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There has been a longstanding interest in building systems that can handle

uncertain data. Traditional database systems inherently assume exact data and

harbour fundamental limitations when it comes to handling uncertain data. In this

dissertation, we present a probabilistic database model that can compactly represent

uncertainty models in full generality. Our representation is associated with precise

and intuitive semantics and we show that the answer to every user-submitted query

can be obtained by performing probabilistic inference. To query large-scale proba-

bilistic databases, we propose a number of techniques that help scale probabilistic

inference. Foremost among these techniques is a novel lifted inference algorithm

that determines and exploits symmetries in the uncertainty model to speed up query

evaluation. For cases when the uncertainty model stored in the database does not

contain symmetries, we propose a number of techniques that perform approximate

lifted inference. Our techniques for approximate lifted inference have the added



advantage of allowing the user to control the degree of approximation through a

handful of tunable parameters. Besides scaling probabilistic inference, we also de-

velop techniques that alter the structure of inference required to evaluate a query.

More specifically, we show that for a restricted model of our probabilistic database,

if each result tuple can be represented by a boolean formula with special charac-

teristics, i.e., it is a read-once function, then the complexity of inference can be

drastically reduced. We conclude the dissertation with a listing of directions for

future work.
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Chapter 1

Introduction

Many applications produce massive amounts of data that needs to be stored

in an organized manner so that users can sift through and find information that is

of interest. Database systems have become the de facto standard for storing such

large amounts of data. At least from the end user’s perspective, one of the most

important reasons for the success of database systems is the declarative querying

capabilities they offer through query languages such as SQL. The use of a declarative

query language allows the lay user to pose complex queries against the underlying

data without having to worry about algorithmic or efficiency issues associated with

evaluating the query.

Unfortunately, current database systems are not well suited to store data with

uncertainties. If we state that John’s salary is $55,000 per annum, then John cannot

have any salary other than $55,000. We cannot, for example, state that John’s salary

could lie anywhere between $55,000 to $60,000 per annum or that the temperature

on the first floor measured through a sensor at 10:28AM this morning was more likely

to be 52.6◦ F than 52.8◦ F. We refer to such data with uncertainties as uncertain

data or inexact data.

A number of real world applications produce large amounts of uncertain data.

Examples include data collected from sensor networks [Deshpande et al., 2004], in-
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formation extraction systems [Jayram et al., 2006] and mobile object tracking sys-

tems [Cheng et al., 2003]. Traditional database management systems are not suited

for storing uncertain data, which means that the declarative querying capabilities

offered by database systems are unavailable to people who need to deal with and

search through such data to find information of interest.

In this dissertation, our aim is to develop a database system that can store

and query uncertain data. To achieve our goal, we need to answer two fundamental

questions: 1) How do we represent uncertainty in a database and 2) How do we use

the uncertainty model along with the data to produce relevant answers to a user-

submitted query? In the ensuing chapters, we will see how we answer the former

question by combining traditional database ideas with uncertainty representation

models from machine learning. Further, we also show how efficient query evaluation

can be performed in such databases by developing novel algorithms based on ideas

from graph-theory. But before we go any further, let us consider a small example

that illustrates some of the differences between querying exact data using traditional

database query processing techniques and handling uncertain data.

1.1 A Small Example

Figure 1.1(a) shows a small relation, Ads, where each row corresponds to an

advertisement (ad) that we pulled off from a pre-owned car sales website. For sim-

plicity, we depict only the Make and Price of the cars associated with each ad

in Figure 1.1(a); a real pre-owned car sales database will likely contain many more
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attributes of interest. Ads contains four ads, the first (depicting a Honda for sale)

being an instance of certain data and the last three (s2, s3 and s4) being uncertain.

Also shown in Ads against each tuple, are numbers depicting how certain/uncertain

each tuple is. For now, we will refrain from specifying exactly what these numbers

mean other than saying that they are a measure of how likely it is for the corre-

sponding tuple to exist in the real world or their degree of certainty. Such numbers

may be useful in capturing the fact that many ads posted on websites remain visible

even after the car in question has been sold and thus with the passage of time it

is less likely for a car being advertised to be still up for sale. For the purposes of

presenting our example, a tuple with degree closer to 1 increases the chance of its

being present in the real world, while a degree closer to 0 decreases the chance of

that ad still being valid. Thus, in Figure 1.1(a), s1 is an instance of exact data

where we know that a car of make Honda is definitely up for sale, while s2, s3 and

s4 are uncertain, we are not quite sure if those cars are still available but there is a

good chance (since 0.7 is closer to 1 than to 0) of them being still available for sale.

Suppose a user is interested in finding out the makes of the cars that are for

sale and so wants to issue the query
∏

Make(Ads). Now, we have a slight problem

since we don’t know how to deal with the degrees of tuples. We will consider two

simple approaches. In the first approach, we will simply ignore all uncertain data

(s2, s3 and s4) and not return them as query results. The result (shown in Figure

1.1(b)) contains only one result and is unsatisfactory because it seems to suggest

that the only make available to the user is Honda and if she doesn’t want to purchase

a car of this make then s/he doesn’t have any other cars to choose from which is
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Ads Make Price

s1 Honda $12,000 1.0 −→
s2 Toyota $8,000 0.7 ∏

Make(Ads)s3 Dodge $6,000 0.7
s4 Dodge $9,000 0.7 −→

(a)

Make

Honda

(b)

Make

Honda
Toyota
Dodge

(c)

Figure 1.1: (a) A small pre-owned car sales database. (b)
∏

Make(Ads) ignoring
uncertain data. (c)

∏
Make(Ads) treating uncertain data just like exact data but

with an extra attribute.

not entirely true. There is a possibility that the other (uncertain) tuples in Ads

are still valid ads and the user should be able to find out about these through

her/his query. The main issue here is that when we throw away (uncertain) data

we actually throw away information and this leads to query results of worse quality.

In many domains, such as sensor networks, the bulk of data collected is uncertain

due to reasons ranging from uncertainty associated with the sensing mechanism of

the sensors to inadequate number of sensors being placed in the environment being

measured. Throwing away the uncertain data, in such cases, leaves the database

with precious little data to work with which, albeit certain, is still unlikely to be

enough to ensure good quality query results.

A second approach is to treat the degrees of certainty of the tuples as an extra

attribute and append it to list of attributes of Ads. Executing the same query under

this paradigm returns the result shown in Figure 1.1(c) which now indicates that
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there are Toyotas and Dodges up for sale besides the Honda. Unfortunately, this

result is not quite satisfactory due to two reasons:

• Honda vs. Toyota: Notice that the query result gives Honda and Toyota equal

billing. However, the Honda result is derived from a certain tuple whereas the

Toyota result is derived from an uncertain tuple which may not correspond to

a valid ad.

• Toyota vs. Dodge: The query also gives Toyota and Dodge equal billing, even

though, Toyota was derived from an uncertain tuple associated with a degree

of 0.7 whereas Dodge was derived from two uncertain tuples each associated

with a degree of 0.7. This suggests that it is more likely for the user to find a

Dodge up for sale and the query result does not reflect this.

The first discrepancy (Honda and Toyota getting equal billing in the result) suggests

that while evaluating a query we need to look at the degrees of the tuples, the

second discrepancy (Toyota and Dodge getting equal billing) suggests that we may

also need non-trivial reasoning mechanisms to combine and compare degrees if we

are to return useful query results.

The above example should make it clear that handling uncertain data is quite

different (and perhaps more challenging) than handling exact data. Uncertain data

is typically richer than exact data and the richness is because of the quantitative

expression of uncertainties which is something traditional database research has not

considered in depth. Effectively storing and querying uncertain data requires that

we use the information present in the uncertainties appropriately so that we can
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help users sift through and arrive at answers of interest. We next describe, at a

high level of abstraction, the basic ideas used in this dissertation to design such a

database system.

1.2 Our Approach

Any system that deals with uncertain data has to begin by describing a rep-

resentation scheme that allows users to compactly yet flexibly represent the uncer-

tainties present in the data. In this dissertation, we borrow extensively from the

machine learning literature and use probability theory coupled with the language

of probabilistic graphical models to augment databases so that they can represent

uncertain data. For this reason, henceforth, we will refer to a database containing

uncertain data as a probabilistic database. Probabilistic graphical models [Cowell

et al., 1999; Pearl, 1988] are compact representations of joint probability distribu-

tions involving a large number of random variables. By redefining a probabilistic

database in terms of a probabilistic graphical model, we inherit all of their nice

compactness properties. Additionally, we show how to use probabilistic graphical

models to represent all the different kinds of uncertainty that a user might want to

express in a probabilistic database along with correlations. Correlations allow one to

couple uncertainties among multiple random variables. For instance, relating back

to the example from the previous section, suppose Ads contained another attribute

Color. Also, suppose that for some ad we neither knew the color nor the make but

we know that if the make of the car in the ad is Honda then its color can be one
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from a restricted set of colors, say red or black. Then, this coupling between color

and make attributes can be represented in a probabilistic database by expressing it

as a correlation. A number of applications produce uncertain data with known cor-

relations, such as sensor networks for habitat monitoring where it has been shown

that utilizing spatial and temporal correlations can drastically improve the quality

of query results [Deshpande et al., 2004]. In short, our formulation of a probabilistic

database can represent:

• attribute uncertainty: tuples with uncertain attribute values,

• tuple uncertainty: tuples whose existence we are unsure of,

• intra-tuple attribute-attribute correlation: tuples whose attribute values are

uncertain and correlated,

• inter-tuple attribute-attribute correlation: attribute values from different tu-

ples that are both uncertain and correlated (note that these tuples can belong

to different relations),

• inter and intra attribute value-tuple existence correlations.

In the previous section, when we discussed simple ways of handling uncertain

data using traditional database systems, we showed how such techniques led to query

results that were qualitatively unsatisfactory. However, we did not discuss what the

correct query result should look like. This, in part, relates to the question of as-

signing semantics to a probabilistic database. What does a probabilistic database

actually mean? Possible worlds semantics [Halpern, 1990] is one set of semantics
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that has formed the basis of numerous probabilistic models proposed in the machine

learning literature and it is known that databases based on possible worlds seman-

tics are associated with particularly intuitive and precise query evaluation semantics

[Dalvi and Suciu, 2004; Fuhr and Rolleke, 1997]. Essentially, under possible worlds

semantics, a probabilistic database is simply a distribution over many traditional

databases each referred to as a possible world. Query evaluation under possible

worlds semantics means evaluating the query against each possible world (which we

know how to do since each possible world is a database devoid of any uncertainty)

and for each result adding up the probabilities of all possible worlds that produce the

result. Fortunately, our probabilistic graphical models based formulation of prob-

abilistic databases lends itself naturally to possible worlds semantics thus defining

precise semantics for the query evaluation problem.

Of course, defining the query evaluation problem by associating it with precise

semantics is one thing and efficiently evaluating queries is another. Even though

possible worlds semantics precisely defines what the result of posing a query to a

probabilistic database should be, it does not provide an efficient means of comput-

ing it. To this end, we develop an approach to evaluating a user-submitted query

by reformulating it as probalistic inference problem in an appropriately constructed

graphical model. More precisely, given a query q (expressed in some declarative

query language such as relational algebra or SQL) to be evaluated against a prob-

abilistic database with an underlying probabilistic graphical model, we show how

to augment the probabilistic graphical model on the fly to construct an augmented

probabilistic graphical model from which we can compute the result of q by solving
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a probabilistic inference problem. Exactly how we augment the probabilistic graph-

ical model underlying the probabilistic database depends on q and the operators

appearing in it. This reformulation in terms of probabilistic inference has two clear

benefits:

1. The general problem of evaluating queries on probabilistic databases is known

to be #P-complete [Dalvi and Suciu, 2004], but we also know that for some

queries this problem is solvable. By expressing a query evaluation problem as

a probabilistic inference problem to be evaluated on an appropriately con-

structed probabilistic graphical model, we can now identify exactly which

queries lead to hard problems since the hardness of running probabilistic in-

ference is well understood and can be determined by measuring the treewidth

[Arnborg, 1985] of the probabilistic graphical model.

2. By reformulating the query evaluation problem as a probabilistic inference

problem, we allow access to using the host of probabilistic inference algorithms

developed in the machine learning literature, and by appropriately choosing

the inference algorithm, we can obtain various time vs. space vs. accuracy

trade-offs depending on the requirements of the user.

Besides utilizing probabilistic inference algorithms and the various optimiza-

tions they come with to evaluate queries on probabilistic databases, another aspect

that affects the complexity of the query evaluation problem is the data stored in

the probabilistic database. We can reduce the complexity of query evaluation by

exploiting special properties of the data stored in the probabilistic database at hand.
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One such property is the presence of shared correlations, where the same correlations

and uncertainties repeatedly occur in the data many times over. For instance, in

the example from the previous section, if we had two ads concerning Honda vehicles

and we didn’t know their respective colors then it is likely that the Color attribute

values of the two corresponding tuples would be governed by the same uncertainties

and probability distributions. Essentially, uncertainties and probability distribu-

tions rarely vary on a tuple-to-tuple basis and usually come from general statistics,

which leads to repeated probability factors and correlations. Besides occurring nat-

urally in the data, shared correlations are also introduced when we augment the

probabilistic graphical model defined on the base data to evaluate a query. In the

presence of shared correlations, any standard inference algorithm would treat each

copy of a shared correlation separately and perform the same computation steps

repeatedly. We develop an inference algorithm based on bisimulation [Kanellakis

and Smolka, 1983] that helps identify such shared correlations and avoid repetitive

computations. We validate our algorithm by showing that even in the presence

of a few shared correlations our algorithm does significantly better than standard

inference algorithms.

We further develop our approach to leveraging shared correlations while eval-

uating queries by developing approximate versions of the above inference algorithm.

For many applications, perfect accuracy in query results may not be a requirement

and some errors can be tolerated; our approximate inference techniques are aimed

towards such applications where we make more aggressive use of shared correlations

and trade-off accuracy to reduce time spent to run inference. More specifically, we
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propose two different ways to implement approximate inference, both closely related

to bisimulation. Both of these techniques can be combined for more aggressive ex-

ploitation of shared correlations. Further, our techniques can be combined with

bounded complexity inference techniques such as mini-buckets [Dechter and Rish,

2003]. We report experiments on both synthetic and real data to show that in the

presence of symmetries, run-times for inference can be improved significantly, with

approximate lifted inference providing orders of magnitude speedup over standard

inference algorithms and the previously developed shared correlations-aware exact

inference algorithm.

In the last part of the dissertation, our focus remains on efficient query eval-

uation but the questions we ask are slightly different. Recall that while evaluating

queries, we first take the (uncertain) data from the database and the user submit-

ted query, and generate a probabilistic graphical model on which we need to run

inference to compute the result of the query. Note that, for the same query, many

different query plans are possible. Further, different query plans of the same query

may result in different probabilistic graphical models, all of which are equivalent

with respect to the results of inference. The obvious question to be asked in such

a scenario is: are all of these graphical models similar in complexity or is there a

graphical model/query plan on which it is easier to run inference, in other words, is

there a low-treewidth graphical model? Previous attempts to answer this question

led to the concept of hierarchical queries. Hierarchical queries represent the class of

queries for which there exists a particular query plan that lets us generate a tree-

structured probabilistic graphical model (which is easy to run inference on) for any
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(tuple-independent) probabilistic database. However, because of their query-centric

definition that does not involve the database, hierarchical queries represent an overly

pessimistic way of defining the class of tractable queries. It is easy to construct ex-

amples where a non-hierarchical query run on an appropriate database gives rise

to a tractable query evaluation problem. In the final part of the dissertation, we

go beyond the notion of hierarchical queries. Our goal is to develop query evalua-

tion algorithms that, given the database and the query, generate a tree-structured

graphical model (if it exists) leveraging both the data and the query. For a tuple-

level probabilistic database, it is easy to show that every result tuple is associated

with a boolean formula and query evaluation reduces to computing the marginal

probability for the boolean formula holding true. It is also easy to see that if the

result tuple is such that its associated boolean formula can be factorized into a form

where every boolean variable (or tuple-existence variable, in our case) appears not

more than once, then its marginal probability can be computed efficiently. We pro-

pose novel approaches that generate such factorizations of result tuples produced by

evaluating queries. By doing so, we leverage both data and query to solve queries

on probabilistic databases in the most efficient manner possible.

This dissertation forms the first few steps in developing a full-fledged database

system that can manage and store uncertain data. Given the level of interest in

probabilistic databases and the wide array of applications that can benefit from

developments in this area of research, it should come as no surprise that much

work still needs to be done before we see a viable, useful system being released and

that the number of possible directions of future work far exceeds than what can be
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accomodated in a few pages of this dissertation. Still, some of these directions are

more compelling and require more urgent attention than others. We conclude the

dissertation with a summary of contributions made and a listing of these possible

avenues for future work.

1.3 Outline and Contributions

The rest of the dissertation is organized as follows:

• In the next chapter, we begin by discussing prior related work. The work

described in this dissertation contributes and is related to a number of different

fields of research, and in Chapter 2 we review the more relevant references

organized according to different areas of research to help the reader place our

contributions in context.

• Chapter 3 describes the basic representation scheme which can express all

types of uncertainties that one may want to express in a relational database.

This chapter is based on work that appeared in Sen and Deshpande [2007];

Sen et al. [2007, 2009b]. More precisely, in this chapter:

– We define probabilistic databases in terms of probabilistic graphical mod-

els.

– We show how our formulation naturally lends itself to possible worlds

semantics.

– We show that the query evaluation problem can be recast as a proba-
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bilistic inference problem in an appropriately constructed probabilistic

graphical model.

– We show how to construct the probabilistic graphical model for a query

on the fly at query time.

– We show how standard probabilistic inference algorithms, along with

various optimizations, can be used to answer queries in our probabilistic

database.

• In Chapter 4, we develop the first inference algorithm that exploits shared

correlations which is the first inference algorithm of its kind that can be applied

to any probabilistic graphical model (even ones that do not arise out of query

evaluation for probabilistic databases). This chapter is based on work that

appeared in Sen et al. [2008a, 2009b]. More precisely, in this chapter:

– We define shared correlations and motivate their presence in uncertain

data using examples.

– We develop an inference algorithm based on bisimulation that exploits

shared correlations to avoid repetitive computation.

– We develop an effective heuristic to construct elimination orders (a key

step in most exact inference algorithms) and show that our heuristic

produces orders that work well with our inference algorithm.

– We validate our inference algorithm by running experiments and com-

paring against standard inference algorithms.
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• In Chapter 5, we develop approximate versions of the previously developed

shared correlation-aware inference algorithm. This chapter is based on work

that appeared in Sen et al. [2009a]. More precisely, in this chapter:

– We devise two different ways to implement approximate inference with

shared correlations: one based on approximate bisimulation and another

based on factor binning.

– We show that these two approaches can be combined together for more

aggressive exploitation of shared correlations.

– We also show how these techniques can be combined with bounded com-

plexity inference mechanisms.

– We develop a unified inference engine that, through the use of a handful

of tunable parameters, allows the user to control the degree of approxi-

mation and to what extent we want to exploit shared correlations, thus

allowing the user to achieve a trade-off between accuracy of inference and

time spent running inference.

– We demonstrate through experiments on both synthetic and real data

how the approximate inference procedures can provide orders of mag-

nitude speedup over standard inference algorithms and our previously

developed shared correlation-aware exact inference algorithm.

• In Chapter 6, we develop query evaluation algorithms that generate tree-

structured graphical models (if possible) given the query and the database.

More precisely, in this chapter:
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– We review the concept of hierarchical queries.

– We review the relationship between hierarchical queries, tree-structured

graphical models and read-once functions.

– We propose a very simple query evaluation algorithm that makes use

of previous work on read-once functions and generates tree-structured

graphical models whenever possible given any query to be run on a prob-

abilistic database.

– We consider the special case of conjunctive queries and show that read-

once functions can be generated more efficiently for this case.

• We conclude the dissertation with Chapter 7 which contains a summary of

contributions and a listing of possible avenues of future work.
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Chapter 2

Related Work

The broader field of uncertainty management in databases has seen a lot of

work in recent years. In this chapter, we attempt to list the more relevant works

and contrast them with the contributions made in this dissertation. Moreover, the

work described in the ensuing chapters relates to various different fields of research

besides database systems such as machine learning. In what follows, we attempt to

divide the related work according to the various fields of research and within each

sub-division, we mention how our work relates to relevant prior work.

2.1 Uncertainty and Databases

The topic of representing and modeling uncertainty has been in the collective

conscience of the database community for a fairly long period of time. Consequently,

a wide array of approaches have been proposed. Very early on, the subject of dealing

with null values or logical uncertainty in a principled manner received a fair amount

of attention [Imielinski and Lipski, Jr., 1984]. More recently, there has been more

work along these lines that attempt to concisely represent such databases by em-

ploying vertical partitioning methods [Antova et al., 2007]. Das Sarma et al. [2006]

explore various different models of logical uncertainty with varying representation

power.
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When it comes to dealing with uncertainty involving a measure of uncertainty

or beliefs, a number of different approaches have been proposed. However, the

consensus seems to be that probability theory has the right balance of power and

tractability, which is why the bulk of research in this area falls under the sub-area

known as probabilistic databases. Barbara et al. [1992] is one of the earliest works

along these lines which explores attribute uncertainty models focussing on intra-

tuple correlations. Fuhr and Rolleke [1997] is perhaps one of the earliest works

that proposed a coherent, albeit simplistic, model of a probabilistic database; the

application in focus was combining information retrieval and database techniques

into one single system. ProbView [Lakshmanan et al., 1997] posits that each tuple

is associated not with a point estimate of probability but a range, and goes on

to develop query evaluation techniques based on linear programming. In recent

developments, Dalvi and Suciu [2004] present a probabilistic database model based

on simple semantics (possible worlds) and show how query rewriting techniques can

help solve intractable queries under this model.

In Chapter 3, we develop compact yet powerful models of probabilistic databases

based on probability theory and factored representations of joint probability distri-

butions. Our approach is closely related to representing uncertainty with proba-

bilistic graphical models from the machine learning literature. Our techniques allow

the user to express all kinds of uncertainty within a relational database, along with

correlations. We also show that our model of a probabilistic database is associated

with precise and intuitive semantics, possible worlds, and query evaluation can be

performed by running standard probabilistic inference algorithms on an appropri-
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ately constructed probabilistic graphical model. The work described in Chapter 3

illustrates that it is possible to go beyond simplistic tuple-level uncertainty models

that assume complete independence and still be able to come up with models of

probabilistic databases that have desirable properties such as simple semantics and

tractable querying.

Chapter 3 is based on previously published works [Deshpande et al., 2008; Sen

and Deshpande, 2007; Sen et al., 2007, 2009b]. In Sen and Deshpande [2007], we

introduced models of probabilistic databases that allowed tuple-level uncertainty

with correlations, of both intra-relation and inter-relation varieties, and was per-

haps one of the first works to include correlations. This was a significant departure

from prior work, both Fuhr and Rolleke [1997] and Dalvi and Suciu [2004] worked

with tuple-level uncertainty models assuming complete independence among tuples.

Since most applications produce data which requires modeling correlations, our work

significantly broadened the applicability of probabilistic databases. Subsequently, in

Sen et al. [2007, 2009b], we made our model of probabilistic databases more general

by including attribute and tuple level uncertainty, and also by including first-order

graphical models based on shared correlations. The concept of shared correlations

is introduced in Chapter 4 wherein we represent numerous identical correlations to-

gether instead of representing them separately. This allows our uncertainty model

to become even more compact. Shared correlations are the basis of state-of-the-art

first-order uncertainty representation models from machine learning (e.g., probabilis-

tic relational models [Friedman et al., 1999] and Markov logic networks [Richardson

and Domingos, 2006], reviewed in more detail below).
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There are a number of other works that also come under the umbrella of

probabilistic databases and have been tried over the years. Fuhr and Rolleke [1996]

proposed an extension based on NF2 relational algebra. Trio [Benjelloun et al., 2006]

proposes the concept of x-tuples which is basically an uncertain tuple represented

by its various alternatives. MystiQ [Re et al., 2006] proposes the block-independent

disjoint model which is similar to x-tuples. SPROUT [Koch and Olteanu, 2008]

employs a model referred to as a world-set tree and Li and Deshpande [2009] employ

a similar and/xor tree. None of these approaches discuss concisely describing the

uncertainty model using shared correlations and first-order graphical models like we

do in Chapter 4.

