
ABSTRACT

Title of dissertation: RANDOM GRAPH MODELING OF
KEY DISTRIBUTION SCHEMES IN
WIRELESS SENSOR NETWORKS
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Wireless sensor networks (WSNs) are distributed collections of sensors with lim-

ited capabilities for computations and wireless communications. It is envisioned that

such networks will be deployed in hostile environments where communications are

monitored, and nodes are subject to capture and surreptitious use by an adversary.

Thus, cryptographic protection will be needed to ensure secure communications, as

well as to support sensor-capture detection, key revocation and sensor disabling. Re-

cently, random key predistribution schemes have been introduced to address these

issues, and they are by now a widely accepted solution for establishing security in

WSNs.

The main goal of the dissertation is to investigate and compare two popular random

key predistribution schemes, namely the Eschenauer-Gligor (EG) scheme and the

pairwise key distribution scheme of Chan, Perrig and Song. We investigate both

schemes through their induced random graph models and develop scaling laws that

corresponds to desirable network properties, e.g., absence of secure nodes that are



isolated, secure connectivity, resiliency against attacks, scalability, and low memory

load – We obtain conditions on the scheme parameters so that these properties occur

with high probability as the number of nodes becomes large. We then compare these

two schemes explaining their relative advantages and disadvantages, as well as their

feasibility for several WSN applications.

In the process, we first focus on the “full visibility” case, where sensors are all

within communication range of each other. This assumption naturally leads to study-

ing the random graph models induced by the aforementioned key distribution schemes,

namely the random key graph and the random pairwise graph, respectively. In a second

step, we remove the assumption of full visibility by integrating a wireless communica-

tion model with the random graph models induced under full visibility. We study the

connectivity of WSNs under this new model and obtain conditions (for both schemes)

that lead to the secure connectivity of the network.



RANDOM GRAPH MODELING OF KEY DISTRIBUTION
SCHEMES IN WIRELESS SENSOR NETWORKS

by

Osman Yağan
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are distributed collections of sensors with lim-

ited capabilities for computations and wireless communications. It is envisioned

that [1] WSNs will be used in a wide range of applications areas such as health

(e.g. patient monitoring), military (e.g., battlefield surveillance) and home (e.g.,

home automation). In many applications, both civilian and military, WSNs are likely

to be deployed in hostile environments where communications can be monitored, and

nodes are subject to capture and surreptitious use by an adversary. Under such cir-

cumstances, cryptographic protection will be needed to ensure secure communications

and to enable sensor-capture detection, key revocation and sensor disabling. However,

many security schemes developed for general network environments are inapplicable

to WSNs owing to their unique features. For instance, public key cryptography is

not feasible due to limitations on the physical memory and power consumption of

the sensors. Also, traditional key exchange and distribution protocols are based on

thrusting third parties, and turn out to be inadequate for large-scale WSNs due to

1



unknown network topology prior to deployment. See discussions in [14, 28, 33] on

some of the challenges.

1.1 Random key predistribution schemes

Recently random key predistribution schemes have been proposed to address some

of the difficulties mentioned above. In essence, a random key predistribution scheme

can be described as follows – We start with a large set of (cryptographic) keys, the

so-called key pool. For each sensor node i, a subset Σi of the key pool, called the key

ring of node i, is generated by some random mechanism and inserted in the memory

module of node i prior to deployment. Distinct nodes i and j can then establish a

secure communication link if they are within wireless communication range of each

other and the security condition

Σi ∩ Σj 6= ∅ (1.1)

is satisfied. Most schemes in the literature and all schemes considered here have this

form; they differ only in the way the random sets Σ1, . . . , Σn are generated.

As we seek to understand various properties of these schemes, we study two cases.

We begin with the “full visibility” case, namely that nodes are all within communica-

tion range of each other and secure communication between two nodes requires only

that their key rings share at least one key. Understanding this case leads naturally to

2



studying the random graph structure whose adjacency is defined as follows: Distinct

nodes i and j are adjacent, written i ∼ j, if the condition (1.1) holds. Later on, we

shall remove the full visibility assumption by integrating a wireless communication

model with the random graph models induced under full visibility. More specifically, a

new model is constructed where distinct nodes i and j are adjacent if and only if (1.1)

holds and the wireless communication link between i and j is available; this amounts

to an underlying random graph model formed by intersecting the full-visibility graph

and the communication graph. Many of the questions raised in the dissertation deal

with properties of these underlying random graphs, namely, absence of isolated nodes,

connectivity, security, etc.

The idea of randomly assigning secure keys to sensor nodes prior to network de-

ployment was first proposed by Eschenauer and Gligor [14]. Their scheme, hereafter

called the EG scheme, operates according to the following key selection mechanism:

Before network deployment, each sensor is independently assigned K distinct keys

which are selected at random from a very large pool of P keys; see [14] for imple-

mentation details. Following the original work of Eschenauer and Gligor, a number

of other key distribution schemes have been suggested. The q-composite scheme [7]

is a slight variation on the EG scheme where two nodes need to share at least q keys

(with q > 1) in order to establish a secure link between them. In other words, in

the q-composite scheme, nodes i and j are connected only if they satisfy (1.1) with

|Σi∩Σj| ≥ q. Another modification to the EG scheme was suggested by Du et al. [11],

who combine the EG scheme and Blom’s key management scheme. Chan et al. [7]

3



also proposed a random pairwise key predistribution whose implementation is quite

different than the EG scheme: Each of the n sensor nodes is paired (offline) with

K distinct nodes which are randomly selected from amongst all other nodes. Then,

for each such pair of sensors a unique (pairwise) key is generated, and stored in the

memory modules of each of the paired sensors along with the id of the other node.

The reader is referred to [5] for a detailed survey of various key distribution schemes

for WSNs.

With a number of key predistribution schemes available, a basic question arises as

to how these proposed ways of securing a WSN compare to each other. A natural ap-

proach would be to first investigate each particular scheme through its random graph

model and then compare these schemes in terms of various metrics. This approach

comes with the additional benefit of providing helpful guidelines to dimension the key

distribution schemes. In other words, investigating the random graph model induced

by a key distribution scheme might inform the selection of its parameters in order to

ensure certain desirable properties in the network.

In view of this, the main goal of this dissertation is to investigate the EG scheme

and the pairwise scheme of Chan et al and to make a thorough comparison. The

evaluation metrics to be used in this comparison are given in Section 1.3 together with

a motivation as to why each metric is being considered. For each metric, we summarize

the relevant results we have obtained in Chapter 2 (regarding the EG scheme) and

Chapter 3 (regarding the pairwise scheme). Then, in Chapter 4 we compare the two

schemes in some details, explaining their relative advantages and disadvantages, as

4



well as their feasibility in various applications of WSNs. The mathematical tools

to be used are collected in Chapter 5 while the main results of the dissertation are

established in Chapter 6 through Chapter 10.

We now give a very brief introduction on random graphs in order to introduce the

notation and some of the concepts to be used.

1.2 Random graphs

A graph G is an ordered pair G = (V (G), E(G)) where V (G) denotes a (non-

empty) set of vertices and E(G) denotes a set of edges, i.e., set of ordered pairs

of vertices. For the purpose of our discussion, all graphs under consideration are

assumed to be undirected, simple and finite; see e.g., [34] for an extended introduction

to graph theory. Given a probability triple (Ω,F , P), a random graph G on the vertex

set Vn = {1, . . . , n} is a graph-valued random variable (rv) defined by

G(n) : Ω → G(Vn)

where G(Vn) is the set of all undirected simple graphs on Vn.

Many results in this dissertation deal with establishing zero-one laws for certain

properties of a random graph G. Fix n = 2, 3, . . ., and assume that G(n) has the

vertex set Vn = {1, . . . , n}. Often, the pmf of G(n) depends on a parameter, say υ, in

some subset Υ ⊆ R
d, a fact indicated through the notation G(n; υ). The parameter

5



υ is sometimes scaled with n so that {G (n; υn) , n = 2, 3, . . .} now defines a family

of random graphs. The main goal of the dissertation is to obtain conditions on the

scaling υ : N0 → Υ such that either

lim
n→∞

P [ G (n; υn) has property A ] = 0, (Zero-law)

or

lim
n→∞

P [ G (n; υn) has property A ] = 1 (One-law)

for given a graph property A.

To better discriminate between specific classes of random graphs we sometimes use

letters other than G in the notation. This includes the random key graph K(n; K,P )

and the random pairwise graph H(n; K), introduced in Chapter 2 and Chapter 3,

respectively.

1.3 Evaluation metrics

1.3.1 Connectivity

A basic question concerning a random key predistribution scheme is its ability to

achieve secure connectivity among participating nodes. Indeed, due to the random-

ness involved in the key distribution mechanism, there is a positive probability that

secure connectivity will not be achieved – This will be so even in the best of cases

6



when the communication graph is itself connected, namely the full visibility case.1

Therefore, it is of interest to obtain conditions on the scheme parameters so that the

induced random graph model has certain connectivity properties. In particular, we

study the absence of isolated nodes and graph connectivity. Interest in these prop-

erties stems from the fact that the desired level of connectivity may differ amongst

various applications of WSNs. Since these properties are closely related to each other,

studying one of them often proves useful in studying the other.

As mentioned before, we study the connectivity properties of a key distribution

scheme in two phases. First, we consider the full visibility case according to which

sensor nodes are all within communication range of each other. To be sure, the

full visibility assumption does away with the wireless nature of the communication

medium supporting WSNs. In return, this simplification makes it possible to focus on

how randomization of the key distribution mechanism alone affects the establishment

of a secure network in the best of circumstances, i.e., when there are no link failures.

In the second part we study the connectivity properties under more realistic as-

sumptions that account for the possibility that communication links between nodes

may not be available – This could occur due to the presence of physical barriers be-

tween nodes or because of harsh environmental conditions severely impairing trans-

mission. To study such situations, we introduce a simple communication model where

channels are mutually independent, and are either on or off. This amounts to model-

ing the communication graph by an Erdős-Rényi (ER) model [4, 13], and the overall

1The communication graph refers to the graph induced by the communication process whereby
two nodes are adjacent if they are wireless neighbors, e.g., the disk model or the SINR graph [20].

7



system model is constructed by intersecting the random graph model of a key distri-

bution scheme (under full visibility) and an ER graph.

We now give precise definitions of the connectivity properties mentioned above:

Consider an undirected graph G = (V,E) with vertex set V = {1, . . . , n} and edge

set E ⊆ V × V .

Definition 1.3.1 A node i in V is said to be isolated if there exists no edges (in E)

between i and any j in V distinct from i. The graph G has the property of “absence

of isolated nodes” if no node in V is isolated.

Definition 1.3.2 Two distinct nodes i, j in V are said to be connected if E contains

a path from i to j. The graph G is said to be connected if every pair of distinct

nodes i, j in V are connected.

1.3.2 Security

In modeling and comparing key distribution schemes for WSNs it is also fun-

damental to study the security properties of the resulting networks. In particular,

for each of the schemes considered here, we wish to understand the resiliency of the

network against external attacks. As in [26], we consider extremely severe forms of

massive attacks. The adversary captures a certain number of nodes and owns the key

rings of these selected nodes. We assume that a link between two nodes, say i and

j, is compromised if the adversary owns a key which is stored in both the key rings
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of i and j. We also assume that the adversary has unlimited computing power, and

can minimize the number of nodes that it needs to capture in order to compromise a

given number of links in the network.

In many applications of WSNs, the network as a whole can still operate in a useful

manner even though a small number of sensors fail, i.e., taken under the control of an

adversary [26]. In these cases, it can be much more important to protect the global

functionality of the network than a few individual communication links. However, if

the adversary is capable of capturing a large fraction of the nodes, then there is not

much that can be done to salvage the network functionality. Therefore, in evaluating

the security provided by a key predistribution scheme, it is essential to ask whether

a severe attack can be achieved cheaply, namely by capturing just a small number of

the nodes.

With these considerations in mind we now introduce the notions of a network

being unassailable and unsplittable; see [26]. Let Cr denote the maximum number

of links that an adversary can compromise by capturing r nodes. Similarly, let Ir

denote the size of the largest subset of sensors whose communications with the rest

of the network can be compromised by capturing r nodes. Both unassailability and

unsplittability are defined in the asymptotic regime where the total number n of

nodes grows unboundedly large, and the total number rn of captured nodes grows

sub-linearly with n, i.e., rn = o(n).
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Definition 1.3.3 A network is said to be unassailable if

Crn
= o(En) whenever rn = o(n), (1.2)

where En denotes the total number of links in the network.

Definition 1.3.4 A network is said to be unsplittable if

Irn
= o(n) whenever rn = o(n). (1.3)

These conditions are highly desirable as they imply that an adversary cannot

impair a considerable part of the network without capturing a considerable number

of nodes.

Unassailability and unsplittability of a given scheme are both related to the struc-

ture of the random graph model induced by the particular scheme. However, in our

evaluation of security we also consider a number of protocol based criteria that rep-

resent desirable characteristics in a key distribution scheme for sensor networks [7].

Resistance against node replication is related to whether the adversary can in-

sert additional hostile nodes into the network. Revocation deals with whether a

misbehaving node, once detected, can be dynamically removed from the system. Fi-

nally, a protocol provides node-to-node authentication if any node can ascertain

the identity of the nodes with which it communicates.
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1.3.3 Memory usage: Key-ring sizes

As stated earlier, sensors in a WSN have limited memory so that the number of

secure keys that can be stored in each sensor’s memory module is constrained. There-

fore, in evaluating a key predistribution scheme, it is also essential to consider the key

ring sizes that are required to achieve certain connectivity and security properties in

the network.

1.3.4 Scalability and implementation issues

As explained by Chan et al. [7], the security characteristics of a network may

be weakened as the number of nodes in the network grows. Also, certain network

properties may only be achieved by key ring sizes that grow with the increasing

network size. Recalling that WSNs are likely to have considerable size, it is therefore

desirable that a key distribution scheme is able to support a large number of sensors,

and this leads to studying the scalability of key distribution schemes.

We also take into account possible implementation difficulties in practical scenar-

ios. For instance, in some applications it might be required to increase the size of

the network after initial deployment. When the network is deployed gradually, it

is essential to ask whether a key distribution scheme is capable of accommodating

sensors added at a later time such that secure connections can be established with

the already deployed nodes.
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1.4 Notations and conventions

All limiting statements, including asymptotic equivalences, are understood with

the number of sensor nodes n going to infinity. The rvs under consideration are

all defined on the same probability triple (Ω,F , P). Probabilistic statements are

made with respect to this probability measure P, and we denote the corresponding

expectation operator by E. Also, we use the notation =st to indicate distributional

equality. The indicator function of an event E is denoted by 1 [E]. For any discrete

set S we write |S| for its cardinality. For sequences a, b : N0 → R+, we write an ∼ bn

as a shorthand for the asymptotic equivalence limn→∞
an

bn
= 1. Similarly, we write

an = o(bn) if limn→∞
an

bn
= 0, whereas an = O(bn) means that there exists c > 0 such

that an ≤ c · bn for all n sufficiently large. Finally, we have an = Ω(bn) if bn = O(an),

or equivalently, if there exists c > 0 such that an ≥ c · bn for all n sufficiently large.
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Chapter 2

Modeling the EG scheme: Random key graphs

The first scheme considered in this dissertation is the random key distribution

scheme of Eschenauer and Gligor [14], hereafter referred to as the EG scheme. We

start by explaining the details of its implementation and then introduce the induced

random graph model under the assumption of full visibility. Finally, we give a sum-

mary of the results that we have obtained for several properties of the EG scheme

and of its induced graph. These results will later be established in Chapters 6 and 7.

2.1 The Eschenauer-Gligor Scheme

The EG scheme operates in three phases: Consider a collection of n sensor nodes

equipped with wireless transmitters, and assume available a large set of P crypto-

graphic keys, also known as the key pool.

(i) Initialization phase: Before network deployment, each node randomly selects a set

of K distinct keys from the pool. These K keys form the key ring of the node, and are
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inserted into its memory module. Key rings are selected independently across nodes.

(ii) Key setup phase: After deployment, each node discovers its wireless neighbors,

i.e., nodes which are within its wireless communication range. When a node finds

a wireless neighbor with whom it shares a key, they mutually authenticate the key

to verify that the other party actually owns it. At the end of this phase, wireless

neighbors which have keys in common can now communicate securely with each other

in one hop.

(iii) Path-key identification phase: The key rings being randomly selected, there is a

possibility that some pairs of wireless neighbors may not share a key. If a path made

up of nodes sharing keys pairwise exists between such a pair of wireless neighbors, this

(secure) path can be used to exchange a path-key to establish a direct (and secure)

link between them.

A basic question concerning the EG scheme is its ability to achieve secure con-

nectivity. This will be studied through induced random graph models by developing

scaling laws which correspond to desirable network properties, e.g., absence of secure

nodes which are isolated and secure connectivity. In the process we shall obtain con-

ditions on the scheme parameters so that these properties occur with high probability

as the number of nodes becomes large. We start by introducing the random graph

induced by the EG scheme under the assumption of full visibility, i.e., the random

key graph.
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2.2 Random key graphs

Random key graphs are parametrized by three positive integers, namely the num-

ber n of nodes, the size P of the key pool and the size K of each key ring with

K ≤ P . To lighten the notation we group the integers P and K into the ordered pair

θ ≡ (K,P ). With P the set of cryptographic keys, let PK to denote the collection

of all subsets of P which contain exactly K elements – Obviously, with |P| = P , we

have |PK | =
(

P
K

)
. The key rings Σ1(θ), . . . , Σn(θ) are assumed to be i.i.d. random

variables (rvs) with

P [Σi(θ) = S] =

(
P

K

)−1

, S ∈ PK (2.1)

for any i = 1, . . . , n. This corresponds to selecting keys randomly and without re-

placement from the key pool.

Distinct nodes i, j = 1, . . . , n are said to be adjacent if they share at least one key

in their key rings in which case an undirected link is assigned between nodes i and

j. The resulting random graph defines the random key graph (RKG) on the vertex

set {1, . . . , n}, hereafter denoted by K(n; θ). For distinct i, j = 1, . . . , n, it is a simple

matter to check that

P [Σi(θ) ∩ Σj(θ) = ∅] = q(θ) (2.2)

with

q(θ) =






0 if P < 2K

(P−K
K )

(P
K)

if 2K ≤ P ,

(2.3)
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whence the probability of edge occurrence between any two nodes is equal to 1−q(θ).

The expression (2.3) is a simple consequence of the fact that

P [S ∩ Σi(θ) = ∅] =

(
P−|S|

K

)
(

P
K

) , i = 1, . . . , n (2.4)

for every subset S of {1, . . . , P} with |S| ≤ P − K. The case P < 2K is clearly not

interesting: It corresponds to an edge existing between every pair of nodes, so that

K(n; θ) coincides with the complete graph Kn.

Random key graphs form a subclass in the family of random intersection graphs.

However, the model adopted here differs from the random intersection graphs dis-

cussed by Singer-Cohen et al. in [15, 24, 31] where each node is assigned a key ring,

one key at a time according to a Bernoulli-like mechanism (so that each key ring has

a random size and has a positive probability of being empty).

Despite strong similarities, we stress that the random graph K(n; θ) is not an

Erdős-Rényi graph G(n; p) [22] even if we use

p = 1 − q(θ). (2.5)

This is so because edge assignments are correlated in K(n; θ) but independent in

G(n; p): Indeed, let i ∼ j denote the event that there exists an edge between the

nodes i and j. With K = 2 and P = 4 × 104, it follows from (2.3) that

P [i ∼ j] ' 10−4
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whereas

P [i ∼ j |i ∼ k, j ∼ k] ' 1

2
.

Throughout, with n = 2, 3, . . . and positive integers K and P such that K ≤ P ,

let P (n; θ) denote the probability that the random key graph K(n; θ) is connected,

namely

P (n; θ) := P [K(n; θ) is connected] , θ = (K,P ).

Similarly, let P ?(n; θ) denote the probability that the random key graph has no iso-

lated nodes, i.e.,

P ?(n; θ) := P [K(n; θ) contains no isolated nodes] .

In the full visibility case assumed here, P (n; θ) coincides with the probability of secure

connectivity mentioned earlier.

2.3 Main results

We now summarize the main results obtained for the EG scheme. As a first step,

for the full visibility case, we obtain results regarding the connectivity properties

of the random key graph. Next, we remove the full visibility assumption and give

analogous results in Section 2.3.4 for the case when a wireless communication model

is also integrated to the random key graph.
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2.3.1 A roadmap

We seek conditions on P and K so that P (n; θ) (and P ?(n; θ)) is as large (i.e.,

as close to one) as possible. This issue naturally leads to zero-one laws for graph

connectivity in random key graphs when P and K are appropriately scaled with

n. Such zero-one laws are available for Erdős-Rényi graphs [13, 22] and can provide

helpful guidelines in establishing their analogs for random key graphs. Below, we

outline a possible approach which is inspired by the discussion of this issue given by

Eschenauer and Gligor in their original work [14]; see also the discussion in [9, 10].

(i) Let G(n; p) denote the Erdős-Rényi (ER) graph on n vertices with edge prob-

ability p (0 < p ≤ 1) [4, 22]. As mentioned before, the random key graph K(n; θ) is

not stochastically equivalent to an Erdős-Rényi graph G(n; p). Yet, setting aside this

fact, we note that K(n; θ) can be matched naturally to an Erdős-Rényi graph G(n; p)

with p and θ related through

p = 1 − q(θ). (2.6)

This constraint ensures that link assignment probabilities in K(n; θ) and G(n; p) co-

incide. Moreover, under (2.6) it is easy to check that the degree of a node in ei-

ther random graph is a Binomial rv with the same parameters, namely n − 1 and

p = 1− q(θ)!1 Given that the degree distributions in a random graph are often taken

as a good indicator of its connectivity properties, it has been conjectured that the

zero-one law for graph connectivity in random key graphs can be inferred from the

1For Erdős-Rényi graphs this result is well known, while for random key graphs this characteri-
zation is a straightforward consequence of (2.4).
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analog result for Erdős-Rényi graphs when matched through the condition (2.6).

(ii) To perform such a “transfer” we first recall that in Erdős-Rényi graphs the

property of absence of isolated nodes is known to exhibit the following zero-one law [4]:

If we scale the edge assignment probability p according to

pn =
log n + αn

n
, n = 1, 2, . . . (2.7)

for some deviation sequence α : N0 → R, then

lim
n→∞

P [G(n; pn) contains no isolated nodes] =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

(2.8)

Furthermore, it is known [4] that the absence of isolated nodes and graph connectivity

are asymptotically equivalent properties in ER graphs: Under (2.7) it is the case that

lim
n→∞

P [G(n; pn) is connected] =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

(2.9)

(iii) Under the matching condition (2.6), these classical results suggest scaling the

parameters K and P with n according to

1 −
(

Pn−Kn

Kn

)
(

Pn

Kn

) =
log n + αn

n
, n = 1, 2, . . . (2.10)
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for some sequence α : N0 → R. In view of (2.9) it is then not too unreasonable to

expect that the zero-one laws

lim
n→∞

P ?(n; θn) =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(2.11)

and

lim
n→∞

P (n; θn) =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(2.12)

should hold (possibly under some additional assumptions).

Of course, for this approach to be operationally useful, a good approximation to

the left handside of (2.10) is needed. It will become apparent (Lemma 7.4.4) that

1 −
(

P−K
K

)
(

P
K

) ' K2

P
(2.13)

under natural assumptions. Thus, if we scale the parameters according to

K2
n

Pn

=
log n + αn

n
, n = 1, 2, . . . (2.14)

it is natural to conjecture that the zero-one laws (2.11)-(2.12) should still hold; we

will show that this is indeed the case.
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2.3.2 A zero one law for the absence of isolated nodes

As with Erdős-Rényi graphs, we address the connectivity problem by first showing

the existence of a zero-one law for the absence of isolated nodes in RKGs, thereby

establishing the validity of the conjecture (2.11) under (2.14).

Any pair of functions K,P : N0 → N0 defines a scaling provided the natural

conditions

Kn ≤ Pn, n = 1, 2, . . . (2.15)

are satisfied. For any such scaling we can associate a sequence α : N0 → R through

the relation (2.14). In other words, we set

αn := n
K2

n

Pn

− log n, n = 1, 2, . . .

We refer to this sequence α : N0 → R as the deviation function associated with the

scaling P,K : N0 → N0. As the terminology suggests, the deviation function measures

by how much the scaling deviates from the critical scaling log n
n

.

The next result, established in Chapter 6, verifies the conjectured zero-one law

(2.11) for the absence of isolated nodes.
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Theorem 2.3.1 For any scaling K,P : N0 → N0, it holds that

lim
n→∞

P ?(n; θn) =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(2.16)

where the function α : N0 → R is determined through (2.14).

A proof of Theorem 2.3.1 is given in Chapter 6. Theorem 2.3.1 was also obtained

independently by Blackburn and Gerke [3].

If the random key graph K(n; θ) is connected, then it does not contain any isolated

nodes, whence

P (n; θ) ≤ P ?(n; θ). (2.17)

As a result, Theorem 2.3.1 already implies

lim
n→∞

P (n; θn) = 0 if limn→∞ αn = −∞,

thereby establishing the zero-law of the conjecture (2.12) under (2.14).

2.3.3 A zero-one law for connectivity

As mentioned earlier, Theorem 2.3.1 already implies a zero law for the property

of graph connectivity and establishes a part of the conjecture (2.12). The remaining
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part (namely the one-law) of the conjecture (2.12) (under (2.14)) is discussed next:

A scaling K,P : N0 → N0 is said to be admissible if

2 ≤ Kn (2.18)

for all n = 1, 2, . . . sufficiently large. We can now present the zero-one law for con-

nectivity in RKG’s:

Theorem 2.3.2 Consider an admissible scaling P,K : N0 → N0 with deviation

function α : N0 → R determined through (2.14). We have

lim
n→∞

P (n; θn) = 0 if limn→∞ αn = −∞. (2.19)

On the other hand, if there exists some σ > 0 such that

σn ≤ Pn (2.20)

for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

P (n; θn) = 1 if limn→∞ αn = ∞. (2.21)

A detailed discussion and a proof of Theorem 2.3.2 are provided in Chapter 7. The-
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orem 2.3.2 readily implies the following zero-one law.

Corollary 2.3.3 Consider an admissible pair of functions P,K : N0 → N such that

K2
n

Pn

∼ c
log n

n
(2.22)

holds for some c > 0. If there exists some σ > 0 such that (2.20) holds for all n

sufficiently large, then we have

lim
n→∞

P (n; θn) =






0 if 0 < c < 1

1 if 1 < c.

(2.23)

Indeed, it suffices to use Theorem 2.3.2 with any admissible pair of functions P,K :

N0 → N whose function α : N0 → R satisfies

αn = (c − 1) (1 + o(1)) · log n, n = 1, 2, . . .

2.3.4 Connectivity results under an ON-OFF channel

The results presented in the previous sections are obtained under the assumption

of full visibility. Now, we remove the full visibility assumption and seek to account for

the possibility that communication links between nodes may not be available. Namely,
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we assume a wireless communication model that consists of independent channels each

of which can be either on or off. Thus, with p in (0, 1), let {Bij(p), 1 ≤ i < j ≤ n}

denote i.i.d. {0, 1}-valued rvs with success probability p. The channel between nodes

i and j is available (resp. up) with probability p and unavailable (resp. down) with

the complementary probability p.

Distinct nodes i and j are said to be B-adjacent, written i ∼B j, if Bij(p) = 1.

The notion of B-adjacency defines an Erdős-Rényi graph G(n; p) on the vertex set

{1, . . . , n}. Obviously,

P [i ∼B j] = p.

To study the connectivity of the EG scheme under this ON-OFF channel, we

consider a random graph model that is obtained by intersecting the random key

graph K(n; θ) with the ER graph G(n; p). More precisely, the distinct nodes i and

j are said to be adjacent, written i ∼ j, if and only if they are both adjacent in the

random key graph (i.e., they share a key) and B-adjacent, namely

i ∼ j iff Σi(θ) ∩ Σj(θ) 6= ∅ and Bij(p) = 1. (2.24)

The resulting undirected random graph defined on the vertex set {1, . . . , n} through

this notion of adjacency is denoted K ∩ G(n; θ, p).

Throughout the collections of rvs {K1(θ), . . . , Kn(θ)} and {Bij(p), 1 ≤ i < j ≤ n}

are assumed to be independent, in which case the edge occurrence probability in
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K ∩ G(n; θ, p) is given by

P [i ∼ j] = (1 − q(θ)) · P [i ∼B j] = p(1 − q(θ)). (2.25)

We now present connectivity results for the random graph K ∩ G(n; θ, p). To fix

the terminology, we refer to any mapping p : N0 → (0, 1) as a scaling for ER graphs.

Very recently we have established a zero-one law for the absence of isolated nodes [47].

Theorem 2.3.4 Consider an admissible scaling K,P : N0 → N0 and a scaling p :

N0 → (0, 1) such that

pn(1 − q(θn)) ∼ c
log n

n
, n = 1, 2, . . . (2.26)

for some c > 0. If limn→∞ pn log n = p? exists, then we have

lim
n→∞

P




K ∩ G(n; θn, pn) contains

no isolated nodes



 =






0 if c < 1

1 if c > 1.

(2.27)

An analog of Theorem 2.3.4 also holds for the property of graph connectivity.

Theorem 2.3.5 Consider an admissible scaling K,P : N0 → N0 and a scaling p :

N0 → (0, 1) such that (2.26) holds for some c > 0. If limn→∞ pn log n = p? exists,
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then we have

lim
n→∞

P [K ∩ G(n; θn, pn) is connected] = 0 if c < 1. (2.28)

On the other hand, if there exists some σ > 0 such that

σn ≤ Pn (2.29)

for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

P [K ∩ G(n; θn, pn) is connected] = 1 if c > 1. (2.30)

We do not give the proofs of Theorem 2.3.4 and Theorem 2.3.5 in this dissertation,

but they can be found in [47].

It is now natural to wonder as to whether the zero-one laws of Theorem 2.3.1-

Theorem 2.3.2 for the full visibility case can be deduced from the more general results

given in Theorem 2.3.4-Theorem 2.3.5, say by setting pn = 1 for each n = 2, 3, . . .

sufficiently large. Indeed, in view of (2.13), it is a simple matter to check that Theorem

2.3.5 implies a weaker version of Theorem 2.3.2, namely Corollary 2.3.3. Nevertheless,

one can easily see that Theorem 2.3.2 does not follow from Theorem 2.3.5: Consider an

admissible scaling P,K : N0 → N0 such that (2.20) holds and the deviation function

α : N0 → R determined through (2.14) satisfies αn = o(log n) and limn→∞ αn = ∞.
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Then, if pn = 1 for all n sufficiently large, we have (see Lemma 7.4.4)

pn(1 − q(θn)) ∼ 1 − q(θn) ∼ K2
n

Pn

=
log n + αn

n
∼ log n

n
,

whence (2.26) holds with c = 1. Thus, under the enforced assumptions, Theorem

2.3.5 does not tell anything about the asymptotic behavior of the probability that

K ∩ G(n; θn, 1) (or, equivalently K(n; θn)) is connected. Yet, we see from Theorem

2.3.2 that limn→∞ P [K(n; θn) is connected] = 1 as soon as limn→∞ αn = ∞.
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Chapter 3

Modeling the pairwise key distribution scheme: Random

pairwise graphs

In this chapter, we consider the random pairwise key distribution scheme of Chan,

Perrig and Song [7] which was proposed as an alternative to the EG scheme. As was

done in the previous chapter for the EG scheme, we start with a brief discussion

of the implementation details. We then introduce the random graph model induced

under the assumption of full visibility; in this case the induced model will be referred

to as the random pairwise graph. Finally, we summarize the results which we have

obtained for several properties of the scheme and its induced graph. These results

will be established in Chapters 8, 9, and 10.

3.1 Pairwise key distribution scheme of Chan, Perrig and Song

The random pairwise key predistribution scheme of Chan et al. is parametrized

by two positive integers n and K such that K < n. There are n nodes which are
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labelled i = 1, . . . , n, with unique ids Id1, . . . , Idn. Write N := {1, . . . n} and set

N−i := N − {i} for each i = 1, . . . , n. With node i we associate a subset Γn,i of K

nodes selected at random from N−i – We say that each of the nodes in Γn,i is paired

to node i. Thus, for any subset A ⊆ N−i, we require

P [Γn,i = A] =






(
n−1
K

)−1
if |A| = K

0 otherwise

ensuring that the selection of Γn,i is done uniformly amongst all subsets of N−i which

are of size K. The rvs Γn,1, . . . , Γn,n are assumed to be mutually independent so that

P [Γn,i = Ai, i = 1, . . . , n] =
n∏

i=1

P [Γn,i = Ai]

for arbitrary A1, . . . , An subsets of N−1, . . . ,N−n, respectively.

