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when to explicitly reclaim storage. Also, sharing and persistence increase the potential damagecaused by storage management errors, as mistakes made by one program can inadvertently a�ectothers. These considerations argue for a very cautious approach to storage reclamation, however,neglecting to reclaim wasted space can degrade performance due to increased I/O paging.In an OODBMS, the notion of persistence (and hence, garbage) is conceptually linked to reacha-bility. The database is an object graph in which some specially designated objects serve as persistentroots. Objects that can be reached by traversing a path from a root can persist beyond the execu-tion of the transaction that created them. Objects that are not reachable from a persistent root orfrom the transient program state of an on-going transaction are garbage; such objects are inaccessi-ble and thus, the space that they occupy can be reclaimed. Reachability-based persistence providesa simple way to express persistence that is implicit and orthogonal to object type [ZM90]; therefore,some database systems, such as GemStone [BOS91] and O2 [BDK91], directly implement persis-tence based on reachability.1 In addition, there has been a growing research interest in applyinggarbage collection techniques to OODBMS [But87, FCW89, KLW89, ONG93, ML94, YNY94]. Ingeneral, however, many existing systems still require programmers to explicitly deallocate objects.Such systems therefore, typically provide o�-line utilities which must be run periodically in orderto reclaim lost storage and detect dangling references. The lack of acceptance of reachability-basedpersistence is due at least in part to the absence of e�cient implementation techniques that canbe integrated with existing systems. The work described in this paper is aimed at addressing thisneed.1.1 OODBMS Garbage Collection RequirementsGarbage collection has two components: garbage detection identi�es unreachable objects and storagereclamation makes their storage available for reuse. It has long been recognized that traditionalgarbage collection techniques developed for programming languages are not directly applicable ina database context [But87, FCW89, KLW89]. OODBMS introduce several complications that canimpact the correctness and/or performance of traditional garbage collection approaches. Theseinclude:Atomic Transactions: The abort of a partially completed transaction requires that the e�ectsof any changes made by the transaction be completely rolled-back. Roll-backs violate the propertythat unreachable objects must remain unreachable, and can therefore complicate garbage collection.Fault Tolerance: OODBMS provide resilience to system failures. Garbage collection mustoperate in a manner that is also fault tolerant.Concurrency: OODBMS support concurrent transactions. A garbage collector must co-existwith these transactions, and must not adversely impact their ability to execute.Disk-Resident Data: Because much of the data managed by an OODBMS is disk resident,the garbage collector must be e�cient with respect to I/O.1Also, garbage collection is speci�ed in the ODMG object database standard Smalltalk binding [Cat94].2



Persistence: Modern garbage collectors for programming languages are based on the assump-tion that the volume of live (i.e, non-garbage) objects is small compared to the volume of garbageobjects. Due to persistence, this assumption is not valid for OODBMS.Client-Server Architecture: OODBMS typically employ a data-shipping approach in whichdata is cached and updated at clients. The highly dynamic, replicated and distributed natureof these updates makes client-based garbage collection di�cult. Server-based garbage collection iscomplicated by the fact that modi�ed data 
ows from clients to servers in a manner that is typicallydictated by the clients; therefore, a server may at times have an inconsistent snapshot of the stateof the database. The resolution of these issues is a primary focus of the work described here.1.2 Solution OverviewIn this paper we describe a garbage collector that has been speci�cally designed to be e�cient ande�ective in a client-server OODBMS environment. Our collector has the following characteristics:� It is server-based, but requires no callbacks to clients and performs only minimal synchro-nization with client processes.� It works in the context of ACID transactions [GR93] with standard implementation techniquessuch as two-phase locking and write-ahead-logging; it requires no special hardware.� It is incremental and non-disruptive; it holds no locks and introduces very little additionallogging. It has been optimized to be e�cient with respect to I/O.� It is fault tolerant | crashes of clients or servers during garbage collection will not corruptthe state of the database.� It can be integrated into an existing object store, requiring few if any changes to the clientDBMS software. It can co-exist with performance enhancements such as inter-transactioncaching [CFLS91] and 
exible \steal" bu�er management between clients and servers, whichallows dirty pages to be sent to the server at any time during a transaction.� It has been implemented in the client-server EXODUS storage manager, and has been shownto impose very little performance overhead.Similar to other recent work on DBMS garbage collection [CWZ94, YNY94, ML94] we haveadopted a partitioned approach in order to avoid the need to scan an entire database before re-claiming any space. In contrast to the other work, which advocated copying or reference countingapproaches however, we have chosen to implement a non-copying Mark & Sweep algorithm. Themotivation behind this choice is discussed in detail in Section 3.The remainder of this paper is structured as follows: Section 2 describes speci�c problems thatarise due to the client-server architecture used by most OODBMS. Section 3 compares alternativegarbage collection strategies and motivates our choice of a Mark & Sweep approach. Section 4describes our generic algorithm. Section 5 details the implementation of the generic algorithm in3



