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1. Introduction.

There are many discretisation strategies available for the linear convection-diffusion equation

(1.1) —eViu(z,y)+w-Vu(z,y) = f(z,y) in Q
w(z,y) = glz,y) on 69

where the small parameter € and divergence-free convective velocity field w = (w1 (2, y), wa(z,y))
are given. In this paper, we analyse some well-known methods which involve the addition of
upwinding to stabilise the discretisation for problems involving boundary layers. In particular,
we focus on characterising exactly how this upwinding affects the resulting discrete solutions.

One possible discretisation technique is the Galerkin finite element method (see for example
[3], [5], [6]). This is based on seeking a solution u of the weak form of equation (1.1),

eVu, Vo) + (w.NVu,v) = (f,v) VveV,

where the test functions v are in the Sobolev space V = H{(Q). Restricting this to a finite-
dimensional subspace V}, of V gives

(1.2) e(Vup, Vo) + (w.Nup,v) = (fu,v) VveV,
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where fj, is the L2({2) orthogonal projection of f into V}, and h is a discretisation parameter.
Choosing the test functions equal to a set of basis functions for V}, (usually continuous piecewise
polynomials with local support) leads to a sparse linear system whose solution can be used to
recover the discrete solution wy,.

One quantity which has an important effect on the quality of the resulting discrete solution
is the mesh Péclet number
Iwilh

2e

In particular, if P, > 1, then the discrete solution obtained from the Galerkin method may ex-
hibit non-physical oscillations. For the one-dimensional analogue of (2.1), this is well understood
(see for example [6, p. 14]); for an analysis of the two-dimensional case, see [1]. An approach for
minimising the deleterious effects of these oscillations, especially in areas of the domain away
from boundary layers, is to stabilise the discrete problem by using an upwind discretisation. A
particularly effective implementation of this idea is via the streamline diffusion method [5, §9.7],
whereby a stabilisation parameter

(1.3) a

P, =

_6h
[Iwl]

is introduced (with § > 0 a parameter to be chosen) and the weak form (1.2) is replaced by
(1.4)  e(Vup, Vo) + (w.Vup,v) + (w-Vuy,aw - Vo) = (fr,v+ aw - Vo) Vo € V.

Formulation (1.4) has additional coercivity in the local flow direction, resulting in improved
stability. Setting é = 0 reduces (1.4) to the standard Galerkin case (1.2).

In [1], we developed an analytic technique for characterising the nature of oscillations in
discrete solutions arising from the Galerkin discretisation (1.2). More specifically, for the case
of grid-aligned flow, we presented an analytic representation of the discrete solution, enabling
isolation of any oscillatory behaviour in the direction of the flow. Using this framework, we
studied the dependence of solution behaviour on the mesh Péclet number in some detail.

In this paper, we apply the tools developed in [1] to various upwinding strategies for dis-
cretising (1.1). For the most part, we focus on the streamline diffusion method (1.4), examining
the effect of § on the quality of the resulting discrete solutions. In section 2, we summarise
the Fourier analysis presented in [1] and derive an explicit formula for the discrete streamline
diffusion solution for a model problem with grid-aligned flow. Section 3 contains the details of
this process in the case of bilinear finite elements. The resulting formulae allow us to investigate
various issues which influence the choice of stabilisation parameter §. We completely charac-
terise the effect of ¢ on oscillations in the discrete solution in the flow direction, and discuss the
implications of this for solution accuracy. In the remaining section we illustrate how the same
approach can be used to understand other discretisation methods. We analyse an analogous
streamline diffusion (upwind) discretisation for a finite difference stencil, and explain the com-
parative lack of effectiveness of isotropic artificial diffusion.

2. Summary of Fourier analysis. In this section, we summarise the Fourier techniques
used in [1] to construct an analytic expression for the entries in the discrete solution vector u.
Setting w = (0,1) and f=01in (1.1), we obtain the ‘vertical wind’ model problem

Ju

(2.1) —eViu + 3 0

in Q= (0,1)x (0,1),

with Dirichlet boundary conditions as shown in Figure 2.1. Using a natural ordering of the un-



0,1) u=f,(x) 1,1)

u=f(y) u=f(y)

(0,0) u=fy(x) 1,0)