Once this offline random pairing has been created, we construct the key rings

Σn,1, . . . , Σn,n, one for each node, as follows: Assumed available is a collection of nK

distinct cryptographic keys {ωi|`, i = 1, . . . , n; ` = 1, . . . , K} – These keys are drawn

from a very large pool of keys; in practice the pool size is assumed to be much larger

than nK, and can be safely taken to be infinite for the purpose of our discussion.

Now, fix i = 1, . . . , n and let `n,i : Γn,i → {1, . . . , K} denote a labeling of Γn,i. For

each node j in Γn,i paired to i, the cryptographic key ωi|`n,i(j) is associated with j. For

instance, if the random set Γn,i is realized as {j1, . . . , jK} with 1 ≤ j1 < . . . < jK ≤ n,
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then an obvious labeling consists in `n,i(jk) = k for each k = 1, . . . , K with key ωi|k

associated with node jk. Of course other labeling are possible. e.g., according to

decreasing labels or according to a random permutation. Finally, the pairwise key

ω?
n,ij = [Idi|Idj|ωi|`n,i(j)]

is constructed and inserted in the memory modules of both nodes i and j. Inherent

to this construction is the fact that the key ω?
n,ij is assigned exclusively to the pair of

nodes i and j, hence the terminology pairwise distribution scheme. The key ring Σn,i

of node i is the set

Σn,i := {ω?
n,ij, j ∈ Γn,i} ∪ {ω?

n,ji, i ∈ Γn,j}. (3.1)

Under full visibility, two nodes, say i and j, can establish a secure link if at least

one of the events i ∈ Γn,j or j ∈ Γn,j is taking place. It is not excluded that both

events can take place, in which case the memory modules of node i and j both contain

the distinct keys ω?
n,ij and ω?

n,ji. By construction this scheme supports node-to-node

authentication.

This construction of the key rings constitutes the initialization phase of the pair-

wise scheme where sensors are loaded with secure keys before deployment. Once the

network is deployed, the key setup phase and the path-key identification phase will

take place exactly as in the case of EG scheme; see Chapter 2.1 for details.
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One of the main questions regarding the feasibility of the pairwise scheme is its

ability to achieve secure connectivity amongst deployed sensors. This is so because,

given the randomness involved in the pairing mechanism, there is a positive proba-

bility that connectivity will not be achieved even in the best of circumstances when

the communication graph is fully connected. Therefore, it is desirable to understand

how should the parameter K be selected (for a given number n of sensors) so that

the resulting network is connected with high probability. We proceed as in the case

of the EG scheme by first investigating the random graph model induced (under full

visibility) by the pairwise scheme, i.e., the random pairwise graph.

3.2 Random pairwise graphs

This pairwise distribution scheme naturally gives rise to the following class of

random graphs: With n = 2, 3, . . . and positive integer K < n, we say that the

distinct nodes i and j are adjacent, written i ∼ j, if and only if they have at least

one key in common in their key rings, namely

i ∼ j iff Σn,i ∩ Σn,j 6= ∅. (3.2)

Let H(n; K) denote the undirected random graph on the vertex set {1, . . . , n} induced

by the adjacency notion (3.2). From now on, we shall refer to this random graph as

the random pairwise graph.
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The edge assignments in the random graph H(n; K) are characterized by the

{0, 1}-valued rvs {ξn,ij, j ∈ N−i, i = 1, . . . , n} defined by

ξn,ij := 1 [i ∈ Γn,j ∨ j ∈ Γn,i] , i 6= j, i, j = 1, . . . , n

with ∨ standing for logical disjunction. Thus, ξn,ij = 1 (resp. ξn,ij = 0) if i and j are

adjacent (resp. not adjacent) in H(n; K), with ξn,ij = ξn,ji by the undirected nature

of the graph. In the calculations that follow we shall find it helpful to exploit the

relation

1 − ξn,ij = 1 [i /∈ Γn,j, j /∈ Γn,i] . (3.3)

Comparing with Erdős-Rényi graphs: Pick distinct i, j = 1, . . . , n. It is plain

that

P [i ∈ Γn,j] =

(
n−2
K−1

)
(

n−1
K

) =
K

n − 1
,

so that

P [i /∈ Γn,j, j /∈ Γn,i] = P [i /∈ Γn,j] P [j /∈ Γn,i] =

(
1 − K

n − 1

)2

(3.4)

by independence. As a result,

E [ξn,ij] = 1 −
(

1 − K

n − 1

)2

. (3.5)
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Put differently, the link assignment probability λn(K) in random pairwise graphs is

given by

λn(K) = 1 −
(

1 − K

n − 1

)2

=
2K

n − 1
−

(
K

n − 1

)2

. (3.6)

Next, as we turn to the evaluation of correlations between edge assignment rvs,

pick the vertices i, j, k, ` = 1, . . . , n with i 6= j and k 6= `. If the indices i, j, k and `

are all distinct, then by virtue of (3.3) the rvs ξn,ij and ξn,k` are independent, whence

Cov[ξn,ij, ξn,k`] = 0. It remains to consider the cases when the indices i, j, k and `

are not all distinct, e.g., without loss of generality, take the case i = k with i, j and

` distinct. Then from (3.3) we get

Cov[ξn,ij, ξn,i`] = Cov[1 − ξn,ij, 1 − ξn,i`]

= Cov[1 [i /∈ Γn,j, j /∈ Γn,i] ,1 [i /∈ Γn,`, ` /∈ Γn,i]]

= P [i /∈ Γn,j, j /∈ Γn,i, i /∈ Γn,`, ` /∈ Γn,i]

− P [i /∈ Γn,j, j /∈ Γn,i] P [i /∈ Γn,`, ` /∈ Γn,i]

= P [i /∈ Γn,j] P [i /∈ Γn,`] P [j /∈ Γn,i, ` /∈ Γn,i]

− P [i /∈ Γn,j, j /∈ Γn,i] P [i /∈ Γn,`, ` /∈ Γn,i]

= P [i /∈ Γn,j] P [i /∈ Γn,`] P [j /∈ Γn,i, ` /∈ Γn,i]

− P [i /∈ Γn,j] P [j /∈ Γn,i] P [i /∈ Γn,`] P [` /∈ Γn,i]
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by the independence of the rvs Γn,i, Γn,j and Γn,`. Noting that

P [j /∈ Γn,i, ` /∈ Γn,i] =

(
n−3
K

)
(

n−1
K

) ,

we easily conclude that

Cov[ξn,ij, ξn,i`] =

((
n−2
K

)
(

n−1
K

)
)2




(

n−3
K

)
(

n−1
K

) −
((

n−2
K

)
(

n−1
K

)
)2



 < 0

by elementary calculations. It is now plain that the random graph H(n; K) is not an

Erdős-Rényi graph [4] – Edge assignments are (negatively) correlated in H(n; K) while

independent in Erdős-Rényi graphs. In fact, the rvs {ξn,ij, j ∈ N−i, i = 1, . . . , n}

turn out to exhibit a strong form of negative correlation in that they are negatively

associated in the sense of Joag-Dev and Proschan [23]; see Chapter 10.6 for details.

To keep the notation simple we have omitted the dependence on K for most of

the quantities introduced so far. In what follows we largely abide by this practice,

although we shall make the dependence on K explicit in a few places when scaling K

with the number n of users.
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3.3 Main results

3.3.1 Zero-one laws for connectivity

Fix positive integers n = 2, 3, . . . and K < n. Throughout this chapter, we set

P (n; K) := P [H(n; K) is connected] .

We wish to determine conditions on K and n so that P (n; K) is as large (i.e., as close

to one) as possible. The first technical result of this chapter, given next, provides a

lower bound on P (n; K).

Theorem 3.3.1 Consider any positive integer K ≥ 2. With n(K) = de(K + 1)e, we

have

P (n; K) ≥ 1 − (K + 1)K2−1

2
· n−(K2−2), n ≥ n(K) (3.7)

Theorem 3.3.1 is established in Chapter 8.2. The bound (3.7) gives some indication

as to how fast the convergence limn→∞ P (n; K) = 1 occurs when K ≥ 2. As would

be expected, the convergence becomes faster with larger K; see also (3.9) below. For

K = 2, n(K) = 9, the bound (3.7) takes the simpler form

P (n; 2) ≥ 1 − 27

2n2
, n ≥ 9. (3.8)
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For each n = 1, 2, . . ., a simple coupling argument yields the comparison

P (n; 2) ≤ P (n,K), 2 ≤ K < n. (3.9)

Making use of (3.8) we then conclude that

P (n; K) ≥ 1 − 27

2n2
,

2 ≤ K < n

n ≥ n(K)

. (3.10)

A zero-one law for connectivity is presented next.

Theorem 3.3.2 With any positive integer K, it holds that

lim
n→∞

P (n; K) =






0 if K = 1

1 if K ≥ 2.

(3.11)

The one-law in Theorem 3.3.2 is an easy consequence of the bound (3.7) (or (3.10)),

while the zero-law of Theorem 3.3.2 is proved separately in Chapter 8.3.

Theorem 3.3.2 easily yields the behavior of graph connectivity as the parameter

K is scaled with n. First some terminology: We refer to any mapping K : N0 → N0
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as a scaling provided it satisfies the natural conditions

Kn < n, n = 1, 2, . . . . (3.12)

Corollary 3.3.3 For any scaling K : N0 → N0, we have

lim
n→∞

P (n; Kn) = 1 (3.13)

provided Kn ≥ 2 for all n sufficiently large.

Because H(n; K) cannot be equated with an Erdős-Renyi graph, neither Theorem

3.3.1 nor Corollary 3.3.3 are consequences of classical results for Erdős-Renyi graphs

[4]. Indeed, consider the following well-known zero-one law for Erdős-Rényi graphs

(easily induced from (2.7)-(2.8)): For any scaling p : N0 → [0, 1] satisfying

pn ∼ c · log n

n
(3.14)

for some c > 0, it holds that

lim
n→∞

P [G(n; pn) is connected] =






0 if 0 < c < 1

1 if 1 < c.

(3.15)

In view of (3.6), 2Kn

n−1
− K2

n

(n−1)2
stands for the probability of link assignment in H(n; Kn)

and therefore plays a role analogous to that of pn in Erdős-Rényi graphs. Thus,
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a transfer of the connectivity results from G(n; pn) to H(n; Kn) (akin to the one

discussed in Chapter 2.3.1 for random key graphs) would suggest scaling K such that

2Kn

n − 1
− K2

n

(n − 1)2
∼ c

log n

n
, (3.16)

for some c > 0. Any scaling K : N0 → N0 which behaves like (3.16) must necessarily

satisfy Kn = o(n), and it is easy to see that requiring (3.16) is equivalent to

2Kn ∼ c log n. (3.17)

This would then lead formally to the zero-one law

lim
n→∞

P [H(n; Kn) is connected] =






0 if 0 < c < 1

1 if 1 < c.

to hold under (3.17). Clearly, this yields the misleading conclusion that Kn has to

behave like c log n for some c > 1
2

in order for H(n; Kn) to be asymptotically almost

surely (a.a.s.) connected– In fact, by Theorem 3.3.2 it is only needed to have Kn ≥ 2

for all n sufficiently large.
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3.3.2 Key ring sizes associated with the pairwise scheme

The mere fact that H(n; K) becomes connected even with very small K values

does not imply that the number of keys (i.e., the size |Σn,i|) to achieve connectivity

is necessarily small. Indeed, in contrast with the EG scheme and its variants, the

pairwise scheme produces key rings of variable size between K and K + n − 1. In

this dissertation, we explore this issue further and obtain conditions on a scaling

K : N0 → N0 which ensure that all key rings have size of order log n.

First observe via (3.1) that

|Σn,i| =st K + Bin

(
n − 1,

K

n − 1

)
, i = 1, . . . , n

where Bin(n, p) stands for a binomial rv with n trials and success probability p. Thus,

we have

E [|Σn,i|] = 2K, i = 1, . . . , n. (3.18)

It is also a simple matter to check that

|Σ|avg :=
|Σn,1| + · · · + |Σn,n|

n
= 2K (3.19)

with |Σ|avg denoting the average key ring size in the network.

We begin by noting that

|Σn,1(Kn)|
2Kn

P→ n 1 (3.20)
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for any scaling K : N0 → N0 as soon as limn→∞ Kn = ∞; this is an easy consequence

of Lemma 3.3.4 below. Thus, when Kn becomes large with n, although the key ring

size |Σn,1(Kn)| fluctuates from Kn to Kn+(n−1), it does so with a propensity to hover

about its mean 2Kn. This can be given a precise meaning as the next concentration

result shows. First we set

a(τ) := (1 + τ) · log (1 + τ) − τ, τ > −1, (3.21)

and

b(τ) :=






2 if 0 < τ < 1

1 if 1 ≤ τ .

(3.22)

Lemma 3.3.4 Consider positive integers K and n such that K < n. For any c > 0,

we have

P [||Σn,1(K)| − 2K| > cK] ≤ b(c) · e−a(c)K (3.23)

for all n = 2, 3, . . . with a(c) > 0 given by (3.21) and b(c) given by (3.22).

Lemma 3.3.4, which is established in Chapter 8.4, has several consequences: If the

parameter K is scaled according to some scaling K : N0 → N0 such that limn→∞ Kn =

∞, then with high probability, the number of keys |Σn,1(Kn)| stored at a node will

be between (2− c)Kn and (2 + c)Kn for any c > 0. For sake of concreteness consider

the case c = 1: Since it is always the case that |Σn,1(Kn)| ≥ Kn (e.g., see (8.19)), the
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inequality (3.23) reduces to

P [|Σn,1(Kn)| > 3Kn] ≤ e−a(1)Kn (3.24)

for all n = 2, 3, . . .. It is easily seen from (3.24) that P [|Σn,1(Kn)| > 3Kn] is already

negligible (i.e., “vanishes”) for Kn ≥ 15.

A related result also holds for the maximal key ring size when restricting attention

to the subclass of logarithmic scalings. First define the maximal key ring size as

Mn(K) := maxi=1,...,n|Σn,i|. (3.25)

Theorem 3.3.5 Consider a scaling K : N0 → N0 such that

Kn ∼ λ log n (3.26)

with λ > 0. Then, there exists c(λ) > 0 such that for any c > c(λ) we have

P [|Mn(Kn) − 2Kn| > cKn] ≤ n−(h(λ;c)+o(1)) (3.27)

for all n = 1, 2, . . . with

h(λ; c) := −1 + λa(c) > 0, c(λ) < c. (3.28)
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Theorem 3.3.5 is established in Chapter 8.5. As with Lemma 3.3.4, Theorem

3.3.5 shows that with high probability, the maximum key ring size Mn(Kn) will be

less than (c + 2)Kn for all c > c(λ). Arguments given in Chapter 8.5 show that if

(3.26) is satisfied with λ > λ? := (2 log 2 − 1)−1 ' 2.6, then c(λ) < 1. The maximal

key ring size is now seen to be less than 3Kn with high probability as we use (3.27)

with c = 1. Finally, by an easy monotonicity argument, Theorem 3.3.5 implies that

if Kn = O(log n) then all key rings have size O(log n) with high probability.

3.3.3 Connectivity results for the gradual deployment scenario

We continue our study of the connectivity properties of the pairwise scheme from

a different perspective: In many applications, the sensor nodes are expected to be

deployed gradually over time. Yet, the pairwise key distribution is an offline pairing

mechanism which simultaneously involves all n nodes. Thus, once the network size

n is set, there is no way to add more nodes to the network and still recursively

expand the pairwise distribution scheme (as is possible for the EG scheme). However,

as we explain below, the gradual deployment of a large number of sensor nodes is

nevertheless feasible from a practical viewpoint. In that context we are now interested

in understanding how the parameter K needs to scale with n large in order to ensure

that connectivity is maintained a.a.s. throughout gradual deployment. We start by

describing the implementation that allows the deployment of the pairwise scheme in

multiple stages.
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The implementation model: Initially, generate n node identities and construct

key rings Σn,1, . . . , Σn,n as described in Chapter 3.1 – Here n stands for the maxi-

mum possible network size and should be selected large enough. This key selection

procedure does not require the physical presence of the sensor entities and can be

implemented completely on the software level. We now describe how this offline pair-

wise key distribution scheme can support gradual network deployment in consecutive

stages. In the initial phase of deployment, with 0 < γ1 < 1, let bγ1nc sensors be

produced and given the labels 1, . . . , bγ1nc. The key rings Σn,1, . . . , Σn,bγ1nc are then

inserted into the memory modules of the sensors 1, . . . , bγ1nc, respectively. Imagine

now that more sensors are needed, say bγ2nc − bγ1nc sensors with 0 < γ1 < γ2 ≤ 1.

Then, bγ2nc−bγ1nc additional sensors would be produced, this second batch of sensors

would be assigned labels bγ1nc+1, . . . , bγ2nc, and the key rings Σn,bγ1nc+1, . . . , Σn,bγ2nc

would be inserted into their memory modules. Once this is done, these bγ2nc−bγ1nc

new sensors are added to the network (which now comprises bγ2nc deployed sensors).

This step may be repeated a number times: In fact, for some finite integer `, con-

sider positive scalars 0 < γ1 < . . . < γ` ≤ 1 (with γ0 = 0 by convention). We can

then deploy the sensor network in ` consecutive phases, with the kth phase adding

bγknc − bγk−1nc new nodes to the network for each k = 1, . . . , `.

The results: With the network deployed gradually over time as described above,

we are interested in understanding how the parameter K needs to be scaled with

large n to ensure that connectivity is maintained a.a.s. throughout gradual deploy-

ment. Consider positive integers n = 2, 3, . . . and K with K < n. With γ in the
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interval (0, 1), let Hγ(n; K) denote the subgraph of H(n; K) restricted to the nodes

{1, . . . , bγnc}. Given scalars 0 < γ1 < . . . < γ` ≤ 1, we seek conditions on the

parameters K and n such that Hγi
(n; K) is a.a.s. connected for each i = 1, 2, . . . , `.

First we write

Pγ(n; K) := P [Hγ(n; K) is connected] = P [Cn,γ(K)]

where Cn,γ(K) denote the event that Hγ(n; K) is connected. The fact that H(n; K)

is connected does not imply that Hγ(n; K) is necessarily connected. Indeed, with

distinct nodes i, j = 1, . . . , bγnc, the path that exists in H(n; K) between these nodes

(as a result of the assumed connectivity of H(n; K)) may comprise edges that are

not in Hγ(n; K). The next result, established in Chapter 9.2.1, provides an analog of

Corollary 3.3.3 in this new setting.

Theorem 3.3.6 With γ in the unit interval (0, 1) and c > 0, consider a scaling

K : N0 → N0 such that

Kn ∼ c
log n

γ
. (3.29)

Then, we have

lim
n→∞

Pγ(n; Kn) =






0 if c < r(γ)

1 if c > 1

(3.30)
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where the threshold r(γ) is given by

r(γ) :=

(
1 − log(1 − γ)

γ

)−1

. (3.31)

Theorem 3.3.6 does not provide a full zero-one law for the connectivity of Hγ(n; Kn)

as there is a gap between the threshold r(γ) of the zero-law and the unit threshold

of the one-law. Yet, it can easily be seen that the gap between the thresholds of the

zero-law and the one-law is quite small with 1
2

< 1 − r(γ) < 1. More importantly,

Theorem 3.3.6 already implies (via a monotonicity argument) that it is necessary and

sufficient to keep the parameter Kn on the order of log n to ensure that the graph

Hγ(n; Kn) is a.a.s. connected. It is worth pointing out that the simulation results

in Section 9.6 indeed suggest the existence of a full zero-one law for Pγ(n; Kn) with

a threshold resembling r(γ). This would not be surprising since in many known

classes of random graphs, the absence of isolated nodes and graph connectivity are

asymptotically equivalent properties, e.g., Erdős-Rényi graphs [4] and random key

graphs [29,30,35], among others.

Finally we turn to gradual network deployment as discussed earlier.

Theorem 3.3.7 With 0 < γ1 < γ2 < . . . < γ` ≤ 1, consider a scaling K : N0 → N0

such that

Kn ∼ c
log n

γ1

(3.32)
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for some c > 1. Then we have

lim
n→∞

P [Cn,γ1(Kn) ∩ . . . ∩ Cn,γ`
(Kn)] = 1. (3.33)

Theorem 3.3.7 will be established in Chapter 9.5. The event [Cγ1,n(Kn) ∩ . . . ∩

Cγ`,n(Kn)] corresponds to the network in each of its ` phases being connected as more

nodes get added – In other words, on that event the sensors do form a connected

network at each phase of deployment. As a result, we infer via Theorem 3.3.7 that

the condition (3.32) (with c > 1) is enough to ensure that the network remains a.a.s.

connected as more sensors are deployed over time. From a practical point of view,

it is important to notice that the condition (3.32) requires only the knowledge of

the maximal possible network size n and the fraction γ1 of the nodes that will be

deployed initially – If the network is connected at the initial stage, it will remain so

throughout all stages of the deployment irrespective of the fractions γ2, . . . , γ` that

are added later.

We can now combine Theorem 3.3.5 and Theorem 3.3.7, and arrive at the following

conclusion:

Corollary 3.3.8 With 0 < γ1 < γ2 < . . . < γ` ≤ 1, consider a scaling K : N0 → N0
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such that Kn = O(log n) with

Kn ≥ max
{
(γ1)

−1, λ?
}
· log n, n = 2, 3, . . . (3.34)

Then, the following holds:

1) The maximum number of keys kept in the memory module of each sensor will

be a.a.s. less than 3Kn;

2) The network deployed gradually in ` steps (as in Section 3.3.3) will be a.a.s.

connected in each of the ` phases of deployment.

We close by comparing the gradual deployment and the single-phase deployment

in terms of the required values of K to achieve secure connectivity. It is already

known via Theorem 3.3.2 that K ≥ 2 is enough to ensure connectivity when all nodes

in the network are deployed simultaneously. On the other hand, Figure 3.1 depicts

the required value of K for achieving connectivity in the gradual deployment case as

a function of the size γ1 of the initial deployment. It can easily be seen that if γ1 is

small, the required K can be much larger than 2.

3.3.4 Connectivity under an ON-OFF channel

The results presented in the previous sections are obtained under the assumption

of full visibility. Now, we complement them by accounting for the possibility that
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Figure 3.1: The critical K value (according to Theorem 3.3.6) required to achieve
secure connectivity at every step of the gradual deployment. The maximum possible
network size is set to n = 2000 and only dγ1 · ne sensors are deployed in the initial
stage of the deployment. It is seen that if γ1 is small, the required K can be much
larger than that of the single-phase deployment case, namely K = 2.

communication links between nodes may not be available. As for the EG scheme,

we study such situations under a communication model that consists of independent

channels each of which can be either on or off. Thus, the random graph model

studied here is obtained by intersecting the random pairwise graph H(n; K) with the

ER graph G(n; p). More precisely, in this new model, the distinct nodes i and j are

said to be adjacent, written i ∼ j, if and only they are both adjacent in the random

pairwise graph (i.e., they share a key) and they are B-adjacent, namely

i ∼ j iff Σn,i ∩ Σn,j 6= ∅ and Bij(p) = 1, (3.35)

where {Bij(p), 1 ≤ i < j ≤ n} denote a collection of i.i.d. {0, 1}-valued rvs with

success probability p. The resulting undirected random graph defined on the vertex
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set {1, . . . , n} through this notion of adjacency is denoted H ∩ G(n; K, p).

Throughout, the collections of rvs {Γn,1, . . . , Γn,n} and {Bij(p), 1 ≤ i < j ≤ n}

are assumed to be independent, in which case the edge occurrence probability in

H ∩ G(n; K, p) is given by

P [i ∼ j] = p · P [Σn,i ∩ Σn,j 6= ∅] = pλn(K) (3.36)

with λn(K) defined in (3.6).

We now present connectivity results for the random graph H ∩ G(n; K, p). To fix

the terminology any mapping p : N0 → (0, 1) defines a scaling for ER graphs.

The results will be expressed in terms of the threshold function τ : [0, 1] → [0, 1]

defined by

τ(p) =






1 if p = 0

2

1− log(1−p)
p

if 0 < p < 1

0 if p = 1.

(3.37)

With this notation, the main results can be summarized as follows:

Theorem 3.3.9 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

pn

(
2Kn − K2

n

n − 1

)
∼ c log n, n = 1, 2, . . . (3.38)
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for some c > 0. Assume also that limn→∞ pn = p? exists. Then, we have

lim
n→∞

P [H ∩ G(n; Kn, pn) contains no isolated nodes]

= lim
n→∞

P [H ∩ G(n; Kn, pn) is connected]

=






0 if c < τ(p?)

1 if c > τ(p?)

(3.39)

with the threshold τ(p?) specified in (3.37).

Theorem 3.3.9 will be established in Chapter 10. We see that the class of random

graphs studied here provides one more instance where the zero-one laws for absence

of isolated nodes and connectivity coincide, viz. ER graphs [4], random geometric

graphs [27] or the random key graphs [3, 29,39] discussed in the previous chapter.

Theorem 3.3.2 and its Corollary 3.3.3 cannot be recovered from Theorem 3.3.9

whose zero-one laws are derived under the assumption pn < 1 for all n = 1, 2, . . ..

Furthermore, even if the scaling p : N0 → (0, 1) were to satisfy limn→∞ pn = 1,

only the one-laws in Theorem 3.3.10 remain since τ(p?) = 0 (and τ̂(p?) = 0) at

p? = 1. Although this might perhaps be expected given the aforementioned absence

of isolated nodes in H(n; K), the one-laws for both the absence of isolated nodes and

graph connectivity in H ∩ G(n; K, p) still require conditions on the behavior of the

scaling K : N0 → N0, namely (3.41) (whereas Corollary 3.3.3 does not).

A particularly interesting case arises when p? > 0 since requiring (3.38) now
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amounts to
(

2Kn − K2
n

n − 1

)
∼ c

p?
log n (3.40)

for some c > 0. Any scaling K : N0 → N0 which behaves like (3.40) must necessarily

satisfy Kn = o(n), and it is easy to see that requiring (3.38) is equivalent to

Kn ∼ t log n (3.41)

for some t > 0 with c and t related by t = c
2p? . With this reparametrization, Theorem

3.3.9 takes a simpler form:

Theorem 3.3.10 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

limn→∞ pn = p? > 0. Under the condition (3.41) for some t > 0, we have

lim
n→∞

P [H ∩ G(n; Kn, pn) contains no isolated nodes]

= lim
n→∞

P [H ∩ G(n; Kn, pn) is connected]

=






0 if t < τ̂(p?)

1 if t > τ̂(p?)

(3.42)

where we have set

τ̂(p) :=
τ(p)

2p
=

1

p − log(1 − p)
, 0 < p ≤ 1. (3.43)
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The alternate formulation given in Theorem 3.3.10 is particularly relevant for the

case pn = p? (in (0, 1)) for all n = 1, 2, . . ., which captures situations when channel

conditions are not affected by the number of users. This simplification does not occur

in the more realistic case p? = 0 which corresponds to the situation where channel

conditions are indeed influenced by the number of users in the system – The more

users in the network, the more likely they will experience interferences from other

users.

3.4 Discussion

3.4.1 Full-visibility vs On-Off model

Although the communication model considered here may be deemed simplistic,

it does permit a complete analysis of the issues of interest, with the results already

yielding a number of interesting observations: The obtained zero-one laws differ sig-

nificantly from the corresponding results in the full visibility case. Thus, the com-

munication model may have a significant impact on the dimensioning of the pairwise

distribution algorithm, and this points to the need of possibly reevaluating guidelines

developed under the full visibility assumption. Furthermore, simulations suggest that

the zero-one laws obtained here for the on-off channel model may still be useful in di-

mensioning the pairwise scheme under the popular, and more realistic, disk model [19];

see Section 3.4.3.
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Figure 3.2: The critical K value (according to Theorem 3.3.10) required to achieve
secure connectivity in the on-off channel model. The network size is set to n = 5000
and the probability p of wireless link availability is varied from 0.05 to 0.95. It is seen
that if the channel is poor, i.e., if p is small, the required K can be much larger than
that of the full-visibility case, namely K = 2.

To better asses the impact of the communication model on the connectivity of the

pairwise scheme, we show in Figure 3.2 the critical K value (obtained via Theorem

3.42) required to achieve connectivity as a function of the channel parameter p. We

see that if the channel conditions are poor, i.e., if the probability p of a wireless link

being available is small, the required K value can be much larger than that of the

full visibility case, namely K = 2.

3.4.2 Comparing H ∩ G(n; K, p) with ER graphs

In the original paper of Chan et al. [7] (as in the reference [21]), the connectivity

analysis of the pairwise scheme was based on ER graphs [4] – It was assumed that the

random graph induced by the pairwise scheme under a communication model (taken
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Figure 3.3: τ(p) vs p. Clearly τ(p?) = 1 only if limn→∞ pn = p? = 0.

mostly to be the disk model [19]) behaves like an ER graph; similar assumptions have

been made in [14, 21] when discussing the connectivity of the EG scheme. However,

this assumption was made without any formal justification. Here we have shown that

the full visibility model H(n; K) has major differences with an ER graph. It is easy

to verify that the edge assignments in H ∩ G(n; K, p) are negatively correlated (see

Chapter 10.6) while independent in ER graphs. Therefore, the models H(n; K) and

H ∩ G(n; K, p) cannot be equated with ER graphs, and the results obtained in this

dissertation are not mere consequences of classical results for ER graphs.

However, formal similarities do exist between H ∩ G(n; K, p) and ER graphs. Re-

call the zero-one law (3.14)-(3.15) for ER graphs and observe that the condition (3.38)

can be rephrased more compactly as

pnλn(Kn) ∼ c
log n

n
, c > 0
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with the result (3.39) remaining unchanged. Hence, in both ER graphs and H ∩ G(n; K, p),

the zero-one laws can be expressed as a comparison of the probability of link assign-

ment against the critical scaling log n
n

; this is also the case for random geometric

graphs [27], and random key graphs [3, 29, 39]. Note however that the condition

c > τ(p?) that ensures a.a.s. connectivity in H ∩ G(n; K, p) is not the same as the

condition c > 1 for a.a.s. connectivity in ER graphs; see Figure 3.3. Thus, the con-

nectivity behavior of the model H ∩ G(n; K, p) is in general different from that in

an ER graph, and a “transfer” of the connectivity results from ER graphs cannot be

taken for granted. Yet, the comparison becomes intricate when the channel is poor:

The connectivity behaviors of the two models do match in the practically relevant

case (for WSNs) limn→∞ pn = 0 since τ(0) = 1.

3.4.3 A more realistic communication model

One possible extension of the work presented here would be to consider a more

realistic communication model; e.g., the popular disk model [19] which takes into

account the geographical locations of the sensor nodes. For instance, assume that the

nodes are distributed over a bounded region D of the plane. According to the disk

model, nodes i and j located at xi and xj, respectively, in D are able to communicate

if

‖ xi − xj ‖< ρ (3.44)

56



where ρ > 0 is called the transmission range. When the node locations are inde-

pendently and randomly distributed over the region D, the graph induced under

the condition (3.44) is known as a random geometric graph [27], thereafter denoted

G(n; ρ).

Under the disk model, studying the pairwise scheme of Chan et al. amounts

to analyzing the intersection of H(n; K) and G(n; ρ), say H ∩ G(n; K, ρ). A direct

analysis of this model seems to be very challenging; see below for more on this.

However, limited simulations already suggest that the zero-one laws obtained here for

H ∩ G(n; K, p) have an analog for the model H ∩ G(n; K, ρ). To verify this, consider

n nodes distributed uniformly and independently over a folded unit square [0, 1]2 with

toroidal (continuous) boundary conditions. Since there are no border effects, it is easy

to check that

P [ ‖ xi − xj ‖< ρ ] = πρ2, i 6= j, i, j = 1, 2, . . . , n.

whenever ρ < 0.5. We match the two communication models G(n; p) and G(n; ρ) by

requiring πρ2 = p. Then, we fix the number of nodes at n = 200 and consider the

channel parameters p = 0.2, p = 0.4, p = 0.6, p = 0.8, and p = 1 (the full visibility

case), while varying the parameter K from 1 to 25. For each parameter pair (K, p),

we generate 500 independent samples of the graphs H∩G(n; K, p) and H ∩ G(n; K, ρ)

while we count the number of times (out of a possible 500) that the obtained graphs

are connected. Dividing the counts by 500, we obtain the (empirical) probabilities
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Figure 3.4: a) Probability that H ∩ G(n; K, p) is connected as a function of K
for p = 0.2, p = 0.4, p = 0.6, p = 0.8 and p = 1 with n = 200. b) Probability that
H∩G(n; K, ρ) is connected as a function of K. The number of nodes is set to n = 200
and ρ is given by πρ2 = p. This figure clearly resembles Figure 3.4(a) for all p 6= 1.

for H ∩ G(n; K, p) and H ∩ G(n; K, ρ) being connected for various values of K and

p. The results are depicted in Figure 3.4(a) (on-off channel model) and Figure 3.4(b)

(disk model). Clearly, these two figures are almost indistinguishable suggesting that

the connectivity behaviors of the models H ∩ G(n; K, p) and H ∩ G(n; K, ρ) are quite

similar. This raises the possibility that the results obtained here for the on/off com-

munication model can also be used for dimensioning the pairwise scheme under the

disk model.

