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In the present work, a framework is proposed for studying autonomous

agents which interact locally yet effect a globally coherent behavior. This prob-

lem of locally induced organization is ubiquitous in decentralized multi-robot
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of a virtual filament. The governing dynamics for this filament are chosen so that

an established set of control objectives is achieved. The appropriate configuration

space of continua is shown to be an infinite dimensional Hilbert Lie group admit-

ting a separable topology. A class of filament models is studied in a Lagrangian

formalism on this manifold, leading to a natural curvature feedback law.
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Chapter 1

A Continuum Approach to Formation Control

The problem of formation control is one of prescribing the relative and col-

lective motion of a group of autonomous agents. In this context, control laws

are often proposed for a collection of isolated agents. The evolution of a large

swarm is then described by a limiting equation derived from the underlying fi-

nite agent model. However, the most elegant theories, while not restricting inter-

action of agents by arbitrary locality constraints, often require full interaction of

the assembly. This inherent lack of locality leads to a computationally intractable

solution in many robotic applications, and a significant conceptual break with

natural swarming phenomenon. In contrast, we propose a continuum formula-

tion in which individual agents are identified with material points of a filament.

Here we consider a filament to be a one dimensional continuum analogous to a

physical string. A control mechanism is then naturally established in an infinite

dimensional setting by prescribing the filament evolution. The trajectory of each

material point of the filament is recovered by spatial discretization.

The theory of vorticity in fluid mechanics offers a compelling inspiration for

this continuum approach. Given a flow field v, the associated vorticity is given

by ω = ∇× v. Inverting this curl relationship by the the Law of Biot-Savart, the

flow can be regarded as induced by the vorticity. With this perspective, consider
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the induced flow from a singular vorticity distribution along a filament γ in R
3.

Under the assumption that the flow of the filament at any point is induced only

by its local geometry, DaRios [6] and Betchov [2] independently showed that the

evolution of the filament is governed by the equation

γt = γs × γss, (1.1)

where the subscripts t and s denote temporal and spatial differentiation, respec-

tively. The assumption that the flow is locally induced is classically known as the

Localized Induction Approximation (LIA) and the corresponding equation (1.1)

is referred to as the DaRios-Betchov filament equation [16].

One of the remarkable properties of the LIA model is that (1.1) leads to

a nonstretching filament evolution. While this is a general property of planar

vortex filaments, dynamic length variation is an important flow characteristic of

higher dimensional vortex filaments. In fact vortex stretching is thought to be

an important mechanism underlying various modes of turbulence [15]. In the

interest of the present work, however, the inextensibility of the filament is an

interesting quality since it suggests that material points of this idealized vorticity

distribution will persist indefinitely as constitutive elements of the continuum.

This is essentially a stable formation.

The filament equation (1.1) admits an elegant characterization in terms of a

corresponding curvature evolution. Let κ1 and κ2 denote the principal curvatures

[3] of γ. In has been shown by Hasimoto 1 that κ = κ1 + iκ2 is governed by the

1The original derivation offered in [10] involves the curvature and torsion of Frenét Serret
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cubic nonlinear Schrödinger equation given by

1

i
κt = κss + |κ|2κ

2
. (1.2)

This equation is featured prominently in an extensive literature related to soliton

theory and the Nonlinear Schrödinger Hierarchy [13]. Immediately we conclude

that the vortex filament dynamics induced from LIA are both Hamiltonian and

completely integrable. Furthermore, the evolution of a vortex filament under LIA

is entirely characterized by a corresponding evolution of its intrinsic curvature.

Conversely, this curvature evolution induces the filament flow given by (1.1). The

interest of this work is to study whether there exist other curvature flows which

induce similarly interesting behavior.

This model study of vorticity suggests the importance of two filament flow

characteristics: locality and cohesiveness. In order to effectively guide the collec-

tive motion of a formation, we will develop these ideas in the context of a general

framework for studying filament evolution. Our approach is to conceive of a

virtual filament as an abstract object to which a particular governing mechanics

is assigned. The pseudo-physical properties of the filament are chosen so as to

achieve desired control objectives. In particular we derive equations of motion

for this infinite dimensional virtual system by appealing to Lagrange D’Alembert

Mechanics.

The construction of the filament Lagrangian is motivated by an insightful

model offered by avian flocking. Birds in flight often assume a filament-like,

frame theory. Here we have stated a slightly more general result derived using natural frames
and principle curvatures. This avoids the intrinsic singularity present in the former framing con-
vection.

3



V configuration. The emergence of this pattern is driven largely by its aerody-

namic efficiency as well as various local interactions among the flock members

(e.g, a preferred separation distance). Another significant feature of avian flight

is exhibited by migratory bird flocks which are able to distinguish between north

and south directions primarily by sensing the Earth’s magnetic field. The fila-

ment model proposed in this work draws directly from these local and global

elements of flocking, penalizing both geodesic stretching of the filament and mis-

alignment of the material point trajectories with an imposed symmetry breaking

vector field. The latter field is referred to as the orientation field. In many in-

stances these local and global objectives will constitute competing interests. It is

the responsibility of the controller to manage this tradeoff. Our approach in this

work is to seek a natural policy governing this tradeoff which is informed by a

continuum mechanical perspective.

Implicitly our choice of the filament Lagrangian is motivated by extremiz-

ing a cost functional consisting of terms that ought to be minimized. It is impor-

tant to note that, while this variational argument is insightful, our derivation of

the governing filament equations is subtly different due to the manner in which

external forcing and constraints are introduced into the problem. Many applica-

tions of formation control – such as motion planning for unmanned arial vehicles

and orbiting satellites – require minimal variation in the speed of individual for-

mation members. Hence the flow of each material point in the proposed filament

model is constrained to observe a nonholonomic constant speed constraint. The

non-integrability of the induced constraint distribution leads to a subtle distinc-
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tion between minimizing a Lagrangian action functional and deriving the real

dynamics of mechanical motion.

In general, nonholonomic mechanics is not a variational theory, requiring

instead the application of the Lagrange-d’Alambert principle of virtual work. We

have chosen to study mechanics rather than optimal control because this per-

spective offers a broader framework in which to develop an effective theory of

virtual filaments. In the penultimate chapter of this thesis, for example, we argue

that the introduction of external forcing is an essential dissipation mechanism

required for stable filament evolution.

The outline of this thesis may be summarized as follows. In Chapter 2 we

briefly introduce the essential ideas and notation from differential geometry that

will be employed throughout throughout this work. We then develop the con-

cept of an oriented filament as a curve on a matrix Lie group. The algebraic and

topological structure of the configuration space of filaments is then established

as an infinite dimensional Hilbert Lie group. Chapter 3 begins with an intrinsic

statement of the Lagrange D’Alembert principle of virtual work. Exploiting the

algebraic structure of the filament configuration space, we pull back the classic

Euler-Lagrange equations of motion to the trivialization of its tangent bundle. Fi-

nally, a class of Lagrangians is considered in which each member admits a local

description in terms of a Lagrangian density. For this class of models, a repre-

sentation of the Euler-Lagrange equations is derived which appeals only to finite

dimensional calculus.

In Chapter 4 we argue for a particular Lagrangian model of a planar fila-
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ment which incorporates both local and global aspects of control. The govern-

ing equations for the filament are derived using the Lagrangian apparatus estab-

lished in the preceding chapter. A natural choice of smooth curvature feedback is

proposed which is motivated by the governing equations. We then introduce the

concept of an oriented orbit for an integral curve of a vector field. Oriented inte-

gral curve orbits of the orientation field are shown to be invariant under the flow

induced by the proposed feedback. We conclude this chapter by demonstrat-

ing in simulation that this induced filament evolution asymptotically aligns itself

with a variety of nontrivial orientation fields. In Chapter 5 we offer concluding

remarks and possible avenues for future work.
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Chapter 2

The Geometry and Calculus of Continua

As outlined in the previous chapter, we are interested in characterizing col-

lective particle dynamics by studying the evolution of a related filament. In order

to appeal to a classical Lagrangian formalism we must establish the algebraic and

geometric structure of an appropriate space of filaments. We begin with a brief

review of smooth differential geometry and proceed to introduce the concept of

a collection modeled on a space of oriented filaments. We conclude by showing

that such a space forms an infinite dimensional Hilbert Lie group under a natural

topology.

2.1 Differential Geometry

The following discussion of differential geometry is offered primarily to es-

tablish notation. The reader is referred to either [1],[7], or [8] for a more com-

prehensive treatment. Let U and V be n-dimensional vector spaces over R and

let Λp(V ) denote the pth exterior algebra of V. Let ∧ : Λp(V ) × Λq(V ) → Λp+q(V )

denote the exterior product on V . The set of tensors of type (r, s) on V is given

the notation

T s
r (V ) =

r
︷ ︸︸ ︷

V ⊗ · · · ⊗ V ⊗
s

︷ ︸︸ ︷

V ∗ ⊗ · · · ⊗ V ∗ .
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Then Λp(V ∗) ≃ Λp(V )∗ is the set of smooth p-linear alternating maps Tp(V ) → R.

The symbol · is reserved for the action of a covariant tensor on a contravariant

tensor. In particular, this notation represents the natural pairing of vectors and

covectors.

For notational clarity we adopt the follow summation convection: Greek

characters are summed over repeated indices beginning at unity while Roman

characters are summed analogously beginning at zero. Furthermore we adopt the

Einstein convention, subscripting and superscripting covariant and contravariant

coordinates respectively. In contrast, the subscripting of a map by its argument

denotes partial differentiation.

Given an inner product < ·, · > on V , the morphisms ♭ : V → V ∗ and

♯ : V ∗ → V are defined for each u, v ∈ V and ω ∈ V ∗ as

u♭ · v = < u, v >, ω · v =< ω♯, v > .

The existence of the objects u♭ and ω♯ is guaranteed for any separable Hilbert

space by the Riesz Representation theorem (recall that any finite dimensional

inner product space is a separable Hilbert space). The dual of a linear map

A : U → V is a map A∗ : V ∗ → U∗ defined for each u ∈ U as

ω ·Au = A∗ω · u. (2.1)

The pth exterior power of linear map A, denoted as ΛpA : Λp(U) → Λp(V ) is

defined by

ΛpA(v1 ∧ · · · ∧ vp) = Av1 ∧ · · · ∧Avp. (2.2)
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One of the most natural and important concepts in differential geometry

is a smooth manifold. A smooth manifold is a topological space which is locally

diffeomorphic to a linear space on which it is said to be modelled. The dimension

of a manifold is inherited from the underlying modelling space.

A natural notion of calculus is established on a smooth manifoldM through

the classic language of differential forms. Let C∞(M, p) denote the set of smooth

functions defined on a neighborhood of p ∈ M . Let S∞(E → M) denote the

set of smooth sections of a vector bundle E → M . The space of sections then is a

module over the ring of smooth functions. A section of the bundle Λp(T ∗M) →M

is referred to as a differential form of degree p. The set of all such differential p-

forms is denoted by Ωp(M) = S∞(Λp(T ∗M) → M). Note that the zeroth exterior

power of a real vector space is R. Hence a 0-form is a section of the real line

bundle overM . This implies that a 0-form is simply a function onM ; i.e. Ω0(M) =

C∞(M).

The derivative of a differential form is defined inductively as follows. A

section X of the tangent bundle is interpreted as a derivation on C∞(M, p) by

defining the action

Xpf =
d

dǫ
f(γ(ǫ))

∣
∣
∣
∣
ǫ=0

, (2.3)

where f ∈ C∞(M, p) and ǫ 7→ γ(ǫ) is curve passing through p ∈M whose tangent

vector is Xp. The exterior derivative d : Ωp(M) → Ωp+1(M) is defined as the

unique operator satisfying

df ·X = Xf
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for f ∈ C∞(M), and

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α ∈ Ωk(M) and β ∈ Ωp−k(M). Hence, the exterior derivative is a deriva-

tion of unity degree over the graded algebra ⊕p
r=0Ω

p(M). By this construction, it

immediately follows that exterior derivative of a covectorfield is expressed as

dω · u ∧ v = u(ω · v) − v(ω · u) − ω · [u, v]. (2.4)

The exterior derivative of higher degree forms admit similar identities. Given a

Riemannian structure on M , the gradient of a function is defined as the sharpen-

ing of the exterior derivative; i.e., for each f ∈ C∞(M, p), the gradient is expressed

as ∇pf = (df)#
p .

Let M and N be smooth manifolds. If ϕ : M → N is a diffeomorphism,

then it induces an invertible linear transformation between the domain and target

tangent bundles. This induced map Dϕp : TpM → Tϕ(p)N is the differential of ϕ

at p ∈M defined for each function f ∈ C∞(M, p) as

(DϕX)pf = Xp(f ◦ ϕ). (2.5)

The pushforward ofX ∈ S∞(Tk(TM) →M) by ϕ is a section ϕ∗X ∈ S∞(Tk(TN), π,M)

defined as

ϕ∗Xp = Dϕϕ−1(p)Xϕ−1(p). (2.6)

Analogously, the differential map induces a linear transformation of covectors on

N to covectors on M through the adjoint of its exterior power:

(ΛkDϕ)∗p : Λk(T ∗
ϕ(p)N) → Λk(T ∗

pM). (2.7)
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This leads to a important natural isomorphism betweens forms on N and M

known as the pullback. Specifically, the pullback of the k-form ω ∈ Ωk(N) by

the diffeomorphism ϕ is a k-form ϕ∗ω ∈ Ωk(M) defined for each p ∈M by

ϕ∗ωp = (ΛkDϕ)∗p ωϕ(p). (2.8)

Explicitly we may write the pullback of ω by ϕ as

ϕ∗ωp · V1(p) ∧ . . . ∧ Vk(p) = ωϕ(p) ·DϕpV1(p) ∧ . . . ∧DϕpVk(p), (2.9)

where p ∈ M and V1, . . . , Vk are smooth sections of the tangent bundle. Note

that for the case of functions, the pullback is simply a change of coordinates.