Figure 2.1: Boundary conditions.
knowns on a uniform grid of square bilinear elements with N = 1/h elements in each dimension,
both (1.2) and (1.4) give rise to a linear system
(2.2) Au="f

where the coefficient matrix A is of order (N —1)2. Denoting the coefficients of the computational
molecule by

my ms my
I
(2.3) my <~ mi; — My,
|
meg ms meg
the matrix A can be written as
My M, 0
Ms My My
(2.4) A= L
Ms My M,
0 Ms M,

where My = tridiag(mg, m1, mg), My = tridiag(ma, ms, m4) and M3 = tridiag(mse, ms, mg) are
all tridiagonal matrices of order N —1. Given that the eigenvalues and eigenvectors of the blocks
of A satisfy 4

Myv; =Xv; Aj =mq+ 2mgycos %

(2.5) Myv; =o0;v; 0; = mg+ 2mycos %

M3v; =v;v; 7; = ms+ 2me cos &7
for j =1,..., N — 1, where the eigenvectors are

2 ' 2j N — 1)t
(2.6) vi=\wy [sin‘%, sin%, ...,sin% ,

we may obtain the decomposition

A=0P)r(vp)’
where V = diag(V,V,...,V) is a block diagonal matrix with each block V having the N — 1

eigenvectors (2.6) as its columns, and P is a permutation matrix of order (N — 1)%. The matrix



T is also block diagonal, with diagonal blocks T; = tridiag(y;, A;,04), ¢ = 1,..., N — 1. Using
this decomposition, (2.2) implies

(2.7) u=VPy
where the vector y is the solution to the linear system
(2.8) Ty = PTVTf = 1.

As T is block diagonal, this system can be partitioned into N — 1 independent systems of the
form )
(2.9) Ty = f;
where T; is defined above and y and f are partitioned in the obvious way. Because T; is a
Toeplitz matrix, each of these systems can be considered as a three-term recurrence relation
which can be solved analytically to give an expression for each entry y;p of y;, k=1,...,N —1

in (2.9). Finally, to obtain an explicit formula for the entries of u, we permute and transform
these entries via (2.7) to get

2 =t gr
(2.10) wip =\/~= D sin ==y
N =1 N

for j,k=1,...,N — 1.

To obtain an expression for the entries y;; in (2.10), we must consider the vectors . As
f=01in (2.1), the only nonzero entries in the original right-hand side vector f in (2.2) involve
sums of certain matrix coefficients times boundary values, which are transformed and permuted
to obtain f in (2.8). The details of this process can be found in [1]: here we simply state that
each right-hand side vector f;, i = 1,...,N — 1, in (2.9) can be written as

ti+si | vy

where b; involves data from the bottom boundary values, #; involves data from the top boundary
values and s; combines information from the left and right boundary values. We will make the
same assumption as in [1] that the functions fi(y) and f,(y) on the left and right boundaries
are constant. This simplifies the presentation of the analysis.

The solution of each system (2.9) is now the solution of a three-term recurrence relation with

constant coefficients whose auxiliary equation has roots
—Xi — [ AF — oy

=i +1/ A% — doyy,

2.11 ) = S
(211) (i) S ) =
The solution of this recurrence relation can be written as
(2.12) Yir = F3(0) + [F1(2) — F5(0)] G (i, k) + [Fa(e) — F3(2)] Ga(i, k)
where
k k
: M1 — Mo
Gi(i, k) = ——
py =y

. k N H]f—ﬂg
G2(lak) = (1 - H1) - (1 — ) [7]\7 N] ,
I £ 5)



and the functions
Bi)=-2 Rl =
i) =—— )= ————
! a;’ ’ o+ A+ Vi
involve the coefficient matrix entries and boundary condition information (see [1] for details).
We emphasise that the functions F,, (i), m = 1,2,3 in (2.12) are independent of the vertical
grid index k: for fixed ¢, the behaviour of y in the streamline (vertical) direction depends only on
the functions G1(¢, k) and Gg(¢, k). In addition, as Fy(¢) is related to the top boundary values,
F5(i) is related to the sum of the left and right boundary values (which have been assumed to
be constant for this analysis) and F5(7) is related to the bottom boundary values, (2.12) shows
that different boundary conditions will dictate how the functions G1(¢, k) and G5(4, k) combine
to produce different two-dimensional recurrence relation solutions y;z. In the next section, we
analyse the behaviour of these solutions in some detail for the streamline diffusion finite element
discretisation (1.4) with bilinear elements.