EXODUS. Section 6 presents an overview of our performance studies on the implemented system.Section 7 discusses related work. Section 8 presents conclusions and future work.2 Challenges in OODBMS Garbage CollectionIn this section we focus on three speci�c problems that arise due to the client-server nature ofOODBMS. First, however, we present a reference architecture for a client-server OODBMS.2.1 Client-Server OODBMS ArchitectureIn contrast to traditional relational systems, workstation/server OODBMS architectures are typ-ically based on a data-shipping approach { data items are shipped from servers to clients so thatquery processing (in addition to application processing) can be performed at the client workstations.A data-shipping OODBMS consists of two types of processes that communicate via a local areanetwork. First, each client workstation runs a Client DBMS process. This process is responsiblefor providing access to the database for the application(s) running at its local workstation. ServerDBMS processes are the actual owners of data; they are ultimately responsible for preserving theintegrity of the data and for enforcing transaction semantics.Data-shipping systems can be structured as page servers, which send physical units of databetween servers and clients, and object servers, in which clients and servers interact using logicalunits of data [DFMV90, CFZ94].2 Each Client DBMS process is responsible for translating localapplication data requests into requests for speci�c database items (i.e., pages or objects) and forbringing those items into memory at the client. As a result, all of the data items required by anapplication are ultimately replicated and brought into the client's local memory. These items may becached at the clients both within a transaction and across transaction boundaries. Clients performupdates on their cached copies of data items. If clients follow a steal bu�er management policy withthe server, then these updated items can be sent back to the server at any time and in any order,during the execution of the updating transaction. This 
exibility, while providing opportunityfor improved performance, also raises potential problems for garbage collection algorithms. Wedescribe these and other problems in the following three subsections.2.2 Problem I: Transaction Rollback and Garbage CollectionAllowing clients to send updated pages to the server at any time makes it possible that a garbagecollector running at the server will encounter dirty pages. If a transaction that dirtied a pagethat is subsequently garbage collected needs to abort, rollback of that transaction may be di�cult.An example of this problem is shown in Figure 1. In this �gure (and in those of the subsequentexamples) the solid black squares represent the persistent root and objects are represented by2In this paper and in our implementation, we focus on page servers, however, many of the issues and solutionsthat are presented apply for object servers as well. 4



circles. Updated objects are shaded in order to distinguish between before and after states of theupdate operations.In step 1 of the �gure, a transaction running at the client updates object A by removing itsreference to object B and then 
ushes a copy of the updated page to the server. In step two,the server runs the garbage collector which reclaims object B, as it is unreachable. In step three,the transaction whose update caused object B to become garbage is rolled back. If the rollbackdoes not take garbage collection into account (as shown in the �gure) then object A will contain adangling reference to an object that no longer exists. This problem arises because the transaction
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Step 3Figure 3: Incorrect Collection when Integrating New Objectsreference (as in the previous case) when the page containing A is sent to the server.It is important to note that in general, it is not possible to produce an ordering of page 
ushesthat would avoid these problems, as there can be circular dependencies among pages due to multipleupdates. Furthermore, unlike the transaction rollback problem discussed previously, both of thesescenarios can occur even if the garbage collector reads only committed versions of pages. Finally, itshould be noted that the problems discussed in this section have analogs in incremental collectionalgorithms for traditional programming languages. Dijkstra and Baker have described invariantsthat ensure correctness for incremental collectors [DLM+78, Bak78]. In Section 4.1 we provideinvariants that re
ect the transactional nature of the client-server DBMS environment.2.4 Problem III: Overwriting Collected PagesA third set of problems involves the overwriting of a garbage collected page. One way that this canoccur is during transaction REDO. If a transaction uses space on a page that was made available bythe garbage collector, then if the garbage collected page is not on stable storage at the time of thecrash, then the REDO of the operation may be performed on an uncollected version of the page,and hence, the REDO could fail due to lack of free space on the page. This problem is illustrated byFigure 4. Assume the maximum numbers of objects in each page is 4. In step 1, the client created3 objects on a copy of a page that had been swept at the server but is not re
ected on disk. On the6
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3 Comparing Garbage Collection ApproachesIn this section we motivate our choice of a partitioned Mark & Sweep algorithm for garbage col-lection in client server OODBMS by brie
y surveying the alternative approaches. In general, thereare two families of garbage collection techniques: Reference Counting and Tracing.3.1 Reference CountingIn reference counting systems [Col60, McB63], a count of the number of references (pointers) toeach object is kept. The reference count for an object is incremented every time a new referenceto it is created and is decremented every time an existing reference to it is removed. When anobject's reference count drops to zero, it is known that the object is not referenced anywhere (i.e.,it is unreachable) so that object can be garbage collected (which may reduce the reference countsof other objects). Reclaimed objects are inserted into a free list for future reuse.Reference counting has two main advantages. First, garbage objects can be reclaimed as soonas they become unreachable. Second, this approach is inherently incremental; the garbage collectorcan be easily interleaved with transaction execution. Reference counting, however, is not suit-able for garbage collecting client-server OODBMS for several reasons. First, as it is well known,reference counting schemes fail to reclaim circular structures [McB63]; garbage objects that mu-tually reference one another will not be collected. Second, even under deferred reference counting(e.g., [DB76]), the overhead of maintaining reference counts for the objects in a large database canbe quite high [YNY94] and can require additional I/O. Furthermore, the reference count struc-tures must be fault-tolerant, as reconstructing them as part of recovery from a system crash isprohibitively expensive.3.2 TracingThe other main family of collection techniques are based on Tracing. Tracing collectors consist oftwo basic functions. The �rst function is the determination of which objects are live and whichobjects are garbage. To make this determination, the object graph is traversed starting from knownroots of persistence. All objects encountered by the trace are live, and at the end of a completetrace, all unreached objects are known to be garbage. The second function of the garbage collectoris to reclaim the space occupied by garbage objects. This reclamation is accomplished either bysweeping the garbage objects (e.g., placing them on a free list) or by copying the live objects to anew area. The tradeo�s between these two approaches in an OODBMS context are the following:Reclamation Cost: The cost of reclaiming garbage using sweeping is proportional to thenumber of garbage objects that are detected, whereas for copying, the cost is proportional to thenumber of live objects. Recall that persistence can cause the amount live data to greatly exceedthe amount of garbage. Furthermore, the cost of copying objects is much higher than the cost ofputting them on a freelist, particularly if the copying involves I/O or locking. Therefore, sweepingis likely to have lower reclamation cost. 8



