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Abstract

A general sampled-data model of PWM DC-DC converters [1, 2] is employed to study types
of loss of stability of the nominal (periodic) operating condition and their connection with
local bifurcations. In this work, the nominal solution’s periodic nature is accounted for via the
sampled-data model. This results in more accurate predictions of instability and bifurcation
than can be obtained using the averaging approach. The local bifurcations of the nominal
operating condition studied here are period-doubling bifurcation, saddle-node bifurcation, and
Neimark bifurcation. Examples of bifurcations associated with instabilities in PWM DC-DC
converters are given. In particular, input filter instability is shown to be closely related to the
Neimark bifurcation.

1 Introduction

There have been many studies of instabilities of PWM DC-DC converters. For example, subhar-
monic oscillation has been studied in [3, 4, 5, 6, 7, 8, 9, 10]; input filter instability in [11, 12, 13];
chaos in [14, 15, 16, 6, 17, 18, 19]; and various other instabilities in [20, 21, 22, 23, 24, 25]. From
a practical perspective, it is useful to classify instabilities depending on how and in what range
of operating conditions they arise. Bifurcation theory is a tool that facilitates the study of loss
of stability and its implications for system dynamical behavior. Upon loss of stability of a steady
state solution of a dynamical system, typically a bifurcation occurs in which new steady states can
arise. Thus, loss of stability of one steady state may lead to operation at a new steady state. A
useful classification of bifurcations is that of local bifurcation vs. global bifurcation [26, 27]. In
a local bifurcation, the original steady state is an equilibrium point or limit cycle. In a global
bifurcation, the original steady state has some other structure (say, an almost periodic solution,
or a chaotic orbit). In PWM DC-DC converters, the nominal operating condition is a periodic
steady state, i.e., a limit cycle. Since this limit cycle has a small ripple, it is often approximated
as an equilibrium point. This is true, for instance, in the averaging method. In this paper, local
bifurcations of PWM DC-DC converters are studied without invoking this approximation. The
focus on local bifurcations is due to the fact, from a practical point of view, that these bifurcations
can be expected to arise before any global bifurcation.
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The most popular approach for stability analysis of PWM DC-DC converters has been the
averaging method [28, 29]. Here, the nominal periodic steady state of a PWM converter is averaged
to an equilibrium. The periodic steady state in high switching operation has small amplitude
(ripple), and averaging is therefore a reasonable approach. However, close to the onset of instability,
the periodic nature of the steady state operating condition needs to be considered in order to obtain
accurate results. Indeed, it has been reported [30, 31] that averaging leads to erroneous conclusions
regarding the onset of instability.

This paper employs general sampled-data modeling [5, 32, 33, 34, 1, 2, 35] and analysis of
DC-DC converters. The local bifurcations that typically occur in PWM DC-DC converters are
studied. These are period-doubling bifurcation, saddle-node bifurcation, and Neimark bifurcation.
Examples of instability in PWM DC-DC converters are used to illustrate these bifurcations. In
particular, input filter instability is shown to be closely related to the Neimark bifurcation.

The remainder of the paper is organized as follows. In Section 2, local bifurcations of discrete-
time system are summarized. In Section 3, a general model for PWM DC-DC converters developed
by the authors in [1, 2] is recalled. In Section 4, necessary conditions for period-doubling bifurcation
and saddle-node bifurcation in PWM DC-DC converters are obtained. Examples of the three
bifurcations associated with instabilities in PWM DC-DC converters are given. Conclusions are
collected in Section 5.

2 Local Bifurcations in Discrete-Time Systems

In this section, the basic bifurcation theory used in the paper is recalled. For details, the reader is
referred to [36, 37, 38].