3. Streamline diffusion discretisation with bilinear finite elements. In [1],
an explicit expression for (2.12) for the Galerkin finite element method with bilinear elements
was derived and analysed. Here we present the equivalent analysis for the streamline diffusion
finite element discretisation (1.4) with a view to precisely characterising the effect of the extra
diffusion on the oscillations that occur with the Galerkin method when P, > 1. We again use
bilinear elements.

3.1. The recurrence relation solution. The coefficients in stencil (2.3) for a stream-
line diffusion discretisation using bilinear finite elements are given by

my = & (8h + 20), my=L(h—0,  ma=—1[20—1)h+d,

my=—15[(26 = 1)h+4€), ms=—2[(26+1)h+¢€, me=—15[(26+1)h+4€.

For convenience, we introduce the notation
%
C; = cos i
and write the eigenvalues (2.5) as

v = é{—Q[éh(Q + )+ 1420 = h(2+Ci))

A= SR+ C) + (14 200)] + 3e(1 — )
o = é{—Q[éh(Q + C) + e(142C)] + (2 + Ci)},

i=1,...,N — 1. Substituting these into (2.11) gives the expressions

4-00 1 126(1-C;) 1 3G+CH(1-Ci) 1

—26 — — +]1 — —

[2+ci] P, i¢ "oty BT @ror P
(3'1) Hi12 = 1+2C.7 1
—264+1— [ ] —
2+ C, | P.

for the auxiliary equation roots in (2.12).



3.2. Oscillations in the recurrence relation solution. We know from [1, Thm
5.1] that if P, > 1, then the recurrence relation solution y and the related discrete solution u
to the pure Galerkin problem (1.2) usually exhibit oscillations. In this section we address the
question of how the streamline diffusion parameter é can be chosen to eliminate oscillations in
the recurrence relation solution y. The issue of how this affects the resulting u will be discussed
in section 3.3.

Theorem 3.1 If P. > 1, then for any value of i € Sy = {1,..., N —1} there exists a parameter

.1 14207 1
(3:2) 5f‘20_[2+@]R)

such that & > 6F implies that G1(i, k) and Ga(i, k) in (2.12) are non-oscillatory functions of k.

Proof. We have

1 k
. M]f - Hg (E) ! E-N . E—N
Gi(i,k) = —x = ~ ps N =00 k) py
) (ﬂ) 1
2

As |pa/pz| < 1, ©(¢, k) is always positive. Hence if uy is negative, G1(¢, k) alternates in sign as k
goes from 1 to N — 1, that is, G1(i, k) is oscillatory for fixed ¢ € Sn. From (3.1), the numerator
of pg is always negative so, for 67 given by (3.2), we have the conditions

6> 065 = py >0, Gy, k) is non-oscillatory
6 <68 = po <0, Gy, k) is oscillatory

In addition, it can be shown that 0 < p; < 1 so that if G1(7,k) is non-oscillatory, then
Go(i, k) = (1 — uf) — (1 — pd¥)G1(i, k) must also be non-oscillatory.

Sample plots of G1(i,k) for various values of ¢ € Sy when N = 16 and P. = 3.125 are
given in Figure 3.1.  Only the right half of the range of k£ has been plotted in each case to
magnify the area of interest. Fach subplot shows the behaviour for three distinct values of ¢,
namely ¢ = 0.2 (solid line, o), 6 = 0.4 (dotted line, {) and § = 0.6 (dashed line, A). Given the
relevant critical values 67 ~ 0.34, 6]0\,/2 ~ 0.42 and 65_; ~ 0.65 for this problem, the dependence
of oscillations on the value of ¢ is clear. For § = 0.2 (that is, § < 6 Vi € Sy), all functions
G'1(i, k) are oscillatory; for & = 0.4, G1(1, k) is non-oscillatory (as ¢ > 67) and G1(N/2, k) is only
very mildly oscillatory; for é = 0.6, only G1(N — 1,k) is oscillatory (as 6§ > 6¢ for i = 1, N/2).
Analogous behaviour is seen in Figure 3.2 for G3(¢, k) with the same parameter values, although
the oscillations here occur about the function 1 — ¥ rather than zero.