Compaction and Fragmentation: Copying collectors relocate live objects and therefore, canreduce the fragmentation of the free space that is reclaimed. Sweeping schemes, however, tend toleave \holes" in the address space, as live objects are not moved. The fragmentation problems ofsweeping can be largely avoided in a database context, however, through the use of slotted pages.Slotted pages are used in many database systems and allow items to be moved freely within apage. Thus, the space freed by the sweeper can be compacted within pages, obviating any internalfragmentation problems.Clustering: Copying tends to group each object with an object that references it, therebyenhancing page locality. However, a copying collector will typically cluster objects in the orderthat they are visited (e.g., depth �rst search). This clustering produced by the collector may bein con
ict with database requirements or user-speci�ed hints (e.g, [BD90, GA92]). For example,using generation scavenging, objects of that di�er widely in age can not be clustered together.Fault-Tolerance: Copying causes objects to move between pages, which can greatly complicaterecovery [KLW89, MRV91, YNY94]. Object movement requires the use of forwarding pointersor logical object identi�ers (OIDs), both of which must be updated atomically with the objectmovement. Therefore, a copying collector requires a close coordination with the recovery system,and may require the acquisition of multiple write locks during object movement (as in [YNY94]).In contrast, sweeping is relatively easy to make fault-tolerant (assuming the use of slotted pages),as live objects always maintain their addressability.These considerations have led us to adopt a sweeping-based approach to garbage collection inworkstation/server OODBMS. We describe our algorithm in the following section.4 A Partitioned Mark & Sweep Garbage Collection AlgorithmAs stated in Section 1.2 we have developed a Partitioned Mark & Sweep algorithm that supportsatomic transactions and is incremental, non-disruptive, and recoverable. In a partitioned collectorthe space to be collected (e.g., address space, database, etc.) is partitioned into separate units thatcan be garbage collected independently. In this section we describe the algorithm and demonstratehow it solves the problems outlined in Section 2. We �rst describe the algorithm in the context of amonolithic (i.e., non-partitioned) database, and then extend the algorithm to allow for independentcollection of database partitions.The algorithm is based on the following assumptions about the client-server database system:Assumption A1: All user operations involving pointer updates are done in the context of ACIDtransactions [GR93].3Assumption A2: The system follows the write-ahead-logging (WAL) protocol between clientsand the server. That is, a client sends all log records pertaining to a page to the server beforeit sends a dirty copy of that page to the server.3Note that other operations can be done at lower degrees of isolation if desired.9



Assumption A3: Client bu�ering follows a \force" policy: all pages dirtied by a transactionmust be copied to the server prior to transaction commit. The force is to the server's memory(i.e., no disk I/O is required) and clients can retain copies of the pages in their local cache.Assumption A1 is fundamental to our algorithm, while the algorithm can be extended to toleratethe relaxation of assumptions A2 and A3 | at the cost of additional complexity and overhead.For example, the relaxation of A2 would require the garbage collector to obtain data locks; therelaxation of A3 would require additional coordination with the bu�er manager to determine whencertain page copies have arrived at the server. A2 must be supported by any client-server DBMSthat implements WAL-based recovery (e.g., EXODUS [FZT+92], and ARIES/CSA [MN94]). A3simpli�es recovery and avoids the need for client checkpoints. The tradeo�s involved in relaxing A3in the workstation/server DBMS environment are discussed in [FZT+92], [FCL93], and [MN94].4.1 Algorithm OverviewA traditional Mark&Sweep [McC60] algorithm associates a \color" with each object in the objectspace. An object can have one of two colors: live or garbage. The colors for objects are stored inspecial color maps that are not part of the persistent object space. At the start of the collector,the all object colors are initialized to be \garbage". Mark & Sweep is a two phase algorithm. Inthe �rst (or marking) phase, the object graph is traversed from the root(s) of persistence. Allobjects encountered during this traversal are marked (i.e., colored) as live objects. In a databasesystem (ignoring partitions for the moment), the roots of persistence are: 1) special database rootobjects, that are entry points into the database object graph, and 2) program variables of anyactive transactions which may contain pointers into the database. Once the entire graph has beentraversed, the sweeping phase scans the object space, reclaiming all objects that are still markedas garbage. At the end of the sweeping phase, garbage collection is complete.As described in Section 2, several correctness problems arise when designing an e�cient, incre-mental garbage collector for a workstation/server DBMS. These problems stem from transactionrollbacks, partial 
ushes of updated pages and overwriting of collected pages. The �rst two prob-lems cause the marking phase to incorrectly neglect to mark some live objects; the third problemcan result in errors during transaction REDO. Given assumptions A1, A2, and A3 above, theseproblems can be avoided through the preservation of three invariants. The crux of our algorithmis therefore, the e�cient maintenance of these invariants:Invariant I1: When a transaction cuts a reference to an object, the object is not eligible forreclamation until the �rst garbage collection that is initiated after the completion of thattransaction.Invariant I2: Objects that are created by a transaction are not eligible for reclamation until the�rst garbage collection that is initiated after the completion of that transaction.Invariant I3: Space in a page reclaimed by the sweeper can be reused only when the freeing of10



that space is re
ected on stable storage (i.e., in the stable version of the database or in thelog).As stated previously, these invariants are similar in spirit to invariants that have been proposedfor traditional incremental garbage collectors [DLM+78, Bak78]. In contrast to that earlier work,however, these invariants re
ect the transactional nature of database accesses. Invariant I1 (inconjunction with assumption A1) protects against the rollback problem, as only objects madegarbage by committed transactions will be eligible for reclamation. It also (in conjunction withassumption A3) protects against the partial 
ush of object updates, as all pages of a multi-pageupdate will be re
ected at the server when the garbage collector begins. I1 is su�cient to avoidincorrectly reclaiming live objects because the transaction that cuts the last reference to an objectmust have had a write lock on the reference, and therefore, it is the only transaction that can knowthe OID of that object. A garbage collection that begins after the completion of the transaction,will encounter all of the changes made by that transaction and therefore, will be able to correctlyascertain if the object is reachable or not. For similar reasons, Invariant I2 (along with A3) protectsagainst the partial 
ush of newly created objects. Invariant I3 protects against problems that couldarise due to operation REDO on swept pages after a crash, as described in Section 2.4. It ensuresthat REDO will reclaim any freed space that could have been lost in a crash.4.2 Protecting Existing ObjectsIn order to enforce Invariant I1, we introduce a garbage collector data structure called the PrunedReference Table (PRT). Whenever a reference to an object is cut, an entry is made in the PRT(at the server). This entry contains the OID of the referenced object and the Transaction ID(TransID) of the transaction that cut the reference. By considering the PRT as an additionalroot of persistence, the garbage collector is forced to be conservative with respect to uncommittedchanges. That is, any object that has an entry in the PRT will be marked as live and will betraversed by the marker (if it isn't already marked live) so that its children objects will be markedas well. Therefore, a single PRT entry transitively protects all of the objects that are reachablefrom the protected object.In order to make the necessary entries in the PRT, all updates to pointer �elds in objects mustbe trapped. Traps of this form are typically implemented using a write barrier [Wil92, YNY94]. Awrite barrier detects when an assignment operation occurs and performs any bookkeeping that isrequired by the garbage collector. Recall that the garbage collector (and hence, the PRT) resideat the server while updates are performed on cached data copies at clients. Thus, a write barrierin the traditional sense would be highly ine�cient. To solve this problem, we rely on the fact thatclients follow the WAL protocol (Assumption A2). The WAL protocol ensures that log recordsfor updates will arrive at the server prior to the arrival of the data pages that re
ect the updates.At the server, the incoming log records are examined, and those that represent the cutting of areference will cause a PRT entry to be made. Note that unlike previous work that exploits logs(e.g., [KW93, ONG93]), this algorithm processes log records as they arrive from the server | prior11