As a generalized mechanism of coordinate change for higher order forms, the

pullback is an essential construction in differential calculus. The pullback and

pushforward are compactly related by the identity

ϕ∗X(ω) = ϕ∗ω ·X, (2.10)

where X is a vector field on M and ω is a 1-form. Furthermore, the pushforward

of a diffeomorphism is the pullback of its inverse.

Many of the familiar vector field operations in R
n, such as the curl and di-

vergence, can be generalized to a manifold setting through the Hodge star oper-

ator. This operator *: Ωp(V ) → Ω(n−p)(V ) is the unique isomorphism satisfying

≪ ∗α, σ ≫ µ = ∗α ∧ σ, (2.11)

where ≪ ·, · ≫ denotes a nondegenerate inner product on Ω(n−p)(V ), µ is a vol-

ume form on V , and σ is an (n − p)-form. If F is vector field on M , then the curl
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of F is intrinsically expressed on M as

curl(F ) = (∗dF ♭)#. (2.12)

Similarly, the divergence of F may be written

div(F ) =
(
d(∗F ♭)

)#
. (2.13)

A manifold with a smooth group structure is given the special status of a

a Lie group. Given a Lie group G and smooth manifold Q, the left action Φ :

G×Q→ Q of G on Q is the smooth map given by

(g, q) 7−→ Φ(g, q) = Φg(q) = g · q. (2.14)

The right action is defined analogously. The action of a group on itself is referred

to as translation. The tangent lift action ΦT : G× TQ→ TQ is the induced action

on the tangent bundle of Q:

(g, vq) 7−→ ΦT
g (vq) = TqΦg(vq), (2.15)

where, for classical reasons, T denotes the tangent map or linearization operator.

Similarly the cotangent lift action is the mapping ΦT ∗

: G× T ∗Q→ T ∗Q given by

(g, ωq) 7−→ ΦT ∗

g (ωq) = T ∗
q Φg−1ωq, (2.16)

where T ∗
q Φg−1 = (TqΦg−1)∗. If Φ denotes the left action of G on itself, then with

respect to a left invariant Riemannian structure on G,

ΦT ∗

g−1(ωg) =
(

TgΦg−1ω#
g

)♭

. (2.17)
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Given the vector space V, a Lie bracket [·, ·] : V × V → V is a bilinear,

antisymmetric operator satisfying the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (2.18)

for each X, Y, Z ∈ V . A Lie algebra is a vector space which is closed under a

Lie bracket. The bracket of vector fields on Q is a Lie bracket [[·, ·]] : S∞(TQ) ×

S∞(TQ) → S∞(TQ) defined for f ∈ C∞(M) as

[[X, Y ]]f = X(Y (f)) − Y (X(f)), (2.19)

forX, Y ∈ S∞(TM). A left invariant vector fieldX onG is a section of the tangent

bundle that is invariant is under the tangent lift action; i.e., for each g ∈ G and

f ∈ C∞(Q)

(TqΦg)Xqf = Xqf. (2.20)

The Lie bracket of vectors ξ, η ∈ TeG is defined as

[ξ, η] = [[Xξ, Xη]], (2.21)

where Xξ and Xη are left invariant extensions of ξ and η, respectively, in a neigh-

borhood of the identity. The tangent space of G at the identity, under the Lie

bracket (2.21), is referred to as the Lie algebra of G. The Lie algebra is isomor-

phic to the set of left invariant vector fields on G. An operator which is featured

prominently in the present work is the adjoint map adξ : g → g defined for each

ξ ∈ g as

adξη = [ξ, η]. (2.22)
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Let χ0, χ1, . . . , χn−1 be a basis for the Lie algebra g of an n-dimensional Lie

group and let χ0
∗, χ

1
∗, . . . , χ

n−1
∗ be the basis for g∗, the dual space of g. An explicit

expansion for the coadjoint action on ω ∈ g∗ in terms of the dual basis and struc-

ture coefficients for the Lie algebra is given for each ξ, η ∈ g as

ad∗ξω · η = ω · adξη

= ω · [ξ, η]

= ω · [ξiχi, ηjχj]

= ω · ξiηj [χi, χj]

=
(
ω · ξi[χi, χj ]

)
ηj

=
(
ω · ξi[χi, χj ]

)
χj∗ · η

=
(
ω · ξiΥk

ijχk
)
χj∗ · η

=
(

ωk ξ
i Υk

ij

)

χj∗ · η, (2.23)

where the structure constants Υk
ij are defined as

[χi, χj] = Υk
ijχk. (2.24)

Since η ∈ g is arbitrary,

ad∗ξω =
(

ωk ξ
i Υk

i,j

)

χj∗. (2.25)

Having introduced the necessary concepts of differential calculus, we now

develop a continuum description of a collection of agents.
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2.2 The Oriented Virtual Filament

An oriented particle is an abstract object consisting of a pair (R, γ), where R

is an element of the Special Orthogonal group and γ is an element of Euclidean

space. The space of oriented particles in R
n is identified with the n-dimensional

Special Euclidean group, represented as a set of matrices given by

SEn =













R γ

Ø 1







: R ∈ SOn, γ ∈ R
n







,

where SOn denotes the n-dimensional Special Orthogonal group, consisting of all

matrices with unity determinant, and Ø denotes a row vector containing n zeros.

It is elementary to show that SEn forms a Lie group under matrix multiplication

and inversion.

In the continuum setting, an oriented filament is modelled as a 1-dimensional

continuum of oriented particles. Formally a configuration of an oriented fila-

ment in R
n is a map from a 1-dimensional compact manifold with boundary Ω

into SEn. Hence a filament is a curve on SEn, with each material point uniquely

identified with an element of SEn. Clearly such a system evolves on an infinite

dimensional space. In order to effectively characterize its evolution, we develop

a manifold structure for the configuration space of filaments.

Let us denote by PQ = C∞(Q,P ) the set of smooth maps between manifolds

Q and P . Let Ω be a compact manifold and G a finite dimensional Lie group with

Lie algebra g. Define multiplication on GΩ pointwise as

(ψ1 · ψ2)(ω) = ψ1(ω) · ψ2(ω), (2.26)
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for each ψ1,ψ2 ∈ GΩ and ω ∈ Ω. Similarly, define inversion for each ψ ∈ GΩ as

ψ−1(ω) = (ψ(ω))−1, (2.27)

for each ω ∈ Ω. If e is the identity map on G, let id ∈ GΩ denote the constant map

Ω
id7−→ e. The natural geometry and algebraic structure of GΩ is established in the

following theorem.

Theorem 1. The set of maps GΩ, with group operations (2.26) and (2.27), is a separable

Hilbert Lie Group under the uniform convergence topology.

Proof. Let g be equipped with an inner product < ·, · >e and define an inner

product on gΩ as

< ξ, η >id=

∫

ω

< ξ(ω), η(ω) >e dω,

where ξ, η ∈ gΩ. We begin by showing that gΩ, equipped with a associated non-

degenerate inner product < ·, · >id, is a separable Hilbert space. Let ‖ · ‖e and

‖ · ‖id denote the standard induced norms on g and gΩ, respectively. Recall that

every finite dimensional inner product space is complete with respect to its in-

duced norm. Hence g is complete. Let {ηk} be a cauchy sequence in gΩ . By the

completeness of g, there exists η ∈ gΩ such that {ηk} converges pointwise to η. It

is necessary to show that this convergence is uniform. Let N denote the positive

integers. By pointwise convergence, for each ω ∈ Ω and ǫ > 0 there exist maps

µ : Ω → N and ρ : Ω → N such that for ρ(ω) > µ(ω)

‖ηρ(ω)(ω) − η(ω)‖e < ǫ. (2.28)
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By the compactness of Ω, the map µ attains a maximum, denoted by M, such that

for m > M

‖ηm(ω) − η(ω)‖e < ǫ, (2.29)

for each ω ∈ Ω. Since Ω is compact,
∫

Ω
dω is finite and positive. Therefore, for

ǫ > 0 there exists M > 0 such that for m > M

‖ηm(ω) − η(ω)‖e <
ǫ

√∫

Ω
dω
, (2.30)

for each ω ∈ Ω. Hence, given ǫ > 0, there exists M > 0 such that for m > M

‖ηm − η‖id =

√
∫

Ω

< ηm(ω) − η(ω), ηm(ω) − η(ω) >e dω

=

√
∫

Ω

‖ηm(ω) − η(ω)‖2
edω

<

√
∫

Ω

ǫ2
∫

Ω
dω
dω

= ǫ. (2.31)

Hence {ηk} converges uniformly to η. Since {ηk} is an arbitrary cauchy sequence,

gΩ is complete. Therefore (gΩ, < ·, · >id) is a Hilbert space.

To establish separability, we observe that for each η ∈ gΩ there exists

η0, . . . , ηn−1 ∈ C∞(Ω) such that for each ω ∈ Ω,

η(ω) = ηk(ω)χk, (2.32)

where χ0, . . . , χn−1 is a basis for g. Let L2(Ω) be the set of Lebesgue square inte-

grable function on Ω. Since Ω is compact, C∞(Ω) ⊆ L2(Ω). Hence (2.32) implies

that gΩ is a submodule of the Lie algebra g over the ring of L2 functions on Ω.
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Since L2(Ω) is separable, any finite module over L2(Ω) is separable. Hence gΩ is a

separable Hilbert space.

We proceed by showing that GΩ is a smooth Lie group modelled on the

separable Hilbert space gΩ. Recall that the uniform topology on GΩ admits the

subbase consisting of sets of form

B(U, V ) = {ρ ∈ GΩ | ρ(V ) ⊆ U}, (2.33)

where U ⊆ G and V ⊆ Ω are open and compact, respectively. Let Ue ⊆ G be an

open neighborhood of the identity in G that is diffeomorphic, by the exponential

map, to V , an open neighborhood of the origin in g. Define a neighborhood of

ψ ∈ GΩ as

Φψ(UΩ
e ) = {ψ · φ | φ ∈ UΩ

e }. (2.34)

Define the left translation of Ue by ψ as

Uψ =
⋃

ω∈Ω

{ψ(ω) · u | u ∈ Ue}. (2.35)

By continuity of translation on G, the image of Ue under left translation by ψ(ω)

for a fixed ω ∈ Ω is open. Thus Uψ in (2.35) is an infinite union of open sets; hence

it is open. We can now write

Φψ(UΩ
e ) = {ρ ∈ GΩ | ρ(Ω) ⊆ Uψ}. (2.36)

Since Uψ is open and Ω is compact, Φψ(UΩ
e ) is contained in the subbasis of the

uniform topology; hence it is open. Since the map Ω 7→ e is in UΩ
e , clearly ψ ∈

Φψ(UΩ
e ). Hence Φψ(UΩ

e ) is an open neighborhood of ψ.
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Let exp denote the exponential map on G and define the map Θψ : V Ω →

Φψ(UΩ
e ) as

Θψ(v)(ω) = Φψ(ω)

(

exp(v(ω))
)

, (2.37)

for each for each v ∈ V Ω and ω ∈ Ω. Since every pointwise convergent sequence

inGΩ is uniformly convergent in the uniform topology, the the pointwise smooth-

ness of an operator onGΩ with respect to the topology onG guarantees is smooth-

ness onGΩ. Since Θψ is clearly pointwise smooth onG, it is smooth in the uniform

topology on GΩ. Since ψ ∈ GΩ is arbitrary the following holds: For each ψ ∈ GΩ

there exist an open neighborhood of ψ that is diffeomorphic by Θψ to an open to

an open neighborhood of the origin in gΩ. Therefore GΩ is a smooth manifold.

It remains to be shown that the multiplication (2.26) and inversion (2.27)

operations are smooth. Since the multiplication (2.26) and inversion (2.27) oper-

ations inherit pointwise smoothness from the smooth group structure of G, they

are smooth maps on GΩ. Therefore GΩ is a smooth Lie Group modelled on the

separable Hilbert space gΩ.