Among the various models that go beyond the use of probability theory, there

are models based on fuzzy logic [Bosc and Pivert, 2005; Buckles and Petry, 1982]

and models based on Dempster-Shafer theory [Choenni et al., 2006].

2.2 First-Order Graphical Models

On the topic of representing uncertainty, researchers in machine learning have

devoted a lot of thought and time to developing concise models that possess the

requisite representation power. The result is the development of probabilistic graph-

ical models (PGM), that contain as special cases Bayesian networks [Pearl, 1988]

and Markov networks [Cowell et al., 1999]. As reviewed in Chapter 3, a probabilis-

tic graphical model represents a joint distribution among many random variables by

representing it in little pieces called factors. Bayesian networks include only directed
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dependencies and Markov networks only allow undirected dependencies. There exist

generalizations that allow a mix of directed and undirected dependencies but disal-

low directed cycles such as chain graphs [Lauritzen, 1996] and factor graphs [Frey,

2003]. Further, generalizations that allow directed cycles have also been studied

[Richardson, 1997]. Our approach outlined in Chapter 3 can make use of any of

these approaches.

However, PGMs are not without limitations. These models are easier to vi-

sualize, reason about and deal with when the number of random variables range in

a few hundreds or less. Even in a small-to-moderately sized probabilistic database

we are likely to exceed this number which makes it unreasonable to assume that

having an uncertainty model in terms of a PGM will be easy to handle. Machine

learning researchers, specifically statistical relational learning researchers (SRL), in

the past decade or so, have paid cognisance to this fact and have come up with

a new class of PGMs frequently referred to as first-order graphical models (FO-

models). FO-models are essentially PGMs with an additional layer of specification

that uses first-order rules to specify correlations among classes of random variables.

The same first-order rule applies to all random variables belonging to the respective

classes, and these are, essentially, shared correlations (Chapter 4). This allows FO-

models to be compact, easier to maintain, visualize and also, statistically easier to

estimate from data. Listing the various FO-models produces a veritable alphabet

soup: PRMs [Friedman et al., 1999] (probabilistic relational models), RMNs [Taskar

et al., 2002] (relational Markov networks), MLNs [Richardson and Domingos, 2006]

(Markov logic networks), BLOGs [Milch et al., 2005] (Bayesian logic) etc. We refer
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the interested reader to Getoor and Taskar [2007] for a more extensive and detailed

survey.

Our use of shared correlations and FO-models to specify models of uncer-

tainty in probabilistic databases means we have close connections to this area of

work although there are some differences. Most of the work on FO-models has con-

centrated on how to specify and learn a class-level probabilistic model for relational

data; and answering queries expressed in a standard query language (e.g., relational

algebra or SQL) was not their main focus as is the case in research on probabilistic

databases. In fact, very few FO-models proposed in the literature even consider

querying with a structured query language. ProbLog [De Raedt et al., 2007], which

uses Prolog, is perhaps the only exception. We believe that the best way to view

the work described in this dissertation is to look upon it as taking the best of both

FO-models and probabilistic databases, since the representation schemes we develop

in Chapter 3 allow us to represent shared correlations in databases while the query

evaluation algorithms we develop later (in Chapter 4 and Chapter 5) can exploit

the same shared correlations to allow the user to efficiently and declaratively query

the probabilistic database.

2.3 Lifted Inference

Even though probabilistic inference can be used to evaluate queries in proba-

bilistic databases, there may still be cases when probabilistic inference is inefficient.

In Chapter 4 and Chapter 5, we show how to exploit special properties of the uncer-
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tain data, i.e., shared correlations, to speed up inference during query evaluation.

Shared correlations occur in the data when the same uncertainties and probability

distributions occur repeatedly. In such a case, standard inference algorithms treat

each instance of these shared correlations separately and repeatedly perform the

same computation steps. We develop an approach based on the graph-theoretic

concept of bisimulation [Kanellakis and Smolka, 1983; Paige and Tarjan, 1987] that

avoids such repeated computation. In Chapter 4, we present an exact inference algo-

rithm based on these ideas and, in Chapter 5, we extend the techniques in multiple

different ways to perform approximate inference.

The inference algorithms presented in Chapter 4 and Chapter 5 are closely re-

lated to lifted inference algorithms [de Salvo Braz et al., 2005; Poole, 2003] developed

by the SRL community. Lifted inference aims to exploit the symmetry provided by

FO-models in the form of shared correlations to achieve more efficient inference. The

basic idea behind lifted inference is to develop inference algorithms that instead of

summing over random variables and multiplying factors, sum over sets of random

variables and multiply sets of factors, thus reducing redundant computation. Most

works in lifted inference assume that they are provided a PGM expressed as an

FO-model and that the symmetry of shared correlations is explicitly provided in

first-order logic. In Chapter 4, we make no such assumptions. This is mainly be-

cause to evaluate queries in probabilistic databases one first needs to build the PGM

on which we need to perform inference (described in detail in Chapter 3) and it is

not straightforward to obtain a PGM expressed as an FO-model via this approach.

Instead, our bisimulation-based approach to lifted inference discovers the symmetry
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due to shared correlations in the constructed PGM on the fly. To the best of our

knowledge, our approach is the first general lifted inference approach that can be

applied to any PGM.

Some attempts have been made by the probabilistic database community to

make more direct use of existing lifted inference work. In Wang et al. [2008], the

authors state that among the various issues complicating the use of Parameterized

Variable Elimination [Poole, 2003] for query evaluation in probabilistic databases is

the presence of evidence and, presumably, handling joins among different relations;

Wang et al. only report experiments on single-relation selection queries.

Poole [2003] was one of the first to show that variable elimination [Zhang and

Poole, 1994] can be modified to directly work with FO-models to avoid propositional-

ization during inference. Subsequently, de Salvo Braz et al. [2005] further developed

on Poole’s work and referred to it as inversion elimination. They also introduce

another technique for lifted inference known as counting elimination which is more

expensive than inversion elimination (since it requires considering all possible com-

binations of assignments to a set of random variables [de Salvo Braz et al., 2005])

but can help in certain situations where the complexity of the ground model renders

ground inference infeasible. It is straightforward to show that our bisimulation-based

approach to lifted inference subsumes inversion elimination (and partial inversion [de

Salvo Braz et al., 2006]). We provide more discussion illustrating this connection,

along with an example, in Section 4.6.

Lifted inference is still a very young field, but there has been some work on

designing approximate lifted inference algorithms. Jaimovich et al. [2007]; Ker-
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sting et al. [2009]; Singla and Domingos [2008] all, essentially, propose to use a

bisimulation-like algorithm on the factor graph [Kschischang et al., 2001] repre-

senting the probabilistic model to find clusters of random variables that send and

receive identical messages which helps speed up inference with loopy belief prop-

agation (LBP) [Yedidia et al., 2000], a ground approximate inference algorithm.

Our work on approximate lifted inference described in Chapter 5 differs from lifted

LBP on two distinct counts. First, except for Kersting et al., the above works de-

pend on receiving the FO-model as input, whereas our approximate lifted inference

techniques, in effect, determine the first-order representation on the fly. Second,

as Singla and Domingos acknowledge, LBP often has problems with convergence,

whereas the approaches we describe Chapter 5 are always guaranteed to converge.

2.4 Query Evaluation in Probabilistic Databases

Keeping with the wide array of representation schemes proposed, a number of

diverse schemes for query evaluation in probabilistic databases have also been tried.

Until the last decade, there were mainly two competing schools of thought: In-

tensional and Extensional query evaluation. Intensional evaluation always provides

coherent results adhering to possible worlds semantics. Extensional evaluation, how-

ever, does not always come with guaranteed semantics, so in that sense, the results

may be wrong, even though extensional evaluation is always cheaper than inten-

sional evaluation. Dalvi and Suciu [2004] illustrated that these two approaches were

not completely at loggerheads, and that there exists a subset of SQL whose queries
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are such that when run under extensional semantics with a particular plan lead to

results in accordance with possible worlds semantics. This subset of relational alge-

bra has since been referred to as queries with safe plans [Dalvi and Suciu, 2004] or

hierarchical queries [Dalvi and Suciu, 2007].

Interestingly, it is easy to show that safe plans always give rise to tree-structured

PGMs when expressed in our formulation. This means that our approach to eval-

uating queries is also quite efficient when extensional evaluation provides correct

query results (since tree-structured PGMs are easy to run inference on), besides

always adhering to possible world semantics. In Chapter 6, we take this idea one

step further. Instead of looking at the query to find out if it is tractable or not,

as is done in most other works on tractable queries [Dalvi and Suciu, 2007, 2004;

Olteanu and Huang, 2009, 2008], we ask if the PGM constructed for query eval-

uation can be re-ordered into a tree-structured graphical model. Essentially, the

definition of hierarchical queries [Dalvi and Suciu, 2007] does not take into account

the data contained in the database. One way to describe this tractable class of

queries is to say that if a query is tractable for all possible databases then it belongs

to this class. However, this represents a very pessimistic way of defining tractable

queries. Since the PGM on which we need to run inference to compute the results

is a combination of the query and the database, we need to look at both aspects

in order to determine tractability. In Chapter 6, we explore these issues and make

connections to literature in graph theory on factorizing boolean formulas [Golumbic

et al., 2006]. We develop algorithms that take each result tuple and explore whether

the corresponding PGM can be converted to a tree-structured one, if so then we
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proceed to building this tree-structured PGM and running inference on it. We also

show that for a large class of queries, conjunctive queries without self-joins, some

of the checks that need to be performed in the most general case can be avoided,

resulting in more efficiency. By doing so, we show that both data and query can be

leveraged to the fullest to evaluate queries over probabilistic databases.

The original work on hierarchial queries [Dalvi and Suciu, 2004] mainly con-

sidered queries involving equality join predicates. Since then, there have been other

works along these lines extending the notion to various other operators. In recent

work, there have been attempts to show that, at least in some cases, inequality

predicates, 6= [Olteanu and Huang, 2008] and >,< [Olteanu and Huang, 2009], also

allow for tractable query evaluation. These approaches are currently out of the

scope for our framework since they may not lead to tree-structured PGMs. As re-

gards the assumption of no self-joins in the query, Dalvi and Suciu [2007] is the

only work we are aware of that attempts to remove this assumption. From the

machine learning community, Darwiche [2002] proposes utilizing boolean formula

factorization algorithms so that a given probabilistic model can be compiled into

a more tractable form usually referred to as an arithmetic circuit. This is advan-

tageous because performing inference using the compiled arithmetic circuit is more

efficient than performing inference with the original probabilistic model. More im-

portantly, Darwiche can handle attribute uncertainty (they consider general PGMs).

However, Darwiche relies on the use of an exponential-sized intermediate represen-

tation called multi-linear formula. In Chapter 6, we consider the simpler case of a

probabilistic database with tuple-level uncertainty. Developing techniques that can
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handle attribute-level uncertainty is delegated to future work.

Since our work illustrating that query evaluation requires probabilistic infer-

ence (Chapter 3), a number of other works have utilized different inference proce-

dures. In this dissertation, we propose the use of exact inference procedures such as

variable elimination [Zhang and Poole, 1994] and the junction tree algorithm [Pearl,

1988], Benjelloun et al. [2006]; Fuhr and Rolleke [1997] have utilized the inclusion-

exclusion principle for boolean formulas, Re et al. [2007] proposed the use of a

Markov chain Monte Carlo technique, Koch and Olteanu [2008] use ordered binary

decision diagrams and as mentioned earlier, Wang et al. [2008] makes direct use of

existing work on lifted inference [Poole, 2003] developed in the SRL community.

Other techniques to improve efficiency of evaluating queries in probabilistic

databases include Trio’s memoization techniques [Das Sarma et al., 2008], index

structures for uncertain data retrieval [Singh et al., 2007] and index structures for

junction trees [Kanagal and Deshpande, 2009]. These techniques are fairly generic

and can be used in conjunction with the techniques proposed in this dissertation.

2.5 Conclusion

Having surveyed the relevant related work, we are now ready to proceed with

the rest of the dissertation. In the next chapter we propose models for representing

uncertainty to be used in conjunction with probabilistic databases, develop a tech-

nique that expresses a query evaluation problem as an inference problem on a PGM

and illustrate the connection between query evaluation and probabilistic inference.
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Chapter 3

Representing Uncertain Data

The database community has seen a lot of work on managing uncertain data,

and the search for an ideal representation scheme has been a topic of constant inter-

est. In the past, a number of different approaches have been proposed to represent

uncertainty (we surveyed some of these in Chapter 2). Among these, perhaps the

most frequently proposed approach has been the use of probability theory, per-

haps due to its balance between power and simplicity; probability theory is general

enough to represent most kinds of uncertainty we encounter in various applications

in practice and is still simple enough to be amenable to algebraic manipulation so

that we can use it to perform various operations such as query evaluation.

In this chapter, we describe our approach to representing uncertainty in databases.

We use probability theory in conjunction with probabilistic graphical models (PGMs)

to develop a compact scheme to represent uncertain data with correlations. In the

next section, we provide background on PGMs. In Section 3.2, we formally define a

probabilistic database in terms of PGMs and describe their semantics, in addition

to providing a few examples that illustrate how correlations can be represented and

affect the distribution represented by a probabilistic database. In Section 3.3, we

discuss query evaluation and optimizations that can lead to efficient query evalua-

tion, especially for aggregate computation. We conclude the chapter with Section
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3.5, after describing experimental results in Section 3.4.

3.1 Background: Probabilistic Graphical Models

Probabilistic graphical models (PGMs) form a powerful class of approaches that

can compactly represent and reason about complex dependency patterns involving

large numbers of correlated random variables [Cowell et al., 1999; Pearl, 1988]. The

key idea behind PGMs is exploiting conditional independence [Pearl, 1988]. Most

random variables only show local interactions or correlations with other random

variables, and in many cases there are only a few of such correlations that need to

be captured to represent the joint probability distribution defined over the collection

of random variables. PGMs allow the specification of such correlations by defining

small functions we refer to as factors∗, the joint probability distribution over the

collection of random variables can then be defined as a normalized product of all

factors.

Let X denote a random variable with a domain dom(X) and let Pr(X) denote

a probability distribution over it. Similarly, let X = {X1, X2, X3 . . . , Xn} denote a

set of n random variables each with its own associated domain dom(Xi), and Pr(X)

denote the joint probability distribution over them.

Definition 1. A factor f(X) is a function over a (small) set of random variables

X = {X1, . . . , Xn} such that 0 ≤ f(x), ∀x ∈ dom(X1)× . . .× dom(Xn).

Definition 2. A probabilistic graphical model (PGM) P = 〈F ,X〉 defines a joint

∗Factors are a generalization of conditional probability tables in Bayesian networks [Pearl, 1988].
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Pr(x1, x2, x3) =
1

Z
f1(x1)f12(x1, x2)f23(x2, x3)

x1 f1

1 0.5
2 0.3
3 0.2

x1 x2 f12

1 1 0.8
1 2 0.1
1 3 0.1
2 1 0.1
2 2 0.8
2 3 0.1
3 1 0.1
3 2 0.1
3 3 0.8

x2 x3 f23

1 1 0.7
1 2 0.2
1 3 0.1
2 1 0.2
2 2 0.7
2 3 0.1
3 1 0.2
3 2 0.1
3 3 0.7

(a)

X2

X3

X1

(b)

x1 x2 x3 Pr

1 1 1 0.280
1 1 2 0.080
1 1 3 0.040
1 2 1 0.010
1 2 2 0.035
1 2 3 0.005
1 3 1 0.010
1 3 2 0.005
1 3 3 0.035

x1 x2 x3 Pr

2 1 1 0.021
2 1 2 0.006
2 1 3 0.003
2 2 1 0.048
2 2 2 0.168
2 2 3 0.024
2 3 1 0.006
2 3 2 0.003
2 3 3 0.021

x1 x2 x3 Pr

3 1 1 0.014
3 1 2 0.004
3 1 3 0.002
3 2 1 0.004
3 2 2 0.014
3 2 3 0.002
3 3 1 0.032
3 3 2 0.016
3 3 3 0.112

(c)

Figure 3.1: Example involving three dependent random variables each with a ternary
domain: (a) factored representation (b) graphical model representation (c) resulting
joint probability distribution.
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distribution over the set of random variables X via a set of factors F , where ∀f(X) ∈

F , X ⊆ X . Given a complete joint assignment x ∈ ×X∈Xdom(X), the joint dis-

tribution is defined by Pr(x) = 1
Z

∏
f∈F f(xf ) where xf denotes the assignments

restricted to arguments of f and Z =
∑

x′
∏

f∈F f(x′f )
†.

Figure 3.1 shows a small example of a PGM expressing a joint probability

distribution over three random variables each with domain {1,2,3}. The complete

joint distribution is shown in Figure 3.1(c); note that representing this requires

storing 27 real numbers (26, if you exploit the fact that the distribution should add

upto 1). However, if we are willing to exploit conditional independence among X1,

X2 and X3, then we can represent the joint probability distribution with far fewer

numbers. For instance, the distribution is such that X3 is conditionally independent

of X1 given the value of X2; in terms of correlations, X1 only directly affects X2’s

value and X2 only affects X3’s values. Exploiting these properties, we can represent

the same distribution using three factors (shown in Figure 3.1(a)). Note that the

factors only require storing 21 real numbers which is 5 less compared to storing the

joint distribution described earlier. The savings usually increase with more random

variables and larger domains. In Figure 3.1(b) we show a “graphical” representation

of the PGM where vertices represent random variables and edges depict correlations.

†Note that since we allow factors to return 0, technically, there is a possibility of Z being 0.
This only happens when we are dealing with a PGM P that encodes the trivial joint probability
distribution which maps all joint assignments to 0. As long as there exists at least one joint
assignment x such that

∏
f∈F f(xf ) > 0 this case should not arise.

32



3.2 Probabilistic Databases with Probabilistic Graphical Models

We are now ready to define a probabilistic database in terms of a PGM. The

basic idea is to use random variables to depict uncertain attribute values and factors

to represent correlations. Let R denote a probabilistic relation or simply, relation,

and let attr(R) denote the set of attributes of R. A relation R consists of a set

of probabilistic tuples or simply, tuples, each of which is a mapping from attr(R)

to random variables. Let t.a denote the random variable of tuple t ∈ R such that

a ∈ attr(R). Besides mapping each attribute to a random variable, every tuple t is

also associated with a boolean-valued random variable which captures the existence

uncertainty of t and we denote this by t.e.

Definition 3. A probabilistic database or simply, a database, D is a pair 〈R,P〉

where R is a set of relations and P denotes a PGM defined over the set of random

variables associated with the tuples in R.

3.2.1 Possible World Semantics

We now define semantics for our formulation of a probabilistic database. Let

X denote the set of random variables associated with database D = 〈R,P〉. Possible

world semantics defines a database D as a probability distribution over deterministic

databases or possible worlds [Dalvi and Suciu, 2004] each of which is obtained by

assigning X a joint assignment x ∈ ×X∈Xdom(X)‡. The probability associated with

‡Note that not all joint assignments are legal, a legal joint assignment should satisfy: t.e ⇒
(t.a = ∅), ∀t ∈ R,∀a ∈ attr(R),∀R ∈ R where R denotes the set of relations in D and ∅ is a
special “null” assignment, in other words a tuple’s attributes cannot be assigned values unless it
exists. It is easy to define the factors in such a way that all illegal assignments are assigned 0
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S A B

s1 a1 {1: 0.6, 2: 0.4}
s2 a2 {1: 0.6, 2: 0.4}

T B C

t1 {2: 0.5, 3: 0.5} c

(a)

s1.B fs1.B

1 0.6
2 0.4

s2.B fs2.B

1 0.6
2 0.4

t1.B ft1.B

2 0.5
3 0.5

(b)

Figure 3.2: A small database with independent uncertain attribute values.

the possible world obtained from the joint assignment x is given by the distribution

defined by the PGM P (Definition 2).

3.2.2 Examples

We now present a few examples to further explain our notion of a probabilis-

tic database. Consider the two-relation database shown in Figure 3.2(a). In this

database, every tuple has an uncertain attribute value (the B attributes) and these

are indicated in Figure 3.2(a) by specifying their respective domains with each entry

from the domain followed by the probability with which the attribute value can take

the assignment. In a database, we represent the uncertainty associated with each

uncertain value using a random variable and the corresponding probability distri-

bution using a factor (assuming complete independence). For instance, s2.B can be

assigned the value 1 with probability 0.6 and the value 2 with probability 0.4 and

we would represent this using the factor fs2.B shown in Figure 3.2(b). We show all

three required factors fs1.B(s1.B), fs2.B(s2.B) and ft1.B(t1.B) in Figure 3.2(b). In

probabilities.
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addition to the random variables which denote uncertain attribute values, we can

introduce tuple existence random variables s1.e, s2.e, and t1.e, which capture tuple

uncertainty. These are boolean-valued random variables and can have associated

factors. In Figure 3.2, we assume the tuples are certain, so we do not show the

existence random variables for the base tuples. We next explain semantics of our

example database in terms of possible worlds.

The database shown in Figure 3.2 represents a distribution over many deter-

ministic databases (possible worlds), and each possible world is obtained by assigning

all three random variables s1.B, s2.B and t1.B assignments from their respective

domains. Since the three random variables depicted in Figure 3.2 each have do-

main with size 2, there are 23 = 8 possible worlds. Figure 3.3 shows all 8 possible

worlds with the corresponding probabilities listed under the column “prob.(ind.)”.

The probability associated with each possible world is obtained by multiplying the

appropriate numbers returned by the factors and normalizing if necessary. For in-

stance, for the possible world obtained by the assignment s1.B = 1, s2.B = 2,

t1.B = 2 (D3 in Figure 3.3) the probability is 0.6× 0.4× 0.5 = 0.12.

Let us now try to modify our example to illustrate how to represent correlations

in a probabilistic database. In particular, we will try to construct three different

databases each containing the following dependencies respectively:

• implies: t1.B = 2 implies s1.B 6= 2 and s2.B 6= 2, in other words, (t1.B =

2) =⇒ (s1.B = 1) ∧ (s2.B = 1).

• different: t1B and s1.B cannot have the same assignment, in other words,
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possible world
prob. prob. prob. prob.
(ind.) (implies) (diff.) (pos.corr.)

D1 =

S A B

s1 a1 1
s2 a2 1

T B C

t1 2 c
0.18 0.50 0.30 0.06

D2 =

S A B

s1 a1 1
s2 a2 1

T B C

t1 3 c
0.18 0.02 0.06 0.30

D3 =

S A B

s1 a1 1
s2 a2 2

T B C

t1 2 c
0.12 0 0.20 0.04

D4 =

S A B

s1 a1 1
s2 a2 2

T B C

t1 3 c
0.12 0.08 0.04 0.20

D5 =

S A B

s1 a1 2
s2 a2 1

T B C

t1 2 c
0.12 0 0 0.24

D6 =

S A B

s1 a1 2
s2 a2 1

T B C

t1 3 c
0.12 0.08 0.24 0

D7 =

S A B

s1 a1 2
s2 a2 2

T B C

t1 2 c
0.08 0 0 0.16

D8 =

S A B

s1 a1 2
s2 a2 2

T B C

t1 3 c
0.08 0.32 0.16 0

Figure 3.3: Possible worlds for example in Figure 3.2(a).
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Primplies(s1.B, s2.B, t1.B) = f implies
t1.B (t1.B)f implies

t1.B,s1.B(t1.B, s1.B)f implies
t1.B,s2.B(t1.B, s2.B)

t1.B f implies
t1.B

2 0.5
3 0.5

t1.B s1.B f implies
t1.B,s1.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

t1.B s2.B f implies
t1.B,s2.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

(a)

Prdiff (s1.B, s2.B, t1.B) = fdiff
t1.B,s1.B(t1.B, s1.B)fdiff

s2.B (s2.B)

t1.B s1.B fdiff
t1.B,s1.B

2 1 0.5
2 2 0
3 1 0.1
3 2 0.4

s2.B fdiff
s2.B

1 0.6
2 0.4

(b)

Prpos.corr(s1.B, s2.B, t1.B) = fpos.corr.
t1.B,s1.B(t1.B, s1.B)fpos.corr.

s2.B (s2.B)

t1.B s1.B fpos.corr.
t1.B,s1.B

2 1 0.1
2 2 0.4
3 1 0.5
3 2 0

s2.B fpos.corr.
s2.B

1 0.6
2 0.4

(c)

Figure 3.4: Factors for the probabilistic databases with dependencies (we have omit-
ted the normalization constant Z because the numbers are such that distribution
is already normalized) (a) implies correlation (b) different correlation (c) positive
correlation.
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(t1.B = 2)⇔ (s1.B = 1) or (s1.B = 2)⇔ (t1.B = 3).

