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The era of big data, high-performance computing, and machine learning has

witnessed a paradigm shift from physics-based modeling to data-driven modeling

across many scientific fields. In this dissertation work, transient events and aperiodic

motions of complex nonlinear dynamical system are studied with the aid of a data-

driven modeling approach. The goal of the work has been to further the ability for

future behavior prediction, state estimation, and control of related behaviors.

It is shown that data on extreme waves can be used to carry out stability

analysis and ascertain the nature of the transient phenomenon. In addition, it is

demonstrated that a low number of soliton elements can be used to realize a rogue

wave on the basis of nonlinear interactions amongst the basic elements. The pro-

posed nonlinear phase interference model provides an appealing explanation for the

formation of ocean extreme wave and related statistics, and a superior reconstruction

of the Draupner wave event than that obtained on the basis of linear superposition.

Chaotic data, another manifestation of aperiodic motions, which are obtained



from prototypical ordinary differential and partial differential systems are consid-

ered and a neural machine is realized to predict the corresponding responses based

on a limited training set as well to forecast the system behavior. A specific neural

architecture, called the inhibitor mechanism, has been designed to enable chaotic

time series forecasting. Without this mechanism, even the short-term predictions

would be intractable. Both autonomous and non-autonomous dynamical systems

have been studied to demonstrate the long-term forecasting possibilities with the de-

veloped neural machine. For each dynamical system considered in this dissertation,

a long forecasting horizon is achieved with a short historical data set. Furthermore,

with the developed neural machine, one can relax the requirement of continuous

historical data measurements, thus, providing for a more pragmatic approach than

the previous approaches available in the literature.

It is expected that the efforts of this dissertation work will lead to a better

understanding of the underlying mechanism of transient and aperiodic events in

complex systems and useful techniques for forecasting their future occurrences.
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Chapter 1: Introduction

Science pursuits have been gradually moving from hypothesis-based explo-

ration to data-driven discoveries. In contrast to the reductionism approach, wherein

a scientist builds up knowledge from first principles, more and more knowledge is

revealed through the inverse approach. With a data-driven method, scientists and

engineers are able to extract useful information from massive amount of data. The

main driving force during this transition is the advent of big data era. High-fidelity

sensors, large-scale numerical simulations, and globally deployed instruments have

enabled the generation of tremendous amount of data-streams at this moment. They

provide unparalleled opportunities for researchers to analyze and discover new phe-

nomena, in a manner which has not been done before. However, another aspect

should also be mentioned, which is the awareness of the abundance of complex sys-

tems around us. The complex interactions amongst agents within such systems

prohibit the traditional research methods based on first principles. A closer look

obtained by breaking a large system into small components is not helping simplify

the problem further, for example, fractals [4]. Therefore, the mathematical tools

and analysis alone are always sufficient to reach conclusions. On the other hand,

with a data-driven approach, one can study the complex problem from a reverse way
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where the behaviors are analyzed in an integrated manner. The whole properties

of the considered system will be reflected in the system’s data representation, given

sufficient data collection in time and assuming a relatively low noise environment.

From this perspective, a large data set is expected to expedite the discovery process

of physics, enabling new paradigms in science development. Moreover, the discovery

will not be limited to the pool of hypothesis established by the scientists in advance.

Data-driven studies are a convergence of computer science, statistics, and phys-

ical and life sciences. Extensive data sets are produced by dynamical systems across

disciplines in science and engineering, such as fluid dynamics [5], material science [6],

molecular dynamics [7], and geophysics [8]. A great challenge is how to exploit the

large amount of data, which is being gathered by measurements from sensors in ex-

periments and outputs from numerical models to advance the current understanding

of physics and reveal the predictability of behavior. Many of the complex systems,

although appearing as high-dimensional and exhibiting rich multi-scale phenomena,

often evolve to a low-dimensional subspace that can be characterized as spatiotempo-

ral coherent structures. Therefore, successful extraction of these coherent structures

is crucial to system identification and scientific discoveries. This process requires

good learning algorithms that enable one to translate the superficially convoluted

data set into meaningful perceptions.

Transient events can be momentary bursts of energy in a system caused by

either an internal state change or an external driving force. The time scales of dif-

ferent transient events range from nanoseconds to years. The growth of transient

events is the result of asymmetrical interactions amongst components. Asymme-

2



try is imperative in the sense that energy can be interchanged amongst different

eigenmodes. If the energy is concentrated in a certain mode, the system displays a

short duration of “extreme” behavior, or transient event. The energy cannot be in-

creased ad infinitum. After a certain stage, the dissipation mechanism prevails and

the system settles down to a steady state, before the next cycle of bursts occurs.

Understanding the bursts of energy and building a precursor for its occurrence can

potentially minimize the harmful consequences.

Aperiodic dynamics is ubiquitous in nature and human society. Traditionally,

a good model representation of a certain system can help in predicting this system’s

future behavior. However, for a complex system, a physics-based model may not be

easy to construct given the complexity of a system, in particular, those that exhibit

chaotic behavior. Furthermore, due to the aperiodic nature of the motion and finite

precision, a model based prediction may only have relatively high accuracy over a

short time horizon, before significant growth of error occurs in the prediction.

An overall goal of this dissertation work is to help build the nec-

essary theory and tools in order to use data-driven methods for studies

of transient events and aperiodic motions. Specifically, the author has

proposed and used stochastic phase interference based on data-driven

modeling as an enabler for the formation of rogue waves, an extreme

event in oceanic dynamics. Second, a new deep learning architecture is

created to enable long-term forecasting of aperiodic motions of different

systems. In the next section, background knowledge about complex systems and

related prerequisites to understand the rest of the dissertation are briefly discussed.

3



The organization of this dissertation is discussed at the end of this chapter.

1.1 Complex system

Science has been used to understand the complexity in nature, as opposed to a

traditional focus on unveiling the fundamental simplicity of system behaviors. The

field of complexity science holds that the dynamics of various complex system builds

upon universal principles, which can be used to explain a wide range of topics from

plasma to ecology. It is hoped that knowledge and methodology learned from one

field will cross-fertilize with important findings in other disparate systems. In this

dissertation, both transient events and aperiodic motions can be categorized into

complex dynamics. There is a lack of the universal definition of complex systems

in the science community. Moreover, scientists with different backgrounds, from

physicists to biologists, tend to have diverging definitions. But generally, a complex

system consists of many interacting parts whose individual effects contribute to the

global behavior, in short term or long term, in explicit or implicit format. The

number of components in a complex system should be medium scale, or mesoscopic.

Its size is larger than what a human can normally comprehend. But there is a

limit to the total size or dimension. If there are too many components, even if

they are strongly related, the system can be efficiently studied by the traditional

thermodynamics approach. Usually it is intricate to understand how the small-

scale, local effects propagate through system and aggregate into large-scale behavior,

especially, involving a large number of interacting agents. The term complexity

4



comes from this perspective. Although it is hard to give a comprehensive definition

of complex system, one can understand it through a list of its generic properties.

• [Nonlinearity] Nonlinearity is a defining feature of complex systems simply

because even large scale linear systems can be solved exactly, by one way or

another. A precise understanding of the physics modeled by linear equations

allows for high-fidelity prediction of their future behaviors. Established math-

ematical tools are available to uncover the behavior of linear systems, which

can be done carried out. On the other hand, complex systems are nonlinear

and often times only an approximate or a numerical solution can be found.

• [Dependence] The interacting agents within the complex systems can be

modeled as a network, which is a graph represented with nodes and links.

Nodes stand for the agents and links are the relationships amongst them.

Any independent agent can be removed from this graph without affecting the

rest since there is no way to propagate their effect to the remaining part.

A non-complex system is usually a collection of weakly, if any, connected

components. The total number of components can be large, but still they can

not be categorized as a complex system, since it is the number of links that

exists in the graph that determines the system’s complex behavior.

• [Multiscale] The notion of scale is strongly related to the size of each agent.

Consider a migrating herd of gnu in the Serengeti Nation Park in Africa. One

can track a single gnu as a unit (small scale) to study its local interaction

with the neighbours or a family of gnus, including the father, mother, and
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the children as a unit (large scale). In the latter case, the total number of

units within the herd is smaller and the interactions between units can be

modeled more uniformly and independently. This is in contrast to the first

case. One can image that the children don’t have too much freedom to explore

but to follow their parents during the whole trip. Therefore, the dependence

is stronger within the unit, whereas the interactions between different units

do not possess that much reliance. Interesting behaviors are observed through

different levels of scales. Complex systems are known for their rich multi-scale

dynamics.

• [Emergence] This feature is a result of the two preceding characteristics.

Because of the dependence on each other, agents can collectively display multi-

scale dynamics. Some behaviors can only be observed at a larger scale within

complex systems, and they can not be foretold by the close examination of

each individual. This phenomenon is called emergence. One great example of

emergence is cellular automata [9]. The interaction rules are only prescribed

locally to the agents. However, many interesting global behaviors can be

observed during the evolution of such system. In social science, the emergence

of impromptu order is called spontaneous order, such as the market crash and

the V formation of a flock of geese. In natural science, this is more often called

as self-organization. Examples include the emergence of ordered-structure in

micron-sized Nb3O7(OH) cubes during a hydro-thermal treatment at 200◦C

[10].
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• [Adaption] Perhaps the most important and interesting complex system is

the adaptive system. The agents learn from their experience and adapt to each

other or collectively to the environment. Every living creature in the world

is a complex adaptive system, so is the creature’s societal system. This is an

active research area and many questions are still waiting to be answered.

There are still several features, which might not be universal to all the complex

systems but still important, like nestedness, positive feedback loops, and so on. See

reference [11] for review. Statistical mechanics and stochastic dynamics are two

analytical tools that can be used for studying complex dynamics. Computers also

play a crucial role in simulating the evolution of a system and thus enhancing our

understanding of how the system works.

1.2 Dynamical system

One approach to describe a complex system is to use differential equations.

The temporal effect in complex system is explicitly modeled as derivatives in the

equations. Spatial variables can also be incorporated as independent variables. A

system whose configuration can change with time is called a dynamical system. The

space of the describing variables, or the possible states of this system, is called the

state space. The mathematical definition of a dynamical system can be given in the

basic form

dx

dt
= f(x), (1.1)
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which illustrates that a change in the state variable x ∈ Rn depends on the current

state x itself [12]. The linear form of the right-hand side (r.h.s.) of (1.1) has

been extensively studied and the theory is complete, whereas the nonlinear form is

the more commonly observed case in nature and usually with interesting behaviors

[13, 14].

Most dynamical systems evolve in a bounded state space as t → ∞, without

which any infinitesimal perturbation to the original state can lead to an intractable

divergence. Such bounded region to which trajectories are attracted within the state

space Rn is called an attractor [15]. One can readily call the attractor forward-

invariant since the system stays on this attractor as time unfolds on the positive

side.

A more clear understanding of system solutions involves studying the change

rate of x, or dx
dt

. If dx
dt

= 0, then there are solutions x∗ ∈ Rn which satisfy f(x∗) = 0.

Such solutions are called fixed points. When the trajectory starts from fixed point

x∗, it will stay in that point and never move away given the zero change rate. For

a linear dynamical system, there can be only one global fixed point. However, for

a nonlinear dynamical system, there can exist multiple fixed points. The property

of each fixed point is determined by the signs of the change rate dx
dt

and also the

state x. In Figures 1.1 and 1.2, some basic notions associated with fixed points are

illustrated.
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Figure 1.1: Diagram of stable and unstable fixed points based on the sign of dx
dt

.

Consider the 1-D case (n = 1 and x ∈ R). If x > x∗2,
dx
dt
< 0 and x < x∗2,

dx
dt
> 0,

then any perturbation to x∗2 will decay since x→ x∗2 as t→∞. On the other hand,

If x < x∗1,
dx
dt
< 0 and x > x∗1,

dx
dt
> 0, then any perturbation to x∗1 will push it away.

Fixed point in the first scenario is called a stable fixed point and the second one is

referred to as being unstable.

V

x

FP1 

FP2 

Figure 1.2: Diagram of potential valley of V associated with (1.1) where dV
dx

= −f(x).

FP1 can roll down from the top of the hill and any perturbation will destabilize the

equilibrium; FP2 lies on the valley and the state x will come back to FP2 regardless

of any local perturbation.

One may expect the transition of the state x from fixed point 1 (FP1) to fixed
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point 2 (FP2) involves some overshoot of FP2 to the right due to inertia. However,

this is not the case, since there is no introduction of acceleration, d2x
dt2

. The second-

order derivative with respect to the state x can be regarded as assigning a new state

variable y = dx
dt

, thus transforming the original 1-D case into 2-D. Consequently, the

system exhibits more familiar Newtonian dynamics with the inertia involved. The

transition from FP1 to FP2 enables the possibility of oscillations around the stable

fixed point. If no damping, or energy loss is considered, the oscillation in the state

space is on a closed orbit and the total system energy is preserved.

1.3 Chaos

In the twentieth-century, quantum mechanics and relativity theory could be

said to have started the physics revolution, which was all about simplicity and

consistency, despite the quantum jumps. The primary tool was calculus and the

final expression was field theory [16]. Chaos has revolutionized and ignited the

twentieth-first century. It is all about complexity and a major tool for understanding

this behavior has been super-computers. The final expression remains to be found,

although artificial intelligence (AI) appears to be promising. Chaos can manifest

itself both in space and time. In space, a chaotic object is called fractal if its

geometric figure does not become simpler when one zooms it in a finer-scale, which

simply implies that it is not smooth, such as a Cantor set [17] and a Sierpinski

triangle [18]. Fractal not only exists in mathematics, but also in nature. A mountain

range, a coastline, a human body, a fern leaf, a earthquake fault, even the cosmos
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itself, can be considered as fractals. One is living in the world of fractals, which

surprisingly occupies the whole universe.

Chaos in time is more often studied and time domain behavior is where the

name is derived from [19]. A salient feature of temporal chaos is the sensitivity

to initial conditions. This means that if a chaotic system is initiated from two

extremely close starting points in the state space, then the two initiated trajectories

will eventually diverge from each other as time goes on due to the existence of chaos.

Edward Lorenz [20], who discovered the sensitivity to initial conditions, described

temporal chaos as the “butterfly effect”. A butterfly flapping its wings in Brazil can

eventually lead to a tornado in Texas a month later on. The concept of “temporal

chaos” is opposite in notion to integrability in classical mechanics. An integrable

system is at most multi-periodic whose variables are changing periodically in time,

although the motions can be at different frequencies. Most systems in classical

mechanics textbooks are considered as integrable, such as the Kepler system and

harmonic oscillators. However, starting from the late 1960s, scientists and engineers

started to realize the prevalence of chaotic systems around us.

Chaos mitigates the dominant role of reductionism in science, since a finer scale

of examination is not sufficient to identify principles and predict future behaviors

of chaotic systems. The determination of a fine scale requires a even finer scale.

This process goes on ad infinitum. The assumption that systems can be understood

well by dividing its parts to a small scale and conquering them separately collapses.

Indeed, any minuscule uncertainty in a chaotic system would eventually lead one to

lose all useful knowledge about the system. While a precise knowledge of the present
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can determine the future precisely, an approximate knowledge of the present cannot

determine the future approximately, according to Edward Lorenz.

The connection between spatial features and temporal chaos can be seen with

a chaotic dynamical system. Consider a closed region in the state space, consisting

of an infinite number of initial conditions. Now integrate this system according to

the governing laws, or equations, in time for a long period. During the evolution,

all the initial points would have moved to other places in the state space. Due to

chaos, the initial closed region gets transformed to a fractal in the state space after

a long time.