We now define

1 1 1 1
. (5* =—|1- — , 6* =—11 —
(33) - %) 1+ %)
(as in [2]), so that
(3.4) b <65 < 6"

for all values of ¢ € Sn. If 6 > 6%, then 6 > 6¢ for each 7 € Sy and all of the functions G1(4, k)
and G'2(¢, k) will be non-oscillatory in terms of k. We therefore have the following corollary to
Theorem 3.1:
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(c)i=N-—1.

Figure 3.1: Plots of G1(¢, k) against k for fixed ¢ with ¢ = 0.2 (solid, o), § = 0.4 (dotted, ¢) and
6 = 0.6 (dashed, A).

Corollary 3.1 For any value of 6 such that § > 6, the functions G1(i, k) and Gy(i,k) in (2.12)
are non-oscillatory functions of k for every i € Sny. Hence the recurrence relation solution 'y is
a sum of smooth functions and will not exhibit oscillations in the streamline direction.

The case § = ¢f requires special attention. With this value, o; = 0 in (2.5) and the resulting
matrix 75 in (2.9) is bidiagonal. This leads to a two-term recurrence relation with auxiliary

equation root
1

p = 1+3(1—Ci)i
2+C; P.

and solution
(3.5) yir = Fa(i)p* + Fa(i)(1 = p).

As 0 < p < 1 for any ¢ € Sy, ¥y is non-oscillatory in the streamline direction. In addition,
p — 1 as P. — oo giving the solution y;; = F3(i). Looking ahead to section 3.3, applying
transformation (2.10) gives u;, = fo(x;) (see (3.8)). This is the solution to the reduced problem
(obtained by setting ¢ = 0 in (2.1)) where the bottom boundary values are simply transported
in the direction of the flow without any diffusion present. That is, with the choice 6 = 4¢ for



0.6
[

(c)i=N-—1.

Figure 3.2: Plots of G5(¢, k) against k for fixed ¢ with ¢ = 0.2 (solid, o), § = 0.4 (dotted, ¢) and
6 = 0.6 (dashed, A).

each 7, the discrete solution is exact at every interior node in the limit as P. — oc.
3.3. Oscillations in the discrete solution. In this section we consider the impact of
transformation (2.10) on the recurrence relation solution y, with a view to choosing é to obtain

an oscillation-free discrete solution u. We begin by considering the functions F,,(¢), m = 1,2,3
n (2.12). Following the analysis of [1, §4.4 and Appendix] we can derive expressions

V25 sonti

(3.6) (i) = flesm '

Fs(1) [ Z foly) sin B8

for the streamline diffusion weight functions in the special case where the constant left and right

Fi(7)



boundary values f; and f, are equal. From (2.12), we therefore have

[ Z fo(zy) sin 28 [ Z fi(zp) — fo(zp)]sin p;\;rGl(i,k)
(3.7) [ — fo(zp)] sin p]Z\ng(i,k)

[1, Thm 4.2]. Note that the expressions in (3.6) hold for any stencil of the form (2.3) whose
entries sum to zero. In particular, this implies that the functions in (3.6) are the same for
discretisations (1.2) and (1.4).

We now apply transformation (2.10) to (3.7) to obtain an expression for the entries of the
discrete solution vector u. As in [1], for the first term we have

(3.8) % sinﬂ {f Z fo(zy) sin 28 } fo(z))

where fi(x) is the bottom boundary function in Figure 2.1. Applying (2.10) to the full expression
(3.7) therefore gives

N-1
(3.9) Wik = i)+ e 3 [ Glib) 4 bigGiati )]
=1
where
a sin ym Nz_:l[f (z,) — fo(zy)]sin pim
o= v b —
J N = t\p P N
(3.10)

T

.. N-1
.oym . P
bij = smeZ:;[fl—fb(xp)]smT.

That is, along a streamline (j fixed), u consists of the bottom boundary value on that line plus
a linear combination of the functions G1(7, k) and Ga(é, k) for ¢ € Sy. Note that a;n_j) = aj;
and b;n_j) = bij, so that if fp(x) is symmetric about the centre vertical line of the grid, then
so is u.

We can use the representation (3.9) to obtain insight into the effect of ¢ on the quality of
the solution in the streamline direction. Recall from section 3.2 that if § > ¢7 in (3.2) then the
functions G'1(4, k) and Go(¢, k) are non-oscillatory in the streamline direction for that particular
i € Sy. In accordance with formulation (1.4), however, we would like to choose one global
parameter ¢ for all values of ¢ € Sy. We can do this using Corollary 3.1, which implies that if
6 > 6% in (3.3) then (3.9) is a sum of smooth functions, establishing the following result:

Theorem 3.2 For a streamline diffusion discretisation of (2.1) with bilinear finite elements,
the discrete solution u does not exhibit oscillations in the streamline direction when 6 > 6*.