• positive correlation: High positive correlation between t1.B and s1.B, if one is

assigned 2 then the other is also assigned the same value with high probability.

Figure 3.3 shows a distribution each over the possible worlds that satisfies each of

the above correlations (the columns are labeled with abbreviations of the names of

the correlations, e.g., the column for positive correlation is labeled “pos. corr.”).

To represent the possible worlds of our example database with the new corre-

lations, we simply redefine the factors in the database. However, in this case, since

we need to represent correlations, we will need to use factors defined over multiple

random variables. Figure 3.4 represents the three sets of factors each correspond-

ing to a database with each of the previously defined dependencies that depict the

required distribution over possible worlds from Figure 3.3. For instance, Figure 3.4

(a) shows the factors required to define the possible worlds distribution depicted

in column “implies” in Figure 3.3, and this is achieved by defining factors f implies
t1.B,s1.B

and f implies
t1.B,s2.B which denote the implication dependencies defined earlier. Similarly,

notice how factor fdiff
t1.B,s1.B (Figure 3.4 (b)) enforces that t1.B and s1.B be assigned

different values. Lastly, fpos.corr.
t1.B,s1.B enforces the positive correlation between t1.B and

s1.B depicted in the third example.

Note that in Definition 3, we make no restrictions as to which random variables

appear as arguments in a factor. Thus, if the user wishes, s/he may define a factor

including random variables from the same tuple, different tuples, tuples from differ-

ent relations or tuple existence and attribute value random variables, which means
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that in our formulation we can express any kind of correlation that one might think

of representing in a probabilistic database.

3.3 Query Evaluation

Having defined our representation scheme, we now move our discussion to

query evaluation. The main advantage of associating possible world semantics with

a probabilistic database is that it lends precise semantics to the query evaluation

problem. Given a user-submitted query q (expressed in some standard query lan-

guage such as relational algebra) and a database D, then the result of evaluating q

against D is defined to be the set of results obtained by evaluating q against each

possible world ofD augmented with the probabilities of the possible worlds. Relating

back to our earlier examples, suppose we want to run the query q =
∏

C(S ./B T ).

Figure 3.5(a) shows the set of results obtained from each set of possible worlds aug-

mented by the corresponding probabilities depending on which database we ran the

query against.

Now, even though query evaluation under possible world semantics is clear and

intuitive, it still has some issues that prevent us from executing it directly. First and

foremost among these issues, is the size of the result. Since the number of possible

worlds is exponential in the number of random variables in the database (product

of domain sizes of all random variables to be more precise), in the case that every

possible world returns a different result, returning the result to the user or storing

it is only going to be feasible for the smallest of databases. To get around this issue,
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possible query prob. prob. prob. prob.
world result (ind.) (implies) (diff.) (pos.corr.)

D1 ∅ 0.18 0.50 0.30 0.06
D2 ∅ 0.18 0.02 0.06 0.30

D3

C

c
0.12 0 0.20 0.04

D4 ∅ 0.12 0.08 0.04 0.20

D5

C

c
0.12 0 0 0.24

D6 ∅ 0.12 0.08 0.24 0

D7

C

c
0.08 0 0 0.16

D8 ∅ 0.08 0.32 0.16 0

(a)

query Pr(D3) + Pr(D5) + Pr(D7)

result ind. implies diff. pos.corr.

C

c
0.32 0 0.20 0.40

(b)

Figure 3.5: Results running the query
∏

C(S ./B T ) on the different example
databases.
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it is traditional to compress the result before returning it to the user. One way of

doing this is to collect all tuples from the set of results returned by possible world

semantics and return these along with the sum of probabilities of the possible worlds

that return the tuple as a result [Dalvi and Suciu, 2004]. In Figure 3.5(a), there

is only one tuple that is returned as a result and this tuple is returned by possible

worldsD3, D5 andD7. In Figure 3.5(b), we show the resulting probabilities obtained

by summing across these three possible worlds for each example database.

The second issue is, of course, related to the complexity of computing the

results of a query from first principles. Since the number of possible worlds is going to

be large for any non-trivial database, evaluating results directly by enumerating all

of its possible worlds is going to be infeasible. To get around this issue we first make

the connection between computing query results for a probabilistic database and

the marginal probability computation problem for probabilistic graphical models.

Definition 4. Given a PGM P = 〈F ,X〉 and a random variable X ∈ X , the

marginal probability associated with the assignment X = x, where x ∈ dom(X), is

defined as µX(x) =
∑

x∼x Pr(x), where Pr(x) denotes the distribution defined by

the PGM and x ∼ x denotes a joint assignment to X where X is assigned x.

Since each possible world is obtained by assigning all random variables in the

database with a joint assignment, at least intuitively, it does seem like we are com-

puting marginal probabilities when we sum over all possible worlds to evaluate a

query. However, we have yet to express the result tuples using random variables

(the random variables in the database are the ones associated with the base tu-
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ples). Therefore, to cast the query evaluation problem into a marginal probability

computation problem, we have to first show how to augment the PGM underlying

the database such that the augmented PGM contains random variables represent-

ing result tuples. We can then express the probability computation associated with

evaluating the query as a standard marginal probability computation problem and

thus allow us to use any of the host of probabilistic inference algorithms designed to

perform marginal probability computations to solve the query evaluation problem.

We next present an example to illustrate the basic ideas underlying our approach to

augmenting the PGM underlying the database given a query; after that we discuss

how to augment the PGM in the general case given any relational algebra query.

3.3.1 Example

Consider running the query
∏

C(S ./B T ) on the database presented in Figure

3.2(a). Our query evaluation approach is very similar to query evaluation in tradi-

tional database systems and is depicted in Figure 3.6. Just as in traditional database

query processing, in Figure 3.6, we introduce intermediates tuples produced by the

join (i1 and i2) and produce a result tuple (r1) produced from the projection op-

eration. What makes query processing for probabilistic databases different from

traditional database query processing is the fact that we need to preserve the corre-

lations among the random variables representing the intermediate and result tuples

and the random variables representing the tuples they were produced from. In our

example, there are three such correlations that we need to maintain:
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S A B

s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}

T B C

t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c

fi1.e, fi2.e

Q
C(S./BT )−→

C

r1 c

fr1.e

Figure 3.6: Evaluating
∏

C(S ./B T ) on the database from Figure 3.2(a).

• i1 (produced by the join between s1 and t1) exists or i1.e is true only in those

possible worlds where both s1.B and t1.B are assigned the value 2.

• Similarly, i2.e is true only in those possible worlds where both s2.B and t1.B

are assigned the value 2.

• Finally, r1 (the result tuple produced by the projection) exists or r1.e is true,

only in those possible worlds that produce at least one of i1 or i2 or both.

To enforce these correlations, during query evaluation we introduce interme-

diate factors defined over appropriate random variables. For our example, we intro-

duce the following three correlations:

• For the correlation among i1.e, s1.B and t1.B we introduce the factor fi1.e

which is defined as:

fi1.e(i1.e, s1.B, t1.B) =


1 if i1.e⇔ ((s1.B == 2) ∧ (t1.B == 2))

0 otherwise

• Similarly, for the correlation among i2.e, s2.B and t1.B, we introduce the factor
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fi2.e which is defined as:

fi2.e(i2.e, s2.B, t1.B) =


1 if i2.e⇔ ((s2.B == 2) ∧ (t1.B == 2))

0 otherwise

• For the correlation among r1.e, i1.e and i2.e, we introduce a factor fr1.e cap-

turing the or semantics. In other words, we would like to enforce that r1.e is

true when at least one of i1.e or i2.e hold true:

fr1.e(r1.e, i1.e, i2.e) =


1 if r1.e⇔ (i1.e ∨ i2.e)

0 otherwise

Figure 3.6 depicts the full run of the query along with the introduced factors.

Now, to compute the probability of existence of r1 (which is what we did in

Figure 3.5 by enumerating over all possible worlds), we simply need to compute the

marginal probability associated with the assignment r1.e = true from PGM formed

by the set of factors in the base data and the factors introduced during query

evaluation. For instance, for the example where we assumed complete independence

among all uncertain attribute values (Figure 3.2(b)), our augmented PGM is given

by the collection fs1.B, fs2.B, ft1.B, fi1.e, fi2.e and fr1.e, and to compute the marginal

probability, we can simply use any of the exact inference algorithms available in the

machine learning literature such as variable elimination [Dechter, 1996; Zhang and

Poole, 1994] or the junction tree algorithm [Huang and Darwiche, 1994].
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3.3.2 General Relational Algebra Queries

Query evaluation for general relational algebra also follows the same basic

ideas. In what follows, we modify the traditional relational algebra operators so that

they not only generate intermediate tuples but also introduce intermediate factors,

which, combined with the factors on the base data, provide a PGM that can then

be used to compute marginal probabilities of the random variables associated with

result tuples of interest. We next describe the modified σ, ×,
∏

, δ, ∪, − and γ

(aggregation) operators where we use ∅ to denote a special “null” symbol.

Select: Let σc(R) denote the query we are interested in, where c denotes the pred-

icate of the select operation. Every tuple t ∈ R can be jointly instantiated with

values from ×a∈attr(R)dom(t.a). If none of these instantiations satisfy c, then t does

not give rise to any result tuple. If even a single instantiation satisfies c, then we

generate an intermediate tuple r that maps attributes from R to random variables,

besides being associated with a tuple existence random variable r.e. We then in-

troduce factors encoding the correlations among the random variables for r and

the random variables for t. The first factor we introduce is fσ
r.e, which encodes the

correlations for r.e:

fσ
r.e(r.e, t.e, {t.a}a∈attr(R)) =


1 if t.e ∧ c({t.a}a∈attr(R))⇔ r.e

0 otherwise

where c({t.a}a∈attrR) is true if a joint assignment to the attribute value random

variables of t satisfies the predicate c and false otherwise.
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We also introduce a factor for r.a, ∀a ∈ attr(R) (where dom(r.A) = dom(t.A)),

denoted by fσ
r.a. f

σ
r.a takes t.a, r.e and r.a as arguments and can be defined as:

fσ
r.a(r.a, r.e, t.a) =


1 if r.e ∧ (t.a = r.a)

1 if r.e ∧ (r.a = ∅)

0 otherwise

Cartesian Product: Suppose R1 and R2 are the two relations involved in the

cartesian product operation. Let r denote the join result of two tuples t1 ∈ R1 and

t2 ∈ R2. Thus r maps every attribute from attr(R1)∪attr(R2) to a random variable,

besides being associated with a tuple existence random variable r.e. The factor for

r.e, denoted by f×r.e, takes t1.e, t2.e and r.e as arguments, and is defined as:

f×r.e(r.e, t1.e, t2.e) =


1 if t1.e ∧ t2.e⇔ r.e

0 otherwise

We also introduce a factor f×r.a for each a ∈ attr(R1) ∪ attr(R2), and this is defined

exactly in the same fashion as fσ
r.a. Basically, for a ∈ attr(R1) (a ∈ attr(R2)), it

returns 1 if r.e∧ (t1.a = r.a) (r.e∧ (t2.a = r.a)) holds or if r.e∧ (r.a = ∅) holds, and

0 otherwise.

Project (without duplicate elimination): Let
∏

a(R) denote the operation we are

interested in where a ⊆ attr(R) denotes the set of attributes we want to project

onto. Let r denote the result of projecting t ∈ R. Thus r maps each attribute a ∈ a

to a random variable, besides being associated with r.e. The factor for r.e, denoted
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by f
Q
r.e, takes t.e and r.e as arguments, and is defined as follows:

f
Q
r.e(r.e, t.e) =


1 if t.e⇔ r.e

0 otherwise

Each factor f
Q
r.a, introduced for r.a, ∀a ∈ a, is defined exactly as fσ

r.a, in other words,

f
Q
r.a(r.a, r.e, t.a) = fσ

r.a(r.a, r.e, t.a).

Duplicate Elimination: Duplicate elimination is a slightly more complex opera-

tion because it can give rise to multiple intermediate tuples even if there was only

one input tuple to begin with. Let R denote the relation from which we want to elim-

inate duplicates, then the resulting relation after duplicate elimination will contain

tuples whose existence is uncertain, more precisely the resulting tuples’ attribute

values are known. Any element from
⋃

t∈R×a∈attr(R)dom(t.a) may correspond to

the values of a possible result tuple. Let r denote any such result tuple whose at-

tribute values are known, only r.e is not true with certainty. Denote by ra the

value of attribute a in r. We only need to introduce the factor f δ
r.e for r.e. To do

this we compute the set of tuples from R that may give rise to r. Any tuple t that

satisfies
∧

a∈attr(R)(ra ∈ dom(t.a)) may give rise to r. Let yr
t be an intermediate

random variable with dom(yr
t ) = {true, false} such that yr

t is true iff t gives rise

to r and false otherwise. This is easily done by introducing a factor f δ
yr

t
that takes
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{t.a}a∈attr(R), t.e and yr
t as arguments and is defined as:

f δ
yr

t
(yr

t , {t.a}a∈attr(R), t.e) =


1 if t.e ∧

∧
a(t.a = ra)⇔ yr

t

0 otherwise

where {t.a}a∈attr(R) denotes all attribute value random variables of t. We can then

define f δ
r.e in terms of yr

t . f
δ
r.e takes as arguments {yr

t }t∈Tr , where Tr denotes the set

of tuples that may give rise to r (contains the assignment {ra}a∈attr(R) in its joint

domain), and r.e, and is defined as:

f δ
r.e(r.e, {yr

t }t∈Tr) =


1 if

∨
t∈Tr

yr
t ⇔ r.e

0 otherwise

Union and set difference: These operators require set semantics. Let R1 and R2

denote the relations on which we want to apply one of these two operators, either

R1 ∪ R2 or R1 − R2. We will assume that both R1 and R2 are sets of tuples such

that every tuple contained in them have their attribute values fixed and the only

uncertainty associated with these tuples are with their existence (if not then we can

apply a δ operation to convert them to this form). Now, consider result tuple r

and sets of tuples T 1
r , containing all tuples from R1 that match r’s attribute values,

and T 2
r , containing all tuples from R2 that match r’s attribute values. The required

factors for r.e can now be defined as follows:

f∪r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =


1 if (

∨
t∈T 1

r ∪T 2
r
t.e)⇔ r.e

0 otherwise
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f−r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =


1 if ((

∨
t∈T 1

r
t.e) ∧ ¬(

∨
t∈T 2

r
t.e))⇔ r.e

0 otherwise

Aggregation operators: Aggregation operators are also easily handled using fac-

tors. Suppose we want to compute the sum aggregate on attribute a of relation R,

then we simply define a random variable r.a for the result and introduce a factor

that takes as arguments {t.a}t∈attr(R) and r.a, and define the factor so that it returns

1 if r.a = (
∑

t∈R t.a) and 0 otherwise. Thus for any aggregate operator γ and result

tuple random variable r.a, we can define the following factor:

fγ
r.a(r.a, {t.a}t∈R) =


1 if r.a = γt∈Rt.a

1 if (r.a = ∅)⇔
∧

t∈R(t.a = ∅)

0 otherwise

Optimizations: For the above operator modifications, we have attempted to be

completely general and as such, the factors introduced may look slightly more com-

plicated than need be. For example, it is not necessary that fσ
r.E take as arguments

all random variables {t.a}a∈attr(R) (as defined above), it only needs to take those

t.a random variables as arguments which are involved in the predicate c of the σ

operation. Also, given a theta-join, we do not need to implement this as a cartesian

product followed by a select operation. It is straightforward to push the select op-

eration into the cartesian product factors and implement the theta-join directly by

modifying f×r.E appropriately using c.

Another type of optimization that is extremely useful for aggregate computa-
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tion, duplicate elimination and the set-theoretic operations (∪ and −) is to exploit

decomposable functions. A decomposable function is one whose result does not

depend on the order in which the inputs are presented to it. For instance, ∨ is a

decomposable function, and so are most of the aggregation operators including sum,

count, max and min. The problem with some of the redefined relational algebra op-

erators is that, if implemented naively, they may lead to large intermediate factors.

For instance, while running a δ operation, if Tr contains n tuples for some r then

the factor f δ
r.e will be of size 2n+1 which is inefficient. By exploiting decomposability

of ∨ we can implement the same factor using a linear number of constant sized (3-

argument) factors which may lead to significant speedups. We refer the interested

reader to Rish [1999]; Zhang and Poole [1996] for more details. The only aggrega-

tion operator that is not decomposable is avg, but even in this case we can exploit

the same ideas by implementing avg in terms of sum and count, both of which are

decomposable.

3.3.3 Complexity of probabilistic inference

The above operators will help generate the augmented PGM given any rela-

tional algebra query to be executed on a database, after generating the augmented

PGM, the last step of query evaluation requires that we run probabilistic inference.

Exact probabilistic inference is known to be NP-hard in general [Cooper, 1990].

More specifically, the complexity of exact probabilistic inference is exponential in a

quantity known as the treewidth [Arnborg, 1985] which depends on the structure of
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the graph depicting the PGM (where vertices denote random variables and edges

denote correlations, see Figure 3.1(b) for an example). However, many applica-

tions provide PGMs with sparse graph structures that allow efficient probabilistic

computation [Zhang and Poole, 1994]. Variable elimination, also known as bucket

elimination, [Dechter, 1996; Zhang and Poole, 1994] and the junction tree algorithm

[Huang and Darwiche, 1994] are two exact inference algorithms (among others) that

have the ability to exploit such structure. In particular, the inference problem is

easy if the PGM is or closely resembles a tree and the problem becomes progressively

harder as the PGM deviates more from being a tree.

3.4 Experiments and Discussion

We performed three sets of experiments. In the first set of experiments, we

illustrate the importance of modeling correlations. Here, we chose the problem of

querying publication datasets as a case study and show that if we do not model

natural mutual exclusivity correlations then results can be counter-intuitive. In the

second set of experiments, we experiment on the TPC-H benchmark [TPC-H Bench-

mark] with slight modifications (to add probabilities) to demonstrate the scalability

of query evaluation with probabilistic inference. In the third set of experiments, we

demonstrate the range of queries that can be evaluated with probabilistic inference

by evaluating aggregation queries.

51



3.4.1 Case Study: Querying Publication Datasets

Most applications produce data that requires modeling uncertainty and usu-

ally, assuming one wants to be faithful to the underlying distribution then, complex

correlations need to be represented. However, the complexity of managing uncertain

databases increases with increasingly correlated models. In this section, we present

some experiments that indicate the need for modeling correlations, that unless we

do this the quality of results obtained from query evaluation can be exceedingly

poor.

Consider a publications database containing two relations: (1) PUBS(PID,

Title), and (2) AUTHS(PID, Name), where PID is the unique publication id, and

consider the task of retrieving all publications with title y written by an author with

name x. Assuming that the user is not sure of the spellings x and y, we might use

the following query to perform the above task:

∏
Title(σName≈x(AUTHS) ./ σTitle≈y(PUBS))

One way to handle uncertain predicates used above is to interpret them in terms of

probabilities. Given a predicate of the form R.a ≈ k, where a is a string attribute,

and k is a string constant, the system assigns a probability to each tuple t, based on

how similar t.a is to k. Following Dalvi and Suciu [2004], we compute the 3-gram

distance [Ukkonen, 1992] between t.a and k, and convert it to a posterior probability

by assuming that the distance is normally distributed with mean 0, and variance σ (σ

is a parameter fed to the system). For the above query, the similarity predicates will

cause both the relations PUBS and AUTHS to be converted into probabilistic relations,
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AUTHSp and PUBSp. However, note that AUTHSp contains natural mutual exclusion

dependencies with respect to this query. Since the user is looking for publications

by a single author with name x, it is not possible for x to match two AUTHSp tuples

corresponding to the same publication in the same possible world. Thus, any two

AUTHSp tuples with the same PID exhibit a mutual exclusion dependency, and a

possible world containing both of them should be assigned zero probability.

To illustrate the drawbacks of ignoring such mutual exclusion dependencies,

we ran the above query with x = “T. Michel” and y = “Reinforment Leaning hiden

stat” on two probabilistic databases, one assuming complete independence among

tuples (IND DB) and another that models the dependencies (MUTEX DB). We

ran the query on an extraction of 860 publications from the real-world CiteSeer

dataset [Giles et al., 1998b]. We report results across various settings of σ. Figure

3.7 shows the top three results obtained from the two databases at three different

settings of σ (we also list the author names to aid the reader’s understanding).

MUTEX DB returns intuitive and similar results at all three values of σ. IND DB

returns reasonable results only at σ = 10, whereas at σ = 50, 100 it returns very

odd results (“Decision making and problem solving” does not match the string

“Reinforment Leaning hiden stat” very closely and yet it is assigned the highest

rank at σ = 100). Figure 3.8 (i) shows the cumulative recall graph for IND DB

for various values of σ, where we plot the fraction of the top N results returned by

MUTEX DB that were present in the top N results returned by IND DB. As we

can see, at σ = 50 and 100, IND DB exhibits poor recall.

Figure 3.7 shows that IND DB favors publications with long author lists. This
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Title

Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

(i) MUTEX DB results at σ = 10, 50, 100

Title

Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

(ii) IND DB results at σ = 10

Title

Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Decision making and problem solving (G. Dantzig, R. Hogarth, . . .)
Multimodal Learning Interfaces (by U. Bub, R. Houghton, . . .)
. . .

(iii) IND DB results at σ = 50

Title

Decision making and problem solving (G. Dantzig, R. Hogarth, . . .)
HERMES: A heterogeneous reasoning and mediator system (by S. Adali, A. Brink,
. . .)
Induction and reasoning from cases (by K. Althoff, E. Auriol, . . .)
. . .

(iv) IND DB results at σ = 100

Figure 3.7: Top three results for a similarity query: (i) shows results from MU-
TEX DB; (ii), (iii) and (iv) show results from IND DB.
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does not affect the results at low values of σ (=10) because, in that case, we use

a “peaked” gaussian which assigns negligible probabilities to possible worlds with

multiple AUTHSp from the same publication. At larger settings of σ, however, these

possible worlds are assigned larger probabilities and IND DB returns poor results.

MUTEX DB assigns these possible worlds zero probabilities by modeling dependen-

cies on the base tuples. We would like to note that, although setting the value of σ

carefully may have resulted in a good answer for IND DB in this case, choosing σ is

not easy in general and depends on various factors such as user preferences, distribu-

tions of the attributes in the database, etc. Modeling mutual exclusion dependencies

explicitly using our approach naturally alleviates this problem.

3.4.2 Experiments with TPC-H Benchmark

We also show scalability results for our proposed query execution strategies

using a randomly generated TPC-H dataset of size 10MB. For simplicity, we assume

complete independence among the base tuples (though the intermediate tuples may

still be correlated). Figure 3.8 (iii) shows the execution times on TPC-H queries Q2

to Q8 (modified to remove the top-level aggregations). The first bar on each query

indicates the time it took for our implementation to run the full query including

all the database operations and the probability computations. The second bar on

each query indicates the time it took to run only the database operations using our

JAVA-based implementation. Here are the summary of the results:

• As we can see in Figure 3.8 (iii), for most queries the additional cost of prob-
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ability computations is comparable to the cost of normal query processing.

• The two exceptions are Q3 and Q4 which severely tested our probabilistic

inference engine. By removing the aggregate operations, Q3 resulted in a

relation of size in excess of 60,000 result tuples. Although Q4 resulted in a very

small relation, each result tuple was associated with a probabilistic graphical

model of size exceeding 15,000 random variables. Each of these graphical

models are fairly sparse but book-keeping for such large data structures took

a significant amount of time.

• Q7 and Q8 are supposed to be intractable queries (i.e., are not hierarchical

queries [Dalvi and Suciu, 2004]) yet their run-times are surprisingly fast. By

taking a closer look, we noticed that both these queries gave rise to tree-

structured graphical models for which treewidth is low justifying our belief

that there are may be databases where the data allows query evaluation to be

tractable even if query compilation techniques [Dalvi and Suciu, 2004; Olteanu

and Huang, 2009, 2008] suggest otherwise.

