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ABSTRACT

We consider the problem of identifying one of a set of polygonal models in the plane using point

probes and �nger probes. In particular, we give strategies for using a minimum number of �nger probes

to determine a �nite number of possible locations of an unknown interior point p in one of the models. A

�nger probe takes as input an interior point p of a polygon P and a direction �, and it outputs the �rst

point of intersection of a ray emanating from p in direction � with the boundary of P .

We show that without a priori knowledge of what the models look like, no �nite number of �nger

probes will su�ce to localize the point p. When the models are given in advance, we give both batch

and dynamic probing strategies for solving the problem. We consider both the case where the models are

aligned rectilinear polygons and the case where the models are simple polygons.

Keywords: Model-based computer vision, automatic target recognition, probing, localizing, pinning

1. INTRODUCTION

This paper considers the following problem in model-based computer vision: given a set of planar

polygonal models and a computer image that contains exactly one instance of one of the models, discover

which model is in the image, as well as its exact location. The model instance may be translated anywhere

within the image, but it is complete and unoccluded and is not rotated or scaled.

The sensing device used to identify which model is present in the image is a point probe. This type of

probe determines whether a given pixel of the image is black or white. If pixels have grey-scale values, then

a threshold is used to determine whether a pixel is black or white. Using point probes we can also simulate

�nger probes. A �nger probe takes as input a point p in the image and a direction �, and it returns the

�rst boundary point of the object that is hit by a ray emanating from p in direction �, or 1 if the object
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is not hit. Note that a �nger probe may originate from either inside or outside of an object. It is easy to

see that a �nger probe can be simulated by a sequence of point probes.

Using point and �nger probes, the above model-based computer vision problem can be solved by the

following three part strategy:

1. Use a sparse set of point probes to �nd one \hit" point. That is, �nd one point that is on the

boundary or in the interior of the object present in the image. This part of the problem has been

addressed in [3].

2. Use �nger probes from the hit point found in Step 1 to narrow down the number of possible (model,

location) pairs to a �nite number. We address this part of the problem in this paper.

3. Use point probes in a dynamic \decision tree" strategy to exactly identify the (model, location) pair

present in the image. This part of the problem has been solved in [1].

To illustrate the above strategy, consider the following example. Suppose the three models shown on

the left of Figure 1 are given, and suppose that after a hit point p is returned by Step 1 of the strategy,

two �nger probes are shot from p, yielding the outcome shown on the right of Figure 1. These two probes

yield four possible placements of the hit point p in a model, as illustrated in Figure 2.

p

Figure 1: Three models (left) and the outcome of �nger probes from point p (right).

Figure 2: Four possible placements of the hit point p in the models.

By overlaying instances of the models so that the four possible placements of p coincide, we get an

overlay arrangement, as illustrated on the left side of Figure 3 (in the �gure the model instances are shifted

slightly for clarity). Using this overlay arrangement we can develop a dynamic decision tree strategy, as

illustrated on the right side of Figure 3, to further probe the image to determine the exact (model, location)

pair in the image. First an additional point probe is made at location 1. Note that all probe locations are

chosen relative to the hit point p. If it is black (indicated by a B), then another probe is made at location



2. If this probe is also black, then the point p must be located in the bottom of the E. Otherwise, if location

2 is white, then p is in the L. Similarly, if probe 1 is white, the right subtree is followed to determine the

location of p.
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Figure 3: Overlay arrangement (left) and decision tree to determine model present (right).

This paper addresses the second step of the above probing strategy for identifying which model is

present in an image. That is, a set of planar polygonal models is given, as well as a computer image with

one hit point marked. The hit point is an interior or boundary point of an instance of one of the models.

The goal is to use a minimum number of �nger probes from this point to narrow down the number of

possible locations of this point in the models to a �nite number.

It is shown that without a priori knowledge of the models, no �nite number of probes will su�ce. When

the models are given in advance, both batch and dynamic probing strategies for solving the problem are

presented. Both the case where the models are aligned rectilinear polygons and the case where the models

are simple polygons are considered.

2. IDENTIFYING A MODEL WITH FINGER PROBES

In this section we describe our model for identifying and localizing one of a set of polygonal models

using a minimum number of �nger probes.

