1 (consistent estimator of a covariance matrix, also see Definition 8.2.1 in Fomby

et al. (1984) or page 68 on Schmidt (2020)). If a covariance matrix Σ depends on a finite number

of parameters θ1, . . . , θp, and if Σ̂ depends on consistent estimators θ̂1, . . . , θ̂p, then Σ̂ is said to

be a consistent estimator of Σ.

C.2 Properties of UB-Matrices

Corollary C.2.1 (square-inverse transformations). Let ℓ = (L1, . . . , LG)
⊤ be a partition-size

vector satisfying that R = L1 + · · · + LG and Lg > 1 for all g, and N1,N2 ∈ RR×R be two

matrices satisfying the square-inverse relationship, i.e., N2 = (IR − N1)
−1 (IR − N1)

−1.

(1) If N1 = N1 (A1,B1, ℓ) is a UB matrix with diagonal matrix A1 and symmetric matrix

B1, then N2 is a UB matrix, expressed by N2 (A2,B2, ℓ). Specifically, let L = diag (L1, . . . , LG),

157



A2 and B2 can be calculated using A1, B1, and L as below:

IR − N1 = N∗ (A∗,B∗, ℓ) , A∗ = IG − A1, B∗ = −B1, ∆∗ = IG − A1 − B1L;

(IR − N1)
−1 = N⋆ (A⋆,B⋆, ℓ) , A⋆ = A∗,−1, B⋆ = −∆∗,−1B∗A∗,−1;

(IR − N1)
−1 (IR − N1)

−1 = N2 (A2,B2, ℓ) , A2 = A⋆,2, B2 = A⋆B⋆ + B⋆A⋆ + B⋆LB⋆.

(2) If N2 = N2 (A2,B2, ℓ) is a UB matrix with diagonal matrix A2 and symmetric matrix

B2, then N1 is a UB matrix, expressed by N1 (A1,B1, ℓ). Specifically, let L = diag (L1, . . . , LG),

A1 and B1 can be calculated using A2, B2, L, and ∆2 = A2 + B2L as below:

N−1
2 = N† (A†,B†, ℓ

)
, A† = A−1

2 , B† = −∆−1
2 B2A−1

2 ;

IR − N1 = N∗ (A∗,B∗, ℓ) , A∗ = A†, 1
2 , B∗ is the solution to the algebraic Riccati equation:

A∗ × B∗ + B∗ × A∗ + B∗ × L × B∗ − B† = 0G×G;

N1 = N1 (A1,B1, ℓ) , A1 = IG − A∗, B1 = −B∗.
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C.3 Plug-In Estimators

The plug-in matrix estimators are given by

Υ̂
(

ÂΥ, B̂Υ, ℓ
)
= ÂΥ ◦ I(ℓ) + B̂Υ ◦ J(ℓ), with


ÂΥ = diag (−γ̂11, . . . ,−γ̂GG)

B̂Υ = (γ̂gg′)

, (C.3.1)

Ω̂
(

ÂΩ, B̂Ω, ℓ
)
= ÂΩ ◦ I(ℓ) + B̂Ω ◦ J(ℓ), with


ÂΩ =

(
IG − ÂΥ

)2
B̂Ω = −2B̂Υ + ÂΥB̂Υ + B̂ΥÂΥ + B̂ΥLB̂Υ

,

(C.3.2)

Σ̂
(

ÂΣ, B̂Σ, ℓ
)
= ÂΣ ◦ I(ℓ) + B̂Σ ◦ J(ℓ), with


ÂΣ = Â

−1

Ω

B̂Σ = −∆̂−1
Ω B̂ΩÂ

−1

Ω

, (C.3.3)

where we assume ÂΩ ≻ 0, ∆̂Ω = ÂΩ + B̂ΩL has positive eigenvalues only.