3.4.3 Aggregation Queries

Our approach also naturally supports efficient computation of a variety of

aggregate operators over probabilistic relations using the decomposition techniques

described in Section 3.3. Figure 3.8 (ii) shows the result of running an average query

over a synthetically generated dataset containing 500 tuples. As we can see, the final

result can be a fairly complex probability distribution, which is quite common for
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Figure 3.8: (i) Cumulative recall graph comparing results of IND DB and MU-
TEX DB for σ = 10, 50, 100. (ii) AVG aggregate computed over 500 randomly gen-
erated tuples with attribute values ranging from 1 to 5. (iii) Run-times on TPC-H
data.
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aggregate operations.

3.5 Conclusion

In this chapter, we described an approach to represent uncertain data with ar-

bitrary correlations in a probabilistic database using probabilistic graphical models.

Probabilistic graphical models allow us exploit conditional independence present in

the data to provide a compact scheme that can represent both attribute and tuple

level uncertainty in the same database. We showed how our representation scheme

naturally lends itself to possible world semantics thus associating precise semantics

with the query evaluation problem. We further showed that it is possible to recast

the query evaluation problem into a marginal probability computation problem on

an appropriately constructed probabilistic graphical model that can be generated

on the fly. Our approach allows us to use a host of probabilistic inference algorithms

(exact and approximate) developed in the machine learning community to evaluate

queries, however there are certain aspects regarding query evaluation in probabilistic

databases that make it unique and different from the inference problems tradition-

ally considered in machine learning research. In the next chapter we show how these

aspects can be exploited to speedup query evaluation for probabilistic databases.
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Chapter 4

Bisimulation-based Lifted Inference for Probabilistic Databases

In the last chapter, we described our representation scheme for uncertain

data and showed that query evaluation reduces to probabilistic inference in such

databases. In reality, most probabilistic database formulations (whether the one

described in the previous chapter or other formulations based on tuple-level un-

certainty such as Benjelloun et al. [2006] or Re and Suciu [2007]) require general

probabilistic inference at some level of abstraction. Thus it is imperative that we

design efficient inference approaches to make probabilistic databases a feasible and

viable option. Given that we already know general inference is a #P-complete prob-

lem [Dalvi and Suciu, 2004], the only way we can achieve this is to utilize the special

properties of the data at hand. In this chapter, we motivate the presence of one

such property that we refer to as shared correlations, and show how to exploit it to

speed up inference during query evaluation for probabilistic databases.

AdID Make Color Price

1 Honda ? $9,000
2 ? ? $6,000
3 ? Beige $8,000
...

...
...

...

Color fcolor

Black 0.75
Beige 0.25

Make fmake

Honda 0.55
Toyota 0.45

Figure 4.1: Pre-owned car ads with missing values.
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Consider the example database containing pre-owned car sales ads from the

last chapter which we used to contrast between tuple level uncertainty databases and

databases that can express uncertainty at both tuple and attribute levels (shown

again in Figure 4.1 for convenience). Recall that, the first tuple shows an ad with

the color of the car missing, the third tuple shows one with the make missing and the

second tuple represents an ad with both attributes missing. Figure 4.1 also shows

the probability distributions associated with these missing values, more specifically,

fmake defines the distribution over missing make values in the database (assuming

our universe can contain only two makes Honda and Toyota) and fcolor defines the

distribution over missing color values (assuming our universe contains only black

and beige cars). Note that the distributions make no reference to any tuple specific

information. In other words, no matter how many tuples with missing color are

present in the relation, their uncertainty will still be defined by the same distribution

represented by fcolor and, along with fmake, these distributions are examples of shared

correlations (more precisely defined in Section 4.2.

In many cases, the uncertainty in the data is defined using general statistics

that do not vary on a per-tuple basis, and this, in turn, leads to shared correlations.

Various earlier works have also described applications with shared correlations. For

instance, Andritsos et al. [2006] describe a customer relationship management ap-

plication where the objective is to merge data from two or more source databases

and each source database is assigned a probability value based on the quality of the

information it contains. Even here, probabilities do not change from tuple to tuple,

since tuples from the same source are assigned the same source probability. An-

60



other source of shared correlations in probabilistic databases is the query evaluation

approach itself. Recall from the previous chapter that while evaluating queries we

first build an augmented PGM by introducing small factors that depict probability

distributions and correlations on the fly. For instance, if tuples t1 and t2 join to pro-

duce join tuple r then one needs to introduce a factor that encodes the correlation

that r exists iff both t1 and t2 exist (f×r.e(r.e, t1.e, t2.e) defined in the last chapter).

More importantly, such a factor is introduced whenever any pair of tuples join, thus

leading to repeated copies of the same factor, thus introducing additional shared

correlations. Our aim, in this chapter, is to exploit such shared correlations to make

exact probability computation for query evaluation in probabilistic databases more

efficient.

Our motivation for shared correlations and more efficient inference in this con-

text closely ties in with recent work done in the machine learning community. In the

past decade or so, machine learning researchers have devised approaches to exploit

shared correlations to come up with more compact ways of describing PGMs. These

models are sometimes referred to as first-order graphical models. Lifted inference is

the sub-field that aims to devise more efficient inference techniques for first-order

models that exploit such shared correlations. In fact, the inference approach we

devise in this chapter is a novel lifted inference algorithm that automatically deter-

mines symmetries in the uncertainty model denoted by shared factors. We surveyed

these related areas of research along with various works on lifted inference in Chapter

2. The rest of this chapter is organized as follows: In the next section, we introduce

a motivating example that shows how standard inference algorithms fail to exploit
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S A B

s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}

T B C

t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c

fi1.e, fi2.e

Figure 4.2: Running example for this chapter.

shared correlations; in Section 4.2 and Section 4.3 we formally define shared correla-

tions and describe our approach to inference with shared correlations; in Section 4.4

we describe our experimental results comparing our approach to standard inference

algorithms; and finally, we conclude with Section 4.6 after a discussion in Section

4.5.

4.1 Motivating Example

For the purposes of this chapter, we will use a slightly simplified version of

the example from the last chapter (Figure 4.2). In this modified version, we have

the same two relations S and T , but we run a simple join query, S ./B T , in this

case. The inference task remains the same, i.e., we need to compute the marginal

probabilities of the two result tuples produced. In other words, we need to compute

marginal probabilities corresponding to the assignments i1.e = true and i2.e = true

from the augmented PGM comprising of factors fs1.B, fs2.B, ft1.B, fi1.e and fi2.e (see

previous chapter for full definitions of the factors). Now let us try to see how

standard inference algorithms such as variable elimination (VE) [Dechter, 1996;
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µi1.e(i1.e) =
∑

s1.B,t1.B

ft1.B(t1.B)fs1.B(s1.B)fi1.e(i1.e, s1.B, t1.B)

=
∑
t1.B

ft1.B(t1.B)
∑
s1.B

fs1.B(s1.B)fi1.e(i1.e, s1.B, t1.B)︸ ︷︷ ︸
ms1.B(i1.e,t1.B)

µi2.e(i2.e) =
∑

s2.B,t1.B

ft1.B(t1.B)fs2.B(s2.B)fi2.e(i2.e, s2.B, t1.B)

=
∑
t1.B

ft1.B(t1.B)
∑
s2.B

fs2.B(s2.B)fi2.e(i2.e, s2.B, t1.B)︸ ︷︷ ︸
ms2.B(i2.e,t1.B)

Figure 4.3: How variable elimination proceeds to solve the query evaluated in Figure
4.2.

Zhang and Poole, 1994] and the junction tree algorithm [Huang and Darwiche,

1994] would proceed to solve this problem. Here we take the example of VE. Recall

that marginal probability computation basically means that we simply sum over all

the other random variables from the PGM except for the random variable whose

marginal probability we need to compute (Definition 4). VE runs by first choosing

an elimination order which specifies the order in which to sum over (eliminate) the

random variables. It then repeatedly picks the next random variable from the order,

pushes the corresponding summation as far into the product of factors as possible,

sums it out and proceeds in this fashion. In Figure 4.3 we show the first few steps of

how VE would proceed when used to compute the probability of i1.e and i2.e using

the elimination order O = {s1.B, s2.B, t1.B} (variables are eliminated left to right).
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4.1.1 Limitations of Naive Inference Algorithms

The main issue with VE (or any other standard exact probabilistic inference

algorithm, for that matter) is that it does not exploit shared correlations. For

instance, in Figure 4.3, in the process of computing the probabilities for i1.e and

i2.e, we produce intermediate factors ms1.B(i1.e, t1.B) and ms2.B(i2.e, t1.B). If we

take a closer look at both of these factors then we will notice that they both map

exactly the same inputs to the same outputs:

i1.e t1.B ms1.B

True 2 0.4

True 3 0

False 2 0.6

False 3 1

i2.e t1.B ms2.B

True 2 0.4

True 3 0

False 2 0.6

False 3 1

This indicates that we went through the exact same multiplication and sum-

mation steps to compute both ms1.B(i1.e, t1.B) and ms2.B(i2.e, t1.B). In fact, these

are shared factors and represent shared correlations (which will be defined more

precisely in the next section), and this repeated computation is what we would

like to avoid. In hindsight, it is not really surprising that ms1.B(i1.e, t1.B) and

ms2.B(i2.e, t1.B) turned out to be virtual copies of each other. If we look closely,

ms1.B was computed by multiplying fs1.B(s1.B) with fi1.e(i1.e, s1.B, t1.B) followed

by a summation operation, whereas ms2.B was computed by multiplying fs2.B(s2.B)

with fi2.e(i2.e, s2.B, t1.B) followed by a summation operation, and fs1.B(s1.B) and

fs2.B(s2.B), and fi1.e(i1.e, s1.B, t1.B) and fi2.e(i2.e, s2.B, t1.B) were pairs of shared

factors. Often during the run of inference such intermediate shared factors multiply
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ms1.B

args.: i1.e, t1.B

func.:


True, 2→0.4
True, 3→0

False, 2→0.6
False, 3→1

ms2.B

args.: i2.e, t1.B

func.:


True, 2→0.4
True, 3→0

False, 2→0.6
False, 3→1

Figure 4.4: Pair of shared factors.

with each other and give rise to more intermediate shared factors thus making it

imperative that we recognize and take advantage of such symmetry before we actu-

ally compute these shared factors. Devloping an approach that achieves this is the

topic of the next section.

4.2 Inference with Shared Factors

We begin by formally defining shared factors, and for this we need to take

a closer look at the definition of a factor (Definition 1). A factor consists of two

distinct parts: the first part is the list of random variables it takes as arguments,

and the second part is the function that maps input assignments to outputs. Thus,

it may be possible for two factors f1 and f2 to have different arguments lists but use

the same function to map inputs to outputs.

Definition 5. Let f1 and f2 denote two factors, f1.func and f2.func denote their

function components, and dom1 and dom2 denote the domains of f1.func and f2.func,

respectively. f1 and f2 are shared factors, denoted f1
∼= f2, if dom1 = dom2 = dom

and f1.func(d) = f2.func(d),∀d ∈ dom.

Figure 4.4 shows two factors from the previous section where we have clearly
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separated their argument lists and function components.

We will assume that we are given a PGM P = 〈F ,X〉 (constructed by running

a query on a database and containing shared factors) and a random variable X

(associated with a result tuple) whose marginal probabilities need to be computed.

We will also assume that every f ∈ F is associated with an id denoted by id(f)

such that for any pair of factors id(f1) = id(f2)⇔ f1
∼= f2.

The basic idea behind our approach to performing probabilistic inference with

shared factors is to represent a run of the inference algorithm explicitly as a labeled

graph. Once we do that, we will then show that it is possible to examine the graph

and identify the shared intermediate factors that are generated during the inference

process. To explain our approach, we will first define the semantics associated with

the edges of the labeled graph by introducing an operator that forms the basis of

most exact probabilistic inference algorithms (e.g., variable elimination [Zhang and

Poole, 1994] and junction tree algorithm [Huang and Darwiche, 1994]).

4.2.1 The elimrv operator

The elimrv operator (which stands for ELIMinate a Random Variable) is the

basic operator that is used repeatedly while running inference to compute marginal

probabilities. It essentially takes a random variable Y and a collection of factors

F each of which involves Y as an argument and sums Y out from the product of

all factors in F to return a new factor. We denote the resulting (intermediate)

factor produced by mY followed by its list of arguments, if they are not clear from
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the context. For instance, when we were computing µi1.e(i1.e) for the example in

Section 4.1, to sum over s1.B we had to first multiply the collection of factors formed

by fi1.e(i1.e, s1.B, t1.B) and fs1.B(s1.B) and then sum over s1.B from the product

to produce the new intermediate factor ms1.B(i1.e, t1.B). Note that F may contain

intermediate factors produced by earlier applications of the elimrv operator.

We first note a few properties about elimrv operator. The order in which the

factors appear in F is important. For instance, suppose we want to sum overX2 from

the collection formed by fa(X1, X2) and fb(X2, X3). Then we would produce the

product fc(X1, X2, X3) and perform the summation to produce fd(X1, X3). In other

words, there is an implicit assumption of ordering the arguments in the product by

scanning the arguments of the input factors from left to right and this affects the

resulting factor produced after the summation operation. If instead, we had multi-

plied fb(X2, X3) and fa(X1, X2), then we would first produce a factor f ′c(X2, X3, X1)

and then produce f ′d(X3, X1) after the summation. In addition, the way the argu-

ments overlap across the input factors (in the above case, the second argument of

fa overlaps with the first argument of fb) and the position of the argument that

is being summed over also matter. We would like to make these points about the

elimrv operator clear, and for this purpose, we feed the operator an explicit label

that specifies the above described information.

Example 1. For the examples that follow we use the following simple format for

constructing labels that specify the argument order, how the arguments overlap and

which argument is being summed over. For each elimrv operation, we go through
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the list of factors in F assigning each argument a unique id if it has not been seen

before. Then we construct the label by traversing the list of factors again, writing

the id of the argument that appears, enclosing the lists of arguments in square braces

and finally, appending the label by the id of the argument being summed over. For

the above example involving X2, fa(X1, X2) and fb(X2, X3), the label turns out to be

{[1, 2], [2, 3], 2} using this format.

We can now define the elimrv operator as follows:

Definition 6. The elimrv(Y,F, l) operation takes as input a random variable Y ,

an ordered list of factors F and a label l, and computes a new factor
∑

Y

∏
f∈F f

according to the label l.

4.2.2 The rv-elim Graph

For the purposes of introducing our graph-based data structure, we will as-

sume that we are given, besides X and P = 〈F ,X〉, an elimination order O that

contains all random variables involved in X except for X. In the next section (Sec-

tion 4.3), we discuss in detail how to construct such an elimination order that suits

our purposes. Note that once we have an elimination order, we have the sequence

of elimrv operations defined for our inference procedure. The inference procedure

proceeds as follows: we collect all factors from F in a pool, pick the first random

variable Y to be eliminated from O, collect all factors that include Y as an argu-

ment from the pool, perform the corresponding elimrv operation, add the resulting

intermediate factor mY back to the pool, and continue in the same fashion until we
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fs1.Bfs2.B fi1.e

ms1.B

fi2.e

ms2.B ft1.B

µi2.e µi1.e

1

11

2

2

1 2

2

aab b

c

{[1],[2,1,3],1} {[1],[2,1,3],1}

{[1,2],[2],2} {[1,2],[2],2}

(a)

A

C

B

E

D

2

2

1

1

[fs1.B, fs2.B]
a

[fi1.e, fi2.e]

b

[ft1.B]
c

[ms1.B,ms2.B]

{[1],[2,1,3],1}

[µi1.e, µi2.e]

{[1,2],[2],2}

(b)

Figure 4.5: (a) rv-elim graph for the example from Figure 4.3, (b) its compressed
version obtained using bisimulation. The rv-elim graph shown in (a) is a vertex-
labeled, edge-labeled graph. The edges are labeled with integers (in this case, 1
or 2) and denote the order in which the parent factors are present in the elimrv
operation. The vertices are labeled with strings and these are shown alongside the
vertex, if the vertex is a source vertex then the label is a letter (e.g., a for the first
source vertex in the top left corner), or a string if it is a vertex with parents denoting
how the arguments overlap for the elimrv operation that created the intermediate
factor corresponding to this vertex (for instance, {[1, 2], [2], 2} for the sink vertices
in the rv-elim graph). The compressed rv-elim graph shown in (b) is also an edge-
labeled, vertex-labeled graph with the extent of every vertex depicted next to it in
square braces. Note that the compressed rv-elim graph in this case consists of 5
vertices whereas the rv-elim graph itself contains 9 vertices, a significant reduction
considering we have such a small running example.

have exhausted all random variables from O. The rv-elim graph (which stands for

Random Variable ELIMination graph) essentially encodes this sequence of elimrv

operations using a labeled graph.

Definition 7. The rv-elim graph G = (V,E,LV ,LE) is a directed graph with ver-

tex labels LV (v),∀v ∈ V , and edge labels LE(e),∀e ∈ E, that represents a run of

inference on a PGM P = 〈F ,X〉 according to elimination order O such that:

• Every v ∈ V represents a factor. If v is a root, then it represents a factor

from F and LV (v) = id(f); if v is not a root then it represents an intermediate
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factor mY =elimrv(Y,F, l) produced during the run of inference and LV (v) = l.

• For each mY = elimrv(Y,F, l) produced during inference, for the ith factor in

F, we add an edge vf
i→ vmY

, where vf denotes the vertex corresponding to

f and vmY
denotes the vertex corresponding to mY , and i is the label on the

edge.

Figure 4.5 (a) shows the rv-elim graph for our running example using the same

elimination order we defined in Section 4.1. One point to note about the rv-elim

graph is that, in general, it can never contain a directed cycle (in other words, it

has to be a directed acyclic graph (DAG)). Our example happens to be a tree; in

general this is not always going to be the case; Figure 4.6 shows an rv-elim graph

that is not a tree.

4.2.3 Identifying Shared Factors

The advantage of representing a run of inference as a graph is that we can now

identify exactly when two vertices in the graph represent shared factors. Denote by

fv the factor represented by vertex v in an rv-elim graph.

Claim 1. For rv-elim graph G = (V,E,LV ,LE), two vertices v1, v2 ∈ V are shared

factors fv1
∼= fv2 if:

• LV (v1) = LV (v2).

• ∀u1
i→ v1,∃u2

i→ v2 and fu1
∼= fu2.

• ∀u2
i→ v2,∃u1

i→ v1 and fu1
∼= fu2.
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S A

s1 {1:0.7, 2:0.3}

T A B

t1 1 2
t2 1 3

U B

u1 {2:0.5, 3:0.5}

S./AT−→
A B

i1 1 2
i2 1 3

fi1.e, fi2.e

./BU−→
A B

j1 1 2
j2 1 3

fj1.e, fj2.e

fi1.e(i1.e, s1.A) fj1.e(j1.e, i1.e, u1.B) fi2.e(i2.e, s1.A) fj2.e(j2.e, i2.e, u1.B)

mi1.e(s1.A, j1.e, u1.B) mi2.e(s1.A, j2.e, u1.B)fs1.A(s1.A)

m1
s1.A(j1.e, u1.B) m2

s1.A(j2.e, u1.B)

m2
u1.B(j2.e)

fu1.B(u1.B)

m1
u1.B(j1.e)

Figure 4.6: A three-relation join that produces a non-tree structured rv-elim graph
(edge and vertex labels not shown for legibility). Note that to compute the marginal
probabilities of j1.e we do not need to multiply all factors in the PGM, certain factors
such as fi2.e are only required to compute the marginal probabilities of the other
result tuple’s random variables (j2.e’s) and we do this by “tagging” factors in the
PGM with the random variables whose marginal probability computations they are
involved in; subsequently, while performing inference we make sure that we multiply
two factors only if they have atleast one tag in common.
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Essentially, what the claim says is that two intermediate factors fv1 and fv2

generated during inference (using elimrv operations) are shared if:

• they were produced by multiplying sets of factors containing the same function

components (the parents are shared)

• the argument orders, argument alignments and the argument being summed

over, all match (the labels on v1 and v2 are the same)

Note that for a given internal vertex in the rv-elim graph, all incoming edges from

parents are assigned distinct edge labels since we label the edges with the index indi-

cating the position of the factor represented by the parent in F of the corresponding

elimrv operation and two factors cannot be at the same position (Definition 7).

We can now use Claim 1 to determine the intermediate shared factors that

get generated during the inference process. The important thing to realize is that

we can do this without actually computing these intermediate factors. For instance,

recall that in Section 4.1, we showed that during the run of inference for our running

example, ms1.B and ms2.B were intermediate factors that turned out to be shared

(shown in dashed boxes in Figure 4.5(a)). By looking at the rv-elim graph (Figure

4.5(a)) this is now easy to see since:

• They have the same vertex label {[1],[2,1,3],1}.

• Both ms1.B and ms2.B have parents fs1.B and fs2.B, respectively, via edges

labeled 1, and fs1.B
∼= fs2.B since they have the same vertex label a and are

roots.

72



• Bothms1.B andms2.B have parents fi1.e and fi2.e, respectively, via edges labeled

2, and fi1.e
∼= fi2.e since they have the same vertex label b and are also roots.

Thus by Claim 1, ms1.B
∼= ms2.B.

Given a graph (like the rv-elim graph shown in Figure 4.5(a)) and a property

(such as the one specified in Claim 1), we now need an algorithm for partitioning the

vertices into collections of shared factors. It turns out that there exist reasonably

fast algorithms that can partition the set of vertices into disjoint sets which, because

of our construction, will satisfy this property. These algorithms generally go by the

term bisimulation (also known as the relational coarsest partition problem [Paige

and Tarjan, 1987]). Given the special case of the graph being a DAG, there exist

algorithms that run in time linear in the size of the graph.

Dovier et al [Dovier et al., 2001] describe one such algorithm that runs on

an edge-labeled, vertex-labeled graph and not only partitions the set of vertices

but also returns another (smaller) graph where each disjoint set in the partition is

represented by a vertex and the edges between vertices p1, representing one disjoint

set in the partition, and p2, representing another disjoint set in the partition, is the

result of taking the union of all edges between all vertices from the input graph in p1

and all vertices from p2. We will refer to each resulting disjoint set of the vertices of

the rv-elim graph as an extent and the resulting graph returned as a result of running

bisimulation on the rv-elim graph as the compressed rv-elim graph. Figure 4.5(b)

shows the compressed rv-elim graph returned as a result of running bisimulation on

the rv-elim graph shown Figure 4.5(a). Notice how vertex A represents both factors
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fs1.B and fs2.B. We show this in Figure 4.5(b) by indicating A’s extent in square

braces next to it. More interestingly, the pair of intermediate shared factors that

we identified earlier (ms1.B and ms2.B) has also been collapsed into one single vertex

denoted by C in the compressed rv-elim graph.

Unfortunately, we cannot apply the bisimulation algorithm described in Dovier

et al. [2001] directly to our problem, and this is because we have not yet addressed

an important issue. Recall that we discussed how the order in which the factors

appear in the elimrv operator affects the results of applying the operator. We have

not yet discussed how to choose an order. For traditional inference algorithms, when

eliminating a random variable, any ordering of the factors works. However, in our

case, Claim 1 actually uses the order of the parents of the vertices in the rv-elim

graph to determine which ones represent shared factors. This means that for us the

order matters. If we do not choose the correct order then we might end up with

cases such the one shown in Figure 4.7, where instead of ordering the parents of

ms2.B with fs2.B as the first parent and fi2.e as the second, we have placed fi2.e as

the first parent and fs2.B as the second. A direct consequence of this is that the

labels on the vertices representing ms1.B and ms2.B in the rv-elim graph are now

different, which means that using Claim 1 we cannot decree them to form a pair of

shared factors.

The problem is that we do not know the order in which we should present the

factors to each elimrv operation, and some orders produce more symmetric rv-elim

graphs (with more shared factors) than others and we need to choose these orders.