In practice, it turns out that the restriction on é given by this theorem is too harsh, and it
is possible to obtain a non-oscillatory u for values of é smaller than 6* due to the ‘smoothing’
nature of transformation (2.10). In [1], the precise effect of this transformation was studied in



the context of the behaviour of the Galerkin finite element solution for different mesh Péclet
numbers. Here we present a similar discussion of the effects of varying é in the streamline
diffusion method. We will use notation based on considering u;; in (3.9) as a sum of smooth
and oscillatory parts. That is, letting ¢* be the lowest value of ¢ € Sx such that § < 8¢, we write

1 N1
ujp = folwj) + % (Z [ai; G (i, k) + bijGa(i, k)] + D [aGrli k) + bijGZ(ivk)])

=1 1=1*

(311) = fb(xj) + Ssmooth + Sosc-

Note that the above analysis implies S¢mooth = 0 when 6 < 6, and Sosc = 0 when 6 > 6*. As
6 increases from 6., +* will increase so that Sgnooth contains more and more of the terms, with
the overall smoothness of u dependent on the relative size of the two sums Sgnooth and Soec.

We now focus on the specific example with boundary condition functions f; = 1, f, = f; =
fr = 0. For this problem, the coefficients in (3.11) simplify to

.. N-1 .
. ym . pim
aij = sin = E sin bi; =0,
p=1

with the magnitude of each a;; decreasing rapidly as ¢ goes from 1 to N —1 as shown in Figure
3.3 (taken from [1]). This means that the contributions to u;; from the functions Gy(¢, k) are

ol

-2 -4

(a) j = 1. (b) j = N/A. (c) j = /2.

Figure 3.3: Plots of coefficients a;; against 7 for N = 16.

much larger for small indices ¢, so that the smoothness of G1(7, k) for small 7 plays a much more
important role. In particular, it is not necessary for GG1(7, k) to be non-oscillatory for all ¢ € Sy
in order for |Ssmootn| to dominate |Sqsc| and the resulting function u to be smooth.

We illustrate these ideas in Figures 3.4 and 3.5 for this example problem with N = 16 and
P. = 2. The first figure shows uy; (or, equivalently, U(N—l)k) plotted against k. This is the
vertical cross-section of the solution obtained by fixing 7 = 1, which is the most oscillatory of the
vertical cross-sections for this problem. Fach plot shows a comparison of Sgmeotn (dotted line, o)
and Sesc (dashed line, o) with uyy (solid line, x) for a different value of ¢, where again only the
right half of the range of k£ has been plotted to magnify the area of interest. For this example,
6. = 0.25 and 6* = 0.75. Plot (a) shows the Galerkin case (6 = 0) where all of the functions
G1(t, k) are oscillatory and Ssmooth is zero. This is still true in plot (b), where § = 4., but the
magnitude and extent of the oscillations has been reduced considerably. The result of choosing
6 = 6* according to Theorem 3.2 to guarantee an oscillation-free discrete solution by ensuring a

10
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(c) 6 =6 = 0.354. (d) § = 6* = 0.75.

Figure 3.4: Comparison of Ssmooth (dotted line, 0) and Sqsc (dashed line, o) with uq (solid line,

X).

non-oscillatory y is shown in plot (d). Here too much extra diffusion has been added. Plot (c)
shows uyy, for & = 65 = 0.354, which lies in the interval (6£,65), that is, 7* = 8. This is the lowest
value of * such that Sgnootn dominates (3.9) for this problem and wyj is non-oscillatory.

The corresponding full two-dimensional solutions u are shown in Figure 3.5, where the bound-
ary values have been omitted so that the fine detail of each solution is visible. The overall
behaviour corresponds to that seen from the cross-sections: the severe oscillations present when
6 = 0 are almost eliminated by choosing 6 = é,, and setting 6 = 6* gives a smooth but overly-
diffuse solution. For é = &, the oscillations along the lines uy; and w5y, have just been
eliminated to give a completely smooth solution in the flow direction.