to their reaching stable storage.When a transaction terminates (commits or aborts), its entries in the PRT are 
agged. These
agged entries are removed prior to the start of the next garbage collection (i.e., the start of thenext marking phase). The PRT entries can not be removed exactly at the time of the transactiontermination even though all dirtied pages are copied to the server on commit. This is becausean on-going marker may have already scanned the relevant parts of the object graph using theprevious copies of the objects. The next time the marker runs, however, it is known that it willsee the e�ects all of the updates made by the committed transaction, so the PRT entries for thattransaction can be removed.The PRT does not have to be managed in a recoverable fashion; in the event of a server crashduring a garbage collection, the garbage collector will be restarted from scratch after recovery iscomplete. In this case, the old PRT entries are not needed because for each entry the correspondingtransaction has either aborted or committed. If aborted, its e�ects have been removed from thedatabase and thus, will not be encountered by the marker when it is restarted; if committed, itse�ects are re
ected in the database at the server, and will thus be encountered by the marker whenit is restarted.4.3 Protecting New ObjectsWhile the PRT mechanism solves the problems raised for existing objects, it does not solve theproblem involving the partial 
ush of newly created objects. We therefore, introduce a similarstructure called the Created Object Table (COT). As with the PRT, the COT is maintained at theserver and is updated based on log records received from the clients. When a log record re
ectingthe creation of an object arrives at the server, an entry is made in the COT. This entry contains theOID of the new object and the TransID of the transaction that created it. In contrast to the PRTwhich is used during marking, the COT is used during the sweeping phase of garbage collection.The sweeping phase linearly scans the pages that constitute the object space. For each page,it reclaims any objects that have been left colored as garbage by the marker. For each page, thesweeper checks to see if there are entries in the COT for any of the objects on that page, and ifso, it does not reclaim those objects, regardless of their color.4 Note that the sweeper does notneed to traverse newly created objects. This is because the objects referenced by a newly createdobject can only be: 1) other new objects (which are protected by the COT), 2) existing objectsthat are also referenced elsewhere (which are considered live by the marker), or 3) existing objectsthat are referenced solely by this new object. An object in this last category must have had adi�erent reference pruned by the same transaction that created the new object (because the newobject must have been write locked) and therefore, will be protected by the PRT.As with the PRT, entries in the COT are 
agged for removal when the transaction that createdthem terminates and the 
agged entries are removed at the beginning of the next garbage collection4An optimization to reduce the size of the COT is to make a single entry for an entire page if many objects arecreated on that page. In this case the sweeper will just ignore the entire page.12



cycle. The reasons for delaying removal of these entries is also similar. Also, like the PRT, theCOT does not need to be managed in a recoverable fashion.4.4 Preventing Overwrite of Collected PagesInvariant I3 states that the garbage collector must ensure that the e�ects of a page sweep arere
ected on stable storage. This can be done by having the sweeper write a small log record forevery page that it modi�es. Typically, the sweeper reclaims the space occupied by a garbage objectusing the space management mechanism of the slotted pages. The color map of the page, therefore,can be used to create a logical log record for the sweep. Color maps contain a single bit for everyobject in the page, and therefore are quite small. Furthermore, no before image data is logged, aspage sweeps never need to be undone.5Logging protects the system from problems that can arise during transaction REDO (as de-scribed in Section 2.4), however, it does not protect from sweeper work being wasted due to pageoverwrites. This problem can be reduced in two ways. First, the sweeper can try to obtain a\no-wait" instant read lock on a page. Such a lock is released immediately upon being granted,and the sweeper does not block if the lock is not granted. If the lock is not granted, then sometransaction has a write lock on the page. In this case, the sweeper simply skips the page, as anywork that it does will only be overwritten when the transaction holding the lock commits. Sec-ondly, as described in Section 2.4, the overwrite problem is exacerbated in systems that performinter-transaction client caching. For such systems it is possible to have the sweeper exploit thecache consistency mechanism in order to reduce the potential for clients to update unswept pagecopies. Once such mechanism is described in Section 5.4.5 The Marking and Sweeping PhasesOur algorithm simply extends a traditional Mark & Sweep algorithm with the techniques describedin the preceeding sections. At the start of a garbage collection, a color map is initialized for eachpage in the object space. Color maps contain a bit for each possible object on the page (i.e. themaximum number of slots in a page) and all bits are initially set to the \garbage" color. Themarking phase traverses the object space starting from the database root of persistence. When anobject is encountered, then the color map is checked and if the object is already marked \live" thenthe traversal is pruned at this point. Otherwise the bit is set to \live" and the OIDs that appearas references in the object are added to a list of objects to be traversed. When the traversal fromthe persistent root is completed, the entries in the PRT are then traversed in the same manner.The PRT allows the marker to be run incrementally, as it supports the arbitrary interleaving ofclient transaction updates and marking operations. It is important to note that because the PRTand the COT protect objects for the duration of any transaction that could cause that object to bereclaimed, the garbage collector can ignore the program state (i.e., program variables, stacks, etc.)5As described in Section 5, logging can be even further reduced if media recovery is not to be supported.13



