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Dynamic Server Allocation to Parallel Queues
with Randomly Varying Connectivity

Leandros Tassiulas and Anthony Ephremides, Fellow, IEEE

Abstract— Consider N parallel queues competing for the at-
tention of a single server. At each time slot each queue may be
connected to the server or not depending on the value of a binary
random variable, the connectivity variable. The server is allocated
to one of the connected queues at each slot; the allocation decision
is based on the connectivity information and on the lengths of the
connected queues only. At the end of each slot, service may be
completed with a given fixed probability. Such a queueing model
is appropriate for some communication networks with changing
topology (radio networks with mobile users, or networks with
variable links such as meteor-burst communication channels). In
the case of infinite buffers, necessary and sufficient conditions are
obtained for stabilizability of the system in terms of the different
system parameters. The allocation policy that serves the longest
connected queue stabilizes the system when the stabilizability
conditions hold. The same policy minimizes the delay for the
special case of symmetric queues (i.e., queues with equal arrival,
service, and connectivity statistics) is provided. In a system with
a single buffer per queue, an allocation policy is obtained that
maximizes the throughput and minimizes the delay when the
arrival and service statistics of different queues are identical.

Index Terms— Time varying topology, random connectivity,
stability, maximum throughput, minimum delay, mobile radio
networks, meteor-burst channels.

I. INTRODUCTION

IME-VARYING connectivity is inherent in several types

of communication networks including wireless systems
with mobile nodes, systems with meteor-burst communication
channels, or networks in environments with hard interference
(manufacturing floor). In all the cases, the connectivity varies
unpredictably with time and is appropriately modeled as a ran-
dom process. In this paper, we consider a queueing model of a
single-hop network with randomly changing connectivity and
we study the effect of varying connectivity on the performance
of the system.

The queueing model consists of a single server and N
parallel queues (Fig. 1). The time is slotted. At slot ¢ each
queue ¢ may be either connected to the server or not; that
is denoted by the binary variable C;(t), which is equal to
1 and 0 respectively. It is called the connectivity variable of
queue ¢. The connectivity varies randomly with time. There are
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Fig. 1. Single-hop network with time varying connectivity. Solid line
between a queue and the server demotes that the queue is connected to
the server (it may receive service). Dashed line denotes that the queue is
disconnected.

exogeneous arrivals at each queue. At each slot ¢ the server
is either allocated to one of the queues or idles; the control
variable U(t) indicates the queue served during slot ¢ or is
equal to e if the server idles. If the queue ¢ at which the server
is allocated is disconnected then no service is provided. If it
is connected then service is provided and the served packet
completes its service requirements and leaves the system with
some probability; if the packet does not complete service it
remains in the queue.

Radio networks with meteor-burst communication channels
and cellular networks with mobile users and small cell sizes
are two among the several examples of systems with time
varying connectivity mentioned above. In the first case, there
is a central station (the server) and N users (the queues)
each one of which is connected to the station through a
meteor burst communication channel. These channels have the
property that can not be used continuously, but only during
time intervals of random duration which occur at random time
instants (whenever there exists a meteor burst) [4], [13]. At
each time slot a user may communicate with the central station
if its channel is active; hence, a subset of the users (those with
active channels) are competing for the attention of the station
at each slot.

As the cell size in cellular network decreases, (that is the
tendency in the future cellular networks in order to maximize
the spatial spectrum reutilization [5], {10]), the variability in
the distance between a mobile user and the station of the cell
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results in variation of their radio connectivity. At each time
slot, only the users which are within a certain distance from the
cell station may communicate with it. The model of a single
server with parallel queues of time varying connectivity arises
in this case as well.

In our queueing model the server allocation is controlled.
The lengths of the connected queues are available to the
controller for decision making. The allocation decision at slot
t may be based on the history of the observations and the
past allocation decisions. When the buffers have unlimited
capacity, depending on the allocation policy and the statistics
of the arrivals, services and connectivities, two things may
happen. The system either reaches a steady state behavior
or the queue lengths start growing without bound. In the
former case the system is stable while in the latter unstable.
We obtain necessary and sufficient conditions on the arrivals,
service and connectivity statistics for the existence of an
allocation policy under which the system is stable. We also
give a policy under which the system is stable whenever there
exists some policy that stabilizes it. The performance of the
system with respect to queueing delay is studied then. In a
symmetric system, the allocation policy that minimizes the
delay is obtained. The problem of optimal server allocation in
a changing connectivity system with a single buffer per node
is studied last. In that case, if an arriving packet at some node
¢ finds the buffer full then is blocked from admission into the
system. A policy that maximizes the throughput and at the
same time minimizes the delay is obtained.