A complete analysis of H ∩ G(n; K, ρ) is likely to be very challenging given the

difficulties already encountered in the analysis of similar problems. For example,

the intersection of random geometric graphs with ER graphs was considered in [2,

48]. Although zero-one laws for graph connectivity are available for each component

random graph, the results for the intersection model in [2,48] were limited only to the

58



absence of isolated nodes; the connectivity problem is still open for that model. Yi

et al. [48] also consider the intersection of random key graphs with random geometric

graphs, but these results are again limited to the property of node isolation. To

the best of our knowledge, Theorem 3.3.2, together with Theorem 2.3.5, reported

here constitute the only zero-one laws for graph connectivity in a model formed by

intersecting multiple random graphs! (Except of course the trivial case where an ER

graph intersects another ER graph.)

3.4.4 Intersection of random graphs

When using random graph models to study networks, situations arise where the

notion of adjacency between nodes reflects multiple constraints. This can be so even

when dealing with networks other than WSNs. As was the case here, such circum-

stances call for studying models which are constructed by taking the intersection of

multiple random graphs. However, as pointed out earlier, the availability of results

for each component model does not necessarily imply the availability of results for

the intersection of these models; see the examples provided in the previous section.

Figures 3.5-3.6 can help better understand the relevant issues as to why this is so:

Figure 3.5(a) provides a sample of an ER graph G(n, p) with n = 200 and p = 0.2. As

would be expected from classical results, the obtained graph is very densely connected.

Similarly, Figure 3.5(b) provides a sample of the pairwise random graph H(n; K) with

n = 200 and K = 5. In line with Theorem 3.3.2, the obtained graph is connected.
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(a) (b)

Figure 3.5: a) An instantiation of ER graph G(n; p) with n = 50 and p = 0.2.– The
graph is connected. b) An instantiation of H(n; K) with n = 50 and K = 5.– The
graph is connected.

On the other hand, the graph formed by intersecting these graphs turn out to be

disconnected as shown in Figure 3.6.

Figure 3.6: The intersection H ∩ G(n; K, p) of the graphs in Figure 3.5(a) and Figure
3.5(b) – The graph is disconnected as the marked nodes form a component!

To drive this point further, consider the constant parameter case for the models
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H(n; K) and G(n; p), a case which cannot be recovered from Theorem 3.3.9. Never-

theless, Theorem 3.3.2 yields

lim
n→∞

P [H(n; K) is connected] = 1, K ≥ 2

while it is well known [4] that

lim
n→∞

P [G(n; p) is connected] = 1, 0 < p < 1.

However, it can be shown that

lim
n→∞

P [H ∩ G(n; K, p) contains no isolated nodes] = 0 (3.45)

whence

lim
n→∞

P [H ∩ G(n; K, p) is connected] = 0 (3.46)

for the same ranges of values for p and K; for details see the discussion at the end

of Section 10.7. This clearly provides a non-trivial example (one that is not for an

ER intersecting an ER graph) where the intersection of two random graphs is indeed

a.a.s. not connected although each of the components is a.a.s. connected.

61



Chapter 4

A comparison of the EG scheme and the pairwise scheme

4.1 Introduction

The main goal of this dissertation is to compare the EG scheme and the pairwise

scheme based on the metrics introduced in Chapter 1.3. As most of the relevant

results have already been presented in the previous two chapters, we are now in a

position to make this comparison. In particular, we will compare the number of keys

required in each sensor’s memory to ensure certain desired properties in the network.

As explained in Chapter 1.3, we will look for connectivity, scalability and security.

In what follows we use |Σ|EG for the key ring size of each sensor participating in

the EG scheme. In other words, according to the notation used in Chapter 2, we

have |Σ|EG = K. Similarly, we let |Σ|Avg be the average key ring size in the pairwise

scheme given in (3.19). Finally, for convenience, we let |Σ|Max denote the maximum

key ring size in the pairwise scheme, i.e., we set |Σ|Max = Mn(K) with Mn(K) defined

in (3.25).
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4.2 Connectivity

We start with the connectivity properties.

Full visibility: First of all, it is important to notice that in principle the EG scheme

can yield connectivity even when each sensor has only one key – Just let the pool size

P equals to one. However, such cases are not interesting in realistic WSN scenarios

as the vulnerability of the network against node capture attacks will be extremely

high [8,9]. Indeed, for the EG scheme to be operationally useful, it was stated in [10]

that the parameters |Σ|EG,n and Pn should satisfy

|Σ|EG,n

Pn

∼ 1

n
. (4.1)

Thus, throughout this chapter, we assume that the condition (4.1) is satisfied.

Now, recall from Corollary 2.3.3 that the random key graph will be a.a.s. con-

nected if we have

|Σ|2EG,n

Pn

∼ c
log n

n
.

for some c > 1. Under (4.1), this amounts to having key rings with

|Σ|EG,n ∼ c log n, c > 1,

whence we conclude that the required key ring size to achieve connectivity (under full

visibility) is O(log n) under the EG scheme.
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Under the pairwise scheme, we know via Theorem 3.3.2 that the random pairwise

graph is a.a.s. connected whenever the scheme parameter K satisfies K ≥ 2. In

view of (3.19), K = 2 yields an average key ring size |Σ|Avg = 4, while Theorem

3.3.5 ensures that the maximum size of a key ring will be O(log n). Thus, under full

visibility, the pairwise scheme can yield connectivity with key rings having size on

the order of what is required for the EG scheme.

On-Off communication model: Now consider the partial visibility case and as-

sume as in Chapter 2.3.4 and Chapter 3.3.4 that wireless links are independent from

each other and each is either on with probability p or off with probability 1 − p. In

the case of the EG scheme, we see from Theorem 2.3.5 that the resulting random

graph (i.e., the intersection of the random key graph and Erdős-Rényi graph) will be

a.a.s. connected if we have

pn(1 − q(θn)) ∼ c
log n

n
(4.2)

for some c > 0. Furthermore, since key ring sizes are expected to be much smaller

than network size [14], i.e., |Σ|EG,n = o(n), it is not unreasonable to assume that (4.1)

implies

lim
n→∞

|Σ|2EG,n

Pn

= 0, (4.3)

whence

1 − q(θn) ∼ |Σ|2EG,n

Pn
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in view of Lemma 7.4.4. As a result, under (4.1)-(4.3) the condition (4.2) is equivalent

to

|Σ|EG,n ∼ c
log n

pn

(4.4)

and the EG scheme will yield secure connectivity whenever the condition (4.4) is

satisfied for some c > 1.

In the case of the pairwise scheme, we have from Theorem 3.3.9 that the in-

duced random graph (namely, the random pairwise graph intersecting an Erdős-Rényi

graph) will be a.a.s. connected whenever the condition

pn

(
2Kn − K2

n

n − 1

)
∼ c log n (4.5)

is satisfied for some c > τ(p?) where τ(p?) < 1. As in the case of the EG scheme, if

we assume that the average key ring size 2Kn is much smaller than the network size

n, i.e., Kn = o(n), the condition (4.5) amounts to having

pn · 2Kn ∼ c log n

so that the induced random graph will be a.a.s. connected if

|Σ|Avg,n ∼ c
log n

pn

(4.6)

for some c > 1. It follows via Theorem 3.3.5 that the maximal key ring size |Σ|Max,n

will also be on the order O
(

log n
pn

)
under the condition (4.6). As a result, we see from
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(4.4) that the pairwise scheme can yield secure connectivity under the on-off channel

model with all key ring sizes being on the order of what is required for the EG scheme.

4.3 Scalability

The EG scheme inherently supports the gradual deployment of sensors regardless

of the parameter choice. Therefore the required key ring size for connectivity in the

gradual deployment case is the same with the simultaneous deployment case discussed

in the previous section. However, as seen from Chapter 3.3.3, for the pairwise scheme

we need to have

Kn ∼ c log n (4.7)

for some c > 1 in order to achieve connectivity at each phase of the gradual deploy-

ment. Under the condition (4.7), we have |Σ|Avg,n = 2Kn = O(log n) whereas Theo-

rem 3.3.5 yields |Σ|Max,n = O(log n). Thus, key rings with size O(log n) are sufficient

to achieve connectivity of the pairwise scheme in the case of gradual deployment.

4.4 Security

Recall that conditions (1.2) and (1.3) are defined as the unassailability and unsplit-

tability, respectively. These properties were investigated in [26] for the EG scheme

and the main results can be summarized as follows:
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Theorem 4.4.1 Consider any scaling ΣEG, P : N0 → N0 for the EG scheme which

satisfies

Pn = nδ (4.8)

for some δ > 2. Then, with high probability, (1.2) and (1.3) hold.

It is claimed in [26] that the same arguments also hold when Pn ∼ n log n, but no

proof of is provided for that case. If indeed Pn ∼ n log n is enough to ensure both

unassailability and unsplittability, the key ring size must satisfy

|Σ|EG,n ∼ log n

whenever (4.1) holds. Thus, key rings with size (at least) on the order log n is required

to ensure unassailability and unsplittability of the EG scheme.

For the pairwise scheme, we have established in [44] the analogous version of

Theorem 4.4.1:

Theorem 4.4.2 Consider any scaling K : N0 → N0. With high probability, (1.2)

always holds, whereas (1.3) is satisfied whenever

lim
n→∞

Kn = ∞. (4.9)
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By Theorem 4.4.2, the pairwise scheme can ensure the unassailability of the net-

work for any parameter K. In other words, the smallest key rings required to achieve

unassailability satisfies

|Σ|Avg = O(1).

On the other hand, as seen via Theorem 3.3.5, the maximal key ring size will satisfy

|Σ|Max,n = O(log n)

under the minimum requirements for the unassailability of the network.

Now, pick any function w : N0 → N0 satisfying limn→∞ wn = ∞. It is clear from

Theorem 4.4.2 that the unsplittability of the network (under the pairwise scheme) is

ensured whenever

|Σ|Avg,n = O(wn).

Clearly, one can select wn such that wn = O(log n). Thus, in view of Theorem 3.3.5,

the pairwise scheme can ensure unsplittability with maximal key rings of size

|Σ|Max,n = O(log n). (4.10)

Recalling the discussion given above, we conclude that the pairwise scheme can ensure

unassailability and unsplittability with key ring sizes that is comparable to what is

required in the EG scheme.
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Finally, we refer the reader to [7] for a discussion of the operational advantages of

the pairwise scheme (over the EG scheme) such as node-to-node authentication, key

revocation and perfect resiliency.

4.5 Summary and discussion

Table 4.5 gives a summary of the comparison between the EG scheme and the

pairwise scheme. First of all, it is easy to see that the pairwise scheme yields connec-

tivity in the full visibility case with much smaller key rings (on average) than the EG

scheme, whereas the two schemes have the same memory requirement for achieving

connectivity under the more realistic on-off channel model. On the other hand, both

unassailability and unsplittability can be achieved by the pairwise scheme with key

rings being much smaller (on average) than required by the EG scheme. Yet, for both

schemes, key ring sizes needed to ensure connectivity under the on-off model yields

already the unassailability and unsplittability of the network. In other words, both

schemes require key rings of size O
(

log n
pn

)
to achieve (at the same time) unassail-

ability, unsplittability and connectivity under an on-off channel with parameter pn.

Therefore, operational advantages and disadvantages can play a key role in deciding

the usefulness of one scheme over the other.

To dig into this further, we remind that the main advantage of the EG scheme is

its decentralized operation in that no central authority is required for the deployment

of the network. A major benefit of this characteristic is that the gradual deployment
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of the network is always possible regardless of the particular parameter selection.

However, as discussed in Chapter 3.3.3, the gradual deployment of the pairwise scheme

is possible only when the maximal network size is set in advance and the scheme

parameter is selected in a very specific manner. Even then, the pairwise scheme

requires a central authority which maintains the sensor id’s and key rings. Therefore,

in WSN applications where decentralization is necessary, the EG scheme would be a

better choice.

On the other hand, the pairwise scheme has the advantage of supporting node-to-

node authentication so that sensors can identify the neighbors with which they are

communicating. This is a major advantage in terms of network security since node-

to-node authentication may help detect node misbehavior, and provides resistance

against node replication attacks [7]. Also, since keys are unique to a particular com-

munication link, if an adversary captures a group of sensors, it can compromise only

the links that are incident to the captured sensors; this property is usually referred

to as perfect resiliency. This is in contrast with the EG scheme where keys are drawn

from a common key pool and the capture of sensor i can cause a link j ∼ k to be

compromised; i.e., the EG scheme is not perfectly resilient. In short, if node capture

and node replication attacks are major concerns in a WSN, then the pairwise scheme

of Chan et al. would be a better choice than the EG scheme.
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EG Scheme Pairwise Scheme

Connectivity |Σ|EG = O(log n) |Σ|Avg = O(1)
(Full Visibility) |Σ|Max = O(log n)

Connectivity |Σ|EG = O( log n
pn

) |Σ|Avg = O( log n
pn

)

(On-Off Model, pn) |Σ|Max = O( log n
pn

)

Gradual Deployment
√ |Σ|Avg = O(log n)

|Σ|Max = O(log n)

Unassailability |Σ|EG = O(log n) |Σ|Avg = O(1)
|Σ|Max = O(log n)

Unsplittability |Σ|EG = O(log n) |Σ|Avg = O(wn)
|Σ|Max = O(log n)

Perfect Resiliency × √

Node Authentication × √

Key Revocation × √

Table 4.1: Summary of the comparison between the EG scheme and the pairwise
scheme given in terms of the required key ring size to ensure a desired property. Here,
n denotes the number of sensor nodes in the network, pn denotes the link existence
probability under the on-off channel model, and wn stands for any function satisfying
limn→∞ wn = ∞. The conditions for unassailability and unsplittability are derived so
as to ensure also that the networks are a.a.s. connected (under full visibility).
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Chapter 5

Mathematical Tools

In this chapter we collect a number of technical facts and mathematical tools that

will be used in establishing the main results of the dissertation.

5.1 Method of first and second moments

In the course of establishing zero-one laws for certain graph properties, we often

rely on the method of first and second moments. The method of first moments [22,

Eqn (3.10), p. 55] is a simple application of Markov’s inequality for integer-valued

rvs.

Lemma 5.1.1 For any N-valued rv Z, we have

P [Z = 0] ≥ 1 − E [Z] . (5.1)
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The method of second moment [22, Remark 3.1, p. 55] is a simple corollary of the

Cauchy-Schwartz inequality.

Lemma 5.1.2 For any N-valued random variable Z with 0 < E [Z2] < ∞, we have

P [Z = 0] ≤ 1 − E [Z]2

E [Z2]
. (5.2)

Proof. By the Cauchy-Schwartz inequality, it is a simple matter to check that

E [Z]2 = E [1 [Z 6= 0] Z]2 ≤ E
[
1 [Z 6= 0]2

]
E

[
Z2

]
,

whence

E [Z]2

E [Z2]
≤ P [Z 6= 0] . (5.3)

In due course, we often encounter the following situation: Given a collection

{χn,i, n = 1, 2, . . . , i = 1, . . . ,mn} of {0, 1}-valued rvs, the rvs {Zn, n = 1, . . .} are

defined by

Zn =
mn∑

i=1

χn,i

73



where for each n, the rvs {χn,i, i = 1, . . . ,mn} are identically distributed and the

sequence m : N0 → N0 satisfies

lim
n→∞

mn = ∞. (5.4)

Fix n = 1, 2, . . .. The rvs χn,1, . . . , χn,mn
being identically distributed, we find

E [Zn] = mnE [χn,1] (5.5)

and

E
[
Z2

n

]
= mnE [χn,1] +

∑

1≤i,j≤mn, i6=j

E [χn,iχn,j]

by the binary nature of the rvs involved. In some important special cases, we also

have

E [χn,iχn,j] = E [χn,1χn,2] , 1 ≤ i < j ≤ mn, (5.6)

whence

E [Z2
n]

E [Zn]2
=

1

mnE [χn,1]
+

mn − 1

mn

· E [χn,1χn,2]

(E [χn,1])
2 . (5.7)

From (5.1) and (5.5) we see that the one-law limn→∞ P [Zn = 0] = 1 will then be

established if we show that

lim
n→∞

mnE [χn,1] = 0. (5.8)
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It is also plain from (5.2), (5.4) and (5.6) that the zero-law limn→∞ P [Zn = 0] = 0

holds if

lim
n→∞

mnE [χn,1] = ∞ (5.9)

and

lim sup
n→∞

(
E [χn,1χn,2]

(E [χn,1])
2

)
≤ 1. (5.10)

Usually, the proof of a zero-one law passes through a number of technical propo-

sitions which establish (5.8), (5.9) and (5.10) under the appropriate conditions.

5.2 A basic union bound

One of our main objectives is to show that a random graph G(n; υ) is connected

with high probability (as n gets large) under certain conditions. In most cases, we

accomplish this by first showing that G(n; υ) does not contain any isolated nodes.

Then, we derive an upper bound for the probability that G(n; υ) is not connected and

yet does not have any isolated nodes. The desired one-law follows by showing that

the upper bound approaches to zero under the enforced assumptions. This method

is similar to the one used for proving the one-law for connectivity in Erdős-Rényi

graphs [4, p. 164] [32, p. 304] and will provide the basis of the approach we have

followed in many cases.

For ease of presentation, here we derive the aforementioned bound for the general

case: Consider a random graph G(n; υ) on the vertex set {1, . . . ,mn} for some mn :
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N0 → N0. Fix mn = 2, 3, . . .. For the time being, we omit the dependence of G (and

the events related to it) on the parameters n and υ. For any non-empty subset S

of nodes, i.e., S ⊆ {1, . . . ,mn}, we define the graph G(S) (with vertex set S) as the

subgraph of G restricted to the nodes in S. We also say that S is isolated in G if

there are no edges (in G) between the nodes in S and the nodes in the complement

Sc = {1, . . . ,mn} − S. This is characterized by

(i ∼ j)c, i ∈ S, j ∈ Sc

with i ∼ j denoting the event that there exists an edge between the nodes i and j (in

G).

With each non-empty subset S of nodes, we associate several events of interest:

Let Cn(S) denote the event that the subgraph G(S) is itself connected. We also

introduce the event Bn(S) to capture the fact that S is isolated in G, i.e.,

Bn(S) := [(i ∼ j)c, i ∈ S, j ∈ Sc] .

Finally, we set

An(S) := Cn(S) ∩ Bn(S).

The starting point of the discussion is the following basic observation: If G is not

connected and yet has no isolated nodes, then there must exist a subset S of nodes

with |S| ≥ 2 such that G(S) is connected while S is isolated in G. This is captured
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by the inclusion

Cc
n ∩ In ⊆ ∪S∈N : |S|≥2 An(S) (5.11)

with Nmn
denoting the collection of all non-empty subsets of {1, . . . ,mn}, Cn denoting

the event that G is connected, and In denoting the event that G has no isolated nodes.

A moment of reflection should convince the reader that this union need only be taken

over all subsets S of {1, . . . ,mn} with 2 ≤ |S| ≤ bmn

2
c. Then, a standard union bound

argument immediately gives

P [Cc
n ∩ In] ≤

∑

S∈N :2≤|S|≤bmn
2

c

P [An(S)]

=

bmn
2

c∑

r=2

(
∑

S∈Nr

P [An(S)]

)
(5.12)

where Nmn,r denotes the collection of all subsets of {1, . . . ,mn} with exactly r ele-

ments.

For each r = 1, . . . ,mn, we can simplify the notation by writing An,r := An({1, . . . , r}),

Bn,r := Bn({1, . . . , r}) and Cn,r := Cn({1, . . . , r}). As defined before, for r = mn we

use Cn with a slight abuse of notation. For all random graphs under consideration,

we have by exchangeability that

P [An(S)] = P [An,r] , S ∈ Nr
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and the expression

∑

S∈Nr

P [An(S)] =

(
mn

r

)
P [An,r] (5.13)

follows since |Nr| =
(

mn

r

)
. Substituting into (5.12) we obtain the key bound

P [Cc
n ∩ In] ≤

bmn
2

c∑

r=2

(
mn

r

)
P [An,r] . (5.14)

If the information that G does not have any isolated nodes is dropped, the union

at (5.11) has to be taken over all subsets S with |S| ≥ 1, and by the same arguments,

we also have

P [Cc
n] ≤

bmn
2

c∑

r=1

(
mn

r

)
P [An,r] . (5.15)

5.3 A useful decomposition

With 0 ≤ x < 1, it is a simple matter to check that

log(1 − x) = −
∫ x

0

1

1 − t
dt = −x − Ψ(x) (5.16)

where we have set

Ψ(x) :=

∫ x

0

t

1 − t
dt, 0 ≤ x < 1. (5.17)

L’Hospital’s rule yields

lim
x↓0

Ψ(x)

x2
=

1

2
, (5.18)
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while the decomposition (5.16) and the non-negativity of Ψ lead to the standard

bound

1 − x ≤ e−x, x ∈ [0, 1]. (5.19)

5.4 Bounding the factorials

The following simple bounds will prove useful in a number of places.

Lemma 5.4.1 For positive integers K, L and P such that K + L ≤ P , we have

(
1 − L

P − K

)K

≤
(

P−L
K

)
(

P
K

) ≤
(

1 − L

P

)K

, (5.20)

whence
(

P−L
K

)
(

P
K

) ≤ e−K·L
P . (5.21)

Proof. Under the condition K + L ≤ P , the relation

(
P−L

K

)
(

P
K

) =
(P − L)!

(P − L − K)!
· (P − K)!

P !
(5.22)

holds with

(P − jL)!

(P − jL − K)!
=

K−1∏

`=0

(P − jL − `), j = 0, 1.
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Upon substituting we find

(
P−L

K

)
(

P
K

) =
K−1∏

`=0

(
1 − L

P − `

)
(5.23)

and the bounds (5.20) are now immediate from the inequalities P −K < P − ` ≤ P ,

` = 0, . . . , K − 1 and the easy bound (5.19).

Also, for 0 ≤ K ≤ x ≤ y, we have

(
x
K

)
(

y
K

) =
K−1∏

`=0

(
x − `

y − `

)
≤

(
x

y

)K

(5.24)

since x−`
y−`

decreases as ` increases from ` = 0 to ` = K − 1.

Finally, the standard bounds

(
n

r

)
≤

(en

r

)r

,
r = 1, . . . , n

n = 1, 2, . . .

(5.25)

will be used throughout.
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Chapter 6

Connectivity in random key graphs I: Node isolation

6.1 Introduction

As discussed in Chapter 2.3.1, the study of the connectivity properties of random

key graphs resulted in the conjectures (2.11) and (2.12) (under (2.14)) that provide

zero-one laws for the properties of absence of isolated nodes and connectivity, respec-

tively. In this chapter, we start with the property of node isolation and establish the

conjectured zero-one law (2.11). Namely, we will establish Theorem 2.3.1 which is

restated here for the ease of exposition:

Theorem 2.3.1 For any admissible pair of functions P,K : N0 → N, it holds that

lim
n→∞

P ?(n; θn) =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(6.1)

where the function α : N0 → R is determined through (2.14).
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6.2 An outline of the proof of Theorem 2.3.1

Consider θ = (K,P ) with positive integers K and P such that K ≤ P . Fix

n = 2, 3, . . . and write

χn,i(θ) := 1 [Node i is isolated in Kn(θ)] , i = 1, . . . , n (6.2)

The number of isolated nodes in K(n; θ) is simply given by

I(n; θ) :=
n∑

i=1

χn,i(θ).

The random graph K(n; θ) has no isolated nodes if I(n; θ) = 0, in which case

P ?(n; θ) = P [I(n; θ) = 0] . (6.3)

The equivalence (6.3) provides the basis for proving Theorem 2.3.1 by means of

the method of first and second moments; see Chapter 5.1. Here, observe that the

rvs χn,1(θ), . . . , χn,n(θ) are exchangeable and therefore (5.6) holds. This yields (5.5)

and (5.7) with Zn replaced by the count variable I(n; θ), the index mn replaced by n,

and the indicator variables {χmn,i, i = 1, . . . ,mn} replaced by {χn,i(θ), i=1,. . . , n} as

defined in (6.2). Thus, Theorem 2.3.1 will be established upon proving the next two

technical lemmas which provide the appropriate versions of (5.8), (5.9) and (5.10).
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Lemma 6.2.1 For any pair of functions P,K : N0 → N, it holds that

lim
n→∞

E [I(n; θn)] =






0 if limn→∞ αn = +∞

∞ if limn→∞ αn = −∞

(6.4)

where the function α : N0 → R is determined through (2.14).

Lemma 6.2.1 will be established in Section 6.4.

Lemma 6.2.2 For any pair of functions P,K : N0 → N, it holds that

lim
n→∞

E [χn,1(θn)χn,2(θn)]

(E [χn,1(θn)])2 = 1 (6.5)

whenever the function α : N0 → R determined through (2.14) satisfies the condition

lim
n→∞

αn = −∞. (6.6)

A proof of Lemma 6.2.2 can be found in Section 6.5.

To complete the proof of Theorem 2.3.1, pick a pair of functions P,K : N0 → N

with function α : N0 → R determined through (2.14) and recall the arguments of Sec-

tion 5.1. Letting n go to infinity under the assumption limn→∞ αn = ∞, we get (5.8)

(with Zn,mn and χmn,1 replaced by I(n; θn), n and χn,1(θn), respectively) via Lemma
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6.2.1, and the one-law limn→∞ P [I(n; θn) = 0] = limn→∞ P ?(n; θn) = 1 follows. Next,

let n go to infinity under the condition (6.6): Lemma 6.2.1 already yields (5.9) with

proper substitutions of the variables, while Lemma 6.2.2 leads (via (5.7)) to the ap-

propriate version of (5.10). The conclusion limn→∞ I(n; θn) = limn→∞ P (n; θn) = 0 is

now immediate by the arguments given in Chapter 5.1. This completes the proof of

Theorem 2.3.1.

6.3 Some easy preliminaries

In this section we have collected for easy reference several technical facts that will

be used repeatedly in the proofs of Lemma 6.2.1 and Lemma 6.2.2.

6.3.1 Simple consequences of the condition (6.6)

Pick a pair of functions P,K : N0 → N with function α : N0 → R determined

through (2.14). Under condition (6.6), we have αn < 0 for n sufficiently large, in

which case αn = −|αn|. By the non-negativity of K2
n

P 2
n
, hence of log n + αn, we have

|αn| ≤ log n on that range and the inequality

K2
n

Pn

≤ log n

n
(6.7)
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follows, whence

Kn

Pn

≤
√

1

Pn

· log n

n
≤

√
log n

n
. (6.8)

As a result, we see that

lim
n→∞

Kn

Pn

= 0 (6.9)

and

lim
n→∞

Kn

Pn − cKn

= 0, c ≥ 0. (6.10)

By virtue of (6.9), we note that for each c > 0, we have Pn > cKn for all n sufficiently

large.

Next, for n sufficiently large, the first inequality in (6.8) gives

n
K3

n

P 2
n

≤ n

P 2
n

·
(√

log n

n
Pn

)3

= n

(√
log n

n

)3

·
√

P 3
n

P 2
n

≤

√
(log n)3

n
,

and the conclusion

lim
n→∞

n
K3

n

P 2
n

= 0 (6.11)

is now immediate.

6.3.2 An easy technical fact

The next technical fact will help simplify the discussion in a number of places.

Lemma 6.3.1 Consider a pair of functions P,K : N0 → N such that the function
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α : N0 → R determined through (2.14) satisfies the condition (6.6). Then for any

c ≥ 0, we have

lim
n→∞

(
1 − Kn

Pn − cKn

)Kn

= 1. (6.12)

and

lim
n→∞

nKnΨ

(
Kn

Pn − cKn

)
= 0 (6.13)

where the function Ψ(·) is as defined in (5.16)-(5.17).

Proof. Fix c ≥ 0 and recall (5.18) and (6.10). For each n = 1, 2, . . . sufficiently

large, we can write

KnΨ

(
Kn

Pn − cKn

)

= Kn

(
Kn

Pn − cKn

)2

·




Ψ

(
Kn

Pn−cKn

)

(
Kn

Pn−cKn

)2





= Kn

(
Kn

Pn − cKn

)2

· 1

2
(1 + o(1))

with

Kn

Pn − cKn

=
Kn

Pn

·
(

1 − c
Kn

Pn

)−1

=
Kn

Pn

(1 + o(1)).
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Collecting these facts leads to

nKnΨ

(
Kn

Pn − cKn

)
=

n

2

K3
n

P 2
n

(1 + o(1))

and (6.11) readily implies (6.13).

To establish (6.12), we need only show that

lim
n→∞

Kn log

(
1 − Kn

Pn − cKn

)
= 0. (6.14)

For each n = 2, 3, . . ., we rely on the decomposition (5.16) to write

Kn log

(
1 − Kn

Pn − cKn

)

= −Kn

(
Kn

Pn − cKn

+ Ψ

(
Kn

Pn − cKn

))

= − K2
n

Pn − cKn

− KnΨ

(
Kn

Pn − cKn

)
. (6.15)

The arguments given in the first part of the proof also show that

KnΨ

(
Kn

Pn − cKn

)
=

K3
n

2P 2
n

(1 + o(1)) (6.16)

and

K2
n

Pn − cKn

=
K2

n

Pn

(
1 − Kn

Pn

)−1

=
K2

n

Pn

(1 + o(1)). (6.17)
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Let n go to infinity in (6.15): Making use of (6.16) and (6.17) we readily get (6.12)

from the limits (6.7) and (6.11).

Finally, the bounds

(
1 − K

P − K

)K

≤
(

P−K
K

)
(

P
K

) = q(θ) ≤
(

1 − K

P

)K

≤ e−
K2

P (6.18)

are immediate upon applying Lemma 5.4.1 to the expression (2.3).

6.4 A proof of Lemma 6.2.1

Consider θ = (P,K) with positive integers K and P such that 2K < P and fix

n = 2, 3, . . .. Under the enforced independence assumptions, it is a simple matter to

see that

E [χn,i(θ)] = q(θ)n−1, i = 1, . . . , , n (6.19)

whence

E [I(n; θ)] = nq(θ)n−1. (6.20)

Next, substitute in this expression θ by θn by means of an admissible pair of

functions P,K : N0 → N. First we deal with the case limn→∞ αn = ∞: From (6.18)

we obtain

nq(θn)n−1 ≤ eα′
n
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for all n = 1, 2, . . . with

α′
n := log n − (n − 1)

K2
n

Pn

= log n − (n − 1)

n
· (log n + αn)

=
log n

n
− n − 1

n
αn.

We have limn→∞ α′
n = −∞ whenever limn→∞ αn = ∞, whence limn→∞ nq(θn)n−1 = 0.

The conclusion limn→∞ E [I(n; θn)] = 0 is now reached upon invoking (10.10).

In the case limn→∞ αn = −∞ we note that the bounds (6.18) yield

n

(
1 − Kn

Pn − Kn

)nKn

≤ nq(θn)n−1 (6.21)

for all n = 1, 2, . . .. We find it convenient to write the left handside of this last

inequality as

n

(
1 − Kn

Pn − Kn

)nKn

= eα′′
n (6.22)

where

α′′
n = log n + nKn log

(
1 − Kn

Pn − Kn

)

= log n − nKn

(
Kn

Pn − Kn

+ Ψ

(
Kn

Pn − Kn

))

= log n − n
K2

n

Pn − Kn

− nKnΨ

(
Kn

Pn − Kn

)
(6.23)
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as we use the decomposition (5.16) in the second equality. The first two terms in

(6.23) combine as

log n − n
K2

n

Pn − Kn

= log n − n
K2

n

Pn

·
(

1 +

(
Pn

Pn − Kn

− 1

))

=

(
log n − n

K2
n

Pn

)
− n

K2
n

Pn

· Kn

Pn − Kn

= −αn − n
K2

n

Pn

· Kn

Pn − Kn

.

Next, from (6.9) we observe that

n
K2

n

Pn

Kn

Pn − Kn

= n
K3

n

P 2
n

(
1 − Kn

Pn

)−1

= n
K3

n

P 2
n

(1 + o(1)) .

Therefore, under the condition limn→∞ αn = −∞, we get

lim
n→∞

n
K2

n

Pn

Kn

Pn − Kn

= 0

by virtue of (6.10) (with c = 1) and (6.11). We can then conclude to

(
log n − n

K2
n

Pn − Kn

)
= −αn(1 + o(1)), (6.24)
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and applying Lemma 6.3.1 (with c = 1) to the last term in (6.23) we find

lim
n→∞

nKnΨ

(
Kn

Pn − Kn

)
= 0. (6.25)

Letting n go to infinity in (6.23), we conclude from (6.24) and (6.25) that limn→∞ α′′
n =

− limn→∞ αn = ∞ since limn→∞ αn = −∞. It is now plain from (10.57) and (10.58)

that limn→∞ E [I(n; θn)] = ∞ by virtue of (10.10).