A tangent vector v to GΩ at the point ϕ is a map from Ω into the tangent

bundle of GΩ. More precisely, if π denotes the canonical projection of TG onto G,

then v(ω) ∈ π−1(ϕ(ω)) for each ω ∈ Ω. The set of all such tangent maps constitutes

the tangent space of GΩ at the point ϕ. A Riemannian metric is defined on GΩ for

each ϕ ∈ GΩ and u, v ∈ TϕG
Ω by

< u, v >ϕ=

∫

Ω

< u(ω), v(ω) >ϕ(ω) dω, (2.38)

where < ·, · >g is a left invariant Riemannian metric on G.
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Given a Riemannian metric on G, the induced supremum topology on GΩ

coincides with the uniform convergence topology. Furthermore one can easily

show that locally GΩ is compact and admits unique geodesics. In fact the expo-

nential map for GΩ is defined as the pointwise exponential map on G. In the case

of a matrix Lie group such as SEn, the exponential map for SEΩ
n is obtained by

pointwise matrix exponentiation.
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Chapter 3

A Class of Virtual Filament Models

Having established the Lie group structure of the space of oriented fila-

ments, we now propose a class of dynamic filament models through a Lagrangian

formalism. As outlined earlier, the virtual filament dynamics will be governed

by the equations of motion for a constrained Lagrangian system. In an effort to

derive these governing equations, we first discuss filament kinematics and then

introduce a broad class of filament models defined in terms of a Lagrangian den-

sity. We then establish an intrinsic characterization of Lagrangian mechanics for

this class of models by appealing to the Lagrange D’Alembert Principle of Virtual

Work. The governing equations of motion are then derived as the central result

of this chapter. We conclude by showing that the governing equations for an

unconstrained, unforced mechanical system describe the evolution of extremal

maps for a natural cost functional. This foundational idea will establish a basis

for the model construction methodology introduced in the following chapter.

3.1 Oriented Filament Kinematics

In order to discuss the dynamics of a filament we must first establish a con-

vention for describing its kinematics. Let I be a time interval of R and let Ω be

a compact 1-dimensional manifold with boundary. Then Π = C∞(I, SEΩ
n ) repre-
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sents the space of filament trajectories. The flow of an oriented filament ϕ ∈ Π is

uniquely determined by a corresponding evolution ξ : I → seΩ
n on the Lie algebra

of GΩ; i.e.,

ϕt = TidΦϕξ, (3.1)

where the subscript t denotes partial differentiation and Φ denotes the left action

of SEΩ
n on itself. At each point t ∈ I, ϕ(t) is a map Ω → SEn. Hence ϕ may be

interpreted as an SEn-valued field over I × Ω. Therefore we naturally define a

partial spatial derivative of ϕ as

ϕω(t, ω) = (ϕ(t))ω(ω), (3.2)

for each t ∈ I and ω ∈ Ω. Under this notation, we write

ϕω = TidΦϕη, (3.3)

for some η : I → seΩ
n . Equations (3.1) and (3.3) constitute the filament kinemat-

ics. This temporal and spatial evolution on the group induces a kinematic flow

on the Lie algebra described by the partial differential equation in the following

proposition.

Proposition 1. Given a smooth map ϕ ∈ C∞(I, SEΩ
n ), let ξ = TϕΦϕ−1ϕt and η =

TϕΦϕ−1ϕω. Then

ηt = ξω − [ξ, η]. (3.4)
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Proof. Given that TidΦϕ = ϕ on GΩ, where G is a matrix Lie group,

ηt =
∂

∂t
(ϕ−1ϕω) = −ϕ−1ϕtϕ

−1ϕω + ϕ−1(ϕt)ω

= −ϕ−1ϕt (ϕ−1ϕω) + ϕ−1 ∂

∂ω

(

ϕ
(
ϕ−1ϕt

)
)

= −ϕ−1ϕt (ϕ−1ϕω)

+ϕ−1

(

ϕω ϕ
−1ϕt + ϕ

∂

∂ω
(ϕ−1ϕt)

)

= [ϕ−1ϕω, ϕ
−1ϕt] +

(
ϕ−1ϕt

)

ω

= [η, ξ] + ξω

This establishes the desired result.

This elementary kinematic relation is referred to as the compatibility con-

dition. A similar result for curves on a general Lie group is established in [4].

The compatibility condition is used extensively in our Lagrangian formulation of

filament dynamics.

We now proceed to develop a general theory of Lagrangian mechanics for

systems modeled on GΩ, where G is a general finite dimensional Lie group and Ω

is a compact manifold with boundary. This general theory is then applied to the

study of virtual filaments where G = SEn and Ω is a compact subset of R.

3.2 The Lagrangian Density Formulation

Consider a filament model that is both unconstrained and GΩ-invariant.

Then without external forcing, its evolution is governed by the classical Euler-

Poincare equations on the reduced quotient bundle TGΩ/GΩ ≃ gΩ. More gener-
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ally, we are interested in anisotropic models which do not admit GΩ-symmetry.

However, we would like to preserve the structure of the Euler Poincare equations.

Consequently, the approach taken here is to construct a Lagrangian model on the

trivialization of the tangent bundle. Therefore, the class of models proposed in

this section will be introduced through a Lagrangian defined on GΩ × gΩ, and

related bundles.

Let Σm = G ×
m+1

︷ ︸︸ ︷
g × g · · · × g and TmG =

m+1
︷ ︸︸ ︷

TG⊕ TG⊕ · · · ⊕ TG. Define the

bundle map φm : Σm → TmG as

φm(g, ξ, ~η) = (g, TidΦgξ, TidΦg~η), (3.5)

where (g, ξ, ~η) = (g, ξ, η1, η2, . . . , ηm) ∈ Σm. Then the bundle Σm → G is the

pullback bundle of TmG→ G under the isomorphism φm. Let Ψ = ΣΩ
0 ≃ GΩ × gΩ

and define φ : Ψ → TGΩ as

φ(ψ)(ω) = φ0(ψ(ω)), (3.6)

for each ψ ∈ Ψ and ω ∈ Ω. By construction of φ,

Ψ = φ∗TGΩ. (3.7)

Hence Ψ is the pullback bundle of TGΩ over GΩ. Furthermore, the pair (Ψ, φ) is

referred to as the trivialization of the tangent bundle TGΩ.

Consider a class of Lagrangians on Ψ of the form

L[ϕ, ξ] =

∫

Ω

L
(

ϕ(ω), ξ(ω), TϕΦϕ−1ϕω(ω), ξω(ω) − [ξ(ω), TϕΦϕ−1ϕω(ω)]
)

dω, (3.8)

where (ϕ, ξ, η, ζ) 7→ L(ϕ, ξ, η, ζ) is a smooth lagrangian density on Σ2. Here the

the Lagrangian density depends on the location of the filament, the temporal tem-
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poral velocity ξ, the spatial gradient η, and the time rate of change of the spatial

gradient. The final term is properly interpreted by the compatibility condition

(3.4) as the time rate of change of η.

It is important to note that (3.8) represents a broad class of Lagrangian mod-

els. Consider a system with a Lagrangian L defined on the tangent bundle TGΩ

which admits a local description in terms of Lagrangian density analogous to

(3.8). Then there exists a Lagrangian on Ψ of the form (3.8) which is the pullback

of L under the bundle map φ.

3.3 Lagrange D’Alembert Mechanics

We now outline an intrinsic theory of Lagrangian mechanics for smooth

manifolds as originally developed by Vershik and Gershkovich [17]. The lan-

guage adopted here is motivated by the subsequent work of Wang [18] and Yang

[19]. Given a smooth manifold M , a distribution of a vector bundle E
π→ M on

M ′ ⊆ M is a smooth assignment of a subspace of π−1(p) to each p ∈ M ′. Hence a

distribution of TM on M’ is a subbundle of the tangent bundle. A codistribution

of E∗ → M on M ′ ⊆M is similarly a subbundle which annihilates a correspond-

ing distribution on M ′.

Let Q be a smooth manifold and let σ1, . . . , σp ∈ C∞(TQ) be smooth, mu-

tually independent functions on the tangent bundle. Recall that functions σi :

TQ → R and σj : TQ → R are independent on U ⊆ TQ if ∀ c ∈ R there exists

p ∈ U such that σi(p) 6= σj(p). The functions σk induce a natural codimension p
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foliation of TQ. Furthermore, the p-dimensional subbundle of TQ given as

Cα = {v ∈ TQ | σk(v) = α ∀ k = 1, . . . , p}, (3.9)

is a leaf of this foliation for each α. Suppose that a physical system of interest is

constrained to the α-leaf of this induced foliation. (Note that the constraints can

always be chosen such that the system evolves on the zero leaf.) In this context,

the functions σ1, . . . , σp are interpreted as constraints, giving rise to the constraint

codistribution defined as

Ξ = span{dσk | k = 1, . . . , p}. (3.10)

An element of the constraint codistribution is called a constraint reaction force.

Let π be the canonical projection of the tangent bundle TQ → Q and define

τ : T ∗TQ→ T ∗TQ as the bundle isomorphism

τ = (Tπ)∗ρ∗,

where ρ : TqQ → T(q,v)TQ is the canonical isomorphism between the tangent

and vertical tangent space. Let L : TQ → R be a smooth Lagrangian and define

θL ∈ Ω1(Q) as

θL = τ ◦ dL.

Define ΘL by exterior differentiation as

ΘL = −dθL.

The Lagrangian force FL is defined as

FL(X) = ΘL(X, ·) − dHL, (3.11)
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where HL : TQ→ R is given by

HL = ρ∗dL− L.

Readers familiar with hamiltonian mechanics will note that when the lagrangian

force (3.22) vanishes, the present construction of the hamiltonian function HL

coincides with its classical definition. Informally then, one would expect the La-

grangian force to vanish along the trajectories of physical motion. In fact, for an

unconstrained and unforced system, this is essentially the Lagrange D’Alembert

Principle of Virtual Work. A more general and rigorous expression of this idea,

which incorporates constraints and external forcing, is presented below (see [17],

[18] and [19]).

Principle 1 (Lagrange D’Alembert Principle of Virtual Work). Let S be a system

with a lagrangian L subject to an external force FE and a set of constraints σ1, . . . , σp

with a corresponding constraint distribution Ξ. Then there exists F C ∈ τ(Ξ) such that

the trajectories of motion for S are integral curves of the special vector field X satisfying

FL(X) + FE + F C = 0 (3.12)

and

Ξ(X) = 0. (3.13)

We proceed by expressing the Lagrangian force in coordinates in order to

derive a more explicit representation of the force balancing equation (3.12). Since

we are ultimately interesting is studying an infinite dimensional system, the cal-

culus pursued in the subsequent derivation must reflect this generality. Given

27



that the manifold of oriented filaments is separable, one could express the deriva-

tion of forms by the usual construction of basis. However, we adopt a more

elegant approach by appealing to the abstract notion of exterior differentiation

introduced in Chapter 1. Let d be the unique exterior derivation on Q. Then the

2-form ΘL can be expressed in coordinates at (ϕ, v) ∈ TQ as

ΘL
(ϕ,v) · U ∧ V = −dθL · U ∧ V

= −
(

d
(
θL · V

)
· U − d

(
θL · U

)
· V − θL · [U, V ]

)

= −
(
DDvL · v1

)
· (u1, u2) +

(
DDvL · u1

)
· (v1, v2)

−θL · (dV · U) + θL · (dU · V ) − θL · [U, V ]

= −
(
DDvL · v1

)
· (u1, u2) +

(
DDvL · u1

)
· (v1, v2)

= −
(
DϕDvL · u1

)
· v1 −

(
DvDvL · u2

)
· v1 +

(
DϕDvL · v1

)
· u1

+
(
DvDvL · v2

)
· u1. (3.14)

Similarly the exterior derivative of the Hamiltonian can be expanded as

dHL
(ϕ,v) · V = d

(
ρ∗dL(ϕ, v) − L(ϕ, v)

)
· V

= d
(
DvL · v

)
· V − dL · V

= (DϕDVL · v1) · v + (DϕDvL · v2) · v +DvL · v2 −DϕL · v1 −DvL · v2

= (DϕDVL · v1) · v + (DvDvL · v2) · v −DϕL · v1. (3.15)

Therefore, given a principal vector field Xp(ϕ, v) = (v, w), the Lagrangian
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force may be expressed in coordinates as

FL
(ϕ,v)(X

p) · (u, z) = ΘL(Xp) · (w, z) − dHL · (w, z)

= −
(
DϕDvL · v

)
· u−

(
DvDvL · w

)
· u+

(
DϕDvL · u

)
· v

+
(
DvDvL · z

)
· v − (DϕDVL · u) · v − (DvDvL · z) · v +DϕL · u

= −
(
DϕDvL · v

)
· u−

(
DvDvL · w

)
· u+DϕL · u

=

(

DϕL−DϕDvL · v −DvDvL · w
)

· u (3.16)

The integral curve (ϕ, v) of a vector field X(ϕ, v) = (v, w) on the tangent

bundle is given in coordinates as (ϕ, v)t = (v, w). Equipped with this identifica-

tion, the Lagrangian force may be expressed as

FL
(ϕ,v)(X

p) · (u, z) =

(

DϕL−DϕDvL · v −DvDvL · w
)

· u

= DϕL(ϕ,v) · u−
(
d

dt
DvL(ϕ, v) −DvDvL(ϕ, v) · vt

)

· u

−(DvDvL(ϕ, v) · vt) · u.

=

(

DϕL(ϕ,v) −
d

dt
DvL(ϕ, v)

)

· u. (3.17)

Given an unconstrained Lagrangian system with no external forcing, the La-

grange D’Alembert Principle states that the Lagrangian force vanishes on the

special vector field whose integral curves are the trajectories of motion. Hence,

equation (3.17) implies that motion of such a system is governed by the classical

Euler-Lagrange equation:

DϕL− d

dt
DvL = 0. (3.18)

The elegance of this equation arises from its subtle abstractness and gener-

ality: The underlying calculus and smooth manifold structure which support this

29



equation are entirely unspecified.