The issue of changing connectivity in communication net-
works has been addressed in the past in several different
contexts. In [7], a deterministic flow network with time
varying link "capacities is considered. The variation of the
capacities of the links with time is known. The problem is
to determine a dynamic flow that maximizes the amount of
commodity reaching the destination within some time 7. In
[8], [9]), the shortest path problem in a network where the
edge weight changes with time is considered. Algorithms for
finding the minimum weight path at all time instances are
provided. In these papers, as well as in certain of the references
therein, the problem of changing connectivity is addressed in
a deterministic setting. Our model captures the random nature
of changing connectivity where the link connectivity is not
known in advance, but is revealed gradually.

One special case of the model studied in this paper is when
the connectivities are fixed and equal to one at all slots. In
this case all queues are connected to the server at all times
and the model is reduced to that of allocating a server to a set
of parallel queues. That is a well known problem of optimal
queueing control [12] and has been studied extensively in the
past [2], [3]. The time varying connectivity makes the server
allocation problem considerably more complicated than the
case where all queues are available for service all the time.
This is illustrated as we present the results that we obtained
for the system with time varying connectivity in contrast with
what is known for systems with fixed connectivity.

This paper is organized as follows. In Section II, we
specify the model. In Section III, the stability properties of
the system are investigated. The issue of queueing delay is

studied in Section IV. In Section V we study throughput
and delay performance in a system with a single buffer per
node. A few words about the notation before we proceed. The
random quantities are denoted by upper case letters; for the
nonrandom quantities we reserve the lower case letters. Vectors
are denoted by boldface characters. A random process, that is
a sequence of random variables indexed by time, is denoted
by the same symbol as the random variables without the time
index.

II. THE MODEL

During slot ¢ there are A;(t) exogeneous arrivals at queue
i. When queue ¢ is connected and the server is allocated to
that queue, the service is completed with some probability.
That is represented. at slot ¢ by the binary random variable
M;(t), which is equal to 1 if the service is completed and
to 0, otherwise. The stability and delay optimality results
are obtained under different assumptions on the statistics
of the arrival, service and connectivity processes. Those in
assumption 5 are stated as needed later. Let X;(t) be the
number of packets in the ith queue by the end of slot ¢ (or the
beginning of slot £ 4 1). Until Section V, we study the system
under the assumption of unlimited buffer capacity. Under this
assumption the number of packets at queue ¢ evolves with
time according to the equation

Xi(t) = (Xu(t-1) - 1{U(t) =}

Cit)M;()T + Ait),  t=1,---, (21
where 1{-} is the indicator function of the event enclosed in
the brackets and (-)* is equal to the number enclosed in the
parenthesis if this number is nonnegative and to 0, otherwise.
We assume that the system starts at time 0 from some arbitrary
state that is X;(0) = z;, ¢ = 1,---, N. We assume that the
controller that allocates the server is informed at the beginning
of each slot about the connectivity at that slot as well as
about the lengths of the queues which are connected. This
information is represented by Y (¢) = (X (¢t —1)QC(t), C(¢t))
where X (t) = (X;(t):i = 1,---, N) is the vector of queue
lengths at slot ¢, C(t) = (C;(t):¢ = 1,---,N) is the vector
of the connectivities at slot ¢ and ® denotes the pointwise
product! between vectors. The server is allocated based on the
available information Y'(t). We study the stability properties
and the delay performance of the system under policies that
base their decisions on the available control information.

Remark 1: A single-hop radio network with a central sta-
tion and several radio nodes that need to communicate with the
station corresponds to the above model as follows. The server
corresponds to the central station and the queues to the radio
nodes. The packets have constant length equal to one siot;
each time a packet is transmitted it is received successfully
with some probability. Unsuccessful transmissions are due to
channel errors and not to collisions since the transmissions are
scheduled. The variable M;(t), in this case, indicates whether
a transmission of node ¢ at time ¢ was successful or not (if node

Tfa(a;: i=1.---.N),b=(b: i =1.---.Nyande = @ O b, then

c=(ab;: i=1.--- . N).
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i was transmitting at slot £). If a transmission is unsuccessful
then the packet remains at node <.

III. SYSTEM STABILIZABILITY

We consider the system to be stable if in the long run it
approaches a stationary behavior, that is if the backlog in the
nodes does not grow to infinity. We study the system stability
under some independence assumptions on the arrival, service
and connectivity processes. All the results in this section are
obtained under the following statistical assumption.

Al: The processes A;, M;, C; i =1,---, N are i.i.d. and
independent; furthermore the arrivals satisfy E[A?(t)] < co.