6.5 A proof of Lemma 6.2.2

Consider θ = (P,K) with positive integers K and P such that 3K < P , and write

b(θ) :=

(
P−2K

K

)
(

P
K

) .

Fix n = 2, 3, . . .. Under the enforced independence assumptions, it is a simple

matter to check that

E [χn,i(θ)χn,j(θ)] = q(θ)b(θ)n−2

for distinct i, j = 1, . . . , n, whence

E [χn,1(θ)χn,2(θ)]

(E [χn,1(θ)])
2 =

q(θ)b(θ)n−2

q(θ)2(n−1)
=

b(θ)n−2

q(θ)2n−3
. (6.26)
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On the way to evaluating this ratio, we note that

b(θ)n−2

q(θ)2n−3
=

((
P−2K

K

)
(

P
K

)
)n−2

·
( (

P
K

)
(

P−K
K

)
)2n−3

=

((
P−2K

K

)
(

P−K
K

)
)n−2

·
( (

P
K

)
(

P−K
K

)
)n−1

=
r(θ)n−2

q(θ)
(6.27)

where we have used the notation

r(θ) :=

(
P−2K

K

)
(

P−K
K

) ·
(

P
K

)
(

P−K
K

) .

Under the condition (6.6) we show below that

lim
n→∞

q(θn) = 1 (6.28)

and

lim
n→∞

r(θn)n−2 = 1. (6.29)

Once this is done, it is plain from (6.27) that

lim
n→∞

b(θn)n−2

q(θn)2n−3
= 1 (6.30)

and the desired result (6.5) follows from (6.26).

In order to establish (6.28) and (6.29) we proceed as in the proof of Lemma 6.2.1:
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First, making use of (6.18) we obtain

(
1 − Kn

Pn − Kn

)Kn

≤ q(θn) ≤
(

1 − Kn

Pn

)Kn

(6.31)

for all n = 2, 3, . . .. Letting n go to infinity and using (6.12) (with c = 0 and c = 1)

we get (6.28).

Next, using (6.18), this time with Pn replaced by Pn − Kn, we get

(
1 − Kn

Pn − 2Kn

)Kn

≤
(

Pn−2Kn

Kn

)
(

Pn−Kn

Kn

) ≤
(

1 − Kn

Pn − Kn

)Kn

(6.32)

for all n = 2, 3, . . .. Combining (6.31) and (6.32) readily gives

(
1 − Kn

Pn−2Kn

1 − Kn

Pn

)Kn

≤ r(θn) ≤ 1. (6.33)

It is now plain that the convergence (6.29) will be established if we can show that

lim
n→∞

(n − 2)Kn log

(
1 − Kn

Pn−2Kn

1 − Kn

Pn

)
= 0. (6.34)

To that end, for each n = 2, 3, . . . we note that

(n − 2)Kn · log

(
1 − Kn

Pn−2Kn

1 − Kn

Pn

)

= −(n − 2)Kn ·
(

Kn

Pn − 2Kn

+ Ψ

(
Kn

Pn − 2Kn

))

+ (n − 2)Kn ·
(

Kn

Pn

+ Ψ

(
Kn

Pn

))
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= − 2(n − 2)K3
n

Pn(Pn − 2Kn)

− (n − 2)Kn ·
(

Ψ

(
Kn

Pn − 2Kn

)
− Ψ

(
Kn

Pn

))

= −2(n − 2)K3
n

P 2
n

·
(

1 − 2Kn

Pn

)−1

− (n − 2)Kn ·
(

Ψ

(
Kn

Pn − 2Kn

)
− Ψ

(
Kn

Pn

))
.

Applying Lemma 6.3.1 (with c = 0 and c = 2) yields

lim
n→∞

(n − 2)Kn ·
(

Ψ

(
Kn

Pn − 2Kn

)
− Ψ

(
Kn

Pn

))
= 0,

while (6.9) and (6.11) together lead to

lim
n→∞

(n − 2)K3
n

P 2
n

(
1 − 2Kn

Pn

)−1

= 0.

The convergence (6.34) now follows and Lemma 6.2.2 is now established.
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Chapter 7

Connectivity in random key graphs II: Graph connectivity

7.1 Introduction

As discussed in Chapter 2.3.1, the study of the connectivity properties of random

key graphs resulted in the conjectures (2.11) and (2.12) (under (2.14)). In Chapter 6,

we established the conjectured zero-one law (2.11) for the absence of isolated nodes.

In this chapter, we report on the results regarding the conjectured zero-one law (2.12)

for graph connectivity under (2.14). We will establish Theorem 2.3.2 which is restated

here for the ease of exposition.

Theorem 7.1.1 For any admissible scaling K,P : N0 → N0 such that

K2
n

Pn

=
log n + αn

n
, n = 1, 2, . . . (7.1)
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for some sequence α : N0 → R, it follows that

lim
n→∞

P [K(n; θn) is connected] =






0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(7.2)

whenever there exists some σ > 0 such that

σn ≤ Pn (7.3)

for all n = 1, 2, . . . sufficiently large.

7.1.1 Related work

Recent results concerning the conjectured zero-one law (7.1)-(7.2) are now sur-

veyed: Di Pietro et al. have shown [10, Thm. 4.6] that for large n, the random key

graph will be connected with very high probability if Pn and Kn are selected such

that

Kn ≥ 5, Pn ≥ n and
K2

n

Pn

∼ c
log n

n
(7.4)

as soon as c ≥ 16.1 They also observe that for large n, the random key graph will be

disconnected with very high probability if the scaling satisfies

K2
n

Pn

= o

(
log n

n

)
.

1In the conference version of this work [9, Thm. 4.6] the result is claimed to hold for c > 8.
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As mentioned earlier, the zero-law in (7.2) follows from the zero-law in Theorem

2.3.1 which was established independently by Blackburn and Gerke [3], and by Yağan

and Makowski [35]. In both papers, it was shown that

lim
n→∞

P [K(n; (Kn, Pn)) contains no isolated nodes] = 0

whenever limn→∞ αn = −∞ in (7.1), a result which clearly implies the conjectured

zero-law.

Blackburn and Gerke [3] also succeeded in generalizing the one-law result by Di

Pietro et al. in a number of directions: Under the additional conditions

Kn ≥ 2 and Pn ≥ n, n = 1, 2, . . . , (7.5)

they showed [3, Thm. 5] that

lim
n→∞

P [K(n; (Kn, Pn)) is connected] = 1 if lim inf
n→∞

K2
n

Pn

n

log n
> 1. (7.6)

This result is weaker than the one-law in the conjecture (7.1)-(7.2). However, in the

process of establishing (7.6), they also show [3, Thm. 3] that the conjecture does hold

in the special case Kn = 2 for all n = 1, 2, . . . without any constraint on the size of

the key pools, say Pn ≤ n or n ≤ Pn. Specifically, the one-law in (7.2) is shown to
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hold whenever the scaling is done according to

Kn = 2,
4

Pn

=
log n + αn

n
, n = 1, 2, . . . (7.7)

with limn→∞ αn = ∞. For each n = 2, 3, . . ., a simple coupling argument yields

P (n; (2, P )) ≤ P (n; (K,P )) (7.8)

whenever 2 ≤ K ≤ P . Thus, it is now easy to conclude that the one-law in (7.2) holds

whenever 2 ≤ Kn ≤ Pn and Pn = o
(

n
log n

)
; this corresponds to requiring Pn ¿ n.

7.1.2 Contributions

We complement existing results concerning the conjecture (7.1)-(7.2) in several

ways: We establish the conjecture (7.1)-(7.2) whenever Kn ≥ 2 and Pn ≥ σn for

some σ > 0. The condition (7.3) is sometimes expressed as Pn = Ω(n) and is weaker

than the growth condition at (7.5) used by Blackburn and Gerke [3]. It is also easy

to check that Theorem 7.1.1 implies the one-law (7.6). Therefore, Theorem 7.1.1

already improves on the one-law (7.6) obtained by Blackburn and Gerke [3] under

the condition (7.5). Moreover, as discussed earlier, these authors have established the

conjectured one-law in (7.2) under conditions on the scalings very different from the

ones used here, i..e., either Kn = 2 or Kn ≥ 2 with Pn = o
(

n
log n

)
. In practical WSN

scenarios it is expected that the size of the key pool will be large compared to the
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number of participating nodes [10,14] and that key rings will contain more than two

keys. In this context, our results concerning the full conjecture (7.1)-(7.2) are given

under more realistic conditions than in earlier work.

Finally, the one-law in Theorem 7.1.1 cannot hold if the condition (2.18) fails.

This is a simple consequence of the following observation.

Lemma 7.1.2 For any mapping P : N0 → N0 for which the limit limn→∞ Pn exists

(possibly infinite), we have

lim
n→∞

P (n; (1, Pn)) =






0 if limn→∞ Pn > 1

1 if limn→∞ Pn = 1.

(7.9)

Proof. For n = 2, 3, . . . and any positive integer Pn, the graph K(n; (1, Pn)) is

connected if and only if all nodes choose the same key, an event which happens with

probability P
−(n−1)
n . The conclusion is now immediate once we observe that the con-

dition limn→∞ Pn = 1 (resp. limn→∞ Pn > 1) requires Pn = 1 (resp. Pn ≥ 2) for all

n = 1, 2, . . . sufficiently large owing to Pn being integer.

The proof of the main result is lengthy and technically involved. However, in
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a parallel development, we have also shown in [38] that when Pn = O(nδ) with

0 < δ < 1
2
, the so-called small key pool case, elementary arguments can be used to

establish a one-law for connectivity. This is an easy byproduct of the observation

that connectivity is achieved in the random key graph whenever all possible key rings

have been distributed to the participating nodes; see Section 7.2 for details.

7.1.3 The structure

The chapter is organized as follows: Section 7.2 is devoted to establishing the

conjecture (7.1)-(7.2) under special cases not covered by Theorem 7.1.1. In Section

7.3 we give a roadmap to the proof of Theorem 7.1.1. The approach is similar to the

one used for proving the one-law for graph connectivity in Erdős-Rényi graphs [4, p.

164] [32, p. 304]; see (2.7)-(2.9). Here as well, we focus on the probability that the

random key graph is not connected and yet has no isolated nodes. We then seek

to show that this probability becomes vanishingly small as n grows large under the

appropriate scaling. As in the classical case this is achieved through a combination of

judicious bounding arguments, the starting point being the well-known bound (5.14)

on the probability of interest. However, in order for these arguments to successfully go

through, we found it necessary to restrict attention to a subclass of structured scalings

(referred throughout as strongly admissible scalings). In Section 7.4.1 a reduction

argument shows that we need only establish the desired one-law for such strongly

admissible scalings. The explanation of the right handside of (7.1) as a proxy for link

assignment in the limiting regime is revealed through a useful equivalence developed
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in Section 7.4.2.

With these technical prerequisites in place, the needed bounding arguments are

then developed in Section 7.4.3, Section 7.4.4 and Section 7.4.5, and the final steps

of the proof of Theorem 7.1.1 are outlined in Section 7.4.6. The final sections of

the chapter, namely Section 7.4.7 through Section 7.4.12, are devoted to the various

technical steps needed to complete the arguments outlined in Section 7.4.6.

7.2 Simple proofs for special cases

As will become apparent soon, the proof of Theorem 7.1.1 is rather long and

technically involved. In this section, we discuss a number of situations for which

the conjectured one-law can be easily recovered when the key pool Pn is “small”

compared to n. The basic idea behind these shorter proofs is the following simple

observation: The key graph is automatically connected if all possible key rings have

been distributed to the nodes.

The arguments which we develop on the basis of this fact clearly indicate the

interplay that exists in random key graphs between the size of the key pool and the

number of nodes; this is reflected in the additional assumptions under which the

results were given in this dissertation.
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7.2.1 A basic observation

Assume given a pair of positive integers K and P such that K ≤ P , and pick

n = 2, 3, . . .. We define the events

Cn(θ) := [K(n; θ) is connected]

and

Qn(θ) :=




All key rings of size K

have been distributed



 .

The event Qn(θ) is always empty under the condition

n <

(
P

K

)
. (7.10)

The next observation provides an easy condition for graph connectivity in random

key graphs.

Lemma 7.2.1 For any given pair θ = (K,P ) with 2 ≤ K ≤ P , it is always the case

that K(n; θ) is connected whenever all the key rings of size K have been distributed,

i.e.,

Qn(θ) ⊆ Cn(θ). (7.11)
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Proof. Fix 2 ≤ K ≤ P and let ω be a sample that belongs to the event Qn(θ).

Pick two distinct nodes, say i, j = 1, . . . , n. We need to show that there is path be-

tween them in K(n; θ)(ω). If the key rings Σi(θ)(ω) and Σj(θ)(ω) have a non-empty

intersection, then the two nodes are adjacent and there is a one hop path between

them. On the other hand, if these key rings do not intersect, then it is necessarily the

case that 2K ≤ P . Under these conditions it is possible to construct an element S of

PK such that S ∩ Σi(θ)(ω) 6= ∅ and S ∩ Σj(θ)(ω) 6= ∅. Note that such an argument

could not be made for the case K = 1. Since all the key rings have been distributed

in K(n; θ)(ω) it follows that there exists a node, say ` (possibly dependent on ω),

distinct from both i and j, such that K`(θ)(ω) = S. As a result, nodes i and j are

connected by a two-hop path passing through `.

By virtue of Lemma 7.2.1, it is now natural to look for conditions under which

the event Qn(θ) occurs with high probability. For this purpose we first consider its

complement which corresponds to the event that some key ring of size K has not

been distributed, namely

Qn(θ)c = ∪S∈PK
[Σ1(θ) 6= S, . . . , Σn(θ) 6= S] .
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By a union bound argument, we get

P [Qn(θ)c] ≤
∑

S∈PK

P [Σ1(θ) 6= S, . . . , Σn(θ) 6= S]

=
∑

S∈PK

(
n∏

i=1

P [Σi 6= S]

)

=
∑

S∈PK

P [Σ1 6= S]n

=

(
P

K

) (
1 − 1(

P
K

)
)n

(7.12)

under the enforced probabilistic assumptions on key ring selection.

7.2.2 An easy one-law

Lemma 7.2.1 and the calculations following it suggest a very simple strategy to

obtain versions of the one-law in random key graphs. Consider an admissible scaling

P,K : N0 → N0 such that
(

Pn

Kn

)
≤ n (7.13)

for all n = 1, 2, . . . sufficiently large. On that range, it follows from (7.12) that

P [Qn(θn)c] ≤
(

Pn

Kn

) (
1 − 1(

Pn

Kn

)
)n

≤
(

Pn

Kn

)
e
− n

(Pn
Kn) (7.14)
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by standard bounding arguments. The conclusion

lim
n→∞

P [Qn(θn)c] = 0 (7.15)

then follows provided the condition

lim
n→∞

(
Pn

Kn

)
e
− n

(Pn
Kn) = 0 (7.16)

holds under (7.13). This observation readily leads to the following one-law.

Lemma 7.2.2 Consider an admissible scaling P,K : N0 → N0 such that (7.13) holds

for all n = 1, 2, . . . sufficiently large. We have limn→∞ P (n; θn) = 1 provided the

condition (7.16) holds

In the next three sections we use Lemma 7.2.2 to derive several one-laws under

specific sets of assumptions.

7.2.3 Fixed values of K and P

The next result has a well-known analog for Erdős-Renyi graphs.

Lemma 7.2.3 For any given pair θ = (K,P ) with 2 ≤ K ≤ P , we have limn→∞ P (n; θ) =

1.
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The pair θ = (K,P ) with 2 ≤ K ≤ P corresponds to a scaling whose deviation

function α : N0 → R is given by

αn := n
K2

P
− log n, n = 1, 2, . . .

so that limn→∞ αn = ∞. However, the conclusion of Lemma 7.2.3 does not follow

either from the result (7.6) by Blackburn and Gerke [3] or from Theorem 7.1.1 since

conditions (7.3) and (7.5) are not satisfied with Pn ≡ P . The result is nevertheless a

consequence of [3, Thm. 3] since condition (7.7) holds with limn→∞ αn = ∞.

Proof. It follows from (7.12) that

P [Qn(θ)] ≥ 1 −
(

P

K

) (
1 − 1(

P
K

)
)n

for all n = 1, 2, . . . sufficiently large to ensure
(

P
K

)
≤ n. The conclusion limn→∞ P [Qn(θ)] =

1 is now immediate and we get the result by making use of the inclusion (7.11).
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7.2.4 The case lim supn→∞ Pn < ∞

Lemma 7.2.3 leads to a proof of the conjectured one-law for scalings K,P : N0 →

N0 satisfying the property

P̄ := lim sup
n→∞

Pn = inf
n≥1

(
sup
m≥n

Pm

)
< ∞. (7.17)

Lemma 7.2.4 For any admissible scaling K,P : N0 → N0 satisfying (7.17). we have

limn→∞ P (n, θn) = 1.

Proof. Under the finiteness condition (7.17) we have

lim sup
n→∞

(
Pn

Kn

)
< ∞.

Hence, both conditions (7.13) and (7.16) hold, and the result follows from Lemma

7.2.2.

7.2.5 Small key pools with Kn = 2

With Kn = 2, we note that

(
Pn

2

)
=

Pn(Pn − 1)

2
≤ P 2

n , n = 1, 2, . . . .
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Therefore, the condition (7.13) holds whenever

P 2
n ≤ n (7.18)

for all n = 1, 2, . . . sufficiently large. Since the mapping t → te−
n
t is increasing on

(0,∞), the convergence condition (7.16) is implied whenever

lim
n→∞

P 2
ne

− n

P2
n = 0. (7.19)

This observation leads to the following one-law.

Lemma 7.2.5 Consider an admissible scaling P,K : N0 → N0 satisfying (7.7) such

that

Pn = O(nδ) (7.20)

for some δ in (0, 1
2
). Then we have

lim
n→∞

P (n; (2, Pn)) = 1. (7.21)

This is of course a weaker version of Theorem [3, Thm. 3] (which establishes

(7.21) whenever Pn = o
(

n
log n

)
) but as the discussion below shows, its proof is much

simpler and comes with the additional benefit of pointing out the underlying reason

for connectivity when Pn is much smaller than n – In that case it is very likely that
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all the possible key rings are eventually assigned!

Proof. Condition (7.20) implies the existence of a constant C > 0 such that

Pn ≤ Cnδ, n ≥ n?

for some finite integer n?. Therefore, (7.18) is automatically satisfied for δ in the

prescribed range and condition (7.13) holds.

Next, by the aforementioned monotonicity, we also get

P 2
ne

− n

P2
n ≤ C2n2δe−C−2n1−2δ

, n ≥ n?

and the convergence (7.19) follows since we have 2δ < 1 here. The desired conclusion

is now immediate by Lemma 7.2.2.

As before, it follows from (7.8) and Lemma 7.2.5 that limn→∞ P (n; θn) = 1 when-

ever

2 ≤ Kn ≤ Pn

for all n = 1, 2, . . . sufficiently large under the condition (7.20) with δ in (0, 1
2
).
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7.3 A roadmap for the proof of Theorem 7.1.1

Fix n = 2, 3, . . . and consider positive integers K and P such that 2 ≤ K ≤ P .

As before, we define the events

Cn(θ) := [K(n; θ) is connected]

and

In(θ) := [K(n; θ) contains no isolated nodes] .

If the random key graph K(n; θ) is connected, then it does not contain isolated nodes,

whence Cn(θ) is a subset of In(θ), and the conclusions

P [Cn(θ)] ≤ P [In(θ)] (7.22)

and

P [Cn(θ)c] = P [Cn(θ)c ∩ In(θ)] + P [In(θ)c] (7.23)

obtain.

Taken together with Theorem 2.3.1, the relations (7.22) and (10.42) pave the way

to proving Theorem 7.1.1. Indeed, pick an admissible scaling P,K : N0 → N0 with

deviation function α : N0 → R. If limn→∞ αn = −∞, then limn→∞ P [In(θn)] = 0 by

the zero-law in Theorem 2.3.1, whence limn→∞ P [Cn(θn)] = 0 with the help of (7.22).

If limn→∞ αn = ∞, then limn→∞ P [In(θn)] = 1 by the one-law in Theorem 2.3.1, and
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the desired conclusion limn→∞ P [Cn(θn)] = 1 (or equivalently, limn→∞ P [Cn(θn)c] =

0) will follow via (10.42) if we show that

lim
n→∞

P [Cn(θn)c ∩ In(θn)] = 0. (7.24)

We shall do this by finding a sufficiently tight upper bound on the probability in

(7.24) and then showing that it goes to zero as well. While the additional condi-

tion (7.3) plays a crucial role in carrying out this argument, a number of additional

assumptions will be imposed on the admissible scaling under consideration. This

is done mostly for technical reasons in that it leads to simpler proofs. Eventually

these additional conditions will be removed to ensure the desired final result, namely

limn→∞ P [Cn(θn)] = 1 under (7.3), e.g., see Section 7.4.1 for details.

With this in mind, the admissible scaling P,K : N0 → N0 is said to be strongly

admissible if its deviation function α : N0 → R satisfies the additional growth condi-

tion

αn = o(n). (7.25)

Strong admissibility has the following useful implications: Under (7.25) it is always

the case from (7.1) that

lim
n→∞

K2
n

Pn

= 0. (7.26)
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Since 1 ≤ Kn ≤ K2
n for all n = 1, 2, . . ., this last convergence implies

lim
n→∞

Kn

Pn

= 0 (7.27)

and

lim
n→∞

Pn = ∞. (7.28)

As a result,

2Kn ≤ Pn (7.29)

for all n = 1, 2, . . . sufficiently large, and the random key graph does not degenerate

into a complete graph under a strongly admissible scaling. We shall also make use of

the fact that (7.27) is equivalent to

lim
n→∞

Pn

Kn

= ∞. (7.30)

Finally in Lemma 7.4.4 we show that (7.26) suffices to imply

1 − q(θn) ∼ K2
n

Pn

. (7.31)

This is discussed in Section 7.4.2, and provides the appropriate version of (2.13).
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7.4 A proof of Theorem 7.1.1

7.4.1 A reduction step

The relevance of the notion of strong admissibility flows from the following fact.

Lemma 7.4.1 Consider an admissible scaling K,P : N0 → N0 whose deviation se-

quence α : N0 → R satisfies

lim
n→∞

αn = ∞. (7.32)

Assume there exists some σ > 0 such that (7.3) holds for all n = 1, 2, . . . sufficiently

large. Then, there always exists an admissible scaling K̃, P̃ : N0 → N0 with

K̃n ≤ Kn and P̃n = Pn, n = 1, 2, . . . (7.33)

whose deviation function α̃ : N0 → R satisfies both conditions

lim
n→∞

α̃n = ∞ (7.34)

and

α̃n = o(n). (7.35)
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In other words, the scaling K̃, P̃ : N0 → N0 defined at (7.33) is strongly admissible

and still satisfies the condition (7.3).

Proof. For each n = 1, 2, . . ., we set

K?
n :=

√
Pn · log n + α?

n

n
.

where

α?
n := min (αn, log n)

The properties

lim
n→∞

α?
n = ∞ (7.36)

and

α?
n = o(n) (7.37)

are immediate by construction.

Now define the scaling K̃, P̃ : N0 → N0 by

K̃n := dK?
ne , P̃n = Pn, n = 1, 2, . . . (7.38)

We get K?
n ≤ Kn for all n = 1, 2, . . . since α?

n ≤ αn, whence K̃n ≤ Kn by virtue of the

fact that Kn is always an integer. This establishes (7.33).
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Next, observe that K̃n = 1 if and only K?
n ≤ 1, a condition which occurs only

when

Pn (log n + α?
n) ≤ n. (7.39)

This last inequality can only hold for a finite number of values of n. Otherwise,

there would exist a countably infinite subset N of N0 such that both (7.3) and (7.39)

simultaneously hold on N . In that case, we conclude that

σ (log n + α?
n) ≤ 1, n ∈ N

and this is a clear impossibility in view of (7.36). Together with (7.33) this establishes

the admissibility of the scaling K̃, P̃ : N0 → N0.

Fix n = 1, 2, . . .. The definitions imply K?
n ≤ K̃n < 1 + K?

n and upon squaring we

get the inequalities

Pn · log n + α?
n

n
≤ K̃2

n (7.40)

and

K̃2
n < 1 + 2

√
Pn · log n + α?

n

n
+ Pn · log n + α?

n

n
. (7.41)

The deviation sequence α̃ : N0 → R of the newly defined scaling (7.33) is deter-

mined through

K̃2
n

P̃n

=
log n + α̃n

n
, n = 1, 2, . . . .

115



Using (7.40) and (7.41) we then conclude that

α?
n ≤ α̃n (7.42)

and

α̃n

n
<

1

Pn

+ 2

√
1

Pn

· log n + α?
n

n
+

α?
n

n
. (7.43)

It is now plain from (7.36) and (7.42) that (7.34) holds. Next, by combining (7.42)

and (7.43) we get

α?
n

n
≤ α̃n

n
<

1

Pn

+ 2

√
1

Pn

· log n + α?
n

n
+

α?
n

n
. (7.44)

Letting n go to infinity in (7.44) and using (7.37) we conclude to (7.35) since limn→∞ Pn =

∞ by virtue of (7.3).

This construction also works with

α?
n = min (αn, ωn) , n = 1, 2, . . .

for any sequence ω : N0 → R+ such that limn→∞ ωn = ∞ and ωn = o(n), e.g., ωn = nδ

for some 0 < δ < 1.

We close with a key technical consequence of Lemma 7.4.1: By construction the

scaling K̃, P̃ : N0 → N0 is a strongly admissible scaling and an easy coupling argument
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based on (7.33) implies

P (n; θ̃n) ≤ P (n; θn), n = 2, 3, . . .

Thus, we need only show the one law in Theorem 7.1.1 for strongly admissible scalings.

As a result, in view of the discussion leading to (7.24) it suffices to establish the

following result, to which the remainder of the chapter is devoted.

Proposition 7.4.2 Consider any strongly admissible scaling P,K : N0 → N0 whose

deviation function α : N0 → R satisfies limn→∞ αn = ∞. Under the condition (7.3),

we have

lim
n→∞

P [Cn(θn)c ∩ In(θn)] = 0. (7.45)

Proposition 7.4.2 shows that in random key graphs, graph connectivity is asymp-

totically equivalent to the absence of isolated nodes under any strongly admissible

scaling whose deviation function α : N0 → R satisfies limn→∞ αn = ∞ under the

condition (7.3).

7.4.2 The equivalence (7.31)

To establish the key equivalence (7.31) we start by applying Lemma 5.4.1 to the

expression (2.3). This yields the following bounds:

117



Lemma 7.4.3 With positive integers K and P such that 2K ≤ P , we have

1 − e−
K2

P ≤ 1 − q(θ) ≤ K2

P − K
. (7.46)

Proof. Lemma 5.4.1 (with L = K) yields the bounds

1 − e−
K2

P ≤ 1 − q(θ) ≤ 1 −
(

1 − K

P − K

)K

. (7.47)

The conclusion (7.46) is now immediate once we note that

1 −
(

1 − K

P − K

)K

=

∫ 1

1− K
P−K

KtK−1dt ≤ K2

P − K

by a crude bounding argument.

A little bit more than (7.31) can be said.

Lemma 7.4.4 For any scaling P,K : N0 → N0, we have

lim
n→∞

q(θn) = 1 (7.48)
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if and only if

lim
n→∞

K2
n

Pn

= 0, (7.49)

and under either condition the asymptotic equivalence

1 − q(θn) ∼ K2
n

Pn

(7.50)

holds.

On several occasions, we will rely on (7.50) through the following equivalent for-

mulation: For every δ in (0, 1) there exists a finite integer n?(δ) such that

(1 − δ)
K2

n

Pn

≤ 1 − q(θn) ≤ (1 + δ)
K2

n

Pn

(7.51)

whenever n ≥ n?(δ).

Proof. As noted already at the end of Section 7.3, condition (7.49) (which holds

for any strongly admissible scaling) implies

2Kn ≤ Pn (7.52)

for all n sufficiently large. On that range Lemma 7.4.3 yields

1 − e−
K2

n
Pn ≤ 1 − q(θn) ≤ K2

n

Pn − Kn

. (7.53)
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Multiply (7.53) by Pn

K2
n

and let n go to infinity in the resulting set of inequalities.

Under (7.49), we get

lim
n→∞

Pn

K2
n

·
(

1 − e−
K2

n
Pn

)
= 1 (7.54)

from the elementary fact limt↓0
1−e−t

t
= 1, while

lim
n→∞

Pn

K2
n

· K2
n

Pn − Kn

= lim
n→∞

Pn

Pn − Kn

= 1 (7.55)

by virtue of (7.27) (which is implied by (7.49)). The asymptotic equivalence (7.50)

follows, and the validity of (7.48) is immediate.

Conversely, under the condition limn→∞ q(θn) = 1, we have 0 < q(θn) < 1 for all

n sufficiently large (by the comment following (2.4)), and the constraint (7.52) nec-

essarily holds. On that range, (7.53) being valid, we conclude to limn→∞ e−
K2

n
Pn = 1

under (7.48). The convergence (7.49) now follows and the asymptotic equivalence

(7.50) is given by the first part of the proof.

7.4.3 The union bound (5.14)

Proposition 7.4.2 will be established with the help of a bound for the probability

appearing at (7.45). Indeed, an appropriate version of the union bound (5.14) (estab-

lished in Chapter 5.2) will suffice: Fix n = 2, 3, . . . and consider positive integers K

and P such that 2K ≤ P . Consider the definitions given in Chapter 5.2 with G(n; υ)
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replaced by K(n; θ), mn replaced by n, In replaced by In(θ) and for each r = 1, . . . , n,

An,r replaced by An,r(θ), Bn,r replaced by Bn,r(θ) and Cn,r replaced by Cn,r(θ). Here,

Cn,r(θ) does not depend on n and we will use Cr(θ) for simplicity. For r = n this

notation now becomes consistent with Cn(θ) as defined in Section 7.3. The arguments

of Chapter 5.2 now lead to the key bound:

P [Cn(θ)c ∩ In(θ)] ≤
bn

2
c∑

r=2

(
n

r

)
P [An,r(θ)] (7.56)

upon using (5.14) with the aforementioned substitutions.

Consider a strongly admissible scaling P,K : N0 → N0 as in the statement of

Proposition 7.4.2. In the right hand side of (7.56) we substitute θ by θn by means

of this strongly admissible scaling. The proof of Proposition 7.4.2 will be completed

once we show that

lim
n→∞

bn
2
c∑

r=2

(
n

r

)
P [An,r(θn)] = 0 (7.57)

under the appropriate conditions. This approach was used to establish the one-law in

Erdős-Rényi graphs [4], [32] where simple bounds can be derived for the probability

terms in (7.57). Our situation is technically more involved and requires more delicate

bounding arguments as will become apparent in the forthcoming sections.
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7.4.4 Bounding the probabilities P [An,r(θ)](r = 1, . . . , n)

Consider positive integers K and P such that 2K ≤ P . Fix n = 2, 3, . . . and pick

r = 1, . . . , n − 1. In the course of evaluating P [An,r(θ)], we shall make use of the rv

Ur(θ) given by

Ur(θ) := |∪r
i=1Σi(θ)| . (7.58)

The rv Ur(θ) counts the number of distinct keys issued to the nodes 1, . . . , r.

It is always the case that Ur(θ) ≤ P . However, the equivalence

Bn,r(θ) = [(∪r
i=1Σi(θ)) ∩ Σj(θ) = ∅, j = r + 1, . . . n]

implies that the set of nodes {1, . . . , r} cannot be isolated in K(n; θ) if P −Ur(θ) < K,

i.e.,

Bn,r(θ) ∩ [P − Ur(θ) < K] = ∅.

Hence, under the enforced assumptions on the rvs Σ1(θ), . . . , Σn(θ), we readily obtain

the expression

P [Bn,r(θ)|Σi(θ), i = 1, . . . , r] =

((
P−Ur(θ)

K

)
(

P
K

)
)n−r

a.s.

on the event [Ur(θ) ≤ P − K].

Upon conditioning on the rvs Σ1(θ), . . . , Σr(θ) (which determine the event Cr(θ)),
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we conclude that

P [An,r(θ)] = P [Cr(θ) ∩ Bn,r(θ)]

= E

[
1 [C?

r (θ)] ·
((

P−Ur(θ)
K

)
(

P
K

)
)n−r]

(7.59)

with

C?
r (θ) := Cr(θ) ∩ [Ur(θ) ≤ P − K].

The bound

P [An,r(θ)] ≤ E

[
1 [C?

r (θ)] · e−(n−r) K
P
·Ur(θ)

]
(7.60)

follows by applying (5.21)(with L = Ur(θ)) in Lemma 5.4.1.