Simple dynamical systems can display chaotic behaviors, which is contrary to

the mundane thought that simple questions must have simple answers. An essential

ingredient for the generation mechanism of chaos is nonlinearity. Most linear equa-

tions are truly “simple” systems, meaning that there exists a general method that

can be used to solve them exactly with ease. If one knows a phenomenon can be

described by linear equations, it is expected that their future behaviors can be pre-

dicted precisely. On the other hand, only a fraction of nonlinear dynamical systems

can only be solved exactly, or approximately. Given the abundance of nonlinear be-

haviors in nature, most systems can only be simulated through computers or solved

in a simplified version under certain assumptions.

The manner in which nonlinearity leads to the spatial features associated with

chaos has been interpreted in terms of stretching and folding actions [15]. From a

geometric perspective, the operations of stretching in state space gives rise to the

divergence of neighbouring points and folding leads to the mixing of distant points.
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It can be easily seen through a vivid example of a ball of dough that is persistently

rolled out and then folded when making pasta. At the rolling out stage(stretching),

two close points get separated. Next, two distant points can be struck together

during folding. Nonlinearity comes into the picture during the folding. Linear

equations can used to describe the stretching in the state space, but not the folding.

It is the nonlinearity that helps with the folding.

1.4 Information theory and entropy

A second method used to study a complex system is notion of probability

within the domain of information theory. Probability is about how to draw a useful

conclusion from empirical evidence given the incomplete knowledge of all details of

a system. This coincides with the study of complex systems in that it is the global

behavior and the collective property of all agents that arouse the interest in studying

and predicting such systems, regardless of the details at most times. The goal to

understand and incorporate all of the details will be quite ambitious indeed.

With information theory, one studies how to quantify, store, and communicate

the information. It was first proposed by Claude E. Shannon [21]. It has played

a vital role in modern information society, including unmanned lunar exploration,

the invention of Internet, mobile communication, and countless other fields. This

field is fundamental to many electrical engineering and computer science research

areas. Many crucial concepts and ideas from information theory are used to specify

distributions and differentiate one probability distribution from other probabilities.
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For more details on information theory, the reader is referred to references [22, 23].

One important quantity in information theory is entropy, or Shannon entropy.

It is used to specify how uncertain a random variable or process is. For example, a

deterministic process has less entropy than a stochastic process since the outcome

of the latter one can be more uncertain than the first one; it thus has larger entropy.

Many measures are built upon the concept of entropy, such as mutual information,

which can be used to reconstruct attractors based on Takens’ embedding theorem

[24], and Rényi entropy [25]. It is related to the second law in thermodynamics,

according to which, the total entropy for an isolated system can never decrease,

or stay the same at best for equilibrium. This denotes the arrow of time which

points to the direction of increasing entropy irreversibly. From a dynamical system

perspective, a reversible process can be represented by closed orbit in phase space.

Whenever the orbit is not closed there is an increase in entropy.

There is the macroscopic definition of entropy, which is given by

dS =
dQ

T
(1.2)

for a reversible process. dS = dSi +dSe is the change in entropy, which is also equal

to the sum of entropy change due to external source and internal processes; dQ is

the change in heat; and T is the temperature of the system.

The second definition comes from the microscopic viewpoint,

S = kB ln Ω, (1.3)

where kB is Boltzmann constant and Ω is the number of all possible states. For a

system with few possible states, it is more likely to display order, whereas a system
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with large number of possible states has a tendency to be more disordered, thus

have a high entropy.

A generalized version of entropy for dynamical system was brought up by

Alfréd Rényi in 1961 [25]. This version has the form

Hα =
1

1− α
ln
∑
i

pαi , (1.4)

where Hα is the Rényi entropy. pi is the probability that the system is at state i. α

can be used to adjust the relative importance of the less likely state in Hα overall.

As α increases, those states will have less impact on Hα. When α = 0, all states are

treated equally.

The intuition behind entropy is that knowing an unlikely event can be more

informative than a likely event. A event with high entropy simply means that

the information contained in such event has more value than a low entropy event.

Therefore, three major points can be concluded as follows:

• A guaranteed future event should have zero entropy, indicating that knowing

the happening of this event can increase zero information.

• A rare or an extreme event should have large entropy and high information

material.

• Entropy is additive for independent events. For example, tossing a dice twice

with the same result 2 should have twice entropy than tossing a dice with 2

for a single time.
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Mathematically, one can define the self-information of an event x=x to be

I(x) = − logP (x), (1.5)

where the log is in base e. The above definition satisfies the three points listed

previously. The unit of I(x) is commonly written as nat. The amount of information

harnessed by observing one event happening with the probability of 1
e

is called 1 nat.

When one changes the base of log to 2, then the unit is canonically called shannons.

Now, the information has been something quantify that can be measured based on

the unit determined by the choice of the logarithm base.

If the event x follows a distribution P (x), then the total amount of uncertainty

can be defined as (Shannon Entropy)

H(x) = Ex∼P I(x) = −Ex∼P logP (x), (1.6)

where Ex∼P is the expectation of x over the distribution P (x). Conceptually, the

Shannon entropy of a distribution denotes the expected amount of information in

an event drawn from a certain probability distribution.

One can also use the information theory to study the differences between two

different distributions. If one has two different distributions P (x) and Q(x) over the

same random variable x, the Kullback-Leibler(KL) divergence can be used to

calculate the “distance” between P (x) and Q(x):

DKL(P ||Q) = Ex∼P
[
log

P (x)

Q(x)

]
= Ex∼P [logP (x)− logQ(x)]. (1.7)

The KL divergence has several properties:

• It is non-negative.
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• It is 0 if and only if P and Q are the same distributions for discrete variables.

• It is 0 if and only if P and Q are “almost everywhere” equal for continuous

variables.

• It is asymmetrical; this is, DKL(P ||Q) 6= DKL(Q||P ).

If one regards P (x) as the true probability and Q(x) is the one needed to be

generated, then it is useful to use the following identity

H(P,Q) = H(P ) +DKL(P ||Q) (1.8)

to define the cross-entropy as

H(P,Q) = −Ex∼P log(Q(x)). (1.9)

Finding a distribution Q(x) close to true probability P (x) equals to minimizing

the cross-entropy, or DKL, since H(P ) will be fixed given P (x) is true.

1.5 Outline

The rest of the dissertation is organized in the following manner. Chapter 2 is

about the data-driven study on rogue waves, one of the most interesting transient

events in nature. In this chapter, the author mainly deals with how to extract co-

herent structures in the formation of rogue wave from field measurement data based

on stochastic interference of wave groups. Literature has been surveyed to provide

a brief review about the study of ocean rogue waves from theoretical, experimental,

and computational perspectives. A modified solution to the nonlinear Schrödinger
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equation (NLSE) has been introduced by incorporating the stochastic phase dy-

namics in both oscillation and modulation of wave groups. The Monte Carlo (MC)

simulation results agree well with observational data points in the North Sea. Be-

sides, the long-crested wave simulations from the modified wave solution reflects

the true underlying wave height distributions both from the experiments and other

high-order computational results.

In Chapter 3, the author prepares the reader with several key concepts of deep

learning. This includes the fundamental definition of learning and its relationships

with data sets. Then, several important learning algorithms are discussed. Af-

ter introducing the learning basics, one of the most important neural networks in

sequential modeling, recurrent neural network, is briefly mentioned.

Chapter 4 is about predicting chaotic dynamics based on deep learning. First,

the definition of probabilistic dynamical system is introduced from an optimization

point of view. Second, the relationship between maximum likelihood and Kullback-

Leibler divergence is made in terms of predicting time series in dynamical system.

Then, the author gives a detailed explanation of the neural network that has been

used to predict different chaotic systems. Finally, results from these systems are

shown to bring forth the network’s superior ability in long-term forecasting.

Chapter 5 follows the similar vein of the previous chapter, but with a focus

on non-autonomous systems. Here, the author illustrates the ability of the afore-

mentioned neural network in generating long-term forecasting for a forced Duffing

oscillator.

The contributions in this dissertation are summarized in the last chapter, along
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with some thoughts for future work. Appendixes on additional technical details and

references are provided at the end of this dissertation.
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Chapter 2: Extreme Wave Formation in Unidirectional Sea due to

Stochastic Wave Phase Dynamics

In this chapter1, the author considers a stochastic model based on the inter-

action and phase coupling amongst wave components that are modified envelope

soliton solutions to the nonlinear Schrödinger equation. A probabilistic study is

carried out and the resulting findings are compared with ocean wave field observa-

tions and laboratory experimental results. The wave height probability distribution

obtained from the model is found to match well with prior data in the large wave

height region. From the eigenvalue spectrum obtained from the Inverse Scattering

Transform, it is revealed that the deep-water wave groups move at a speed different

from the linear group speed, which justifies the inclusion of phase correction to the

envelope solitary wave components. It is determined that phase synchronization

amongst elementary solitary wave components can be critical for the formation of

extreme waves in unidirectional sea states.

1This chapter is based on the work contained in the publication: Wang, R. & Balachandran,

B. (2018). Extreme wave formation in unidirectional sea due to stochastic wave phase dynamics.

Physics Letters A, 382(28), 1864-1872.

20



2.1 Literature review

Rogue waves have been described as waves that appear from nowhere and

leave without a trace [26]. These extreme energy concentrations pose severe threats

to maritime voyages and offshore operations [27]. Considerable work has been done

on modeling and predicting rogue waves [28, 29]. Related efforts include the analyt-

ical work based on modulational instability [30, 31], experiments and field measure-

ments on wave statistical properties, such as kurtosis and skewness of the underlying

probability density function [32], and numerical computations of different sea state

parameters [33]. Broadly speaking, there are different mechanisms that can be used

to explain the occurrence of extreme waves, including nonlinear focusing, dispersive

focusing, atmospheric forcing and so on (e.g, the review papers by Dysthe et al.

[26] and Kharif and Pelinovsky [27]). Until now, it is widely recognized that the

unidirectional sea state often favors extreme wave statistics, as claimed in most of

the studies [2, 3, 34, 35].

The modulational instability (MI) is a well-recognized mechanism for gener-

ating large waves due to energy transfer amongst different modes. A mathematical

model for explaining MI has been developed by Shabat and Zakharov [31]. This

model, known as the nonlinear Schrödinger equation (NLSE), has been used to

study the interplay between nonlinearity and dispersion of water waves. NLSE is

integrable in 1D+1 and can be solved by using the Inverse Scattering Transform

(IST). Several analytical solutions, such as solitons and breathers, have been re-

garded as the prototypes of rogue waves. However, there is no broad agreement on
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which solution is the best candidate for a rogue wave, when considering different

spatial and temporal periodicities [36–39].

The existence of steep solitary wave groups has been confirmed in laborato-

ries and examined under different numerical frameworks. When transverse effect is

insignificant, weakly nonlinear wave groups do exhibit structural stability without

noticeable distortion in the event of collisions and these groups can propagate a

long distance. Whereas in the case of large wave steepness; that is, relatively steep

solitary groups, dispersion outweighs the self-focusing effect along the propagation

direction. However, it has been confirmed through experiments that the envelope

soliton solution to NLSE provides a rather accurate approximation to the long-time

evolution of steep intense solitary wave groups up to a wave steepness of 0.3 [40].

Although a single steep solitary wave group can create a freak wave event,

interactions amongst multiple moderate solitary wave groups improves the likelihood

of extreme waves significantly, leading to a heavy tail distribution in the wave height

statistics. Soliton synchronization has been proved as an effective way to generate

localized high-amplitude waves in the system governed by the NLSE [41] and the

modified KdV framework [42]. In the former framework, it has been indicated with

the Darboux transformation method that the solitons can be synchronized to form a

peak at the focusing point with the magnitude equal to that of the sum of interacting

solitons [43, 44].

The effect of multiple soliton interactions strongly depends on the details of

the collision process. Although an intersection of soliton trajectories is necessary

but it is not sufficient for the efficient focusing. When approaching the focusing
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point, the train of solitons should be positioned with descending group velocities;

this allows farther solitons to overtake the nearer ones. In addition, they should

have alternating phases [42]. By simply setting the positions and phases to be

the same amongst soliton trains, one will not have amplitude synchronization since

the nonlinear interaction process makes the trajectory of each soliton bend before

reaching the focusing point [41]. Although the exact synchronization of amplitude

requires further details, there are two essential ingredients for soliton synchroniza-

tion, phase coherence during the synchronization and different group velocities for

soliton collision [45, 46].

Sea waves are an example of inherently stochastic waves and they are of-

ten modeled as a combination of quasi-sinusoidal waves with independent random

uniformly distributed phases, known as Gaussian sea, following earlier work [47].

Onorato et al. [2, 3] have performed three-dimensional random waves water basin

experiments to study the free surface profile probability distributions based on the

JONSWAP spectrum. Different degrees of directionality have been considered to

study the effects of wave crest length. The results indicate that the probability

distributions of the surface elevation of unidirectional waves deviate most from the

Gaussian or near-Gaussian sea and the occurrence of rogue waves has increased sig-

nificantly compared to short-crest sea. Gramstad and Trulsen [48] have claimed a

similar finding that more rogue waves are generated in unidirectional seas.

Here, the author focuses on understanding how the introduction of phase in-

terference and wave train modulation can enhance the possibility of extreme waves

formations in unidirectional sea states. The rest of the chapter is organized as
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follows. In the next section, the author describes the model construction as an ex-

tension of the envelope solitary wave solution to NLSE. Following that, in Section

2.3, the author presents the results obtained through the application of this model

to North Sea Draupner events to demonstrate the validity of the described method-

ology. Statistical results obtained from large-scale simulations are also discussed in

support of the proposed model.

2.2 Solitary wave model approximation

2.2.1 Nonlinear Schrödinger equation and fundamental solitary wave

solution

The leading-order theory for the description of unidirectional gravity water

wave nonlinear focusing is the classic cubic NLSE written for the complex wave

envelope A(x, t) as

At + cgAx +
i

4
cgk
−1
0 Axx +

i

2
ω0k

2
0|A|

2A = 0. (2.1)

Here, ω0 and k0 are the dominant wave frequency and wavenumber, respectively, and

cg = ω0/2k0 is the linear group velocity in deep water, with the dispersion relation

ω0 =
√
gk0. (2.2)

Both the surface elevation η(x, t) = Re{A(x, t)eik0x−iw0t} and velocity potential

φ(x, z, t) are determined by the complex-valued function A(x, t). The η and φ fields

can be computed with high accuracy by including higher order nonlinear terms in
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NLSE , such as the Dysthe equation. The fundamental envelope soliton, a solution

to equation (2.1), is of the form [49]

A = a0 sech(
√

2a0k
2
0(x− cgt))e−ia

2
0k

2
0ω0t/4, (2.3)

where a0 is the soliton amplitude. The envelope soliton given by equation (2.3) is

propagated with the linear group velocity cg. Different from transient wave groups,

the envelope soliton consists of coherent wave harmonics that prevent the dispersion

of the wave group. The Fourier spectrum of wave group (2.3) may be obtained as

Â(k, t) =

∫ +∞

−∞
A(x, t)eikxdx = F (k)eiξ(t), (2.4)

F (k) =
πA0√
2k20a0

sinh(
πk

2
√

(2)k20a0
), (2.5)

ξ(t) = −kcgt−
k20a

2
0ω0t

4
. (2.6)

Hence, all Fourier modes have the same phases and the Fourier amplitudes F (k) do

not evolve in time for a single envelope soliton. However, within the framework of

NLSE, envelope solitons (2.3) may interact amongst each other, and also with other

quasi-linear waves. It is noted that equation (2.1) has high-order solutions such as

the Peregrine soliton, Kuznetsov-Ma breather, and Akhmediev breather [50], which

are the results of interactions involving envelope solitons (2.3) with background

waves [51]. These high-order breathers have different characteristic group velocity

than cg and they are defined by the IST spectrum [46, 51]. Next, the author revisits

the IST to examine the determination of the spectrum from the complex modulation

amplitude based on NLSE.
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2.2.2 Inverse scattering transform

Starting with (2.1), one can non-dimensionalize it by applying the following

transformation

ψ = − k0√
2
A, τ = ω0t,X = −k0x−

ω0

2
t,

and obtain the following equation

iψX + ψττ + 2|ψ|2ψ = 0.