of any transactions that are concurrently executing at the clients. This signi�cantly reduces garbagecollector overhead and complexity.When the marker completes its traversal, the sweeper phase is started. The sweeper scans thepages linearly in order to maximize I/O bandwidth. Before reading a page from disk, the sweeper�rst checks the color map for the page. If the page has no garbage objects on it, then the sweepermoves on to the next page. If the page has no live objects on it, then the sweeper deallocates thepage | without reading it in from disk. Finally, as described in Section 4.4, the sweeper attemptsto get an instant read lock on the page, and if unsuccessful, it simply moves to the next page. Ifthe sweeper does need to sweep a page, then it reads the page into memory, modi�es the color mapso that all objects that have entries in the COT are marked live, logs the color map, and then freesthe objects that are not marked live.6 The sweeper can be run incrementally, with the sweep of asingle page being the �nest granule of operation. The WAL rule (assumption A2) ensures that thesweeper will see all relevant COT entries for the pages it sweeps.Note that both phases of the garbage collection are fault tolerant | if the system crashes atany time during a garbage collection cycle, then upon recovery, the crashed garbage collection issimply abandoned, and a new one can be started from the beginning. If the system crashes duringthe marking phase, no changes have been made to data pages, so there is no danger of corruptingthe database, and no work to be done for recovery. When the garbage collector is restarted, it willbegin by initializing all of the color maps. The contents of the PRT at the time of the crash will belost, but they are not needed, as after recovery the server has a consistent snapshot of the database.If the system crashes during the sweeping phase, then some swept pages will have made it outto disk and some will not have. Swept pages are internally consistent so there is no undo work forthose pages that are on disk. Pages that had not made it out to disk can simply be ignored | thenext garbage collection will sweep them. As with the PRT, the COT entries that existed beforethe crash will not be needed by the garbage collection that is started after recovery.4.6 Collecting PartitionsIn this section we brie
y discuss how to extend the monolithic Mark & Sweep algorithm describedin the previous sections to allow independent garbage collection of disjoint partitions of the objectspace. We assume that partitions are sets of pages. The actual partitioning of the object space canbe done according to physical considerations (e.g., �le extents) or logical considerations (e.g., byclass or relation). Partitions must be disjoint (i.e., each object belongs to exactly one partition),however, objects may reference each other across partition boundaries. In order to allow for par-titions to be collected independently, each partition must have a separate persistent root object.In addition, each partition must have an associated list of incoming references that originate fromother partitions. This list is referred to as the Incoming-Reference List (IRL). Conceptually, theIRL contains the OID of the (local) destination object and the ID of the partition in which the6A latch must be held on the page while the objects are being freed in order to avoid the arrival of a new pageduring this operation. 14



(foreign) source object resides for each such reference. The IRL serves as an additional root of per-sistence for the partition-local collector. Options for deciding when a partition should be collectedhave been studied in [CWZ94].Figure 5 shows an example of two partitions containing objects with cross-partition references.Note that the objects themselves point directly to each other and do not involve the inter-partitionreference list. Similar schemes are often used by distributed garbage collection algorithms to handleinter-node references (e.g.,[SGP90, ML94]).
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agging of PRTand COT entries).There are two drawbacks to this approach. First, in contrast to the PRT and the COT, IRLshave to be managed in a fault-tolerant way. Upon recovery all IRLs must be restored to their stateat the time of the crash; otherwise, some remotely referenced objects may be collected erroneously.Thus, IRLs must be maintained in database pages (rather than with in-memory structures), andupdates to them must be logged. Secondly, as is well known, this type of approach can not collectcycles of garbage that are distributed across multiple partitions. Separate algorithms such asHughes' inter-partition collector [Hug85] can be used to collect such cycles periodically. In general,however, the partitioning of the object space should be done in a way that minimizes the numbersuch references. 15



5 Implementing the Garbage CollectorAs stated in Section 1, the design goals for garbage collection include: 1) it should impose minimaloverhead on client transactions, 2) it should be e�cient and e�ective in collecting garbage, and 3)it should be relatively straightforward to integrate the collector in existing client-server databasesystems. In order to assess our algorithm in light of these requirements we have implemented itin the client-server version of the EXODUS storage manager[FC92, Exo93]. In this section wedescribe the implementation of a single-partition collector. The extensions for multiple partitionswith inter-partition references discussed in Section 4.6 are currently being added.5.1 The EXODUS Storage ManagerOur initial implementation is based is the EXODUS storage manager v3.1 [Exo93]. EXODUSis a client-server, multi-user system which runs on many Unix platforms. It has been shown tohave performance that is competitive with existing commercial OODBMS [CDN93]. EXODUSsupports the transactional management of untyped objects of variable length, and has full supportfor indexing, concurrency control, recovery, multiple clients and multiple servers. Data is lockedusing a strict two-phase locking protocol at the page or coarser granularity. Recovery is providedby an ARIES-based [MHL+92] WAL protocol [FZT+92]. EXODUS extends a traditional slottedpage structure to support objects of arbitrary length[CDRS86]. \Small" data items (those thatare smaller than a page) and the headers of larger ones are stored on slotted pages. Internally,objects are identi�ed using physical OIDs that allow pages to be reorganized without changing theidenti�ers of objects.EXODUS is a page server; updates are made to the local copies and the resulting log records aregrouped into pages and sent asynchronously to the server responsible for the updated pages. Dirtypages can be sent back to the server at any time during the execution of a transaction; a WALprotocol ensures that all necessary log records arrive at the server before the relevant data page.At commit time, copies of any remaining dirty pages are sent to the server. The client retains thecontents of its cache across transaction boundaries, but no locks are held on those pages. Cacheconsistency is maintained using a check-on-access policy (based on \Caching 2PL" [CFLS91]). Forrecovery purposes all pages are tagged with a Log Sequence Number (LSN) which serves as atimestamp for the page. The server keeps a small list of the current LSNs for pages that have beenrecently requested by clients. When a client requests a lock from the server, the server checks itstable to see if it can determine that the client has an up-to-date copy of the page; if not, the serversends a copy of the page back to the client along with the lock grant message.To summarize, the EXODUS storage manager supports the three fundamental assumptions onwhich the garbage collector depends in terms of concurrency and transactions (see Section 4), andalso has desirable properties such as slotted pages. In addition, the EXODUS server uses non-preemptive threads, which simpli�es the implementation of the garbage collector. However, thesystem also provides features that present challenges for garbage collection, such as client caching,a steal policy between clients and servers, asynchronous interactions between clients and servers, a16