One approach is to try all possible parent orderings but this will likely be too ex-
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fs1.B(s1.B) fi1.e(i1.e, s1.B, t1.B)

ms1.B(i1.e, t1.B)
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a b

{[1],[2,1,3],1}

fi2.e(i2.e, s2.B, t1.B) fs2.B(s2.B)

ms2.B(i2.e, t1.B)

21 ab

{[1,2,3],[2],2}

Figure 4.7: A poor ordering of parent vertices.

pensive. Instead, we introduce a novel heuristic for choosing better orderings. Our

bisimulation algorithm, based on Dovier et al. [2001]’s, requires a different inter-

leaving of the steps, so for completeness we first present our bisimulation algoirthm,

and then the heuristic we developed for ordering parents.

4.2.4 Bisimulation for rv-elim Graphs

We will assume that we are given an rv-elim graph G = (V,E,LV ,LE) for

computing marginal probabilities of random variable X from PGM P using the

elimination order O. Each root v ∈ V is labeled by the id(fv) where fv denotes the

factor from F represented by v. We will assign the remaining vertex labels (for the

internal vertices) and the the edge labels in G dynamically through the bisimulation

algorithm we present.

A partition denotes a division of the set of vertices of the rv-elim graph into

disjoint sets; each disjoint set is denoted a block. The full algorithm is described in

Algorithm 1. The bisimulation algorithm starts by computing ranks for each vertex

in the rv-elim graph (a simple depth-first search should do this). After computing

ranks, the algorithm starts by assigning the roots in the rv-elim graph to the blocks

formed by their labels. After this, it goes through the vertices at rank i, partitioning
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Algorithm 1: Bisimulation for RV-Elim Graphs.
input : RV-Elim graph G = (V,E,LV ,LE) with roots labeled.
output: A disjoint partition over V .

d(v) =

{
0, if v is a root
1 + max{d(v′)|v′ → v ∈ E} /* compute depths */

ρ← max{d(v)|v ∈ V }
B0,l = {v|v is root ∧ LV (v) = l} /* compute initial partition */
C = {B0,l}
Bi = {v|d(v) = i},∀i = 1 . . . ρ
for i = 1 . . . ρ do

foreach v ∈ Bi do /* construct keys to partition on */
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’ blocks-ids

end
add Bi,k = {v ∈ Bi|kv = k} to C

end
return the final partition C

them into blocks. Note that when we are dealing with vertices at rank i, we only

need the partitioning on the vertices at ranks i′ < i, since according to Claim 1, the

partitioning of a vertex only depends on its label and its parents’ partitioning and

the parents of vertices at rank i can only have ranks i′ < i (the rank computation

scheme guarantees this). The nested for loops basically achieve this. They take all

vertices at rank i, choose orders for each vertices’ parents (we will discuss how this

is done shortly), forms the label and the key based on this ordering and partitions

these vertices based on the constructed key. See Dovier et al. [2001] for proof of

correctness when the vertex and edge labels can be statically allocated.

Parent ordering heuristic To order the parents of each internal vertex v in the

rv-elim graph before partitioning them, we simply order the parents based on their

block-ids (assuming the block-ids can be ordered). We can do this using Algorithm
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1 since when we are about to decide in which block to place v in, we have the blocks

of its parents available. Recall that Claim 1 requires both the labels to match and

the parent sets of both vertices to be aligned before we decree vertices v and v′ to

represent shared factors. This heuristic helps align the parent vertices.

Algorithm 1, by itself, is reasonably efficient. Its time complexity, assuming we

use the heuristic that orders based on block-ids, is O(|V |+ |E|) (to compute ranks

in step 1) +
∑

v∈V dv log dv + dv (to order the parents and form the key) where

dv is the in-degree of v (ignoring the time spent to construct LV (v)) + O(|V |) to

partition vertices at rank i into blocks based on their key. Adding up, this gives us

O(
∑

v dv log dv + |V |) = O(|E| logD + |V |) where D is the maximum in-degree of

any vertex in the rv-elim graph.

4.2.5 Inference with the Compressed rv-elim Graph

Having computed the partition of the vertices using Algorithm 1, as indicated

earlier, we can now construct the compressed rv-elim graph by constructing a graph

where each block in the partition is represented by a vertex, the label on the block is

the label on the vertices in the block, and two blocks have an edge labeled i between

them if there exists a pair of vertices in the two blocks that have an edge labeled

i. These definitions are consistent because the blocks of the partition correspond

to particular keys constructed by Algorithm 1 which contain the vertex labels and

edge labels, and all vertices in block have the same key.

We can now perform inference on the compressed rv-elim graph. To seed the
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inference, we simply copy the function components of the factors corresponding to

roots of the rv-elim graph to the roots in the compressed rv-elim graph. Then we

call a depth-first search procedure (dfs) from the leaf in the compressed rv-elim

graph which begins by looking at the parents, the labels on the edges and the

vertices and applies the elimrv operator to compute the functions on the child. If

the parent’s functions have not been computed yet then we make the dfs call on the

parent before applying elimrv on the child. Finally, we will have the (unnormalized)

marginal distribution computed at the leaf of the compressed rv-elim graph. If our

inference required computing marginal probabilities of multiple random variables

then this can also be done using our approach but in this case the compressed rv-

elim graph may have multiple leaves. If the user requests marginal probabilities

for random variable X, then we simply need to find the leaf in the compressed rv-

elim graph that contains (unnormalized) µ(X) in its extent and return that (after

normalization). This last step can be made faster if we maintain a mapping from

random variables X to the leaves of the compressed rv-elim graph that contains the

corresponding (unnormalized) marginal probability function.

4.3 Computing Elimination Orders

One of the important steps in performing probabilistic inference is to choose a

good elimination order that helps run inference without producing too many large

intermediate factors (in terms of number of arguments) during the run of inference.

This can make the difference between inference being tractable or intractable since
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the size of a factor is proportional to the product of the domain sizes of its argument

random variables. In our case, since we are interested in exploiting shared factors,

and since the elimination order affects the rv-elim graph constructed, we would like

elimination orders that produce smaller factors and, at the same time, produce rv-

elim graphs that can be compressed using bisimulation. Unfortunately, even without

consideration of shared factors, the problem is known to be NP-Hard [Arnborg,

1985]. Thus, as is done in traditional inference algorithms, we resort to heuristics.

In particular, we introduce a novel version of the popular minimum size heuristic

(MSH) [Kjaerulff, 1990] that is used with traditional exact inference algorithms to

construct effective elimination orders that can help exploit shared factors∗.

Our elimination order generation heuristic works in two phases:

• We first identify sets of “similar” random variables, as we will explain shortly,

this should help construct elimination orders that lead to rv-elim graphs which

can be compressed better.

• Traditional MSH defines a notion of neighborhood for random variables. We

show below that, for our purposes, this notion is no longer adequate and we

introduce a novel version of MSH that helps avoid large intermediate factors.

We first explain the need to look for random variables that are “similarly”

positioned in the PGM produced by query evaluation. Recall from our running

example that we eliminated s1.B and s2.B one after another. If instead we had

eliminated t1.B, then we risk combining shared factors into potentially one single

∗For an alternate, more integrated, elimination order generation heuristic see Sen et al. [2009b].
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Figure 4.8: (a) Example PGM graph (b) its compressed version.

factor and risk loss of symmetry in the resulting rv-elim graph. What we need to

do here is find sets of random variables that occur in shared factors. Eliminating

these one after another should help generate rv-elim graphs with better compression

properties. Fortunately, we can easily represent a PGM as a graph where the random

variables are represented using vertices and correlations are represented using edges

(Figure 4.8(a) shows the PGM graph for our running example) and we can use

this PGM graph to find similar random variables simply by labeling the vertices

using the ids of the factors from the PGM (if the random variable is present in

multiple factors then aggregate their ids using some operation such as max or sum,

assuming the ids are numbers). Then we run a bisimulation on the PGM graph to

compute a partition on the random variables of the PGM and the corresponding

compressed PGM graph (Figure 4.8(b) shows the compressed PGM graph for our

running example). Each extent thus obtained after bisimulation contains similar

random variables. Note that, unlike rv-elim graphs which are guaranteed to be

directed acyclic graphs, the PGM graph can be cyclic. Bisimulation algorithms for

general graphs (with cycles) are available [Dovier et al., 2001; Paige and Tarjan,

1987].
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We now explain the second step. Having constructed the sets of similar random

variables we would now like to ensure that we eliminate those random variables one

after another and that we avoid generating large factors in the process. One simple

way to do this is to produce an ordering on the vertices of the compressed PGM

graph and then expand the entries in that ordering using the extents. In addition,

producing an ordering on the vertices of the compressed PGM graph is likely to

be faster since the compressed graph is likely to contain less vertices compared to

the number of random variables in the PGM. We now proceed towards applying

(some suitable modification of) MSH on the compressed PGM graph, and for this

we need some background on MSH. The basic tenet underlying traditional MSH

is the notion of neighborhood of a random variable which is defined as the set of

distinct random variables with which it appears as arguments to factors in the PGM.

MSH works by greedily picking the random variable with the smallest neighborhood

to be eliminated first, updating the neighborhoods of all random variables involved

in the intermediate factor introduced by the elimination until all random variables

to be eliminated have been picked.

However, the original MSH may not work on the compressed PGM graph.

The problem here is that the neighborhood of a vertex in the compressed PGM

graph is not a good indicator of the size of the intermediate factor produced by

an elimination. This leads us towards defining a new neighborhood criterion that

involves not only the neighborhood in the compressed PGM graph but also the

extents of the vertices in the neighborhood. Define avg. neighborhood size to be =

P
v′∈N (v) |extent(v′)|

|extent(v)| where N (v) denotes the neighborhood of v in the compressed PGM
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Algorithm 2: Modified Minimum Size Heuristic
input : Compressed PGM graph G = (V,E), and vertex vX that contains X

(whose marginals we need) in its extent.
output: Ordering over all random variables that need to be eliminated.

intialize empty list O
while ∃v ∈ V s.t. v 6= vX , v /∈ O do

pick vertex v 6= vX with the smallest avg. neighborhood
add v to O
introduce an edge between every pair of neighbors of v

end
construct O by expanding entries in O with their extents
add extent(vX)\{X} to O
return O

graph. Essentially, avg. neighborhood assumes that there are as many neighbors

to vertex v as there are random variables in all neighbors’ extents summed up.

It essentially tries to estimate the neighborhood of the vertex with respect to the

uncompressed PGM graph, and it compensates for the case when v itself has a large

extent by dividing by the extent size. Thus it tries to make MSH behave as if we are

running it on the uncompressed PGM graph, but actually runs on the compressed

PGM graph thus making it more efficient. Algorithm 2 shows the final modified

minimum size heuristic algorithm.

4.4 Experimental Evaluation

Our experimental evaluations were designed to answer the question: When

is it worthwhile to apply our bisimulation-based approach to a query evaluation

problem? Note that standard inference algorithms take a PGM and a random

variable, and simply begin multiplying factors and summing over random variables

(after computing the elimination order). Instead, our approach first constructs the
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rv-elim graph, applies bisimulation to compress it, and then begins multiplying

function components of factors and summing over arguments from them. So it is

plausible that there may be cases where our approach may perform poorly because

it spends too much time before actually getting to the point where it can perform (a

hopefully smaller set of) multiplications and summations. Our experimental results

suggest the following:

• In most cases, our approach is significantly faster than the standard inference

algorithm.

• In a small number of cases, our approach loses out to the baseline inference

approach we compare against; but in these cases the difference between the

time it took to run our approach and the baseline approach was not large.†

We compare against a baseline exact inference algorithm, denoted BatchVE, which

is a modified version of variable elimination (VE) except that if the PGM contains

multiple random variables whose marginal probabilities we are interested in, then it

avoids multiple passes through the PGM like standard VE [Zhang and Poole, 1994]

does. We refer to our approach, which constructs a compressed PGM to exploit

shared factors, as Lifted Inference or LiftedInf, in short. For each experiment we

report five numbers:

• Relational algebra operations (Rel. alg. ops): Reports the time taken to

perform the relational algebra operations in the query to construct the PGM.

†Note that early stopping techniques are possible, such as once we run bisimulation on
the PGM graph and find out that the extents of the compressed PGM graph are small
then we can switch our inference engine and resort to standard inference, but for our
experiments we did not include this approach.
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• BatchVE arithmatic operations (BatchVE arith. ops.): Reports the time

taken to multiply factors and sum over random variables during inference for

BatchVE.

• BatchVE remaining operations (BatchVE rem.): Reports the time re-

quired to perform the remaining BatchVE operations such as determining the

elimination order.

• LiftedInf arithmatic operations (LiftedInf arith. ops.): Reports the time

spent multiplying functions of factors and summing over arguments (on the

compressed rv-elim graph) for our approach.

• LiftedInf remaining operations (LiftedInf rem.): Reports time taken to

perform the remaining operations for the approach we described in this chap-

ter, this includes the various runs of bisimulation and the time spent to deter-

mine the elimination order from the compressed PGM graph.

For each experiment, we report three bars (except for Figure 4.9(e)): the first bar

reporting the rel. alg. ops. time; the second, time spent by BatchVE; and the third,

time spent by LiftedInf. See the legend (shown at the top in Figure 4.9) for more

details. Note that no single bar reports the actual time to run the query. To find

out the total time taken to run the query we need to add the rel. alg. ops. time to

the second bar or the third bar, depending on the algorithm.

All our experiments were run on a dual proc Xeon 3 GHz machine with

3GBytes of RAM. Our implementation is in JAVA and the numbers we report were

averaged over 10 runs.
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Figure 4.9: Plots for experiments on synthetic and TPC-H data. The legend is
shown at the top.
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4.4.1 Car DB experiments

For our first set of experiments, we developed the pre-owned car ads example

further and randomly generated data and factors to illustrate how performance

of the two algorithms vary on various characteristics of the data. In addition to

the relation containing the various advertisements (Ad) described in Figure 4.1, we

added another relation which denotes the source websites from which the ads were

pulled (S). Each tuple in S is an uncertain tuple with an associated probability

of existence which depends on how reliable the website’s information is. For these

experiments, we ran the following query:
∏

AdID((σColor=cAd) ./SID S) where c

denotes a specific color and SID is a primary key in S and acts as a foreign key

in Ad. Besides the uncertain tuples in S, we set the Color attribute values to be

uncertain and these were correlated with the corresponding Make attributes. A

car of a certain Make can have one of 4 distinct Colors. The parameters that we

varied for these experiments are d (domain size of Make, default was 50), n (the

number of attribute uncertainty tuples in Ad, default value is 1000) and fanout (the

number of tuples in Ad that each tuple from S joins with, default value is 1000).

In Figure 4.9(a), we show how LiftedInf and BatchVE perform when we vary

n from 100 to 1000. Notice that LiftedInf significantly reduces the time spent

performing arithmatic operations. Note that on the x-axis in Figure 4.9(a), we

report the size of Ad in terms of number of tuple uncertainty tuples to help the

reader compare with previous work on probabilistic databases since our formulation

can deal with both attribute uncertainty and tuple uncertainty but most recent work
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can handle tuple uncertainty only. A simple rule of thumb to compute the size of

attribute uncertainty relations in tuple uncertainty format is n×d1×d2×. . . d|attr(R)|,

where n is the number of attribute uncertainty tuples and di is the domain size of the

ith uncertain attribute in the relation (assuming all ith uncertain attribute values in

the relation have the same domain size). For our experiment, this gives us n×d×4d.

See Section 4.5 for more details on this conversion from attribute uncertainty to tuple

uncertainty.

Figure 4.9(b) shows the performance of the two inference algorithms with

varying domain sizes. Notice how at d = 10, LiftedInf performs worse (because

small domain sizes means small factors and therefore, less time spent on arithmatic

operations), but the difference between its time and BatchVE’s time is not large.

The third experiment we ran (Figure 4.9(c)) is the most interesting experiment

in this subsection. Here we varied the fanout from 1 to 10 to vary the symmetry in

the PGMs produced by the query (but kept the number of tuples in Ad fixed). At

fanout 1, we have no symmetry and no shared factors in the base data, since every

tuple from S has a unique existence probability, but the shared factors increase

as we increase fanout. Thus, at fanout 1, LiftedInf should perform worse, and it

does, but not by a huge amount. At fanout 2, where we have a slight amount of

symmetry in the query (every tuple from S joins with exactly 2 tuples from Ad),

LiftedInf is already doing better than BatchVE. At fanout 10, it does much better

than BatchVE.

In Figure 4.9(d), instead of keeping the fanout constant for all tuples in S, we

sampled it from a Poisson distribution with parameter λ. In this case however, we
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kept the number of tuples in S fixed. Note that at λ = 1, most fanouts sampled

turn out to be 1, but some samplings produce numbers greater than 1 and LiftedInf

utilizes this to do better than BatchVE, even at λ = 1. At λ = 10, LiftedInf

performs much better.

Until now, we had kept the existence probabilities of tuples in relation S

distinct. In the next experiment, we introduced some shared factors for existence

probabilities by dividing the tuples in S into buckets. Two tuples in the same

bucket had the same existence probability. The number of tuples in S were fixed

to 600, so at 600 buckets (right end of the plot in Figure 4.9(e)), we have exactly

1 tuple belonging to each bucket. Figure 4.9(e) shows how LiftedInf’s performance

deteriorates when the number of buckets increase. Note that we do not show the

time taken by BatchVE in this case since it would obscure the trend of LiftedInf

(BatchVE took around 25 seconds for this experiment).

4.4.2 Experiments with uncertain join attributes

The next two plots (Figure 4.9(f) and (g)) relate to a two relation join between

S and Ad where the join attribute SID itself was uncertain. This relates to the

case of link uncertainty or structure uncertainty [Getoor et al., 2002], where we are

unsure about the primary/foreign key values in the data. For instance, we may have

another relation in our database which stores the id of the person who posted the

pre-owned car ad and we may want to join with that relation so we can take into

account the reliability of the seller while trying to return to the user cars of her/his
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interest. However, we may not know the seller’s identity as this information may not

have been properly extracted or is simply unavailable (s/he used the guest login).

Joins on uncertain attributes give rise to very complicated PGMs and we wanted

to keep some control over the complexity of the PGM. We setup this experiment

in the following fashion: first we contructed k key values, then for each tuple in

either relation, we polled from this pool m distinct keys randomly to include in

the domain of the uncertain join attribute value; finally we padded each attribute

value’s domain with unique key values so that the total domain size is 50. Thus,

increasing k makes it less likely that two tuples from the two relations join, on the

other hand, increasing m increases the chance that two tuples join. Note that if two

tuples join then this may be due to multiple entries being common in their domain.

Figure 4.9(f) (varying m with k held constant at 100) and Figure 4.9(g) (varying k

with m held constant at 2) show the results.

4.4.3 Experiments with TPC-H data

Following previous work, we also ran experiments based on the TPC-H schema.

We picked Q5 from the TPC-H specification since this involves a join among six re-

lations of which we made 4 relations (customer, lineitem, supplier and order) prob-

abilistic. The query tries to determine how much volume of sales is being generated

in various regions. Each customer makes k1 orders, each order is broken down into

k2 sub-orders each of which is a lineitem entry, each sub-order is then diverted to

a supplier. Each tuple from customer is uncertain and these were divided into p1
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buckets such that tuples from the same bucket had the same existence probabili-

ties, similarly, the supplier tuples were also divided into p2 buckets. Moreover, each

customer sub-order is usually (with 95% probability) routed to one of c suppliers,

else the supplier is chosen randomly. For the lineitem and order relations, we made

the discount attribute uncertain (domain size 4d) and correlated with part being or-

dered’s type (domain size d), and the orderdate attribute uncertain (domain size d).

We set the parameters in the following manner: k1 ∼ Poisson(2), k2 ∼ Poisson(3),

p1 = p2 = 5, c = 3, d = 50. We defined the scale factor to be the number of tuples

in lineitem in tuple-uncertainty format divided by 6 × 106. The results are shown

in Figure 4.9(h). The results showed similar trends when we tried other settings of

the parameter values; for instance the execution time for LiftedInf went down when

we decreased c and increased d and so on.

In almost all our experiments, we noticed significant speedups ranging from

200% to 700%. Even in cases where there was no symmetry, LiftedInf performed

only slightly worse than BatchVE, incurring about 25% extra time to compress rv-

elim graphs. Given that the datasets we generated were extremely simple in their

correlation structure, we believe we will do even better on real-world data with

richer correlation structure containing shared factors.

4.5 Discussion

Recall that, in Chapter 2 we surveyed a number of related works proposing

different ways of modeling uncertainty in probabilistic databases. Broadly speaking,
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the various models can be categorized as models that associated uncertainty at

the tuple level (tuple-level uncertainty) and models that represent uncertainty at

both tuple and attribute levels. Especially in recent times, a number of tuple-level

uncertainty models have been proposed in the probabilistic database community.

These include (but are not limited to) MystiQ’s block-independent disjoint formalism

[Re et al., 2006] and Trio’s x-tuples [Benjelloun et al., 2006; Das Sarma et al.,

2006]. In contrast, our approach based on PGMs and shared correlations (first-

order graphical models) allows expressing uncertainty at the tuple and/or attribute

levels. Having reviewed both of these approaches, one question that begs asking

is whether we are any closer to choosing one single way of modeling uncertainty.

Both approaches have advantages and disadvantages, and to compare them we first

need to understand how to represent the same fragment of uncertain data in either

approach. To this end, we discuss a simple transformation that takes a database

with attribute and tuple uncertainty and returns its representation in pure tuple

uncertainty format. After that, we discuss the pros and cons of one representation

scheme over the other.

Figure 4.10 shows an example where the database contains ads for pre-owned

vehicles up for sale. In Figure 4.10 (a), some of the attribute values are missing;

in particular, the tuple with AdID 1 has its Color attribute missing, tuple with

AdID 3 has its Make attribute missing and tuple with AdID 2 has both attributes

missing. Figure 4.10 (a) also shows the probability distributions associated with the

missing attributes (common across all tuples) in the bottom. To represent such data

with attribute uncertainty in pure tuple uncertainty, one approach is to compute all
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AdID Make Color Price

1 Honda ? $9,000
2 ? ? $6,000
3 ? Beige $8,000
...

...
...

...

Color fcolor

Black 0.75
Beige 0.25

Make fmake

Honda 0.55
Toyota 0.45

AdID Make Color Price prob.

1 Honda Black $9,000 0.75
1 Honda Beige $9,000 0.25

2 Honda Black $6,000 0.4125
2 Honda Beige $6,000 0.1375
2 Toyota Black $6,000 0.3375
2 Toyota Beige $6,000 0.1125

3 Honda Beige $8,000 0.55
3 Toyota Beige $8,000 0.45

...
...

...
...

...

Figure 4.10: Database with pre-owned cars for sale (a) attribute-uncertainty format
(b) pure tuple-uncertainty format.

possible joint instantiations of every tuple present in the attribute-level uncertainty

database. For instance, the first tuple in Figure 4.10 (a) can be instantiated to

two tuples 1 Honda Black $9,000 and 1 Honda Beige $9,000 , where the

first instantiation’s probability of existence is 0.75 while the second instantiation’s

is 0.25 (given by the distribution on the Color attribute from Figure 4.10 (a)).

Note that these two instantiations cannot exist together since they come from the

same attribute-level uncertainty tuple, in other words, they are correlated with a

mutually exclusive dependency. In Figure 4.10 (b), we show all three tuples from

Figure 4.10 (a) represented with tuple-level uncertainty and tuples present in the

same block are mutually exclusive (note that this is the same representation used

in other works on probabilistic databases such as x-tuples [Benjelloun et al., 2006]

and block-independent disjoint formalism [Re and Suciu, 2007]).

It is difficult to see how approaches that only allow representing tuple-level

uncertainty can exploit shared correlations for efficient query evaluation. As the
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example shows, the shared factors for Color and Make in Figure 4.10 (a) get com-

pletely obscured once we convert to tuple-level uncertainty, so much so that no pair

of tuples in Figure 4.10 (b) have the same probability of existence. Moreover, the

tuple-level uncertainty representation (Figure 4.10 (b)) requires 8 tuples to represent

the same information that required only 3 tuples using attribute-level uncertainty

(Figure 4.10 (a)) which means representing data using tuple-level uncertainty re-

quires more space. In the above example, if the color attribute had nc values in

its domain and the make attribute nm, then the tuple with AdID 2 in Figure 4.10

(a) would blow up into nc × nm tuples in pure tuple-level uncertainty format. Not

only does this imply that the tuple-level uncertainty format requires more space

to represent the same data, it also means that this form of representation involves

more random variables which is another reason why query evaluation may be slower

under this approach.