By Theorem 4.2.2, we note that the matrix estimators Υ̂
(

ÂΥ, B̂Υ, ℓ
)

in (C.3.1), Ω̂
(

ÂΩ, B̂Ω, ℓ
)

in (C.3.2), and Σ̂
(

ÂΣ, B̂Σ, ℓ
)

in (C.3.3) are consistent estimators in the sense of Definition C.1.1.

C.4 Technical Conditions and Proofs

Condition 1. Covariance matrix Σ (AΣ,BΣ, ℓ) and the proposed estimator Σ̂
(

ÂΣ, B̂Σ, ℓ
)

are

positive definite, or equivalently, AΣ, ÂΣ ≻ 0 and both ∆Σ = AΣ + BΣ × L and ∆̂Σ =

ÂΣ + B̂Σ × L have positive eigenvalues only.

Condition 2. Covariate vectors x1, . . . , xn ∈ Rp are linear independent.
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Condition 3. Sample size n > max {p,G(G+ 1)/2}.

Condition 4. Unknown regression coefficient vector β does not depend on unknown scaled de-

pendence parameter vector γ.

Condition 5. Each element of n−1Φβ converges to a finite function with respect to γ, as n goes

to infinity, uniformly for γ in the compact set Θ.

Condition 6. Each diagonal element of

n−2

{[
∂Ω (AΩ,BΩ, ℓ)

∂γj

]
Σ (AΣ,BΣ, ℓ)

[
∂Ω (AΩ,BΩ, ℓ)

∂γj

]}
⊗

(
n∑

i=1

xix⊤
i

)

converges to 0, as n goes to infinity, uniformly for γ in the compact set Θ, for all j.

Proof of Corollary C.2.1. The requirement for a unique solution to the algebraic Riccati equation

can be found in Ran and Rodman (1984) and Abou-Kandil et al. (2003). ■

Proof of Corollay 4.2.1. Using the result in Corollary C.2.1,the proof is straightforward. ■

Proofs of Theorem 4.2.1, Theorem 4.2.2, and Theorem 4.2.3. We check that Conditions 1, 2, 3, 4

satisfy Assumptions 1-4 in Magnus (1978). In particular, Conditions 2 and 3 imply the design

matrix x ∈ R(nR)×(Rp) has a full rank; and the partial derivatives (C.4.1) and (C.4.2) imply that

each element of the matrix Σ (AΣ,BΣ, ℓ) are twice differentiable function with respect to γj ,

where γj belonging to {γ11, . . . , γ1G, . . . , γ2G, . . . , γGG} denotes the j-th component of γ for

j = 1, . . . , G(G+ 1)/2. Therefore, the properties hold by Theorem 1 in Magnus (1978).

Then, we start with the following equality

x⊤
(Rp)×(nR) (In ⊗ NR×R)(nR)×(nR) x(nR)×(Rp) = N ⊗

(
n∑

i=1

xix⊤
i

)
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for N ∈ RR×R. Taking N = IR, we obtain that an alternative form of x⊤x, i.e., x⊤x = IR ⊗(∑n
i=1 xix⊤

i

)
. By Condition 2,

(∑n
i=1 xix⊤

i

)
is invertible, so is x⊤x. Suppose N is invertible, then

(
x⊤x

)−1x⊤ (In ⊗ N) x
(
x⊤x

)−1
=

IR ⊗

(
n∑

i=1

xix⊤
i

)−1
[N ⊗

(
n∑

i=1

xix⊤
i

)]IR ⊗

(
n∑

i=1

xix⊤
i

)−1


= N ⊗

(
n∑

i=1

xix⊤
i

)−1

=

[
N−1 ⊗

(
n∑

i=1

xix⊤
i

)]−1

=
[
x⊤ (In ⊗ N)−1 x

]−1
.