Consider a discrete-time parameter-dependent system

xn+1 = f(xn, α), x ∈ RN , α ∈ R (1)

The parameter α is called the bifurcation parameter. Suppose x = x0(α) is a fixed point of
Eq. (1) for all α. Denote A(α) = fx(x0(α), α), the Jacobian of f with respect to x at (x0(α), α).
The fixed point x = x0(α) is called a hyperbolic fixed point if A(α) has no eigenvalues on the unit
circle in the complex plane. If a bifurcation occurs, then it must occur for a value α∗ of α for
which A(α) is nonhyperbolic. There are three ways in which parameter variation can result in
hyperbolicity being violated, and these are associated with three distinct bifurcations.
Three Local Bifurcations
1. Period-doubling bifurcation (the bifurcation associated with a real eigenvalue passing through
the value −1): There is a curve of fixed point in the x-α plane on both sides of α = α∗ and a curve
of period-two points on one side of α = α∗ intersecting with the first curve at α = α∗.
2. Saddle-node bifurcation (the bifurcation associated with a real eigenvalue reaching the value 1):
There is a unique curve of fixed points in the x-α plane passing through (x0(α), α∗) and locally
lying on one side of α = α∗.
3. Neimark bifurcation (the bifurcation associated with a complex-conjugate pair of eigenvalues
crossing the unit circle): There is a curve of fixed points in the x-α plane on both sides of α = α∗
and the emergence of a small-amplitude “invariant circle” around the fixed-point on one side of
α = α∗.

Other names for these bifurcations are sometimes used. The period-doubling bifurcation is
also called flip bifurcation; the saddle-node bifurcation is also called fold bifurcation or tangent
bifurcation; and the Neimark bifurcation is also called secondary Hopf bifurcation.
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3 General Sampled-Data Model for PWM Converters

Without loss of generality, only continuous conduction mode [39, pp. 165-168] is considered. A
summary of the sampled-data modeling of closed-loop PWM converters discussed in [1, 2] is given.
This includes a general block diagram model as well as associated nonlinear and linearized sampled-
data models. This model is applicable both to voltage mode control [39, pp. 322-336] and current
mode control [39, pp. 337-340].

A block diagram model for a PWM converter in continuous conduction mode is shown in

Fig. 1. In the diagram, A1, A2 ∈ RN×N , B1, B2 ∈ RN×1, C,E1, E2 ∈ R1×N , and D ∈ R are

constant matrices, x ∈ RN , y ∈ R are the state and the feedback signal, respectively, and N is the
state dimension, typically given by the number of energy storage elements in the converter. The
source voltage is vs, and the output voltage is vo. The notation vr denotes the reference signal,
which could be a voltage or current reference. The reference signal vr is allowed to be time-varying,
although it is constant in most applications. The signal h(t) is a T -periodic ramp. In current mode
control, it is used to model a compensating ramp. The clock has the same frequency fs = 1/T as
the ramp. This frequency is called the switching frequency. Within a clock period, the dynamics
is switched between the two stages S1 and S2. The system is in S1 immediatedly following a clock
pulse, and switches to S2 at instants when y(t) = h(t).

S1 :

{
ẋ = A1x+B1u

vo = E1x

S2 :

{
ẋ = A2x+B2u

vo = E2x

Switching
Decision

?

Switch to S1 or S2

- vo

� y = Cx+Du

� clock

� h(t) = Vl + (Vh − Vl)(
t
T mod 1)

-u = ( )
vs
vr

Figure 1: Block diagram model for PWM converter operation in continuous conduction mode

Consider the cycle t ∈ [nT, (n + 1)T ). Take u = (vs, vr) to be constant within the cycle, and
denote its value by un = [vsn, vrn]

′. Let xn = x(nT ) and von = vo(nT ). Denote by nT + dn the
switching instant within the cycle when y(t) and h(t) intersect. Then, the system in Fig. 1 has the
following sampled-data dynamics:

xn+1 = f(xn, un, dn)

= eA2(T−dn)(eA1dnxn +

∫ dn

0
eA1(dn−σ)dσB1un) +

∫ T

dn

eA2(T−σ)dσB2un (2)

g(xn, un, dn) = C(eA1dnxn +

∫ dn

0
eA1(dn−σ)dσB1un) +Dun − h(dn)
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= 0 (3)

An illustration of mapping from xn to xn+1 is shown in Fig. 2.

tnT (n+1)T

xn+1

xn

state
plane

nT+d n

constraint
y(nT+d  )=h(nT+d  )nn

Figure 2: Illustration of sampled-data dynamics of PWM converter

A periodic solution x0(t) in Fig. 1 corresponds to a fixed point x0(0) in the sampled-data

dynamics (2) and (3). Let the fixed point be (xn, un, dn) = (x0(0), u, d), where u = [Vs, Vr]
′.