The problem with using tuple-level uncertainty for data that contains attribute

uncertainty is that it requires computing joint distributions and this becomes an

expensive operation in terms of size of the representation when we have many un-

certain attribute values connected via correlations. This observation has been made

in other contexts also, such as selectivity estimation in databases [Getoor et al.,

2001], and is one of the main reasons why researchers in machine learning prefer

working with factored representations of joint probability distributions such as prob-

abilistic graphical models. Note that many domains produce uncertain data that

can be naturally modeled using attribute-level uncertainty rather than tuple-level

uncertainty such as mobile object databases [Cheng et al., 2003] and sensor network
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ψ(X1, Y ) . . .ψ(X2, Y )

ψ′(Y )

ψ(Xn, Y )

. . .ψ′(Y )

ψ′′()

ψ′(Y )

(a)

ψ(X, Y )

ψ′′()

ψ′(Y )
. . .

(b)

Figure 4.11: Inversion elimination is a special case of bisimulation-based inference:
(a) the rv-elim graph and (b) its compressed version.

data [Deshpande et al., 2004], and these can be easily read into a database that can

represent both attribute and tuple uncertainty, whereas we need to perform some

transformation before we can read them into a database that can only represent

tuple-level uncertainty which may lead to loss of its natural structure.

On a side note, recall that while discussing related work on lifted inference in

Section 2.3, we mentioned that inversion elimination [de Salvo Braz et al., 2005;

Poole, 2003] is one popular approach. We are now ready to demonstrate that inver-

sion elimination is a special case of our bisimulation-based lifted inference. Given

a computation of the form
∑

Y

∑
Xi

∏
i ψ(Xi, Y ) (all ψ’s are shared factors), inver-

sion elimination avoids the complexity of eliminating each Xi,∀i = 1, . . . n sepa-

rately by pushing each summation of Xi against the corresponding ψ, eliminating

Xi once and then eliminating Y :
∑

Y

∑
Xi

∏n
i=1 ψ(Xi, Y ) =

∑
Y

∏n
i=1

∑
Xi
ψ(Xi, Y )

=
∑

Y

∏n
i=1 ψ

′(Y ) =
∑

Y ψ
′n(Y ) = ψ′′(). Figure 4.11 shows how our approach

achieves the same.
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4.6 Conclusion

In this chapter, we showed how to exploit shared correlations to speed up

probabilistic inference during query evaluation for probabilistic databases. Shared

correlations are likely to exist in many probabilistic databases since probabilities

and correlations often come from general statistics learnt from (large amounts of)

data and rarely vary on a tuple-to-tuple basis. In addition, the query evaluation

approach that builds the probabilistic graphical model on which we finally need to

run inference itself tends to introduce shared correlations. We introduced a new

graph-based data structure and explained how to build it from the probabilistic

graphical model. We then showed how the graph can be compressed using an al-

gorithm based on bisimulation. We empirically evaluated our approach and showed

that even in the presence of a few shared correlations, we do significantly better

than naive inference approaches.
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Chapter 5

Approximate Lifted Inference For Probabilistic Databases

In the last chapter, we discussed how to implement a lifted inference algo-

rithm that leverages shared correlations to efficiently perform large-scale probabilis-

tic inference while evaluating queries in probabilistic databases. We discussed how

probabilistic databases are likely to contain shared correlations that result in iden-

tical factors, and how these identical factors represent a kind of symmetry that

lifted inference algorithms attempt to exploit to speed up inference. Although lifted

inference often works well in cases when the PGM provides significant symmetry,

sometimes such symmetry may not exist. In such cases, and in cases when the

application can tolerate errors in the result of inference, we may want to resort to

approximate inference to scale up to large datasets.

In this chapter, just as in the last one, we continue with our goal of designing

efficient large-scale inference procedures. However, unlike the last chapter, where

we concentrated on designing an exact lifted inference algorithm, here our goal is to

design approximate procedures. The main question we investigate here is whether

it is possible to design approximate lifted inference techniques that allow the user to

trade off accuracy of inference for computational efficiency. We answer this question

in the affirmative and develop two such techniques. Moreover, we show that these

two techniques can be combined for more aggressive exploiting of shared correlations.
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Also, we show how it is possible to combine our techniques with bounded complexity

inference procedures such as the mini-bucket scheme [Dechter and Rish, 2003], so

that we do not need to incur the full treewidth of the PGM in question to run

inference. Finally, we develop a unified lifted inference engine that, via the use of a

handful of tunable parameters, allows the user full control over what type of lifted

inference algorithm s/he desires. The unified lifted inference engine allows the user

choice of varying between standard or lifted inference of the exact or approximate

variety, along with the user’s specification of incurred complexity of inference.

Continuing in the vein of the work described in the last chapter, even though

our focus in this one remains that of query evaluation in probabilistic databases,

the techniques we develop can be applied to general PGMs generated from any

application, even when there are no shared correlations. Also, like the last chapter,

we will refrain from assuming that we are given a first-order specification of the

PGM (an assumption often made by many lifted inference algorithms [de Salvo

Braz et al., 2005; Milch et al., 2008; Pfeffer et al., 1999; Poole, 2003; Singla and

Domingos, 2008]). Part of our task is to develop techniques that automatically

determine the first-order symmetry in PGMs and exploit it to speed up inference.

In the next section, we introduce a modified version of the running example

from the last chapter, which will serve as the running example for this one. In Sec-

tion 5.2 and Section 5.3, we present two techniques for approximate lifted inference.

In Section 5.4, we discuss how to combine our ideas with bounded complexity infer-

ence techniques and along with that, present a unified lifted inference engine that

combines all the techniques. In Section 5.5, we evaluate our approaches on synthetic
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S A B

s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}
s3 a3 {1:0.62, 2:0.38}

T B C

t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c
i3 a3 2 c

fi1.e, fi2.e, fi3.e

Figure 5.1: Running example for this chapter. Note that the prior on s3.B is slightly
different from the priors on s1.B and s2.B.

s1.B s3.Bs2.Bt1.B

i3.ei2.ei1.e

∧∧∧

fs1.B ft1.B fs2.B fs3.B

fi1.e fi2.e fi3.e

Figure 5.2: PGM produced by the running example described in Figure 5.1.

and real-world data and show that our techniques can achieve orders of magnitude

speedup over standard ground inference procedures and the bisimulation-based ex-

act lifted inference procedure introduced in the last chapter. We conclude with some

pointers for future work in Section 5.6.

5.1 Running Example

Similar to the running example introduced in Section 4.1, in Figure 5.1, once

again we have a simple 2-relation join query. In this case, S contains 3 tuples with

the probability distribution associated with the new tuple, s3’s B attribute, being

slightly different from s1.B and s2.B. As expected, the join produces three result
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c
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c

1
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(a)

A BC

ED

G

F

H

1

b
2

2

d,[ft1.B]

1

{[1],[2,1,3],1}

{[1,2],[2],2}

1

a
2

1

{[1],[2,1,3],1}

{[1,2],[2],2}

2

c

[fs1.B,fs2.B]
[fi1.e,fi2.e,fi3.e] [fs3.B]

[µi1.e,µi2.e] [µi3.e]

[ms1.B,
ms2.B] [ms3.B]

(b)

Figure 5.3: (a) RV-Elim graph for the running example (vertices partitioned into 8
blocks, shading indicates partitioning), (b) corresponding compressed rv-elim graph.

tuples. Our task is now to compute the marginal probabilities associated with the

assignments i1.e = true, i2.e = true and i3.e = true from the PGM shown in

Figure 5.2. Figure 5.3 (a) shows the rv-elim graph obtained using the elimination

order O = {s1.B, s2.B, s3.B, t1.B}, and Figure 5.3 (b) shows the corresponding

compressed rv-elim graph on which we can now perform inference faster. Notice

how, µi1.e and µi2.e turn out to be identical (just like in the last chapter), but

µi3.e is partitioned into a different node in the compressed rv-elim graph. This

is because one of the factors that leads to the computation of µi3.e, i.e., fs3.B, is

slightly different than the corresponding factors fs1.B and fs2.B. If our application

could tolerate an adequate level of approximation in the marginals computed, then

we may want to pool µi3.e along with the other two marginal distributions. This

would result in a smaller compressed rv-elim graph and could lead to significant

savings in computation time.

While the exact lifted inference approach described in the previous chapter
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can provide significant speedups when the probabilistic model contains moderate to

large amounts of symmetry, in many cases we can do much better if we are willing

to accept approximations in the marginal probability distributions computed. The

main idea here is to explore looser versions of Claim 1 so that we can partition

the vertices of the rv-elim graph into bigger blocks and thus arrive at a smaller

compressed rv-elim graph. In what follows, we describe two separate and orthog-

onal generalizations of Claim 1 that can be used to implement approximate lifted

inference. After that, we discuss how to combine our techniques with bounded

complexity inference algorithms and finally, we discuss how to combine all of our

proposed ideas together into one single general purpose approximate lifted inference

engine.

5.2 Approximate Lifted Inference with Approximate Bisimulation

To introduce our first technique, we require some notation. Given a vertex,

edge labeled graph G = (V,E,LV ,LE) such as an rv-elim graph, let v0, . . . vn de-

note an n-length vertex path such that ∀i = 0, . . . n : vi ∈ V and ∀i = 0, . . . , n −

1 : ∃j s.t. vi
j→ vi+1 ∈ E. Further, we say that label path or simply, path,

l0(l
′
0)l1(l

′
1) . . . ln(l′n)ln+1 matches vertex path v0, . . . vn+1 (and vice versa), if ∀i =

0, . . . , n+ 1 : LV (vi) = li and ∀i = 0, . . . n : LE(vi → vi+1) = l′i.

We will now revisit Claim 1 and try to assign it a path-based interpretation.

Using a simple induction (and the fact that edges with the same head have distinct

edge labels) it is possible to show that two vertices v1 and v2 in an rv-elim graph
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are bisimilar iff their incoming set of paths from the roots are identical. For instance

in Figure 5.3 (a) recall that ms1.B
∼= ms2.B, which have the same set of incoming

paths from the roots {“a(1){[1], [2, 1, 3], 1}′′, “c(2){[1], [2, 1, 3], 1}′′}, the matching

vertex paths forms1.B are fs1.B,ms1.B and fi1.e,ms1.B, resp., and the matching vertex

paths for ms2.B are fs2.B,ms2.B and fi2.e,ms2.B, resp. Notice that this path-based

interpretation of Claim 1 shows that it is a fairly stringent criteria (albeit necessary

for exact inference). For instance, consider a case when two vertices deep in the rv-

elim graph have large sets of long incoming paths and both sets are almost identical

except for one incoming path to the second vertex which has that one label that

does not allow it to match any incoming path to the first vertex; based on Claim 1

these two vertices would be placed in different blocks of the final partition and the

compressed rv-elim graph would be correspondingly bloated. This sort of behaviour

is, in fact, on display in our running example where µi2.e � µi3.e simply because,

of the three incoming paths to µi3.e, “b(1){[1], [2, 1, 3], 1}(1){[1, 2], [2], 2}′′ (matching

fs3.B,ms3.B, µi3.e) does not match any of µi2.e’s incoming paths.

Instead of comparing sets of all incoming paths to vertices, we propose to relax

Claim 1 by comparing sets of only k-length (and less than k-length) incoming paths,

where k is a tunable parameter we refer to as the path-length. Our compression

algorithm permits high compression when the path-length is set to a low value and

approaches exact bisimulation as we increase it. Figure 5.4 (a) shows the result of

partitioning vertices in our example rv-elim graph with k set to 0, where we simply

partition vertices based on their labels. Figure 5.4 (b) is more interesting, where we

have set k to 1 and so, compare incoming paths of length 1. Note how, in this case,
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Figure 5.4: Results of running approximate bisimulation on the running example
(shading indicates partitioning), (a) path-length=0 (partitioning on labels, vertices
partitioned into 6 blocks) (b) path-length=1 (vertices partitioned into 7 blocks). At
path-length=2, we obtain the results of exact bisimulation (see Figure 5.3 (a)).

ms3.B has been differentiated from ms1.B and ms2.B since ms3.B has an incoming

path “b(1){[1], [2, 1, 3], 1}′′ (matching fs3.B,ms3.B) of length 1 which does not match

any incoming 1-length path of ms1.B or ms2.B. In contrast, ms1.B, ms2.B and ms3.B

were all placed into the same block in Figure 5.4 (a). Also notice that, in Figure

5.4 (b), µi1.e, µi2.e and µi3.e are still partitioned into the same block (leaf vertices

tiled with bricks) and this is because the only path that differentiates µi3.e from µi1.e

and µi2.e is a path of length 2 (vertex path fs3.B,ms3.B, µi3.e) which is beyond the

scope of the current path-length setting of 1. This changes however, when we set

path-length to 2 and obtain the results of exact bisimulation shown earlier in Figure

5.3 (a).

The partitioning based on comparing incoming k-length paths can be obtained

by computing k-bisimilarity [Kanellakis and Smolka, 1983] (for which algorithms are

available) since these two properties are equivalent (this can be proved by induction).
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Algorithm 3: Approximate Lifted Inference with Approximate Bisimulation
input : RV-Elim Graph G = (V,E,LV ,LE) and path-length k.
output: A disjoint partitioning over V .

d(v) =

{
0, if v is a root
1 + max{d(v′)|v′ → v ∈ E}

ρ← max{d(v)|v ∈ V }
B0,l = {v|d(v) = 0 ∧ LV (v) = l}
Bi = {v|d(v) = i}∀i = 1 . . . ρ
C ← {B0,l}∀l ∪ {Bi}ρi=1

X ← C
for j = 1 . . . k do

for i = 1 . . . ρ do
foreach B ∈ C at depth i do

order parents by block-ids in X
construct labels LV (v)∀v ∈ B
construct key kv∀v ∈ B with LV (v), parent blocks-ids in X
partition B based on keys kv

replace B in C with new blocks
end

end
X ← C

end
return C

We formalize the k-bisimilarity property as follows:

Property 1. Given an rv-elim graph G = (V,E,LV ,LE), ∼=k is defined inductively.

For vertices v1, v2 ∈ V ,

• v1
∼=0 v2 iff LV (v1) = LV (v2).

• v1
∼=k v2 (k > 0) iff LV (v1) = LV (v2) and ∀u1

i→ v1,∃u2
i→ v2 s.t. u1

∼=k−1 u2

and vice versa.

The algorithm for obtaining the partition based on ∼=k, Algorithm 3, begins by

computing the depth of each vertex d(v) and constructing an initial partition based

on labels of the roots and the depths of internal vertices. Throughout Algorithm
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Figure 5.5: The compressed graph obtained at path-length=1 with the dotted edge
being deleted since its tail has a smaller extent.

3, we maintain two partitions, X and C. In the ith iteration, X maintains ∼=i−1

and is used to update C where we construct ∼=i. Note that the inner two loops can

be performed in O(|E| logD + |V |) time (not counting the time spent to construct

the vertex labels), where D is the maximum in-degree in the rv-elim graph. Thus,

Algorithm 3 runs in O(k(|E| logD + |V |)) time (in contrast to Algorithm 1 which

runs in O(|E| logD + |V |) time). Note that constructing the compressed rv-elim

graph corresponding to ∼=k is a bit more complicated now since we are no longer

guaranteed that, if two internal vertices fall into the same block of the partition,

then the parents will also have been placed into the same block (which holds for

Claim 1). Figure 5.5 (the compressed graph obtained at k=1) illustrates this issue

where all µ’s have been merged into one block but their 1st parents are not, thus G

has two 1st parents D and F , which is problematic if we want to use the compressed

graph to run inference. Here, we simply get rid of the edge that corresponds to the

smaller sized block (the dotted edge F → G in Figure 5.5 since F represents a block

of size 1 versus D whose block size is 2) to maximize the number of correct marginal
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probability computations.

5.3 Approximate Lifted Inference with Factor Binning

We now introduce another way of implementing approximated lifted inference

using an orthogonal generalization of Claim 1. We begin by associating with Claim 1

a distance-based interpretation. Recall that, Claim 1 bins two factors into the same

block of the partition when we can guarantee that their input-output mappings are

exactly the same without actually computing them. Stated differently, given any

user-defined distance measure that can measure the “distance” between two factors,

Claim 1 deems that these factors belong to the same block only if the distance

between them is zero. Note that the converse is not true. That is, it is possible for

two internal vertices in the rv-elim graph to actually represent factors that comprise

of identical input-output mappings but because their parents do not belong to the

same blocks or because the parents’ arguments do not overlap in the same fashion,

Claim 1 cannot bin these into the same block of the partition. We illustrate this
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with the following example:

∑
Y



X Y f1

t t 0.8

t f 0.2

f t 0.4

f f 0.6

×

Y f2

t 0.5

f 0.5


=

X mY

t 0.5

f 0.5

∑
Y ′



X ′ Y ′ f ′1

t t 0.2

t f 0.8

f t 0.6

f f 0.4

×

Y ′ f ′2

t 0.5

f 0.5


=

X ′ mY ′

t 0.5

f 0.5

where t and f denote true and false resp. Notice how factors f1 and f ′1 have

different input-output mappings (f1(t, t) = 0.8 6= 0.2 = f ′1(t, t)) and hence cannot

be binned into the same block which means that it is not possible to determine

that the resulting factors mY and mY ′ comprise of the same input-output mappings

solely using Claim 1. This, in turn, means that any intermediate factors derived

from these two factors during the inference process will always be binned separately,

thus leading to a bloated compressed rv-elim graph.

Such symmetries can not be captured without actually looking into the fac-

tors and computing the distance between them (any distance measure such as KL-

divergence or root mean squared distance would do). For this purpose, we ask the
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user for a separate parameter ε, that specifies an upper bound on the distance be-

tween two factors for them to be considered shared. Note that, unlike the previous

algorithm, we can not compute distance between two intermediate factors without

computing the factors.

To determine such a distance-based partitioning of the factors, we will need

to solve the factor binning problem (FB):

Given: set of factors F = {f1, . . . fn}

threshold ε, distance function dist(·,·)

Return: argminF⊆F |F|

such that ∀fi ∈ F \ F ∃f ∈ F s.t. dist(fi, f) ≤ ε

We will shortly show that the factor binning problem is equivalent to the

dominating set problem (DS):

Given: graph G with vertex set V and edge set E

denote by Nv neighborhood of vertex v

Return: argminD⊆V|D|

such that ∀vi ∈ V \D ∃v ∈ D s.t. v ∈ Nvi

Theorem 1. FB is equivalent to DS.

Proof. The proof is in two parts; we first show that any instance of FB can be
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reduced to DS and vice versa. To show the first part, we specify the reduction to

DS. Given an instance of FB, define the corresponding DS by setting:

DSFB : V = F , Nfi
= {fi} ∪ {f |dist(fi, f) ≤ ε}

Note that any solution to DSFB is a solution to FB. We show this by contradiction.

Suppose solution D to DSFB is not a solution to FB, in other words, ∃fi ∈ F \D

s.t. dist(fi, f) > ε, ∀f ∈ D. This implies Nfi
∩D = ∅ which means that D is not a

solution to DSFB and thus we have a contradiction. Similarly, any solution to FB

is a solution to DSFB. Again, assume that solution F to FB is not a solution to

DSFB. Thus, ∃fi ∈ F \ F s.t. Nfi
∩ F = ∅. This implies dist(fi, f) > ε, ∀f ∈ F

which means F is not a solution to FB and we have a contradiction. Given that

solution spaces of FB and DSFB are same, and that the objective functions are also

same, we have shown that FB can be solved by solving DSFB.

The reduction in the other direction is also easy. Given an instance of DS,

define the corresponding FBDS by setting:

FBDS : F = V, ε = 0

dist(vi, vj) =


0 if (vi, vj) ∈ E

1 otherwise
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Let D denote a solution to DS that is not a solution to FBDS:

⇒ ∃vi ∈ V \D s.t. dist(vi, v) > ε = 0, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. dist(vi, v) = 1, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. (vi, v) /∈ E, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. Nvi
∩D = ∅

⇒ D is not a soln. to DS and we have a contradiction

Also, trying it the other way round. Let F denote a solution to FBDS that is not a

solution to DS:

⇒ ∃vi ∈ V \ F s.t. Nvi
∩ F = ∅

⇒ ∃vi ∈ V \ F s.t. dist(vi, v) = 1 > 0 = ε, ∀v ∈ F

⇒ F is not a soln. to FBDS and we have a contradiction

DS is NP-Complete [Garey and Johnson, 1979]. Further, Feige [1998] showed

that DS is not approximable to a factor of (1− o(1))ln(|V|) unless NP has “slightly

super-polynomial time” algorithms (or NP ⊂ DTIME(nlog(log(|V|)))). One way to

solve DS is to utilize the fact that it is a special case of set cover and use the

obvious greedy heuristic (described below) for set cover. This gives us an ln(|V|)-

approximation algorithm [Vazirani, 2001]. Thus, for our experiments, we use the
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Algorithm 4: Approximate Lifted Inference with Factor Binning
input : RV-Elim Graph G = (V,E,LV ,LE), a distance function and ε.
output: A disjoint partitioning over V .

d(v) =

{
0, if v is a root
1 + max{d(v′)|v′ → v ∈ E}

ρ← max{d(v)|v ∈ V }
B0,l = {v|v is a root ∧ LV (v) = l}
instantiate one factor per block B0,l

Bds
0 ← compute dominating set and construct new set of blocks by merging
{B0,l}
C = Bds

0

Bi = {v|d(v) = i},∀i = 1 . . . ρ
for i = 1 . . . ρ do

foreach v ∈ Bi do
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’ blocks-ids

end
Bi,k = {v ∈ Bi|kv = k}
instantiate one factor per new block Bi,k

Bds
i ← compute dominating set and construct new set of blocks by merging
{Bi,k}
C ← C ∪Bds

i

end
return C

same greedy approach to solve FB. FB is also equivalent to the ρ-dominating set

problem Bar-Ilan et al. [1993], which, in turn, is the converse of the classic k-center

problem [Kariv and Hakimi, 1979] where we are given a graph from which we need

to choose a subset of k vertices so that their distance from the other vertices is

minimized.

Even though the above discussion suggests FB is hard to solve, the situation is

not so dire. When the distance function satisfies special properties, better algorithms

may be available but this will require us to “tweak” the definition of FB. For instance,

when dealing with euclidean spaces, there are algorithms that can solve the minimum
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geometric disk cover problem (GDC) near-optimally. GDC is posed as follows:

consider a set of points in some high-dimensional plane. Our task is to return

the smallest set of points (centers) from the plane such that each input point is

within r distance of a center. Hochbaum and Maass [1985] describe approximation

algorithms with bounds on their (non-)optimality for this problem. Note that the

bounds depend on the dimensionality of the space, the algorithms work better in

low dimensional spaces. Now consider the following reduction of a modified version

of FB to GDC. We will assume that each input factor has d rows. We will interpret

each input factor as a point in a d-dimensional space and the coordinates of the

corresponding point are given by the output of the factor. Note that this is a one-

to-one mapping from points to factors. Once we solve GDC on these points, we

can get back factors corresponding to the returned centers. Note that this is not

the same definition of FB as before since the centers need not correspond to any of

the input factors. Also, to make this work desirably one may need to normalize the

outputs of factors in some sensible way.

The algorithm to obtain the greedy solution for FB is to first construct each

subset Nfi
(as defined above) and repeatedly pick fi corresponding to the current

largest Nfi
to include into our solution. Every time we pick fi, we update all Nfj

’s

by deleting from them all factors that are within ε distance of fi. Another question

we need to consider is whether to bin factors based on distance once and then run

approximate lifted inference or whether to bin the intermediate factors based on

distance also. For our experiments, we also binned the intermediate factors, since

this allows us to compress the rv-elim graph more agrressively. Algorithm 4 shows

111



the complete algorithm to run approximate lifted inference using FB.

5.4 Unified Lifted Inference

The approximation techniques we have introduced so far do not alleviate the

worst-case complexity of the inference procedure. In other words, these techniques

would not help if the ground inference procedure is associated with high treewidth

(common with structured probabilistic graphical models). Next we show how to

incorporate the mini-bucket scheme [Dechter and Rish, 2003], a bounded complexity

approximate (ground) inference algorithm, this allows us to keep a tight control

over the complexity of inference incurred. Next, we discuss how to combine all the

proposed ideas in this chapter to construct one single unified lifted inference engine.