Consider the class of stationary policies G that allocate the
server at slot £ based on the available information Y'(¢). A
policy in G is specified by a function g: Y1 — {1,--- N, e}
where V! is the space at which Y(t) lies. The allocation
decision at slot ¢ is U(t) = g(Y(t)). Under any policy
in G and because of the independence assumptions on the
arrivals services and connectivities, the queue length process

= {X(t)}$2, is a time homogeneous Markov chain with
state space X = Z¥

Definition 1: The system is defined to be stable under some

allocation policy in G if the Markov chain X is irreducible and -

the probability distribution of X (¢} converges in the sense that

lim P(X(t) <8 = F(b),  VbeX, (3.1)

where F(-) is a probability distribution on X'.

Definition 2: The system is called stabilizable if there
exists an allocation policy in G under which it is stable.

The necessary and sufficient stabilizability conditions in-
volve the expectations of A;(t), C;(¢), M;(t) that are denoted
by a; = E[Az‘(t)], pi = E[C.L(t)] and m; = E[Mz(t)]
Consider the class Gy of stationary policies that base the
allocation decision at slot ¢ on the lengths of all queues
X (t—1) and not only of the connected ones. Under any such
policy X (t) is 2 Markov chain. The next lemma provides a
condition that is necessary for stabilizability of the system even
if the queue lengths of the disconnected queues are observable
at each slot.

Lemma 1: 1f there exists a policy 7 in Go under which the
system is stable, then

[Ia-»,

i€eQ

VQc{L...,

N}. (32)

zéQ

Proof: Assume that the system is operating under some
policy in G and is stable. Definition 1 implies that the Markov
chain X is ergodic and possesses a stationary distribution. We
start the system with its stationary distribution therefore the
queue length process is stationary and ergodic. Let h;(t) be
the indicator variable that is equal to 1 if queue j is connected
and receives service at slot £ and to 0, otherwise. The departure
process from queue 7 is {h;(¢)M;(t)}$2, and is stationary and
ergodic. The departure rate from queue j is

ETh;(t)M;(t)] = m; E[h;(t)].

Since the system is stationary and ergodic, in each queue the
departure rate should be equal to the arrival rate; that is,

m; Elh;(8)] = a;. (3.3)
Hence, from (3.3) we have, for any set of queues @,
a;

Z —L =3 "E[hy(#)] (3.3a)

J€Q jeQ
The sum in the right-hand side of (3.3a) can be written as
> Efh;(1)]
JjeQ

E| D hiICu(t), Xalt - 1), 1€Q (3.4)

JEQ

Consider the partition of the probability space into the events
By = {C;(t) = 0,j€Q},

By = {C;(t) = 0,j€Q}* N {X;(t - 1) = 0,5€Q},

B3 = {CJ(t) = O,jEQ}C n {Xj(t - ]) = 07jEQ}cy

where A is the complementary set of A. Notice that

E|> hilc;t

), X;(t = 1), j€Q; Bi| =0,

JEQ
=12
E|> bt X;(t-1),jeQ; Bs| <1,
JEQ
hence, we have
Zh O|Ci(t), Xu(t — 1), 1€Q
j€eQ
- E ZE Zh NCi(t)
I=1 jE€EQ
- Xi(t — 1), leQ; Bi|P[By]]
<1- P[Bi] - P[Bs]. (3.5)

Since the Markov chain X is irreducible and ergodic, under
the stationary distribution we have P{X;(t) = 0, jeQ] > 0
for any Q C {1,---,N}; hence, we have

P[By] = (1 - P[C;(t) = 0,5€Q])

P[X;(t—1)=0,7€Q]>0. (3.52)

Because of the independence of the connectivity processes
that correspond to different queues, we have

PBi] = [[(1-p:).

i€Q

(3.5b)
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Relations (3.5), (3.5a), (3.5b) imply

E|E| ) hi(t)]Cu(t), Xi(t), l€Q
JEQ
<1-J[a-p) @6
i€Q

Equations (3.3a), (3.4), (3.6) imply (3.2). ]

Note that ), ,(ai/m;) is the rate with which work (in
the form of service slots) is entering the set Q of queues
and 1 — J[;co(1 — p;) is the proportion of slots at which
at least one queue of Q) is connected and can receive service;
hence the necessity of (3.2) for stability can be visualized. The
sufficiency though of (3.2) for stability can not be seen easily
in advance since the rate at which service is provided to the
queues within set @ is strictly less than 1 — [T, (1 — ps)-
That is because the connected queues of the set () at each
slot ¢ may be either empty or have length less than that of
another connected queue out of Q. In the next lemma it is
shown that conditions (3.2) are sufficient for stabilizability as
well. Consider the longest connected queue (LCQ) policy that
during slot ¢ allocates the server according to the function
90: V! — {e, 1,---, N} defined by

€, if.’L‘iCi—_'—O,
i:l,---,N,

T, c)= .
9o ) otherwise.

arg max{z;c;},
i=1,--,N

As its name implies, the LCQ policy allocates the server at
slot ¢ to the connected queue i(C;(t) = 1) with maximum
length. The policy LCQ is shown next to stabilize the system
as long as there exists a policy in G under which it is stable.