Substituting this fixed point into Eq. (2) gives (assuming 1 is not an eigenvalue of eA2(T−d)eA1d)

x0(0) = (I − eA2(T−d)eA1d)−1(eA2(T−d)
∫ d

0
eA1(d−σ)dσB1u

+

∫ T

d
eA2(T−σ)dσB2u) (4)

Similarly, x0(d) can be expressed as a function of d,

x0(d) = (I − eA1deA2(T−d))−1(eA1d
∫ T

d
eA2(T−σ)dσB2u

+

∫ d

0
eA1(d−σ)dσB1u) (5)

From Eq. (3),

Cx0(d) +Du− h(d) = 0 (6)

which is a 1-dimensional equation in one unknown d and can be solved by Newton’s method.
Using a hat ˆ to denote small perturbations (e.g., x̂n = xn−x0(0)), the system (2), (3) has the

linearized dynamics
x̂n+1 = Φx̂n + Γûn = Φx̂n + Γ1v̂sn + Γ2v̂rn (7)

where

Φ = eA2(T−d)(I −
((A1 −A2)x

0(d) + (B1 −B2)u)C

C(A1x0(d) +B1u)− ḣ(d)
)eA1d

= eA2(T−d)(I −
(ẋ0(d−)− ẋ0(d+))C

Cẋ0(d−)− ḣ(d)
)eA1d (8)

Γ = eA2(T−d)(

∫ d

0
eA1σdσB1 −

ẋ0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
(C

∫ d

0
eA1σdσB1 +D)) +

∫ T−d

0
eA2σdσB2 (9)

Here ẋ0(d−) and ẋ0(d+) denote the time derivative of x0(t) at t = d− and d+, respectively. Local
stability of the converter is determined by the eigenvalues of Φ, denoted as σ[Φ].
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4 Bifurcations in PWM DC-DC Converters

This section contains the main results of the paper. First, general necessary conditions for period-
doubling bifurcation and saddle-node bifurcation are obtained. This is followed by detailed illus-
trations of period-doubling, saddle-node and Neimark bifurcations for PWM DC-DC converters.

4.1 Necessary Conditions for Period-Doubling Bifurcation and Saddle-Node
Bifurcation

The periodic solution x0(t) in the system of Fig. 1 is asymptotically orbitally stable [40, 1] if all
of the eigenvalues of Φ are inside the unit circle of the complex plane. As a system parameter
(bifurcation parameter) varies, the trajectory of the eigenvalues can be plotted. As the trajectory
crosses the unit circle of the complex plane, a bifurcation occurs.

Two results are obtained. The first result gives a condition for λ to be an eigenvalue of Φ.
This is then applied to check for the occurrence of period-doubling bifurcation and saddle-node
bifurcation.

Theorem 1 Suppose that λ is not an eigenvalue of eA2(T−d)eA1d. Then λ is an eigenvalue of Φ if
and only if

1 + CeA1d(λI − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
= 0 (10)

Proof: Suppose λ is not an eigenvalue of eA2(T−d)eA1d, then

det[λI −Φ] = det[λI − eA2(T−d)eA1d] ·

det[I + (λI − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
CeA1d]

= det[λI − eA2(T−d)eA1d] ·

(1 + CeA1d(λI − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
)

So λ is an eigenvalue of Φ if and only if

1 + CeA1d(λI − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
= 0

2

Corollary 1
(i) If the system parameters correspond to an occurrence of period-doubling bifurcation (λ = −1),
then

1 + CeA1d(−I − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
= 0 (11)

(ii) If the system parameters correspond to an occurrence of saddle-node bifurcation (λ = 1), then

1 +CeA1d(I − eA2(T−d)eA1d)−1eA2(T−d) ẋ
0(d−)− ẋ0(d+)

Cẋ0(d−)− ḣ(d)
= 0 (12)
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In the PWM DC-DC converter, instabilities involve bifurcations of the periodic solution. The
three local bifurcations are described in more detail next.