5.4.1 Bounded Complexity Lifted Inference

The mini-buckets scheme is a modification of the variable elimination algo-

rithm [Zhang and Poole, 1994] where at each step instead of eliminating a random

variable by multiplying all factors it appears as argument in, one devises a set of

mini-buckets each containing a (disjoint) subset of factors that contains that vari-

able as argument and then eliminates the variable separately from each mini-bucket.

More precisely, given a set of factors, one first constructs a canonical partition such

that all subsumed factors are placed into the same bucket of the partition. A factor

f is said to be subsumed by factor f ′ if any argument of f is also an argument of

f ′. After constructing the canonical partition, the user has two choices:
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• construct mini-buckets by restricting the total number of arguments i (a user-

defined parameter) in each mini-bucket. Since inference complexity is directly

affected by the size of the largest factor encountered, this is one way to control

the amount of computation incurred.

• specify how many buckets m of the canonical partition to merge to form a mini-

bucket. Again, this (indirectly) controls the size of the largest factor generated

and keeps the complexity bounded.

Dechter and Rish [2003] show how such a modification of the variable elimination

algorithm provides an upper bound over the numbers produced in the resulting

factors.

It is easy to combine our approaches with the mini-bucket scheme. Instead

of building the rv-elim graph by introducing internal vertices corresponding to in-

termediate factors produced by multiplying all factors involving a certain random

variable as argument, we simply introduce vertices corresponding to factors pro-

duced by the mini-bucket scheme. Since our approaches work on any rv-elim graph,

this requires no change to the approaches presented earlier, while keeping the com-

plexity of inference bounded.

5.4.2 Unified Lifted Inference Engine

By interleaving the various steps, it is possible to combine all the ideas we

have presented in this section into one unified approximate lifted inference engine.

Our combined inference engine takes a set of eight parameters which define the
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Parameter Name Description

UB (bisimulation) compresses rv-elim graphs if true

PL (path length) approximate bisimulation parameter,
use exact bisimulation when set to∞

ε factor binning parameter, uses factor
binning if ε > 0

UMB (mini-bucket) allows using mini-buckets if true

ACR (arg. count restriction) if true then restricts based on num-
ber of arguments in mini-buckets

MBR (mini bucket restriction) if ACR=true then this is i (the max
number of args per mini-bucket), else
it is interpreted as m (the number of
canonical partition buckets merged
to form a mini-bucket).

Table 5.1: Parameters for our unified lifted inference engine.

combinations of techniques we would like to invoke (see Table 5.1). The experiments

presented in the next section use this generic inference engine.

5.5 Experimental Evaluation

Through our experiments, we want to emphasize that even though our focus is

query evaluation in probabilistic databases, our techniques work for any PGM. We

conducted experiments on synthetic and real data to determine how lifted inference

with approximate bisimulation and factor binning perform on their own. We also

report experiments with our unified lifted inference engine where we used both

approaches in tandem. Each number we report is an average over 3 runs, our

implementation is in JAVA, and our experiments were performed on a machine with

a 3GHz Xeon processor and 3GB RAM. We compare our results with two baseline
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algorithms: A ground inference procedure which is basically variable elimination

[Zhang and Poole, 1994] modified so that we obtain all marginals in a single pass, and

the exact lifted inference procedure introduced in Chapter 4. We report two metrics

for each experiment: run times incurred by the various algorithms in seconds (Time)

and error measured by computing the average number of marginal probabilities

which were not within 10−8 of their correct values (Avg. #Probs. Incorrect).

5.5.1 Synthetic Bayesian Network Generator

We set up a synthetic Bayesian network (BN) generator to test various aspects

of our algorithms. The generator produces BNs where the random variables are

organized in layers and random variables from the ith layer randomly choose parents

from the i − 1th layer. For our experiments, we generated BNs with 3 layers: the

first layer contained 1000 random variables, the second 500 and the third 250. We

introduced priors randomly for each variable in the first layer, every 25th prior was

identical. The random variables in the last layer are our query variables for which

we computed marginal probabilities. All random variables had domain of size 30.

To generate factors defining the dependency between random variables from the ith

and i− 1th layers, for each variable in the ith, we randomly chose 2 parents from the

previous layer. Two children can choose the same parents, so we generated non-tree

structured BNs. All factors with children from the ith layer are identical. This closely

follows many structured probabilistic graphical models we have come across, where

the priors usually closely resemble each other but may not be identical; whereas the
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Figure 5.6: Experimental results for lifted inference with approximate bisimulation,
(a) and (b) report time and error with varying path-length, respectively. Variable
elimination took 25.95 sec and exact lifted inference took 8.2 sec.

factors defining dependencies between various random variables come from generic

rules and are thus identical. We used a parameter to control how many times a

random variable can be picked as a parent. This helps vary the complexity of the

inference problem. We also used a parameter to add random noise after the factors

are generated. We tried other parameter settings as well and the trends were as

expected. For instance, increasing domain size increases the speedups obtained since

with larger domains, we increase the time spent summing over random variables and

multiplying factors while running ground inference – our lifted inference procedures

are designed to save on this assuming the symmetry among factors is kept constant.

Similarly, increasing the number of random variables with constant symmetry also

increases speedups obtained.
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5.5.2 Lifted Inference with Approximate Bisimulation

Our first set of experiments tests our algorithm for lifted inference with ap-

proximate bisimulation. The results are reported in Figure 5.6 (a) and Figure 5.6

(b). The plots show that as we increase path-length (x-axis in these plots), the

time for inference (Figure 5.6 (a)) slowly increases, but error decreases (Figure 5.6

(b)). The solid line with triangles depict the results of running lifted inference with

approximate bisimulation without mini-buckets, and with path-length set to 3, we

see that the error stands around 18%; the inference procedure took about 3 seconds

to run, which is almost a 3 times speedup over exact lifted inference (which took

8.2 seconds) and almost a 9 times speedup over ground inference (which took 25.95

sec). All the other lines in the plots correspond to lifted inference with approximate

bisimulation run with various mini-bucket schemes. Among these, the mini-bucket

scheme with mini-buckets restricted by argument count at i = 3 seems to be a

promising setting (dotted line with triangles), since it runs faster than lifted infer-

ence with approximate bisimulation, but does not incur significantly higher error.

Another interesting point that shows up in these plots is that with mini-buckets

with i = 4 or m = 2 at path-length set to 3, the time taken to run inference goes

up noticeably. This shows that at very low path-lengths, using mini-buckets could

actually lead to loss of symmetry in the rv-elim graph.
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Figure 5.7: Experimental results for lifted inference with factor binning, (a) and (b)
report time and error with varying path-length, respectively. Variable elimination
took 33.12 seconds and exact lifted inference took 25.24 seconds.

5.5.3 Approximate Lifted Inference with Factor Binning

Our second set of experiments tests our factor binning approach. The results

are shown in Figure 5.7 (a) and Figure 5.7 (b). For these experiments, we used root

mean squared distance to compare two factors. More precisely, given two factors f1

and f2 with a common joint domain D, dist(f1, f2) =
√

1
|D|

∑
x∈D(f1(x)− f2(x))2.

The plots show that as we increase ε (on the x-axis), the times for inference go

down (Figure 5.7 (a)), and the error goes up (Figure 5.7 (b)). On these experiments,

ground inference took about 33 seconds and exact lifted inference took 25.24 seconds,

which means factor binning without mini-buckets (solid line with triangles) achieves

a speedup of about 3.5 times over exact lifted inference, and a speedup of almost 5

times over ground inference. Among the various mini-bucket schemes, once again

i = 3 (dotted line with triangles) seems to be the best setting; it gives small but

noticeable reductions in run-times at almost no cost to accuracy. Notice that mini-

buckets with small settings of either m or i tends to perform very poorly, neither
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Figure 5.8: Experimental results for unified lifted inference engine. (a) depicts how
variable elimination and exact lifted inference compare with respect to time with
varying size of PGMs. (b) shows how unified lifted inference does not require that
factors be exactly identical.

giving good accuracies nor providing good run-times, and this is likely due to the

sheer number of factors with which we are dealing. At such small settings, the mini-

bucket scheme produces a lot of factors and computing the dominating set (which

has a quadratic time complexity) becomes too expensive.

5.5.4 Unified Lifted Inference Engine

In our last set of experiments, we used both approximate bisimulation (path-

length=3) and factor binning (ε = 0.01) with mini-buckets (restricted by argument

count i = 3). Here we report run-times for probabilistic models with varying num-

ber of random variables. The results are reported in Figure 5.8 (a) and Figure 5.8

(b). As should be clear from Figure 5.8 (a), with increasing size of the probabilistic

model, all three inference procedures, ground inference, exact lifted inference and

approximate lifted inference, show an increase in run-time but there is an order

of magnitude difference in times between ground inference and exact lifted infer-
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ence (which partitions identical factors together) and another order of magnitude

speedup over exact lifted inference for approximate lifted inference (which also bins

nearly identical factors together) while keeping the accuracy within bounds. Thus

approximate lifted inference is more than two orders of magnitude faster than ground

inference. The accuracies for approximate lifted inference for these experiments var-

ied between 65-95%. For these complex networks, we could not run ground inference

on models with more than 256 random variables due to memory limitations. Figure

5.8 (b) makes it clear how the run-time between exact lifted inference and approxi-

mate lifted inference varies. Here we set all priors in our probabilistic model similar

to each other but varied the probability of two factors being identical to each other.

The plot shows that as this probability increases, exact lifted inference captures the

symmetry and does better, whereas approximate lifted inference keeps run-times

low throughout.

5.5.5 Experiments on Real-World Data

We experimented with a number of real world datasets. We first report results

on the Cora [McCallum et al., 2000] and CiteSeer [Giles et al., 1998a] datasets.

The Cora dataset contains 2708 machine learning papers with 5429 citations; each

paper is labeled from one of seven topics. The CiteSeer dataset consists of 3316

publications with 4591 citations; each paper is labeled with one of 6 topics. The

task is to predict the correct topic label of the papers. We divided each dataset

into three roughly equal splits and performed three-fold cross valiation. For each
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Dataset Inf. Alg. Time (s) Arith. Ops. Rem. Ops. Acc.

Cora
Ground Inf. 163.5 163 0.5 77.8
Lifted Inf. 60.6 59.9 0.7 73

CiteSeer
Ground Inf. 101.0 100.8 0.2 68.7
Lifted Inf. 65.0 63.9 1.1 66.8
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Figure 5.9: (a) Times for Cora and CiteSeer. (b) Precision-Recall curve for Cora-ER
and (c) number of factors generated.
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experiment, we train on two splits and test on the third, randomly choosing 10% of

the papers’ class labels to be our query nodes. Each number we report is an average

across all splits. For these experiments, we produce Markov networks using the

citations in the datasets as dependencies among the topic labels and then perform

collective classification [Sen et al., 2008b]. Note that, the treewidth of the Markov

networks thus produced can be unbounded, so we compare against ground inference

with mini-buckets restricted to 6 arguments. Also, while testing on the third split,

we include as evidence topic labels of the papers belonging to the training set linked

to from the test set. We tried various parameter settings with our approximate

lifted inference engine and report the best results. As Table 5.9 (a) shows, we

obtained a 2.7 times speedup for Cora and 1.55 times speedup for CiteSeer with our

approximate lifted inference engine over ground inference. The loss in accuracy was

4.8% for Cora and 1.9% for CiteSeer. These results were obtained with path length

= 2, ε = 0.01, and using mini-buckets restricted to 6 arguments. We also show how

much time was spent by each inference scheme to multiply factors and sum over

random variables (arithmetic operations or “Arith. Ops.” in Table 5.9 (a)) and

the remaining operations (or “Rem. Ops.” in Table 5.9 (a)). As should be clear

from Table 5.9 (a), the various operations required to implement lifted inference

(bisimulation algorithms and dominating set computations) do not really add much

overhead; we spend about 0.7 − 0.5 = 0.2 seconds for Cora and 1.1 − 0.2 = 0.9

seconds for CiteSeer (column “Rem. Ops.” in Table 5.9 (a)).

We also experimented with the Cora dataset for entity resolution (Cora-ER)

[Cora Entity Resolution Dataset]. For this experiment, we used a Markov logic net-
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work with 46 distinct rules. Unfortunately, we could not get any noticeable speedup

for this dataset. This dataset consists solely of random variables with domain size 2

(match/non-match). As a result, all the factors produced are extremely small in size

(size of a factor is determined by the number of rows in it) which implies that the

time spent performing arithmetic operations (multiplying factors and eliminating

random variables) is not the bottleneck during inference. The techniques proposed

in this paper are mainly directed towards reducing the time spent to perform arith-

metic operations. However, we do present the precision-recall curve we obtained for

Cora-ER (Figure 5.9 (b), increasing argument count restriction for the mini-buckets

scheme reduces precision but increases recall) and we also counted the number of

intermediate factors computed by ground and lifted inference for various samplings

of the dataset consisting of 50-250 bibliographic citations to be deduplicated. Fig-

ure 5.9 (c) shows that lifted inference produces far fewer intermediate factors during

inference than ground inference; recall that ground inference produces an interme-

diate factor everytime a random variable is eliminated but lifted inference saves on

this computation by computing one factor for each block in the final partitioning.

This, in turn, indicates that the dataset possesses symmetry which could lead to

speedups if the domain sizes of the random variables and factors were large. Note

that Figure 5.9 (c) also gives an idea of the reduced memory consumption for lifted

inference.
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5.6 Conclusion and Future Work

In this chapter, we described light-weight, generally applicable approximate

algorithms for lifted inference based on the graph theoretic concept of bisimulation.

Essentially, our techniques are wrap-arounds for variable elimination [Zhang and

Poole, 1994], and can be used whenever variable elimination is applicable, even

though our focus in this thesis happens to be probabilistic databases. Besides being

able to compute single node marginal probabilities, the techniques we propose here

can also be used to perform other kinds of inference, including computing joint

conditional probabilities and MAP assignments (by switching from the sum-product

operator to max-product). One interesting avenue of future work is to look for

other bounded complexity inference algorithms (besides mini-buckets) that can be

combined with the techniques introduced in this chapter. Other avenues of future

work are determining the optimal values of the various parameters (path-length

and ε) automatically, and building the compressed rv-elim graph directly from the

first-order description of the probabilistic model.

124



Chapter 6

Read-Once Functions and Probabilistic Databases

Until now, we have discussed a general representation for probabilistic databases

(Chapter 3) and efficient large-scale query processing (Chapter 4 and Chapter 5).

In this chapter, we take a closer look at the query evaluation problem itself. How

hard is it to evaluate a single query, or, more specifically, to compute the marginal

probability of a single result tuple and what can we do to do this efficiently? Recall

that, for probabilistic databases based on possible world semantics, query evaluation

is #P-Complete. Most of the probabilistic databases proposed in prior literature

use one of two approaches to circumvent this issue: they either resort to approxi-

mate results using approximate inference ([Jampani et al., 2008; Re et al., 2007])

or they restrict their attention to a smaller class of tractable queries for which effi-

cient evaluation is possible (hierarchical queries or safe plans [Dalvi and Suciu, 2007,

2004]).

In this chapter, we take a closer look at the latter approach. Hierarchical

queries [Dalvi and Suciu, 2007], are a purely query-centric way of determining

whether a query posed on a tuple-independent probabilistic database can be solved

efficiently or not. More precisely, if the query q satisfies a certain criteria (defined

in [Dalvi and Suciu, 2007] and reviewed in the next section) then it can be evalu-

ated in PTIME. Since the criteria only looks at the query and does not involve the
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database, it stands to reason that if the query is hierarchical then it can be evaluated

efficiently for any tuple-independent probabilistic database. As the reader may have

already guessed, this is quite a pessimistic way of determining solvability of queries.

Usually, the user is more interested in evaluating her/his query on the database at

hand and not for all possible databases; in other words, the final evaluation problem

is a result of the combination of the query and the database, not just the query

alone and we need to leverage both query and data, if we are to evaluate queries in

the most efficiently possible way.

In this chapter, we view the problem of evaluating queries on tuple-level uncer-

tainty probabilistic databases at a different level of abstraction. It is straightforward

to show that in such databases, the PGM corresponding to the query evaluation

problem can also be represented using result tuple specific-boolean formulas, and

the query evaluation problem reduces to computing the marginal probability for the

boolean formulas holding true. Prior research performed by the graph theory com-

munity has shown that if the boolean formula can be factorized into a form where

every boolean variable (a tuple-level existence variable, in our case) appears at most

once, then one can compute the marginal probability for the formula extremely ef-

ficiently. Boolean formulas that have such a factorization are known as read-once

functions ([Golumbic et al., 2006; Hayes, 1975]). It is also possible to show that hier-

archical queries only produce result tuples with read-once functions, thus providing

a connection to efficient query evaluation in probabilistic databases. In this chapter,

we propose to turn the previous approach to efficient query evaluation on its head.

Instead of adopting a query-centric approach, we evaluate the user-submitted query

126



and propose algorithms that generate for each result tuple, its factorized form (if it

exists), so that we can compute the required marginal probabilities efficiently. With

this approach, not only do we allow efficient computation of hierarchical queries, but

also for non-hierarchical queries that produce result tuples with read-once functions

on the given database.

Another issue with hierarchical queries is that their definition involves the

specific operators used in the query. As reviewed in Chapter 2, most of the work

on hierarchical queries [Dalvi and Suciu, 2007, 2004] almost exclusively deals with

equality joins∗. Presumably, extending the approach to deal with other operators re-

quires effort and dealing with queries composed of different operators is even more

cumbersome. On the contrary, our approach of treating result tuples as boolean

formulas allows us to restrict our attention to only two operators, ∧ (and) and ∨

(or). We do not care what kind of join operator (equality or inequality or any-

thing else) gave rise to the boolean formula associated with the result tuple. Thus,

our techniques are likely to be wider in range than earlier work on efficient query

evaluation.

Here we restrict ourselves to the simpler case of probabilistic databases with

tuple-level uncertainty only. The more difficult case of databases with attribute

and tuple uncertainty will be left open, although some proposals in the machine

learning community [Darwiche, 2002] may help in this regard (see Chapter 2 for

more discussion). In the next section, we review tuple-level uncertainty probabilistic

databases and discuss how to generate boolean formulas for result tuples while

∗Olteanu and Huang [2009, 2008] are notable exceptions.
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evaluating queries. In Section 6.2, we discuss read-once functions. In Section 6.3, we

discuss hierarchical queries and show how they always generate read-once functions.

In Section 6.4, we propose our approach to solving queries by generating read-once

functions in probabilistic databases. In Section 6.5, we consider the special case

of conjunctive queries without self-joins allowing for non-equality predicates. We

conclude the chapter with Section 6.7, after a discussion in Section 6.6.

6.1 Preliminaries

Most of the notation remains the same, but since we are dealing with a

simpler model of a probabilistic database some changes/simplifications are in or-

der. As before, let R denote a relation defined over a set of attributes attr(R) =

{A1, A2 . . . A|attr(R)|} and each tuple t ∈ R is a mapping from attributes to values

from some pre-defined domain. We associate a unique (boolean-valued) random

variable with t denoted by xt and a probability of existence of pt. Often, if it is clear

from the context, we will abuse notation and refer to the tuple’s random variable

by the tuple itself. Possible worlds semantics remains the same, a (probabilistic)

database D = {R1, . . . Rm} is a set of relations and represents a distribution over

many possible worlds, each obtained by choosing a (sub)set of tuples in each relation

Ri to be present. If a tuple t is present, we say xt is assigned the value true or t

and false or f, otherwise. Each possible world w is associated with a probability:

Pr(w) =
m∏

i=1

∏
t∈Ri

xt=t

pt

∏
t∈Ri

xt=f

(1− pt)
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f(t ∈ R) = xt

f(σc(t)) = if c(t) then f(t) else f

f(
∏

(t1, . . . tk)) =
∨k

i=1 f(ti)
f(t× t′) = f(t) ∧ f(t′)

Figure 6.1: Extended definitions for σc, ×,
∏

where c denotes a selection predicate.
t denotes true and f denotes false.

L: X

x1 x1

x2 x2

x3 x3

J: X Y

z1 x1 y1

z2 x1 y2

z3 x2 y3

z4 x3 y3

R: Y

y1 y1

y2 y2

y3 y3

q() :−L(X), J(X,Y), R(Y)

r = x1z1y1 + x1z2y2

+ x2z3y3 + x3z4y3

Figure 6.2: A query q, its singleton result r and the corresponding boolean formula.

Given a query q to be evaluated against database D, the result of the query

is defined to be the union of results returned by each possible world along with the

marginal probabilities of each result tuple. Since we are dealing exclusively with

uncertain tuples, one way to compute the marginal probability of a result tuple t

produced by (relational algebra) query q is to extend each (relational algebra) oper-

ator in q so that it builds a boolean formula for each (intermediate) tuple generated

during query evaluation. We refer to the boolean formula for t by f(t). Figure

6.1 provides these extended definitions for operators σ, × and
∏

. The marginal

probability of the result tuple can then be obtained by computing the probability of

the corresponding boolean formula holding true. Figure 6.2 shows a three-relation

join query which produces a singleton result tuple r and the corresponding result

tuple’s boolean formula.
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6.2 Read-Once Functions: Unateness, P4-Free and Normality

Even though computing marginal probabilities of a result tuple’s boolean for-

mula holding true is #P-Complete in general [Dalvi and Suciu, 2004], special classes

of boolean formulas allow tractable computations. Read-once functions are one such

class of formulas:

Definition 8 (Read-Once Function [Hayes, 1975]). A boolean formula φ is said

to be read-once if there exists a factorization such that each variable appears not

more than once.

Further, the read-once factorized form of the boolean formula is known as its

read-once expression. For instance, r in Figure 6.2 is a read-once function with the

read-once expression x1(z1y1 + z2y2) + y3(x2z3 + x3z4). Prior work [Golumbic et al.,

2006] has identified properties that a formula should satisfy for it to be read-once:

Theorem 2 ([Golumbic et al., 2006]). A boolean formula is read-once iff it is unate,

P4-free and normal.

We describe each property in turn.

A boolean formula φ is said to be unate (or monotone) [Golumbic et al., 2006]

if every variable either appears in its positive or negated form throughout. Thus,

ab and āb+ āc are unate but āb+ ac is not.

For any boolean formula φ, the co-occurrence graph Gφ is formed by represent-

ing every variable in φ using a vertex and introducing an undirected edge between

variables xi and xj if they appear together in some clause when φ is expressed in
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a

cb

d

(i)

a

cb

d

(ii)

x1

y1z1

z2y2

x2

x3

y3

z4

z3

(iii)

Figure 6.3: (i) φ = ab+ bc+ cd, co-occurrence graph is a P4 and φ is not read-once.
(ii) φ = c(ab+ d), co-occurrence graph is P4-free and φ is read-once. (iii) shows the
co-occurrence graph for r from Figure 6.2.

disjunctive normal form (dnf). Let X denote a subset of vertices, then the subgraph

of G induced by X is the subgraph formed by restrcting edges of G to edges with

end points in X. The graph P4 denotes a chordless path with 4 vertices and 3 edges

(see Figure 6.3 (i)). φ is P4-free if no induced subgraph of Gφ forms a P4. Figure 6.3

(i) and (ii) show two formulas one of which is not read-once because it contains a

P4, Figure 6.3 (iii) shows the co-occurrence graph for the result tuple r from Figure

6.2. Notice that in Figure 6.3 (ii), even though a, b, c and d do form a path of length

3, they do not form a P4 because a and c have an edge between them that provides

a shorting.

A formula φ is said to be normal (or clique-maximal) if every clique in its

co-occurrence graph is contained in some clause in its dnf form [Golumbic et al.,

2006]. For instance, even though the two formulas φ1 = abc and φ2 = ab + bc + ca

both have the same co-occurrence graph (the triangle), φ1 is normal (and read-once)

whereas φ2 is not.