Following Condition 1 and Theorem 1(A) in Lu and Schmidt (2012), we replace N = Σ (AΣ,BΣ, ℓ)

and N = Σ̂
(

ÂΣ, B̂Σ, ℓ
)

, respectively, and complete the proof of the equality of the OLS esti-

mator and the FGLS estimator (see more discussions in Puntanen and Styan (1989) and a case of

G = 1 in He and Wang (2022)). Under the normality assumption for the MAUD, we obtain the

normal distribution for β̂.

We follow the lines of arguments in the proof of Theorem 3 in Magnus (1978). Specifically,

let γj ∈ {γ11, . . . , γ1G, . . . , γ2G, . . . , γGG} denote the j-th component of γ for j = 1, . . . , G(G+

1)/2. Then, Φγ =
(
ψ

(γ)
jj′

)
and ψ(γ)

jj′ is given by

ψ
(γ)
jj′ =

1

2
tr

{[
∂ (In ⊗Σ (AΣ,BΣ, ℓ))

−1

∂γj

]

× (In ⊗Σ (AΣ,BΣ, ℓ))

[
∂ (In ⊗Σ (AΣ,BΣ, ℓ))

−1

∂γj′

]
(In ⊗Σ (AΣ,BΣ, ℓ))

}

=
n

2
tr

{[
∂Ω (AΩ,BΩ, ℓ)

∂γj

]
Σ (AΣ,BΣ, ℓ)

[
∂Ω (AΩ,BΩ, ℓ)

∂γj′

]
Σ (AΣ,BΣ, ℓ)

}

for j, j′ = 1, . . . , G(G+1)/2, where
∂Ω (AΩ,BΩ, ℓ)

∂γj

=

(
∂AΩ

∂γj

)
◦I(ℓ)+

(
∂BΩ

∂γj

)
◦J(ℓ). Recall
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the following “coordinate matrices”,

AΥ = diag (−γ11, . . . ,−γGG) , BΥ = (γgg′) ;

AΩ = (IG − AΥ)
2 , BΩ = −2BΥ + AΥBΥ + BΥAΥ + BΥLBΥ;

AΣ = A−1
Ω , BΣ = −∆−1

Ω BΩA−1
Ω ;

and let Egg′ ∈ RG×G denote a matrix whose (g, g′)-th element is 1 and the others are 0.

If γj = γgg for some g, then
∂Ω (AΩ,BΩ, ℓ)

∂γj

=

(
∂AΩ

∂γj

)
◦ I(ℓ) +

(
∂BΩ

∂γj

)
◦ J(ℓ), and

∂AΩ

∂γj

= 2(1 + γgg)Egg,

∂BΩ

∂γj

= −2(1 + γgg)Egg − (EggBΥ + BΥEgg) + EggLBΥ + BΥLEgg.

(C.4.1)

If γj = γgg′ for some g ̸= g′, then
∂Ω (AΩ,BΩ, ℓ)

∂γj

= 0G×G ◦ I(ℓ) +
(
∂BΩ

∂γj

)
◦ J(ℓ), and

∂AΩ

∂γj

= 0G×G,

∂BΩ

∂γj

= −2 (Egg′ + Eg′g) + (Egg′ + Eg′g) (AΥ + LBΥ) + (AΥ + BΥL) (Egg′ + Eg′g) .

(C.4.2)

Due to Egg′ for g, g′ = 1, . . . , G, vec [∂Ω (AΩ,BΩ, ℓ) /∂γj] for j = 1, . . . , G(G + 1)/2 are

linearly independent, yielding Assumption 5 in Magnus (1978) is satisfied. Thus, Ψ ≻ 0 follows

the result of Lemma 1 in Magnus (1978).