In the period-doubling bifurcation, a 2T -periodic solution arises besides the original T -periodic
solution. In most PWM DC-DC converters, the period-doubling bifurcation is supercritical, where
the 2T -periodic solution is stable and the original T -periodic solution becomes unstable. An illus-
tration of such a bifurcation is shown in Fig. 3.

Figure 3: Periodic solution before and after supercritical period-doubling bifurcation (solid line for
stable solution and dashed line for unstable solution)

In the saddle-node bifurcation, a stable T -periodic solution collides with an unstable one at
the bifurcation point, and no periodic solution exists after the bifurcation. This may explain some
jump phenomena, or sudden disappearance of the nominal periodic solution in DC-DC converters.
An illustration of such a bifurcation is shown in Fig. 4.

disappearcollide

Figure 4: Periodic solution before and after saddle-node bifurcation (solid line for stable solution
and dashed line for unstable solution)

An illustration of a (supercritical) Neimark bifurcation is given in Fig. 5. After the bifurcation,
the steady-state trajectory is on a torus (with the time axis circled as another dimension). The
two angular frequency vectors (ωs and ωf ) of the trajectory in the figure are perpendicular to each
other. One of them is the same as the angular switching frequency ωs = 2πfs. Another one can be
determined from the bifurcation point where the eigenvalue trajectory of Φ crosses the unit circle
of the complex plane. Its value is fs · 6 σ(Φ), fs times the argument (i.e., phase) of the pair of
eigenvalue of Φ crossing the unit circle. The state trajectory will be periodic (phase-locking) if
these two frequencies are commensurate; otherwise it will be quasiperiodic.

4.2 Period-Doubling Bifurcation in Buck Converter under Voltage
Mode Control

Consider the example [6] of a buck converter under voltage mode control shown in Fig. 6. Let
T = 400µs, L = 20mH, C = 47µF , R = 22Ω, Vr = 11.3V , g1 = 8.4, Vl = 3.8V , Vh = 8.2V , (then

h(t) = 3.8 + 4.4[ tT mod 1]), and let Vs be the bifurcation parameter.
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t

t

ωs

ωf

state trajectory

state
trajectory

Figure 5: State trajectory after Neimark bifurcation

Let the state be x = (iL, vC). In terms of the block diagram model in Fig. 1, one has

A1 = A2 =

[
0 −1

L
1
C

−1
RC

]

B1 =

[
0
0

]
B2 =

[
1
L

0

]
C =

[
0 g1

]
D =

[
0 −g1

]
E1 = E2 =

[
0 1

]
The bifurcation diagram obtained from simulations is shown in Fig. 7. The circuit undergoes

a series of period-doubling bifurcations beginning at Vs = 24.5V approximately. The eigenvalues
of Φ (i.e. σ(Φ)) as Vs varies from 13.1 to 25.068V is shown in Fig. 8. They are calculated from
Eq. (8), while [19] obtains the same graph by numerical estimation. One eigenvalue of Φ is −1
when Vs = 24.527, which agrees exactly with the numerical results in Fig. 7.