In the following, we let h;(t) = 1{go(X(t — 1), C(t)) = j}.
Lemma 2: The system is stable under LCQ if

Z——-<1—H 1-p;),

zEQ i€Q

Proof: Under LCQ, X is clearly irreducible. We use
Foster’s criterion for ergodicity of a Markov chain ([1]) to
show that X is ergodic under the condition of the lemma; from
ergodicity (3.1) is implied. Consider the function V' defined on
the state space X’ of the chain by V(z) = Y%, m 'z2. For
all z€ X, we have

(t+ D)X (t) = =]

> mIIXE(+1)X(t) = z]

vQ c {1,.-.-,N}.

E[V(X

=E
=]

N
<E {Zm{ Has + At + 1)P1X(8) = x}
i=1

N
= V(X)) +2)_m] aiz;

i=1

N
+ 3 m E[AX(t +1)] < co.

i=1

(3.62)

We show that if condition (3.2) is satisfied then for a fixed
€ > 0 there exists a number b, which may be a function
of the first and second moments of the arrival, service, and
connectivity processes, for which we have

E[V(X(t+ 1) = V(X)X (@) < ~e,

ifV(X(t)>b (3.7
Notice that the set
= {z:V(z) < b, zeZl}

has finite cardinality for all b. From (3.6a), (3.7), we can
conclude that X (¢) is ergodic. We proceed now to show (3.7).
By simple calculations we get

E[V(X(_t + 1)) = V(X ()| X (¢)]
mel(Xi(t +1) — Xi(¢))
e Xi(t) + 2X:(£)| X (2)]

: (X-(t +1) -
it +1) - Xi(t))IX(t)]

=E

=E Z2m-1X ()X

Li=1

N

Zm;l(Xi‘(t-i- 1)

=1

+FE

- Xi<t)>2|X(t)}. (38)

The second term of the sum in the right-hand side of (3.8) can
be upper bounded as

N
E [Zmi‘l(X t
=1

N
<E|Ymi(Ait+ 1))21X(t)] +1

- Xi(t))2|X(t):l

N
=Y "mE[A}®)] + 1. (3.9)

i=1

For the first term of the sum in the right-hand side of (3.8),
we have

N
E I:ZZmi'lXi(t)(Xi(t +1) - X,-(t))lX(t)]

=F

N
> emI X () At + 1)|X(t)]

- FE

N
sz;lXi(t)M,-(t + 1)h;(t + 1)|X(t)}.
= (3.10)

The first term of the sum in the right—hand side of (3.10) is

[sz-lx (DAt + l)lX(t)]
=1

(3.11)
We need to introduce some notation before we manipulate
the second term of the sum in (3.10). Consider a permutation
€, t = 0,---,N of the integers 0 to N which is such
that eg = 0, X, (t) > X.,_,(t), for i = 2,... N, and if
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Xe(t) = Xe,_,(t) then e;>e;_1. Consider also a partition

of the probability space into the events D;, i = 0,---, N,
defined by

Do = {C(t+1) =0},
D;={Ce,(t+1) = 1,C,;(t+1) =0 forN > j > i}

fore=1,---,N.
The probabilities of the events D, are
N
P[Do] = [[(1 - ps),
=1
N
PD)=p., [[ Q~p.,), i=1,---,N. (3.12)
J=i+1

Clearly the permutation as well as the events D; depend on

the state X(t) and the connectivity vector C(t) at each slot
t. Now we can calculate the second term of the sum in the
right-hand side of (3.10) to be

N
E [sz;lxi(t)Mi(t + 1)hi(t + 1)|X(t)]

=1

N
=F [Zin(t)hi(t + 1)|X(t)}

i=1

[ZzXe, J(E+ )X (¢ )}

N N
=Y E [ZQX t)he,(t+1)|X(t), D JP(Dj).
0 =

) (3.13)

Notice that from the definition of the policy, in the event D,
queue e; is served if it is not empty. If it is empty then every
other connected queue is empty as well. Therefore, we have

B [zzxe,(t)hei ¢+ DIX(@),

i=1

DJ} =2X,,(t). (3.13a)
From (3.12), (3.13), (3.13a), we get

N
B 2m X (6) Mt + Dha(t + 1)|X(t)}

=1
N N
=Y 2Xe.(t)pe, [] (1 -pe,), (3.14)
i=1 j=i+l

where H;\I__ ~n+1() = 1. By a simple calculation in the right
side of (3.14), we get