3.4. Solution accuracy. We have now completely characterised the effect of ¢ on
oscillations in the flow direction. One important question which remains is how the choice of é
affects the accuracy of the discrete solution. To investigate this, we again focus on the example
problem of the previous section with f; = 1, fy = f; = f, = 0. We compare solutions on a
16 x 16 grid with € = 0.015625 (so P. = 2) with a reference solution for the same value of ¢ on
a 256 x 256 grid. On this fine grid, we use the Galerkin method (6 = 0) as P. = 0.125 < 1 and
there are no oscillations. In what follows, we will denote the fine grid nodal solution vector by

11



(c) 6 =6 = 0.354.

Figure 3.5: Discrete solution at interior node points for N = 16, P. = 2.

ugs6 and its associated finite element solution by wgsg, likewise for the coarse grid solutions ufG
and ufy.

Figure 3.6(a) shows the variation with 6 of the error measured in two different norms. In
both cases the norm of the error is plotted against § for 0 < § < 1 with the values of 6, (0), ds
(¢) and 6* (x) highlighted. For P, = 6.25, 6, = 0.42, é5 = 0.468 and 6* = 0.58. The solid line
represents the discrete L..[0, 1] norm defined by

[ uzs6 — uglloe = T%%;X|u256($¢,yj) —ulg(zi,y))|
9.

where the points (z;,y;) = (ih,jh) are the nodes of the 16 x 16 grid. When using the finite
element method, it may be more natural to work with the Ly norm

1
213
(3.12) 256 — ulgll2 = {/ (U256 - Ufe) } :
Q

However, this measure leads to misleading results for singular perturbation problems of this type
as the overall error is heavily dominated by the error in the boundary layer, which we cannot
hope to resolve on a 16 x 16 uniform grid using low order elements. A more meaningful measure
of the error for our purposes is obtained using the L, norm of the error away from the boundary

12



(b) P. = 6.25.

Figure 3.6: Error variation with 6 in the discrete L., norm (solid) and L, norm (dotted) for
N =16.

layer; that is, we omit the top row of coarse grid elements from the region of integration in (3.12)
and integrate over (0, 1) x (0,0.9375) instead of Q@ = (0,1) x (0,1). This is the norm represented
by the dotted line in Figure 3.6(a). We note in passing that this curve is very similar to that
obtained for the discrete Ly norm defined by

N

1
2
2
256 — iyl = { > (u256($i73/j) - U%(wi,yj)) }

1,5=0

where (z;,y;) is again a node of the coarse grid.

We conclude this section with some observations about choosing é in practice. From Figure
3.6, it is clear that the optimal choice of § in terms of solution accuracy depends on the norm
in which the error is measured. Setting § = 65, which produces a completely oscillation-free
discrete solution u, does not result in the most accurate solution. Also, és is not in general
readily determined. The minimum error occurs for é close to ¢, in all cases and 6. is defined by
(3.3) for any P.. In addition, . coincides with the value shown in [2] to be good for efficient
solution of the resulting linear system by the GMRES iterative method.

4. Applications to other discretisations. Analysis of this type can be applied to any
discretisation whose stencil is of the form (2.3). We comment on two particular cases of interest
here.

4.1. Finite differences with streamline diffusion. The usual central finite difference
discretisation of (1.1) can also be stabilised using streamline diffusion, see for example [7, p.
1465]. Specifically, we apply the finite difference method to the differential equation

—(eV?2 4+ V- DV)u(z,y) +w-Vu(z,y) = f(z,y)

where diffusion in the streamline direction is added using



with

o Wy
Wl Il
and o as in (1.3). Assuming for convenience that |[|w|| = 1, the full computational molecule is
given by
wiwed € . Wsy w%é wiwgd
2h h? = 2h h 2h
AN I /
€ wp  wib de . 26 € . wy  wib
_____ it el =42 — 4t Mt
h? 2k h h? h h? 2k h
/ | \
w1 wy6 € wy w_%é w1 web
2h h?  2h h 2h

This simplifies to a stencil of standard five-point type for our model problem (2.1) with grid-
aligned flow. Using the notation of (2.3), the stencil entries are

de 26 € € 1 ]
M=ty M= me =g
0 e_ Lt 9 0
my =Y, ms = 52 2% hv me =
with related eigenvalues
1 h 1 1 h
%:ﬁ[—(gwh)—ﬂ, A= o 2(e 4 8h) 4 21 - €] ai:ﬁ[—(e—l—éh)—l—ﬂ.