In order to reduce the number of symbols and keep the formula simple, one can still

express the above equation based on the more traditional format as following

iAx + Att + 2|A|2A = 0. (2.7)

This is the scaled, time nonlinear Schrödinger equation. It satisfies the compatibility

condition of the following system of linear equations:

Bt =

−iλ A

−A∗ iλ

B, (2.8)

Bx =

−2iλ2 + i|A|2 iAt + 2λA

−iA∗t − 2λA∗ 2iλ2 − i|A|2

B, (2.9)

where λ is a spectral parameter, B(x, t, λ) is a vector or matrix function, and A∗

represents the complex conjugate of A. In fact, if one differentiates equations (2.8)

and (2.9) with respect to x and t respectively, one can find that in order to force

the right hand side to be equal to each other, the complex envelope function A(x, t)

must satisfy equation (2.7). In other words, equation (2.8) and (2.9) are compatible
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with each other on the equation condition (2.7). The matrix operators in the above

linear systems are called the Lax pair of equation (2.7) and these operators were first

studied by Zakharov and Shabat [31]. Equation (2.8) is called the Zakharov-Shabat

(ZS) scattering problem. The parameter λ, which lies in the complex plane, is such

that λ = λR+ iλI . Then, the λI can be interpreted as having the information about

the amplitude of the unstable mode and λR can be interpreted as referring to the

group velocity relative to the linear group velocity, which corresponds to λ located

on the imaginary axis.

In most cases, the parameter λ can only be obtained through numerical com-

putation. Equation (2.8) can be rewritten as the linear eigenvalue problem:−∂t A

A∗ ∂t

B = iλB. (2.10)

Typically, one can discretize the matrix coefficients on the left-hand side (l.h.s)

of the above equation by using the finite-difference (FD) scheme. It involves first

truncating the temporal domain into a finite length and then assigning grid points

evenly across the whole domain. After this, one can approximate the temporal

derivatives ∂t by using a specific finite difference such as the central differencing

scheme. With this, (2.10) can be transformed into a matrix eigenvalue problem.

One can use various types of algorithms to solve for the eigenvalue, such as the

Arnoldi algorithm [52]. However the accuracy is bounded by the order of the FD

method. Moreover, FD can generate spurious eigenfunctions even if the eigenvalues

are approximately correct. In contrast, the Fourier collocation method (FCM) allows

for a more reliable and accurate computation of eigenvalues and eigenvectors of
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the above linear system compared to the finite difference methods (FDMs) [53].

Instead of approximating the ∂t by finite differencing, FCM transforms the temporal

derivatives into the Fourier space. So is the complex wave envelope function. The

first step is also to confine the temporal domain to [0, L], where L is the total length

of the considered time interval. On this interval, one can express the eigenfunction

B = (b1, b2)
T and the complex envelope function A(x = 0, t) by Fourier series with

2N + 1 modes

b1(t) =
N∑

n=−N

a1,ne
ink0t, (2.11a)

b2(t) =
N∑

n=−N

a2,ne
ink0t, (2.11b)

A(x = 0, t) =
N∑

n=−N

cne
ink0t, (2.11c)

where k0 = 2π/L. Putting the above expressions into (2.10), one gets−N C

C† N


A1

A2

 = [iλ]

A1

A2

 , (2.12)

where

N = ik0diag(−N,−N + 1, . . . , N − 1, N),
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C =



c0 c−1 . . . c−N

c1 c0 c−1
. . . . . .

... c1 c0
. . . . . . . . .

cN
...

. . . . . . . . . . . . c−N

cN
. . . . . . . . . . . .

...

. . . . . . . . . . . . c−1

cN . . . c1 c0



,

A1 = (a1,−N , a1,−N+1, . . . , a1,N)T ,

and

A2 = (a2,−N , a2,−N+1, . . . , a2,N)T .

By using FCM, the author expands the eigenfunction B into a Fourier series

and convert the ZS system (2.10) into a discretized matrix eigenvalue problem for

the Fourier coefficients of the eigenfunctions. Later, the author applies FCM to

study the eigenvalues of the ZS system for the Draupner events in Section 2.3.1 and

finds that the large unstable modes that have large λI deviate from each other in

the group velocity, which is represented by different λR values in the spectra (For

envelope soliton solution(2.3), λ is located on imaginary axis in the spectrum.).

These unstable modes whose eigenvalues have non-zero real parts correspond to high-

order breather structures [54]. Hence, simply from the envelope soliton solution,

one cannot explain why they move at a speed different from the linear group speed.

Therefore, the author proposes the following phase interference model to address

this discrepancy.
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2.2.3 Stochastic phase interference model

In order to explain and represent the high-order breather solutions to NLSE,

consider the following heuristically constructed model to describe the water wave

elevation η(x, t):

η(x, t) =
N∑
i=1

ηi(x, t), (2.13)

ηi(x, t) = Re{aisech[
√

2aik
2
0(x− cgit) + φ2i(t)]e

−ia2i k20ω0t/4eik0x−iω0t+iφ1i(t)}. (2.14)

The author calls this wave element as quasi-soliton. Here, φ1i(t) and φ2i(t) are intro-

duced as the random, phase interference variables to modify the original envelope

soliton (2.3). N is the number of interfering waves ηi(x, t). From (2.13),the method

of superposition also applies here for consideration of the aggregate effect. The

above introduced phase random variables are intended to take into account solitary

wave phase interference and allow for variations in the linear wave group speed and

phase speed. Note that in equation (2.14), the sech function corresponds to slow

modulation and the exponential part contains the fast oscillation. Next, the author

defines

Θi =
√

2aik
2
0(x− cgit) + φ2i(t) (2.15)

as the modulation phase and

θi = k0x− ω0t−
a2i k

2
0ω0t

4
+ φ1i(t) (2.16)

as the oscillation phase. Then, one can obtain the group speed and phase speed

after including the phase interference random variables from

∂Θi

∂t
= 0,

∂θi
∂t

= 0, (2.17)

30



since Θi = Ci(i = 1, . . . , N) characterizes the soliton’s propagation in position

and θi = Di(i = 1, . . . , N) characterizes the phase evolution of the soliton. Both

Ci and Di are constants depending on the initial condition. When considering

the asymptotic states of the soliton solutions as t → ±∞, synchronizing solitons

requires Ci = 0 and Di = φc, where φc is the common phase [41]. From the above

equation(2.17), the phase velocity and group velocity have the modified solution

c′pi = cpi +
a2i k0ω0

4
− 1

k0

dφ1i

dt
, (2.18)

c′gi = cgi −
1√

2aik20

dφ2i

dt
. (2.19)

In both equations (2.18) and (2.19), the first term follows from the linear dispersion

relation cpi = ω0

k0
, cgi = ω0

2k0
and the rest is due to the phase interference and nonlin-

earity. Furthermore, the deep-water dispersion relation still holds here. Hence, it

follows that

dφ2i

dt
=

εi√
2

dφ1i

dt
− ε3iω0

4
√

2
, (2.20)

where εi = k0ai is the wave steepness and ω0 =
√
gk0 is due to the dispersion

relationship. The author wishes to examine the statistical property of the above

stochastic model, which includes quasi-soliton interactions.

Let us suppose that one considers the time series of wave elevation recorded by

a gauge at sea. As the time series is sampled at one location in space, one can set x =

0, which makes the model free from the deep-water dispersion relation. Moreover,

the frequency ω0 and time t can be absorbed into the phase random variables φ1(t)

and φ2(t). Therefore, given the relation from equation (2.20), the problem of the

resulting amplitude of interfering waves is mathematically equivalent to computing
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the probability of the height a of one-dimensional random walks involving N steps,

which is the number of interfering waves. To this end, the nonlinear interference

model of quasi-solitons can be written as

η(t) =
N∑
i=1

aisech(
εi√
2
φi(t)−

ε3iω0

4
√

2
t+ ψi)cos(φi(t)), (2.21)

where N is the number of interfering waves and ψi is the phase integral constant

related to equation (2.20). Without loss of generality, the author sets ψi = 0 and

εi = k0a0 in what follows. a0 is set to be constant since the statistical results of rogue

waves are independent of the amplitude distribution [55]. From equation (2.21), it

can be discerned that the wave motions are aligned in the order of wave steepness

ε, with rapid varying harmonic oscillations on the scale t and slowly changing am-

plitude modulations on the scale εt. Given the periodicity of harmonic oscillation

and non-periodic wave modulations, the author chooses φi(t) to be the univariate

uncorrelated random phases φi(t) ∈ [0, R]. It is remarked that R should be a rela-

tively large value given the shape of sech function in order to allow for significant

modulations on wave shape. Here, the author chooses R to be at least 30π.

2.3 Results

2.3.1 IST spectra of Draupner event

The author numerically computes the discrete eigenvalues of the ZS system

(2.10) based on time series data associated with the Draupner events. These wave

events, which are also known as the New Year wave events, were recorded at the
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Draupner jacket platform in the North Sea on January 1, 1995, from 14:00 to 19:20

Universal Time Coordinated (UTC). The single extreme wave height is approxi-

mately 25.2 m and exceeds the significant wave height of 11.8 m by a factor of

2.13. A number of observation windows, each 20 minutes long of wave conditions,

were obtained by using a laser device and these records were collected during the

peak of the storm, which was estimated to last for 6 hours [56]. The conditions

associated with the Draupner wave events are summarized in the following: i) large

waves were transported from the northwest direction to the southeast with signif-

icant wave heights around 8 m on January 1; ii) small-scale, but strong polar low

descended rapidly from the north direction to the south, constantly generating large

waves with a strong background swell also moving in the same direction; and iii)

this swell arrived at the latitude of Draupner platform at 15:00 UTC, when the

extreme wave was recorded [57]. Therefore, the Draupner wave happened with the

background of a strong unidirectional swell. Instead of following reference [58] to

study the proximity of homoclinic solutions to the imaginary axis to elucidate the

underlying structure of rogue wave, the wave elevation time series are used here to

show the different group and phase speeds of unstable mode calculated by applying

IST to justify the author’s intent in introducing random phase angles into the model

velocity equations (2.18) and (2.19). The author uses 211 to 215 Fourier modes to

extract the eigenvalues. The results are shown from Figure 2.1 to Figure 2.6.
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Figure 2.1: left : Wave elevation time series during Draupner event recording from UTC

14:00. ±4σ (4 times standard deviation)values are shown as red lines to help visualize

extreme wave height; right : corresponding inverse scattering spectrum calculated from

the time series in left panel.
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Figure 2.2: Wave elevation time series recording from UTC 15:00 and corresponding

inverse scattering spectrum.
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Figure 2.3: Wave elevation time series recording from UTC 16:00 and corresponding

inverse scattering spectrum.
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Figure 2.4: Wave elevation time series recording from UTC 17:00 and corresponding

inverse scattering spectrum.
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Figure 2.5: Wave elevation time series recording from UTC 18:00 and corresponding

inverse scattering spectrum.
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Figure 2.6: Wave elevation time series recording from UTC 19:00 and corresponding

inverse scattering spectrum.

It is noted that the spectra are not centered at the imaginary axis. This is

due to the fact that the author has applied the Hilbert transform to calculate the

complex envelopes A(x, t) from wave elevations η(x, t), thus introducing an extra π
2

phase into the system. Nevertheless, this only results in shifting the whole spectra

to the left of the imaginary axis. This does not affect the author’s observations

about the locations of eigenvalues in the complex plane, since they only consider

the relative locations of the eigenvalues. The complex wave envelope A(x, t) is
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defined as

A(x, t) = η(x, t) + iη̃(x, t), (2.22)

where η̃(x, t) is the Hilbert transform of η that is given by

η̃(x, t) =

∫ +∞

−∞

η(x′, t)

x− x′
dx′. (2.23)

Theoretically, the domain of IST should be an one-dimensional infinite line. But

here in the discrete system, the author truncated the t-axis to a finite time series

length L. The eigenvector B = (b1(t), b2(t))
T as well as the complex envelope A(x, t)

are represented by Fourier series with sufficiently large number of modes. Then, the

Fourier expansions are substituted into equation (2.10) and the resulting discretized

eigenvalue system is solved by using standard linear algebra methods [54, 59].

From Figure 2.1 to Figure 2.6, it can be clearly seen that large wave amplitude

corresponds to the large imaginary part of the eigenvalues of the ZS system (e.g.,

Figure 2.2). Moreover, each wave group in the wave record on the left panel manifests

itself in the spectra on the right panel as bent curves, which is also predicted by the

IST theory [51]. The fact that the dotted line in the complex plane bends to the

left at various angles suggests that although eigenvalues in different wave groups can

share the same imaginary part, the real parts can vary with distinct values. In other

words, even though different wave groups possess the same modulation amplitude,

the group speeds can be different from each other significantly. This cannot be

explained by equation (2.3). However, this feature is captured in the author’s model

by including the phase dynamics through (2.18) and (2.19). Therefore, these quasi-

solitons can possess different group speeds from the linear group propagation speed,
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thus enabling collision and phase interference. Here, for purposes of illustration, the

author has restricted the wave group shape to a sech function.

2.3.2 Application of stochastic model to Draupner event

The author validates their model by fitting the New Year Wave in the time

windows of 200 seconds. In contrast to the traditional Fourier representation of

irregular waves, which consists of a large number of elementary sinusoidal waves,

here, the author wishes to represent the New Year Wave by as few interfering waves

ηi(x, t) as possible. To this end, they have tested different number of waves ranging

from 4 to 20. It turns out that the minimum number to represent such an extreme

wave case with great precision is N = 6, as shown in Figure 2.7. The curve fitting

residuals are shown in Figure 2.8 and the precision is of the order of 10−7. From

Figure 2.9, one can see that the ηi(x, t) are phase synchronized at the time t =

100 resulting in extreme wave heights, which is similar in manner to linear wave

interaction based generation of large waves. This line of work is also similar to the

work done by Birkholz et al. [55] who showed a reconstruction of the Draupner event

by using a minimum of N = 12 elementary sinusoidal waves. They considered phase

diffusion process in the linear interference model and used a penalty term to suppress

the rapid temporal oscillations of the phase functions. They also mentioned that this

may be indicative of the unaccounted nonlinear shaping in the immediate vicinity

of the rogue wave. However, in the current nonlinear stochastic model, the author

has reconstructed the considered rogue wave event by using half the number of
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waves and even without penalizing the phase function. The author believes that the

inclusion of envelope modulations could be a reason for why the current model works

better. Again, modulations play an important role in the formation of large-wave

events. The author’s model is consistent with the NLSE theory given the inclusion

of envelope modulations through the sech function and phase random variables to

account for the group speed variations. Therefore, it is expected that the current

approach would work better than linear interference models.
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Figure 2.7: Draupner wave event (UTC 15:00, 1 Jan 1995) and the time series recon-

struction through the stochastic model of the current work with 6 elementary nonlinear

coherent components.
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Figure 2.8: Reconstruction residual of the Draupner wave event with 6 elementary non-

linear coherent components.
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Figure 2.9: Evolution of phase angles of 6 elementary nonlinear coherent components

used in the reconstruction. The synchronization of phases occurs at t = 100 seconds,

when the extreme wave height is realized.
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2.3.3 Extreme wave statistics based on stochastic model

In this section, the author has applied their model to study statistical distribu-

tions of ocean waves resulting from the interference of N = 6 waves with uniformly

distributed phase variables. In Figure 2.10, 109 resulting wave heights have been sim-

ulated. Different curves in the plot correspond to different wave steepness ε = k0a0.