[Z2m'lX
=506, 0
Jj=2
N
. (1 - Il(l - pei)) +2X,,(t)

it 4+ Dh(t+ 1)|X(t)]

Ke;_1 (1))

N
: (1 -TJa- pei)). (3.15)
=1

Using the permutation we defined earlier and after some
calculations (3.11) can be written as

N
E|S 2m X0 Ait + l)lX(t)J

e,_,(t))z

:=z imj e

+2X., (1)

Me

i=1 ¢

From (3.10), (3.15), and (3.16), we get
N

E|> 2m X ()(Xa(t + 1) —

i=1

N
=2) (X,()
j=2

N
+2X, (8))
i=1

Qe

(3.16)

X)X (t)}

N a,
Xe; ()~

i=j &

e,

€,

N N
- ZZ(Xej (t) - Xe,_l (t)) (1 - H(l — De, ))
=2 i=j
N
—2X, (1) (1 - H(l - pei)>
=1
= 22 (X, (t) -
N a,
: (Z;ni' -1+ H(l —pei))

+2X.,(t) (Z et 14 H

Xe;—1 (1))

— De., ) (3.17)

i€l 1€l
We define
a; ,
c= max — -1+ 1—-p;) 3. 3.17a)
Qc{l'".'N}{;m' 1€I-£( p )} ( ‘ 4

From (3.17), (3.17a) we get

N
B [szrlxi(t)(xi(t +1)- X,-(th(t)]

i=]

< 22 X (t) 6] 1 t))c+ 2X€1(t)c
= 2XCN(t)c. (3.18)
From (3.8), (3.9), and (3.18), we get
EV(X(t+1)) - V(X ()X (8)]
N
< ZE[(A ]+ 142X, (t)e. (3.19)
i=1
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If V(X(t)) 2 b, then

and from condition (3.2), we have ¢ < 0. Hence, from (3.19)
we get

EV(X(t+1)) - V(X(£)|X(t)]
N
< S E[(At)] + 1+ 2¢ (3.20)
=1
If
N 2
. e+1+ Y E[(4:(t))]
_ 2 i=1
b= gl/m, 2% s

then the right-hand side of (3.20) equals to —e and the proof
is complete. O

The next theorem summarizes these results.
Theorem 1: The necessary and sufficient stabilizability con-

dition is

L—<1—H (1-p),

zGQ 1€Q

vQ c {1,---,N}. (3.20a)

Furthermore, policy LCQ stabilizes the system as long as it
is stabilizable.

Corollary 1: When the arrival and service rates as well
" as the connectivity probabilities of all queues are the same
and equal to a, m, and p respectively, then the necessary and
sufficient stabilizability condition (3.2) is equivalent to

a 1-—(1-p)V
o 1=0-p7

—~ = (3.21)

Proof: Since all nodes are identical, for any set Q with
k nodes, condition (3.2) is written as

1-(1-p)
a 1-0-p"

—~ - (3.22)

When @ includes all nodes of the network then (3.2) is
identical to (3.21). To show that (3.21) implies (3.22) for all
k, it is enough to show

1-(1-p* _1-(1-p**
A Z k’+l ’ k=1727""
which is true since
1-(1-pf 1-(1-p)**
k - k+1
k—1 k
& (k+1)py (1—p) > kpy (1-p)
=0 =0

k-1
&) 1-pf2k1-p* O

=0

For a symmetric system like that considered in the corollary,
the maximal total throughput is equal to 1 — (1 —p)" and the
performance degradation due to time varying connectivity is
equal to (1 — p)", which is the probability that all nodes are
disconnected during a particular slot.

Heuristic Interpretation of the LCQ Policy: In the chang-
ing connectivity system, service is wasted when at some slot all
the connected queues are empty and the server is forced to idle.
This phenomenon is unlikely to happen when the backlog in
the system is distributed as evenly as possible to the queues so
that the smallest number of queues are empty. The LCQ policy
achieves this even distribution of the backlog by serving the
longest connected queues which are more unlikely to become
empty than the short ones.

When the system has fixed connectivities (C;(t) = 1 as,,
1 =1,---,N, t = 1,---), it is well known [12] that the
necessary and sufficient stabilizability condition is

N

>
-~

i=1 't

< 1.

Furthermore, under the necessary and sufficient stabilizability
condition the system is stabilized by any work conserving
policy that is by any policy which never idles the server if
there are packets in the system. When the connectivities are
time varying a policy is defined to be work conserving if it
does not idle the server when there is a nonempty connected
queue. Any work conserving policy in the latter case does not
necessarily stabilize the system even if it is stabilizable. This
is demonstrated in the following counterexample.