streamlined recovery system, and optimizations to avoid logging in certain cases.5.2 Implementation OverviewThe current implementation of the garbage collector in EXODUS is primarily a proof-of-conceptimplementation. It is well integrated with concurrency control and recovery and has been heavilytested; including its fault tolerant aspects. However, there are some limitations of the currentimplementation. First, as stated above, the framework is in place to support multiple partitions(we currently use an EXODUS \volume" as a partition) and do much of the checking that is neededto manage IRLs, but the IRL scheme is not yet implemented. Secondly, we currently collect onlysmall-format objects (i.e, those that are smaller than 8K bytes). The extension to large-formatobjects, is straightforward but was not necessary for our purposes. Finally, because the Exodusstorage manager does not know the types of the objects that it stores, we store a bitmap in theinitial bytes of the data portion of each object. The bitmap indicates which OID-sized ranges ofbytes in the object contain actual OIDs and is used by the marker during its traversal. Thesebitmaps are created automatically when objects are allocated using a C++ constructor.As stated previously, the server scans incoming log records to determine if the logged updaterequires any entries to be made in the garbage collector data structures. In particular, the servermakes an entry in the COT for any CREATE OBJECT log record, and makes an entry in the PRT forany MODIFY OBJECT log record that involves overwriting an OID. To facilitate this check the clientsets a 
ag in the log record header that tells the server that it should examine the record. In thecurrent implementation, if an operation updates multiple pointers, the client generates a separatelog record for every pointer update. This limitation could easily be removed, if desired, by loggingbitmaps or adding information to log records.In order to add garbage collection to the EXODUS server, we created a new type of serverthread called the gcThread. When a collection starts on a partition a new gcThread is spawned.The gcThread initializes the garbage collector data structures, runs the marker phase and thenruns the sweeper phase. At the end of the sweeper phase, the gcThread terminates. As statedpreviously, the marker and sweeper both run incrementally. When the gcThread gets the processor,it starts a timer (currently set at 50 msec). If the timer expires during the marker, then the marker�nishes examining the current object and then gives up the processor. If it expires during thesweeper, then it �nishes sweeping the current page and then gives up the processor. The gcThreadis woken up when there are no outstanding client requests that need the processor.The implementation required approximately 4000 lines of new or modi�ed code on the server-side; the bulk of which was for the gcThread itself. The client-side required only 200-300 lines of newor modi�ed code. The algorithm was implemented in EXODUS with only minor changes. Threeimplementation issues, however, deserve mention. First, to help reduce the potential for clientsto overwrite the work of the sweeper we exploit the cache consistency mechanism. The sweeperupdates the sequence number on each page that it modi�es. Any transaction that subsequentlytries to lock such a page will then receive the swept copy even if they already have a cached copy17



of the page. To avoid recovery problems, however, the sequence number placed on the page by thesweeper must be guaranteed to be lower than the sequence number that will be placed on the pageby any subsequent client update.Second, EXODUS has no general support for allowing non-recovery-related server threads tocreate log records. Although there are workarounds, we chose to avoid logging completely in thegcThread. We accomplish this by setting a 
ag when a page is swept; the 
ag is cleared when thepage is scheduled to be written to disk. If a client obtains a page that has the 
ag set, then it logsthe slot allocation information (from the page header) prior to performing any updates on a page.This log record is only generated by the �rst transaction to update such a swept page.The third issue results from an optimization that EXODUS uses to reduce logging during bulkloading and other create-intensive operations. When a new page is allocated to hold new objects,the individual object creations are not logged; rather, the entire page is logged when it is copiedback to the server. This optimization, while providing better performance for EXODUS, deprivesthe garbage collector of the information on individual object creations. As a result, in the EXODUSimplementation of the collector, we enter page IDs in the COT rather than individual OIDs. Whenthe sweeper encounters a page that has an entry in the COT, it simply skips that page. Furthermore,when a newly allocated page arrives at the server, the server must scan all of the objects on the apage to determine if any new IRL entries are required.6 Performance MeasurementsIn this section we describe an initial study of the performance of the implementation of our garbagecollection algorithm in EXODUS. For all of the performance experiments described in this section,the EXODUS server was run on a SPARCstation LX with 32MB of main memory. The log and thedatabase were stored on separate disks, and raw partitions were used in order to avoid operatingsystem bu�ering. The page size for both data pages and log pages was set to 8KB. All times wereobtained using gettimeofday() and getrusage().In order to gain an understanding of the collector's performance we created arti�cial datapartitions that allowed us to vary speci�c factors that can impact that performance. All of thedata partitions used in the study consist of simple linked-lists of objects. Each object is 80 byteslong, and along with EXODUS page and object headers, 84 objects can �t on a page. The objectsare allocated in contiguous pages in an EXODUS �le. The pages are fully packed with objects,however, we vary the percentage of garbage objects as an experimental parameter. As shown inFigure 6 we also vary the clustering of objects in pages. The clustering factor determines thepercentage of the objects on a page that the marker can scan with out crossing a page boundary.This factor impacts the performance of the marking phase of the garbage collector; the sweepingphase scans pages linearly so it is not impacted by this factor.This study examines three di�erent aspects of the implementation's performance: 1) the over-head added to normal client processing by garbage collection, 2) the stand-alone performance of thecollector, and 3) the performance of garbage collection and client transactions running concurrently.18