We are given a set of k models, fM

1

;M

2

; : : : ;M

k

g, each with a known orientation and scale, and we

are given an image that contains exactly one of the models. Each model M

i

is a simple polygon with n

i

vertices, which are given in clockwise order around M

i

so that when traversing the boundary of M

i

in this

order, the interior of M

i

always lies to the right. The vertices of each M

i

are given with respect to a local

coordinate system, where the �rst vertex lies at the origin. The total number of vertices in all models is

n =

P

k

i=1

n

i

.

We are also given a hit point p in the image, which is given as a point in R

2

, that is in the interior

of the model present in the scene. The origin of the coordinate system for the image is assumed to be at

the lower lefthand corner of the image. The outcome of our localization strategy will be a set of model,

location pairs (M

i

; t

j

), where t

j

is a translation vector that translates the local coordinate system of M

i

so

that p lies within M

i

and all the �nger probes emanating from p end at the boundary of M

i

(without ever

crossing the boundary).



We develop strategies that use �nger probes from a point p at an unknown interior location in an

unknown model to narrow down the number of possible placements of p in a model to a �nite number.

To do this we must shoot a su�cient number of �nger probes to ensure that the probes are \pinned" in

the polygon and cannot \slide". If the �nger probes that are shot from point p all hit the same edge or

parallel edges of the model, then there may be an in�nite number of possible placements of p in the model

(see Figure 4) since the arrangement of probes will be able to slide along these edges.

p

Figure 4: Many probes on the same or parallel edges can slide.

If the models are constrained only to be simple polygons, and the number of vertices is unknown, then

no �nite number of probes will su�ce to solve the problem, as we now show.

Theorem 1 No �nite number of �nger probes emanating from an interior point p of an unknown simple

polygon P su�ce to narrow down the number of possible placements of p in P to a �nite number.

Proof: We take an adversary approach to constructing P . Consider a circle C centered at p. For each

�nger probe shot from p, the adversary returns the point on C hit by the probe. After any �nite number

of probes are shot, a diameter d of C can be drawn that does not pass through any of these probes, and a

polygon P can be constructed such that each edge hit by a probe is parallel to d, and therefore the probes

can slide along these edges (see Figure 5). ut

P

C

p

Figure 5: Probes are not su�cient to localize p.

When the models are given in advance, the placement of the initial hit point can always be narrowed

down to a �nite number of possibilities.

Research with a similar 
avor was done by Czyzowicz, Montejano, Stojmenovic and Urrutia [4, 7] on

immobilizing a shape in the plane. They considered the problem of �nding a minimal set of points I on



the boundary of a planar shape P such that any rigid motion of P in the plane forces at least one point in

I to penetrate the interior of P .

3. BATCH STRATEGY VERSUS DYNAMIC STRATEGY

For some settings it is desirable to produce a set of batch probes, which can be executed simultaneously

from any interior hit point in any model to determine a �nite number of possible placements of the hit

point in the models. In other settings �nger probes must be executed sequentially, so a dynamic strategy

can be used, which determines the direction of a new probe based on the outcome of all previous probes.

If all the models are aligned rectilinear polygons, then it is easy to see that two probe directions { one

horizontal and one vertical { su�ce to narrow down the number of possible placements of the initial hit

point to a �nite number. Therefore, the strategy for producing either batch or dynamic probes will be the

same.

On the other hand, if the models are simple polygons, then a dynamic strategy can yield a smaller

number of probes than a batch strategy. In the following sections we consider the two cases of determining

probing strategies for rectilinear polygons and for general simple polygons, and we discuss both batch and

dynamic strategies for simple polygons.

4. RECTILINEAR MODELS

For aligned rectilinear models the strategy for choosing probe directions is trivial since two probe

directions su�ce to narrow down the number of possible placements of the initial hit point to a �nite

number. Therefore, we consider the next part of the problem, which is how to preprocess the models so

that given the outcome of the �nger probes, the set of possible locations of the initial hit point can be

found quickly. To do this, we partition the set of all possible outcomes of the �nger probes into a small

number of equivalence classes.