The constraints

K ≤ Ur(θ) ≤ min (rK, P ) (7.61)

automatically imply Ur(θ) ≤ P −K whenever rK ≤ P −K, i.e., (r+1)K ≤ P . Thus,

C?
r (θ) = Cr(θ), r = 1, . . . , rn(θ) (7.62)

where we have set

rn(θ) := min
(
r(θ),

⌊n

2

⌋)
with r(θ) :=

⌊
P

K

⌋
− 1.

This discussion already brings out a number of items that are likely to require some
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attention: We will need good bounds for the probabilities P [Cr(θ)] and P [C?
r (θ)].

Also, some of the distributional properties of the rv Ur(θ) are expected to play a role.

Finally, different arguments are probably needed for the ranges 1 ≤ r ≤ rn(θ) and

rn(θ) < r ≤ bn
2
c.

The next result is crucial to showing that for each r = 2. . . . , n, the probability

of the event Cr(θ) can be given an upper bound in terms of known quantities. First

some notation: For each r = 2, . . . , n, let Kr(n; θ) stand for the subgraph K(n; θ)(S)

when S = {1, . . . , r}. Also let Tr denote the collection of all spanning trees on the

vertex set {1, . . . , r}.

Lemma 7.4.5 For each r = 2, . . . , n, we have

P [T ⊂ Kr(n; θ)] = (1 − q(θ))r−1 , T ∈ Tr (7.63)

where the notation T ⊂ Kr(n; θ) indicates that the tree T is a subgraph spanning

Kr(n; θ).

This last expression is analogous to the one found in Erdős-Rényi graphs [4] with

1 − q(θ) playing the role of probability of link assignment, and this is in spite of

possible correlations between some link assignments.

Proof. We shall prove the result by induction on r = 2, . . . , n. For r = 2 the

conclusion (7.63) is nothing more than (2.3) since T2 contains exactly one tree, and
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this establishes the basis step.

Next, we consider the following induction step: Pick r = 2, . . . , n− 1 and assume

that for each s = 2, . . . , r, it is already known that

P [T ⊂ Ks(n; θ)] = (1 − q(θ))s−1 , T ∈ Ts. (7.64)

We now show that (7.64) also holds for each s = 2, . . . , , r + 1. To that end, pick a

tree T in Tr+1 and identify its root.2 Let i denote a node that is farthest from the root

of T – There might be several such nodes. Also denote by p its unique parent, and

let D(p) denote the set of children of p. Obviously D(p) is not empty as it contains

node i; set |D(p)| = d. Next we construct a new tree T ? from T by removing from T

all the edges from node p to the nodes in D(p). By exchangeability, there is no loss

of generality in assuming (as we do from now on) that the tree is rooted at node 1,

that the unique parent p of the farthest node selected has label r − d + 1, and that

its children have been labelled r− d + 2, . . . , r + 1. With this convention, the tree T ?

is defined on the set of nodes {1, . . . , r − d + 1}.

It is plain that T ⊆ Kr+1(n, ; θ) occurs if and only if the two sets of conditions

Σr−d+1(θ) ∩ Σ`(θ) 6= ∅, ` = r − d + 2, . . . , r + 1

2As we are considering undirected graphs, all nodes can act as a root for the (undirected) tree
T , in which case any one will do for the forthcoming discussion.
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and

T ? ⊆ Kr−d+1(n; θ)

both hold. Under the enforced independence assumptions we get

P




Σr−d+1(θ) ∩ Σ`(θ) 6= ∅,

` = r − d + 2, . . . , r + 1

∣∣∣Σ1(θ), . . . , Σr−d+1(θ)



 = (1 − q(θ))d.

Therefore, upon conditioning with respect to the rvs Σ1(θ), . . . , Σr−d+1(θ) we readily

find

P [T ⊆ Kr+1(n, ; θ)] = (1 − q(θ))d
P [T ? ⊆ Kr−d+1(n; θ)]

= (1 − q(θ))d(1 − q(θ))r−d (7.65)

= (1 − q(θ))r

as we use the induction hypothesis (7.64) for evaluating the probability of the event

[T ? ⊆ Kr−d+1(n; θ)]. This establishes the induction step.

The bound below now follows as in Erdős-Rényi graphs [4].

Lemma 7.4.6 For each r = 2, . . . , n, we have

P [Cr(θ)] ≤ rr−2 (1 − q(θ))r−1 . (7.66)
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Proof. Fix r = 2, . . . , n. If Kr(n; θ) is a connected graph, then it must contain a

spanning tree on the vertex set {1, . . . .r}, and a union bound argument yields

P [Cr(θ)] ≤
∑

T∈Tr

P [T ⊂ K(n; θ)(S)] . (7.67)

By Cayley’s formula [6, 25] there are rr−2 trees on r vertices, i.e., |Tr| = rr−2, and

(7.66) follows upon making use of (7.63).

The bound (7.60) and the inequality Ur(θ) ≥ K together imply

P [An,r(θ)] ≤ P [Cr(θ)] · e−(n−r) K2

P

≤ rr−2 (1 − q(θ))r−1 · e−(n−r)K2

P (7.68)

as we make use of Lemma 7.4.6 in the last step. Unfortunately, this bound turns

out to be too loose for our purpose. As this can be traced to the crude lower bound

used for Ur(θ), we expect that improvements are possible if we take into account the

distributional properties of the rv Ur(θ). This step is taken in the next section.
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7.4.5 The tail of the rv Ur(θ) and improved bounds

Consider positive integers K and P such that K ≤ P . Rough estimates will suffice

to get the needed information regarding the distribution of the rv Ur(θ). This is the

content of the next result.

Lemma 7.4.7 For all r = 1, 2, . . ., the bound

P [Ur(θ) ≤ x] ≤
(

P

x

) ((
x
K

)
(

P
K

)
)r

(7.69)

holds whenever x = K, . . . , min(rK, P ).

Proof. For a given x in the prescribed range, we note that Ur(θ) ≤ x implies that

∪r
i=1Σi(θ) is contained in some set S of size x, so that

[Ur(θ) ≤ x] ⊆
⋃

S∈Px

[∪r
i=1Σi(θ) ⊆ S].

A standard union bound argument gives

P [Ur(θ) ≤ x] ≤
∑

S∈Px

P [∪r
i=1Σi(θ) ⊆ S]

=
∑

S∈Px

P [Σi(θ) ⊆ S, i = 1, . . . , r]

=
∑

S∈Px

r∏

i=1

P [Σi(θ) ⊆ S]

=
∑

S∈Px

(P [Σ1(θ) ⊆ S])r (7.70)
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under the enforced assumptions on the rvs Σ1(θ), . . . , Σn(θ).

Since every set S of size x contain
(

x
K

)
further subsets of size K, we get

P [Σ1(θ) ⊆ S] =

(
x
K

)
(

P
K

) , S ∈ Px.

Reporting this fact into (7.70) we readily obtain (7.69) from the fact |Px| =
(

P
x

)
.

Reporting (5.24) into (7.69) we conclude to a somewhat looser but simpler bound.

Lemma 7.4.8 For all r = 1, 2, . . ., the bounds

P [Ur(θ) ≤ x] ≤
(

P

x

) ( x

P

)rK

(7.71)

holds whenever x = K, . . . , min(rK, P ).

The bounds (7.69) and (7.71) trivially hold with P [Ur(θ) ≤ x] = 0 when x =

1, . . . , K − 1 since we always have Ur(θ) ≥ K. We shall make repeated use of this

fact as follows: For all n, r = 1, 2, . . . , with r < n, we have

(
n

r

)
P [Ur(θ) ≤ x] ≤

(
n

r

)(
P

x

) ( x

P

)rK

≤
(bP/σc

r

)(
P

x

) ( x

P

)rK

(7.72)
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on the range x = 1, . . . , min(rK, P ) whenever σn ≤ P for some σ > 0, a condition

which is needed only for the last step and which implies n ≤ bP
σ
c since n is an integer.

We are now in a position to improve on the bound (7.68): Fix n = 2, 3, . . . and

pick r = 2, . . . , n − 1. For each positive integer x, the decomposition

P [An,r(θ)] = P [Cr(θ) ∩ Bn,r(θ)]

= P [Cr(θ) ∩ Bn,r(θ) ∩ Er(θ; x)] (7.73)

+ P [Cr(θ) ∩ Bn,r(θ) ∩ Er(θ; x)c]

holds where the event Er(θ; x) is given by

Er(θ; x) := [Ur(θ) ≤ x].

The arguments leading to (7.59) also yield

P [Cr(θ) ∩ Bn,r(θ) ∩ Er(θ; x)]

= E

[
1 [C?

r (θ)]1 [Er(θ; x)]

((
P−Ur(θ)

K

)
(

P
K

)
)n−r]

≤ E

[
1 [C?

r (θ)]1 [Er(θ; x)] e−(n−r)K
P

Ur(θ)
]

≤ P [C?
r (θ) ∩ Er(θ; x)] e−(n−r)K2

P (7.74)
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given that Ur(θ) ≥ K. In a similar way we obtain

P [Cr(θ) ∩ Bn,r(θ) ∩ Er(θ; x)c] ≤ P [C?
r (θ) ∩ Er(θ; x)c] e−(n−r) K

P
(x+1) (7.75)

since Ur(θ) ≥ x + 1 on the complement Er(θ; x)c. Reporting (7.74) and (7.75) into

(7.73) leads to the following fact.

Lemma 7.4.9 Consider positive integers K and P such that K ≤ P . With n =

2, 3, . . . and r = 1, . . . , n, we have

P [An,r(θ)] ≤ P [Er(θ; x)] e−(n−r)K2

P + P [Cr(θ)] e
−(n−r)K

P
(x+1) (7.76)

for each positive integer x.

This decomposition combines with Lemma 7.4.6 to provide bounds which are

tighter than (7.68).

7.4.6 Outlining the proof of Proposition 7.4.2

It is now clear how to proceed: Consider a strongly admissible scaling P,K :

N0 → N0 as in the statement of Proposition 7.4.2. Under (7.25) we necessarily have

limn→∞
Pn

Kn
= ∞ as discussed at the end of Section 7.3. As a result, limn→∞ rn(θn) =

131



∞, and for any given integer R ≥ 2 we have

R < rn(θn), n ≥ n?(R) (7.77)

for some finite integer n?(R).

For the time being, pick an integer R ≥ 2 (to be specified in Section 7.4.8), and

on the range n ≥ n?(R) consider the decomposition

bn
2
c∑

r=2

(
n

r

)
P [An,r(θn)] =

R∑

r=2

(
n

r

)
P [An,r(θn)] (7.78)

+

rn(θ)∑

r=R+1

(
n

r

)
P [An,r(θn)]

+

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [An,r(θn)] .

Let n go to infinity: The desired convergence (7.57) will be established if we show

lim
n→∞

R∑

r=2

(
n

r

)
P [An,r(θn)] = 0, (7.79)

lim
n→∞

rn(θn)∑

r=R+1

(
n

r

)
P [An,r(θn)] = 0 (7.80)

and

lim
n→∞

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [An,r(θn)] = 0. (7.81)

The next sections are devoted to proving the validity of (7.79), (7.80) and (7.81)

by repeated applications of Lemma 7.4.9. We address these three cases by making
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use of the bounds (7.76) with

x = b(1 + ε)Knc, ε ∈ (0,
1

2
),

x = bλrKnc, λ ∈ (0, 1),

and

x = bµPnc, µ ∈ (0, 1),

respectively. Finally, we note by convexity that the inequality

(x + y)p ≤ 2p−1(xp + yp),
x, y ≥ 0

p ≥ 1

(7.82)

holds.

Before getting on the way, we close this section by highlighting key differences

between our approach and the one used in the papers [3,9]. The observation yielding

(7.56), which forms the basis of our discussion, is also used in some form as the starting

point in both these references. However, these authors did not take advantage of the

fact that the sufficiently tight bound (7.66) is available for the probability of the

event Cr(θ), a consequence of the exact expression (7.63). Through this bound, we

can leverage strong admissibility (via (7.31)) to get

(1 − q(θn)) ≤ (1 + δ) · K2
n

Pn
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for n sufficiently large with any 0 < δ < 1, in which case

P [Cr(θn)] ≤ rr−2

(
(1 + δ) · K2

n

Pn

)r−1

for each r = 2, 3, . . . , n. This opens the way to using the properties of the scaling by

means of its deviation function defined by (7.1) – Such a line of arguments cannot be

made if the scaling is merely admissible.

The bound (7.76) arises from the need to efficiently bound the rv Ur(θn). Indeed,

if it were the case that Ur(θn) = rKn for each r = 1, . . . , bn
2
c, then the conjecture

(7.1)-(7.2) would readily follow as in Erdős-Rényi graphs [4] by simply making use

of the bound (7.68), e.g., see the arguments in [4, 32]. In addition, the constraint

Ur(θn) ≤ min(rKn, Pn) already suggests that the cases rKn ≤ Pn and Pn < rKn be

considered separately, with a different decomposition (7.76) on each range – This was

also the approach taken in the references [3] and [9]. Interestingly enough, a further

decomposition of the range r = 1, . . . , b Pn

Kn
c is needed to establish Theorem 7.1.1. In

particular, using the bound (7.76) with x = bλrKnc for sufficiently small λ in (0, 1)

across the entire range r = 1, . . . , b Pn

Kn
c would not suffice for very small values of r: In

that range the obvious bound Ur(θn) ≥ Kn might be tighter than Ur(θn) ≥ bλrKnc,

and another form of the bound (7.76) is needed to obtain the desired results, hence

(7.78).
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7.4.7 Establishing (7.79)

Consider a strongly admissible scaling P,K : N0 → N0 whose deviation function

α : N0 → R satisfies limn→∞ αn = ∞. According to this scaling, for each r = 2, 3, . . .

and n = r + 1, r + 2, . . ., replace θ by θn in Lemma 7.4.9 with x = b(1 + ε)Knc for

some ε in (0, 1
2
). For an arbitrary integer R ≥ 2, the convergence (7.79) will follow if

we show that

lim
n→∞

(
n

r

)
P [Cr(θn)] e−(n−r)Kn

Pn
(b(1+ε)Knc+1) = 0 (7.83)

and

lim
n→∞

(
n

r

)
P [Er (θn; b(1 + ε)Knc)] e−(n−r)

K2
n

Pn = 0 (7.84)

for each r = 2, 3, . . .. These two convergence statements are established below in

Proposition 7.4.10 and Proposition 7.4.11, respectively.

Proposition 7.4.10 Consider a strongly admissible scaling P,K : N0 → N0 whose

deviation function α : N0 → R satisfies limn→∞ αn = ∞. With ε > 0, the convergence

(7.83) holds for each r = 2, 3, . . ..

Proof. Pick r = 2, 3, . . . and ε > 0, and consider a strongly admissible scaling

P,K : N0 → N0. We combine the bounds (5.25) and (7.66) to write

(
n

r

)
P [Cr(θn)] e−(n−r)Kn

Pn
(b(1+ε)Knc+1)

≤
(en

r

)r

rr−2 (1 − q(θn))r−1 e−(n−r)Kn
Pn

(b(1+ε)Knc+1)
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≤
(

er

r2

)
nr (1 − q(θn))r−1 e−(n−r)

K2
n

Pn
(1+ε) (7.85)

for all n = r + 1, r + 2, . . .. Thus, it follows from Lemma 7.4.4 (via (7.50)) that the

convergence (7.83) will be established if we show that

lim
n→∞

nr

(
K2

n

Pn

)r−1

e−(n−r)
K2

n
Pn

(1+ε) = 0. (7.86)

This step relies on the strong admissibility of the scaling.

On the range where (7.85) holds, we find with the help of (7.1) that

nr

(
K2

n

Pn

)r−1

e−(n−r)
K2

n
Pn

(1+ε)

= nr

(
log n + αn

n

)r−1

· e−(n−r) log n+αn
n

(1+ε)

= n (log n + αn)r−1 · e−(1+ε)(1− r
n

) log n · e−(1+ε)(1− r
n

)αn

= n1−(1+ε)(1− r
n

) · (log n + αn)r−1 · e−(1+ε)(1− r
n

)αn

= n−ε+(1+ε) r
n · (log n + αn)r−1 · e−(1+ε)(1− r

n
)αn . (7.87)

Under the condition limn→∞ αn = ∞ it is plain that

lim
n→∞

n−ε+(1+ε) r
n (log n)r−1e−(1+ε)(1− r

n
)αn = 0

and

lim
n→∞

n−ε+(1+ε) r
n αr−1

n e−(1+ε)(1− r
n

)αn = 0.
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Letting n go to infinity in (7.87) we readily get (7.86) by making use of (7.82).

Proposition 7.4.11 Consider a strongly admissible scaling P,K : N0 → N0 whose

deviation function α : N0 → R satisfies limn→∞ αn = ∞. For every ε in (0, 1
2
), the

convergence (7.84) holds for each r = 2, 3, . . ..

Proof. Pick r = 2, 3, . . . and ε in (0, 1
2
), and consider a strongly admissible scaling

P,K : N0 → N0. For n sufficiently large, we use (7.71) with x = b(1+ε)Knc to obtain

(
n

r

)
P [Er(θn; b(1 + ε)Knc)]

≤
(

n

r

)(
Pn

bKn(1 + ε)c

)(bKn(1 + ε)c
Pn

)rKn

≤ nr

(
ePn

bKn(1 + ε)c

)bKn(1+ε)c (bKn(1 + ε)c
Pn

)rKn

≤ nr

(
e

bKn(1+ε)c
rKn−bKn(1+ε)c

bKn(1 + ε)c
Pn

)rKn−bKn(1+ε)c

.

The condition r ≥ 2 implies the inequalities

bKn(1 + ε)c
rKn − bKn(1 + ε)c ≤ 1 + ε

r − (1 + ε)
≤ 1 + ε

1 − ε

and

rKn − bKn(1 + ε)c ≥ Kn (r − (1 + ε)) > 0.
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Thus, upon setting

Γ(ε) := (1 + ε)e
1+ε
1−ε ,

we conclude by strong admissibility (in view of (7.27)) that Γ(ε) · Kn

Pn
< 1 for all n

sufficiently large, whence

e
bKn(1+ε)c

rKn−bKn(1+ε)c
bKn(1 + ε)c

Pn

≤ Γ(ε) · Kn

Pn

< 1

on that range.

There we can write

(
n

r

)
P [Er(θn; b(1 + ε)Knc)] ≤ nr

(
Γ(ε) · Kn

Pn

)rKn−bKn(1+ε)c

≤ nr

(
Γ(ε) · Kn

Pn

)Kn(r−1−ε)

≤ nr

(
Γ(ε) · Kn

Pn

)2(r−1−ε)

(7.88)

≤ nr

(
Γ(ε) · K2

n

Pn

)2(r−1−ε)

= nr

(
Γ(ε) · log n + αn

n

)2(r−1−ε)

= n−r+2+2ε (Γ(ε) · (log n + αn))2(r−1−ε) (7.89)

where we obtain (7.88) upon using the fact Kn ≥ 2. On the other hand we also have

e−(n−r)
K2

n
Pn = e−(n−r) log n+αn

n = n−(1− r
n

) · e−n−r
n

αn . (7.90)
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Therefore, upon multiplying (7.89) and (7.90) we see that Proposition 7.4.11 will

follow if we show that

lim
n→∞

n−r+1+2ε+ r
n · (log n + αn)2(r−1−ε) · e−n−r

n
αn = 0. (7.91)

The choice of ε and r ensures that r − 1 − ε > 0 and −r + 1 + 2ε + r
n

< 0 for all n

sufficiently large. The condition limn→∞ αn = ∞ now yields

lim
n→∞

n−r+1+2ε+ r
n · (log n)2(r−1−ε) · e−n−r

n
αn = 0 (7.92)

and

lim
n→∞

n−r+1+2ε+ r
n · α2(r−1−ε)

n · e−n−r
n

αn = 0. (7.93)

The desired conclusion (7.91) follows by making use of (7.92) and (7.93) with the help

of the inequality (7.82).

Note that neither of these two results made use of the condition (7.3).

7.4.8 Establishing (7.80)

In order to establish (7.80) we will need two technical facts which are presented

in Proposition 7.4.12 and Proposition 7.4.13.

Proposition 7.4.12 Consider a strongly admissible scaling P,K : N0 → N0 whose
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deviation function α : N0 → R satisfies limn→∞ αn = ∞. Then, with 0 < λ < 1 and

integer R ≥ 2, we have

lim
n→∞

bn
2
c∑

r=R+1

(
n

r

)
P [Cr(θn)] e−(n−r) Kn

Pn
(bλrKnc+1) = 0 (7.94)

whenever λ and R are selected so that

2 < λ(R + 1). (7.95)

Proposition 7.4.12 is proved in Section 7.4.10. Next, with λ in (0, 1
2
) and σ > 0,

we write

C(λ; σ) :=

(
e2

σ

) λ
1−2λ

. (7.96)

Proposition 7.4.13 Consider a strongly admissible scaling P,K : N0 → N0 whose

deviation function α : N0 → R satisfies limn→∞ αn = ∞. If there exists some σ > 0

such that (7.3) holds for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

rn(θn)∑

r=1

(
n

r

)
P [Er(θn; bλrKnc)] = 0 (7.97)

whenever λ in (0, 1
2
) is selected small enough so that

max
(
2λσ, λ1−2λ, λC(λ; σ)

)
< 1. (7.98)
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A proof of Proposition 7.4.13 can be found in Section 7.4.11. Note that for any

σ > 0, limλ↓0 λC(λ; σ) = 0 and that limλ↓0 λ1−2λ = 0 so that the condition (7.98) can

always be met by suitably selecting λ > 0 small enough.

We now turn to the proof of (7.80): Keeping in mind Proposition 7.4.12 and

Proposition 7.4.13, we select λ sufficiently small in (0, 1
2
) to meet the condition (7.98)

and then pick any integer R ≥ 2 sufficiently large to ensure (7.95). Next consider a

strongly admissible scaling P,K : N0 → N0 whose deviation function α : N0 → R

satisfies the condition limn→∞ αn = ∞. Then, for each n ≥ n?(R) (with n?(R)

as specified at (7.77)), replace θ by θn according to this scaling, and for each r =

R + 1, . . . , rn(θn), set x = bλrKnc in Lemma 7.4.9 with λ as specified earlier.

With these preliminaries in place, we see from Lemma 7.4.9 that (7.80) holds if

both limits

lim
n→∞

rn(θn)∑

r=R+1

(
n

r

)
P [Cr(θn)] e−(n−r)Kn

Pn
(bλrKnc+1) = 0

and

lim
n→∞

rn(θn)∑

r=R+1

(
n

r

)
P [Er(θn; bλrKnc)] e−(n−r)

K2
n

Pn = 0

hold. However, under (7.95) and (7.98), these two convergence statements are imme-

diate from Proposition 7.4.12 and Proposition 7.4.13, respectively.
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7.4.9 Establishing (7.81)

The following two results are needed to establish (7.81). The first of these results

is given next with a proof available in Section 7.4.12.

Proposition 7.4.14 Consider a strongly admissible scaling P,K : N0 → N0 whose

deviation function α : N0 → R satisfies limn→∞ αn = ∞. If there exists some σ > 0

such that (7.3) holds for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [Er(θn; bµPnc)] = 0 (7.99)

whenever µ in (0, 1
2
) is selected so that

max

(
2

(√
µ

(
e

µ

)µ)σ

,
√

µ

(
e

µ

)µ)
< 1. (7.100)

We have limµ↓0

(
e
µ

)µ

= 1, whence limµ↓0
√

µ
(

e
µ

)µ

= 0, and (7.100) can be made

to hold for any σ > 0 by taking µ > 0 sufficiently small. The next proposition is

established in Section 7.4.13.

Proposition 7.4.15 Consider an admissible scaling P,K : N0 → N0 whose deviation

function α : N0 → R satisfies limn→∞ αn = ∞. If there exists some σ > 0 such that
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(7.3) holds for all n = 1, 2, . . . sufficiently large, then we have

lim
n→∞

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [Cr(θn)] e−(n−r)Kn

Pn
(bµPnc+1) = 0 (7.101)

for each µ in (0, 1).

The proof of (7.81) is now within easy reach: Consider a strongly admissible scal-

ing P,K : N0 → N0 whose deviation function α : N0 → R satisfies limn→∞ αn = ∞.

On the range where (7.3) holds, for each n ≥ n?(R) (with n?(R) as specified at (7.77)

where R and λ still satisfy (7.95) and (7.98)), replace θ by θn according to this scaling,

and set x = bµPnc in Lemma 7.4.9 with µ as specified by (7.100). We get (7.81) as a

direct consequence of Proposition 7.4.14 and Proposition 7.4.15.

7.4.10 A proof of Proposition 7.4.12

Let λ and R be as in the statement of Proposition 7.4.12, and pick a positive

integer n such that 2(R + 1) < n. Arguments similar to the ones leading to (7.85)

yield

(
n

r

)
P [Cr(θn)] e−(n−r) Kn

Pn
(bλrKnc+1) ≤

(
er

r2

)
nre−λr(n−r)

K2
n

Pn (1 − q(θn))r−1
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for all r = 1, . . . , n. Thus, in order to establish (7.94), we need only show

lim
n→∞

bn
2
c∑

r=R+1

er

r2
nre−λr(n−r)

K2
n

Pn (1 − q(θn))r−1 = 0. (7.102)

As in the proof of Proposition 7.4.11, by the strong admissibility of the scaling (with

the help of (7.51)), it suffices to show

lim
n→∞

bn
2
c∑

r=R+1

er

r2
nre−λr(n−r)

K2
n

Pn

(
(1 + δ)

K2
n

Pn

)r−1

= 0 (7.103)

with 0 < δ < 1.

Fix n = 2, 3, . . .. For each r = 1, . . . , bn
2
c, we get

(
er

r2

)
nre−λr(n−r)

K2
n

Pn

(
(1 + δ)

K2
n

Pn

)r−1

=

(
er

r2

)
nre−λr(n−r) log n+αn

n

(
(1 + δ)

log n + αn

n

)r−1

= n

(
er

r2

)
e−λr(n−r) log n+αn

n ((1 + δ)(log n + αn))r−1

≤ nere−λr(1− r
n

)(log n+αn) ((1 + δ)(log n + αn))r−1

≤ nere−
λ
2
r(log n+αn) ((1 + δ)(log n + αn))r−1

= n
(
e1−λ

2
(log n+αn)

)r

((1 + δ)(log n + αn))r−1 (7.104)

as we note that

1 − r

n
≥ 1

2
, r = 1, . . . ,

⌊n

2

⌋
. (7.105)
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Next, we set

Γn(λ) := ne1−λ
2
(log n+αn)

and

an(λ) := e1−λ
2
(log n+αn)(1 + δ)(log n + αn).

With this notation we conclude that

bn
2
c∑

r=R+1

(
er

r2

)
nre−λr(n−r)

K2
n

Pn

(
(1 + δ)

K2
n

Pn

)r−1

≤ Γn(λ)

bn
2
c∑

r=R+1

an(λ)r−1

≤ Γn(λ)
∞∑

r=R

an(λ)r. (7.106)

Obviously, limn→∞ an(λ) = 0 under the condition limn→∞ αn = ∞, so that

an(λ) < 1 for all n sufficiently large. On that range, the geometric series at (7.106)

converges to a finite limit with

∞∑

r=R

an(λ)r =
an(λ)R

1 − an(λ)
.

Thus,

bn
2
c∑

r=R+1

(
er

r2

)
nre−λr(n−r)

K2
n

Pn

(
(1 + δ)

K2
n

Pn

)r−1

≤ Γn(λ) · an(λ)R

1 − an(λ)

= Cn,R(δ) · n1−λ
2
(R+1) · e−λ

2
(R+1)αn · (log n + αn)R
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with

Cn,R(δ) :=
eR+1(1 + δ)R

1 − an(λ)
.

Under (7.95), the condition limn→∞ αn = ∞ implies

lim
n→∞

n1−λ
2
(R+1) · e−λ

2
(R+1)αn · (log n)R = 0

and

lim
n→∞

n1−λ(R+1)
2 · e−λ(R+1)

2
αn · αR

n = 0.

The desired conclusion (7.103) is now immediate with the help of the inequality (7.82).

Condition (7.3) played no role.

7.4.11 A proof of Proposition 7.4.13

We begin by providing bounds on the probabilities of interest entering (7.97).

Recall the definitions of the quantities introduced before the statement of Proposition

7.4.13.

Proposition 7.4.16 Consider positive integers K, P and n such that 2 ≤ K ≤ P
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and σn ≤ P for some σ > 0. For any λ in (0, 1
2
) small enough to ensure

max (2λσ, λC(λ; σ)) < 1, (7.107)

we have
(

n

r

)
P [Er(θ; bλrKc)] ≤ B(λ; σ; K)r (7.108)

for all r = 1, . . . , rn(θ) where we have set

max



λ(1−2λ)K ,

(
λ1−2λ

(
e2

σ

)λ
)K

,
e2

σKK−2



 . (7.109)

Proof. Pick positive integers K, P and n as in the statement of Proposition 7.4.16.

For each r = 1, 2, . . . , n, we use (7.72) with x = bλrKc to find

(
n

r

)
P [Er(θ; bλrKc)] ≤

(bP
σ
c

r

)(
P

bλrKc

)(bλrKc
P

)rK

. (7.110)

On the range

r = 1, . . . , rn(θ), (7.111)

the inequalities

r ≤
⌊

P

K

⌋
− 1 <

P

K
(7.112)
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hold, whence r < P
2

since K ≥ 2. Now if λ is selected in (0, 1
2
) such that 2λσ < 1, it

then follows from (7.112) that λrK < λP < P
2σ

so that

bλrKc ≤
⌊

P

2σ

⌋
≤ 1

2

⌊
P

σ

⌋
. (7.113)

Under these circumstances, we also have

rK − b2λrKc ≥ (1 − 2λ)rK > 0. (7.114)

Two possibilities arise:

Case I: r ≤ bλrKc – Since r ≤ bλrKc ≤ 1
2

⌊
P
σ

⌋
by (7.113), we can use (7.110) to get

(
n

r

)
P [Er(θ; bλrKc)]

≤
( bP

σ
c

bλrKc

)(
P

bλrKc

)(bλrKc
P

)rK

≤
(

ebP
σ
c

bλrKc

)bλrKc (
eP

bλrKc

)bλrKc (bλrKc
P

)rK

≤
(

e

σ

P

bλrKc

)bλrKc (
eP

bλrKc

)bλrKc (bλrKc
P

)rK

=

(
e2

σ

)bλrKc (bλrKc
P

)rK−2bλrKc

=




(

e2

σ

) bλrKc
rK−2bλrKc

· bλrKc
P




rK−2bλrKc

≤
(

max (1, C(λ; σ)) · bλrKc
P

)rK−2bλrKc

(7.115)
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with C(λ; σ) given by (7.96) – In the last step we made use of (7.114) together with

the fact that

bλrKc
rK − 2bλrKc ≤ λrK

rK − 2λrK
=

λ

1 − 2λ

since bλrKc ≤ λrK.

On the range (7.111), we have rK ≤ P from (7.112) and reporting this fact into

(7.115) yields

(
n

r

)
P [Er(θ; bλrKc)] ≤ (λ · max (1, C(λ; σ)))rK−2bλrKc .

In particular, if λ in (0, 1
2
) were selected such that λC(λ; σ) < 1, then we have

λ max (1, C(λ; σ)) < 1 and we get

(
n

r

)
P [Er(θ; bλrKc)] ≤ (λ · max (1, C(λ; σ)))(1−2λ)rK

by recalling (7.114). Such a selection also implies that

(λ · max (1, C(λ; σ)))(1−2λ)K = max



λ(1−2λ)K ,

(
λ1−2λ

(
e2

σ

)λ
)K





and the conclusion

(
n

r

)
P [Er(θ; bλrKc)] ≤ max



λ(1−2λ)K ,

(
λ1−2λ

(
e2

σ

)λ
)K




r

(7.116)

follows.
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Case II: bλrKc ≤ r – On the range (7.111), we have bλrKc ≤ r ≤ P
2

by virtue of

(7.112). Using (7.110) we find

(
n

r

)
P [Er(θ; bλrKc)] ≤

(bP
σ
c

r

)(
P

r

)(bλrKc
P

)rK

≤
(

e

r

⌊
P

σ

⌋)r (
eP

r

)r (bλrKc
P

)rK

≤
(

eP

rσ

)r (
eP

r

)r (bλrKc
P

)rK

. (7.117)

The condition bλrKc ≤ r now implies via (7.117) that

(
n

r

)
P [Er(θ; bλrKc)] ≤

(
eP

rσ

)r (
eP

r

)r ( r

P

)rK

.

=

(
e2

σ

)r ( r

P

)r(K−2)

=

(
e2

σ
·
( r

P

)(K−2)
)r

≤
(

e2

σKK−2

)r

(7.118)

since r ≤ P
K

upon using (7.112). The proof of Proposition 7.4.16 is completed by

combining the inequalities (7.116) and (7.118).