100% 50% 0%Figure 6: Clustering Factors6.1 Experiment 1: OverheadThe �rst experiment measures the overhead that is incurred during normal operation with nogarbage collection running. The overhead is due to extra work required to maintain the garbagecollector data structures (e.g., the PRT and COT). This includes the extra log-related work thatclients must perform and the processing of log records at the server. In this experiment, a singleclient process was run on a SPARCstation IPC with 32MB of memory; it was connected to theserver over an Ethernet.Experiments were run using four di�erent operations: 1) object allocation, 2) modi�cation ofreferences in existing objects, 3) modi�cation of non-reference data in existing objects, and 4) read-only access to objects. For each test, the operation was performed on 100,000 di�erent objectsbefore committing (this represents 1190 pages). Client and server cache sizes were 1500 pages| more than enough to hold all of the accessed pages. The tests were performed on the 100%clustered partition, although with the relatively large cache sizes, all clusterings would have similarperformance. Each benchmark was run 10 times and results averaged. For each experiment, wereport times for both a cold server cache and a hot server cache (except for allocate, which createsall of the pages it accesses).The results of these tests are shown in Table 1. For each test, two sets of numbers are given |the times for the test without commit, and the total time for the test including commit. Committime includes the extra garbage collection overhead of 
agging PRT and/or COT entries.As can be seen in the table, the overhead imposed on normal operations by the garbage collectioncode is quite small in all of the cases tested. The highest overheads were seen for the allocationof new objects; this is due to EXODUS' full-page logging for newly allocated pages. In this case,the server must scan the entire page in order to locate any cross-partition pointers. Note thatindividual object creations on existing pages would not incur this cost.6.2 Experiment 2: O�-Line Garbage Collector PerformanceThe second experiment examines the cost of the garbage collector when it is run without anyconcurrent user transactions. In this case, we varied the clustering of the partition, the size of thepartition, and the garbage %. All experiments were run with a server cache of 1000 pages. Thepartition size was varied from 500 pages (4 MB) to 10,000 pages (80 MB).19



Server Cache Cold HotOperation Original w/GC code Overhead Original w/GC code OverheadAllocate 38176 40382 5.8%w/Commit 54989 59049 7.4%Update Ref 52543 53165 1.1% 34367 34920 1.6%w/Commit 62736 63381 1.0% 44607 45160 1.2%Update Value 51091 51616 1.0% 33104 33438 1.0%w/Commit 61365 61998 1.0% 43327 43671 0.7%Read-only 27586 27792 0.7% 13403 13565 1.2%w/Commit 27622 27828 0.7% 13439 13601 1.2%Table 1: Client Slowdown (msec), Cold and Hot Server Cache
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the partition is smaller than 1000 pages, all of the pages that the sweeper would need to fetch arealready in the bu�er because of the marker. Once the partition exceeds the cache size, then thispre-fetching e�ect is completely lost (in this case), as the layout of the objects in the partitioncause the marker and sweeper to scan the partition in the same order.The 100% clustering case is in some sense the best case for the garbage collector, as it allowsthe marking phase to process pages sequentially. Figure 9 shows the performance of the markingphase using four di�erent clustering schemes. We show only the results for the case where the
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ect the interaction of the gcThread with the21



EXODUS scheduler. After numerous tests, we chose a processor time slice of 50 msec for thegcThread followed a 20 msec delay before it becomes eligible to run again. Furthermore, severalthreads for servicing client requests are allowed to run, if present, before the gcThread is given theprocessor. This scheduling technique seems to balance the collector execution and the servicingof clients. However, more study is required to better understand the interaction of the gcThreadwith the peculiarities of the EXODUS scheduler. In these experiments, the collector is run in aloop; once the partition is collected, it starts a new collection cycle. The response time for thegarbage collector is the total wall clock time required for a complete collection of the partition. Inthese experiments we used a partition size of 1200 pages (10MB) and examined clustering factorsof 100% and 50%. Each client was run on a separate SPARCstation 1+, with 32MB of memory.The client cache sizes were 200 pages and the server cache size was 1000 pages.Figures 10 and 11 show the response time for the clients and garbage collector, respectively, forthe case of 100% clustering as the number of clients is varied from one to six.
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garbage is similar.For read-write queries, the collector's response time is doubled when garbage is introduced (i.e.,5% vs. 0% garbage) This is because with garbage present in each page, the sweeping phase mustrefetch every page in order to sweep it. We anticipated a lower overhead in this case, because weexpected that active transactions would be bringing pages into the server bu�er would later beneeded by the sweeper. Detailed traces of the collector's activity however, show that the sweeperneeds to refetch nearly all of the partition's pages from disk. This very low cache hit ratio is due tothe way the marker and the sweeper process pages: they both access the pages in the same order.This means the last pages of the database are in the cache at the beginning of the sweeping phase.However, the sweeper starts by processing the �rst pages of the database.In general,these results show that the garbage collector can indeed run in a way that does notnegatively impact the performance of the clients. This is again, due to the low overhead of thelog-based \write barrier", the collector's tolerance of client caching and steal bu�er managementand because the collector does not synchronize with clients. The results of this experiment, whileencouraging, point out that we need to better understand the interaction between the gcThreadand EXODUS' scheduling of thread execution at the server. For example, in Figure 10, it can beseen that when the gcThread is active, the response time of a client running alone is slightly higherthan when two clients are running (this is not the case if there is no garbage collection). We believethat this phenomenon is related to the way that the gcThread is scheduled in the presence of serveridle time, however, this issue requires further investigation.In addition to the 100% clustering case described above, we also performed the same testwith a clustering factor of 50% to ensure that the low impact of the collector was not due to thepresence of perfect clustering. The results of this test are summarized (for six clients) Table 2.For comparison purposes, Table 2 includes the corresponding results from the 100% clustering casedescribed previously. Recall with a locality of 50%, the marker processes half of the page beforemoving on to the next page. As can be seen, the overheads on both client processing and garbagecollection are similar; the overhead on clients is at most 11% for these tests and the collector takesseveral times longer than it would if no clients were running.Client Performance Collector PerformanceQuery type RO RW RO RWLocality 100% 50% 100% 50% 100% 50% 100% 50%Alone (msec) (1671) (1912) (2014) (2630) (5579) (13096) (12747) (24957)100 100 100 100 100 100 100 1000% Garbage 105.3 110.8 109.6 107.1 240.9 246.2 189.5 250.55% Garbage 102.9 106.7 110.6 106.9 576.4 405.2 383.5 317.5Table 2: Relative Performance varying Locality Factor23