We can represent the outcome of horizontal and vertical �nger probes by the horizontal and vertical

distances from p to the boundary of the model. If we use only two probes, then there is an in�nite number

of possibilities for these distances. Instead we use four probes, two horizontal and two vertical, yielding a

\cross" that �ts inside the model (See Figure 6). The distances a; b; c; d determine the cross completely.

Although there is an in�nite number of possibilities for the distances a; b; c; d corresponding to a cross, if

we use the width w = a + b and the height h = c+ d of a cross to represent it, then there can be at most

O(n

2

i

) distinct crosses for a rectilinear model with n

i

vertices (see Figure 7). Therefore, by using the width

and height of a cross, we get a �nite number of equivalence classes for the possible outcomes of the probes.

We preprocess the k models into equivalence classes of crosses by extending the lines incident to each

re
ex angle of a modelM

i

into the interior of the model (See Figure 8). This yields an arrangement formed

by at most n

i

lines within the model. Each cell (or face) in the arrangement is a rectangle that represents

an equivalence class of crosses with a �xed value for w and h, where the center of each cross lies in the

rectangle. The crosses that have their centers in the same cell are incident on the same set of edges and

are essentially the same, except for the position of the center of the cross.

Four probes yield a cross of a particular size, and we can use the w; h values of the cross to locate

the possible cells in which its center could lie. If we sort all the cells for all the models lexicographically

according to their (w; h) values, then we can do a binary search in O(logn) time to �nd the set of cells

with a particular (w; h) value. Since each model can have at most O(n

i

) cells with the same (w; h) value

(See Figure 9), there will be at most O(n) cells for a given (w; h) value.
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Figure 6: Four probes determine a cross.

Figure 7: A model with 
(n

2

i

) distinct crosses.

Among the set of cells with the same (w; h) value, we have to further search by examining the a; c

values of the cross until we arrive at the set of consistent placements among all the models. We use the

a; c values to decide which cells are invalid. Each cell has a range for its a value and a range for its c value,

forming a rectangle in 2-dimensions, where the axes indicate the length of these two pieces of the cross.

By laying down all O(n) of these rectangles we get a planar subdivision with no more than O(n

2

)

regions. Given the a; c values of a particular cross, we can do a planar point location on this subdivision

in O(logn) time [6] to discover the feasible set of cells in which the cross could lie. Although a particular

region in this subdivision may be associated with 
(n) cells, we can use a total storage space of O(n

2

) by

storing with each edge of the subdivision the change in cells between the adjacent regions and only storing

a list of cells in the regions of the subdivision where this list is a local minima.

5. SIMPLE POLYGONAL MODELS

In this section we devise both batch and dynamic strategies for probing simple polygonal models.

5.1 Batch strategy

If no model has parallel edges, then shooting two probes in opposite directions (say positive and negative

y directions) su�ces for a batch strategy. These two probes will hit two di�erent edges of the model, and

since a vertical sweep line can intersect a model M

i

with a line segment of length l no more than O(n

i

)

times, these two probes su�ce. In fact, shooting two probes in opposite directions works even with parallel

edges if there is an orientation � such that a sweep line with orientation � never simultaneously hits two



same w; h values

w; h pairs are shown for some cells

Figure 8: Forming the cells in the polygon.

Figure 9: Placements of the same cross in a model.

parallel, visible edges of a model.

If the edges of the models have a limited number of orientations (such as in the case of rectilinear

polygons), then a small number of batch probes also su�ces. If each model edge has one of m di�erent

orientations, then m probes, one parallel to each of the m orientations, su�ces.

In the worst case, however, a batch strategy requires 
(n) probes. Consider the piece of a polygon

shown in Figure 10. If the hit point p is in the middle of this long narrow piece, then only a probe that

is almost parallel to the sides of this piece will not hit one of the sides. Therefore, in order to ensure that

two non-parallel edges are hit, a batch probing strategy must chose at least one probing direction almost

parallel to the sides of this piece. If all of the models consist of long narrow pieces, each at a di�erent

angle, then

P

k

i=1

n

i

�2

2

=

n

2

� k batch probes are necessary to ensure that two non-parallel edges are hit.