We can now turn to the proof of Proposition 7.4.13: Consider positive integers

K, P and n as in the statement of Proposition 7.4.16. Pick λ in (0, 1
2
) which satisfies
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(7.98) and note that (7.107) is also valid under this selection. We get

rn(θ)∑

r=1

(
n

r

)
P [Er(θ; bλrKc)] ≤

rn(θ)∑

r=1

B(λ; σ; K)r (7.119)

as we invoke Proposition 7.4.16. If it is the case that B(λ; σ; K) < 1, the geometric

series is summable and

rn(θ)∑

r=1

B(λ; σ; K)r ≤
∞∑

r=1

B(λ; σ; K)r =
B(λ; σ; K)

1 − B(λ; σ; K)
,

so that

rn(θ)∑

r=1

(
n

r

)
P [Er(θ; bλrKc)] ≤ B(λ; σ; K)

1 − B(λ; σ; K)
. (7.120)

Now, consider a strongly admissible scaling P,K : N0 → N0 whose deviation

function α : N0 → R satisfies limn→∞ αn = ∞. On the range where (7.3) holds,

replace θ by θn in the last inequality according to this admissible scaling. From (7.1)

we see that

K2
n =

Pn

n
(log n + αn) ≥ σ(log n + αn),

so that limn→∞ Kn = ∞, whence

lim
n→∞

(
e2

σKKn−2
n

)
= 0. (7.121)
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Moreover, for any λ in (0, 1
2
) we have λ1−2λ < 1, and any λ in the interval (0, 1

2
)

satisfying (7.98) also satisfies the condition λC(λ; σ) < 1, so that

λ1−2λ

(
e2

σ

)λ

= (λC(λ; σ))1−2λ < 1.

As a result, under (7.98) we have

lim
n→∞

max

(
λ1−2λ, λ1−2λ

(
e2

σ

)λ
)Kn

= 0

since limn→∞ Kn = ∞ via (7.3). Combining with (7.121), we now find

lim
n→∞

B(λ; σ; Kn) = 0 (7.122)

so that B(λ; σ; Kn) < 1 for all n sufficiently large. Therefore, on that range (7.120)

is valid under the enforced assumptions with θ is replaced by θn. Letting n go to

infinity in (7.120) (with θ replaced by θn) we immediately get (7.97) via (7.122).

7.4.12 A proof of Proposition 7.4.14

Proposition 7.4.14 is an easy consequence of the following bound.

Proposition 7.4.17 Consider positive integers K and P such that 2 ≤ K and 2K ≤
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P . For each µ in (0, 1
2
), we have

bn
2
c∑

r=rn(θ)+1

(
n

r

)
P [Er(θ; bµP c)] ≤ 2n

(√
µ

(
e

µ

)µ)P

(7.123)

for all n = 2, 3, . . ..

Proof. Fix n = 2, 3, . . .. In establishing (7.123) we need only consider the case

rn(θ) < bn
2
c (for otherwise (7.123) trivially holds), so that rn(θ) = r(θ) and rn(θ)+1 =

b P
K
c. The range rn(θ) + 1 ≤ r ≤ bn

2
c is then equivalent to

⌊
P

K

⌋
≤ r ≤

⌊n

2

⌋
,

hence

rK ≥
(

P

K
− 1

)
K ≥ P

2

as we make use of the condition 2K ≤ P in the last step.

With µ in the interval (0, 1
2
) it follows that

bµP c ≤ P

2
≤ min(rK, P ) (7.124)

and the bound (7.71) applies with x = bµP c for all r = r(θ) + 1, . . . , bn
2
c.
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With this in mind, recall (7.105). We then get

bn
2
c∑

r=rn(θ)+1

(
n

r

)
P [Er(θ; bµP c)]

≤
bn

2
c∑

r=r(θ)+1

(
n

r

)(
P

bµP c

) (bµP c
P

)rK

≤
bn

2
c∑

r=r(θ)+1

(
n

r

) (
eP

bµP c

)bµP c (bµP c
P

)rK

≤
bn

2
c∑

r=r(θ)+1

(
n

r

)
ebµP c

(bµP c
P

)rK−bµP c

≤
bn

2
c∑

r=r(θ)+1

(
n

r

)
ebµP cµrK−bµP c (7.125)

≤
(

e

µ

)bµP c



bn

2
c∑

r=r(θ)+1

(
n

r

)

µ
P
2

since P
2
≤ rK for all r = r(θ) + 1, . . . , bn

2
c as pointed out earlier. The passage to

(7.125) made use of the fact that rK −bµP c ≥ 0. The binomial formula now implies

bn
2
c∑

r=r(θ)+1

(
n

r

)
≤ 2n, (7.126)

so that
bn

2
c∑

r=rn(θ)+1

(
n

r

)
P [Er(θ; bµP c)] ≤ 2n

(
e

µ

)µP

µ
P
2

and the desired conclusion (7.123) follows.
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To conclude the proof of Proposition 7.4.14 consider a strongly admissible scaling

P,K : N0 → N0. On the range where (7.3) holds, replace θ by θn in (7.123) according

to this scaling. Observe that, under the condition σn ≤ Pn for some σ > 0, the

inequality
(√

µ

(
e

µ

)µ)P

≤
(√

µ

(
e

µ

)µ)σn

follows as soon as

√
µ

(
e

µ

)µ

< 1, (7.127)

and (7.123) takes the more compact form

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [Er(θn; bµPnc)] ≤

(
2

(√
µ

(
e

µ

)µ)σ)n

.

Letting n go to infinity in this last inequality, we readily get the desired conclusion

(7.99) as we note that (7.127) is implied by (7.100).

We note that this result does not make use of the condition limn→∞ αn = ∞.

155



7.4.13 A proof of Proposition 7.4.15

Consider positive integers K and P such that 2 ≤ K ≤ P , and pick µ in the

interval (0, 1). For each n = 2, 3, . . ., crude bounding arguments yield

bn
2
c∑

r=rn(θ)+1

(
n

r

)
P [Cr(θ)] · e−(n−r) K

P
(bµP c+1)

≤
bn

2
c∑

r=rn(θ)+1

(
n

r

)
e−(n−r) K

P
(µP )

≤




bn

2
c∑

r=rn(θ)+1

(
n

r

)

 e−
n
2

Kµ

≤ 2ne−
n
2

Kµ (7.128)

where we have used (7.105) and (7.126).

To complete the proof of Proposition 7.4.15, consider an admissible scaling P,K :

N0 → N0 whose deviation function α : N0 → R satisfies limn→∞ αn = ∞. Replace θ

by θn in (7.128) according to this admissible scaling so that

bn
2
c∑

r=rn(θn)+1

(
n

r

)
P [Cn,r(θn)] e−(n−r) Kn

Pn
bµPnc ≤

(
2e−

µKn
2

)n

. (7.129)

The condition (7.3) implies

K2
n =

log n + αn

n
· Pn ≥ σ (log n + αn)

for n = 1, 2, . . . sufficiently large, whence limn→∞ Kn = ∞ since the assumed con-
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dition limn→∞ αn = ∞ ensures that eventually αn ≥ 0 for all n sufficiently large.

Consequently,

lim
n→∞

(
2e−

µKn
2

)
= 0

and the conclusion (7.101) follows upon letting n go to infinity in (7.129).
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Chapter 8

Connectivity in Random Pairwise Graphs

8.1 Introduction

The main goal of this chapter is to give conditions on n and K under which H(n; K)

is a connected graph with high probability as n grows large. In the original paper of

Chan et al. [7] (as in the reference [21]), the connectivity of H(n; K) is analyzed by

equating it with the Erdős-Renyi graph G(n; p) where p = 2K
n

; this constraint ensures

that the link probabilities in the two graphs are asymptotically matched. A formal

transfer of well-known connectivity results from Erdős-Renyi graphs (as in Chapter

2.3.1) to H(n; K) suggests that the parameter K should behave like c log n for some

c > 1
2

in order for H(n; K) to be connected with a probability approaching 1 for n

large.

Here we show that transferring connectivity results from Erdős-Renyi graphs to

H(n; K) leads to misleading conclusions. Indeed by a direct analysis we show that with

K ≥ 2 (resp. K = 1), the probability that H(n; K) is a connected graph approaches
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1 (resp. 0) as n grows large, and the desired connectivity is therefore achievable

under very small values of K (much smaller than prescribed by the transfer from

Erdős-Renyi graphs).

To further drive this point, note the following: In many known classes of random

graphs, the absence of isolated nodes and graph connectivity are asymptotically equiv-

alent properties, e.g., Erdős-Rényi graphs [4], random geometric random graphs [27]

and random key graphs. As seen in Chapters 6 and 7, this equivalence, when it holds,

can be used to advantage by first establishing the zero-one law for the absence of iso-

lated nodes, a step which is usually much simpler to complete with the help of the

method of first and second moments. However, there are no isolated nodes in H(n; K)

since each node has degree at least K. Thus, the class of random graphs studied here

provides an example where graph connectivity and the absence of isolated nodes are

not asymptotically equivalent properties; in fact this is what makes the proof of the

zero-law more intricate.

We close this chapter by discussing the number of keys that is required to be kept

in the memory module of each sensor to achieve secure connectivity. The key rings

produced by the pairwise scheme have variable size between K and K +(n−1). Still,

with the average size of a key ring being 2K, we identify minimal conditions on how

to scale the parameter K with the number n of nodes so that the size of any key ring

hovers around 2K (in some probabilistic sense). We also show that the maximum key

ring size is on the order log n with very high probability provided K = O(log n).
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8.2 A proof of Theorem 3.3.1

In this section we establish Theorem 3.3.1, namely that if K ≥ 2, then

P [H(n; K) is connected] := P (n; K) ≥ 1 − (K + 1)K2−1

2
· n−(K2−2) (8.1)

for all n ≥ de(K + 1)e.

Fix n = 2, 3, . . . and consider a positive integer K. The conditions

2 ≤ K and e(K + 1) < n (8.2)

are assumed enforced throughout; the second condition is made to avoid degenerate

situations which have no bearing on the final result. There is no loss of generality in

doing so as we eventually let n go to infinity.

Consider the definitions given in Chapter 5.2 with G(n; υ) replaced by H(n; K),

mn replaced by n, In replaced by In(K), and for each r = 1, . . . , n, An,r replaced by

An,r(K), Bn,r replaced by Bn,r(K) and Cn,r replaced by Cn,r(K) – For r = n, we use

Cn(K) (with a slight abuse of notation) in order to denote the event that H(n; K) is

connected. The arguments of Chapter 5.2 yield

P [Cn(K)c ∩ In(K)] ≤
bn

2
c∑

r=2

(
n

r

)
P [An,r(K)] . (8.3)

upon using (5.14) with the aforementioned substitutions.
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Since each node in H(n; K) is connected to at least K other nodes, no node is

ever isolated in H(n; K) and the event In(K) is always in effect. Since a subset S of

nodes can be isolated in H(n; K) only if |S| ≥ K + 1, we get

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

(
n

r

)
P [An,r(K)] , (8.4)

whence the key bound

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

(
n

r

)
P [Bn,r(K)] (8.5)

readily follows as we note the inclusion An,r(K) ⊆ Bn,r(K).

For each r = K + 1, . . . , n, it is easy to check that

P [Bn,r(K)] =

((
r−1
K

)
(

n−1
K

)
)r

·
((

n−r−1
K

)
(

n−1
K

)
)n−r

. (8.6)

Reporting (8.6) into (8.5) we get

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

(
n

r

) ((
r−1
K

)
(

n−1
K

)
)r ((

n−r−1
K

)
(

n−1
K

)
)n−r

. (8.7)

Invoking (5.24) and (5.25) into (8.7), we conclude that

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

(ne

r

)r
(

r − 1

n − 1

)rK (
1 − r

n − 1

)K(n−r)

≤
bn

2
c∑

r=K+1

(ne

r

)r ( r

n

)rK (
1 − r

n

)K(n−r)
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≤
bn

2
c∑

r=K+1

(ne

r

)r ( r

n

)rK

e−rK
(n−r)

n

=

bn
2
c∑

r=K+1

(( r

n

)K−1

e1−K
(n−r)

n

)r

. (8.8)

On the range r = K + 1, . . . , bn
2
c with K ≥ 2, we have

K
n − r

n
≥ K

n − bn
2
c

n
≥ K

2
≥ 1,

whence

e1−K
(n−r)

n ≤ 1.

Reporting this fact into (8.8) we find

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

( r

n

)r(K−1)

. (8.9)

For each n = 1, 2, . . ., write

(x

n

)x(K−1)

= e(K−1)fn(x), x ≥ 1 (8.10)

with

fn(x) = x (log x − log n) .

It is plain that

f ′
n(x) = 1 + log x − log n.
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Therefore, fn(r) is monotone decreasing on the range r = K + 1, . . . , bn
e
c and mono-

tone increasing on the range r = bn
e
c + 1, . . . , bn

2
c, whence

fn(r) ≤ max
(
fn(K + 1), fn

(⌊n

2

⌋))

for r = K + 1, . . . ,
⌊

n
2

⌋
. It is also a simple matter to check by direct inspection that

fn(K + 1) is larger than fn

(⌊
n
2

⌋)
for n large enough, say n ≥ n(K) for some finite

integer n(K) which depends on K (and which can be taken to satisfy (8.2)). Using

(8.10) together with the fact that

fn(K + 1) = (K + 1) log

(
K + 1

n

)
,

we obtain the equality

(( r

n

)r(K−1)

: r = K + 1, . . . ,
⌊n

2

⌋)
=

(
K + 1

n

)K2−1

(8.11)

for all n ≥ n(K). Reporting (8.11) into (8.9), we conclude that

P [Cn(K)c] ≤
bn

2
c∑

r=K+1

(
K + 1

n

)K2−1

≤ n

2
·
(

K + 1

n

)K2−1

for all n ≥ n(K), and (8.1) is established since P (n,K) = 1 − P [Cn(K)c].
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8.3 A proof of the zero-law in Theorem 3.3.2

In this section we establish the zero-law of the Theorem 3.3.2 by showing that

lim
n→∞

P (n; K) = 0 if K = 1. (8.12)

First some terminology: When K = 1, the random sets Γn,1, . . . , Γn,n are now

singletons, and can be interpreted as {1, . . . , n}-valued rvs (as we do from now on)

such that Γn,i 6= i for each i = 1, . . . , n. Thus, Γn,i is the node selected at random

which becomes associated (paired) with node i.

With this in mind, a formation is any sequence γ = (γ1, . . . , γn) such that for each

i = 1, . . . , n, the component γi is an element of {1, . . . , n} such that γi 6= i. In other

words, γ is one of the (n − 1)n possible realizations of the rvs (Γn,1, . . . , Γn,n).

With any formation γ we associate a directed graph on the vertex set {1, . . . , n}

in an obvious manner: There is a directed edge from node i to node j if γi = j.

This directed graph is denoted by Hγ(n). As there are (n− 1)n possible formations,

there are (n−1)n distinct directed graphs so defined. Under the pairwise distribution

scheme considered here, each of these graphs is equally likely, so that we have

P (n; 1) =

∑
γ 1

[
Hγ(n) is connected

]

(n − 1)n
(8.13)

where the summation
∑

γ is taken over all possible formations. Here, we have used
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the conventional notion of connectivity for directed graphs: A directed graph is con-

nected if and only if the underlying undirected graph is connected – This is to be

distinguished from the notion of strong connectivity defined for directed graphs. The

desired zero-law will be established if we can show that

lim
n→∞

∑
γ 1

[
Hγ(n) is connected

]

(n − 1)n
= 0. (8.14)

From now on, let H?
γ(n) denote the underlying undirected graph of Hγ(n). We

note that H?
γ(n) is a realization of the random graph H(n; 1) when (Γn,1, . . . , Γn,n) =

γ. For each formation γ, we can easily validate the following observations:

1. By definition, H?
γ(n) is connected if and only if Hγ(n) is connected.

2. The undirected graph H?
γ(n) can have at most n edges since Hγ(n) has exactly

n directed edges (as each of the n nodes has out-degree 1).

3. If Hγ(n) is connected (and hence H?
γ(n) is connected), then H?

γ(n) should have

at least n − 1 edges, and two possibilities arise:

I. If H?
γ(n) has n− 1, edges then H?

γ(n) is necessarily a tree and Hγ(n) has

exactly one bi-directional edge.

II. If H?
γ(n) has n edges, then Hγ(n) has exactly one cycle.

Case I – H(n; 1) is connected and has n − 1 edges: Thus, H(n; 1) is a tree.

With Tn denoting the collection of labelled trees on the set of vertices {1, . . . , n}, we
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have |Tn| = nn−2 by Cayley’s formula. Noting also that a given tree is the underlying

undirected graph for n−1 different formations (corresponding to n−1 possible places

for the single bi-directional edge), we get

P [H(n; 1) is connected and has n − 1 edges]

=
1

(n − 1)n
·
∑

γ
1




Hγ(n) is connected and

has one bi-directional edge





=
1

(n − 1)n
·
∑

γ

∑

T∈Tn

1
[
H?

γ(n) = T
]

=
1

(n − 1)n
· (n − 1) · nn−2

=
1

n
·
(

n

n − 1

)n−1

. (8.15)

It is now clear that

lim
n→∞

P




H(n; 1) is connected

and has n − 1 edges



 = 0. (8.16)

Case II – H(n; 1) is connected and has n edges: This corresponds to all

formations γ such that H?
γ(n) is connected and has exactly one cycle. It is not difficult

to see that a connected graph with only one cycle can be the underlying undirected

graph for two different formations (corresponding to the two possible orientations of

the cycle). For instance, consider a connected graph on n nodes with exactly one

cycle. This graph necessarily has n edges and therefore the original directed graph

Hγ(n) cannot have a bi-directional edge. Without loss of generality, assume that the

cycle consists of nodes 1, 2, 3, 4 with edges 1 ∼ 2, 2 ∼ 3, 3 ∼ 4, 4 ∼ 1. Then the two
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possible formations are {2, 3, 4, 1, γ5, γ6, . . . γn} and {4, 1, 2, 3, γ5, γ6, . . . γn}. Similar

arguments can be made for all possible cycles. Since there can be no other cycles or

bi-directional edges in the rest of the graph, these two formations will be the only

ones that give rise to that particular undirected structure.

Now let T +
n denote the set of undirected graphs on n nodes which are connected

and have exactly n edges. We find

P [H(n; 1) is connected and has n edges]

=
1

(n − 1)n
·
∑

γ
1




Hγ(n) is connected and

has exactly one cycle





=
1

(n − 1)n
·
∑

γ

∑

G∈T +
n

1
[
H?

γ(n) = G
]

=
1

(n − 1)n
· 2 · |T +

n |. (8.17)

However, it is known [16, p. 133-134] that

|T +
n | ∼ 1

4

√
2πnn− 1

2 ,

and reporting this fact into (8.17) gives

P [H(n; 1) is connected and has n edges] ∼
√

2π

2

(
n

n − 1

)n

n− 1
2

∼
√

2πe

2
n− 1

2 . (8.18)
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It is now immediate that

lim
n→∞

P [H(n; 1) is connected and has n edges] = 0.

Together with (8.16) and Facts 2-3, we now conclude that (8.14) holds.

8.4 Key ring sizes associated with the pairwise scheme: A proof of

Lemma 3.3.4

The next two sections are devoted to obtaining conditions on a scaling K : N0 →

N0 which ensure that all key rings have size of the order log n. The proofs of both

Lemma 3.3.4 and Theorem 3.3.5 are based on the following observations: Fix n =

2, 3, . . . and positive integer K with K < n. For each i = 1, . . . , n it is easy to see

that

|Σn,i(K)| = K + Bn,i(K) (8.19)

where Bn,i(K) is the rv determined through

Bn,i(K) :=
n∑

j=1, j 6=i

1 [i ∈ Γn,j(K)] .
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Under the enforced independence assumptions, the rv Bn,i(K) is a binomial rv Bin(n−

1, K
n−1

) with mean

E [Bn,i(K)] = (n − 1) · K

n − 1
= K. (8.20)

Of particular relevance here is the following well-known concentration result for

binomial rvs [27, Lemma 1.1, p. 16]: With H(t) := 1− t + t log t (t > 0), we have the

concentration inequalities

P [Bn,1(K) > K + t] ≤ e−K·H(K+t
K

) (8.21)

and

P [Bn,1(K) < K − t] ≤ e−K·H(K−t
K

) (8.22)

where the additional condition 0 < t < K is required for (8.22) to hold. Simple

calculations yield

K · H
(

K ± t

K

)
= Ka

(
± t

K

)
(8.23)

on the appropriate ranges as we make use of (3.21).

Taking the derivative of (3.21) we find

d

dτ
a(τ) = log (1 + τ) , τ > −1. (8.24)

Therefore, the mapping τ → a(τ) is convex on (−1,∞), first strictly decreasing on

(−1, 0) and then strictly increasing on (0,∞) with limτ↓−1 a(τ) = 1, a(0) = 0 and

169



limτ→∞ a(τ) = ∞. Therefore, a(τ) > 0 on (−1, 0) ∪ (0,∞). Since

d

dτ
(a(−τ) − a(τ)) = − log(1 − τ 2) > 0, 0 < τ < 1,

it is easy to check that

a(τ) < a(−τ), 0 < τ < 1. (8.25)

Fix the positive integers n = 2, 3, . . . and K with K < n. To take advantage of

(8.21)-(8.22) we note from (8.19) that

|Σn,1(K)| − 2K = Bn,1(K) − K, (8.26)

and for each t > 0, it follows that

P [||Σn,1(K)| − 2K| > t] (8.27)

= P [Bn,1(K) > K + t] + P [Bn,1(K) < K − t] .

Using (8.21)-(8.22) and the definition (3.22), we then conclude that

P [||Σn,1(K)| − 2K| > t] ≤ b

(
t

K

)
e−Ka( t

K ) (8.28)

as we recall (8.25) and the fact P [Bn,1(K) < K − t] = 0 for t ≥ K. The desired

conclusion (3.23) follows as we replace t by cK in (8.28).
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8.5 A proof of Theorem 3.3.5

Fix the positive integers n = 2, 3, . . . and K with K < n. Again using (8.19) we

get
(

max
i=1,...,n

|Σn,i(K)|
)
− 2K = max

i=1,...,n
(Bn,i(K) − K) .

Since every key appears in exactly two different key rings it follows that

n∑

i=1

|Σn,i(K)| = 2nK

by construction, whence Mn(K) ≥ 2K.

As in the proof of Lemma 3.3.4, for any given t > 0, we now find

P [|Mn(K) − 2K| > t] = P [Mn(K) − 2K > t]

= P

[
max

i=1,...,n
(Bn,i(K) − K) > t

]

= P

[
max

i=1,...,n
Bn,i(K) > K + t

]
. (8.29)

A simple union argument shows that

P [maxi=1,...,nBn,i(K) > K + t] = P [∪n
i=1[Bn,i(K) > K + t]]

≤
n∑

i=1

P [Bn,i(K) > K + t]

= nP [Bn,1(K) > K + t] (8.30)
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since the rvs Bn,1(K), . . . , Bn,n(K) are identically distributed (but not independent).

By the first concentration inequality (8.21) we then conclude that

P [maxi=1,...,nBn,i(K) > K + t] ≤ elog n−Ka( t
K ) (8.31)

Next, consider a scaling K : N0 → N0 satisfying (3.26) for some λ > 0, and select

the sequence t : N0 → R+ given by

tn = cKn, n = 1, 2, . . .

with c > 0. On that range, replacing K and t accordingly by Kn and tn in (8.31), we

conclude from (8.29) that

P [|Mn(Kn) − 2Kn| > cKn] ≤ e−(− log n+Kna(c)).

Under the enforced assumptions (3.26) it is easy to check that

− log n + Kna (c) = (−1 + λa(c) + o(1)) · log n (8.32)

and the bound (3.27) follows.

Finally pick λ > 0, and note that limc↓0 λa (c) = 0 while

lim
c↑1

λa (c) = λ (2 log 2 − 1) =
λ

λ?
(8.33)
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where

λ? := (2 log 2 − 1)−1 ' 2.6. (8.34)

By the strict monotonicity of the mapping a : R+ → R+, the equation

λa (c) = 1, c > 0

has a unique solution hereafter denoted c(λ) – It is plain from (8.33) that taking

λ > λ? will ensure c(λ) < 1. By construction it is clear that

1 < λa (c) , c(λ) < c.

This last statement being equivalent to (3.28), the proof is now completed.

8.6 A proof of Theorem ??

Fix integers K and n such that K < n and pick t > 0. We start by observing that

P [Mn > 2K + t] = P

[
max

i=1,...,n
Bn,i > K + t

]
≤ n · P [Bn,1 > K + t] (8.35)
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upon recalling (8.30) in the last step. Next, we use a standard Chernoff-Hoeffding

bound for binomial random variables: It is well-known [12, Thm. 1.1, p. 6] that

P [Bn,1 > (1 + δ)E [Bn,1]] ≤ exp

{
−δ2

3
E [Bn,1]

}
,

for any δ > 0. Thus, we get

P [Bn,1 > K + δK] ≤ exp

{
−δ2

3
K

}
(8.36)

by using (8.20). Now consider a scaling K : N0 → N0 and report (8.36) into (8.35)

by replacing δ with t
K

. That yields

P [Mn > 2Kn + t] ≤ n exp

{
− t2

3Kn

}

for any t > 0 and the desired conclusion (??) follows upon setting

t =
√

(3 + ε) log n · Kn for any given ε > 0.

8.7 Simulation study

We now present experimental results that validate Lemma 3.3.4 and Theorem

3.3.5: For fixed values of n and K we have constructed key rings according to the

mechanism presented in Section 3.1. For each pair of parameters n and K, the
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Figure 8.1: a) Key ring sizes observed in 1, 000 experiments for n = 200 and K = 15
– Only 2% of the key rings are larger than 3K and the largest key ring has size 49.
b) Key ring sizes observed in 1, 000 experiments for n = 500 and K = 20 – Out of the
500, 000 key rings produced only 9 happened to be larger than 3K while the largest
size observed is 63.

experiments have been repeated 1, 000 times yielding 1, 000 × n key rings for each

parameter pair. The results are depicted in Figures 8.1(a)-8.2(b) which show the key

ring sizes according to their frequency of occurrence. The histograms in blue consider

all of the produced 1, 000 × n key rings, while the histograms in white consider only

the 1, 000 maximal key ring sizes, i.e., only the largest key ring among n nodes in an

experiment.

It is immediate from Figures 8.1(a)-8.2(b) that the key ring sizes tend to concen-

trate around 2K, validating the claim of Lemma 3.3.4. As would be expected, this

concentration becomes more evident as n gets large. It is also clear that, in almost

all cases the maximum size of a key ring (out of n nodes) is less than 3K validating

the claim of Theorem 3.3.5.
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Figure 8.2: a) Key ring sizes observed in 1, 000 experiments for n = 1, 000 and
K = 24 – Although 1, 000, 000 key rings are produced, only 3 of them happened to
be larger than 3K and the largest observed key ring size is 74. b) Key ring sizes
observed in 1, 000 experiments for n = 2, 000 and K = 26 – Out of the 2000000 key
rings produced only 2 happened to be larger than 3K the largest of them having 80
keys.
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Chapter 9

Gradually deploying the pairwise scheme

9.1 Introduction

In this chapter we study the connectivity properties of the pairwise scheme in the

setting where sensor nodes are deployed gradually over time. Under the implementa-

tion model presented in Section 3.3.3, we comment on how the parameter K needs to

scale with n large in order to ensure that connectivity is maintained a.a.s. throughout

gradual deployment. Using the results from Chapter 8.4, we also discuss the number

of keys needed in the memory module of each sensor to achieve secure connectivity

at every step of the gradual deployment.

Along these lines the key contributions of this chapter can be stated as follows:

Let Hγ(n; K) denote the subgraph of H(n; K) restricted to the nodes 1, . . . , bγnc.

We first present scaling laws for the absence of isolated nodes in the form of a full

zero-one law, and use these results to formulate conditions under which Hγ(n; K) is

a.a.s. not connected. Then, with 0 < γ1 < γ2 < . . . < γ` < 1, we give conditions on

177



n, K and γ1 so that Hγi
(n; K) is a.a.s. connected for each i = 1, 2, . . . , `. We show

that connectivity can be achieved a.a.s. when the number of keys to be stored in the

memory modules is O(log n).

9.2 Establishing Theorem 3.3.6

Theorem 3.3.6 will be established in two steps. First we find conditions on γ, K

and n such that the subgraph Hγ(n; K) of H(n; K) will be a.a.s. connected. Recalling

the definitions

Pγ(n; K) := P [Hγ(n; K) is connected] = P [Cn,γ(K)]

introduced in Chapter 3, we have the following one law.

Theorem 9.2.1 With γ in the unit interval (0, 1) and c > 0, consider a scaling

K : N0 → N0 such that

Kn ∼ c
log n

γ
. (9.1)

Then, we have limn→∞ Pγ(n; Kn) = 1 whenever c > 1.

Theorem 9.2.1 is established in Section 9.3.

Next, in order to obtain conditions on γ, K and n such that Hγ(n; K) is a.a.s. not

connected, we investigate the node isolation property in Hγ(n; K). Observe that the

random graphs H(n; K) and Hγ(n; K) have very different neighborhood structures.
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For example, any node in H(n; K) has degree at least K, so that no node is isolated

in H(n; K). However, there is a positive probability that isolated nodes exist in

Hγ(n; K). In fact, with

P ?
γ (n; Kn) := P [Hγ(n; K) contains no isolated nodes] ,

we have the following zero-one law which is established in Section 9.4.

Theorem 9.2.2 With γ in the unit interval (0, 1), consider a scaling K : N0 → N0

such that (9.1) holds for some c > 0. Then, we have

lim
n→∞

P ?
γ (n; Kn) =






0 if c < r(γ)

1 if c > r(γ)

(9.2)

where the threshold r(γ) is given by

r(γ) :=

(
1 − log(1 − γ)

γ

)−1

. (9.3)

As can be seen from Figure 9.2, r(γ) is decreasing on the interval [0, 1] with

limγ↓0 r(γ) = 1
2

and limγ↑1 r(γ) = 0. Since a connected graph has no isolated nodes,

Theorem 9.2.2 yields limn→∞ P [Hγ(n; Kn) is connected] = 0 if the scaling K : N0 →

N0 satisfies (9.1) with c < r(γ). Combining this with Theorem 9.2.1, we immediately
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Figure 9.1: r(γ) vs γ.

obtain Theorem 3.3.6.

9.3 A proof of Theorem 9.2.1

Fix n = 2, 3, . . . and γ in the interval (0, 1), and consider a positive integer K ≥ 2.

Throughout the discussion, n is sufficiently large so that the conditions

2(K + 1) < n, K + 1 ≤ n − bγnc and 2 < γn (9.4)

are all enforced; these conditions are made in order to avoid degenerate situations

which have no bearing on the final result. There is no loss of generality in doing so

as we eventually let n go to infinity.

Consider the definitions given in Chapter 5.2 with G(n; υ) replaced by Hγ(n; K),

mn replaced by bγnc, In replaced by In,γ(K), and for each r = 1, . . . , n, An,r re-
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placed by An,γ,r(K), Bn,r replaced by Bn,γ,r(K) and Cn,r replaced by Cn,γ,r(K) – For

r = bγnc, the notation Cn,γ,bγnc(K) coincides with Cn,γ(K) as defined earlier. The

arguments of Chapter 5.2 yield

P [Cn(K)c] ≤
bn

2
c∑

r=1

(
n

r

)
P [An,r(K)] (9.5)

upon using (5.15) with the aforementioned replacements.

Recalling the obvious inclusion An,γ,r(K) ⊆ Bn,γ,r(K), we now get

P [Cn,γ(K)c] ≤
b γn

2
c∑

r=1

(bγnc
r

)
P [Bn,γ,r(K)] . (9.6)

Under the enforced assumptions, we have

P [Bn,γ,r(K)] =

((
n−bγnc+r−1

K

)
(

n−1
K

)
)r

·
((

n−r−1
K

)
(

n−1
K

)
)bγnc−r

. (9.7)

To see why this last relation holds, recall that for the set {1, . . . , r} to be isolated in

Hγ(n; K) we need that (i) each of the nodes r+1, . . . , bγnc are adjacent only to nodes

outside the set of nodes {1, . . . , r}; and (ii) none of the nodes 1, . . . , r are adjacent with

any of the nodes r + 1, . . . , bγnc – This last requirement does not preclude adjacency

with any of the nodes bγnc + 1, . . . , n. Reporting (9.7) into (9.6), we conclude that

P [Cn,γ(K)c] ≤
b γn

2
c∑

r=1

(bγnc
r

) ((
n−bγnc+r−1

K

)
(

n−1
K

)
)r

·
((

n−r−1
K

)
(

n−1
K

)
)bγnc−r

(9.8)
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with conditions (9.4) ensuring that the binomial coefficients are well defined.