3.4 The Euler-Lagrange Equations

There are two primary ideas that are addressed in this section. Letting

Q = TGΩ, an expression for the Lagrangian force is derived on the trivializa-

tion of TGΩ. This representation of the Lagrangian will be expressed abstractly,

ostensibly demanding an infinite dimensional calculus to evaluate. Hence the

second idea pursued in this section involves deriving a finite dimensional repre-

sentation of the Lagrangian force for models in the class of interest (3.22). These

formal concepts will be made explicit in the subsequent discussion.

We proceed by expressing the Lagrangian force in terms of the pullback

Lagrangian L define by

L = φ∗L, (3.19)

where φ is the bundle isomorphism between Ψ and TGΩ introduced in Section

3.2, and L is a smooth Lagrangian define on TGΩ. Observe that DϕL can be
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expressed in terms of L as

DϕL(ϕ,v) · u = Dϕφ∗L(ϕ,v) · u

= DϕL(φ−1(ϕ, v)) · u

= DϕL(ϕ, TϕΦϕ−1v) · u

= DϕL(ϕ, TϕΦϕ−1v) ·
(

Dϕφ
−1
(ϕ,v)(u)

)

+DξL(ϕ, TϕΦϕ−1v)) ·
(

Dvφ
−1
(ϕ,v)(u)

)

= DϕL(ϕ, TϕΦϕ−1v) · u

+DξL(ϕ, TϕΦϕ−1v) · (−TϕΦϕ−1u TϕΦϕ−1v). (3.20)

Similarly, the time derivative of the fiber derivative of L can be written as

d

dt
DvL(ϕ, v) · u =

d

dt

(
Dvφ∗L(ϕ,v)

)
· u

=
d

dt

(
DvL(φ−1(ϕ, v))

)
· u

=
d

dt

(
DvL(ϕ, TϕΦϕ−1v)

)
· u

=
d

dt

(
d

dǫ
L
(
ϕ, TϕΦϕ−1(v + ǫu)

)
∣
∣
∣
∣
ǫ=0

)

=
d

dt
(DξL(ϕ, TϕΦϕ−1v) · TϕΦϕ−1u)

=
d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

+DξL(ϕ, TϕΦϕ−1v) · d
dt

(TϕΦϕ−1u)

=
d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

−DξL(ϕ, TϕΦϕ−1v) · TϕΦϕ−1ϕtTϕΦϕ−1u)

=
d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

−DξL(ϕ, TϕΦϕ−1v) · TϕΦϕ−1v TϕΦϕ−1u. (3.21)
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Substituting (3.20)-(3.21) into (3.17) yields

FL
(ϕ,v)(X

p) · (u, z) =

(

DϕL(ϕ,v) −
d

dt
DvL(ϕ, v)

)

· u

= DϕL(ϕ, TϕΦϕ−1v) · u−DξL(ϕ, TϕLTϕΦ
ϕ−1v) · (TϕΦϕ−1u TϕΦϕ−1v)

− d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

+DξL(ϕ, TϕΦϕ−1v) · TϕΦϕ−1v TϕΦϕ−1u

= DϕL(ϕ, TϕΦϕ−1v) ·
(

TidΦϕTϕΦϕ−1

)

u

− d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

−DξL(ϕ, TϕLϕ−1v) · (TϕΦϕ−1u TϕΦϕ−1v)

+DξL(ϕ, TϕΦϕ−1v) · TϕΦϕ−1v TϕΦϕ−1u

= T ∗
idΦϕ

(

DϕL(ϕ, TϕΦϕ−1v)
)

· TϕΦϕ−1u

− d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

+DξL(ϕ, TϕLϕ−1v) · [TϕΦϕ−1v, TϕΦϕ−1u]

= ΦT ∗

ϕ−1

(

DϕL(ϕ, TϕΦϕ−1v)
)

· TϕΦϕ−1u

− d

dt
(DξL(ϕ, TϕΦϕ−1v)) · TϕΦϕ−1u

+ad∗TϕΦ
ϕ−1v

DξL(ϕ, TϕΦϕ−1v),

where ΦT ∗

ϕ−1 denotes the cotangent lift action induced byϕ−1. Let ∆L

(ϕ,TϕΦ
ϕ−1v)

(Xp) =

FL
(ϕ,v)(X

p) be defined as the lagrangian force on Ψ. Then ∆L is the pullback of FL

under the bundle isomorphism φ and may be written compactly as

∆L

(ϕ,ξ)(X
p) = ΦT ∗

ϕ−1DϕL(ϕ,ξ) −
d

dt
DξL(ϕ,ξ) + ad∗ξDξL(ϕ,ξ), (3.22)

LetX be the special vector field on Ψ satisfying the pullback by φ of both the
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constraint distribution equation (3.13) and equation (3.12). Then integral curves

on X , evolving on Ψ, will project onto the base manifold GΩ as the real trajec-

tories of motion for the constrained Lagrangian system S defined in Principle

1. More explicitly, the virtual filament will evolve along integral curves of the

special vector field satisfying

∆L(X) + ∆E + ∆C = 0, (3.23)

and

Ξ(X) = 0, (3.24)

where Ξ is now defined as a constraint distribution of Ψ on GΩ, ∆E is a section

of the bundle Ψ∗ → GΩ representing of the external force, and ∆C is similarly a

constraint reaction force.

The Lagrangian force in (3.22) involves derivatives defined on the infinite

dimensional manifold GΩ. Recall, however, that we are primarily interested in a

class of Lagrangians (3.8) defined locally in terms of a density. Using the abstract

notion of derivation introduced in Chapter 1, one can exploit this form of the

Lagrangian, offering a representation of the Lagrangian force in terms of finite

dimensional derivatives. Let µ be a differential p-form on GΩ. Then µ(ω) is a

finite dimensional form on G for each ω ∈ Ω. Therefore µ is effectively a map

from Ω into p-forms on G. This identification suggests that for each v ∈ T pGΩ,

µ · v =

∫

Ω

µ(ω) · v(ω)dω. (3.25)

Exploiting this natural connection between Ω-parameterized finite dimensional

forms and differential forms on GΩ yields the following result.
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Theorem 2. Let L : Ψ(G,Ω) → R be a smooth lagrangian given by

L[ϕ, ξ] =

∫

Ω

L
(

ϕ(ω), ξ(ω), TϕΦϕ−1ϕω(ω), ξω(ω) − [ξ(ω), TϕΦϕ−1ϕω(ω)]
)

dω,

where (ϕ, ξ, η, ζ) 7→ L(ϕ, ξ, η, ζ) is a smooth lagrangian density on Σ2. Then the la-

grangian force on Ψ is given by

∆L

(ϕ,η)(X
p) = ΦT ∗

ϕ−1DϕL(ϕ,ξ) −
∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL + ad∗η

(

DηL − ∂

∂t
DζL

)

+ B(ϕ, ξ), (3.26)

where η = TϕΦϕ−1ϕω, and B depends only on the boundary of Ω.

Proof. We begin by computing the constitutive elements of ∆L as given in (3.22).

For notational clarity all time arguments will be suppressed. Let ǫ 7→ ϕ(ǫ) be

a curve on GΩ passing through ϕ whose tangent vector at ϕ is u. Similarly, let

ξ(ǫ) = ξ + ǫ (TϕΦϕ−1u). Then

DϕL · u =
∂

∂ǫ
L(ϕ(ǫ), ξ)

∣
∣
∣
∣
ǫ=0

=

∫

Ω

DϕL(ω) · u(ω) +DηL(ω) ·
(
∂

∂ǫ
Tϕ(ǫ)Φϕ(ǫ)−1ϕω(ǫ, ω)

)∣
∣
∣
∣
ǫ=0

dω

−
∫

Ω

DζL(ω) · ∂
∂ǫ

[

ξ(ω), Tϕ(ǫ)Φϕ(ǫ)−1ϕω(ǫ, ω)

]

ǫ=0

dω. (3.27)

By an argument analogous to that offered in Proposition 1,

∂

∂ǫ
Tϕ(ǫ)Φϕ(ǫ)−1ϕω(ǫ)

∣
∣
∣
∣
ǫ=0

= [η, TϕΦϕ−1u] +
(
TϕΦϕ−1u

)

ω
. (3.28)
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Substituting (3.28) into (3.27) yields

DϕL · u = DϕL · u+

∫

Ω

DηL(ω) ·
(

[η(ω), TϕΦϕ−1u(ω)] +
(
TϕΦϕ−1u(ω)

)

ω

)

dω

−
∫

Ω

DζL(ω) ·
[

ξ(ω), [η, TϕΦϕ−1u(ω)] +
(
TϕΦϕ−1u(ω)

)

ω

]

dω

= DϕL · u+ ad∗ηDηL · (TϕΦϕ−1u) + DηL ·
(
TϕΦϕ−1u

)∣
∣
∂Ω

−
∫

Ω

∂

∂ω
(DηL)(ω) ·

(
TϕΦϕ−1u(ω)

)
dω −

∫

Ω

ad∗ηad
∗
ξDζL(ω) ·

(
TϕΦϕ−1u(ω)

)
dω

−
∫

Ω

DζL(ω) ·
[
ξ(ω),

(
TϕΦϕ−1u(ω)

)

ω

]
dω

= DϕL · u+ ad∗ηDηL · (TϕΦϕ−1u) − ∂

∂ω
(DηL) · (TϕΦϕ−1u)

−ad∗ηad∗ξDζL ·
(
TϕΦϕ−1u

)
−

∫

Ω

DζL(ω) · ∂

∂ω

[
ξ(ω), TϕΦϕ−1u(ω)

)
]dω

+

∫

Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω + DηL ·

(
TϕΦϕ−1u

)∣
∣
∂Ω

= DϕL · u+ ad∗ηDηL · (TϕΦϕ−1u) − ∂

∂ω
(DηL) ·

(
TϕΦϕ−1u

)

−ad∗ηad∗ξDζL ·
(
TϕΦϕ−1u

)
+

∫

Ω

∂

∂ω
(DζL)(ω) ·

[
ξ(ω), TϕΦϕ−1u(ω)

]
dω

+

∫

Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω + DηL ·

(
TϕΦϕ−1u

)∣
∣
∂Ω

− (DζL) ·
[
ξ, TϕΦϕ−1u

]∣
∣
∂Ω

(3.29)

= DϕL · u+ ad∗ηDηL · (TϕΦϕ−1u) − ∂

∂ω
(DηL) ·

(
TϕΦϕ−1u

)

−ad∗ηad∗ξDζL ·
(
TϕΦϕ−1u

)
+ ad∗ξ

(
∂

∂ω
DζL

)

·
(
TϕΦϕ−1u

)

+

∫

Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω + DηL ·

(
TϕΦϕ−1u

)∣
∣
∂Ω

− ad∗ξDζL · (TϕΦϕ−1u)
∣
∣
∂Ω

(3.30)
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Similarly the derivative of the Lagrangian L with respect to its second factor is

DξL · (TϕΦϕ−1u) =

∫

Ω

DξL(ω) · TϕΦϕ−1u(ω) dω

+

∫

Ω

DζL(ω) · ∂
∂ǫ
ξω(ǫ, ω)

∣
∣
∣
∣
ǫ=0

dω

−
∫

Ω

∂

∂ǫ
[ξ(ǫ, ω), TϕΦϕ−1ϕω(ω)]

∣
∣
∣
∣
ǫ=0

dω

= DξL · TϕΦϕ−1u+

∫

Ω

DζL(ω) · (TϕΦϕ−1u)ω dω

−
∫

Ω

DζL(ω) · [TϕΦϕ−1u, TϕΦϕ−1ϕω(ω)] dω

= DξL · TϕΦϕ−1u− ∂

∂ω
DζL · (TϕΦϕ−1u)

+ad∗ηDζL ·
(
TϕΦϕ−1u

)
+ DζL ·

(
TϕΦϕ−1u

)∣
∣
∂Ω
. (3.31)
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Computing the time derivative of DξL yields

d

dt
DξL · (TϕΦϕ−1u) =

∂

∂t
DξL · (TϕΦϕ−1u) − ∂

∂t ∂ω
DζL · TϕΦϕ−1u

+
∂

∂t
ad∗ηDζL ·

(
TϕΦϕ−1u

)
+

∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

=
∂

∂t
DξL · (TϕΦϕ−1u) − ∂

∂t ∂ω
DζL · (TϕΦϕ−1u)

+ad∗η
∂

∂t
DζL(ω) ·

(
TϕΦϕ−1u

)

+

∫

Ω

DζL(ω) · [ηt(ω), TϕΦϕ−1u(ω)]dω

+
∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

=
∂

∂t
(DξL) · (TϕΦϕ−1u) − ∂

∂t ∂ω
(DζL·)(TϕΦϕ−1u)

+ad∗η

(
∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)

+

∫

Ω

DζL(ω) ·
[

ξω(ω) − [ξ(ω), η(ω)], TϕΦϕ−1u

]

dω

+
∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

=
∂

∂t
(DξL) · (TϕΦϕ−1u) − ∂

∂t ∂ω
(DζL·)(TϕΦϕ−1u)