Another way to determine the period-doubling bifurcation point is discussed next. From Eqs. (5)
and (6), the following equation relating Vs and d is obtained:

Vs =
h(d) + g1Vr

CeA2d(I − eA2T )−1A−1
2 (eA2(T−d) − I)B2

(13)

From Eqs. (11) and (5), another equation relating Vs and d at the period-doubling bifurcation is
obtained:

Vs =
ḣ(d)

C[(I + e−A2T )−1 + (I − eA2T )−1(eA2T − eA2d)]B2
(14)

The loci of these two equations are shown in Fig. 9. From the figure, the period-doubling
bifurcation point can be determined. The critical value of source voltage is Vs,∗ = 24.527V (at

d∗ = 2.039 × 10−4). This agrees with the result using the sampled-data approach.
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After period-doubling bifurcation, the original periodic solution becomes unstable, and a stable
2T -periodic solution arises. Take Vs = 26V , for example. Performing steady-state analysis stated
in [1, 2], the unstable T -periodic solution and the stable 2T -periodic solution can be obtained.
They are shown as the dashed line and solid line respectively in Fig. 10.

+
Vs
−

+
Vo
−

L

C R

Vr

Comparator

Ramp h(t)

y
+

−

+

− g 1

i L

+
Vc
−

Figure 6: System diagram
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Figure 7: Bifurcation diagram of the circuit in Fig. 6. Unstable periodic solutions (e.g., 2T -periodic
solutions) are not plotted.

4.3 Period-Doubling Bifurcation in Boost Converter under Current Mode Con-
trol

Consider the example [16] of a boost converter under current mode control shown in Fig. 11, where
T = 100µs, Vs = 10V , L = 1mH, C = 12µF , R = 20Ω, and Vr (current reference) is taken to be
the bifurcation parameter.
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Figure 8: σ(Φ) as Vs varies from 13.1 to 25.068
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Figure 9: Plot of Eq. (13) (dashed line) and Eq. (14) (solid line). The intersection (d, Vs) =
(0.0002039, 24.527) is the period-doubling bifurcation point
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Figure 10: Unstable T -periodic solution (dashed line) and stable 2T -periodic solution (solid line)
for Vs = 26V

Let the state be x = (iL, vC). In terms of the block diagram model in Fig. 1, one has

A1 =

[
0 0
0 −1

RC

]
A2 =

[
0 −1

L
1
C

−1
RC

]

B1 = B2 =

[
1
L

0

]
C =

[
1 0

]
D =

[
0 −1

]
E1 = E2 =

[
0 1

]
h(t) = 0

The bifurcation diagram of the circuit is shown in Fig. 12, where a period-doubling bifurcation
occurs at around Vr = 1.7.

The loci of σ(Φ) as Vr varies from 0.6634 to 3.3759 is shown in Fig. 13. One eigenvalue of Φ is
−1 when Vr = 1.7457 (and Dc = 0.433), which agrees exactly with the simulation result in [16].

4.4 Saddle-Node Bifurcation in Buck Converter under Discrete-Time Control

Take the power stage in Section 4.2. Change Vs to 20V and add a discrete-time controller. The
resulting system diagram is shown in Fig. 14. The switching decision in the (n + 1)-st cycle,
t ∈ [nT, (n + 1)T ), is as follows (similar to a leading-edge modulation): the switch is turned
off at t = nT and turned on at t = nT + dn. The switching instant dn is updated by dn =
`(0.3T − ki(in − Ip) − kv(vn − Vp)), where ki = −8.574 × 10−4, kv = 5.53 × 10−5, Ip = 0.6785,
Vp = 14.0263, and ` is a limiter:

`(t) =


0 for t ≤ 0
t for t ∈ (0, T ]
T for t > T

(15)

The discrete-time law above is very interesting. It will produce different static and periodic
solutions for different Vs. First, it can be shown that the switch being always on is a possible
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Figure 11: System diagram for the circuit in Section 4.3
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Figure 12: Bifurcation diagram of the circuit in Fig. 11
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Figure 13: σ(Φ) as Vr varies from 0.6634 to 3.3759

operation under some circumstances. In such an operation, dn = 0 for any n. Also when the
switch is always on, vo = Vs, i = Vs/R, (both are constant instead of being periodic,) and therefore
vn = Vs, in = Vs/R. From Eq. (15), the following inequality needs to hold in order to make dn = 0:

0.3T − ki(in − Ip)− kv(vn − Vp) = 0.3T − ki(
Vs
R
− Ip)− kv(Vs − Vp)

= 0.3T + kiIp + kvVp − (
ki
R

+ kv)Vs

≤ 0

Therefore for Vs > (kiR + kv)/(0.3T + kiIp + kvVp) = 19.213, the switch can be always on.
However, the switch being always on is not the only possible operation for Vs > 19.213. It can

be shown that for Vs ∈ (19.213, 20), there are another two periodic solutions: one is stable, another
one is unstable.