Figure 10: Only probes almost parallel to edge will hit a non-parallel edge.



As a general batch strategy, we shoot two probes in opposite directions along a line with orientation �,

and we shoot an additional probe along each line with orientation � where a sweep line with orientation �

simultaneously hits two parallel, visible edges with orientation �. For example, for the two models shown in

Figure 11 we shoot two probes along a vertical line and three additional probes, all of which are indicated

by rays in the �gure. Each additional probe is parallel to a pair of parallel edges that are hit by a vertical

sweep line.

Figure 11: Rays indicate �ve probe directions chosen for two models.

This batch strategy guarantees that two non-parallel edges of a model will be hit. The �rst two probes

along the line with orientation � will intersect the model in a line segment of length l. Consider a sweep

line with orientation � that sweeps through each of the k models. Either the sweep line has only a �nite

number of places where it intersects a model in a line segment of length l, in which case the �rst two

probes are su�cient, or the sweep line hits two parallel edges that are a distance l apart (where distance

is measured along the sweep line). In this case, however, an additional probe was chosen parallel to these

edges, and this probe together with the �rst two su�ce to narrow down the number of possible placements

of p.

In order to use a minimum number of probes, we must �nd an orientation � for the initial two probes

that minimizes the number of additional probes necessary. For each pair of mutually visible parallel edges

of a model there is a cone of directions such that a pair of opposite probes with direction in this cone might

hit both edges (see Figure 12). We can map these cones onto a circle and �nd the region with the least

overlap to use for the orientation � of the initial two probes.

x

wv

e

2

e

1

u

Figure 12: Parallel edges are visible within a cone of directions.

To map the cones onto a circle e�ciently, we �rst compute for each model M

i

its visibility graph in



time O(e

i

), where e

i

is the number of edges in the visibility graph [5]. Next we sort all of the visibility

graph edges by slope in time O(e logn), where e =

P

k

i=1

e

i

.

The visibility graph of a model M is a Euclidean graph whose vertices are the vertices of M and whose

edges include the edges of M as well as edges between any two vertices of M that are visible to one

another. For each pair of mutually visible parallel edges of M there are visibility graph edges whose slopes

determine the ends of the cone within which the edges are visible. For example, in Figure 12 visibility edge

uw determines one end of the cone in which e

1

and e

2

are visible, and vx determines the other end.

After sorting the visibility graph edges by slope we compute a trapezoidal diagram with orientation

� for each model, where � is the slope of some visibility graph edge (see Figure 13(a)). The trapezoidal

diagrams are computed in O(n) time by extending rays from each vertex of a model M

i

in the positive

and negative � direction until they hit the boundary of M

i

[2]. While computing the initial trapezoidal

diagrams we keep track of the number and orientation of pairs of parallel edges that are visible along a

line of orientation �.

e

2

e

1

e

3

u

e

4

v

u

v

Figure 13: (a) A trapezoidal diagram (b) Rotating a trapezoidal diagram.

For every other slope �, in sorted order, we compute a trapezoidal diagram with orientation � for

each model. Each new trapezoidal diagram can be computed from the previous one in constant time.

For example, when we rotate the trapezoidal diagram in Figure 13(a) clockwise just beyond the direction

through edge uv, the trapezoidization changes, giving the diagram shown in Figure 13(b). In Figure 13(a)

e

3

and e

4

are vertically visible (and e

1

and e

2

are not), but after the rotation e

1

and e

2

are vertically

visible, while e

3

and e

4

are not. All other vertical visibilities in the diagram remain unchanged.

For each new rotation caused by a visibility graph edge, we update the number of di�erent orientations

for pairs of parallel visible edges. If this number is less than the minimum found so far, we store all these

orientations. After we have rotated the trapezoidal diagram 360 degrees, we know the best orientation for

the initial two probes, as well as how many additional probes are necessary and their directions.

5.2 Dynamic strategy

If no model has parallel edges, then the batch strategy of using two probes in opposite directions works

as a dynamic strategy too.