+ad∗η

(
∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)

+

∫

Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω

−
∫

Ω

DζL(ω) ·
[

[ξ(ω), η(ω)], TϕΦϕ−1u(ω)

]

dω

+
∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

. (3.32)

Finally we write the translation of DξL under the coadjoint action as

ad∗ξDξL · (TϕΦϕ−1u) = ad∗ξDξL · (TϕΦϕ−1u) − ad∗ξ

(
∂

∂ω
DζL

)

· (TϕΦϕ−1u)

+ad∗ξ
(
ad∗ηDζL

)
·
(
TϕΦϕ−1u

)

+ ad∗ξDζL ·
(
TϕΦϕ−1u

)∣
∣
∂Ω
. (3.33)
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Note that by the Jacobi identity on gΩ,

[
ξ, [η, TϕΦϕ−1u]

]
+

[
TϕΦϕ−1u, [ξ, η]

]
+

[
η, [TϕΦϕ−1u, ξ]

]
= 0 (3.34)

Hence substituting (3.29)-(3.33) into (3.22) yields

∆L

(ϕ,η)(X
p) · (u, z) = DϕL · u+ ad∗ηDηL · (TϕΦϕ−1u) − ∂

∂ω
(DηL) ·

(
TϕΦϕ−1u

)

−ad∗ηad∗ξDζL ·
(
TϕΦϕ−1u

)
+ ad∗ξ

(
∂

∂ω
DζL

)

·
(
TϕΦϕ−1u

)

+

∫

∂Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω + DηL ·

(
TϕΦϕ−1u

)∣
∣
∂Ω

− ad∗ξ(DζL) ·
(
TϕΦϕ−1u

)∣
∣
∂Ω

−
{
∂

∂t
(DξL) · TϕΦϕ−1u

− ∂

∂t ∂ω
(DζL) · (TϕΦϕ−1u) + ad∗η

(
∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)

+

∫

∂Ω

DζL(ω) ·
[
ξω(ω), TϕΦϕ−1u(ω)

]
dω

−
∫

∂Ω

DζL(ω) ·
[

[ξ(ω), η(ω)], TϕΦϕ−1u(ω)

]

dω

+
∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

}

+ ad∗ξDξL · TϕΦϕ−1u

−ad∗ξ
(
∂

∂ω
DζL

)

· (TϕΦϕ−1u) + ad∗ξ
(
ad∗ηDζL

)
·
(
TϕΦϕ−1u

)

+ ad∗ξDζL ·
(
TϕΦϕ−1u

)∣
∣
∂Ω

= DϕL · u− ∂

∂t
(DξL) · TϕΦϕ−1u+ ad∗ξDξL · (TϕΦϕ−1u)

− ∂

∂ω
(DηL) ·

(
TϕΦϕ−1u

)
+ ad∗ηDηL · (TϕΦϕ−1)u

+
∂

∂t ∂ω
(DζL) · (TϕΦϕ−1u) − ad∗η

(
∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)

+ DηL ·
(
TϕΦϕ−1u

)∣
∣
∂Ω

− ∂

∂t
(DζL) ·

(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

−ad∗ηad∗ξDζL ·
(
TϕΦϕ−1u

)
+DζL ·

[

[ξ, η], TϕΦϕ−1u

]

+ad∗ξ
(
ad∗ηDζL

)
·
(
TϕΦϕ−1u

)
.
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= DϕL · u− ∂

∂t

(
DξL

)
· (TϕΦϕ−1u) − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

· (TϕΦϕ−1u)

+ad∗ξDξL · (TϕΦϕ−1u) + ad∗η

(

DηL − ∂

∂t
DζL

)

· (TϕΦϕ−1u)

+

(

DηL− ∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

−DζL ·
(

[
ξ, [η, TϕΦϕ−1u]

]
+

[
TϕΦϕ−1u, [ξ, η]

]
+

[
η, [TϕΦϕ−1u, ξ]

]
)

= ΦT ∗

ϕ−1DϕL · (TϕΦϕ−1u) − ∂

∂t
DξL · (TϕΦϕ−1u) − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

· (TϕΦϕ−1u)

+ad∗ξDξL · (TϕΦϕ−1u) + ad∗η

(

DηL − ∂

∂t
DζL

)

· (TϕΦϕ−1u)

+

(

DηL− ∂

∂t
DζL

)

·
(
TϕΦϕ−1u

)
∣
∣
∣
∣
∂Ω

.

(3.35)

Therefore

∆L

(ϕ,η)(X
p) = ΦT ∗

ϕ−1DϕL− ∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL + ad∗η

(

DηL − ∂

∂t
DζL

)

+ B(ϕ, ξ),

where

B(ϕ, ξ) =

(

DηL − ∂

∂t
DζL

)∣
∣
∣
∣
∂Ω

. (3.36)

This yields the desired result.

For a manifold Ω without boundary, equation (3.36) shows that B in (3.26)

vanishes. Hence for closed curves, effectively modelled on Ω = S1, there is no

boundary term.

One of the fascinating aspects of this representation of the Lagrangian force

is the emergence of the term

DηL − ∂

∂t
DζL. (3.37)
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Since ζ is properly interpreted as ηt by the compatibility condition (3.4), this term

is simply the Euler-Lagrange operator. When the evolution of η coincides with

the extremal trajectory of some cost functional defined on gΩ, this term is identi-

cally zero.

3.5 A Comparative Analysis of Variational Calculus

In this section we consider the governing equations which characterized

extremal maps of a cost functional J : Π → R defined as

J(ϕ) =

∫

I

L
(
ϕ(t), TϕΦϕ−1ϕt(t)

)
dt, (3.38)

where I ⊆ R and L is a lagrangian defined on Ψ. The following theorem shows

that extremal maps of J satisfy the equations of mechanical motion for an uncon-

strained, unforced system with Lagrangian L.

Theorem 3. Given a lagrangian density L related to L by (3.8), extremal maps of (3.38)

satisfy

ΦT ∗

ϕ−1DϕL(ϕ,ξ) −
∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL + ad∗η

(

DηL − ∂

∂t
DζL

)

+ B(ϕ, ξ) = 0. (3.39)

Proof. Let δϕ =
d

dǫ
ϕǫ

∣
∣
∣
∣
ǫ=0

where ϕǫ is a smooth 1-parameter variation agreeing

with ϕ on ∂I . Since η = ϕ−1ϕω,

δη = δ(ϕ−1)ϕω + ϕ−1δ(ϕω)

= −ϕ−1δϕϕ−1ϕω + ϕ−1δ(ϕω)

= −ϕ−1δϕη + ϕ−1δ(ϕω). (3.40)
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Similarly, we observe that

(ϕ−1δϕ)ω = (ϕ−1)ωδϕ+ ϕ−1δϕω

= −ϕ−1ϕωϕ
−1δϕ+ ϕ−1δϕω

= −ηϕ−1δϕ+ ϕ−1δϕω. (3.41)

Rearranging the above equation yields

ϕ−1δϕω = (ϕ−1δϕ)ω + ηϕ−1δϕ. (3.42)

Substituting (3.42) into (3.40) yields

δη = −ϕ−1δϕη + (ϕ−1δϕ)ω + ηϕ−1δϕ

= (ϕ−1δϕ)ω + ηϕ−1δϕ− ϕ−1δϕη

= (ϕ−1δϕ)ω + [η, ϕ−1δϕ].

Under the identification ζ = ηt, observe that δζ = (δη)t. Therefore, since δϕ
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vanished on ∂I, the first variation of J is

δJ

δϕ
· δϕ =

d

dǫ

∫

I

∫

Ω

L(ϕǫ, ξǫ, ηǫ, ζǫ) dω dt

∣
∣
∣
∣
ǫ=0

=

∫

I

∫

Ω

DϕL · δϕ+DξL · δξ +DηL · δη +DζL · (δη)t dω dt

=

∫

I

∫

Ω

{

DϕL · δϕ+DξL ·
(

(ϕ−1δϕ)t + [ξ, ϕ−1δϕ]
)

+DηL ·
(
(ϕ−1δϕ)ω + [η, ϕ−1δϕ]

)

+DζL ·
(
(ϕ−1δϕ)ω + [η, ϕ−1δϕ]

)

t

}

dω dt

=

∫

I

∫

Ω

{

DϕL · δϕ− ∂

∂t
DξL · ϕ−1δϕ+DξL · ϕ−1δϕ|∂I +DξL · adξϕ−1δϕ

− ∂

∂ω
DηL · ϕ−1δϕ+DηL · ϕ−1δϕ|∂Ω +DηL · adηϕ−1δϕ

− ∂

∂t
DζL ·

(
(ϕ−1δϕ)ω + adηϕ

−1δϕ
)

+DζL ·
(
(ϕ−1δϕ)ω + [η, ϕ−1δϕ]

)
|∂I

}

dω dt

=

∫

I

∫

Ω

{

ΦT ∗

ϕ−1DϕL · ϕ−1δϕ− ∂

∂t
DξL · ϕ−1δϕ+ ad∗ξDξL · ϕ−1δϕ

− ∂

∂ω
DηL · ϕ−1δϕ+DηL · ϕ−1δϕ|∂Ω + ad∗ηDηL · ϕ−1δϕ

∂

∂ω

∂

∂t
DζL · ϕ−1δϕ− ∂

∂t
DζL · ϕ−1δϕ|∂Ω − ad∗η

∂

∂t
DζL · ϕ−1δϕ

}

dω dt

=

∫

I

∫

Ω

{

ΦT ∗

ϕ−1DϕL − ∂

∂t
DξL + ad∗ξDξL − ∂

∂ω
DηL +DηL|∂Ω + ad∗ηDηL

∂

∂ω

∂

∂t
DζL − ∂

∂t
DζL|∂Ω − ad∗η

∂

∂t
DζL

}

· ϕ−1δϕ dω dt

=

∫

I

∫

Ω

{

ΦT ∗

ϕ−1DϕL − ∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL

+ad∗η

(

DηL− ∂

∂t
DζL

)

+

(

DηL− ∂

∂t
DζL

)∣
∣
∣
∣
∂Ω

}

· ϕ−1δϕ dω dt

=

∫

I

∫

Ω

{

ΦT ∗

ϕ−1DϕL − ∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL

+ad∗η

(

DηL− ∂

∂t
DζL

)

+ B(ϕ, ξ)

}

· ϕ−1δϕ dω dt,

where B =

(

DηL − ∂

∂t
DζL

)∣
∣
∣
∣
∂Ω

. Setting the first variation of J equal to zero

and applying the Fundamental Lemma of Variational Calculus yields the desired
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result.

Comparing Theorems 2 and 3 suggests that that governing equation for an

unconstrained system without external forcing (3.8) coincides with the evolution

of extremal trajectories of the related cost functional (3.38). This observation is

important since, in subsequent work, we will construct a particular Lagrangian

for a virtual filament by appealing to a purely variational argument. The essen-

tial reasonableness of this model will arise from this fact that, in the absence of

external forcing and constraints, a mechanical system with Lagrangian L evolves

as an extremal map of J .
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Chapter 4

A Virtual Filament Model with Nonholonomic Constraints

We now consider a particular Lagrangian model of a filament evolving as

a curve on SE2. In the following section we begin by arguing for a reasonable

set of local and global control objectives. In an effort to achieve these objectives,

we judiciously establish a Lagrangian density for a virtual filament. This La-

grangian construction is pursued without regard to either constraints or external

forcing. As noted earlier, the equations of motion for an unforced Lagrangian

system without constraints are simply the classic Euler-Lagrange equations. Yet

these constitute the first order necessary conditions for extremal maps of a nat-

urally induced cost functional (see discussion in Section 3.5). Hence it is rea-

sonable to construct a Lagrangian density which consists additively of elements

which ought to be extremized. In this sense, the model construction is motivated

by a variational principle. However, since the complete model will involve non-

holonomic constraints, it is important to understand that the model equations for

the virtual filament, derived subsequently, describe the evolution of a mechanical

system and not extremal maps of a cost functional.

Having established a reasonable Lagrangian, the appropriate external forc-

ing and constraints will be introduced. We then apply the Lagrange D’Alembert

Principle of Virtual Work, deriving the governing partial differential equations

44



of mechanical motion for this virtual filament. Since the proposed Lagrangian is

degenerate, the governing equations lack uniqueness. However, an appropriate

choice of the Lagrange multipliers, which enter through the constraints, leads to

a natural set of well-posed equations. Hence we interpret these multipliers as

control parameters for our virtual system and study the induced flow of the fil-

ament under a particular choice of these parameters. In particular we will show

that integral curve orbits of the orientation field are invariant under this flow.

In the final section of this chapter, we simulate a filament aligning with various

orientation fields of interest.

4.1 The Lagrangian Density

There are two primary control objectives for the evolution of the virtual

filament which will be formalized in the context of the subsequent discussion.

Globally it is necessary to align the orientation of the filament with a fixed pla-

nar vector field called the orientation field. Naturally, we must first make sense

of what is meant by filament orientation. The second objective is that geodesic

stretching of the filament be marginalized.