Take Vs = 19.9, for example. Performing steady-state analysis stated in [1, 2], one stable
periodic solution with duty cycle 0.6267 and one unstable periodic solution with duty cycle 0.7878
can be obtained. They are shown as the solid line and dashed line respectively in Fig. 15. The
stable one has output voltage around 12.5V ; unstable one has output voltage around 15.7V . As
Vs is further increased, these two periodic solutions become closer and collide when Vs = 20. For
Vs = 20, one eigenvalue of Φ is 1 and a saddle-node bifurcation occurs. If Vs is increased a little
bit above 20, the operation suddenly jumps to the situation where the switch is always on and the
output voltage jumps from 14V to 20V .

The circuit is simulated for Vs ∈ [18.5, 20.5] and the resulting bifurcation diagram is shown
Fig. 16. In the figure, the upper solid line is for the operation when the switch is always on
(duty cylcle=1), and the dashed line and the lower solid line are for unstable and stable periodic
solutions respectively with duty cycle less than 1. For Vs below 19.213, there is only one stable
periodic solution and the output voltage is regulated below 11V .
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Figure 16: Bifurcation diagram of the buck converter in Section 4.4. Solid lines indicate stable
solutions and the dashed line indicates an unstable solution

4.5 Neimark Bifurcation in Buck Converter under Voltage Mode Control

Consider the example [41, p.228] of a buck converter under voltage mode control shown in Fig. 17.
Let fs = 15kHz, L = 0.9mH, C = 22µF , R = 20Ω, Vr = 10V , R1 = R2 = 7.5kΩ, R3 = 60kΩ,
C2 = 0.4µF , Vl = 2.8V , Vh = 8.2V , (then h(t) = 2.8 + 5.4[ tT mod 1]). All parasitic resistances are
ignored.

Let the state x = (iL, vC , vc2), In terms of the representation in Fig. 1, one has

A1 = A2 =

 0 −1
L 0

1
C

−1
RC 0

0 1
R1C2

−1
R3C2


B1 =


1
L 0
0 0
0 −1

C2
( 1
R1

+ 1
R2

)

 B2 =

 0 0
0 0
0 −1

C2
( 1
R1

+ 1
R2

)


C =

[
0 0 −1

]
D =

[
0 1

]
E1 = E2 =

[
0 1 0

]
Solving Eqs. (6) and(4) gives x0(0) = (0.7798, 20.4825, 3.5214), which has output voltage around

20V . This result is quite different from [41], which has output voltage around 10V .
After examing the system, the reference voltage Vr should be changed to 5V , instead of 10V in

[41], to have output voltage around 10V . In the following, Vr = 5V is used.

Solving Eqs. (6) and(4) again gives x0(0) = (0.2539, 10.0053, 0.3918)), which now has output
voltage around 10V as expected. The eigenvalues of Φ are 0.8799 and 0.8797 ± 0.4474i, which are
inside the unit circle. Thus the system is asymptotically orbitally stable.

As Vs is increased from 30V , the magnitude of the complex pair of eigenvalues begin to grow. For
Vs = 36.9V , the eigenvalues (0.8897± 0.4567i) exit the unit circle. Thus a Neimark bifurcation oc-

curs. Besides oscillating at frequency fs, another oscillating frequency fs
2π
6 (0.8897 + 0.4567i) =
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1132Hz is expected. Since these two frequencies are not commensurate, the steady state is
quasiperiodic.