Black dots are the probability of freak wave observations from Christou and Evans

[1]. It is clear that when the ratio H/Hs is below 2, the wave statistics follows

the N = 6 wave interference with wave steepness ε = 0.1 and there is noticeable

departure in the region H/Hs ≥ 2, which is the defining region of rogue waves. This

type of behavior echoes the fact that rogue waves occur mostly in rough sea states

where the wave steepness ε is usually larger than that of calm sea state. Note that

the observation data is included in the envelopes of ε = 0.1 and ε = 0.4, and 0.4 is

the wave breaking limit. Again, the author has compared results from the current

model with that of Birkholz et al. [55]. In contrast to this earlier work, wherein the

number of interference waves N was increased to large value (e.g., 100), through the

use of the current stochastic interference model, it has been found that even with

N = 6, the author is still able to capture the event well when reaching the rogue

wave region. It is remarked that the smaller the number of the interfering waves

involved, the higher the likelihood that extreme waves due to phase synchronization

can occur at a certain location and time in a real sea state. The wave-crest prob-

ability distribution is also studied here. The second harmonic wave component is

added to the wave elevation to account for the nonlinearity that pushes the crest
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Figure 2.10: Probability of exceeding wave height from simulation of stochastic interfer-

ence of six waves. Different lines corresponds to different wave steepness ε, ranging from

0.10 to 0.40. Black stars are used to represent field measurements of freak waves from

reference [1].

up and flattens the trough. Therefore, the probability model for the wave elevation

now becomes

η(t) =
N∑
i=1

aisech(
ε√
2
φi −

ε3iω0

4
√

2
t+ ψi)(cos(φi) +

1

2
εcos(2φi)). (2.24)

From Figure 2.11, it is seen that the model estimate is an underestimate of the

probability of crest height in the region of small value of ηc/4σ, but strictly follows

the distribution of long-crest wave in the rogue wave region of unidirectional sea.

(i.e. ηc/4σ ≥ 1.25 [26]), which is the region where the current stochastic model

has been constructed to work in. The author has also investigated the kurtosis of

the probability distribution of wave surface of the 109 runs with N = 6 interfering

waves, as shown in Figure 2.12. The simulation results are compared with the work
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of Onorato et al.[3]. Here, ε = kpHs

2
is used to calculate the wave steepness for the

irregular waves based on JONSWAP spectrum. From Figure 2.12, one can observe

that the predicted kurtosis based on the model matches well with the results of

experiments A and B, which are for short-crested wave and long-crested wave cases,

respectively. It is clear that the model matches better with the long-crested wave

case than the short-crested one, which again justifies that the current model’s use for

unidirectional sea states. Besides, the stochastic model also provides non-Gaussian

distributions, as indicated by the value of kurtosis above 3. For comparison, the

author used the same scheme to calculate the kurtosis of linear superposition of

N = 6 sinusoidal waves and found that the kurtosis value is relatively stable and

around 2.8, which is expected from linear wave theory.
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Chapter 3: Fundamentals of Deep Neural Networks

3.1 Machine learning basics

This section contains many essential principles on machine learning, especially,

deep learning to solve practical problems. For a comprehensive review on machine

learning, see Murphy [60] and Bishop [61].

3.1.1 Learning algorithm

The author starts with the definition of a learning algorithm. A learning

algorithm has the ability to update itself by learning from the data, be it real or

artificial. Mitchell [62] specifies the key elements in a learning algorithm: A computer

program is said to learn from Experience E with respect to some class of tasks T

and performance measure M , if its performance at tasks in T , as measured by M ,

improves with experience E. Next, the author is going to elaborate on each of these

elements.
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3.1.1.1 Task T

When people think about machine learning, often times they are attracted to

its extraordinary ability to solve so many different and difficult tasks that are oth-

erwise unsolvable by traditional statistical techniques and approaches. Essentially,

there are two main task T categories:

• Classification (T1): This is the most common and successful area where

machine learning algorithm has been applied to. In this type of task (the

author calls it T1), a learning algorithm is trained to figure out which of the

k categories the input data belongs to. For simplicity, the author denotes the

learning algorithm as f , input data as x ∈ Rn, output from f as y. Then,

y = f(x) ∈ {1, 2, . . . , k}. A good learning algorithm can tag x with the label y

successfully after learning from experience. Numerous applications fall under

this category canopy. Iandola et al. [63] used small deep neural networks to

categorize images from ImageNet at a high accuracy level. Bahdanau et al. [64]

proposed neural machine translation to improve the translation performance

and Google Translate directly benefits from this learning algorithm. Esteva

et al. [65] demonstrated a learning algorithm capable of classifying skin cancer

with a level of competence comparable to dermatologists. Usually T1 can

also be named as object recognition and the associated techniques have been

widely used in autonomous vehicles, recommender systems, auto-feeding, and

so on.
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• Regression (T2): In this type, the learning algorithm f is intended to learn

from input x ∈ Rn and predict a numerical value y ∈ R. Now, the output

is continuous instead of being discrete as in the case of T1. This kind of

technique can be applied in algorithmic trading to predict the future prices in

stock market. The contribution in this dissertation work is strongly related to

this kind of task.

Undoubtedly, there are other possible tasks, which have been studied in the

past several years. However, most of them can be transformed into T1 or T2.

3.1.1.2 Measure M

The performance measure M is used to differentiate a good learning algorithm

from a bad one. Usually, it is a designed quantity that highly depends on the specific

applications. One straightforward metric will be the accuracy, denoted as Ma. It

is remarked that the accuracy can have different meanings for T1 and T2. In the

case of classification (T1), accuracy is the proportion of cases for which the learning

algorithm generates the correct output. Therefore, Ma has a value between 0 and

1. On the other hand for T2, accuracy usually holds the meaning of closeness since

one needs to measure the continuous variables in Rn space. Hence, Ma ranges from

0 to infinity. The smaller value Ma is, the more accurate a learning algorithm is.

An example of Ma could be the L2 norm. The choice of M may seem arbitrary, but

it is often difficult to choose the best one that maximizes the potential of a learning

algorithm.
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Oftentimes, one is interested in how well a learning algorithm performs with

a data set that the algorithm has not been exposed to before. This data set is

called a test set. If the learning algorithm also shows good performance, denoted

by the value of M , then one has the confidence that the learning algorithm does

learn the underlying patterns instead of simply memorizing the training data set.

Consequently, it has more potential and capability to solve other similar problems.

3.1.1.3 Experience E

E is about the data set that is learned by an algorithm. There are several

types of experiences of interest:

• Unsupervised Learning (UL): In this type, the experience is simply based

on the data set itself, without additional external inputs, such as labels. A

learning algorithm is used to discover the pattern and connections within the

data set itself. In some sense, the algorithm is learning unsupervisedly and it

is on its own.

• Supervised Learning (SL): In this type, the experience is labelled. The

labels can be thought of as teachers who can show the algorithm what to do

in order to maximize its performance.

• Semi-supervised Learning (SSL): As the name suggests, part of the ex-

perience is labelled and the rest is untouched. The hope is that an algorithm

will be trained jointly by a small amount of labelled experience and a large

size unlabelled data set. The concept behind SSL is that labelling experience
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will usually take tremendous effort; for example, marking of medical images

and satellite data.

• Reinforcement Learning (RL): This type of learning algorithm interacts

with the environment and the feedback loop generates experiences at each

cycle for an algorithm to learn. Rewards are provided to the algorithm with

an aim to improve the overall performance in the long run.

3.2 Learning process

3.2.1 Gradient-based optimization

Deep learning algorithms involve solving optimization problems. Conceptually,

an optimization algorithm alters input variables from an allowed set in order to

maximize or minimize a real-valued function, or an objective function. Maximization

and minimization are interchangeable since maximizing an objective function equals

to minimizing the negative of the objective function.

Here, the author uses minimization optimization problem as an example to

illustrate how to apply gradient-based approach in learning algorithms.

Suppose that one has a smooth objective function y = f(θ) where y ∈ R and

θ ∈ Rq. The gradient of y with respect to θ is ∇θf ∈ Rq. From calculus, one

knows that the function value changes most rapidly in the direction of the gradient.

In other words, if one adjusts the input variable θ in the opposite direction of the

gradient, the objective function y will decrease most rapidly. When ∇θf = 0, there
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is no directional information to decrease y further, thus achieving a local optimum.

Mathematically, one should update the input variable θ iteratively as follows:

θk+1 = θk − α∇θkf, (3.1a)

until ∇θkf = 0. (3.1b)

Several remarks should be made here:

• For a quadratic function f , the Newton-like methods exist and they can pro-

vide a quadratic convergence rate towards the global minima during minimiza-

tion [66].

• α is the learning rate, which determines the step size to update the input

variable θ. For complex problems, it should be gradually decreased towards

the end of the optimization problem.

• For a practical problem, the point with zero-gradient is not usually the global

minima. This non-quadratic behavior complicates the optimization problem

and the input variable θ is updated in a suboptimal manner.

• The computation of exact gradient ∇θf is normally unfeasible and one uses

the stochastic gradient descent to approximate it.

3.2.2 Stochastic gradient descent

The family of stochastic gradient descent (SGD) is the de facto most popular

optimization algorithm used in deep learning. The important issue that SGD is used
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to solve is the prohibitively large data set size when computing the gradient. The

author will illustrate this idea through the following supervised learning example.

Suppose one has the training data set Z = [(x1, y1), (x2, y2), . . . , (xN , yN)]

with N independent pairs. The individual loss function, expressed in negative log-

likelihood, is

L(xi, yi; θ) = − log p(yi|xi; θ). (3.2)

Then, the loss function over the whole data set Z can be expressed as the summation:

J(θ) = Ex,y∼pdataL(x, y; θ) =
1

N

N∑
i=1

L(xi, yi; θ). (3.3)

Next, the gradient computed from the above loss function is

∇θJ(θ) = ∇θEx,y∼pdataL(x, y; θ), (3.4a)

= Ex,y∼pdata∇θL(x, y; θ), (3.4b)

=
1

N

N∑
i=1

∇θL(xi, yi; θ). (3.4c)

The evaluation of the above equation takes O(N), which is typically difficult to

compute given the large size of Z.

From (3.4b), one can approximate the gradient expectation by a small amount

of elements from the training data set, instead of computing the full expecta-

tion. To be concrete, one can divide Z into batches of small groups; that is,

Z = [B1, B2, . . . , Bm] where Bi = [(xi1, yi1), (xi2, yi2), . . . , (xij, yij)]. Now the gra-

dient can be approximated as

gi =
1

j
∇θ

j∑
k=1

L(xik, yik; θ) (3.5)
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with gi → ∇θJ(θ) as j → ∞. Then the stochastic gradient descent can be written

as

θ ← θ − αgi, (3.6)

where gi is also a stochastic variable. This is where SGD got its name from.

3.2.3 Adam

Adam is an adaptive learning rate SGD algorithm that has been widely used

to train deep neural networks since its inception. Here, the author lists the major

procedures when applying the Adam algorithm in Algorithm 1. For full details, the

reader is referred to Kingma and Ba [67].

Adam optimizer is generally robust to the selection of hyperparameters, al-

though the learning rate α should be tailored to each application.

3.3 Recurrent neural network

If the training data set is a sequence indexed by time t, then the proper

neural network to learn it is the so-called recurrent neural network (RNN) [68]. The

main distinguish aspect of RNN compared to multilayer networks is the sharing of

parameters across different parts of the network. Sequences can have a variety of

lengths. If one had separate parameters for each value of the time index, it would

be impossible to scale up or down to different lengths of sequences, thus, reducing

the generality of deep learning in solving sequential problems.
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Algorithm 1: ADAM

1 step size α = 0.001

2 exponential decay rates for moment estimates, with ρ1 = 0.9 and ρ2 = 0.999

3 δ = 10−8 for numerical stabilization

4 Initialize parameters θ ; initialize first and second moment variables

s = 0, r = 0; initialize time step t = 0

5 while stopping criterion not met do

6 sample a minibatch of m examples from training set Z

7 compute an approximated gradient: g = 1
m
∇θ

∑
i L(xi, yi; θ)

8 t = t+ 1

9 update first moment estimate: s = ρ1s+ (1− ρ1)g

10 update second moment estimate: r = ρ2r + (1− ρ2)g
⊙

g

11 correct bias in first moment: ŝ = s
1−ρt1

12 correct bias in second moment: r̂ = r
1−ρt2

13 Apply update: θ = θ − α ŝ√
r̂+δ
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Figure 3.1: Recurrent neural network

Here the author briefly introduces how RNN works with sequence, see Figure

3.1. At every time step,

at = b+Wht−1 + Uxt, (3.7)

ht = tanh(at), (3.8)

ot = c+ V ht, (3.9)

where xt, ht, and ot are the input, hidden state, and output at time step t. tanh

is hyperbolic tangent function, acting as a nonlinear activation function. W,U, V, b,

and c are the neural network parameters, defined as θ. Assume that the input

sequence is X = {x1, . . . , xn}; then, the output ot, 1 ≤ t ≤ n is the cumulative

summary of {x1, . . . , xt} up until time t. The total loss L for a given pair of input

sequence X and Y = {y1, . . . , yn} would be the sum of losses over all time steps;
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that is,

L(X, Y ) =
∑
t

Lt, (3.10a)

= −
∑
t

log pmodel(yt, ot), (3.10b)

= −
∑
t

log pmodel(yt|x1, . . . , xt). (3.10c)

The above loss function assumes the negative log-likelihood in the model. Then, the

next step is to calculate the partial derivatives with respect to the neural network

parameters θ = {W,U, V, b, c} and apply the optimization algorithm like Adam in

3.2.2, to minimize the loss function (3.10) and update θ.

3.3.1 Back-propagation through time

Back-propagation through time (BPTT) is the technique to compute gradients

in RNN. The author briefly illustrates the steps in the following. At time step t,

∂L

∂Lt
= 1, (3.11)

since the total loss L is the summation of individual loss at each time step. At the

final time step t = n,

∇hnL = V T∇otL, (3.12)

where the superscript T is the matrix transpose operation. One can calculate the

derivatives backward from the end of the sequence t = n − 1 to t = 1. Note that
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ht, t < n contributes both to ot and ht+1. Then the gradient can be computed as

∇htL =

(
∂ht+1

∂ht

)T
∇ht+1L+

(
∂ot
∂ht

)T
∇otL, (3.13a)

= W T (∇ht+1L) diag(1− (ht+1)
2) + V T∇otL, (3.13b)

where diag(1− (ht+1)
2) is the diagonal matrix with elements 1− (hit+1)

2. This is the

Jacobian matrix of tanh of hidden unit i at time step t+ 1.