7 Related WorkAs stated in the introduction, garbage collection has been intensively studied in the context oftraditional programming languages. Surveys of this work include [Coh81] and [Wil92]. The in-variants that an incremental collector must respect were �rst proposed by [DLM+78, Bak78]. Ourwork addresses the e�cient implementation of similar invariants in a (transactional) client-serverDBMS context. The earliest study of garbage collection for object-oriented databases was done byButler [But87]. This work simulated the behavior of several kinds of collectors running against acentralized OODBMS, but did not consider interactions with concurrency control, recovery, andcaching mechanisms. More recent work has investigated fault-tolerant garbage collection tech-niques for transactional persistent systems in centralized [KLW89, KW93, ONG93] and distributed[MRV91, MS91] architectures. This work addresses fault tolerance but does not consider dynamicpage replication and caching as arises in a workstation/server environment.A reference counting collection scheme for MIT's Thor system is described in [ML94]. Thor[LDS92] is a distributed OODBMS which uses optimistic concurrency control to regulate accesses toobjects. This paper focuses on distributed collection across servers in a client-server environmentrather than on collection that is local to a server. Each time a client fetches an object from aserver, the server records the OID of the object into a local table. The server also records the OIDsthat are referenced by the fetched object. This is to cope with the optimistic concurrency control,since fetched objects are not protected by any lock. Server tables are cleaned as a side e�ect oflocal collections. These tables can be viewed as a before image log, which avoids the reclamationof pruned objects prior to transaction commit. The algorithm uses a \no-steal" policy so thatmodi�ed objects are not sent to the servers prior to commit. This policy avoids the problemsdue to partial 
ushes of updates (Section 2.3) at the expense of reduced 
exibility in client cachemanagement. [ML94] describes the algorithm but does not discuss an implementation and providesno performance analysis.The work that is most relevant to our algorithm is [YNY94]. This paper investigates the perfor-mance tradeo�s of several reclamation algorithms for client-server persistent object stores. Someof the results are obtained from an implementation of an incremental partitioned Mark & Sweepalgorithm, although very few details of this algorithm or its implementation are given. Most of theresults are obtained using a simulation of several algorithms.Similarly to our algorithm, their partitioned Mark & Sweep collector runs at the server and canexecute concurrently with client transactions. However, their algorithm di�ers in the that it uses aspecial write barrier and that the collector obtains (non-two phase) locks on data items. The writebarrier traps updates at the clients and adds any new object references to a local list. This list isshipped to the server when a client commits or when the client receives a callback message fromthe server. The server requests these lists and the contents of application process stacks from theclients before the collector enters its sweep phase. The lists and other references are used duringthe marking phase as additional roots of persistence. In terms of locks, the marking phase obtainsand holds a read lock on a page while it is accessing the page. These locks cause the marker to24



synchronize with the transactions. In contrast, our partitioned Mark & Sweep algorithm does nothold any locks on pages, does not send callbacks to clients, and can ignore the program state ofon-going transactions. Measurements of the implementation showed that the write barrier has onlyminimal impact on client performance; our measurements support this result.Several other algorithms are examined in [YNY94], including a partitioned copy-based collectionalgorithm. This algorithm obtains non-two-phase exclusive transactional locks for moving objectsand uses callbacks, it also requires the use of logical OIDs. Based on the results of the simulationstudies, the copy-based algorithm is advocated over partitioned Mark & Sweep due to its ability torecluster the database. In contrast, we have chosen to allow clustering to be treated separately bythe system in order to gain the e�ciency and relative ease of implementation of Mark & Sweep.8 ConclusionsIn this paper, we �rst described the requirements imposed on a garbage collector suited for work-station/server OODBMS environments. The need for e�cient garbage collection in the presence ofclient caching, \steal" management of client bu�ers, transactions, and fault tolerance raise threemajor problems that need require special care. These problems are tied to the rollback of transac-tions, the partial 
ushing of multi-page updates involving object creations and reference updates,and the potential for overwriting of garbage collected pages due to recovery and/or client caching.We described a garbage collection algorithm based on a partitioned Mark & Sweep approach.By exploiting the 
ow of log records between clients and server, we are able to enforce the correctnessof our algorithm. The collector is incremental, but requires very little synchronization with clienttransactions (e.g., it holds no locks), performs minimal logging, and requires no client callbacks orspecial hardware. The algorithm has been implemented in an existing OODBMS (i.e., EXODUS),and integrated with the concurrency control and recovery of that system. Furthermore, the garbagecollector a�ected fewer than 300 lines of code in the client side of the system. An initial study showedthe performance characteristics of our implementation and suggests that the impact of the collectoron the activity of clients is minimal.We are currently implementing the mechanisms to allow the collector to handle cross-partitionreferences. As stated, previously, most of the bookkeeping features needed for this extension arealready implemented and included in the measurements in the performance study. Furthermore,we are more closely investigating the interaction between the garbage collector thread and theEXODUS thread scheduling mechanism at the server. In terms of future work, we plan to useour implementation to investigate data partitioning and partition selection strategies, and to moreclosely explore alternative approaches such as scavenging.AcknowledgementsWe would like to thank Mike Zwilling, who provided invaluable assistance and information aboutEXODUS on many occasions during this work. 25
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