Counterexample 1: Consider a system with two queues
which have Bernoulli arrivals with rates a; and as
respectively. The server provides deterministic service to both
queues, (m; = mz = 1); queue 1 is constantly available for
service (p; = 1) while queue 2 is available with probability
pa < 1. The stability condition (3.2) in this case is equivalent
to the following:

a1 +as <1, as < pa. (3.23)

Consider the nonidling policy 7’ that always gives priority to
queue 1. We claim that (3.23) is not sufficient for stability
of the system under 7’. Assume that the system starts with
queue 1 being empty. At slot ¢, queue 2 may receive service
if it is connected and no packet arrived at queue 1 during slot
t — 1. Hence, if the system is stable, the stationary probability
of the event that queue 2 is served at slot ¢ is less than or
equal to pa(1 — a1). Therefore, a necessary stability condition
for queue 2 is that

az < p2(l - ay). (3.29)

Clearly, we can find nonnegative numbers a;, az, p2 that
satisfy (3.23) but do not satisfy (3.24); hence, (3.23) is not
sufficient for stability under n”’.
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Remark 2: In order to verify the stabilizability condition
(3.2) we have to verify the inequality in (3.2) for all subsets
Q of the set {1,---,N}. The number of subsets of that
set is 2V. Hence, for a large number of queues, verifying
whether the system is stabilizability for certain arrival, service
and connectivity rates becomes an intractable task. It is an
interesting open problem to find an efficient algorithm, if there
exists one, that verifies stabilizability in polynomial time.

Remark 3: Condition (3.2) is necessary for the existence of
a policy in G under which the system is stable and sufficient
for stability of the system under LCQ. The policies in Go may
base their decision on the lengths of all queues in the system
irrespectively of whether they are connected or not while LCQ
base its decisions on the lengths of the connected queues only.
Hence, the additional information on which the policies in Gy
may base their decisions, that is the lengths of the unobservable
queues, is irrelevant for the stability of the system.

Remark 4: The independence of the processes A;, M;, C;,
¢ = 1,---, N, has not been used in the proof of Theorem
1. The stability result in that theorem holds under the more
general assumption that the variables A;(t), M;(t), Ci(t),
t=1,---, N, are independent in different slots and identically
distributed but not necessarily independent among themselves
in the same slot. Under that more general assumption the
theorem holds if the term 1 — [];. (1 — p;) in the right side
of relationship (3.20a) is replaced by P[}°, o Ci(t)>0].

IV. OPTIMAL SERVER ALLOCATION

In this section, we study the problem of optimal server
allocation with respect to delay. We consider a symmetric
system that is one in which the following assumption holds.

A2: The arrival service and connectivity processes in dif-
ferent queues have identical statistics. Furthermore the vari-
ables A;(t), ¢ =,---,N, t =1,---, are binary.

The policy LCQ defined in section 3, which allocates the
server at each slot to the longest connected queue is shown
to be optimal in a symmetric system; more specifically it
minimizes, in the stochastic ordering sense, the process of
total number of packets in the system. In the following, we
give the definition of stochastic ordering and a theorem that
will be used later (for more details on the notion of stochastic
ordering the reader is referred to [11]). Consider the discrete-
time processes mbiX = {X(1)}2,, Y = {Y ()}, and
the space of all real valued sequences R = RZ+. We say
that the process X is stochastically smaller than the process
Y, and write X <, Y if P{f(X)>z} < P{f(Y)>z} for
every z€R, where f: R — R is measurable and f(z) < f(y)
for every z, y€R such that z(t) < y(t) for t€Z,. The next
theorem provides alternative characterizations of the stochastic
ordering relationship between two processes.

Theorem 2 ([11]): The following three statements are
equivalent.
a) X <. Y.
b) P(9(X(t1)," -+, X(tn))>2) < P(g(Y(t1),--,Y (tn))
>z) forall (¢1,---,tn), all z, and n, and for all g: R® —
R, measurable and such that z; < y;, 1 < j < n implies

g(zl,”-,xn) < g(yl""7yn)'
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c) There exist two stochastic processes X' = {X'(t)}52,,
Y’ = {Y’(t)}s2, on a common probability space with
the same probability laws as X and Y, respectively, such
that X'(t) < Y'(t) as. for every t€Z,.

Note that if the process of total number of packets in the
system under policy LCQ is stochastically smaller than the
corresponding process under some other policy = then the
average number of packets in the system under L.CQ is smaller
than that under 7 (if the average is well defined). Therefore,
by Little’s law, we know that the average delay under LCQ is
smaller than that under 7. Hence, optimality in the stochastic
ordering sense is stronger than average delay optimality and
implies the latter.