This results in the expressions

g Pz

€

1 1 1
—26 —[2 - CZ]F + \/1 + 45(1 — CZ)F + (1 — Ci)(3 — Ci)—
H1,2 = i -
-204+1— —
+ 7
for the roots of the recurrence relation which appear in (2.12).
Here the sign of py (and hence the nature of the corresponding functions G4 (¢, k) and Ga(¢, k),
i € Sy) is independent of i: as the numerator of ug is always negative, we simply have the

conditions
6> 0. = p2>0,G1(i, k) is non-oscillatory

0 < b = p2<0,G1(t,k)is oscillatory

where 4, is given by (3.3). Hence the result equivalent to Theorem 3.1 is given by the following
theorem:

Theorem 4.1 For a streamline diffusion finite difference discretisation with P. > 1, 6 > 0,
implies that G1(i,k) and Gy(i,k) in (2.12) are non-oscillatory functions of k for any value of
1€ SN.

The special case 6 = 0, leads to the two-term recurrence with auxiliary equation root

1

P=0=0)
1Jr(1PCZ)
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and solution (3.5). Because p > 1, this solution is non-oscillatory in the streamline direction for
all 7 € Sy and, as in the finite element case, tends to the nodally exact solution in the limit as
P, — .

The fact that there is one critical parameter (independent of ¢) here means that there is no
issue about selecting a global parameter 6 as we had in the finite element case. Furthermore,
the analysis of the effect of transforming from y to u (cf. section 3.3) is greatly simplified. In
particular, for the same specific example problem with f; = 1 and f, = f; = f, = 0 studied
in section 3.3, the equivalent expression to (3.11) using finite differences has Ssmooth = 0 when
6 < by and Sosc = 0 when 6 > 8. Thus we immediately have the following theorem (cf. Theorem
3.2):

Theorem 4.2 For a streamline diffusion finite difference discretisation of (2.1), the discrete
solution u does not exhibit oscillations in the streamline direction when & > d,.

That is, in contrast to the finite element case, there is no ‘smoothing’ introduced by the Fourier
transformation: the same single parameter governs the presence of oscillations in both the re-
currence relation solution y and the discrete two-dimensional solution u.

4.2. Artificial diffusion. So far we have focused on adding smoothing in the streamline
direction only, which is just one of the many stabilisation methods available. In this section
we analyse the artificial diffusion method (see for example [4, pp. 218-219]) with a view to
comparing its smoothing effect to that of streamline diffusion. The artificial diffusion method
works by adding diffusion in an isotropic way which does not take account of flow direction, and
it is well known that this can result in smearing of internal layers. We can use the analytical
techniques presented in this paper to confirm that the streamline diffusion method avoids this
problem.

We again consider a vertical wind model problem using bilinear finite elements on a uniform
grid. The idea of the artificial diffusion method is to replace equation (2.1) by

(4.1) —(e4+6h)V3u+—=0 inQ=(0,1)x(0,1),
with 6 once again a stabilisation parameter to be chosen. Galerkin discretisation using bilinear

finite elements results in a matrix is of the form (2.4), which is therefore covered by our analysis.
The stencil entries in this case are given by

8 1 L
mi = g((Sh‘l’ 6), ma = —g((ﬁh‘l‘ 6)7 ms3 = _g[(é N 1)h+ 6]7

1 1 1
my = —[(46 = Dh+4d ms = =[5+ Dh+d, mg = —[(48+ 1)h +4d,

so the roots (2.11) of the corresponding recurrence relation are given by

1\ [4-C; 3u—cm5+Q)< 1)2
— 20+ — +4/1 26 + —
20+ 7) 5] ¢ MR 2
1 14 2¢; '
1—{204 —
(o 7) [556]
First we briefly consider the issue of oscillations in the streamline direction. Here, as in
section 3.2, the sign of pz (and hence the presence of oscillations in the recurrence relation

(4'2) ILL172 =
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solution) depends on the value of i € Sy. Defining the new critical value

=3 ([Tl - 7)
L2\ 1+ 2¢; P)’

we have different conditions for two sets of ¢ values, namely

§> 8% = g >0,Gi(i,k) is non-oscillatory
§ <8 = g <0,G(i, k) is oscillatory

%N <t <N —=1: pg<0,G1(1,k)is oscillatory.