After one is ready with the gradients on the hidden nodes, next one can cal-

culate the gradient of L with respect to parameters θ as follows

∇cL =
∑
t

(
∂ot
∂ct

)T
∇otL =

∑
t

∇otL, (3.14)

∇bL =
∑
t

(
∂ht
∂bt

)T
∇htL =

∑
t

diag(1− h2t )∇htL, (3.15)

∇VL =
∑
t

∑
i

(
∂L

∂oit

)
∇V o

i
t =

∑
t

(∇otL)(ht)
T , (3.16)

∇WL =
∑
t

diag(1− h2t )(∇htL)hTt−1, (3.17)

∇UL =
∑
t

diag(1− h2t )(∇htL)xTt . (3.18)

This concludes the gradient calculation since the gradient of L with respect to input

xt will be zero.
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Chapter 4: Neural Machine Based Forecasting of Chaotic Dynamics

In this chapter1, the author explores a data-driven modeling approach to ex-

plore forecasting viability for systems that exhibit chaotic dynamics. Specifically,

a deep recurrent neural network architecture, a neural machine, is constructed for

forecasting temporal evolution of different chaotic systems. Data obtained from

simulations with well known nonlinear dynamical system prototypes serve as train-

ing data for the chosen neural network. In practice, this simulation data may be

replaced with data from the field. The trained system is studied to examine the fore-

casting ability. Two ordinary differential dynamical systems, namely, the Lorenz’63

system and the Lorenz’96 system, and a partial differential system, the Kuramoto-

Sivashinsky equation, are studied and the numerical experiments conducted are

presented here to demonstrate the forecasting viability of the constructed neural

network.

1This chapter is based on the work contained in the publication: Wang, R., Kalnay, E., & Bal-

achandran, B. (2019). Neural machine based forecasting of chaotic dynamics. Nonlinear Dynamics

(accepted)

57



4.1 Literature review

There is tremendous interest in predicting the behaviour of complex dynamical

systems, be it in nature (e.g., ecology [69], ocean rogue waves [70]) or the human so-

ciety (e.g., financial market [71]). Several of these systems are chaotic, which means

an initial misjudgment or error in the state of the system can grow exponentially in

time. In addition, with finite precision, this exponential growth of the error can ren-

der inaccurate long-term forecasting. For traditional forecasting of chaotic systems,

for instance, numerical weather forecasting, one requires two essential ingredients:

i) an accurate estimation of the initial condition and ii) a good representative model

which reflects the laws of physics. When either of them is not right, one ends up

with a forecast that is suspect due to the chaotic dynamics. In recent decades, there

has been a shift from physics-based model to data-driven modeling with advance-

ments in sensors and data measurement equipment, as well as machine learning

techniques [72, 73]. The combination of readily available data and sophisticated

optimization algorithms makes deep learning, a popular machine learning approach,

quite attractive for application to chaotic dynamical systems. Besides, with such a

data-driven approach, one breaks the barriers between different scientific disciplines,

as one eliminates the needs to develop various mathematical models for different dy-

namical systems, as long as these system evolutions can be described by a common

mathematical structure. In this chapter, the author considers one neural network

that can be used to describe the evolutions of three different chaotic systems, two

of which are governed by ordinary differential equations (ODEs) and another that
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is governed by partial differential equation (PDE).

Pathak et al. [74] used the echo-state network, or reservoir network, to study

the dynamics of the Kuramoto-Sivashinsky equation [75] and examined the predic-

tion abilities of this network under various parameter settings. It is mentioned that

this network requires the monitoring of the whole past time series in order to pre-

dict the response at future steps. Vlachas et al. [76] used Long Short-Term Memory

(LSTM) [77] networks to forecast the responses of reduced-order dynamical systems.

In this chapter, the author proposes a deep recurrent neural network, which also

consists of LSTMs, but with an inhibitor mechanism. By introducing this mecha-

nism, the author is able to forecast the long-term responses of chaotic systems, such

as the Lorenz’96 system [78–80] and the Kuramoto-Sivashinsky equation.

The rest of this chapter is organized in the following manner. In next section,

the author briefly introduces the several chaotic systems which will be applied to

test the forecast ability of the neural machine. In Section III, the author provides a

probabilistic interpretation of the data-driven approach with regard to prediction of

the future responses of chaotic dynamical systems. The details of the proposed deep

recurrent neural network are given in Section IV. Finally, the author presents results

obtained through the application of neural machine towards forecasting of chaotic

responses. Also, the training details and additional results of the three numerical

experiments are given in the appendixes at the end of this dissertation.
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4.2 Background

4.2.1 Lorenz’63 system

The Lorenz’63 system [20], which is a set of coupled ordinary differential equa-

tions with three components, is given by

dx
dt

= σ(y − x),

dy
dt

= x(ρ− z)− y,

dz
dt

= xy − βz,

(4.1)

where x, y, and z are the state variables and σ = 10, β = 8/3, and ρ = 28. This

model has been widely studied as a prototype for the demonstration of chaotic

behavior and the characteristic attribute of the sensitivity to initial condition for a

deterministic system [81, 82]. An infinitesimal perturbation to a chaotic trajectory

of this system at any time during the evolution would give rise to the exponential

divergence of this solution thereafter. The rate of divergence is commonly expressed

by the Lyapunov exponent λ [12, 83]. Specifically, the distance D(t) between two

initially close trajectories with separation D0 in state space can grow exponentially,

assuming that the divergence can be treated within a linear approximation. This

growth is given by

D(t) ≈ eλtD0. (4.2)

For a multi-dimensional system, the rate of separation can be different for each

projection of the initial perturbation vector on the chosen coordinate axes in the

state space. Therefore, a spectrum of Lyapunov exponents along with the dimension
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number is used for the response state of the dynamical system to show the overall

divergence and contraction behavior in the state space of the dynamical system. In

particular, the largest one, also known as Maximal Lyapunov Exponent (λM), is

used as a measure of the level of unpredictability for a dynamical system. If λM

is larger than 0, then the system response is labeled as being chaotic. The author

follows earlier work [84] to compute λM . For the Lorenz’63 system, λM = 0.9006

and it matches well with the known value of 0.9056 [85]. The author uses λM t as

the non-dimensional Lyapunov time to demonstrate the prediction horizon of the

neural machine. A typical response to the Lorenz’63 equation is shown in Figure

4.1.
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Figure 4.1: x, y, and z component time series of Lorenz’63 system. The two tra-

jectories are initially separated by 10−15 units. The divergence is visible after 23

Lyapunov times.
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4.2.2 Lorenz’96 system

This system can be written as [79]

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, for i = 1, . . . , N, (4.3)

with periodic boundary conditions x−1 = xN−1, x0 = xN , xN+1 = x1. Here, xi is the

state variable of the system and F is an external forcing. This model is meant to

replicate the dynamic behaviour of an unspecified meteorological quantity x at M

equidistant grid points along a latitude circle. The author numerically integrates

(4.3) with a time step 0.05 time units, which is equivalent to 6 hours in practice by

assuming the characteristic dissipation time scale of 5 days; see references [79, 80]

for details.

For the case considered here, the author sets F = 8 and N = 48 to demonstrate

the forecasting ability of the neural machine. Following the same approach as before

for determining the Maximal Lyapunov Exponent, it is determined that λM = 1.73.

This value is similar to the value obtained based on QR approaches [86]. A typical

scalar field xi, i = 1, . . . , N = 48 to the Lorenz’96 equation is shown in Figure 4.2.

62



0 1 2 3 4 5 6 7 8
Lyapunov Time

0

10

20

30

40

N   

Lorenz 96 System

−10
−5
0
5
10
15

Figure 4.2: Scalar field of the Lorenz’96 equation with periodic boundary conditions.

External forcing term F is 8, which commonly leads to chaotic behaviors. Vertical

axis is the grid of xi, i = 1, . . . , N = 48. Horizontal axis has the scale of the non-

dimensional Lyapunov time which is the product of the maximal Lyapunov exponent

and time. Colorbar denotes the magnitude of the scalar value xi, ranging from −10

to 15. This system represents the dynamical response of an atmospheric quantity,

such as temperature or humidity, at equally spaced grid points in a latitude circle

around the earth. It includes the effects of quadratic nonlinearity, dissipation and

external forcing.
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4.2.3 Kuramoto-Sivashinsky system

In addition, the author considers the homogeneous Kuramoto-Sivashinsky

(KS) equation, which is given by

ut + uux = −uxx − uxxxx, x ∈ [0, D), (4.4)

where the scalar field u(x, t) is periodic in the domain [0, D). This equation shares

similarity with Burgers’ equation but has more complicated and interesting behav-

ior due to the presence of second-order and fourth-order spatial derivatives. The

second-order derivative acts as a energy source, which can destabilize the scalar

field. However, the nonlinear term uux can help transferring the energy from a low

wavenumber mode to a high wavenumber mode, where the fourth-order derivative

term dominates. This can be shown through the dispersion relation determined

from the linear part of KS equation.

It has been proven that a unique solution to (4.4) exists and remains bounded

as t → ∞ for all D-periodic initial data, where D is the domain length. The

solution can highly vary in behavior. It can be spatio-temporal chaos, depending

on the amplitude of the initial data and on D. It is remarked that the dimension of

the attractor is linearly correlated with the domain length D [87].

A dimension length D = 35 was chosen and the initial condition was deter-

mined to be

u(x, 0) = 0.6(−1 + 2× rand(M)),

where M = 64 is the discretized dimension of (4.4). Now, the author has used
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the Exponential Time Differencing Runge-Kutta 4th-order (ETDRK4) method to

numerically integrate one step forward in time (See Appendix C). Note that the

integration takes place in the Fourier space. After solving for enough time windows,

the transient solutions to (4.4) are discarded and only the steady part is used to

train the neural machine. A typical scalar field u(x, t) to the Kuramoto-Sivashinsky

equation is shown in Figure 4.3.
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Figure 4.3: Scalar field of the Kuramoto-Sivashinsky equation. Vertical axis is the

spatial domain, discretized with the grid size of 64. Horizontal axis shows the non-

dimensional Lyapunov time which is the product of the maximal Lyapunov exponent

and time. Colorbar denotes the magnitude of the scalar value u(x, t), ranging from

-4 to 4.
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4.3 Methodology

Next, the author briefly introduces the application of the data-driven approach

in forecasting the future responses of a dynamical system (DS). As earlier mentioned,

the goal is to build up a single surrogate model G(θ) that can replicate the dynamical

behavior of different systems. A representative dynamical system is described by

ẋ = f(x; ζ), x ∈ Rm, ζ ∈ Rq, (4.5)

where x is the state vector of dimensionm and ζ is the parameter vector of dimension

q. f is a deterministic function of the states and the parameters. Starting from the

initial value x(t = 0) by numerically integrating (4.5) for t > 0, one can obtain

the exact future states xt. In the case of discrete, integer-value times, a dynamical

system can be written as the map [12]:

xn+1 = F(xn; ζ), (4.6a)

= F(F(xn−1; ζ); ζ), (4.6b)

= F(F(. . .F(x0; ζ) . . . ; ζ); ζ), (4.6c)

where F : Rm → Rm is the state transition mapping function. Note that the next

time state variable xn+1 depends on xn, regardless of the previous histories, bearing

similarity with the Markov property.

Generally speaking, there are two stages associated with the data-driven pre-

diction, namely, a training stage and an inferring stage. During the training stage,

one applies numerical algorithms, like gradient descent [88], to adjust surrogate
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model parameters θ in order to better represent the training data set from the DS.

The trained model is denoted as G(θ̃). Then, as for the second stage, this surrogate

model is tested on a new data set that has not been previously seen by it in order

to test its inference capacity. The prediction value is distinguished from the true

value by using the symbol •̂.

4.3.1 Probabilistic dynamical system

From a probabilistic perspective, consider the conditional probability P (Y|X),

where X = {x1, . . . , xnx}, xi ∈ Rm is the multivariate input sequence of dimension

m with length nx and Y = {y1, y2, . . . , yny}, yi ∈ Rm is the output sequence of the

same dimension with length ny, from the same discrete dynamical system (4.6a). In

the context of forecasting the behaviour of this dynamical system, Y is the future

time series that needs to be predicted based on the preceding input time series X.

Let Z = Y|X be the event that Y happens after X and Pm(Z; θ) be a family

of probability distributions over the same parametric space indexed by θ. In this

chapter, the author uses a deep recurrent neural network, parametrized by θ as

the surrogate model G(θ) to determine the conditional probability Pm(Z; θ), as

an approximation to the true but unknown data-generating distribution Pd(Z). If

the time series of event Z is drawn from a dynamical system with certain initial

condition, then the conditional probability Pd(Z) ≡ 1 due to the determinism.

However, from the surrogate model, Pm(Z; θ) can only be optimized to be close

to 1 by adjusting the value of θ without necessarily achieving the global optimum,
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especially, for complex dynamical systems. To understand how one transforms a

deterministic problem into a probabilistic one, there are two viewpoints to consider.

First, following the maximum likelihood principle [89], the estimator for θ can

be defined as

θ̃ = argmax
θ

Pm(Z; θ), (4.7a)

= argmax
θ

r∏
k=1

Pm(Zk; θ), (4.7b)

where Z = {Zk, k = 1, . . . , r} are independent sequences with sample size r deter-

mined by the true but unknown Pd(Z). The above equation (4.7b) can be problem-

atic in terms of numerical computation. Due to the determination of the product

over many probabilities which all vary from 0 to 1, it is prone to numerical un-

derflow. Hence, it is more convenient to take the logarithm of both sides of the

equation. This results in the following equivalent optimization problem:

θ̃ = argmax
θ

r∑
k=1

log Pm(Zk; θ). (4.8)

Typically, large value of sample size r can give a better estimation of θ, re-

sulting in Pm(Zk; θ̃) ≈ 1. Therefore, the prediction of future response based on

this surrogate model is more accurate. But in reality during the training stage, r is

often limited and the probability distribution represented by Z is an empirical data

generating distribution; that is labeled as P̃d(Z). As a result, equation (4.8) can

be written as an expectation over the empirical distribution defined by the training

data set:

θ̃ = argmax
θ

EZ∼P̃d
log Pm(Z; θ). (4.9)
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The second viewpoint is related to the Kullback-Leibler divergence or KL

divergence [90]. It is a measure of the distance between two different probability

distributions. The KL divergence between P̃d defined by the training data set and

Pm, which is generated from a surrogate model, is given by

DKL = EZ∼P̃d
[log P̃d(Z)− log Pm(Z; θ)], (4.10a)

= EZ∼P̃d
log P̃d(Z)− EZ∼P̃d

log Pm(Z; θ). (4.10b)

The goal is to minimize DKL by adjusting the model parameters in G(θ), thus af-

fecting Pm. The first term in equation (4.10b) is only associated with the probability

of generating certain input time series, not with the model. Hence, the estimation

of θ should only come from the second term, which is

θ̃ = − argmin
θ

EZ∼P̃d
log Pm(Z; θ). (4.11)

Comparing with the maximum likelihood principle from the first viewpoint, one can

find that equations (4.9) and (4.11) are essentially the same.