The remainder of the proof consists in bounding each of the terms in (9.8). To do

so we make use of several standard bounds. Recall (5.24) and the well-known bound

(5.25) which we use here in the form

(bγnc
r

)
≤

(bγnce
r

)r

, r = 1, . . . , bγnc.

Now pick r = 1, . . . , bγnc. Under (9.4) we can apply these bounds to obtain

(bγnc
r

) ((
n−bγnc+r−1

K

)
(

n−1
K

)
)r

·
((

n−r−1
K

)
(

n−1
K

)
)bγnc−r

≤
(bγnce

r

)r

·
(

n − bγnc + r − 1

n − 1

)rK

·
(

n − r − 1

n − 1

)K(bγnc−r)

≤
(γne

r

)r
(

1 − bγnc − r

n − 1

)rK (
1 − r

n − 1

)K(bγnc−r)

≤ (γne)r ·
(

1 − bγnc − r

n

)rK

·
(
1 − r

n

)K(bγnc−r)

≤ (γne)r · e−( bγnc−r

n )rK · e−( r
n)(bγnc−r)K .

It is plain that

P [Cn,γ(K)c] ≤
b γn

2
c∑

r=1

(γne)r · e−2( bγnc−r

n )rK

≤
b γn

2
c∑

r=1

(
γne · e−2

(
bγnc−b

γn
2 c

n

)
K

)r

(9.9)
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as we note that

bγnc − r

n
≥ bγnc − bγn

2
c

n
, r = 1, . . . , bγn

2
c.

Next, consider a scaling K : N0 → N0 such that (9.1) holds for some c > 1, and

replace K by Kn in (9.9) according to this scaling. Using the form (9.1) of the scaling

we get,

an := γne · e−2

(
bγnc−b

γn
2 c

n

)
Kn

= (γe) · n1−2cn

(
bγnc−b

γn
2 c

γn

)

for each n = 1, 2, . . ., with limn→∞ cn = c. It is a simple matter to check that

lim
n→∞

(
2cn

(bγnc − bγn
2
c

γn

))
= c,

so that by virtue of the fact that c > 1, we have

lim
n→∞

an = 0. (9.10)

From (9.9) we conclude that

P [Cn,γ(Kn)c] ≤
b γn

2
c∑

r=1

(an)r ≤
∞∑

r=1

(an)r =
an

1 − an

where for n sufficiently large the summability of the geometric series is guaranteed by

(9.10). The conclusion limn→∞ P [Cn,γ(K)c] = 0 is now a straightforward consequence

of the last bound, again by virtue of (9.10).
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9.4 A proof of Theorem 9.2.2

Fix n = 2, 3, . . . and consider γ in (0, 1) and positive integer K such that K < n.

We write

χn,γ,i(K) := 1 [Node i is isolated in Hγ(n; K)]

for each i = 1, . . . , bγnc. The number of isolated nodes in Hγ(n; K) is simply given

by

Iγ(n; K) :=

bγnc∑

i=1

χn,γ,i(K),

whence the random graph Hγ(n; K) has no isolated nodes if Iγ(n; K) = 0.

Theorem 9.2.2 will be established by applying the method of first and second

moments (as discussed in Chapter 5.1) to the count variable Iγ(n; K). Here, the

exchangeability of the rvs χn,γ,1(K), . . . , χn,γ,bγnc(K) ensure (5.6). Thus, we have

(5.5) and (5.7) with Zn replaced by Iγ(n; K), the index mn replaced by bγnc, and

the indicator variables {χmn,i, i = 1, . . . ,mn} replaced by {χn,γ,i(θ), i = 1, . . . , bγnc}

. Thus, Theorem 9.2.1 will follow upon proving the next two technical lemmas which

provide the appropriate versions of (5.8), (5.9) and (5.10).

Lemma 9.4.1 Consider γ in (0, 1) and a scaling K : N0 → N0 such that (9.1) holds
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for some c > 0. We have

lim
n→∞

nE [χn,γ,1(Kn)] =






0 if c > r(γ)

∞ if c < r(γ)

(9.11)

with r(γ) specified via (9.3).

Lemma 9.4.2 Consider γ in (0, 1) and a scaling K : N0 → N0 such that (9.1) holds

for some c > 0. We have

lim sup
n→∞

(
E [χn,γ,1(Kn)χn,γ,2(Kn)]

(E [χn,γ,1(Kn)])2

)
≤ 1. (9.12)

Proofs of Lemma 9.4.1 and Lemma 9.4.2 can be found in Section 9.4.1 and Sec-

tion 9.4.2, respectively. To complete the proof of Theorem 9.2.2, pick a scaling

K : N0 → N0 such that (9.1) holds for some c > 0. Under the condition c > r(γ)

we get (5.8) (with Zn,mn and χmn,1 replaced by Iγ(n; Kn), bγnc and χn,γ,1(Kn), re-

spectively) from Lemma 9.4.1, and the one-law limn→∞ P [Iγ(n; Kn) = 0] = 1 follows.

Next, assume the condition c < r(γ). We obtain (5.9) and (5.10) (with mn, χmn,1

and χmn,2 replaced by bγnc, χn,γ,1(Kn) and χn,γ,2(Kn), respectively) with the help of

Lemmas 9.4.1 and 9.4.2, respectively. The conclusion limn→∞ P [Iγ(n; Kn) = 0] = 0

is now immediate from the arguments given in Section 5.1 and Theorem 9.2.1 is es-

tablished.
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9.4.1 A proof of Lemma 9.4.1

Fix n = 2, 3, . . . and γ in (0, 1), and consider a positive integer K such that K < n.

Here as well there is no loss of generality in assuming n − bγnc ≥ K and bγnc > 1.

Under the enforced assumptions, we get

E [χn,γ,1(K)] =

(
n−bγnc

K

)
(

n−1
K

)
((

n−2
K

)
(

n−1
K

)
)bγnc−1

= a(n; K) ·
(

1 − K

n − 1

)bγnc−1

(9.13)

with

a(n; K) :=
(n − bγnc)!

(n − bγnc − K)!
· (n − 1 − K)!

(n − 1)!
.

Now pick a scaling K : N0 → N0 such that (9.1) holds for some c > 0 and replace

K by Kn in (9.13) with respect to this scaling. Applying Stirling’s formula

m! ∼
√

2πm
(m

e

)m

(m → ∞)

to the factorials appearing in (9.13), we readily get

a(n; Kn) ∼
√

(n − bγnc)(n − 1 − Kn)

(n − bγnc − Kn)(n − 1)
· αnβn

∼ αnβn (9.14)
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under the enforced assumptions on the scaling with

αn :=
(n − Kn − 1)n−Kn−1

(n − 1)n−1

=

(
1 − Kn

n − 1

)n−1

· (n − Kn − 1)−Kn

and

βn :=
(n − bγnc)n−bγnc

(n − bγnc − Kn)n−bγnc−Kn

=

(
1 − Kn

n − bγnc

)−(n−bγnc)

· (n − bγnc − Kn)Kn .

In obtaining the asymptotic behavior of (9.14) we rely on the following technical

fact: For any sequence m : N0 → N0 with mn = Ω(n), we have

(
1 − Kn

mn

)mn

∼ e−Kn . (9.15)

whenever the scaling K : N0 → N0 satisfies (9.1). To see why (9.15) holds, recall the

elementary decomposition (5.16) with x = Kn

mn
. Using this, we get

(
1 − Kn

mn

)mn

= e−Kn · e−mnΨ(Kn
mn

) (9.16)

for all n = 1, 2, . . ..

187



Under the enforced assumptions we have mn = Ω(n) and Kn = O(log n), so that

lim
n→∞

Kn

mn

= 0 and lim
n→∞

mn

(
Kn

mn

)2

= 0.

It is now plain that

lim
n→∞

mnΨ

(
Kn

mn

)
= 0

as we note (5.18). This establishes (9.15) via (9.16).

Using (9.15), first with mn = n − 1, then with mn = n − bγnc, we obtain

(
1 − Kn

n − 1

)n−1

∼ e−Kn

and
(

1 − Kn

n − bγnc

)−(n−bγnc)

∼
(
e−Kn

)−1
= eKn ,

whence

αnβn ∼
(

n − bγnc − Kn

n − Kn − 1

)Kn

. (9.17)

With the help of (9.13) and (9.14) we now conclude that

nE [χn,γ,1(Kn)] ∼ n

(
1 − Kn

n − 1

)bγnc−1

·
(

n − bγnc − Kn

n − Kn − 1

)Kn

. (9.18)
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A final application of (9.15), this time with mn = n − 1, gives

(
1 − Kn

n − 1

)bγnc−1

=

((
1 − Kn

n − 1

)n−1
) bγnc−1

n−1

∼ e−
bγnc−1

n−1
Kn (9.19)

since limn→∞
bγnc−1

n−1
= γ. Reporting (9.19) into (9.18) we obtain

nE [χn,γ,1(Kn)] ∼ eζn (9.20)

with

ζn := log n −
(bγnc − 1

n − 1
+ log

(
n − bγnc − Kn

n − Kn − 1

))
Kn

for all n = 1, 2, . . .. Finally, from the condition (9.1) on the scaling, we see that

lim
n→∞

ζn

log n
= 1 − c + c

log(1 − γ)

γ
= 1 − c

r(γ)
.

Thus, limn→∞ ζn = −∞ (resp. ∞) if r(γ) > c (resp. r(γ) < c) and the desired result

follows upon using (9.20).
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9.4.2 A proof of Lemma 9.4.2

Fix positive integers n = 3, 4, . . . and K with K < n. With γ in (0, 1), we again

assume that n − bγnc ≥ K and bγnc > 1. It is a simple matter to check that

E [χn,γ,1(K)χn,γ,2(K)] =

((
n−bγnc

K

)
(

n−1
K

)
)2 ((

n−3
K

)
(

n−1
K

)
)bγnc−2

and invoking (9.13) we readily conclude that

E [χn,γ,1(K)χn,γ,2(K)]

(E [χn,γ,1(K)])2

=

((
n−3
K

)
(

n−1
K

)
)bγnc−2

·
((

n−1
K

)
(

n−2
K

)
)2(bγnc−1)

=

((
n − 1 − K

n − 1

)(
n − 2 − K

n − 2

))bγnc−2

·
(

n − 1

n − 1 − K

)2(bγnc−1)

=

(
n − 2 − K

n − 2

)bγnc−2

·
(

n − 1

n − 1 − K

)bγnc

=

(
1 − K

n − 2

)bγnc−2

·
(

1 +
K

n − 1 − K

)bγnc

≤ e−K·E(n;K) (9.21)

where we have set

E(n; K) :=
bγnc − 2

n − 2
− bγnc

n − 1 − K
.

Elementary calculations show that

−K · E(n; K) =
bγnc
n − 2

· K(K − 1)

n − 1 − K
+

2K

n − 2
.
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Now pick a scaling K : N0 → N0 such that (9.1) holds for some c > 0. It is plain

that limn→∞ KnE(n; Kn) = 0 and the conclusion (9.12) follows from (9.21).

9.5 A proof of Theorem 3.3.7

Pick 0 < γ1 < γ2 < . . . < γ` ≤ 1 and consider a scaling K : N0 → N0 such that

Kn ∼ c
log n

γ1

for some c > 1. It is plain that (3.33) will hold provided

lim
n→∞

P [Cn,γk
(Kn)] = 1, k = 1, . . . , `. (9.22)

For each k = 1, 2, . . . , `, we note that

c
log n

γ1

= ck
log n

γk

with ck := c
γk

γ1

for all n = 1, 2, . . .. But c > 1 implies ck > 1 since γ1 < . . . < γ`. As a result,

Hγk
(n; Kn) will be a.a.s. connected by virtue of Theorem 9.2.1 applied to Hγk

(n; K),

and (9.22) indeed holds.

191



9.6 Simulation study

We now present experimental results in support of theoretical findings. In each

set of experiments, we fix n and γ. Then, we generate random graphs Hγ(n; K)

for each K = 1, . . . , Kmax where the maximal value Kmax is selected large enough.

In each case, we check whether the generated random graph has isolated nodes and

is connected. We repeat the process 200 times for each pair of values γ and K in

order to estimate the probabilities of the events of interest. For various values of

γ, Figure 9.2(a) depicts the estimated probability P ?
γ (n; K) that Hγ(n; K) has no

isolated nodes as a function of K. Here, n is taken to be 1, 000. The plots in Figure

9.2(a) clearly confirm the claims of Theorem 9.2.2: In each case P ?
γ (n; K) exhibits a

threshold behavior and the transitions from P ?
γ (n; K) = 0 to P ?

γ (n; K) = 1 take place

around K = r(γ) log n
γ

as dictated by Theorem 9.2.2; the critical value K = r(γ) log n
γ

is shown by a vertical dashed line in each plot.

Similarly, Figure 9.2(b) shows the estimated probability Pγ(n; K) as a function of

K for various values of γ with n = 1000. For each specified γ, we see that the variation

of Pγ(n; K) with K is almost indistinguishable from that of P ?
γ (n; K) supporting the

claim that Pγ(n; K) exhibits a full zero-one law similar to that of Theorem 9.2.2

with a threshold behaving like r(γ). We can also conclude by monotonicity that

Pγ(n; K) = 1 whenever (3.29) holds with c > 1; this is in line with Theorem 9.2.1.

Furthermore, it is evident from Figure 9.2(b) that for a given K and n, Pγ(n; K)

increases as γ increases supporting Theorem 3.3.7.
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Figure 9.2: a) Probability that Hγ(n; K) contains no isolated for n = 1000; in each
case, the empirical probability value is obtained through 200 experiments. Vertical
dashed lines stand for the critical thresholds asserted by Theorem 9.2.2. The theoret-
ical findings are in perfect agreement with the practical observations. b) Probability
that Hγ(n; K) is connected for n = 1, 000 obtained in the same way. The curves are
almost indistinguishable from the corresponding ones of Part (a); this supports the
claim that absence of isolated nodes and connectivity are asymptotically equivalent
properties.
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Chapter 10

Connectivity of the pairwise scheme under an ON-OFF

channel

10.1 Introduction

The previous two chapters were devoted to establishing connectivity results for

the pairwise key distribution scheme of Chan et al. [7] under the assumption of full

visibility. Here, we consider a more realistic setting that accounts for the possibility

that communication links between nodes may not be available. Namely, we study the

connectivity properties of the pairwise scheme under a simple communication model

where channels are mutually independent, and are either on or off. As mentioned

earlier, this amounts to an overall system model that is constructed by intersecting

the random pairwise graph with an Erdős-Rényi (ER) graph [4]. For this new random

graph structure, denoted H(n; K, p), we establish zero-one laws for graph connectivity

and the absence of isolated nodes, as the model parameters are scaled with the number

of users – We identify the critical thresholds and show that they coincide. To the
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best of our knowledge, these full zero-one laws constitute the first complete analysis

of a key distribution scheme under non-full visibility – Contrast this with the partial

results by Yi et al. [48] for the absence of isolated nodes (under additional conditions)

when the communication model is the disk model.

10.2 A proof of Theorem 3.3.9

The proof of Theorem 3.3.9 passes through the next two results which will be

established in this Chapter. To lighten the notation we often group the parameters

K and p into the ordered pair θ ≡ (K, p). Hence, a mapping θ : N0 → N0 × (0, 1)

defines a scaling for the intersection graph H ∩ G(n; θ) provided the condition (3.12)

holds on the first component.

Recall the definition of the threshold function τ : [0, 1] → [0, 1] given in (3.37).

We first establish a zero-one law for the absence of isolated nodes in H(n; K, p).

Theorem 10.2.1 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

pn

(
2Kn − K2

n

n − 1

)
∼ c log n, n = 1, 2, . . . (10.1)
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for some c > 0. If limn→∞ pn = p? for some p? in [0, 1], then we have

lim
n→∞

P




H ∩ G(n; θn) contains

no isolated nodes



 =






0 if c < τ(p?)

1 if c > τ(p?).

(10.2)

Next, we establish an analog of Theorem 10.2.1 for the property of graph connec-

tivity.

Theorem 10.2.2 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

(10.1) holds for some c > 0. If limn→∞ pn = p? for some p? in [0, 1], then we have

lim
n→∞

P [H ∩ G(n; θn) is connected] =






0 if c < τ(p?)

1 if c > τ(p?)

(10.3)

where the threshold τ(p?) is given by (3.37).

The condition (10.1) on the scaling N0 → (0, 1) × N0 will often be used in the

equivalent form

pn

(
2Kn − K2

n

n − 1

)
= cn log n, n = 1, 2, . . . (10.4)

with the sequence c : N0 → R+ satisfying limn→∞ cn = c.
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10.3 A proof of Theorem 10.2.1

We prove Theorem 10.2.1 by the method of first and second moments (see Chapter

5.1) applied to the total number of isolated nodes in H ∩ G(n; θ). First some notation:

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1) and positive integer K such

that K < n. With

χn,i(θ) := 1 [Node i is isolated in H ∩ G(n; θ)]

for each i = 1, . . . , n, the number of isolated nodes in H ∩ G(n; θ) is simply given by

I(n; θ) :=
n∑

i=1

χn,i(θ).

The random graph H ∩ G(n; θ) has no isolated nodes if and only if I(n; θ) = 0.

Recall the arguments given in Chapter 5.1 regarding the method of first and second

moments. Observe that the rvs χn,1(θ), . . . , χn,n(θ) are exchangeable and therefore

the special condition (5.6) holds. This yields (5.5) and (5.7) with Zn replaced by

the count variable I(n; θ), the index mn replaced by n, and the indicator variables

{χmn,i, i = 1, . . . ,mn} replaced by {χn,i(θ), i=1,. . . , n} as defined above. Thus, the

proof of Theorem 10.2.1 passes through the next two technical propositions which

establish (5.8), (5.9) and (5.10) under the appropriate conditions on the scaling θ :

N0 → N0 × (0, 1).
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Proposition 10.3.1 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

(10.1) holds for some c > 0. Assume also that limn→∞ pn = p? exists. Then, we have

lim
n→∞

nE [χn,1(θn)] =






0 if c > τ(p?)

∞ if c < τ(p?)

(10.5)

where the threshold τ(p?) is given by (3.37).

A proof of Proposition 10.3.1 is given in Section 10.5.

Proposition 10.3.2 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that

(10.1) holds for some c > 0. Assume also that limn→∞ pn = p? exists. Then, we have

lim sup
n→∞

(
E [χn,1(θn)χn,2(θn)]

(E [χn,1(θn)])2

)
≤ 1. (10.6)

whenever p? < 1.

A proof of Proposition 10.3.2 can be found in Section 10.7. To complete the proof

of Theorem 10.2.1, pick a scaling θ : N0 → N0 × (0, 1) such that (10.1) holds for

some c > 0 and limn→∞ pn = p? exists. Under the condition c > τ(p?) we get (5.8)

from Proposition 10.3.1, and the one-law limn→∞ P [I(n; θn) = 0] = 1 follows. Next,

assume that c < τ(p?) – This case is possible only if p? < 1 since τ(1) = 0 as seen

at (3.37). When p? < 1, we obtain (5.9) and (5.10) with the help of Propositions
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10.3.1 and 10.3.2, respectively. The conclusion limn→∞ P [I(n; θn) = 0] = 0 is now

immediate via the arguments provided in Chapter 5.1.

10.4 A preparatory result

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1) and positive integer K

such that K < n. Under the enforced assumptions, for all i = 1, . . . , n, we easily see

that

E [χn,i(θ)] = E
[
(1 − p)Dn,i

]
(10.7)

where Dn,i denotes the degree of node i in H(n; K). Note that

Dn,i = K +
n∑

j=1,j /∈Γn,i∪{i}

1 [i ∈ Γn,j] . (10.8)

By independence, since

|{j = 1, . . . , n : j /∈ Γn,i ∪ {i}}| = n − K − 1,

the second term in (10.8) is a binomial rv with n−K−1 trials and success probability

given by

P [i ∈ Γn,j] =

(
n−2
K−1

)
(

n−1
K

) =
K

n − 1
, (10.9)

whence

E [χn,i(θ)] = (1 − p)K ·
(

1 − pK

n − 1

)n−K−1

. (10.10)
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The proof of Proposition 10.3.1 uses a somewhat simpler form of the expression

(10.10) which we develop next.

Lemma 10.4.1 Consider scalings K : N0 → N0 and p : N0 → (0, 1) such that (10.1)

holds for some c > 0. We have

nE [χn,1(θn)] = eβn+o(1) n = 1, 2, . . . (10.11)

with

βn := (1 − cn) log n + Kn(pn + log(1 − pn)) (10.12)

where the sequence c : N0 → R is the one appearing in the form (10.4) of the condition

(10.1).

Proof. Consider a scaling θ : N0 → N0× (0, 1) such that (10.1) holds for some c > 0

and assume the existence of the limit limn→∞ pn = p?. Replacing θ by θn in (10.10)

for each n = 2, 3, . . . we get

nE [χn,1(θn)] = eγn (10.13)

where γn is given by

γn = log n + Kn log(1 − pn) − ηn

with

ηn := −(n − Kn − 1) log

(
1 − pnKn

n − 1
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The decomposition (5.16) now yields

ηn := (n − Kn − 1)

(
pnKn

n − 1
+ Ψ

(
pnKn

n − 1

))

=

(
1 − Kn

n − 1

)
Knpn + (n − Kn − 1)Ψ

(
pnKn

n − 1

)

= −Knpn +

(
2 − Kn

n − 1

)
Knpn + (n − Kn − 1)Ψ

(
pnKn

n − 1

)

= −Knpn + cn log n + (n − Kn − 1)Ψ

(
pnKn

n − 1

)

where the last step used the form (10.4) of the condition (10.1) on the scaling. Re-

porting this calculation into the expression for γn we find

γn = βn − (n − Kn − 1)Ψ

(
pnKn

n − 1

)
.

Lemma 10.4.1 will be established if we show that

lim
n→∞

(n − Kn − 1)Ψ

(
pnKn

n − 1

)
= 0. (10.14)

To that end, for each n = 2, 3, . . . we note that

pnKn ≤ pn

(
2Kn − K2

n

n − 1

)
≤ 2pnKn

since Kn < n. The condition (10.4) implies

cn

2
log n ≤ pnKn ≤ cn log n, (10.15)
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and it is now plain that

lim
n→∞

pnKn

n − 1
= 0 and lim

n→∞
(n − Kn − 1)

p2
nK

2
n

(n − 1)2
= 0.

Invoking the behavior (5.18) of Ψ(x) at x = 0, we conclude from these facts that

lim
n→∞

(
(n − Kn − 1)

p2
nK

2
n

(n − 1)2

) (
Ψ

(
pnKn

n−1

)

(
pnKn

n−1

)2

)
= 0. (10.16)

This establishes (10.14) and the proof of Lemma 10.4.1 is completed.

10.5 A proof of Proposition 10.3.1

In view of Lemma 10.4.1, Proposition 10.3.1 will be established if we show

lim
n→∞

βn =






−∞ if c > τ(p?)

+∞ if c < τ(p?).

(10.17)

To see this, first note from (5.16) that for each n = 1, 2, . . ., we have pn + log(1−

pn) ≤ 0 and the lower bound in (10.15) implies

βn ≤ (1 − cn) log n + cn

(
log n

2pn

)
· (pn + log(1 − pn))
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=

(
1 − cn

2

(
1 − log(1 − pn)

pn

))
· log n. (10.18)

Letting n go to infinity in this last expression, we get limn→∞ βn = −∞ whenever

c > lim
n→∞

2

1 − log(1−pn)
pn

= τ(p?) (10.19)

since limn→∞ cn = c.

Next, we show that if c < τ(p?), then limn→∞ βn = +∞. We only need to consider

the case 0 ≤ p? < 1 since τ(1) = 0 and the constraint c < τ(1) is vacuous. We begin

by assuming p? = 0, in which case for each n = 2, 3, . . ., we have

βn = (1 − cn) log n + Kn(pn + (−pn − Ψ(pn)))

= (1 − cn) log n − KnΨ(pn)

= (1 − cn) log n −
(

Ψ(pn)

p2
n

)
· Knp

2
n

≥ (1 − cn) log n − cn log n ·
(

Ψ(pn)

p2
n

)
pn

= log n ·
(

1 − cn

(
1 +

(
Ψ(pn)

p2
n

)
pn

))
(10.20)

with the inequality following from the upper bound in (10.15). Let n grow large in

the last expression. Since we have assumed limn→∞ pn = 0, we get

lim
n→∞

pn

(
Ψ(pn)

p2
n

)
= 0,

and the desired conclusion limn→∞ βn = +∞ is obtained whenever c < 1 = τ(0) upon

203



using limn→∞ cn = c.

Finally we assume 0 < p? < 1. For each ε > 0, there exists a finite positive integer

n?(ε) such that pn ≥ (1 − ε)p? when n ≥ n?(ε). On that range the upper bound in

(10.15) yields

Kn ≤ c

(1 − ε)p?
· log n,

whence the conclusions K2
n = o(n) and

pn

(
2Kn − K2

n

n − 1

)
= 2Knpn + o(1)

follow. Comparing this last fact against the lefthand side of (10.4) yields

Knpn =
cn

2
log n + o(1),

so that

Knpn ∼ cn

2
log n. (10.21)

From (10.12) it follows that

βn

log n
= (1 − cn) +

(
1 +

log(1 − pn)

pn

)
· Knpn

log n

for all n sufficiently large. Letting n go to infinity in this last expression and using
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(10.21) with the earlier remarks, we readily conclude

lim
n→∞

βn

log n
= (1 − c) +

c

2

(
1 +

log(1 − p?)

p?

)
= 1 − c

τ(p?)

where the last step follows by direct inspection. It is now clear that limn→∞ βn = ∞

when c < τ(p?) with 0 < p? < 1. This establishes (10.17) and the proof of Proposition

10.3.1 is now completed.

10.6 Negative dependence and consequences

Fix positive integers n = 2, 3, . . . and K with K < n. Several properties of the

{0, 1}-valued rvs 



1 [j ∈ Γn,i] ,

i 6= j

i, j = 1, . . . , n





(10.22)

and 



1 [j ∈ Γn,i ∨ i ∈ Γn,j] ,

i 6= j

i, j = 1, . . . , n





(10.23)

will play a key role in some of the forthcoming arguments.
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10.6.1 Negative association

The properties of interest can be couched in terms of negative association, a form

of negative correlation introduced to Joag-Dev and Proschan [23]. We first develop

the needed definitions and properties: Let {Xλ, λ ∈ Λ} be a collection of R-valued

rvs indexed by the finite set Λ. For any non-empty subset A of Λ, we write XA to

denote the R
|A|-valued XA = (Xλ, λ ∈ A). The rvs {Xλ, λ ∈ Λ} are then said to

be negatively associated if for any non-overlapping subsets A and B of Λ and for

any monotone increasing mappings ϕ : R
|A| → R and ψ : R

|B| → R, the covariance

inequality

E [ϕ(XA)ψ(XB)] ≤ E [ϕ(XA)] E [ψ(XB)] (10.24)

holds whenever the expectations in (10.24) are well defined and finite. Note that ϕ

and ψ need only be monotone increasing on the support of XA and XB, respectively.

This definition has some easy consequences to be used repeatedly in what follows:

The negative association of {Xλ, λ ∈ Λ} implies the negative association of the

collection {Xλ, λ ∈ Λ′} where Λ′ is any subset of Λ. It is also well known [23, P2, p.

288] that the negative association of the rvs {Xλ, λ ∈ Λ} implies the inequality

E

[
∏

λ∈A

fλ(Xλ)

]
≤

∏

λ∈A

E [fλ(Xλ)] (10.25)

where A is a subset of Λ and the collection {fλ, λ ∈ A} of mappings R → R+ are

all monotone increasing; by non-negativity all the expectations exist and finiteness is
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moot.

We can apply these ideas to collections of indicator rvs, namely for each λ in Λ,

Xλ = 1 [Eλ] for some event Eλ. From the definitions, it is easy to see that if the rvs

{1 [Eλ] , λ ∈ Λ} are negatively associated, so are the rvs {1 [Ec
λ] , λ ∈ Λ}. Moreover,

for any subset A of Λ, we have

P [Eλ, λ ∈ A] ≤
∏

λ∈A

P [Eλ] . (10.26)

This follows from (10.25) by taking fλ(x) = x+ on R for each λ in Λ.

10.6.2 Useful consequences

A key observation for our purpose is as follows: For each i = 1, . . . , n, the rvs

{1 [j ∈ Γn,i] , j ∈ N−i} (10.27)

form a collection of negatively associated rvs. This is a consequence of the fact that

the random set Γn,i represents a random sample (without replacement) of size K from

N−i; see [23, Example 3.2(c)] for details.

The n collections (10.27) are mutually independent, so that by the “closure under

products” property of negative association [23, P7, p. 288] [12, p. 35], the rvs (10.22)

also form a collection of negatively associated rvs.
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Hence, by taking complements, the rvs





1 [j /∈ Γn,i] ,

i 6= j

i, j = 1, . . . , n





(10.28)

also form a collection of negatively associated rvs. With distinct i, j = 1, . . . , n, we

note that

1 [i /∈ Γn,j, j /∈ Γn,i] = f (1 [i /∈ Γn,j] ,1 [j /∈ Γn,i]) (10.29)

with mapping f : R
2 → R given by f(x, y) = x+y+ for all x, y in R. This mapping

being non-decreasing on R
2, it follows [23, P6, p. 288] that the rvs





1 [j /∈ Γn,i, i /∈ Γn,j] ,

i 6= j

i, j = 1, . . . , n





(10.30)

are also negatively associated. Taking complements one more time, we see that the

rvs (10.23) are also negatively associated.

For each k = 1, 2 and j = 3, . . . , n, we shall find it useful to define

un,j,k(θ) := E
[
(1 − p)1[k∈Γn,j ]

]

and

bn,j(θ) := E
[
(1 − p)1[1∈Γn,j ]+1[2∈Γn,j ]

]
.
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Under the enforced assumptions, we have bn,3(θ) = . . . = bn,n(θ) ≡ bn(θ) and

un,3,1(θ) = . . . = un,n,1(θ) = un,3,2(θ) = . . . = un,n,2(θ) ≡ un(θ).

Before computing either one of the quantities un(θ) and bn(θ), we note that

bn(θ) ≤ un(θ)2. (10.31)

This is a straightforward consequence of the negative association of the rvs (10.22) –

In (10.24), with A and B singletons, use the increasing functions ϕ, ψ : R → R : x →

−(1 − p)x.

Using (10.9) we get

un(θ) = (1 − p)
K

n − 1
+

(
1 − K

n − 1

)
= 1 − p

K

n − 1
. (10.32)

An expression for bn(θ) is available but will not be needed due to the availability of

(10.31).

10.7 A proof of Proposition 10.3.2

As expected, the first step in proving Proposition 10.3.2 consists in evaluating the

cross moment appearing in the numerator of (10.6). Fix n = 2, 3, . . . and consider

θ = (K, p) with p in (0, 1) and positive integer K such that K < n. Define the
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N0-valued rvs Bn(θ) and Un(θ) by

Bn(θ) :=
n∑

j=3

1 [j 6∈ Γn,1]1 [j 6∈ Γn,2] (10.33)

and

Un(θ) :=
n∑

j=3

1 [j 6∈ Γn,1]1 [j ∈ Γn,2] +
n∑

j=3

1 [j 6∈ Γn,2]1 [j ∈ Γn,1] . (10.34)

Proposition 10.7.1 Fix n = 2, 3, . . .. For any p in (0, 1) and positive integer K such

that K < n, we have

E [χn,1(θ)χn,2(θ)] = (1 − p)2K
E

[
bn(θ)Bn(θ) · un(θ)Un(θ)

(1 − p)1[2∈Γn,1,1∈Γn,2]

]
(10.35)

where the rvs Bn(θ) and Un(θ) given by (10.33) and (10.34), respectively.

A proof of Proposition 10.7.1 is available in Section 10.11. Still in the setting of

Proposition 10.7.1, we can use (10.31) in conjunction with (10.35) to get

E [χn,1(θ)χn,2(θ)] ≤ (1 − p)2K
E

[
un(θ)2Bn(θ)+Un(θ)

(1 − p)1[2∈Γn,1,1∈Γn,2]

]
. (10.36)

It is plain that

2Bn(θ) + Un(θ) =
n∑

j=3

1 [j 6∈ Γn,1] +
n∑

j=3

1 [j 6∈ Γn,2] .
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We note that

n∑

j=3

1 [j 6∈ Γn,1] =
n∑

j=2

1 [j 6∈ Γn,1] − 1 [2 6∈ Γn,1]

= (n − 1 − K) − (1 − 1 [2 ∈ Γn,1])

= (n − 2 − K) + 1 [2 ∈ Γn,1]

and

n∑

j=3

1 [j 6∈ Γn,2] = (n − 2 − K) + 1 [1 ∈ Γn,2]

by similar arguments. The expression

2Bn(θ) + Un(θ) = 2(n − 2 − K) + 1 [2 ∈ Γn,1] + 1 [1 ∈ Γn,2]

now follows, and we find

E [χn,1(θ)χn,2(θ)] ≤ (1 − p)2Kun(θ)2(n−2−K) · Rn(θ) (10.37)

with

Rn(θ) := E

[
un(θ)1[2∈Γn,1]+1[1∈Γn,2]

(1 − p)1[2∈Γn,1,1∈Γn,2]

]
.