Now, we follow the lines of the proof of Theorem 5 in Magnus (1978). Given the first-

order partial derivatives in closed form, we can obtain the second-order partial derivatives in

closed form, which is omitted here. So, Assumption 10 and Assumption 11 in Magnus (1978)
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are satisfied because both the following facts: 2n−2ψ
(γ)
jj′ converges to a finite function with re-

spect to γ, as n goes to infinity, uniformly for γ in the compact set Θ, for all j and j′; and

n−1 tr {[∂2Ω (AΩ,BΩ, ℓ) / (∂γj∂γj′)]Σ (AΣ,BΣ, ℓ)}2 converges to 0, as n goes to infinity, uni-

formly for γ in the compact set Θ, for all j and j′. Given the consistency, γ̂ is the unique ML

estimator due to the result of Lemma 2 in Magnus (1978). ■

C.5 The Case of Σϵ ̸= IR

We set a new parametric covariance matrix

Σ = (IR −Υ)−1Σϵ (IR −Υ)−1 ,

where Υ = Υ (AΥ,BΥ, ℓ) and Σϵ = Σϵ (Aϵ,Bϵ, ℓ) with AΥ = diag (−γ11, . . . ,−γGG), BΥ =

(γgg′), γg′g = γgg′ , Aϵ = diag (ω11, . . . , ωGG), and Bϵ = 0G×G.

Therefore, we can prove Σ and Ω are also uniform-block matrices.

Ω (AΩ,BΩ, ℓ) = (IR −Υ)Σ−1
ϵ (IR −Υ) ;

AΩ = A−1
ϵ − 2AΥA−1

ϵ + A2
ΥA−1

ϵ ,

BΩ = −A−1
ϵ BΥ + AΥA−1

ϵ BΥ − BΥA−1
ϵ + BΥA−1

ϵ AΥ + BΥA−1
ϵ LBΥ.

We can observe that both AΩ and BΩ are symmetric.

Finally, extra simulation results and R code for the numerical studies are available at

https://github.com/yiorfun/MAUD.
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Appendix D: Supplementary Materials for Chapter 5

D.1 Technical Proof

D.1.1 Proof of Corollary 5.2.1

Proof of Corollary 5.2.1. Based on

Σ (A,B,p) = Bdiag (ℓ1, . . . , ℓK)×Σf × Bdiag
(
ℓ⊤1 , . . . , ℓ

⊤
K

)
+Σu,

we rewrite it:

Σ (A,B,p) = A ◦ I(p) + B ◦ J(p) = Bdiag (a1,1Ip1 , . . . , aK,KIpK ) +
(
bk,k′1pk×pk′

)
= Bdiag (ℓ1, . . . , ℓK)×Σf × Bdiag

(
ℓ⊤1 , . . . , ℓ

⊤
K

)
+Σu,

where matrices A = diag (a1,1, . . . , aK,K) and B = (bk,k′) with bk′,k = bk,k′ for every k ̸= k′ are

known, Σf = (σf ,kk′) ∈ RK×K is an unknown symmetric matrix with σf ,k′k = σf ,k′k for every

k ̸= k′, and Σu = diag (σu,11, . . . , σu,pp) ∈ Rp×p is an unknown diagonal matrix.
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Do some algebraic, we have that

Bdiag (ℓ1, . . . , ℓK)×Σf × Bdiag
(
ℓ⊤1 , . . . , ℓ

⊤
K

)
+Σu

=



ℓ1 . . . 0p1×1

0p2×1 . . . 0p2×1

. . .

0pK×1 . . . ℓK


p×K



σf ,11 . . . σf ,1K

σf ,21 . . . σf ,2K

... . . . ...

σf ,K1 . . . σf ,KK


K×K



ℓ⊤1 . . . 01×pK

01×p1 . . . 01×pK

. . .

01×p1 . . . ℓ⊤K


K×p

+Σu

=
((
σf ,kk′ℓkℓ

⊤
k′

)
pk×pk′

)
+ diag (σu,11, . . . , σu,pp) .

In other words, Bdiag (ℓ1, . . . , ℓK) × Σf × Bdiag
(
ℓ⊤1 , . . . , ℓ

⊤
K

)
+ Σu has the diagonal blocks(

σf ,kkℓkℓ
⊤
k

)
pk×pk

+ diag
(
σu,p̄k−1+1,p̄k−1+1, . . . , σu,p̄k,p̄k

)
for every k and the off-diagonal blocks(

σf ,kk′ℓkℓ
⊤
k′

)
pk×pk′

for every k ̸= k′.