As in [41], the circuit with Vs = 30V and Vs = 50V are simulated. State space trajectories
and output voltage waveforms are used to explain the dynamics associated with the Neimark
bifurcation. More detailed explanations than [41] are given as follows. For Vs = 30V , the stable

periodic solution x0(t) can be obtained through a steady-state analysis discussed in [1, 2]. It is
shown as a solid line in Fig. 18. As Vs reaches 36.9V , the Neimark bifurcation occurs. The stable
periodic solution becomes unstable. For Vs = 50V , this unstable periodic solution can be obtained
similarly and it is shown as a dashed line in Fig. 18. A quasiperiodic state trajectory arises after
the Neimark bifurcation occurs. It is shown in Fig. 19 for Vs = 50V .

Output voltage waveforms of the quasiperiodic steady state and the unstable periodic solution
are shown as solid line (with larger amplitude) and dashed line respectively in Fig. 20 for Vs = 50V .
From the figure, the quasiperiodic steady state has two oscillating frequencies as expected: fs
modulated by a lower frequency around 1132Hz.

In [41], the circuit is simulated without mention of the Neimark bifurcation, the quasiperiodic
steady state or the unstable periodic solution.

+
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C RVc
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−

i L
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−
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−

R3

−Vc2+

y

Figure 17: System diagram for the circuit in Section 4.5

4.6 Neimark Bifurcation in Buck Converter with Input Filter under Voltage
Mode Control

An input filter is added to the circuit in Section 4.2 with Vs = 15.8V . The resulting system diagram
is shown in Fig. 21. The input filter parameters are Lf = 2.5mH, Cf = 160µF , and Rp is added

to adjust the damping. The angular resonance frequency of input filter is ωr = 1√
LfCf

= 1581.1.

Let the state be x = (iL, vC , if , vf ), where if and vf are the inductor current and capacitor
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Figure 18: Stable periodic solution (solid line) for Vs = 30V becomes unstable periodic solution
(dashed line) for Vs = 50V
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Figure 19: Quasiperiodic state trajectory in state space for Vs = 50V
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Figure 20: Quasiperiodic output voltage (solid line with larger amplitude) and unstable (also
unobserved) periodic output voltage (dashed line), both for Vs = 50V

voltage in the input filter respectively. In terms of the block diagram model in Fig. 1, one has

A1 =


0 −1

L 0 0
1
C

−1
RC 0 0

0 0 0 −1
Lf

0 0 1
Cf

−1
RpCf

 A2 =


0 −1

L 0 1
L

1
C

−1
RC 0 0

0 0 0 −1
Lf

−1
Cf

0 1
Cf

−1
RpCf



B1 = B2 =


0
0
1
Lf
1

RpCf


C =

[
0 g1 0 0

]
D =

[
0 −g1

]
E1 = E2 =

[
0 1 0 0

]
The loci of σ(Φ) as Rp varies is shown in Fig. 22. One pair of eigenvalues are almost fixed

at −0.5963 ± 0.5301i, while the other pair moves as Rp varies. A Neimark bifurcation occurs
when Rp = 38.85, where a pair of eigenvalues 0.8087 ± 0.5883i crosses the unit circle. After the

bifurcation, another oscillating angular frequency fs[6 (0.81 + 0.59i)] is expected (6 denotes the
angle in radian). This angular frequency has the same value as ωr, which means that after the
Neimark bifurcation the original oscillating frequency (i.e., the switching frequency ωs = 2πfs) is
modulated by the resonance frequency of input filter (ωr). Since these two frequencies are not
commensurate, the state trajectory is quasiperiodic.