We begin by addressing the mechanism for global control of the filament

and then proceed to local considerations. Here particular care must be taken

to develop the appropriate language for describing the alignment of a virtual

filament with an orientation field. Let E2 denote the Euclidean plane equipped

with the standard Euclidean inner product < ·, · > and induced norm ‖ · ‖. Let γ
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denote the canonical Euclidean projection of the vector bundle

SOΩ
2 →֒ SEΩ

2

γ ↓

E
Ω
2 .

Then the linearization Dγ is the canonical projection of TSEΩ
2 onto E

Ω
2 . Similarly,

let R denote the canonical rotational projection for the bundle SEΩ
2

R→ SOΩ
2 . Then

R(GΩ) acts naturally as a Lie group on E2. Let ϕ ∈ C∞(I, SEΩ
2 ) represent a typical

trajectory of a filament. The orientation or flow of the filament is defined as the

planar vector field Dγϕ(ϕt(t, ·)) along the curve γ(ϕ(t, ·)). Observe that

Dγϕ
(
(ϕt(t, ·)

)
= γt(ϕ)

= R(ϕ)E(ξ), (4.1)

where E denotes the canonical coordinate map for the projection of se2 onto the

subalgebra spanned by the basis elements χ1 and χ2. Consequently R(ϕ) is often

referred to as the orientation of the filament ϕ.

We adopt the standard notational convection for vectors in the Euclidean

plane, representing elements of E2 as column vectors and dual elements as row

vectors. Let D : E2 → E2 be a smooth vector field representing the desired orien-

tation of the filament. Let F1 : GΩ → R and F2 : GΩ → R be smooth maps such

that ϕ→
(
F1(ϕ) F2(ϕ)

)
, a section of the dual E2 bundle over GΩ, annihilates the

vector field ϕ 7−→ R−1(ϕ)D(γ(ϕ)); in particular we choose






F1(ϕ)

F2(ϕ)







= R−1(ϕ)
D(ϕ)⊥

‖D(ϕ)‖ , (4.2)
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where D⊥ is the vector orthogonal to D obtained by counterclockwise rotation in

the plane by
π

2
radians. Note that Fα is well defined for any nonvanishing orien-

tation field D. Let χ0, χ1, χ2 be a basis for seΩ
2 with nonzero structure coefficient

signature

Υ2
01 = 1 Υ2

10 = −1 Υ1
02 = −1 Υ1

20 = 1. (4.3)

Let χ0
∗, χ

1
∗, χ

2
∗ denote the dual basis. Define the map F : SEΩ

2 → (se∗2)
Ω as

F(ϕ) = Fα(ϕ)χα∗ . (4.4)

By construction, F preserves a unit norm. Furthermore, if γ = γ(ϕ), then by the

kinematics (3.1),

F · ξ =
(
F1 F2

)
· (ξ1 ξ2)T

=
(
F1 F2

)
· R−1γt

=
(
F1 F2

)
· R−1

(

< D, γt >
D

‖D‖+ < D⊥, γt >
D⊥

‖D‖

)

= < D, γt >
(
F1 F2

)
· R−1 D

‖D‖+ < D⊥, γt >
(
F1 F2

)
· R−1 D

⊥

‖D‖

= < D⊥, γt >

(
R(ϕ)−1D⊥

)♭

‖D‖ · R−1 D
⊥

‖D‖

= < D⊥, γt >
‖R(ϕ)−1D⊥‖2

‖D‖2

= < D⊥, γt > (4.5)

Therefore |F · ξ| is a measure of the misalignment of the current orientation γt

and the desired orientation D. In particular, when γt and D are aligned, |F ·

ξ| = 0. Similarly, |F · ξ| is maximized when γt and D⊥ are aligned (maximum

misalignment withD). Clearly then the square of µ = F ·ξ ought to be minimized
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to encourage alignment of γt with D; hence it will be incorporated additively in

the lagrangian density.

In terms of local considerations, the primary concern is to avoid the col-

lapse or excessive expansion of the formation. In a continuum setting, this sort

of behavior is discouraged infinitesimally by penalizing flows which lead to ei-

ther contraction or elongation of the filament. We proceed by characterizing the

non-stretching flow of a filament by introducing a geodesic distance measure. Let

ω0, ω1 ∈ Ω and define the length of the filament from ω0 to ω1 as

δ(t) =

∫ ω1

ω0

‖γω(t, ω)‖ dω. (4.6)

Then

dδ(t)

dt
=

∫ ω1

ω0

< γtω(t, ω), γω(t, ω) >

‖γω(t, ω)‖2
dω. (4.7)

Clearly if < γt′ω(t, ω), γω(t
′, ω) >= 0 on (ω0, ω1), then there is no change in length

of the filament at time t = t′; i.e.,
dδ(t′)

dt
= 0. The converse is similarly true

in the limit as ω0 → ω1. Hence the flow is non-stretching at t = t′ if and only if

< γtω(t
′, ω), γω(t

′, ω) >= 0. Note that ∂
∂t
R(ϕ) = R(ϕ)Q(ϕ) for some antisymmetric

Q. Hence

< γtω, γω > = <
∂

∂t

(

R(ϕ)(η1 η2)T
)

,R(ϕ)(η1 η2)T >

= <
∂

∂t

(
R(ϕ)

)
(η1 η2)T + R(ϕ)(η1 η2)Tt ,R(ϕ)(η1 η2)T >

= < R(ϕ)Q(ϕ)(η1 η2)T + R(ϕ)(η1 η2)Tt ,R(ϕ)(η1 η2)T >

= < Q(ϕ)(η1 η2)T + (η1 η2)Tt , (η
1 η2)T >

= ηαηαt .

48



We define the stretch rate at time t and material point ω as

τ(t, ω) =
1

2

νt(t, ω)

ν(t, ω)
. (4.8)

where ν = ‖γω(t, ω)‖2. Therefore

τ =
ηαηαt
ν

. (4.9)

Penalizing τ is equivalent to penalizing the change in geodesic distance between

material points of the filament. Hence, incorporating the symmetry breaking

term µ and the stretching penalty τ , we consider the Lagrangian density given

by

L(ϕ, ξ, η, ζ) =
A
2
µ2(ϕ, ξ) +

B
2
τ 2(η, ζ), (4.10)

where A and B are constants. Here, ζ is interpreted as the partial time derivative

of η by definition of the Lagrangian density (3.8) and compatibility condition

(3.4). Hence τ is expressed as

τ(η, ζ) =
E∗(η) · ζ

ν
, (4.11)

where E∗(η) denotes the dual of E(η). This filament model admits an SOΩ
2 sym-

metry group. This fact is partially obscured by the absorption of vector field D

in the dual vector field F . However, recall that D depends only on the Euclidean

component of GΩ and, by construction, τ depends only on the flow of the projec-

tion γ(ϕ).
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4.2 The Lagrangian Force

We now compute ∆L, the Lagrangian force on Ψ, given by equations (3.26).

The partial derivative at σ = (g, ξ, η, ζ) ∈ Σ2 in the direction u ∈ TϕSE2 of the

Lagrangian density with respect to its first factor is given by

DϕLσ · u =
A
2
Dϕ(µ

2(ϕ, ξ)) · u

= Aµ Dϕ(Fαχ
α
∗ · ξ) · u

= Aµ (dFα · u)(χα∗ · ξ)

= Aµ (dFαξ
α) · u. (4.12)

Hence,

DϕLσ = Aµ dFαξ
α. (4.13)

Note that

Fα(ϕ) =

(
R−1(ϕ)D⊥

)α

‖D‖ , (4.14)

where components are taken with respect to {ei}, the standard basis for E2. Here

we have employed the established convention that a covector superscripted by α

denotes the α component of that covector. Let D̄ =
D

‖D‖ denote the normalization

of D. Then

∂D̄⊥

∂ϕ
· ϕu =

∂

∂ϕ
D̄⊥(γ(ϕ)) · ϕu

=

(
∂

∂γ
D̄⊥(γ(ϕ)) · ∂γ

∂ϕ

)

· ϕu

=

(
∂

∂γα
D̄⊥(γ(ϕ))eα ·

∂γαeα
∂ϕ

)

· ϕu

=
∂

∂γα
D̄⊥(γ(ϕ)) dγα · ϕu. (4.15)
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Therefore, exploiting the form of F ,

dFα · ϕu = −
(

R−1(ϕ)

(
∂R

∂ϕ
· ϕu

)

R−1(ϕ)
D⊥

‖D‖

)α

+

(

R−1∂D̄
⊥

∂γ
dγ · ϕ u

)α

= −
(

(−F2 F1)
T
)α

ΦT ∗

ϕ χ0
∗ · ϕ u+

(

R−1∂D̄
⊥

∂γβ

)α

dγβ · ϕ u.

More explicitly, we write

dF1(ϕ) = F2 ΦT ∗

ϕ χ0
∗ +

∂F1

∂γα
dγα, (4.16)

and

dF2(ϕ) = −F1 ΦT ∗

ϕ χ0
∗ +

∂F2

∂γα
dγα. (4.17)

Equations (4.12), (4.16) and (4.17) imply that the cotangent lift of DϕL induced by

ϕ−1 is given by

ΦT ∗

ϕ−1DϕLσ = AµΦT ∗

ϕ−1

(

F2 ΦT ∗

ϕ χ0
∗ +

∂F1

∂γα
dγα

)

ξ1

+AµΦT ∗

ϕ

(

− F1 ΦT ∗

ϕ χ0
∗ +

∂F2

∂γα
dγα

)

ξ2

= Aµ(F2ξ
1 − F1ξ

2) χ0
∗ + Aµ

(
∂F1

∂γ1
ξ1 +

∂F2

∂γ1
ξ2

)

ΦT ∗

ϕ−1 dγ1

+Aµ
(
∂F1

∂γ2
ξ1 +

∂F2

∂γ2
ξ2

)

ΦT ∗

ϕ−1 dγ2

= Aµ(F2ξ
1 − F1ξ

2) χ0
∗ + Aµ ∂µ

∂γα
ΦT ∗

ϕ−1 dγα. (4.18)

In order to simplify the notation, define Γ as

Γβα(ϕ) =

(

R−1(ϕ)
∂Fα(ϕ)

∂γ

)β

. (4.19)
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Then

∂µ

∂γα
ΦT ∗

ϕ−1dγα =

(
∂µ

∂γα
ϕ−1χα

)♭

=

((

R−1∂µ

∂γ

)α

χα

)♭

=

(

R−1∂Fβ

∂γ
ξβ

)α

χα∗

= Γαβξ
βχα∗ . (4.20)

In this notation,

ΦT ∗

ϕ−1DϕLσ = Aµ(F2ξ
1 − F1ξ

2) χ0
∗ + Aµ Γαβξ

βχα∗ . (4.21)

We now compute the the partial derivative of L with respect to its second

factor. This is given by

DξLσ = AµF . (4.22)

Therefore by equation (2.25) and the Lie algebra structure constants (4.3),

ad∗ξω = (ω1ξ
2 − ω2ξ

1)χ0
∗ + (ω2ξ

0)χ1
∗ − (ω1ξ0)χ2

∗, (4.23)

for each ω = ωkχ
k
∗ ∈ se∗(2) and ξ = ξkχk ∈ se(2). Therefore

ad∗ξDξLσ = Aµ
(

(F1ξ
2 − F2ξ

1)χ0
∗ + F2ξ

0χ∗1 −F1ξ
0χ2

∗

)

= Aµ
(

(F1ξ
2 − F2ξ

1)χ0
∗ − ξ0F⊥

)

, (4.24)
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where F⊥ = −F 2χ1
∗ + F 1χ2

∗. Then the time derivative of DξL is given by

∂

∂t
DξL = AµtF + AµFt

= AµtF + Aµ
(
∂F
∂ϕ

· ϕt
)

= AµtF + Aµ (χα∗ ⊗ dFα · ϕt)

= AµtF + AµF2ξ
0χ1

∗ +

((
∂F1

∂γα
dγα

)

· ϕt
)

χ1
∗

−AµF1ξ
0χ2

∗ +

((
∂F2

∂γα
dγα

)

· ϕt
)

χ2
∗.