Next, with the help of (10.10) and (10.32) we conclude that

E [χn,1(θ)χn,2(θ)]

(E [χn,1(θ)])
2 ≤ (1 − p)2K · un(θ)2(n−2−K)

((1 − p)K · un(θ)n−1−K)2 · Rn(θ)

211



= un(θ)−2Rn(θ)

= E

[
un(θ)1[2∈Γn,1]+1[1∈Γn,2]−2

(1 − p)1[2∈Γn,1,1∈Γn,2]

]
. (10.38)

Direct inspection readily yields

un(θ)1[2∈Γn,1]+1[1∈Γn,2]−2

(1 − p)1[2∈Γn,1,1∈Γn,2]
=






1
1−p

if 2 ∈ Γn,1, 1 ∈ Γn,2

(
1 − pK

n−1

)−2
if 2 6∈ Γn,1, 1 6∈ Γn,2

(
1 − pK

n−1

)−1
otherwise.

(10.39)

Taking expectation and reporting into (10.38) we then find

E [χn,1(θ)χn,2(θ)]

(E [χn,1(θ)])
2 ≤ 1

1 − p
P [2 ∈ Γn,1, 1 ∈ Γn,2] +

(
1 − p

K

n − 1

)−2

=
1

1 − p

(
K

n − 1

)2

+

(
1 − p

K

n − 1

)−2

(10.40)

by a crude bounding argument.

Now consider a scaling θ : N0 → N0 × (0, 1) such that (10.1) holds for some c > 0

and limn→∞ pn = p? < 1. Replace θ by θn in the bound (10.40) with respect to this

scaling. It is immediate that (10.6) will be established if we show that

lim
n→∞

1

1 − pn

(
Kn

n − 1

)2

= 0
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and that

lim
n→∞

(
1 − pn

Kn

n − 1

)
= 1.

These limits are an easy consequence of the inequalities (10.15) by virtue of the fact

that limn→∞ pn = p? < 1.

We close with a proof of (3.45): Consider θ = (K, p) with p in (0, 1) and positive

integer K. It follows from (10.10) that

lim
n→∞

E [χn,1(θ)] = (1 − p)K e−pK ,

whence limn→∞ E [I(n; θ)] = ∞. It also immediate from (10.40) that

lim sup
n→∞

E [χn,1(θ)χn,2(θ)]

(E [χn,1(θ)])
2 ≤ 1.

The arguments outlined in Section 10.3 now yield

lim
n→∞

P [I(n; θ) = 0] = 0,

and this establishes (3.45). The conclusion (3.46) immediately follows; see discussion

at (10.41).
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10.8 A proof of Theorem 10.2.2 (Part I)

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1) and positive integer K

such that K < n. As expected, we define the events

Cn(θ) := [H ∩ G(n; θ) is connected]

and

In(θ) := [H ∩ G(n; θ) contains no isolated nodes] .

If the random graph H ∩ G(n; θ) is connected, then it does not contain any isolated

node, whence Cn(θ) is a subset of In(θ), and the conclusions

P [Cn(θ)] ≤ P [In(θ)] (10.41)

and

P [Cn(θ)c] = P [Cn(θ)c ∩ In(θ)] + P [In(θ)c] (10.42)

obtain.

Taken together with Theorem 10.2.1, the relations (10.41) and (10.42) pave the

way to proving Theorem 10.2.2. Indeed, pick a scaling θ : N0 → N0 × (0, 1) such

that (10.1) holds for some c > 0 and limn→∞ pn = p? exists. If c < τ(p?), then

limn→∞ P [In(θn)] = 0 by the zero-law for the absence of isolated nodes in Theorem

10.2.1, whence limn→∞ P [Cn(θn)] = 0 with the help of (10.41). If c > τ(p?), then
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limn→∞ P [In(θn)] = 1 by the one-law for the absence of isolated nodes, and the

desired conclusion limn→∞ P [Cn(θn)] = 1 (or equivalently, limn→∞ P [Cn(θn)c] = 0)

will follow via (10.42) if we show the following:

Proposition 10.8.1 For any scaling θ : N0 → N0 × (0, 1) such that limn→∞ pn = p?

exists and (10.1) holds for some c > τ(p?), we have

lim
n→∞

P [Cn(θn)c ∩ In(θn)] = 0. (10.43)

The proof of Proposition 10.8.1 starts below and runs through two more sections,

namely Sections 10.9 and 10.10. The basic idea is to find a sufficiently tight upper

bound on the probability in (10.43), and then to show that this bound goes to zero

as n becomes large. This approach is similar to the one used for proving the one-law

for connectivity in ER graphs [4, p. 164], and in random key graphs; see Chapter 7.

We begin by finding the needed upper bound. Indeed, as in Chapter 7.4.3, we will

use an appropriate version of the union bound (5.14) (established in Chapter 5.2):

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1) and positive integer K such

that K < n. Consider the definitions given in Chapter 5.2 with G(n; υ) replaced by

H ∩ G(n; θ), mn replaced by n, In replaced by In(θ) and for each r = 1, . . . , n, An,r,

Bn,r, Cn,r replaced by An,r(θ), Bn,r(θ). Cn,r(θ), respectively. For r = n we use (with

a slight abuse of notation) Cn(θ) as defined above. The arguments of Chapter 5.2
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now lead to the key bound:

P [Cn(θ)c ∩ In(θ)] ≤
bn

2
c∑

r=2

(
n

r

)
P [An,r(θ)] (10.44)

upon using (5.14) with the aforementioned substitutions.

Now, consider a scaling θ : N0 → N0 × (0, 1) as in the statement of Proposition

10.8.1. Substitute θ by θn by means of this scaling in the right hand side of (10.44).

The proof of Proposition 10.8.1 will be completed once we show

lim
n→∞

bn
2
c∑

r=2

(
n

r

)
P [An,r(θn)] = 0. (10.45)

The means to do so are provided in the next section.

10.9 Bounding probabilities

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1) and positive integer K

such that K < n.

10.9.1 Bounding the probabilities P [Bn,r(θ)]

The following result will be used to efficiently bound the probability P [Bn,r(θ)].
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Lemma 10.9.1 For each r = 2, . . . , n − 1, we have the inequality

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]
≤ (1 − p)E?

n,r · un(θ)r(n−r)−E?
n,r (10.46)

with un(θ) defined by (10.32) and the rv E?
n,r given by

E?
n,r :=

n∑

i=r+1

r∑

`=1

1 [` ∈ Γn,i] . (10.47)

A proof of Lemma 10.9.1 is available in Appendix 10.12. The rv E?
n,r, which

appears prominently in (10.46), has a tail controlled through the following result.

Lemma 10.9.2 Fix r = 2, . . . , n − 1. For any t in (0, 1) we have

P

[
E?

n,r ≤ (1 − t)rK · n − r

n − 1

]
≤ e−

t2

2
rK·n−r

n−1 . (10.48)

Proof. Fix n = 2, 3, . . . and consider a positive integer K such that K < n. From

the facts reported in Section 10.6, the negative association of the rvs (10.27) implies

that of the rvs {1 [` ∈ Γn,i] , i = r + 1, . . . , n; ` = 1, . . . , r}. We are now in a position

to apply the Chernoff-Hoeffding bound to the sum (10.47). We use the bound in the
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form

P
[
E?

n,r ≤ (1 − t)E
[
E?

n,r

]]
≤ e−

t2

2
E[E?

n,r] (10.49)

as given for negatively associated rvs in [12, Thm. 1.1, p. 6]. The conclusion (10.48)

follows upon noting that

E
[
E?

n,r

]
=

n∑

i=r+1

r∑

`=1

P [` ∈ Γn,i] = r(n − r)
K

n − 1

as we use (10.9).

10.9.2 Bounding the probabilities P [Cn,r(θ)]

For each r = 2, . . . , n, let H ∩ Gr(n; θ) stand for the subgraph H ∩ G(n; θ)(S)

when S = {1, . . . , r}. Also let Tr denote the collection of all spanning trees on the

vertex set {1, . . . , r}.

Lemma 10.9.3 Fix r = 2, . . . , n. For each T in Tr, we have

P [T ⊂ H ∩ Gr(n; θ)] ≤ (pλn(K))r−1 (10.50)

where the notation T ⊂ H ∩ Gr(n; θ) indicates that the tree T is a subgraph spanning

H ∩ Gr(n; θ).
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Since pλn(K) is the probability of link assignment, the situation is reminiscent to

the one found in ER graphs [4] and random key graphs (see Lemma 7.4.6) where in

each case the bound (10.50) holds with equality.

Proof. Fix r = 2, 3, . . . , n and pick a tree T in Tr. Let E(T ) be the set of edges

that appear in T . It is plain that T ⊆ H ∩ Gr(n, ; θ) occurs if and only if the set of

conditions

Σn,i ∩ Σn,j 6= ∅ and Bij(p) = 1, {i, j} ∈ E(T )

holds. Therefore, under the enforced independence assumptions, since |E(T )| = r−1,

we get

P [T ⊂ H ∩ Gr(n; θ)]

= pr−1 · E




∏

i,j:{i,j}∈E(T )

1 [Σn,i ∩ Σn,j 6= ∅]





= pr−1 · E




∏

i,j:{i,j}∈E(T )

1 [i ∈ Γn,j ∨ j ∈ Γn,i]





≤ pr−1 ·
∏

i,j:{i,j}∈E(T )

P [i ∈ Γn,j ∨ j ∈ Γn,i] (10.51)

by making use of (10.26) with the negatively associated rvs (10.23). The desired

result (10.50) is now immediate from (3.6) and the relation |E(T )| = r − 1.
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As in the case of ER graphs [4] and random key graphs [37] we have the following

bound.

Lemma 10.9.4 For each r = 2, . . . , n, we have

P [Cn,r(θ)] ≤ rr−2 (pλn(K))r−1 . (10.52)

Proof. Fix r = 2, . . . , n. If H ∩ Gr(n; θ) is a connected graph, then it must contain

a spanning tree on the vertex set {1, . . . .r}, and a union bound argument yields

P [Cn,r(θ)] ≤
∑

T∈Tr

P [T ⊂ H ∩ G(n; θ)(S)] . (10.53)

By Cayley’s formula [25] there are rr−2 trees on r vertices, i.e., |Tr| = rr−2, and

(10.52) follows upon making use of (10.50).

10.10 A proof of Proposition 10.8.1 (Part II)

Consider a scaling θ : N0 → N0 × (0, 1) as in the statement of Proposition 10.8.1.

Pick integers R ≥ 2 and n?(R) ≥ 2(R + 1) (to be specified in Section 10.10.2). On
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the range n ≥ n?(R) we consider the decomposition

bn
2
c∑

r=2

(
n

r

)
P [An,r(θn)] =

R∑

r=2

(
n

r

)
P [An,r(θn)] +

bn
2
c∑

r=R+1

(
n

r

)
P [An,r(θn)] ,

and let n go to infinity. The desired convergence (10.45) will be established if we

show

lim
n→∞

(
n

r

)
P [An,r(θn)] = 0 (10.54)

for each r = 2, 3, . . . and

lim
n→∞

bn
2
c∑

r=R+1

(
n

r

)
P [An,r(θn)] = 0. (10.55)

We establish (10.54) and (10.55) in turn.

10.10.1 Establishing (10.54)

Fix r = 2, 3, . . . and consider n = 2, 3, . . . such that r < n. Also let θ = (K, p)

with p in (0, 1) and positive integer K such that K < n. With (10.47) in mind, for

each i = 1, . . . , r, we note that

n∑

k=r+1

1 [k ∈ Γn,i] =
n∑

k=1

1 [k ∈ Γn,i] −
r∑

k=1

1 [k ∈ Γn,i]

= K −
r∑

k=1

1 [k ∈ Γn,i] (10.56)
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since |Γn,i| = K. The bounds

(K − r)+ ≤
n∑

k=r+1

1 [k ∈ Γn,i] ≤ K

follow, whence

r(K − r)+ ≤ E?
n,r ≤ rK.

It is also the case that

r(n − r − K)+ ≤ r(n − r) − E?
n,r.

Reporting these lower bounds into (10.46), we get

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]
≤ (1 − p)r(K−r)+ · un(θ)r(n−r−K)+ (10.57)

≤ (1 − p)r(K−r) · un(θ)r(n−r−K)

since 0 < p, un(θ) < 1. If we set

Fn,r(θ) := (1 − p)(K−r) · un(θ)(n−r−K),

it is now plain that

P [An,r(θ)] = E

[
1 [Cn,r(θ)] P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]]

≤ P [Cn,r(θ)] · Fn,r(θ)
r. (10.58)
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Applying Lemma 10.9.4 we find

(
n

r

)
P [An,r(θ)] ≤

(
n

r

)
P [Cn,r(θ)] · Fn,r(θ)

r

≤
(en

r

)r

rr−2 (pλn(K))r−1 Fn,r(θ)
r

=
1

r2
(en)r (pλn(K))r−1 Fn,r(θ)

r (10.59)

as we make use of (5.25).

We also note that

Fn,r(θ) ≤ eF ?
n,r(θ) (10.60)

with

F ?
n,r(θ) := (K − r) log(1 − p) − (n − r − K)p

K

n − 1

= (K − r) log(1 − p) −
(

1 − K

n − 1
− r − 1

n − 1

)
pK

= (K − r) log(1 − p) − p

(
K − K2

n − 1

)
+

r − 1

n − 1
pK

= K (p + log(1 − p)) − r log(1 − p) − p

(
2K − K2

n − 1

)

+
r − 1

n − 1
pK. (10.61)

Now, pick any given positive integer r = 2, 3, . . . and consider a scaling θ : N0 →

N0 × (0, 1) such that limn→∞ pn = p? exists and (10.1) holds for some c > τ(p?).

Replace θ by θn in (10.59) according to this scaling. In order to establish (10.54) it
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suffices to show that

lim
n→∞

(en)r (pnλn(Kn))r−1 · Fn,r(θn)r = 0. (10.62)

For n sufficiently large, from (10.4) and (10.59) we first get

(
n

r

)
P [An,r(θ)] ≤ (en)r (pnλn(Kn))r−1 · Fn,r(θn)r

= (en)r

(
cn

log n

n − 1

)r−1

· Fn,r(θn)r

= en

(
ecn

n

n − 1
log n

)r−1

· Fn,r(θn)r. (10.63)

On the other hand, upon making use of the bounds at (10.15), we find

F ?
n,r(θn) ≤ Kn (pn + log(1 − pn)) − r log(1 − pn)

− pn

(
2Kn − K2

n

n − 1

)
+

r

n
pnKn

= Kn (pn + log(1 − pn)) − r log(1 − pn)

− cn log n +
r

n
pnKn

≤ Kn (pn + log(1 − pn)) − cn log n

−r log(1 − pn) +
r

n
cn log n

= pnKn

(
1 +

log(1 − pn)

pn

)
− cn log n

− r log(1 − pn) +
r

n
cn log n

≤ cn

2
log n ·

(
1 +

log(1 − pn)

pn

)
− cn log n
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− r log(1 − pn) +
r

n
cn log n

= −cn

2
·
(

1 − log(1 − pn)

pn

)
log n

− r log(1 − pn) +
r

n
cn log n.

= log n

(
−

cn − 2rpn

log n

2

(
1 − log(1 − pn)

pn

))

− rpn +
r

n
cn log n

≤ − log n

2

(
cn − 2rpn

log n

)(
1 − log(1 − pn)

pn

)

+
r

n
cn log n. (10.64)

As a result, (10.61) implies

nFn,r(θn)r ≤ n1− r
2(cn−

2rpn
log n )·(1− log(1−pn)

pn
)eo(1). (10.65)

Under the enforced assumptions of Theorem 10.2.2 we get

lim
n→∞

(
1 − r

2

(
cn − 2rpn

log n

)
·
(

1 − log(1 − pn)

pn

))

= 1 − r
c

2
·
(

1 − log(1 − p?)

p?

)

= 1 − r
c

τ(p?)
< 0, (10.66)

and the desired conclusion (10.62) follows upon making use of the inequalities (10.63)

and (10.65).
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10.10.2 Establishing (10.55)

Fix n = 2, 3, . . . and consider θ = (K, p) with p in (0, 1), and positive integer K

such that K < n.

Pick r = 1, 2, . . . , n − 1. By Lemma 10.9.1 we conclude that

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]
≤ (1 − p)E?

n,r (10.67)

since 0 < un(θ) < 1, and preconditioning arguments similar to the ones leading to

(10.58) yield

P [An,r(θ)] ≤ E
[
1 [Cn,r(θ)] (1 − p)E?

n,r
]
.

The event Cn,r(θ) depends only on Γn,1, . . . , Γn,r whereas E?
n,r is determined solely by

Γn,r+1, . . . , Γn,n. Thus, the event Cn,r(θ) is independent of the rv (1 − p)E?
n,r under

the enforced assumptions, whence

P [An,r(θ)] ≤ P [Cn,r(θ)] E
[
(1 − p)E?

n,r
]
. (10.68)

Pick t arbitrary in (0, 1) and recall Lemma 10.9.2. A simple decomposition argu-

ment shows that

E

[
(1 − p)E?

n,r

]
≤ E

[
(1 − p)E?

n,r 1

[
E?

n,r > (1 − t)rK · n − r

n − 1

]]

+ P

[
E?

n,r ≤ (1 − t)rK · n − r

n − 1

]
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≤ (1 − p)(1−t)rK·n−r
n−1 + e−

t2

2
rK·n−r

n−1

≤ e−(1−t)rpK·n−r
n−1 + e−

t2

2
rK·n−r

n−1

≤ e−(1−t)rpK·n−r
n−1 + e−

t2

2
rpK·n−r

n−1 .

Therefore, whenever r = 2, 3, . . . , bn
2
c, we have

E

[
(1 − p)E?

n,r

]
≤ e−

1−t
2

·rpK + e−
t2

4
·rpK (10.69)

since on that range we have

n − r

n − 1
≥ n/2

n − 1
≥ 1

2
.

Now consider a scaling θ : N0 → N0 × (0, 1) such that limn→∞ pn = p? exists and

(10.1) holds for some c > τ(p?). Replace θ by θn in both (10.68) and (10.69) according

to this scaling and use the bound of Lemma 10.9.4 in the resulting inequalities. Pick

an integer R ≥ 2 (to be further specified shortly) and for n ≥ 2(R + 1) note that

bn
2
c∑

r=R+1

(
n

r

)
P [An,r(θn)] ≤

bn
2
c∑

r=R+1

(
n

r

)
rr−2 (pnλn(Kn))r−1 e−

1−t
2

·rpnKn

+

bn
2
c∑

r=R+1

(
n

r

)
rr−2 (pnλn(Kn))r−1 e−

t2

4
·rpnKn

≤
bn

2
c∑

r=R+1

en

(
ecn

n

n − 1
log n

)r−1

e−
1−t
2

·rpnKn

+

bn
2
c∑

r=R+1

en

(
ecn

n

n − 1
log n

)r−1

e−
t2

4
·rpnKn
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by the same arguments as the ones leading to (10.63). Upon invoking the lower bound

in (10.15) we now conclude for all sufficiently large n > 2(R + 1) that

bn
2
c∑

r=R+1

(
n

r

)
P [An,r(θn)] ≤

bn
2
c∑

r=R+1

en

(
ecn

n

n − 1
log n

)r

e−
1−t
4

·rcn log n

+

bn
2
c∑

r=R+1

en

(
ecn

n

n − 1
log n

)r

e−
t2

8
·rcn log n.

≤
∞∑

r=R+1

en

(
ecn

n

n − 1
log n · n− 1−t

4
·cn

)r

+
∞∑

r=R+1

en

(
ecn

n

n − 1
log n · n− t2

8
·cn

)r

.

Furthermore, for all sufficiently large n ≥ 2(R + 1) it also the case that

ecn
n

n − 1
log n · max

(
n− 1−t

4
cn , n− t2

8
cn

)
< 1 (10.70)

and the two infinite series converge. Let n?(R) denote any integer larger than 2(R+1)

such that (10.70) holds for all n ≥ n?(R). On that range, by our earlier discussion

we get
bn

2
c∑

r=R+1

(
n

r

)
P [An,r(θn)] ≤ e

(
ecn

n

n − 1
log n

)R+1

(. . .)

with

. . . :=
n1− 1−t

4
cn(R+1)

1 − ecn
n

n−1
log n · n− 1−t

4
cn

+
n1− t2

8
cn(R+1)

1 − ecn
n

n−1
log n · n− t2

8
cn

.

Finally, let n go to infinity in this last expression: The desired conclusion (10.55)
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follows whenever the conditions (1 − t)c(R + 1) > 4 and c(R + 1)t2 > 8 are satisfied.

This can be achieved by taking R so that

R + 1 > max

(
4

c(1 − t)
,

8

ct2

)
.

This is always feasible for any given t in (0, 1) by taking R sufficiently large.

10.11 A proof of Proposition 10.7.1

The basis for deriving (10.35) lies in the observation that nodes 1 and 2 are both

isolated in H ∩ G(n; θ) if and only if each edge in H(n; K) incident to one of these

nodes is not present in G(n; p). Thus, χn,1(θ) = χn,2(θ) = 1 if and only if both sets

of conditions

B1j(p) = 0 if Σn,1 ∩ Σn,j 6= ∅, j ∈ N−1

and

B2k(p) = 0 if Σn,2 ∩ Σn,k 6= ∅, k ∈ N−2

hold.

To formalize this observation, we introduce the random sets Nn,1(θ) and Nn,2(θ)

defined by

Nn,1(θ) := {j = 3, . . . , n : j ∈ Γn,1 ∨ 1 ∈ Γn,j} (10.71)
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and

Nn,2(θ) := {k = 3, . . . , n : k ∈ Γn,2 ∨ 2 ∈ Γn,k}. (10.72)

Thus, node j in Nn,1(θ) is neither node 1 nor node 2, and is K-adjacent to node 1.

Similarly, node k in Nn,2(θ) is neither node 1 nor node 2, and is K-adjacent to node

2. Let Zn(θ) denote the total number of edges in H(n; K) which are incident to either

node 1 or node 2. It is plain that

Zn(θ) = |Nn,1(θ)| + |Nn,2(θ)| + 1 [2 ∈ Γn,1 ∨ 1 ∈ Γn,2] (10.73)

with the last term accounting for the possibility that nodes 1 and 2 are K-adjacent.

By conditioning on the rvs Γn,1, . . . , Γn,n, we readily conclude that

E [χn,1(θ)χn,2(θ)] = E
[
(1 − p)Zn(θ)

]
(10.74)

under the enforced independence of the collections of rvs {Γn,1, . . . , Γn,n} and

{Bij(p), 1 ≤ i < j ≤ n}.

To proceed we need to assess the various contributions to Zn(θ): Using the basic

identity

1 [E ∪ F ] = 1 [E] + 1 [F ] − 1 [E ∩ F ] . (10.75)

valid for any pair of events E and F , we find

|Nn,1(θ)| =
n∑

j=3

1 [j ∈ Γn,1 ∨ 1 ∈ Γn,j]
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=
n∑

j=3

1 [j ∈ Γn,1] +
n∑

j=3

1 [1 ∈ Γn,j]

−
n∑

j=3

1 [j ∈ Γn,1, 1 ∈ Γn,j]

=
n∑

j=3

1 [j ∈ Γn,1] +
n∑

j=3

1 [j 6∈ Γn,1, 1 ∈ Γn,j]

= K − 1 [2 ∈ Γn,1] +
n∑

j=3

1 [j 6∈ Γn,1, 1 ∈ Γn,j] (10.76)

where the last step used the fact |Γn,1| = K. Similar arguments show that

|Nn,2(θ)| =
n∑

k=3

1 [k ∈ Γn,2 ∨ 2 ∈ Γn,k]

= K − 1 [1 ∈ Γn,2] +
n∑

k=3

1 [k 6∈ Γn,2, 2 ∈ Γn,k] . (10.77)

As a result, from the definition of Zn(θ) we get

Zn(θ) = 2K − 1 [2 ∈ Γn,1, 1 ∈ Γn,2] + Z?
n(θ) (10.78)

upon using (10.75) one more time, where

Z?
n(θ) :=

n∑

j=3

1 [j 6∈ Γn,1, 1 ∈ Γn,j] +
n∑

j=3

1 [j 6∈ Γn,2, 2 ∈ Γn,j] . (10.79)

In order to evaluate the expression (10.74), we first compute the conditional ex-

pectation

E

[
(1 − p)Zn(θ)

∣∣∣Γn,1, Γn,2

]
. (10.80)
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From (10.78) we see that this quantity can be evaluated as the product of the two

terms

(1 − p)2K−(1[2∈Γn,1,1∈Γn,2]) (10.81)

and

E

[
(1 − p)Z?

n(θ)
∣∣∣Γn,1, Γn,2

]
. (10.82)

To evaluate this last conditional expectation, for each j = 3, . . . , n, we set

Vn,j(θ; S, T ) := E
[
(1 − p)1[j 6∈S, 1∈Γn,j ]+1[j 6∈T, 2∈Γn,j ]

]

with S and T subsets of N , each being of size K. It is straightforward to check that

Vn,j(θ; S, T ) = 1 [j 6∈ S]1 [j 6∈ T ] E
[
(1 − p)1[1∈Γn,j ]+1[2∈Γn,j ]

]

+1 [j 6∈ S]1 [j ∈ T ] E
[
(1 − p)1[1∈Γn,j ]

]

+1 [j 6∈ T ]1 [j ∈ S] E
[
(1 − p)1[2∈Γn,j ]

]

+1 [j ∈ S]1 [j ∈ T ] .

Then, with the notation introduced earlier in Section 10.6, we can write

Vn,j(θ; S, T ) = 1 [j 6∈ S]1 [j 6∈ T ] bn(θ)

+ (1 [j 6∈ S]1 [j ∈ T ] + 1 [j 6∈ T ]1 [j ∈ S]) un(θ)

+1 [j ∈ S]1 [j ∈ T ] .
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Next, the two rvs Γn,1 and Γn,2 being jointly independent of the rvs Γn,3, . . . , Γn,n,

we find

E

[
(1 − p)Z?

n(θ)
∣∣∣Γn,1, Γn,2

]
=

n∏

j=3

Vn,j(θ; Γn,1, Γn,2)

= bn(θ)Bn(θ) · un(θ)Un(θ) (10.83)

where the rvs Bn(θ) and Un(θ) are given by (10.33) and (10.34), respectively. There-

fore, since

E
[
(1 − p)Zn(θ)

]
= E

[
E

[
(1 − p)Zn(θ)

∣∣∣Γn,1, Γn,2

]]

by a standard preconditioning argument, we get the expression (10.35) upon writing

(10.80) as the product of the quantities (10.81) and (10.82), and using (10.83).

10.12 A proof of Lemma 10.9.1

The defining conditions for Bn,r(θ) lead to the representation

Bn,r(θ) = ∩r
i=1 ∩n

k=r+1 En,ik(θ)

where we have set

En,ik(θ) := ([k /∈ Γn,i] ∩ [i /∈ Γn,k]) ∪ [Bik(p) = 0]
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with i = 1, . . . , r and k = r + 1, . . . , n. In terms of indicator functions, with the help

of (10.75) this definition reads

1 [En,ik(θ)] = 1 [k /∈ Γn,i]1 [i /∈ Γn,k] + (1 − Bik(p))

−1 [k /∈ Γn,i]1 [i /∈ Γn,k] (1 − Bik(p))

= (1 − Bik(p)) + 1 [k /∈ Γn,i]1 [i /∈ Γn,k] Bik(p).

Therefore, under the enforced independence assumptions,

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,n

]

= E

[
r∏

i=1

n∏

k=r+1

W (1 [k /∈ Γn,i]1 [i /∈ Γn,k] ; p)

]

where

W (x; p) = 1 − p + px, x ∈ R.

Since W (x, p) = (1 − p)1−x for x = 0, 1, we obtain

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,n

]
= E

[
r∏

i=1

n∏

k=r+1

(1 − p)1−1[k/∈Γn,i]1[i/∈Γn,k]

]
,

and it is now plain that

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]
= (1 − p)r(n−r)Gn,r(Γn,1, . . . , Γn,r; θ)
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where we have set

Gn,r(S1, . . . , Sr; θ) = E

[
r∏

i=1

n∏

k=r+1

(1 − p)−1[k/∈Si]1[i/∈Γn,k]

]

with S1, . . . , Sr subsets of N , each of size K.

Next, we find

Gn,r(S1, . . . , Sr; θ) = E

[
n∏

k=r+1

r∏

i=1

(1 − p)−1[k/∈Si]1[i/∈Γn,k]

]

= E

[
n∏

k=r+1

(1 − p)−
∑r

i=1 1[k/∈Si]1[i/∈Γn,k]

]

=
n∏

k=r+1

E

[
(1 − p)−

∑r
i=1 1[k/∈Si]1[i/∈Γn,k]

]

as we again use the enforced independence assumptions. Fix k = r + 1, . . . , n and

note that

E

[
(1 − p)−

∑r
i=1 1[k/∈Si]1[i/∈Γn,k]

]
= E

[
r∏

i=1

(
(1 − p)−1[k/∈Si]

)
1[i/∈Γn,k]

]

≤
r∏

i=1

E

[(
(1 − p)−1[k/∈Si]

)
1[i/∈Γn,k]

]
(10.84)

=
r∏

i=1

E

[
(1 − p)−1[i/∈Γn,k]

]
1[k/∈Si]

where (10.84) follows from the negative association of the rvs (10.22) – Use (10.25)

and note that

(1 − p)−1[k/∈Si] ≥ 1, i = 1, . . . , r.
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Next we observe that for each i = 1, . . . , r, we have

E

[
(1 − p)−1[i/∈Γn,k]

]
= (1 − p)−1

P [i /∈ Γn,k] + P [i ∈ Γn,k]

= (1 − p)−1

(
1 − K

n − 1

)
+

K

n − 1

=
un(θ)

1 − p

whence
r∏

i=1

E

[
(1 − p)−1[i/∈Γn,k]

]
1[k/∈Si]

=

(
un(θ)

1 − p

)∑r
i=1 1[k/∈Si]

.

Combining these observations readily yields

Gn,r(S1, . . . , Sr; θ) ≤
n∏

k=r+1

(
un(θ)

1 − p

)∑r
i=1 1[k/∈Si]

=

(
un(θ)

1 − p

)∑r
i=1

∑n
k=r+1 1[k/∈Si]

.

We finally obtain

P

[
Bn,r(θ)

∣∣∣ Γn,1, . . . , Γn,r

]

≤ (1 − p)r(n−r)

(
un(θ)

1 − p

)∑r
i=1

∑n
k=r+1 1[k/∈Γn,i]

and the desired conclusion (10.46) follows.
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10.13 Simulation study

We now present numerical results that verify (3.42). In all the simulations, we fix

the number of nodes at n = 200. We consider the channel parameters p = 0.2, p = 0.4,

p = 0.6, p = 0.8, and p = 1 (the full visibility case), while varying the parameter K

from 1 to 25. For each parameter pair (K, p), we generate 500 independent samples

of the graph H ∩ G(n; K, p) and count the number of times (out of a possible 500)

that the obtained graphs i) have no isolated nodes and ii) are connected. Dividing the

counts by 500, we obtain the (empirical) probabilities for the events of interest. The

results for connectivity are depicted in Figure 10.1(a), where the curve fitting tool of

MATLAB is used. It is easy to check that for each value of p 6= 1, the connectivity

threshold matches the prescription (3.42), namely K = τ̂(p) log n. It is also seen that,

if the channel is poor, i.e., if p is close to zero, then the required value for K to ensure

connectivity can be much larger than the one in the full visibility case p = 1. The

results regarding the absence of node isolation are depicted in Figure 10.1(b). For

each value of p 6= 1, Figure 10.1(b) is indistinguishable from Figure 10.1(a), with the

difference between the estimated probabilities of graph connectivity and absence of

isolated nodes being quite small, in agreement with (3.42).
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Figure 10.1: a) Probability that H ∩ G(n; K, p) is connected as a function of K for
p = 0.2, p = 0.4, p = 0.6, p = 0.8 and p = 1 with n = 200. b) Probability that
H∩G(n; K, p) has no isolated nodes as a function of K for p = 0.2, p = 0.4, p = 0.6,
p = 0.8 and p = 1 with n = 200. This figure clearly resembles Figure 10.1(a) for all
p 6= 1.
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