A. Optimality of LCQ

Consider the class of policies G that take an action at slot ¢
based on the entire history of the past observations and control
actions. A policy in Gis specified by a sequence of functions
{9:(:)}24, 962 Vix{e, 1,---, N}l = {e, 1,---, N} where
V! is the space where Y*(t) = (Y(1),---,Y(¢)) lies. The
allocation decision at slot ¢ is U(t) = g,(Y*(t), U*(t)) where
U'(t) = (UQ),---,U(t — 1)). Clearly G is a bigger class
of policies than G. We show that LCQ is optimal within G.
We need notation to consider the process of total nurnber
of packets in the system Q = {Q(t)}$2, where Q(t) =
Zi]il X;(t). The next theorem states that L.CQ minimizes in
the stochastic ordering sense the process of total number of
packets in the system.

Theorem 3: Let Q) be the process of total number of packets
in the system when the initial state is zo and some policy T7€G
acts on it and Qg the corresponding process when LCQ acts
on the system. Then,

Qo <5t Q. (4.1)
We need the following lemma in the proof of the theorem.

Lemma 3: For e very policy 7€G, there exists a policy
#€G that acts similarly to LCQ at ¢ = 1 and is such that
when the system is in state zo at £ = 0 and policies 7, 7 act
on it, the corresponding processes Q and Q of total number
of packets in the system can be constructed by appropriate
coupling of the arrival, service and connectivity processes so
that

Qt) <st Q(t) as., t=0,1,2,---. (4.2)

Proof: We construct 7 and we couple the queue length
realizations under 7 and 7 appropriately so that (4.2) holds. Let
X and X be the queue length processes under policies 7 and 7,
respectively. More specifically, we show that at every slot ¢ the
queue lengths satisfy either relationship (4.4) or relationship
(4.5) defined later, both of these relationships imply (4.2). We
show that (4.4) or (4.5) are satisfied at every slot using the
technique of forward induction in time [12]. We show first
that at ¢ = 1 the relations (4.4), (4.5) are satisfied; then we
show that if these relationships are satisfied at some time ¢

then they are satisfied at ¢ + 1 as well.
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At slot ¢ = 1, let the same queues have the same connec-
tivity variables under the two policies.

If © and 7, take the same action at ¢ = 1 then let the
arrival, service, and connectivity variables be the same at the
same queues under both policies for every subsequent slot and
take 7 to coincide with 7 for ¢ = 2, - - .. Then the queue length
processes are identical under both policies and (4.2) follows
immediately.

If = idles at t = 1 while 7 serves queue j, then let the
same queues have, the same arrival, service and connectivity
variables under both policies at all subsequent slots. At ¢ = 1,
we have

Xi(t) = Xu(t), if I#7, X;(t) < X;(t).  (43)
Let policy © be identical to 7 at all subsequent slots ¢ =
2, 3,---. If (4.3) holds at ¢, we can easily see that it holds at
t + 1 as well and (4.2) follows by induction.

If = serves queue k while 7 serves queue j at ¢ = 1, then at
that time slot let queues k and j have the same service variable
under 7 and 7, respectively. At each time ¢ > 1, consider the
indicator variables s(t), (¢), I(¢), {(t) defined as follows:

5(t) = argmin { X (1)}, 5(t) = arg min {Xm(®)},

m=]) m=]7 k

I(t) = arg max { X, (t)}, I(t) = arg max { X (t)}.

m=j, m=j, k
If we have X;(¢) = Xi(t) then we take s(¢) = min{j, k}.
Similarly for the rest indicator variables. In the following we
write X,(t) instead of X ((t). The same for the rest of
the above indicator variables. We distinguish the following
cases.

Case 1: X(0) = X;(0). Assign the same arrival vari-
ables at ¢ = 1 to the queues j and k& under 7 and ,
respectively. Assign the same arrival variables at ¢ = 1 to
the queues k and j under 7 and =, respectively. Assign the
same arrival variables under both policies to each one of the
rest of the queues. Then, at ¢ = 1, the queue lengths satisfy
the following relationships

Xu(t) = X;(t),
ik, j. (4.4)

Case 2: Xp(0) < X;(0). Atslot ¢t = 1, assign the same
arrival variables to the same queues under w and 7. If the
service at ¢ = 1 is not completed then the queue lengths at
t = 1 satisfy (4.4). If the service is completed, we distinguish
the following cases.

a) Xr(0) < X;(0) — 1. In this case, we can easily verify

that the queue lengths satisfy the following relationships

Xs(t)=X:(6) -1,  Xi(t) = X;(t) + 1,

X,(t) = Xs(t),
Xi(t) = Xu(t),

fort = 1.
b) Xi(0) = X;(0) — 1. In this case, the queue lengths are
as follows depending on the arrivals. If during slot 1

a packet arrives only at queue k (under both policies)
then the queue lengths at the end of slot 1 satisfy (4.4);
otherwise the queue lengths satisfy relations (4.5).