When models have pairs of parallel mutually visible edges, the goal is to shoot enough probes to hit



two non-parallel edges. We would like to do the probes dynamically, using information returned from each

probe to determine the next one, so we use fewer probes than the batch strategy described earlier. The

extra information that we use from a dynamic probe is the distance from the initial hit point p to the

boundary of the polygon.

Similar to the batch strategy, we use a cone of directions for each pair of parallel mutually visible

edges, such that a pair of opposite probes with direction in this cone might hit both edges. As in the batch

strategy, we can �nd the region of least overlap of the cones e�ciently.

We now preprocess this region to �nd a particular direction that will yield probes whose distances will

determine the set of mutually visible parallel edges as uniquely as possible.

Consider the distance along a probe line between two parallel line segments ab and cd. Let the perpen-

dicular distance between the two segments be D. The distance between the segments varies continuously

between D= cos �

1

and D= cos �

2

(where �

1

and �

2

are the angles of the diagonals between the segments

with respect to the perpendicular). The minimum is achieved when the probe line is perpendicular to the

segments, and is D (see Figure 14).

b

a

�

1

�

2

c

d

Figure 14: Distance between parallel lines varies continuously inside cone.

When plotted as a function of distance and �, the distance curves of parallel line segments have nice

properties. Curves for two di�erent pairs of parallel line segments will coincide only when the pair segments

are parallel in the same direction and are the same distance apart. Otherwise the curves can intersect at

most twice.

To see this pictorially, consider a pair Q of parallel line segments ab and cd and another pair Q

0

of

parallel line segments a

0

b

0

and c

0

d

0

(see Figure 15). We would like to determine when two opposite probes

from p, made at an angle of � from the horizontal, will strike the line segment pairs at the same distance.

In this case, the pairs Q and Q

0

are indistinguishable at angle �. By overlaying the pairs Q and Q

0

(see

Figure 15) we observe that there are exactly two angles for which the pairs are indistinguishable, except

for the case when the pair segments are parallel in the same direction and the same distance apart. Such

a pair of parallel line segment pairs is called a bad pair.

When choosing a direction � for our initial two probes, we need to avoid bad probe directions that

yield equal distances for di�erent pairs of parallel edges. Clearly there is nothing we can do for parallel

edge pairs that are bad pairs, but since the number of choices for � is in�nite, we can always �nd a probe
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b
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d

0
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d

b

Figure 15: Why only two directions do not distinguish pairs that are not bad.

direction that will distinguish all pairs that are not bad pairs.

For our dynamic strategy we do two opposite probes initially in direction �, then obtain the distance

between the two boundary points hit by the probes, and �nally do one extra probe in the direction parallel

to the parallel edges that we might possibly strike. Note that when there are many pairs of edges the

same distance apart, they are also parallel, and the �nal probe we shoot is parallel to them, so we ensure

hitting at least two non-parallel edges. Therefore only three probes are necessary to pin down the number

of possible placements of the initial hit point p to a �nite number.

In O(n

4

) steps we can compute all the angles at which the distance between one pair of parallel edges is

the same as the distance between another pair, since there are at most O(n

2

) parallel edge pairs, and each

pair of parallel edge pairs yields two bad angles. This information will enable us to pick an appropriate

angle � that will distinguish all the pairs that do not form bad pairs.

6. CONCLUSIONS AND FUTURE WORK

We have examined the problem of identifying one of a set of polygonal models in the plane using point

probes and �nger probes. In particular, we have studied the problem of using a minimum number of �nger

probes emanating from an unknown interior point p of one of the models to determine a �nite number of

possibilities for the exact location of this interior point in one of the models.

For rectilinear models we have shown how to partition all possible outcomes of the �nger probes into

a small number of equivalence classes so that given the outcome of the probes from p, we can quickly �nd

all the possible placements of p in a model. For simple polygonal models we have given both batch and

dynamic strategies for determining a set of probes to localize p and have shown that a batch strategy may

require 
(n) probes, while a dynamic strategy never uses more than three probes.

In future research we will extend our strategies for simple polygonal models to quickly determine the

set of all possible placements of p in a model. Other extensions include the case where there is more

than one model in the scene, or where a model may be rotated or scaled. Additional future work includes

implementing and testing the algorithms given here.
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