= AµtF −Aµ ξ0F⊥ + Aµ
(
∂F1

∂γ
· γt

)

χ1
∗

+Aµ
(
∂F2

∂γ
· γt

)

χ2
∗

= AµtF −Aµ ξ0F⊥ + Aµ
(
∂Fα

∂γ
· γt

)

χα∗ . (4.25)

Note that in term of Γ we can write

(
∂Fα

∂γ
· γt

)

χα∗ =

(

R−1∂Fα

∂γ

)

· E(ξ)χα∗

=

(

R−1∂Fα

∂γ

)β

ξβχα∗

= Γβαξ
βχα∗ . (4.26)

Therefore

∂

∂t
DξL = AµtF −Aµ ξ0F⊥ + Aµ Γβαξ

βχα∗ . (4.27)

Similarly, observe that the partial derivative of the Lagrangian density with re-

spect to η is given as

DηLσ = Bτ
(
ζα

ν
χα∗ − ηαζα

ν2

(

2ηαχα∗

))

= Bτ
(
ζα

ν
− 2 τ

ηα

ν

)

χα∗

= Bτ
ν

(
E∗(ζ) − 2 τE∗(η)

)
. (4.28)
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Similarly,

DζLσ = Bτ η
α

ν
χα∗ = Bτ

ν
E∗(η). (4.29)

The time derivative of DζL is given by

∂

∂t
DζLσ = Bτt

ηα

ν
χα∗ + Bτ

(ηαt
ν

− ηα

ν2
νt

)

χα∗

= Bτt
ηα

ν
χα∗ + Bτ

(ηαt
ν

− 2 τ
ηα

ν

)

χα∗

= Bτt
ν
E∗(η) + Bτ

ν

(

E∗(ζ) − 2 τE∗(η)
)

. (4.30)

Let ψ = DηLσ − ∂
∂t
DζLσ. Then because the Lagrangian density is symmetric with

respect to η and ζ , equations (4.28) and (4.30) yield

ψ = Bτ
ν

(
E∗(ζ) − 2 τE∗(η)

)
− Bτt

ν
E∗(η)χα∗ − Bτ

ν

(

E∗(ζ) − 2 τE∗(η)
)

= −Bτt
ν
E∗(η). (4.31)

Therefore, the coajoint action applied to ψ is given as

ad∗ηψ = −Bτt
ν
ad∗ηE∗(η)

= −Bτt
ν
η0

(
η2χ1

∗ − η1χ2
∗

)
. (4.32)

Also the spacial derivative of that quantity ψ is

ψω = −B ∂

∂ω

(τt
ν

)

E∗(η) − Bτt
ν
E∗(ηω). (4.33)

Appealing to Theorem 2 and equations (4.18), (4.24) and (4.27), we write the

54



Lagrangian force on Ψ is as

∆L
(ϕ,ξ)(X

p) = ΦT ∗

ϕ−1DϕL − ∂

∂t
DξL − ∂

∂ω

(

DηL − ∂

∂t
DζL

)

+ ad∗ξDξL + ad∗η

(

DηL − ∂

∂t
DζL

)

= Aµ(F2ξ
1 − F1ξ

2) χ0
∗ + AµΓαβξ

βχα∗

−
(

AµtF −Aµξ0F⊥
)

−Aµ Γβαξ
βχα∗

−ψω + Aµ
(

(F1ξ
2 −F2ξ

1)χ0
∗ − ξ0F⊥

)

+ ad∗ηψ

= ad∗ηψ − ψω + Aµ Γαβξ
βχα∗ −Aµ Γβαξ

βχα∗ −AµtF

= ad∗ηψ − ψω −AµtF + Aµ
∑

α6=β

ξβ
(

Γαβ − Γβα

)

χα∗ .

The difference Γ2
1 − Γ1

2 can be expressed purely in terms of D. Under the identifi-
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cation R = [X,X⊥],

Γ1
2 − Γ2

1 = <

(

R−1∂F2

∂γ

)

, e1 > − <

(

R−1∂F1

∂γ

)

, e2 >

= <

(

R−1∂F2

∂γ

)

, e1 > − <

(

R−1∂F1

∂γ

)

, e2 >

= <

(

R−1 ∂

∂γ
< X⊥, D̄⊥ >

)

, e1 > − <

(

R−1 ∂

∂γ
< X, D̄⊥ >

)

, e2 >

= Xk < X⊥,
∂D̄⊥

∂γk
> −X⊥

k < X,
∂D̄⊥

∂γk
>

= XkX
⊥
i

∂D̄⊥
i

∂γk
−X⊥

k Xi

∂D̄⊥
i

∂γk

= (XkX
⊥
i −X⊥

k Xi)
∂D̄⊥

i

∂γk

=
∑

i6=k

(XkX
⊥
i −X⊥

k Xi)
∂D̄⊥

i

∂γk

= (X1X
⊥
2 −X⊥

1 X2)
∂D̄⊥

2

∂γ1
+ (X2X

⊥
1 −X⊥

2 X1)
∂D̄⊥

1

∂γ2

=
∂D̄⊥

2

∂γ1
− ∂D̄⊥

1

∂γ2

=
∂

∂γ1

D1

‖D‖ +
∂

∂γ2

D2

‖D‖

= ∇ · D

‖D‖ , (4.34)

where ∇· denote the divergence operator on E2. Therefore the Lagrangian force

on Ψ can be expressed as

∆L
(ϕ,ξ)(X

p) = ad∗ηψ − ψω −AµtF + Aµ
∑

α6=β

(−1)βξβ
(

∇ · D

‖D‖

)

χα∗ . (4.35)

Having established the Lagrangian force corresponding to the density (4.10), we

proceed in the following section to complete the model by developing the appro-

priate constraints and externally applied force.

56



4.3 External Forcing and Constraints

As noted earlier, the coordination of multiple unmanned arial vehicles is

a primary application of interest for this work. In the interest of conserving fuel

and maintaining a fixed elevation, it is often desired that the speed of each vehicle

remain constant. As a result, we consider here a nonholomically constrained

filament with fixed speed; specifically we require ‖γt(ϕ)‖ = v, for a fixed constant

v > 0. Since γt(ϕ) = R(ϕ)E(ξ), the constant speed constraint is equivalent to

requiring ‖E(ξ)‖ = v.

Suppose that orientation R(ϕ) is interpreted as a pair of framing vectors for

the curve by the identification R(ϕ) = [X(ϕ), X⊥(ϕ)]. Then we define an adapted

flow as one for which γt(ϕ) = X(ϕ). Since we have no particular concern for the

nature of this framing, we chosen an adapted flow to simplify the calculations.

Coupled with the constant speed constraint, we chose the two constraints σ1 :

Ψ → R and σ2 : TΨ → R given as

σ1(ϕ, ξ) = χ1
∗ · ξ − v,

σ2(ϕ, ξ) = χ2
∗ · ξ. (4.36)

Under these constraints µ = F1v. Similarly, to simplify notation, let ρ = F2. In

coordinates, dσ1(ϕ, ξ) = (0, χ1
∗) and dσ2(ϕ, ξ) = (0, χ2

∗). Therefore, by (3.10), the

constraint distribution on Ψ is given by

Ξ(ϕ, v) = {λ1(0, χ
1
∗) + λ2(0, χ

2
∗) | λ1, λ2 ∈ R}.

Therefore all constraint reaction forces will lie in Ξ.
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We now seek to establish a reasonable external forcing on the filament. One

of the difficulties in studying equations which arise purely from a variational

principle is the lack of dissipation. The latter is an essential mechanism for con-

vergence of the filament to an established orientation field. We consider the ex-

ternal force represent by the covector

∆E = −AµS(ρ)F , (4.37)

where S denotes a sigmoidal function which inherits the sign of its argument

and satisfies

lim
|ρ|→1

|S(ρ)| = s(ρ), (4.38)

where s denotes the sign of ρ.

Incidentally, ∆E = −AS(ρ)DξL for the Lagrangian density (4.10). Since µ

is a measure of misalignment, the ∆E is zero when the filament achieves align-

ment with D. Also, since the vector (F1,F2)
T is a representation of D̄⊥ in the

frame R(ϕ) = [X(ϕ), X⊥(ϕ)], the covector ∆E reflects a force proportional to

the misalignment that is directed perpendicular to D. The choice of orientation

along this perpendicular direction is governed by the sign of ρ = F2. Recall that

the proposed lagrangian density does not distinguish between flows which align

with D and those which align with its negation. Hence ρ appears in the external

force as the mechanism for resolving this ambiguity. Observe that ρ is positive

when the angle between the direction of motion and the vector D is acute and

negative otherwise. This leads to rotation towards alignment with D and away
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from −D. Consequently the external force ∆E may conceptually be interpreted

as a proportional controller guiding the orientation of the filament towards D.

4.4 The Virtual Filament Equations

Drawing from the forgoing work, we now write down the mechanical equa-

tions of motion for our virtual filament as given by Principle 1. Given the La-

grangain force (3.17), the governing dynamics for a Lagrangian system with den-

sity (4.10), constraints (4.36), and external forcing (4.37), are given by the pair of

equations

ad∗ηψ − ψω − µtF + µ
∑

α6=β

(−1)βξβ
(

∇ · D

‖D‖

)

χα∗ − µS(ρ)F + λ = 0,

and

C(ϕ, ξ) = 0,

where λ represents the constraint reaction force. Here we have chosen A = B = 1

for notional clarity. Enforcing the constraints yields

ad∗ηψ − ψω − µtF − µ v

(

∇ · D

‖D‖

)

χ2
∗ − µS(ρ)F + λ = 0. (4.39)

These are the constrained virtual filament equations.

Since the Lagrangian density proposed in (4.10) is degenerate, there is broad

flexibility in choosing a constraint reaction force, λ, such that the virtual filament

equations (4.39) are consistent. The covector λ emerges as a control by which one

can manage the fundamental tradeoff between filament stretching and alignment

with the vector field D.
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To elucidate this tradeoff in governing filament equations (4.39), we allow

the form ∆L + ∆E + ∆C to act on the flow rate ξ. Equivalently, let the left hand

sides of equation (4.39) act on ξ, yielding

(

ad∗ηψ − ψω − µtF − µ v

(

∇ · D

‖D‖

)

χ1
∗ − µF + λ

)

· ξ

= ad∗ηψ · ξ − ψω · ξ − µtµ− µ2 + λ · ξ

= −τt
ν
η0

(
η2χ1

∗ − η1χ2
∗

)
· ξ − ψω · ξ − µtµ− µ2 + λ · ξ

= −τtτv +
∂

∂ω

(τt
ν
E∗(η)

)

· ξ − µtµ− µ2 + λ · ξ

= −1

2
(τ)2

t v −
1

2
(µ)2

t − v
∂

∂ω

(τt
ν
η1

)

− µ2 + λ1v. (4.40)

Here we have used the fact that under the constraint C(ϕ, ξ) = 0, the compatibility

condition (3.4) yields

τ =
1

2

νt
ν

=
1

ν
(η1η1

t + η2η2
t )

=
1

ν

(

η1(ξ0η2) + η2(−ξ0η1 + η0)
)

=
η0η2

ν
. (4.41)

Therefore, ignoring the higher order term v
∂

∂ω

(τt
ν
η1

)

, we observe by (4.39) and

(4.40) that

1

2
(τ)2

t v ≈ −
(

1

2
(µ)2

t + µ2

)

+ λ1v. (4.42)

Then clearly highlights an inverse relationship between changes in the respective

magnitudes of the misalignment and stretching terms. Note that since v is fixed,

λ1, can be chosen such that the both τ and µ are decreasing in magnitude. This

suggests that for certain vector fields, there may exist a nonstretching flow with a

monotonically decreasing measure of misalignment. The choice of the constraint
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reaction force λ is an essential part of achieving this objective. Consequently,

we now interpret the constraint reaction force as a control. In the subsequent

work, we will make a particular choice of λ. This will generate a corresponding

curvature feedback which we will examined in detail.

To further understand the virtual filament equations we proceed to estab-

lish a constraint reaction force for which the corresponding flow of the virtual

filament is guaranteed to align with the vector field D. Our technique will be as

follows: we will proposed a well defined constraint reaction force in the neigh-

borhood of µ = 0 and then relax this restriction by considering a related reaction

force which is uniformly well defined.

Motivated by the B = 0 dynamics, consider the constraint reaction force

satisfying the equation

λ = λ̄+ ψω − ad∗ηψ, (4.43)

where λ̄ is chosen to guarantee consistency of the corresponding filament dynam-

ics given in (4.39) as

µtF = −µS(ρ)F − µv

(

∇ · D

‖D‖

)

χ2
∗ − λ̄. (4.44)

Observe that in the neighborhood of µ = 0 the vectors ξ and F# span the Eu-

clidean subalgebra of se2. A set of equations is consistent in a neighborhood of µ

if their projection onto these basis elements is consistent. Note that by construc-

tion, F · F ♯ = 1. Therefore, applying the covector equation (4.44) to ξ and F#,
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respectively, generates the dual equations

µt = −µS(ρ) − µv

(

∇ · D

‖D‖

)

ρ− λ̄ · F# (4.45)

µtµ = −µ2S(ρ) − λ̄1v. (4.46)

A simple algebraic calculation reveals a natural choice of λ̄ given in components

as

λ̄1 =
µ2

ρ

(

∇ · D

‖D‖

)

λ̄2 = 0. (4.47)

Observe that λ̄ is well defined since ρ 6= 0 in a neighborhood of µ = 0. The

governing equation (4.45) then becomes

µt = −µS(ρ) − µv

(

∇ · D

‖D‖

)

ρ− F1
µ2

ρ

(

∇ · D

‖D‖

)

= −µS(ρ) −
(
µvρ2 + F1µ

2

ρ

) (

∇ · D

‖D‖

)

= −µS(ρ) −




µv

(

1 −
(
µ
v

)2
)

− F1µ
2

ρ





(

∇ · D

‖D‖

)

= −µS(ρ) −
(
µv

ρ

) (

∇ · D

‖D‖

)

. (4.48)

Expanding the time derivative of µ by equation (4.16) yields

µt = v(F1)t

= v

(

ρ ΦT ∗

ϕ χ0
∗ +

1

v

∂µ

∂γα
dγα

)

· ϕξ

= v

(

ρξ0 +
1

v

∂µ

∂γα
Xα

)

= vρ ξ0 +
∂µ

∂γα
Xα, (4.49)
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where [X,X⊥] = R(ϕ). Substituting (4.49) into (4.48) and solving for (ρ)2ξ0 yields

(ρ)2ξ0 = −ρ
v

∂µ

∂γα
Xα − µ

v
S(ρ)ρ− µ

(

∇ · D

‖D‖

)

.