4.3.2 Probability distributions and loss functions

Now, the author is going to discuss the relations between the surrogate model

G(θ) and conditional probability Pm. As mentioned earlier, G(θ) is a deep recurrent

neural network, which in essence is the following mapping function:

G(X; θ) = Y. (4.12)

Again, X and Y are the historical time series and future time series generated from

certain dynamical system in sequence, respectively. In reality, the mapping output
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is Ŷ = G(X, θ̃), which is an approximation to the true target value Y with certain

types of associated errors. Here, three types of error distributions corresponding to

three different Pm(Y|X; θ) and loss functions are considered, by using one time step

univariate series x and y.

4.3.2.1 Type I: Gauss loss function

The error between the mapping output ŷ and the true output y is assumed to

follow the Gaussian distribution

P g
m(y|x; θ) =

1√
2πσ

exp(−(ŷ − y)2

2σ2
), (4.13a)

=
1√
2πσ

exp(−(G(x; θ)− y)2

2σ2
). (4.13b)

where σ is the standard deviation of the error distribution. On substituting (4.13b)

into equation (4.8) and only keeping the terms associated with θ, the result is

θ̃ = argmax
θ

r∑
k=1

−(G(xk; θ)− yk)2

2σ2
, (4.14a)

= argmin
θ

r∑
k=1

(ŷk − yk)2. (4.14b)

As one may notice, equation (4.14b) can be used to minimize the mean square error

between the model output ŷ and the true value y. In other words, if one attempts

to use the mean square error as the loss function

L(x, y, θ) =
r∑

k=1

(ŷk − yk)2, (4.15)

during the training stage, it is essentially the same as implying that the model

output ŷ predicted by G(θ) is the superposition of true value y and the Gaussian

noise.
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4.3.2.2 Type II: Laplace loss function

In this case, the error between the mapping output ŷ and the true output y is

assumed to follow the Laplace distribution

P l
m(y|x; θ) =

1

2β
exp(−|ŷ − y|

β
), (4.16a)

=
1

2β
exp(−|G(x; θ)− y|

β
), (4.16b)

where β is a scale parameter. After substituting (4.16b) back into equation (4.8),

the result is

θ̃ = argmax
θ

r∑
k=1

−|G(xk; θ)− yk|
β

, (4.17a)

= argmin
θ

r∑
k=1

|ŷk − yk|. (4.17b)

Equation (4.17b) can be used to minimize the mean absolute error between the

model output ŷ and the true value y. Following along the same lines as for equation

(4.15), the loss function can be defined as

L(x, y, θ) =
r∑

k=1

|ŷk − yk|. (4.18)

4.3.2.3 Type III: Cauchy loss function

In this case, it is assumed that the error between mapping output ŷ and true

output y is to follow the Cauchy distribution

P c
m(y|x; θ) =

1

πγ[1 + ( ŷ−y
γ

)2]
. (4.19)
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Figure 4.4: Illustration of the variations of three loss functions with respect to

the error e = ŷ − y. i) Gauss loss function (red solid line): l = e2; ii) Laplace loss

function (blue dot line): l = |e|; and iii) Cauchy loss function (black dot-dash line):

l = log (1 + e2).

where γ is the scale parameter. On making use of (4.19) in equation (4.8), the result

is

θ̃ = argmax
θ

r∑
k=1

−log [1 + (
(G(xk; θ)− yk)

γ
)2]. (4.20)

Then, the associated loss function has the form:

L(x, y, θ) =
r∑

k=1

log [1 + (
ŷk − yk

γ
)2]. (4.21)

The differences amongst the three types of loss functions are illustrated in Figure

4.4. Clearly, with the Laplace loss function, the error decays at a constant rate,
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regardless of the error magnitude, whereas the decay rate depends on the error

value for the other two types of loss functions. Especially, the decaying rate can be

shown to approach 0 when the error approaches 0, which is detrimental for certain

optimization algorithms, like the Adam [91]. In practice, there is not much difference

between the Gauss type and Cauchy type of loss function. In the current work, the

Laplace loss function is applied to facilitate the neural network training.

4.4 Neural machine

In this section, the author briefly discusses the architecture of G(θ) and demon-

strates how the model can be trained to map a history sequence X to a future

sequence Y, which are not necessarily of the same length.

4.4.1 Recurrent neural networks

Recurrent neural networks (RNNs) are one kind of neural networks designed

to process sequential data whose entries are correlated in the time domain. The

recurrent action is defined as [92]

ht = R(ht−1,ut, θ), (4.22)

where ht and ut are the hidden state and input data at time step t, respectively.

In the context of predicting the future from the past, the RNN is trained to use ht

as a lossy summary of the task-relevant aspects of the past input sequence {ui, i =

1, . . . , t− 1}. Regardless of the input sequence length, the RNN has the same input

dimension and parameter θ from one step to another. This is the main advantage

73



of using RNN for processing sequential data since the parameters are shared across

different time steps, thus, greatly reducing the model parameter size, as compared

with a convolutional neural network [93].

One may notice the similarity between a RNN and a dynamical system, as

given by equation (4.6a). The hidden state vector can be viewed as the state variable

in a discrete dynamical system and the input time series can be considered to be

similar to an external driving input in the dynamical system counterpart. However,

there is a difference in that θ is described by analytical expressions like polynomials

in (4.6a) whereas it is represented in terms of matrix weights and vector biases in

(4.22).

Note that there is no theoretical restriction on the length of the input sequence

X and RNN can be used to map an arbitrarily long sequence to a current hidden

state vector with fixed dimension. Therefore, ht is in general necessarily lossy,

limited by the information capacity of its dimension. Therefore, conceptually, ht

may not be able to capture the long-term dependencies within X. In fact, it has been

shown that learning long-term dependencies with typical gradient descent method

is difficult since the gradients propagated over many stages tend either to vanish

or explode [94]. This poses an obstacle for forecasting the long-term behavior of

a dynamical system from RNNs, especially, given that a chaotic system’s behavior

is highly sensitive to small perturbations. Fortunately, many approaches have been

proposed to alleviate this problem through the introduction of special structures, like

Long Short-Term Memory [77], Gated Recurrent Unit [95], skip mechanisms [96],

highway connections [97], and so on. Next, the author elaborates on the techniques
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that they have applied in G(θ).

4.4.2 Long short-term memory

For the one-step mapping function R, a recurrent neural network is a natural

choice. However, as mentioned above, typical RNN cells can suffer from the issue

of vanishing gradients due to the recurrent multiplication of hidden state matrices

when applying a gradient descent algorithm during the training stage. For general-

purpose sequence modeling, the author has found that the Long short-term memory

[77], which is purposely built to store long dependency information in a memory cell,

is better for extraction and transfer of data in long sequences. The memory cell is

accessed, written, and cleared by several self-parametrised controling gates. The

author has followed earlier work [98] to define the action of a single LSTM cell by

it = σ(Wuiut +Whiht−1 +Wcict−1 + bi), (4.23a)

ft = σ(Wufut +Whfht−1 +Wcfct−1 + bf ), (4.23b)

ct = ft ◦ ct−1 + it ◦ tanh(Wucut +Whcht−1 + bc), (4.23c)

ot = σ(Wuout +Whoht−1 +Wcoct + bo), (4.23d)

ht = ot ◦ tanh(ct), (4.23e)

wherein σ(x) = 1/(1+e−x) is the logistic sigmoid function, ◦ denotes the Hadamard

product, and it, ft, ct, ot, and ht are the input gate, forget gate, cell memory, output

gate, and cell hidden state at time step t, respectively. The weighting matrix sub-

scripts are defined so that Whi is the hidden-input gate matrix, Wcf is the memory-

forget gate matrix, and so on. By using the memory cell and controlling gates, the
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gradient is to be trapped in the cell and prevented from vanishing.

4.4.3 Encoder-decoder neural machine

A basic form of the neural machine, an example of which is shown in Figure

4.5, consists of two components: a) an encoder that is used to summarize the input

sequence X and compute the conceptualized “thought” vector e and b) a decoder

that is used to start from this vector e and continuously decode one time step

information at a time. Thus, the conditional probability is decomposed as

logPm(Y|X) =

ny∑
j=1

logPm(yj|yj−1, e). (4.24)

un... n

*un+1

n+1

n+2

u

*u *u

u *ue
n+p-1

n+p

...

...

*u

encoder decoder

1

Figure 4.5: The input time series, with length n, is fed into the neural network

through the encoder, at the left bottom starting from u1 to un. The output time

series, with length p, is generated from the decoder, at the right top from ∗un+1 to

∗un+p, which is the predicted time series. The corresponding ground truth data set

un+1 to un+p is not shown here. e is the conceptualized “thought” vector, which is

used to aggregate the input series. The decoder is used to decode e once per time

step and feed the results from previous time step output to the next time step as

the input.
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A potential issue with the use of the fixed-length vector e when processing

long input sequence X is the bottleneck on the size of information containment.

To improve the performance of this basic encoder-decoder architecture, different

ways have been proposed to solve this problem by allowing a layer of neurons to

automatically (soft-) search for parts of the input sequence X that are relevant

in predicting the output sequence Y. This is known as attention mechanism in

Neural Machine Translation [64, 99]. However, in the author’s model, the original

attention mechanism has been modified in a way that is similar to what is proposed

in the delay embedding theorem for a dynamical system. Here, this is called the

inhibitor mechanism. The presence of an inhibitor will help the generation of the

future time series from the chaotic system inference, without having to quickly loose

predictability.

The proposed scheme is a general framework where one can freely define the

one-step forward mapping function R. Next, the author describes briefly the choices

they have made for the encoder and decoder to learn aperiodic behavior of dynamical

systems. In addition, the inhibitor mechanism is elaborated upon to demonstrate

the viability for predicting a long sequence.

4.4.3.1 Encoder

Multiple LSTMs can be stacked and temporally concatenated to form deep

neural structures to solve many practical sequence modelling problems [100, 101].

Many layers or deep neural network can be used to learn multiple levels of abstrac-
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tion which can help classification or regression tasks [93]. However, gradient-based

training becomes difficult with increasing depth of layers [102]. In the author’s

model, ideas similar to highway networks [103] have been applied to allow unim-

peded information flow across several layers on the so-called information highways.

With this construction, along the depth dimension, the author has introduced gating

mechanisms as well to encourage gradient flow to help with the training.

LSTM LSTM

LSTM LSTM

LSTM

LSTM

LSTM LSTM LSTM

u1 u2 un

q1 q2 qn

e

encoder

Figure 4.6: Unrolled version of the encoder. Multiple layers of LSTM cells are

stacked in order to extract higher abstractions of the input ui. The hidden state ht

is the concatenation of all hidden states of all LSTM cells. The record vector qt is

the output of the top-layer LSTM cell. The thought vector e is the final state of

stacked LSTM cells. The dashed lines are the highway connections that allow the

residual to be passed via a gating mechanism.

As shown in Figure 4.6, the encoder, which consists of multiple layers of

LSTMs, is used to take the input sequence X = {u1, . . . , ut, . . . , un}, ut ∈ Rm and
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produce the conceptualized vector e. During the encoding phase, the hidden states

are calculated as

ht+1 = RE(ht; ut+1), for t = 1, . . . , n− 1. (4.25a)

qt = QEht, for t = 1, . . . , n. (4.25b)

where RE is the one step forward-mapping of the multi-layer LSTMs in the encoder

and QE is the affine transformation to compute qt, called the record vector, which is

shown in the Figure 4.6. The thought vector e, which is used to compress the input

sequence information, is the concatenation of last hidden states of the multi-layer

LSTMs.
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4.4.3.2 Decoder

LSTM LSTM

LSTM LSTM

LSTM

LSTM

LSTM LSTM LSTM

un

ûn+1 ûn+2 ûn+p

e

decoder

qn+1 qn+2 qn+p

qn+1 qn+p-1

Figure 4.7: Unrolled decoder consists of multiple LSTM layers. The preceding

time step output ut is used as the input at the next time step. Again, highway

connections have been added to help train the deep networks (which are not shown

here). The output prediction {ût, n + 1 ≤ t ≤ n + p } is expected to be close to

{ut, n+ 1 ≤ t ≤ n+ p } after the training.

With the decoder, e is used as the initial state vector and un, the last input

to the encoder, is used as the first input, to continuously decode the thought vector

e at each step. Suppose that the true output time sequence is

Y = {un+1, . . . , ut, . . . , un+p}, ut ∈ Rm,

and the prediction from the decoder is

Ŷ = {ûn+1, . . . , ût, . . . , ûn+p}, ût ∈ Rm.
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Then, the following equations hold

ht+1 = RD(ht, ût+1), for t = n, ..., n+ p− 1. (4.26a)

qt = QDht, for t = n, ..., n+ p. (4.26b)

ût = UDqt, for t = n, ..., n+ p. (4.26c)

in which ht is hidden state at t time step (n + 1 ≤ t ≤ n + p). qt is the record

vector. RD is the action of decoder with multiple layers of LSTM. QD is similar to

the definition in the encoder. The prediction at each time step ût is obtained through

the application of another affine transform UD on qt. By combining equations (4.26a)

to (4.26c) for a single time step, one can find the recurrent prediction equation:

ût+1 = UDQDRD(ht, ût). (4.27)

It is recalled that the hidden state ht in RNN is a lossy sum of input time series X

and a part of the output time series Y up to the time step t, as shown in (4.22).

Equation (4.27) can be readily written as

ût+1 = G(u1, . . . , un, ûn+1, . . . , ût; θ), (4.28a)

= G(X, Ŷ≤t; θ), (4.28b)

where G(•; θ) is the action of the neural machine and subscript ≤ t means the

entries up to time step t. At every time step, ût needs to be targeted at true value

ut. This is the same as minimizing the loss function defined in the previous section.

From a probability perspective, the author maximizes the conditional probability

Pm(ût+1|ût, θ). Therefore, for each set of training data (X,Y), one needs to solve

81



the following problem:

θ̃ = argmax
θ

Pm(Y|X; θ), (4.29a)

= argmax
θ

n+p−1∏
j=n+1

Pm(ûj+1|û≤j,X; θ). (4.29b)

Combining equation (4.29a) with equation (4.9), one can obtain the full-form esti-

mator for the parameters θ in the neural machine:

θ̃ = argmax
θ

EX∼P̃d

[
n+p−1∑
j=n+1

log Pm(ûj+1|û≤j,X; θ)

]
. (4.30)
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4.4.4 Inhibitor
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ûn+1
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qn+1 qn+2 qn+p

qn+1 qn+p-1

α1 + = vn+2

+

inhibitor
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q1 α2 q2 αn qn αn+1 qn+1

ûn+2 ûn+p
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Figure 4.8: The inhibitor is the weighted average of the record vectors qt with the

self-learned weights αt. As a result, the decoder has direct access to all previous

step information for making the next step inference. Although within the neural

machine, one implicitly reads all previous steps to make the next step prediction,

the author makes this connection explicit, also facilitating the back-propagation of

error during training as well. The inhibitor vn+2 will be used in (4.31) to predict

the future.

As mentioned earlier, an inhibitor mechanism is introduced at each decoding

step, for augmenting the decoder input with the history information; that is, the

collection of record vectors qt generated both by the encoder and decoder, as shown

in Figure 4.8. Without this mechanism, the author finds that just a combination
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of only the encoder and decoder cannot provide a long-term prediction due to the

exponential growth of error. Now the output transformation function (4.26c) takes

the form

ût = UD(qt + vt), (4.31)

wherein vt is called the inhibitor vector, which is computed at each decoding step

as follows:

βi = ψ(ht) + φ(ût) ∈ R, for i = 1, . . . , t− 1. (4.32a)

αi =
eTβi∑t−1
j=1 e

Tβj
, (4.32b)

vt =
t−1∑
i=1

αiqi. (4.32c)

First, in equation (4.32a), the functions ψ and φ are used to compute a score βi for

each previous time step from the current hidden state ht and last time step output

ût. Subsequently, in equation (4.32b), the score βi is normalized through the softmax

function to get the weight αi. T is the self-learned parameter helping to differentiate

the relative importance of each time step from the history in determining the future.