Notice that this is different from the streamline diffusion case (cf. Theorem 3.1) in that there
is no choice of 6 which will make the recurrence relation solution oscillation free, as some of
the contributing functions G1(7,k) are always oscillatory. However, it can be seen using an
argument of the type presented in section 3.3 that the transformed solution is again dominated
by contributions from functions pertaining to lower values of 7. Hence, despite the fact that
G1(t, k) is always oscillatory for large ¢, it is still possible to obtain a non-oscillatory discrete
solution u. Note that inequality (3.4) is satisfied with 6% replaced by 52 For the particular (-
independent) choice § = é, from (3.3), equation (4.1) (and hence the artificial diffusion solution)
is independent of e.

To gain insight into the main difference between this method and the streamline diffusion
technique, we must examine solution behaviour in the ‘crosswind’ direction, that is, perpendic-
ular to the direction of the flow. To fix ideas, we will use the discontinuous boundary conditions

fb(X):{ 0, z; <05

L, z;>05 "7 fy)=1, filx)= fily)=0

so that the solution has an internal layer along = 0.5 as well as a boundary layer along the right
half of the top boundary. The internal layer derives from propagation of the bottom boundary
condition through the domain and, as € — 0, the width of this layer tends to zero. Ideally, this
phenomenon should be reproduced by a discretisation method, that is, we would like to obtain
a set of discrete solutions u in this limit whose variation from the bottom boundary function is
independent of j for fixed k. We now show that while the streamline diffusion method has this
property, the artificial diffusion method does not.

Consider the recurrence relation solution vector y for this problem. From (2.12), its entries
are given by

(4.3) yir = F3(0) (1 = G1(i, k) + [Fo(2) = F3(0)] Go(i, k)

with )
iT

] 9 (—1)Z+1 sin ﬁ
FQ(Z) = F m
COS N

[1, Appendix]| and F3(¢) as in (3.6). As the functions Fy(¢) and F3(¢) are the same for both
discretisations, any difference in solution behaviour must come from a difference in the behaviour
of the functions G1(¢, k) and Gy(¢, k) associated with the two methods. We therefore now focus
on how these functions vary with ¢ € Sy as € — 0 (P. — o) for k € Sy fixed. To simplify the
presentation of this analysis, we will assume that 6 is fixed independent of P., with é # 0,0.5.
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With the streamline diffusion discretisation, neglecting terms of O(P; ') and higher in (3.1)
gives the approximations

20+ 1
~1 ~— =
H1 ) F2 =557 g
so that
. k_ ok 1— 3k
Gi(ik) = L~ ST = Gk,

py —py 18
GQ(ka) = (1 - H]f) - (1 - H{V)Gl(lvk) ~ 0.

Thus, in the limit as P, — oo, both functions are independent of 7. We then have
yie =~ F3(i)(1 = Gi(k))

hence, using (2.7),
ujr =~ folzj)(1 = Gi(k)).
That is, the variation of u;; from the bottom boundary function is independent of j in this

limit. For the artificial diffusion discretisation, however, neglecting terms of O(P.!) and higher
n (4.2) gives

~26(4 — €)% /A1 + 1562) + 4(1 — 1262)C; + (1 — 1262)C?
2(1—8) + (1— 48)C;

H12 =

leading to approximations for G1(¢, k) and Go(¢, k) which depend on ¢ through C;. From (4.3)
the solution is therefore
R L . s
wip >~ fo(z;) — @ sin = (F3(0)G(i, k) — [Fo(i) — F5(0)] Ga(i, k).
=1
This has a j-dependence which the continuous solution in this limit does not.

This fundamental difference between the discretisations is demonstrated pictorially in Fig-
ure 4.1, which shows streamline and artificial diffusion approximations (and associated contour
plots) for this example problem with two values of ¢, 6§ = 0.4 and N = 16. Plots (a) and (b)
show that the streamline diffusion method captures the narrowing of the internal layer exhibited
by the continuous solution as € — 0 (P. — o0). The equivalent artificial diffusion approximation
does not, as shown in plots (c) and (d).
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(c) Artificial diffusion: P, = 2. (d) Artificial diffusion: P, = 200.
Figure 4.1: Solutions and contour plots for § = 0.4 and N = 16.
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