Since Σ (A,B,p) has the diagonal blocks ak,kIpk + bk,kJpk for every k and the off-diagonal

blocks bk,k′1pk×pk′
for every k ̸= k′, by the definition of the equality of two matrices, we obtain

that

ak,kIpk + bk,kJpk = σf ,kkℓkℓ
⊤
k + diag

(
σu,p̄k−1+1,p̄k−1+1, . . . , σu,p̄k,p̄k

)
, k = k′ = 1, . . . , K

bk,k′1pk×pk′
= σf ,kk′ℓkℓ

⊤
k′ , k ̸= k′, k, k′ = 1, . . . , K.

First, we recall that the first element of ℓk, i.e., ℓp̄k−1+1,k = ιk ̸= 0, for every k.

Second, for fixed k, the equalities of diagonal elements yield ak,k + bk,k = σu,mm +

σf ,kkℓ
2
m,k for all m = p̄k−1 + 1, . . . , p̄k, while the equalities of off-diagonal elements yield

bk,k = σf ,kkℓm,kℓm′,k for all pairs m ̸= m′ = p̄k−1 + 1, . . . , p̄k.

(case 1) We focus on the off-diagonal equalities. If σf ,kk = 0, then bk,k = 0 but this
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is impossible because B ≻ 0, by Hadamard’s inequality, bk,k ̸= 0. If σf ,kk ̸= 0, we define

b∗k,k = bk,k/σf ,kk thus b∗k,k = ℓm,kℓm′,k for all pairs m ̸= m′ = p̄k−1 + 1, . . . , p̄k. Taking

m = p̄k−1 + 1 and m′ ̸= m, we obtain that b∗k,k = ιkℓm′,k. Fixing m′, and due to pk > 2, taking

another m′′ ∈ {p̄k−1 + 1, . . . , p̄k} while m′′ ̸= m′ and m′′ ̸= m, we obtain that b∗k,k = ιkℓm′′,k.

By b∗k,k = ℓm′,kℓm′′,k = (b∗k,k/ιk)
2, we derive b∗k,k = ι2k, or equivalently, ℓm,k = b∗k,k/ιk = ιk for

all m = p̄k−1 + 1, . . . , p̄k and σf ,kk = bk,k/ι
2
k.

(case 2) We focus on the diagonal equalities. Since ak,k + bk,k = σu,mm + σf ,kkℓ
2
m,k =

σu,mm + σf ,kkι
2
k = σu,mm + bk,k, we have σu,mm = ak,k for all m = p̄k−1 + 1, . . . , p̄k.

Third, for fixed pair k ̸= k′, if σf ,kk′ = 0, then bk,k′1pk×pk′
= 0pk×pk′

, which implies that

bk,k′ = 0 = σf ,kk′ . If σf ,kk′ ̸= 0, then we define b∗k,k′ = bk,k′/σf ,kk′ , therefore, b∗k,k′1pk×pk′
=

ℓkℓ
⊤
k′ = (ℓm,kℓm′,k′), or equivalently, b∗k,k′ = ℓm,kℓm′,k′ for all pairs m = p̄k−1 + 1, . . . , p̄k and

m′ = p̄k′−1 + 1, . . . , p̄k′ . By the result in (case 1), b∗k,k′ = ℓm,kℓm′,k′ = ιkιk′ for all pairs m and

m′. So, we have b∗k,k′ = ιkιk′ , or equivalently, σf ,kk′ = bk,k′/(ιkιk′).