It is similar to the definition of Boltzmann constant in statistical mechanics relating

to the average kinetic energy of particles in a gas [104]. The denominator in (4.32b)

serves as a normalization factor. Finally, the author computes the inhibitor vector vt

as the weighted average of the collection of qt up to time step t−1. Moreover, several

parallel inhibitor mechanisms can be adopted, resulting in additional performance

boosting for large-scale systems. Note that the inhibitor mechanism grows as the

decoding step approaches the end of the output time series. Therefore, the entire

history of time series is considered for predicting the behavior at the last time step;
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this is different from what is done with a traditional attention mechanism as stated

in [64]. Another distinction comes from the way in which the scores are computed

in equation (4.32a). Instead of comparing the distances of the hidden state vectors

as shown in [99], the author proposes a mini full-layer network to capture the scores

automatically.

4.5 Results and discussion

As mentioned earlier, three different chaotic systems are considered here, with

two of them governed by ordinary differential equations and another by a partial

differential system. The numerical experiments conducted with each of these systems

are presented next 2.

4.5.1 Lorenz’63 system

First, the author examines the prediction ability of the neural machine with

a low-dimensional chaotic system. It is mentioned that the neural machine can

predict any time series simulated from the same Lorenz’63 system after the training,

regardless of the initial conditions. This is different from the previous work of

Pathak et al. [74], wherein a continuous data feed from the same initial condition is

required for predicting future responses. Therefore, their network trained from one

initial condition cannot be applied to predict another time series from a different

initial condition. On the contrary, with the current work, the author has developed

2The details of hyperparameters for the training of the neural machine are listed in Appendix

A. Additional results are presented in Appendix B.
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a neural machine that can be used to predict future time series regardless of the

initial condition.

The results obtained for three different cases are shown in Figures 4.9, 4.10, and

4.11. In these three cases, the systems are started from different initial conditions.

However, with the constructed neural machine, the author is able to forecast the

response for 7 Lyapunov times. In other words, the neural machine has the ability

to forecast long-term responses of a chaotic dynamical system by only taking in

short-term histories.
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Figure 4.9: Lorenz’63 prediction (No.1).The black curves are history data segments.

The blue dots are predictions from the neural machine. The red curves are the

ground truth future datasets which are overlaid with the forecasting results for the

sake of comparison.
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Figure 4.10: Lorenz’63 prediction (No.2). This is a second result obtained by using

different historical data set but with the same neural network setting.
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Figure 4.11: Lorenz’63 prediction (No.3). Again, this is a third result coming from

a different history.

4.5.2 Lorenz’96 system

Next the author applies the constructed neural machine for forecasting the

behaviour of the Lorenz’96 system. The results are shown in Figures 4.12, 4.13, and

4.14. Through the results presented in these figures, it has been shown that the
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neural machine can also be used to capture the long-term behavior of a forty-eight

dimensional chaotic system, a relatively high-dimensional chaotic system compared

to the three dimensional system of the previous section.
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Figure 4.12: Lorenz’96 prediction (No.1). upper : ground truth simulation results

obtained by solving (4.12) for 3.2 Lyapunov times with N = 48 and F = 8; middle:

prediction results from the neural machine for the same initial condition; lower :

absolute error between the ground truth and the prediction.
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Figure 4.13: Lorenz’96 prediction (No.2). The result is obtained from the neural

machine by digesting a different history data set.
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Figure 4.14: Lorenz’96 prediction (No.3).
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4.5.3 Kuramoto-Sivashinsky system

In this section, the author would like to apply the same data-driven method

for predicting the behaviour of spatio-temporally chaotic systems, by using the

Kuramoto-Sivashinsky equation as an example.

The results are shown in Figures 4.15, 4.16, and 4.17. Again, the constructed

neural machine has the ability to replicate the long-term evolution defined by the

partial differential system without a change in the neural machine configuration

used for the ordinary differential systems.
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Figure 4.15: KS prediction (No.1). upper : true scalar field up to 3.2 Lyapunov times;

middle: predicted scalar field; lower : absolute error as the difference between the

true field and the predicted field.
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Figure 4.16: KS prediction (No.2) with a different history data set.
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Figure 4.17: KS prediction (No.3).
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Chapter 5: Neural Machine Based Forecasting of Non-autonomous

System Dynamics

There are an unfathomable number of systems in nature that depend on time.

Since the discovery of the expanding cosmos [105] and Big Bang [106], it is known

that the universe itself is a time-dependent system. Probably the most notable

time-dependent systems are the living creatures. The time effects can be observed

through, for example, circadian rhythms [107], where the fluctuations of physical

process are synchronized with the diurnal cycle. On a larger time-scale, every living

creature undergoes a time-dependent process, called aging.

Apart from living systems, the time dependence of dynamics is observed ubiq-

uitously in nature. Highly transient events, such as rogue waves [70], stock market

crash, tornadoes, and so on are often shown up, resulting in significant impacts.

Network theory about complex systems considers each individual element as being

time dependent to study how the local interactions can lead to large-scale synchro-

nizations.

Despite the prevalence of time-dependent dynamics in nature, there has been

comparatively little research done on the prediction and analysis of time series from

such systems. Mathematically, systems with explicit time dependent terms are
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categorized as non-autonomous systems. Next, the author will give the definition of

a non-autonomous system.

5.1 Background

5.1.1 Autonomous system

An autonomous system is a set of ordinary differential equations (ODEs) with

the form

d

dt
x(t) = f(x(t)), (5.1)

where x(t) ∈ Rn is commonly regarded as the state variable and f describes the

relation between differentials and the states. Systems that follow (5.1) are considered

to be time-invariant systems, which means that these systems are invariant to shifts

in time, either in the future or in the past. Suppose that x = x1(t) is the solution

to the initial value problem:

dx

dt
= f(x), x(t = 0) = x0. (5.2)

Then x2(t) = x1(t− t0) is also a solution to

dx

dt
= f(x), x(t = t0) = x0. (5.3)

This can be easily shown by the change of variables in time. Therefore, the above

property is called time-invariant. The lowest dimension of nonlinear autonomous

dynamical system which can exhibit chaotic behaviors is three; for example, the

Lorenz system [20] and the Rössler system [108].
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5.1.2 Non-autonomous system

A non-autonomous system has the form

d

dt
x(t) = g(x(t), t). (5.4)

Here, the governing law not only depends on the state itself, but also on an inde-

pendent variable t, which is time here. Therefore, the dynamical system described

by (5.4) is said to have explicit time-dependent terms.

5.1.3 Duffing system

The Duffing system can be described as second-order ODE with a cubic non-

linearity, written as

d2x

dt2
+ δ

dx

dt
+ βx+ αx3 = 0, (5.5)

where α is the cubic stiffness, β is the linear stiffness and δ is the damping factor.

It can also be expressed in a state-space form as
dx
dt

= y,

dy
dt

= −δy − βx− αx3,

(5.6)

where x can be regarded as position and y as velocity of the oscillator.

The above system was first investigated by Georg Duffing in 1918 to study a

practical oscillation problem [109]. Readers who are interested in a detailed review

on different applications and research efforts on the Duffing system are referred to

reference [110].
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When there is no damping(δ = 0), the integration of the above equation (5.5)

results in

H(t) ≡ 1

2
ẋ2 +

1

2
βx2 +

1

4
αx4 = const. (5.7)

Therefore, the undamped, unforced Duffing oscillator is a Hamiltonian system which

has periodic dynamic characteristics. The form of the potential valley V = 1
2
βx2 +

1
4
αx4 depends on the sign of β, if one assumes α > 0 as usual. See the figures below.

V

x
0

Figure 5.1: β > 0 with single potential valley for unforced Duffing oscillator. Fixed

point is located at x = 0.
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V

x
0

<0

Figure 5.2: β < 0 with double potential valleys for unforced Duffing oscillator. Fixed

point are located at x = 0,±
√
−β/α. As explained before, the center fixed point is

unstable and the other two are stable.

For the case α > 0, β > 0, H(t) is a Lyapunov function, and x∗ = 0 is globally

asymptotically stable, in the presence of damping, as shown in Figure 5.1. On the

other hand, for α > 0, β < 0 and δ > 0, there are three equilibria as shown in Figure

5.2, one in the peak and the other two in the valleys. In this scenario, trajectories

starting from all initial conditions converge to one of two stable valleys, except the

one starting from the peak of the hill. The three equilibria can be found by setting

d2x
dt2

= dx
dt

= 0, resulting in

x(β + αx2) = 0. (5.8)

Hence, when αβ < 0 there are three fixed points: x∗ = 0,±
√
−β/α. Apart from

visualization of the stability in the potential function plot, one can get the stability

information by analyzing the eigenvalues of the Jacobian matrix of equation (5.6).
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Let one rewrite equation (5.6) as

d

dt

x
y

 =

 y

−δy − βx− αx3

 (5.9)

and the Jacobian of the right-hand side of the above equation reads as

J =

 0 1

−β − 3αx2 −δ

 . (5.10)

Therefore, for the equilibrium x∗ = 0, the eigenvalue is

λ =
−δ ±

√
δ2 − 4β

2
(5.11)

and it is stable when β > 0 and unstable when β < 0. For the other two equilibria

x∗ = ±
√
−β/α, the eigenvalues read as

λ =
−δ ±

√
δ2 + 8β

2
. (5.12)

When β < 0, these two are stable and non-existent when β > 0.

The forced Duffing system, which has more complex dynamical behavior com-

pared with the unforced version, reads as

d2x

dt2
+ δ

dx

dt
+ βx+ αx3 = γ cos(ωt), (5.13)

where ω is the angular frequency and γ is the forcing magnitude. In state-space

form, the system reads as

dx
dt

= y,

dy
dt

= γ cos(φ)− δy − βx− αx3,

dφ
dt

= ω.

(5.14)
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This three-dimensional autonomous dynamical system can be proven to be chaotic

under certain parameter combinations [110].

In experimental realizations, the forced Duffing oscillator is usually represented

by a periodically driven steel beam that vibrates between two magnets as β < 0

[110–112]. On the other hand when β > 0, it models a forced spring with restoring

force F = −βx− αx3.

5.2 Softening Duffing oscillator

When α and β have opposite signs, one has a softening Duffing oscillator. The

path to chaos through period-doubling bifurcation [12] can be shown by systemat-

ically changing certain parameters in (5.13). Let the parameters be fixed so that

α = 0.2, β = −0.5, δ = 0.085, ω = 0.42. and let γ be varied. Starting from the initial

condition x(t = 0) = 1 and dx
dt
|t=0 = 0, the rich collection of trajectories governed

by (5.13) is shown in the following series of figures.
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Figure 5.3: Period-1 dynamics with γ = 0.1. The response period is the same as

the forcing period.
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Figure 5.4: Period-2 dynamics with γ = 0.2. The response period is twice the

forcing period.
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Figure 5.5: Period-3 dynamics with γ = 2.0.
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Figure 5.6: Period-5 dynamics with γ = 0.33.

105



0 2 4 6 8 10 12 14
t / T

−6

−4

−2

0

2

4

6

x

Chaotic Time Series

−5 0 5
x

−6

−4

−2

0

2

4

6

̇ x

Chaotic Phase Portrait

Figure 5.7: Chaotic dynamics with γ = 7.0.

Here, the author focuses on the prediction of chaotic time series given its

complexity and potential challenges, such as that shown in Figure 5.7. In the fol-

lowing context, the author chooses γ = 0.5 and 1.7, and fixes the rest parameters

as specified.

5.2.1 Prediction results: Forcing amplitude γ = 0.5

The maximal Lyapunov exponent is 0.0479, which is used to non-dimensionalize

the time axis in the following figures. The input time series are shown in black lines

and the output ground truth data is shown in red. The blue dots are the prediction

values from the neural machine discussed in the earlier chapter.
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Figure 5.8: Softening forced Duffing oscillator with γ = 0.5 prediction (No.1).
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Figure 5.9: Softening forced Duffing oscillator with γ = 0.5 prediction (No.2).
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Figure 5.10: Softening forced Duffing oscillator with γ = 0.5 prediction (No.3).

5.2.2 Prediction results: Forcing amplitude γ = 1.7

In this case, the maximal Lyapunov exponent has been calculated as 0.076.

Again for the sake of comparison, the time axis in the following figures has been

non-dimensionalized.
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Figure 5.11: Softening forced Duffing oscillator with γ = 1.7 prediction (No.1).
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Figure 5.12: Softening forced Duffing oscillator with γ = 1.7 prediction (No.2).
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Figure 5.13: Softening forced Duffing oscillator with γ = 1.7 prediction (No.3).

5.3 Hardening Duffing oscillator

When α and β have the same sign, one has the hardening Duffing oscillator.

Here we fix α = 5, β = 1, δ = 0.02, ω = 0.5 and γ = 8. The prediction results

obtained with the neural machine are shown below.
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Figure 5.14: Hardening forced Duffing oscillator prediction (No.1).
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Figure 5.15: Hardening forced Duffing oscillator prediction (No.2).
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Figure 5.16: Hardening forced Duffing oscillator prediction (No.3).
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Chapter 6: Concluding Remarks

6.1 Summary of contributions

In this dissertation, data-driven approaches have been studied for modeling

complex behaviors, such as transient events and aperiodic motions, in dynamical

systems.

In the first part, the author has applied data-driven approach in the context of

rogue waves and explained how to use field measurements to unveil the underlying

physical mechanism in the generation of ocean extreme waves. Specifically, from

the proposed stochastic wave interference model and the results obtained, it can

be inferred that extreme waves in the unidirectional sea might occur as a result

of the synchronization of a relative small number of interfering wave components.

With this model, one can help explain the observed wave probability distribution

better than a model based on superposition of linear waves in the large wave height

domain. It has been shown that wave modulation and phase interference are crucial

for understanding the occurrence of rogue waves. The stochastic model includes

wave envelope modulation to take into account the Benjamin-Feir instability in

unidirectional deep water and allows for phase variations, which are essential for

phase synchronization at the exact location of rogue wave occurrence. Given the

113



results, the author believes that the phase information is important for forecasting

rogue waves. The proposed stochastic method can be used to modify the widely

accepted sinusoidal waves as the basic components in modeling unidirectional ocean

waves, as the method proposed here is inherently consistent with nonlinear wave

evolution and interactions.

In the second part, the author has constructed a deep recurrent neural network,

called a neural machine, and illustrated the long-term prediction capability of this

machine for chaotic systems, including the Lorenz’63 system, the Lorenz’96 system,

the Kuramoto-Sivashinsky system and forced Duffing systems. This neural machine

can be easily adapted for forecasting of the behaviour of other chaotic systems

without a change in the configuration, except for some hyperparameter tuning. It is

believed that a significant advantage of this machine is that once it is trained by data

simulated from a certain dynamical system, it can be used to forecast dynamical

behaviours of the same system starting from various initial conditions which have

not been used to train the neural machine. Therefore, the prediction of the behavior

of a certain dynamical system from an arbitrary time instant is made possible by the

neural machine, without requiring continuous, non-stop monitoring of the previous

history data stream. This prediction that can be referred to as a neural machine

prediction and the network are found to be quite suitable for chaotic time series

forecasting.
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6.2 Recommendations for future work

For future work, one could study the limits on long-term forecasting of different

chaotic systems and incorporate the constructed network as a surrogate model in

numerical weather forecasting and data assimilation.