Traditionally, co-trees [Corneil et al., 1981] have been used to concisely repre-

sent read-once expressions of read-once functions. Co-trees are trees where leaves

correspond to boolean variables while internal node 1© represents ∧ and 0© rep-

resents ∨. A given read-once expression can be represented by many co-trees but
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y2 z2

y3

z1

1©

0©

1©

z4y1 z3

0©

1©

x2 x3

1©

x10©

1©1©

Figure 6.4: Co-tree of result tuple r from Figure 6.2.

there exists a canonical co-tree, where 1© and 0© alternate on every path. Given the

co-tree for a read-once result tuple, the probability can be computed using a simple,

bottom-up procedure:

Pr(v) =



∏
c∈ch(v) Pr(c) if v is 1©

1−
∏

c∈ch(v)(1− Pr(c)) if v is 0©

pt if v = xt

where ch(v) denotes children of v. The marginal probability of the result tuple can

then be retrieved from the root of the co-tree. Figure 6.4 shows the co-tree for the

result tuple from Figure 6.2.

6.3 Hierarchical Queries and Read-Once Functions

Earlier work on query evaluation in probabilistic databases has identified

tractable queries for which probability computation is efficient and this set of queries

is referred to as hierarchical queries [Dalvi and Suciu, 2007]. We next illustrate the

close connection between hierarchical queries and read-once functions. For the en-

suing discussion, we will assume that all queries are projected onto the empty set of
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attributes. Queries projected onto a non-empty set of attributes can be handled by

replacing these attributes with constants. Let q denote a query in datalog notation.

Let A denote an attribute in q and sg(A) denote the set of relations a is mentioned

in. In other words, sg(A) denotes the set of relations or subgoals of A. For the

example in Figure 6.2, sg(X) = {L, J} and sg(Y) = {J,R}.

Definition 9 (Hierarchical Query [Dalvi and Suciu, 2007]). A (conjunctive)

query q is a hierarchical if for any two attributes A and B either sg(A) ⊆ sg(B),

sg(A) ⊇ sg(B) or sg(A) ∩ sg(B) = ∅.

For instance, the query q in Figure 6.2 is not hierarchical (sg(X) ∩ sg(Y) =

{J} 6= ∅, sg(X) * sg(Y), sg(Y) * sg(X)) but q′() :−S(X,Y), T (Y) is. Further,

an attribute A is said to be maximal, if ∀B, sg(B) ∩ sg(A) 6= ∅ ⇒ sg(B) ⊆ sg(A).

Note that, using the notion of maximality it is possible to divide the attributes in

any hierarchical query q into disjoint sets A1 ∪ . . . ∪Ak such that:

• subgoals of attributes across the sets are disjoint: sg(A) ∩ sg(B) = ∅, ∀A ∈

Ai,∀B ∈ Aj, i 6= j

• there is a maximal attribute A in each set Ai: ∃A ∈ Ai s.t. sg(Am) ⊆

sg(A) ∀Am ∈ Ai ∀i = 1, . . . k.

Dalvi and Suciu [2007] showed that hierarchical queries always give rise to

result tuples with read-once functions. Here, we express the same proof for the

simple case of queries without self-joins in our notation:

Proposition 6.3.1. Hierarchical queries always produce result tuples with read-once

expressions.
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Proof. Assume q is hierarchical. By induction on the number of attributes in q, we

can show that the result tuple is read-once. The base case is when q has only one

attribute A which is maximal and whose set of subgoals contains all the relations

in q. The boolean formula for the result tuple produced by q can be expressed as∨
c∈UA

q[A/c], where q[A/c] denotes the query obtained with A set to constant c

and UA denotes the domain of A. Note that q[A/c] indexes into a different set of

variables for different c’s, thus variables appearing in q[A/ci] and q[A/cj] for i 6= j are

distinct. Also, within q[A/c], we essentially have a cartesian product among tuples

from different relations satisfying A = c (if |sg(A)| > 1), which is clearly read-once.

Thus, q produces a read-once result tuple. For the inductive case, let us assume

that all sub-queries of q with at least one less attribute produces read-once result

tuples. Given that we can divide the attributes in q into disjoint sets A1 ∪ . . .∪Am

such that each set has a distinct maximal attribute and subgoals for attributes

across sets are disjoint; let qi denote the part of q restricted to subgoals of Ai (the

maximal attribute in Ai). Then, we can express the result tuple’s boolean formula

as
∧

i

∨
c∈UAi

qi[Ai/c]. No two variables in
∨

c∈UAi
qi[Ai/c] and

∨
c∈UAj

qj[Aj/c] for

i 6= j can be identical since the relations are distinct. Also, qi[Ai/c] is read-once

by our inductive hypothesis since it contains at least one less attribute than q, and

qi[Ai/c] and qi[Ai/c
′] for c 6= c′ do not share variables since Ai is maximal and

they index into different sets of tuples thus implying
∨

c∈UAi
qi[Ai/c] is read-once.

These two observations put together imply
∧

i

∨
c∈UAi

qi[Ai/c] is read-once, hence q

produces a read-once result tuple.
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Since read-once functions form the basis of tractability of hierarchical queries

and we have already seen how hierarchical queries guarantee read-once result tuples,

a natural question to ask is whether the converse is true? That is, if we have a read-

once result tuple is it necessary for the query that produced it to be hierarchical?

If the answer is yes then that would imply that by equipping our query engine with

techniques to deal with hierarchical queries, introduced in Dalvi and Suciu [2007,

2004], we have done all we can to deal with tractable cases. The answer, however,

is no, as should be clear from our running example. In Figure 6.2, we showed a

query that is not hierarchical, however, the result tuple it produced has a read-once

expression for which probability computation is easy. In this chapter, we would like

to develop techniques that helps us evaluate such cases efficiently.

6.4 Read-Once Expressions for Probabilistic Databases

We now concentrate our efforts on devising a query evaluation engine that

efficiently evaluates read-once result tuples without restricting itself to hierarchical

queries. We first describe a simple query evaluator that works for all result tuples

without making any assumptions about the query. We then discuss the complexity

of our proposed engine. After that we concentrate on a subset of relational algebra

queries for which we attempt to devise a faster approach.

One viable approach to evaluating queries is to generate boolean formulas

for result tuples (using the extended operators in Figure 6.1) and then determine

whether it is a read-once function. If the result tuple is read-once, then we compute
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its probability from its read-once expression’s co-tree, else we resort to a general-

purpose inference engine. Checking for read-once result tuples is possible in poly-

nomial time. We briefly discuss the algorithms that have been proposed previously

in the literature to check the three properties that determine whether a formula is

read-once.

In what follows, let φ denote a result tuple’s boolean formula, |φ| the length

of its dnf form (with different occurrences of the same variable counted multiple

times) and V ars(φ) the distinct variables in it. To check for unateness, a linear

scan of the formula is sufficient which requires O(|φ|) time. To check for P4’s in

φ’s co-occurrence graph Gφ, there have been a handful of algorithms proposed in

the literature [Bretscher et al., 2008; Corneil et al., 1985; Habib and Paul, 2005]†.

The common aspects of all of these algorithms is that all of them require Gφ to be

provided as input and they run in time linear in size of Gφ (O(|V ars(φ)| + |E|),

where |E| is the number of edges in Gφ). Gφ can be obtained easily from the

formula’s dnf form. For instance, Corneil et al. [1985] takes the co-occurrence graph

and picks each variable from the graph along with its neighbours and incrementally

builds the co-tree which depicts the read-once function. If the algorithm returns a

co-tree successfully then the co-occurrence graph did not contain any P4; if there

is a P4 then the algorithm stops and provides the P4. Thus, the good thing about

this algorithm is that not only does it check for the absence of P4’s, it also returns

the read-once expression as a co-tree which we can subsequently use for probability

†Note that P4-free graphs are also referred to as Cographs. Thus, some of the algorithms that
test for the absence of P4’s also go by the name of “Cograph recognition algorithms”.
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Figure 6.5: Run of Corneil et al. [1985]’s algorithm to generate the co-tree for result
tuple r in Figure 6.2. In each iteration, an ellipse depicts the variable being added
and the asterisks denote its neighbors already present in the tree.
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computation. Figure 6.5 shows a run of Corneil et al.’s approach to build the co-

tree for the result tuple in Figure 6.2. Bretscher et al. [2008]; Habib and Paul [2005]

have a slightly different approach, they first build an ordering on the variables using

the co-occurrence graph (Habib and Paul [2005] uses vertex partitioning techniques,

while Bretscher et al. [2008] uses LexBFS techniques) and then subsequently use the

ordering to build the co-tree. Checking for normality is also possible in polynomial

time, but is more expensive than checking for unateness or P4-freeness. Golumbic

et al. [2006] describes a way to check for normality in O(|V ars(φ)||φ|) time using

the co-tree obtained from the previous step of checking for P4’s.

6.5 Read-Once Functions and Conjunctive Queries without Self-Joins

Recall that the most expensive step while generating read-once functions is

the step that checks for normality. In this section, we specifically look at the case

of generating read-once functions for result tuples produced by conjunctive queries

without self-joins, also known as select(distinct)-project-join or SPJ queries. Essen-

tially, we show that for conjunctive queries without self-joins, the normality check

at the end is not required. Conjunctive queries form a large fragment of relational

algebra (or SQL) and other works have also concentrated their efforts on this sub-

class of queries [Dalvi and Suciu, 2004; Olteanu and Huang, 2008]. We first define

our notion of conjunctive queries.

Let A denote an attribute. An atomic formula is a predicate of the form

A op B where B is either an attribute or a constant conforming to the type of A
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and op is any binary operator conforming to the same type such as =, >,<, 6= etc. A

conjunctive query q without self-joins is a relational algebra query that involves the

three operators σ, ./ and
∏

, where the joins are among distinct relations R1, . . . Rk.

We refer to the relations in q by Rels(q). We allow join and selection predicates of

the form c1 ∧ c2 . . . ∧ cn, where each ci is an atomic formula. Note that if the final

set of projected attributes in q is empty then we refer to it as a boolean conjunctive

query. Also note that we allow operators besides equality in our selection and join

predicates which makes our definition of conjunctive queries more general than what

is usually considered.

As earlier, we will denote by r the input result tuple (whose marginal prob-

ability we would like to compute), by φ its boolean formula (which we would like

to factorize) and by Gφ its co-occurrence graph. We may also abuse notation and

refer to the result tuple by its formula φ whenever it is clear from the context. A

clause C = x1x2 . . . xn is a conjunction of multiple boolean variables. A monotone

clause is one where all variables appear in their positive form, no negations. We will

often refer to a clause as a set of variables. Further, since the variables in φ come

from tuple-existence random variables, we will denote the relation of variable x by

Rel(x). We will also frequently refer to φ’s dnf form by φdnf . Since we consider

conjunctive queries without self-joins, φdnf has a very uniform structure:

Definition 10 (k-monotone dnf). Given conjunctive query q without self-joins and

any result tuple φ produced by it, φdnf is a k-monotone dnf where every clause is

monotone (or unate), contains exactly one variable from each relation in Rels(q)
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and is of size k where k = |Rels(q)|‡.

Given that conjunctive queries do not allow negations, it follows that the result

tuples we will be dealing with are automatically unate (variables appear only in their

positive form). We next show that P4-free result tuples produced by conjunctive

queries without self-joins are guaranteed to be normal. This implies that when

we are generating read-once functions for such result tuples, the only operation we

need to do is check for P4’s and generate the co-tree corresponding to its read-once

expression. The other steps for generating read-once functions are not required

and this should help make our approach much more efficient. We next make an

observation about result tuples produced by conjunctive queries and then prove a

lemma which will allow us to prove our main result.

Property 2 (Conjunctive Query Clique Structure). Given a result tuple r produced

by a conjunctive query q without self-joins along with its formula φ, the set of vari-

ables C = {x1, . . . x|Rels(q)|} represents a clause in φdnf iff C is a clique in Gφ.

Proof. Note that if C is a clause in φdnf then it has to be a clique in Gφ by construc-

tion. The other way is also easy. An edge between two variables a, b in Gφ implies

that the corresponding tuples satisfy all join and selection predicates in q, and agree

with r on all of the final projected attributes (if a or b have any of those). Thus,

a |Rels(q)|-sized clique in Gφ implies that all member variables’ tuples satisfy all

predicates associated with the query and agree with r’s values, and should produce

an intermediate join tuple and thus should appear as a clause in φdnf .

‡These observations have been made in prior work [Re and Suciu, 2008].
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Lemma 6.5.1. Let φ denote a result tuple produced by a conjunctive query q without

self-joins. Let Rels(q) = {R1, . . . R|Rels(q)|}, and a ∈ R1 and b ∈ R2 denote two

variables in φ. Let C1, C2, C3 denote three clauses in φdnf such that a ∈ C1 63 b,

a /∈ C2 3 b and a, b ∈ C3. If φ is P4-free then ∃ clause C4 in φdnf that contains both

a, b and w3, . . . w|Rels(q)| such that either wi ∈ C1 or wi ∈ C2,∀i = 3, . . . |Rels(q)|.

Proof. Let us begin by completing clauses C1, C2:

• C1 = {a, b′, x3, . . . xn, zn+1, . . . z|Rels(q)|}, b′ 6= b

• C2 = {a′, b, y3, . . . yn, zn+1, . . . z|Rels(q)|}, a′ 6= a

where a, a′ ∈ R1, b, b
′ ∈ R2, xi, yi ∈ Ri, xi 6= yi,∀i = 3, . . . n and zi ∈ Ri,∀i =

n+ 1, . . . |Rels(q)|. The x’s and y’s denote the variables in which C1 and C2 differ,

besides a and b. z’s denote the variables they share in common. Further note that

n can be either 2 or |Rels(q)|.

First note that if neither edge xi − b nor yi − a exists, then Gφ has a P4:

xi /−yi ∵ Rel(xi) = Rel(yi), no self joins

xi − a ∵ {xi, a} ⊂ C1

yi − b ∵ {yi, b} ⊂ C2

a− b ∵ {a, b} ⊂ C3

xi

a b

yi

Now consider the following selection procedure that picks variables from {x3, . . . xn}

and {y3, . . . yn}:

if edge xi − b exists in Gφ then pick xi, else pick yi
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Note that, once we have picked a set of x’s and y’s, we will have picked a variable

from each relation Ri, i = 3, . . . n. Also, note that, if among the chosen variables

there exists a pair of xi ∈ Ri and yj ∈ Rj (i 6= j) such that xi /−yj in Gφ, then we

have a P4:

xj /−yj ∵ Rel(xj) = Rel(yj)

xj − xi ∵ {xi, xj} ⊂ C1

xj /−b ∵ otherwise we would pick xj, not yj

xi − b ∵ otherwise we would not pick xi

yj − b ∵ {b, yj} ⊂ C2

xj

xi b

yj

Thus, if φ is P4-free, then the chosen x’s and y’s, along with a, b, zn+1, . . . z|Rels(q)|

form a |Rels(q)|-sized clique inGφ, and by Property 2 that means this set of variables

forms the clause C4 we need.

Proposition 6.5.1. Let φ be a k-monotone dnf produced by some conjunctive query

q without self-joins. If φ is P4-free then φ is normal.

Proof. Assume the contrary, i.e., let φ be P4-free but not normal. This means that

φ should have a distributed 3-clique, in other words, φ has at least three clauses

C1, C2, C3 such that a, b ∈ C1, c /∈ C1; b, c ∈ C2, a /∈ C2; c, a ∈ C3, b /∈ C3 but no

clause C such that a, b, c ∈ C. However, by Lemma 6.5.1, since φ is P4-free there

should be another clause C ′ that contains a, b and variables exclusively from C2 and

C3. This means C ′ also contains c and hence we have a contradiction.
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6.6 Discussion

Having considered the case for conjunctive queries, the next obvious question

is whether we can do something similar for queries with disjunctions. Some disjunc-

tions can be allowed in the queries we considered in this chapter without breaking

any of our results. For instance, if the cumulative join predicate in the query is

such that it can be partitioned into a conjunctions of smaller formulas c1 ∧ c2 . . . cm

such that each formula ci involves attributes from only two relations then allow-

ing disjunctions inside each ci still allows us to use our efficient read-once function

building approach. However, if a disjunction appears between any of the ci’s, then

seemingly innocuous queries produce cases where our results do not hold. Figure

6.6 shows one such case, where we have a three relation join boolean query and

the join predicate involves a disjunction among attributes from three separate re-

lations A1 = A2 ∨ B1 = B2. The result tuple φ’s co-occurrence graph turns out to

be the complete graph minus the edges connecting tuples from the same relation

(x1 /−x2, y1 /−y2, z1 /−z2), which means it is P4-free. But there are clauses which are

not present in φdnf , x1y1z1 and x2y2z2, implying φdnf is not normal which means

that Proposition 6.5.1 does not hold.

Even though our discussion throughout the chapter mainly involved tuple-

independent probabilistic databases, the techniques we proposed are likely to be

useful for databases with correlated tuples also. In this case, our techniques can be

used to convert the part of the graphical model generated during query evaluation

into a tree. It is easy to show that the combined treewidth of the complete proba-
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X: A1 B1

x1 3 4
x2 1 2

Y: A2

y1 1
y2 3

Z: B2

z1 2
z2 4

q() :− X(A1,B1), Y (A2), Z(B2),

A1 = A2 ∨B1 = B2

r = x1y1z2 + x1y2z1

+x1y2z2 + x2y1z1

+x2y1z2 + x2y2z1

z1

z2y2

y1

x2x1

Figure 6.6: A disjunctive query where Proposition 6.5.1 does not hold.

bilistic graphical model thus produced (including the probabilistic graphical model

among the base tuples and the part constructed during query evaluation) is not

larger than the treewidth of the graphical model that would have otherwise been

produced.

6.7 Conclusion

In summary, we considered the problem of efficiently evaluating queries over

tuple-level uncertainty probabilistic databases. For such databases, every result

tuple is associated with a boolean formula and the problem reduces to computing

the marginal probabilities of the result tuples returned by the query. Previously

proposed approaches to this problem have either resorted to the use of expensive

(exact/approximate) inference algorithms or concentrated on a subset of the query

language that allows efficient evaluation. In this chapter, we build on the latter

approach by going beyond just looking at the query to decide whether it is PTIME-

solvable or not. Inference problems arising out of query evaluation on probabilistic
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databases are a combination of both the query and the database. If the result tuple’s

formula can be factored into a tree-structured form, then computing its marginal

probability is in PTIME. We proposed the use of factorization techniques for more

efficient query evaluation and showed that for a large class of queries various checks

during factorization can be avoided.
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Chapter 7

Conclusion

In this dissertation, we presented (a few of) the nuts and bolts that may one

day form part of a system that can manage uncertain data. Here, we briefly sum-

marize the main contributions made and list a few or the broader, more compelling,

possible avenues for future work.

7.1 Summary of Contributions

Here is a brief listing of the major contributions made in this dissertation:

• We began by showing how the concept of probabilistic graphical models from

the machine learning literature, can be utilized in probabilistic databases as a

means of modeling uncertainty associated with data. We showed that prob-

abilistic databases based on probabilistic graphical models have precise and

intuitive semantics in terms of possible worlds, that every query posed on such

a database has precisely defined answers.

• We showed how queries can be evaluated under such a setting by first generat-

ing an augmented probabilistic graphical model and then running probabilistic

inference on it. We illustrated the generality of our approach: for any query a

PGM can be generated on which we simply need to run inference to obtain the

desired results. This also allowed us to utilize any inference algorithm (exact
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or approximate) developed previously to build our query evaluation engine.

• We then proceeded to generalizing our representation for modeling uncertainty.

Instead of using standard graphical models (such as Bayesian networks and

Markov networks), we motivated the use of first-order probabilistic graphical

models (such as probabilistic relational models and Markov logic networks).

First-order graphical models represent one of the more popular approaches to

modeling uncertainty not only due to their compactness and ease of mainte-

nance, but also because they are easier to estimate statistically.

• First-order graphical models provide symmetry in the form of shared corre-

lations. We designed a inference procedure that exploits shared correlations

to perform large-scale inference efficiently for evaluating queries in probabilis-

tic databases. Not only that, our inference procedure is general enough so

that it can be applied to any probabilistic graphical model. It also subsumes

inversion elimination, a popular lifted inference procedure developed in the

machine learning community.

• We generalized our lifted inference scheme to be able to perform faster, ap-

proximate lifted inference. We introduced two different techniques to do this.

Moreover, both techniques can be combined, and along with bounded complex-

ity inference techniques, they form the core of a unified lifted inference scheme

that lets the user specify her/his desired level of lifting, approximation and

complexity of inference through the use of a handful of tunable parameters.
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• Finally, we designed a novel query evaluation scheme where we first attempt

to reorder the probabilistic graphical model produced during query evaluation

so that we get an optimal, tree-structured graphical model (if one exists) on

which we can efficiently run inference. This has the potential to reduce an

intractable query evaluation problem to a tractable one.

7.2 Avenues for Future Work

Due to the almost ubiquitous need to model uncertainty for large scale data, we

believe, probabilistic databases are going to be an overwhelming driving force behind

database and machine learning research in the near future. Besides the aspects of

user interfacing and query languages that require our immediate attention, we list

below some of the main research areas that, we think, are of specific interest.

Information Integration and Information Extraction Two of the main applications

that can immediately benefit from the application of probabilistic databases are

information extraction and information integration. These two areas have been of

interest to researchers for a long period of time, however, neither is close to being

solved. Most machine learning approaches to solving these problems face issues when

scaling to large data sets and most solutions proposed by the database community

tend to ignore the rich correlations that can help achieve good quality solutions. By

looking at these problems from the point of view of probabilistic databases, perhaps

for the first time, we can deal with these issues in uniform and principled manner

to achieve practical solutions that can immediately benefit many applications.
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Efficient Algorithms for Lifted Inference Our original work on lifted inference just

scratches the surface of this very exciting field. Recall that, the techniques intro-

duced in Chapter 4 subsume inversion elimination, and in Chapter 5 we proposed

algorithms for approximate lifted inference. In future, one avenue to explore is

to find out whether other kinds of lifted inference can be included into our gen-

eral framework. Foremost on this list would be extending our approach to include

counting elimination [de Salvo Braz et al., 2005] and counting formulas [Milch et al.,

2008], which are techniques that may, in some cases, lead to exponential speedups

during inference, if implemented properly.

Unifying Uncertainty Model Description and Query Evaluation Most probabilistic

databases allow the user to express queries in a high-level logic-based language

(usually SQL, barring a few exceptions), but do not allow declarative specification

of the uncertainty model. Machine learning researchers, on the other hand, regularly

use first-order logic to describe the uncertainty models but rarely allow the use of

a high-level declarative language for querying purposes. One avenue to explore

is the interplay between these two aspects in the context of use in probabilistic

databases since we believe both are essential for a system to be usable. To the best

of our knowledge, there is no work to date that has systematically explored the

expressiveness of the various languages used to describe uncertainty models, and we

would also like to explore if such high level model descriptions can be exploited to

make query processing more efficient.
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Approximate Inference Algorithms based on Generalizations of Read-Once Func-

tions Following our work described in Chapter 6, where we showed how to generate

a tree-structured PGM given a query, the next obvious question to follow would be:

What if a tree-structured PGM does not exist? In such cases, it may be possible

to construct a PGM that is “close” to being tree-structured which may help run

inference fast with reasonably accurate query results. There is ample work in the

graph theory community on generalizations of P4-free graphs (such as P4-tidy graphs

[Giakoumakis et al., 1997]) that may lead us to novel approximate query evaluation

algorithms which have not been seen before in the database or machine learning

communities.

7.3 Conclusion

One of the over-arching themes underlying this dissertation has been to explore

the synergy between related fields of research. Probabilistic databases is a topic that

lies at the intersection of database research, machine learning and graph theory.

Even though the challenges in working under such a setting are obvious, one needs

to have expertise on not one but each of the related fields to be able to produce

original, useful research, the rewards are also plentiful. Among the various pieces of

work that form parts of this dissertation, perhaps the most rewarding are the ones

that find use beyond just that of probabilistic databases. For instance, our work on

lifted inference (Chapter 4 and Chapter 5) are of obvious interest to the machine

learning community, our work on altering the structure of the PGMs to produce
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read-once functions may find use in the statistical relational learning community

where people have recently begun to investigate the use of declarative querying

(e.g., the ProbLog system [De Raedt et al., 2007]). This seems to be true for most

work done in the context of probabilistic databases, and that, we believe, is what

makes it worthwhile working in such an multi-disciplinary environment. We hope

that further research with the canvas of probabilistic databases as the background

will lead to more synergy among related research communities and will eventually

lead to a system that can efficiently handle large-scale uncertain data.
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