In summary, we conclude ℓk = ιk1pk×1 for every k, Σf = diag
(
ι−1
1 , . . . , ι−1

K

)
× B ×

diag
(
ι−1
1 , . . . , ι−1

K

)
, and Σu = A ◦ I(p). ■

Finally, extra simulation results and R code for the numerical studies are available at

https://github.com/yiorfun/SCFA.
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Perrot-Dockès, M., Lévy-Leduc, C., and Rajjou, L. (2022). Estimation of large block structured
covariance matrices: Application to ‘multi-omic’ approaches to study seed quality. Journal of
the Royal Statistical Society: Series C (Applied Statistics) 71, 119–147.

Pillai, K. and Young, D. (1971). On the exact distribution of hotelling’s generalized t02. Journal
of Multivariate Analysis 1, 90–107.

Pourahmadi, M. (2013). High-dimensional covariance estimation: with high-dimensional data,
volume 882. John Wiley & Sons.

Puntanen, S. and Styan, G. P. H. (1989). The equality of the ordinary least squares estimator and
the best linear unbiased estimator. The American Statistician 43, 153–161.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Ran, A. and Rodman, L. (1984). The algebraic matrix riccati equation. In Topics in Operator
Theory Systems and Networks, pages 351–381. Springer.

Ravikumar, P., Wainwright, M. J., Raskutti, G., and Yu, B. (2011). High-dimensional covari-
ance estimation by minimizing ℓ1-penalized log-determinant divergence. Electronic Journal
of Statistics 5, 935 – 980.

Ravishanker, N. and Dey, D. K. (2002). A first course in linear model theory. Chapman and
Hall/CRC.

175



Revelle, W. (2023). Procedures for Psychological, Psychometric, and Personality Research. R
package version 2.3.6.

Risk, B. B., Matteson, D. S., Spreng, R. N., and Ruppert, D. (2016). Spatiotemporal mixed
modeling of multi-subject task fmri via method of moments. NeuroImage 142, 280–292.

Ritchie, S. C., Surendran, P., Karthikeyan, S., Lambert, S. A., Bolton, T., Pennells, L., Danesh, J.,
Di Angelantonio, E., Butterworth, A. S., and Inouye, M. (2023). Quality control and removal
of technical variation of nmr metabolic biomarker data in˜ 120,000 uk biobank participants.
Scientific Data 10, 64.

Rogers, G. and Young, D. (1974). Testing and estimation when a normal covariance matrix has
intraclass structure of arbitrary order. Communications in Statistics 3, 343–359.

Rogers, G. S. and Young, D. L. (1975). Some likelihood ratio tests when a normal covariance
matrix has certain reducible linear structures. Communications in Statistics 4, 537–554.

Rosseel, Y. (2012). lavaan: An r package for structural equation modeling. Journal of Statistical
Software 48, 1–36.

Rosseel, Y., Jorgensen, T. D., Rockwood, N., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V.,
Merkle, E., Hallquist, M., Rhemtulla, M., Katsikatsou, M., Barendse, M., Scharf, F., and Du,
H. (2023). Latent Variable Analysis. R package version 0.6-15.

Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). Sparse permutation invariant covari-
ance estimation. Electronic Journal of Statistics 2, 494–515.

Rothman, A. J., Levina, E., and Zhu, J. (2009). Generalized thresholding of large covariance
matrices. Journal of the American Statistical Association 104, 177–186.

Roustant, O. and Deville, Y. (2017). On the validity of parametric block correlation matrices with
constant within and between group correlations. arXiv preprint arXiv:1705.09793 .

Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J., and Wynn, H. (2020).
Group kernels for gaussian process metamodels with categorical inputs. SIAM/ASA Journal
on Uncertainty Quantification 8, 775–806.

Roy, A. and Leiva, R. (2008). Likelihood ratio tests for triply multivariate data with structured
correlation on spatial repeated measurements. Statistics & Probability Letters 78, 1971–1980.

Roy, A. and Leiva, R. (2011). Estimating and testing a structured covariance matrix for three-
level multivariate data. Communications in Statistics - Theory and Methods 40, 1945–1963.
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