• It would be interesting to see how the neural machine would work with the

field data sets, given that these data sets are prone to noise and errors from

difference sources. Extra attention needs to be paid towards the uncertainty

and instability introduced by the above unfavourable conditions. Specifically,

weight functions should be applied to the loss function to average out the

effects of anomalies in the signal, to ensure the consistency and accuracy in

the forecasting.

• Predictions based on partial observations through the neural machine is also

an interesting direction to explore. One should face the reality that full ob-

servation of the state space of most dynamical system is not always feasible.

Take the numerical weather forecasting (NWF) as an example. The state

of the weather in certain area is not fully available to the forecaster. Data

measurement may not give extensive details about the meteorological quanti-

ties used in NWF. Most times, these quantities are dependent on each other.

Therefore, the time history of variable X incorporates the evolution informa-

tion of variable Y . Does the prediction of Y require the history of dependent

variable X? How about when Y is a function of X but not vice versa; that is,
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X is an independent variable? The answer to this type of questions is strongly

related to the discovery of causality in the system. Much pioneering work has

been done to detect the causality chains within a dynamical system, but not

through a data-driven perspective.

• Automatic determination of time step and length of the input time series in

generating a forecast can be quite challenging to do. According to Takens’ em-

bedding theorem, the attractor built from the time series of a single variable

is diffeomorphic to the original attractor built from the whole state variables

under certain conditions. The right choice of time delay and embedding di-

mension is crucial. Likewise, the time steps and lengths of input signals can

be of paramount importance for generation of long-term accurate forecasting.

Reinforcement learning (RL), which has been very successful in the most re-

cent artificial intelligence odyssey, can be applied in this direction to explore

the optimal combination of time interval and length.

• Neural machine forecasting provides an alternative way to assimilate data

other than the traditional methods such as 4D-Var, in numerical weather

forecasting. Therefore, a comparative study between the alternative and the

traditional methods can be performed to understand the relative advantage

and shortcomings of each method. This study can include the computational

cost, accuracy, and robustness. Moreover, a hybrid method based on the

combination of 4D-Var and neural machine can be created to improve the

aforementioned aspects in numerical weather forecasting.
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Appendix A: Neural Network Training

A.1 Details of Lorenz’63 system

The training and testing details for the Lorenz’63 system are listed below.

• dt = 0.05, used for numerically integrating (4.1)

• Batch size = 32

• Input time series length nx = 32

• Output time series length ny = 128

• Learning rate l = 0.001

• Number of units of the LSTM cell hidden states: 128

• Number of stacked LSTM cells: 2

• Number of inhibitor mechanisms: 2

A.2 Details of Lorenz’96 system

The training and testing details for the Lorenz’96 system are as listed below.

• dt = 0.05, used for numerically integrating (4.3)
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• Batch size = 32

• Input time series length nx = 32

• Output time series length ny = 64

• Learning rate l = 0.001

• Number of units of the LSTM cell hidden states: 256

• Number of stacked LSTM cells: 2

• Number of inhibitor mechanisms: 4

A.3 Details of KS system

The training and testing details for the Kuramoto-Sivashinsky system are as

listed below.

• dt = 0.25, used for numerically integrating (4.4)

• Batch size = 32

• Input time series length nx = 128

• Output time series length ny = 128

• Learning rate l = 0.001

• Number of units of the LSTM cell hidden states: 512

• Number of stacked LSTM cells: 2

• Number of inhibitor mechanisms: 4

118



A.4 Details of forced Duffing system

The training and testing details for the forced duffing oscillator are as listed

below.

• dt = 0.25, used for numerically integrating (5.13)

• Batch size = 64

• Input time series length nx = 128

• Output time series length ny = 256

• Learning rate l = 0.001

• Number of units of the LSTM cell hidden states: 128

• Number of stacked LSTM cells: 32

• Number of inhibitor mechanisms: 16
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Appendix B: Additional Results from Neural Machine Forecasting

For each of the dynamical systems discussed in Chapter 4, the following results

are obtained from the neural machine digesting on different initial conditions, but

with the same hyperparameters as specified in Appendix A. The initial condition

is varied to generate different historical data sets in order to demonstrate the fore-

casting capacity of the neural machine. The index numbers in the caption of the

following figures follow those in Chapter 4.

B.1 Lorenz’63 system
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Figure B.1: left : Lorenz’63 prediction (No.5); right : Lorenz’63 prediction (No.6).
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Figure B.2: left : Lorenz’63 prediction (No.7); right : Lorenz’63 prediction (No.8).
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Figure B.3: left : Lorenz’63 prediction (No.9); right : Lorenz’63 prediction (No.10).
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B.2 Lorenz’96 system
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Figure B.4: left : Lorenz’96 prediction (No.4); right : Lorenz’96 prediction (No.5).
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Figure B.5: left : Lorenz’96 prediction (No.6); right : Lorenz’96 prediction (No.7).
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Figure B.6: left : Lorenz’96 prediction (No.8); right : Lorenz’96 prediction (No.9).
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Figure B.7: left : Lorenz’96 prediction (No.10); right : Lorenz’96 prediction (No.11).
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Figure B.8: left : Lorenz’96 prediction (No.12); right : Lorenz’96 prediction (No.13).
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Figure B.9: left : Lorenz’96 prediction (No.14); right : Lorenz’96 prediction (No.15).
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B.3 Kuramoto-Sivashinsky system

0 1 2 3

0

10

20

30

40

50

60

N 

Ground Truth

−4

−2

0

2

4

0 1 2 3

0

10

20

30

40

50

60

N 

Prediction

−4

−2

0

2

4

0 1 2 3
Lyapunov Time

0

10

20

30

40

50

60

N 

Error

0

1

2

3

4

0 1 2 3

0

10

20

30

40

50

60

N 

Ground Truth

−4

−2

0

2

4

0 1 2 3

0

10

20

30

40

50

60

N 

Prediction

−4

−2

0

2

4

0 1 2 3
Lyapunov Time

0

10

20

30

40

50

60

N 

Error

0

1

2

3

4

Figure B.10: left : KS prediction (No.4); right : KS prediction (No.5).
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Figure B.11: left : KS prediction (No.6); right : KS prediction (No.7).

129



0 1 2 3

0

10

20

30

40

50

60

N 

Ground Truth

−4

−2

0

2

4

0 1 2 3

0

10

20

30

40

50

60

N 

Prediction

−4

−2

0

2

4

0 1 2 3
Lyapunov Time

0

10

20

30

40

50

60

N 

Error

0

1

2

3

4

0 1 2 3

0

10

20

30

40

50

60

N 

Ground Truth

−4

−2

0

2

4

0 1 2 3

0

10

20

30

40

50

60

N 

Prediction

−4

−2

0

2

4

0 1 2 3
Lyapunov Time

0

10

20

30

40

50

60

N 

Error

0

1

2

3

4

Figure B.12: left : KS prediction (No.8); right : KS prediction (No.9).
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Figure B.13: left : KS prediction (No.10); right : KS prediction (No.11).
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Figure B.14: left : KS prediction (No.12); right : KS prediction (No.13).
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Figure B.15: left : KS prediction (No.14); right : KS prediction (No.15).
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B.4 Softening forced Duffing oscillator with γ = 0.5
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Figure B.16: left : Softening Duffing with γ = 0.5 prediction (No.4); right : Softening

Duffing with γ = 0.5 prediction (No.5).
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Figure B.17: left : Softening Duffing with γ = 0.5 prediction (No.6); right : Softening

Duffing with γ = 0.5 prediction (No.7).
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Figure B.18: left : Softening Duffing with γ = 0.5 prediction (No.8); right : Softening

Duffing with γ = 0.5 prediction (No.9).

B.5 Softening forced Duffing oscillator with γ = 1.7
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Figure B.19: left : Softening Duffing with γ = 1.7 prediction (No.4); right : Softening

Duffing with γ = 1.7 prediction (No.5).
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Figure B.20: left : Softening Duffing with γ = 1.7 prediction (No.6); right : Softening

Duffing with γ = 1.7 prediction (No.7).
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Figure B.21: left : Softening Duffing with γ = 1.7 prediction (No.8); right : Softening

Duffing with γ = 1.7 prediction (No.9).
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B.6 Hardening forced Duffing oscillator
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Figure B.22: left : Hardening Duffing prediction (No.4); right : Hardening Duffing

prediction (No.5).
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Figure B.23: left : Hardening Duffing prediction (No.6); right : Hardening Duffing

prediction (No.7).
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Figure B.24: left : Hardening Duffing prediction (No.8); right : Hardening Duffing

prediction (No.9).
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Appendix C: 4th-order Time Stepping for Stiff PDEs

Many PDEs have nonlinear terms with low-order derivatives and linear terms

with high-order derivatives, such as Allen-Cahn, Burgers, Fitzhugh-Naguno, and

Kuramoto-Sivashinsky equations. High-order approximations to the derivatives are

desired in order to obtain good accuracy. However, most computations are restricted

to second order in time by the combination of stiffness and nonlinearity. Exponential

Time-differencing Runge-Kutta 4th-order (ETDRK4) method is designed to improve

the temporal accuracy of such stiff PDEs [113]. This method can be illustrated

briefly in the following.

Generally, a PDE can be written in the form

ut = Lu+N (u, t), (C.1)

where L and N are linear and nonlinear operators, respectively. Discretizing the

spatial derivatives will lead to a system of ODEs, which can be written as

ut = Lu+N(u, t). (C.2)

In order to discuss ETDRK4, one needs to first mention integrating factor (IF)

and Runge-Kutta 4th-order(RK4) methods.

With IF, one uses the idea of changing the variable in PDE in order to solve
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the linear part exactly, and then uses a numerical scheme to solve the transformed,

nonlinear part. This has been widely applied in references [114–117].

Starting with equation (C.2), one can make a change of variable

v = e−Ltu. (C.3)

The multiplier e−Lt is called as the integrating factor. When working with Fourier

collocation method in the spatial discretization scheme, the multiplier will be a

matrix exponential. Differentiating both sides of (C.3) results in

vt = −e−LtLu+ e−Ltut. (C.4)

Now if multiples (C.2) by e−Lt, one can get

e−Ltut − e−LtLu = e−LtN(u), (C.5)

which is

vt = e−LtN(eLtv). (C.6)

The removal of the linear high-order part will allow us to use any kind of time-

differencing scheme, such as RK4. Let f = e−LtN(eLtv). Then, the RK4 scheme

reads as

a = hf(vn, tn), (C.7a)

b = hf(vn + a/2, tn + h/2), (C.7b)

c = hf(vn + b/2, tn + h/2), (C.7c)

d = hf(vn + c, tn + h), (C.7d)

vn+1 = vn +
1

6
(a+ 2b+ 2c+ d), (C.7e)
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where h is the time step.

ETD is algebraically similar to the IF method. Integrating both sides of (C.6)

leads to

vn+1 = vn +

∫ h

0

e−L(tn+τ)N(u(tn + τ), tn + τ)dτ. (C.8a)

e−L(tn+h)un+1 = e−Ltnun +

∫ h

0

e−L(tn+τ)N(u(tn + τ), tn + τ)dτ.(change of variable)

(C.8b)

un+1 = eLhun + eLh
∫ h

0

e−LτN(u(tn + τ), tn + τ)dτ.(cancel e−Ltn) (C.8c)

This equation is exact since no approximation is introduced at this point. Cox and

Matthews [118] have provided a generic formula to obtain high-order approximations

un+1 = eLhun + h
s−1∑
m=0

gm

m∑
k=0

(−1)k
(
m

k

)
Nn−k, (C.9)

where s is the order scheme, and gm can be obtained by the recurrence relation

Lhg0 = eLh − I, (C.10a)

Lhgm+1 + I = gm +
1

2
gm−1 +

1

3
gm−2 + · · ·+ g0

m+ 1
, m ≥ 0. (C.10b)

They also reported the RK4 version of the above formula in the matrix form as

an = eLh/2un + L−1(eLh/2 − I)N(un, tn), (C.11a)

bn = eLh/2un + L−1(eLh/2 − I)N(un, tn + h/2), (C.11b)

cn = eLh/2an + L−1(eLh/2 − I)(2N(bn, tn + h/2)−N(un, tn)), (C.11c)

un+1 = eLhun + h−2L−3{[−4− Lh+ eLh(4− 3Lh+ (Lh)2)]N(un, tn) (C.11d)

+ 2[2 + Lh+ eLh(−2 + Lh)](N(an, tn + h/2) +N(bn, tn + h/2))

+ [−4− 3Lh− (Lh)2 + eLh(4− Lh)]N(cn, tn + h)}.
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It is remarked that ERDRK4 suffers from the numerical instability due to the

calculation of such form

g(z) =
ez − 1

z
. (C.12)

The accurate numerical calculation of the above form is notoriously problematic

[119, 120], mostly due to the cancellation error when expressing the exponentials in

the numerator(considering its Taylor expansion). The coefficients

α = h−2L−3[−4− Lh+ eLh(4− 3Lh+ (Lh)2)], (C.13a)

β = h−2L−3[2 + Lh+ eLh(−2 + Lh)], (C.13b)

γ = h−2L−3[−4− 3Lh− (Lh)2 + eLh(4− Lh)], (C.13c)

are high-order analogues to (ez − 1)/z. If L has eigenvalues close to zero, the

cancellation effect will be more severe, which paralyses the ETDRK4 in practical

applications. Kassam and Trefethen [113] used complex contour to bypass the direc-

tion calculation of the above coefficients. Here the author uses Padé approximation

as the approach to address the numerical instability. The kth-order Padé approxi-

mation has the form

φk(z) =
1

(k − 1)!

∫ 1

0

ez(1−x)xk−1dx, for k = 1, 2, ... (C.14)

The first three orders can be explicitly written as

φ1(z) =
ez − 1

z
, (C.15a)

φ2(z) =
ez − 1− z

z2
, (C.15b)

φ3(z) =
2ez − 2− 2z − z2

2z3
. (C.15c)
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Now the (C.13) can be written as

α = h(φ1(z)− 3φ2(z) + 4φ3(z)), (C.16a)

β = h(φ2(z)− 2φ3(z)), (C.16b)

γ = h(−φ2(z) + 4φ3(z)), (C.16c)

where z = Lh. Since the evaluation of fractions (C.12) has been transformed to

the integration such as in the case of (C.15), the numerical stability is improved

significantly.

For spatial derivatives in the periodic Kuramoto-Sivashinsky equation, the au-

thor uses Fourier spectral method to transform (4.4) into the Fourier space, resulting

in

ût(k) = −ik
2
û2 + (k2 − k4)û, (C.17)

where k = 2πn
L
, n = −N/2+1, . . . , N/2 and û(k) = F(u(t)), the Fourier transform of

u(t) with wave number k. Following the standard form in (C.2), the above equation

can be written as

ût = Lû+N(û, t), (C.18)

where (Lû)(k) = (k2− k4)û(k), N(û, t) = − ik
2

(F((F−1(û))2)). Then the Kuramoto-

Sivashinsky equation can be solved by using ETDRK4.
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