4.7 Neimark Bifurcation in Buck Converter with Input Filter under Current
Mode Control

The system diagram [42, p.96] is shown in Fig. 23, where fs = 30kHz, Vs = 15V , R = 10.4Ω,
L = 0.48mH, C = 30µF , RL = 0.6Ω, with input filter parameters RL1 = 0.25Ω, Lf = 0.43mH
and Cf = 10.4µF .
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Figure 21: System diagram for the circuit in Section 4.6
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Figure 22: σ(Φ) as Rp varies from 1 to 100

18



Let the state be x = (iL, vC , if , vf ), where if and vf are the inductor current and capacitor
voltage in the input filter, respectively. In terms of the block diagram model in Fig. 1, one has

A1 =


−RL
L

−1
L 0 1

L
1
C

−1
RC 0 0

0 0 −RL1
Lf

−1
Lf

−1
Cf

0 1
Cf

0

 A2 =


−RL
L

−1
L 0 0

1
C

−1
RC 0 0

0 0 −RL1
Lf

−1
Lf

0 0 1
Cf

0



B1 = B2 =


0
0
1
Lf

0


C =

[
1 0 0 0

]
D =

[
0 −1

]
E1 = E2 =

[
0 1 0 0

]
h(t) = 0

The loci of σ(Φ) as the duty cycle Dc varies is shown in Fig. 24. An eigenvalue pair departs the
unit circle for the parameter value Dc = 0.2443. In contrast, in reference [42] the circuit is said to
become unstable when Dc > 0.3. Again as in the previous example, the bifurcated solution is on a
torus, with angular frequencies, ωs and 1/

√
LfCf . As in Section 4.6, the frequency 1/

√
LfCf can

be obtained numerically from the eigenvalue locus diagram in Fig. 24.
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Figure 23: System diagram for Section 4.7

5 Concluding Remarks

Local bifurcations in PWM DC-DC converters were studied using nonlinear sampled-data models.
The bifurcations considered were period-doubling bifurcation, saddle-node bifurcation, and Neimark
bifurcation. Necessary conditions for period-doubling bifurcation and saddle-node bifurcation in
PWM DC-DC converters are obtained. Instabilities in PWM DC-DC converters can be related to
these bifurcations. In particular, input filter instability was shown to be related to the Neimark
bifurcation.
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[29] S. Ćuk and R.D. Middlebrook, “A general unified approach to modelling switching DC-to-
DC converters in discontinuous conduction mode,” in IEEE Power Electronics Specialists
Conference Record, 1977, pp. 36–57.

[30] D.C. Hamill, “Power electronics: A field rich in nonlinear dynamics,” in Nonlinear Dynamics
of Electronic Systems, Dublin, 1995.

[31] B. Lehman and R.M. Bass, “Switching frequency dependent averaged models for PWM DC-
DC converters,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 89–98, 1996.

[32] G.C. Verghese, M. Elbuluk, and J.G. Kassakian, “A general approach to sample-data modeling
for power electronic circuits,” IEEE Transactions on Power Electronics, vol. 1, no. 2, pp. 76–
89, 1986.

[33] R. Lutz and M. Grotzbach, “Straightforward discrete modelling for power converter systems,”
in IEEE Power Electronics Specialists Conference Record, 1986, pp. 761–770.

[34] C.-C. Fang, Sampled-Data Analysis and Control of DC-DC Switching Convert-
ers, Ph.D. thesis, University of Maryland, College Park, 1997, available at
http://www.isr.umd.edu/TechReports/ISR/1997/.

[35] J.L. Duarte, “Small-signal modelling and analysis of switching converters using matlab,”
International Journal of Electronics, vol. 85, no. 2, pp. 231–269, 1998.

[36] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995.

[37] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields, Springer-Verlag, New York, 1983.

[38] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag,
New York, 1990.

[39] N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications,
and Design, Wiley, New York, 1995.

[40] H.K. Khalil, Nonlinear Systems, Macmillan, New York, 1992.

[41] K.K. Tse and H. Chung, “Decoupled technique for the simulation of pwm switching regulators
using second order output extrapolations,” IEEE Transactions on Power Electronics, vol. 13,
no. 2, pp. 222–234, 1998.

[42] K.M. Smedley, Control Art of Switching Converters, Ph.D. thesis, California Institute of
Technology, 1990.

22