Note that as µ→ 0,

ρ = s(ρ)

√

1 −
(µ

v

)2

→ s(ρ). (4.50)

Therefore we define κ as the positively scaled curvature ρ2ξ0 subject to the smooth

relaxation ρ→ S(ρ); i.e.,

κ(ϕ)
∆
= ρ2ξ0

∣
∣
∣
ρ→S(ρ)

= −S(ρ)

v

∂µ

∂γα
Xα − µ

v
− µ

(

∇ · D

‖D‖

)

. (4.51)

Clearly κ is well defined everywhere and is completely specified in terms of the

state ϕ. Note that lim
µ→0

ρ = ±1. Therefore as a material point of the filament aligns

with the orientation field, µ→ 0 and κ is an approximation to the actual temporal

curvature ξ0. We now formally consider the virtual filament flow induced by the

state dependent curvature feedback (4.51).

One of the most significant properties of the curvature feedback κ is that

it is respected by integral curves of D. That is, once agreement has been estab-

lished between the filament orientation andD, each material point of the filament

persists along a corresponding integral curve. This invariance establishes the nat-

urality of this feedback mechanism.

In order to more accurately characterize the fundamental invariance prop-

erty of the feedback (4.51), we introduce the concept of an oriented integral curve

orbit of a vector field. Let λ : U → E2 be an integral curve of the orientation field
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D. The oriented orbit of λ is the submanifold Λ ⊂ SE2 given by

Λ(λ) =

{
(
R(u), λ(u)

)
∈ SE2

∣
∣
∣ R(u) =

[
D̄(λ(u)), D̄⊥(λ(u))

]
, u ∈ U

}

.

Therefore the oriented integral curve orbit of a vector field represents the image of

an integral curve and its normalized orientation. Naturally, the projection γ(Λ)

is an integral curve orbit. The following theorem establishes the invariance of

oriented integral curve orbits of D under the curvature feedback (4.51).

Theorem 4. Oriented integral curve orbits of the orientation field are invariant under

the curvature feedback (4.51).

Proof. Let Λ be an oriented integral curve orbit of the orientation field D and let

ϕ be a temporal curve in SE2 subject to the curvature feedback (4.51). Suppose

that ϕ(t) ∈ Λ for some t. It is enough to show that the projection of ϕ under γ is

an integral curve of D. This is equivalent to establishing that γ(ϕ) has the same

curvature as γ(Λ). Let λ be an integral curve of D with orbit γ(Λ) described by

the framing equations

D̄u = cD̄⊥

D̄⊥
u = −cD̄

λu = D̄, (4.52)

where c is the intrinsic curvature of the manifold γ(Λ) and u is the unit speed

parameterization of λ. Note that such an integral curve can always be constructed

from an arbitrary integral curve of D by reparameterization. Note that (4.52)
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holds for λ = γ(ϕ) at time t. Since ϕ is aligned with D at t, µ(t) = 0 and ρ(t) = 1.

Therefore at time t, the curvature of ϕ is given as

κ(ϕ) = −S(ρ)

v

∂µ

∂γα
Xα − µ

v
− µ

(

∇ · D

‖D‖

)

= −s(ρ)

v

∂µ

∂γ
· D̄

= − ∂

∂γ

(
X · D̄⊥

)
· D̄

= −
(
∂D̄⊥

∂γ
· D̄

)

·X

= −
(
∂D̄⊥

∂λ
· λu

)

· D̄

= −∂D̄
⊥

∂u
· D̄

= c. (4.53)

Hence the curvature of γ(ϕ) at t under the curvature feedback (4.51) is identical

to the curvature of γ(Λ). Therefore γ(ϕ) is an integral curve of D, and ϕ lies in Λ

for all time. This completes the proof.

Consequently once agreement has been established between an oriented

particle and the orientation field D, this particle will persists along an integral

curve ofD. Furthermore each material point of the filament will lie in an oriented

integral curve orbit of D.

One may regard the particular constraint reaction force chosen in the above

work as motivated solely by our interest in aligning the filament with the orien-

tation field. Here we have established a starting point from which to study the

virtual filament equations (4.39). In the limiting case in which the stretch penalty

is effectively ignored, we achieve precisely the objective sought: alignment with
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the orientation field. Note that the proposed curvature feedback is independent

of the filament stretch rate since all the relevant τ dependent terms have been

absorbed in the constraint reaction force. In the next section we demonstrate the

alignment of the virtual filament under the proposed curvature feedback to vari-

ous orientation fields of interest.

4.5 The Orientation Field

4.5.1 A Elementary Orientation Field

We now consider the evolution of a virtual filament under the curvature

feedback (4.51) for a variety of orientation fields. In the first instance we consider

the simple vector field given by

D(γ) = −γ2e1 + γ1e2. (4.54)

Recall that the dynamical system γ̇ = D(γ) describes the evolution of an unforced

harmonic oscillator. Since D is a divergence free field, the corresponding curva-

ture feedback (4.51) is given as

κ = −S(ρ)

v

∂µ

∂γα
Xα − µ

v
. (4.55)
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Observe that

∂µ

∂γα
Xα = v

∂F1

∂γ
·X

= v
∂µ

∂γ
·X

= v

(
∂(D̄⊥)β

∂γα
Xβ

)

Xα

=
v

‖D‖
(
X1X1 +X2X2

)
− vF1

‖D‖2

(
γ1X1 − γ2X2

)

=
v

‖D‖ +
vF1

‖D‖2
F1

=
v

‖D‖ +
1

v

µ2

‖D‖2
. (4.56)

Substituting (4.56) into (4.55) yields

κ = −S(ρ)

v

(
v

‖D‖ +
1

v

µ2

‖D‖2

)

− µ

v

= −S(ρ)

(
1

‖D‖ +
1

v2

µ2

‖D‖2

)

− µ

v
. (4.57)

The vector fieldD does not admit an isolated periodic orbit (limit cycle); however

there exists a continuum of periodic orbits. In fact every nontrivial integral curve

γ of D is a counter-clockwise circular trajectory of radius ‖D‖ =
√

(γ1)2 + (γ2)2,

centered at the origin. Since the curvature of a circle is the reciprocal of its radius,

integral curves of D have constant negative curvature c = − 1

‖D‖ . Consider the

case when a material point of the filament aligns with D. In this case, µ = 0 and

ρ = 1. Hence, by (4.57) the curvature feedback is

κ = −S(ρ)

(
1

‖D‖ +
1

v2

µ2

‖D‖2

)

− µ

v
= − 1

‖D‖ . (4.58)

Therefore the curvature of this material point of the filament is identical to the

curvature of the corresponding integral curve. Hence integral curves of (4.54)
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respect the curvature feedback (4.57).This is consistent with the general result

established in Theorem 4.

In the following simulations we consider a unit speed flow with v = 1.

Furthermore we choose S(ρ) =
π

2
tan−1(ρ) which satisfies property (4.38). Figure

4.1 depicts the evolution of the virtual filament induced by (4.58). The initial

orientation of the filament is aligned with the positive γ1 direction. Note that

each material point of the filament aligns with an oriented integral curve of the

circular orientation field D.
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Figure 4.1: A Virtual Filament Aligning with the Orientation Field

To see this explicitly, consider a typical point on the filament which starts at

the coordinate (γ1, γ2) = (2, 2) and is oriented in the positive γ1 direction. Figure
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4.2 shows the evolution of this material point (the star and circle markers denote

the initial and terminal points, respectively). The orientation field (4.59) is shown

in the background.
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Figure 4.2: A Particle Aligning with the Orientation Field

Recall that for a unit speed flow, µ and ρ evolve on the unit circle. Hence

the aligning particle flow observed in figure 4.2 suggests that µ → 0 and ρ → 1

as t → ∞. This is precisely the behavior seen in figure 4.3. Note that initially

µ is increasing in norm. This reflects the fact that the particle is initially headed
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is a direction nearly opposite to that of the orientation field. During this phase

the particle is turning around. This natural reversing phenomenon is due to our

judicious choice of external forcing. As outline earlier, the proposed feedback

curvature for a divergence free field leads to the monotonic convergence ρ →

1 for each material point of the filament. This convergence, as depicted for a

typical material particle in figure 4.3, is the underlying mechanism that aligns

every material point of the filament with the orientation field.
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Figure 4.3: An Aligning Evolution of µ and ρ

While the flow observed in figure 4.1 has the desired alignment property,

it clearly exhibits significant stretching. However, given that (4.51) captures only

the alignment property of the proposed filament model (4.10), this is entirely ex-
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pected.

4.5.2 A Non-trivial Orientation Field

We now consider a more complex orientation field by introducing a cubic

nonlinearity into the field studied in the previous section. In particular we will

examine the field

D(γ) =

(

γ1(α− ‖γ‖2) − γ2

)

e1 +

(

γ2(α− ‖γ‖2) + γ1

)

e2, (4.59)

for α > 0. Integral curves of D undergo a subcritical Hopf bifurcation at α = 0

(see [12]). For α > 0 the circle of radius
√
α, centered at the origin, forms a

globally asymptotically stable limit cycle. We proceed by constructing the curva-

ture feedback (4.51) for the vector field (4.59) with the expectation that a filament

subject to this feedback will converge to the
√
α limit cycle. For α = v = 1, an

elementary calculation reveals that the divergence of D is given as

∇ · D

‖D‖ = 2α− 4(γ1)2 − 4(γ2)2. (4.60)

Also,

∂µ

∂γ
·X =

1

‖D‖

(

2γ1γ2
(

(X1)2 − (X2)2
)

+ 2X1X2
(

(γ2)2 − (γ1)2
))

+
1

‖D‖

(
µρ

v

(

α− ‖γ‖2
)

+
µ2

v2
− 1

)

+
2µ

v‖D‖2

(

γ1γ2
(

X1D2 +X2D1
)

+X1D1(γ)2 −X2D2(γ2)2

)

.
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Therefore the curvature is given by an elementary, though tedious, calculation as

κ = −µ
v
− S(ρ)

v‖D‖

(

2γ1γ2
(

(X1)2 − (X2)2
)

+ 2X1X2
(

(γ2)2 − (γ1)2
))

− 2S(ρ)µ

v2‖D‖2

(

γ1γ2
(

X1D2 +X2D1
)

+X1D1(γ)2 −X2D2(γ2)2

)

− S(ρ)

v‖D‖

(
µρ

v

(

α− ‖γ‖2
)

+
µ2

v2
− 1

)

− 2µ
(

α− 2(γ1)2 − 2(γ2)2
)

.

The evolution of a virtual filament under this curvature is depicted in figure 4.4.

Initially the orientation of the filament is aligned in the northwest direction.

Immediately one observes that this flow exhibits the appropriate alignment

and appears to stretch minimally. This stands in marked contrast to the elongat-

ing flow of the previous section. In the latter case, material points of the filament

each aligned with an integral curve corresponding to a different periodic orbit.

In the present case, however, each material point of the filament converges to an

isolated periodic orbit; namely, the circular limit cycle of unity radius.

Another interesting characteristic of this flow is captured in figure 4.5. The

filament is initially aligned in the positive γ1 direction. While attempting to

align with the orientation field, the filament collapses. While ostensibly unde-

sirable, this behavior is natural since there is no provision in the proposed model

to bound the spacial curvature of the filament. Other models which attempt to

implement a spacial curvature penalty are currently being studied.
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Figure 4.4: An Aligning Filament
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Figure 4.5: A Collapsing Filament
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Chapter 5

Analysis and Future Directions

We began at the outset of this work with an interest in constructing a con-

tinuum theory of formations. In the proceeding chapters we have developed an

infinite dimensional theory of Lagrangian mechanics for a broad class of filament

models. The exploitation of intrinsic filament geometry achieved in this work

leads naturally to higher dimensional models currently being explored. We have

shown that a continuum perspective is a viable tool for studying formations. Fur-

thermore, the concept of a virtual filament has served as a useful abstraction in

characterizing the Lagrangian evolution of a formation.

The proposed virtual filament model has led to a prescription of the tem-

poral curvature for each material point of the filament. The local nature of this

feedback is a signature of the continuum approach. We have argued for the nat-

urality of this control by noting that it leaves oriented integral curve orbits of the

orientation field invariant. While this particular feedback is offered primarily as

an argument for the viability of the proposed approach, this invariance property

is an essential characteristic for any filament controller. In fact, this property may

serve as a useful organizing principle for future models.

There are a number of notable extensions which emerge naturally from this

work. One interesting idea is to study the form of the Lagrangian force on the

trivialization of the filament tangent bundle in the context of higher dimensional
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continua. Another interesting extension currently being studied is a lagrangian

model which considers only inextensible filaments. In this case, the constant

speed and inextensibility conditions enter as holonomic and nonholonomic con-

straints, respectively. A reasonable Lagrangian density may then retain the cur-

rent alignment term µ as well as introduce an additional penalty for the spacial

curvature of the filament. These ideas constitute a basis for developing a more

complete theory of the virtual filament.
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