Cases 1) and 2) cover all the possibilities since it is not
possible to have X;(0) > X;(0) given that LCQ serves the
longest queue. Hence, at the end of slot 1, the queue lengths
under 7 and # satisfy either (4.4) or (4.5). Note that in both
cases we have

N N ~
D Xi(t) =) Xi(0)- (4.52)
2=]

i=1

Hence, if at each slot either (4.4) or (4.5) hold then (4.5a) holds
at all slots and (4.2) is satisfied. We show in the following that
if the queue lengths at slot ¢ satisfy either (4.4) or (4.5) then we
can couple the processes X and X by choosing appropriately
the connectivity, arrival and service variables at slot £+ 1, and
define 7 such that at slot ¢ + 1 one of the relations (4.4) and
(4.5) is satisfied again. From induction, we can conclude that
there exists a 7 such that the queue length processes under 7
and 7 satisfy either (4.4) or (4.5) at any ¢; hence (4.2) holds
and the lemma follows. We distinguish the following cases
for X (¢).

Case 1': Relations (4.4) hold at t.

Let at slot ¢ + 1 the queues [(¢), {(t) have the same
connectivity arrival and service variables under 7 and 7,
respectively. Similarly for the queues s(t) and 3(¢). Let all
queues, other than k, j, have the same connectivity, arrival
and service variables at ¢ + 1 under 7 and 7, respectively. If
7 serves queue [(t) at slot ¢ + 1, let # serve [(t); if 7 serves
queue s(t), let 7 serve 3(t). Let # be identical to 7, otherwise.
Then we can easily check that at ¢ + 1, (4.4) are satisfied.

Case 2': Relations (4.5) hold at t and X;3(t) < X;(2).

Let the connectivity, arrival and service variables at slot
t 4 1 as well as the policy 7 be as in Case 1’). If we have
Xs(t) € X;(t) - 2 then (4.5) hold at slot ¢ + 1. If we have
Xs(t) = X;j(t) — 1, the following may hold. If queues s(t)
and 3(t) are served under 7 and #, respectively, then at slot
t + 1 (4.5) hold. If instead queues I(¢) and [(¢) are served
then if the service is not completed, (4.5) hold at slot ¢ + 1.
If the service is completed and we have an arrival at queues
s(t), 8(t) and no arrivals at [(¢), {(t) then (4.4) hold at slot
t + 1. If the service is completed and the arrivals are not as
above then (4.5) hold at ¢ + 1.

Case 3': Relations (4.5) hold at t and X;s(t) = X(t).

Let the connectivity variables at slot ¢+ 1 be as in Case 1).
If 7 serves queue [(2) at slot ¢+ 1, let & serve [(2); if w serves
queue s(t) let 7 serve 3(t). Let & be identical to 7, otherwise.
We distinguish the following cases.

Case 3a: Queues [(t), I(t) are served under 7, 7, respec-
tively.

Let the service variables of [(¢), {(t) be identical under 7, 7.
Let all queues other than j or k£ have the same arrivals under
both policies. If service is not completed let queues I(t), I(t)
have the same arrivals under 7, 7 respectively and similarly
for queues s(t), 3(t). If there is an arrival at s(¢), 3(¢) and no
arrival at [(t), [(t) at ¢ + 1 then (4.4) hold at £ + 1, otherwise
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(4.5) hold. If service is completed let queues s(t), I(¢) have the
same arrivals at t + 1 under 7, # and similarly for {(¢), 5(¢).
Then, (4.4) hold at ¢ + 1.

Case 3b: Queues s(t), 5(t) are served under =, 7, respec-
tively.

Let the service variables of s(t), 5(t) be identical under
w, . Let queues [(t), {() have the same arrivals under =, 7
respectively, and similarly for the queues s(t), §(¢). Let all
queues ¢#3j, k have the same arrivals under the two policies.
If service is completed then (4.5) hold at ¢+ 1. If service is not
completed then either (4.4) or (4.5) hold depending on whether
there are arrivals at 5(t), 5(¢t) and no arrivals at I(t), I(t), or
not.

Case 3c: Queue i#7, k is served under 7, 7, respectively.

Let queues I(t), {(¢) under =, 7, respectively have the same
arrivals and similarly for the queues s(¢), §(¢). Let all queues
1#j, k have the same arrivals under the two policies. Let queue
¢ have the same service variables under =, #. If there is an
arrival at s(t), 5(t) and no arrival at I(t), {(t) at ¢ + 1 then
(4.4) hold at ¢ + 1, otherwise (4.5) hold. (]

We proceed now in the proof of the theorem.

Proof of Theorem 3: From Lemma 3, we have that for
any policy 7, we can construct a policy 7y which is similar
to LCQ at ¢ = 1 and such that for the corresponding total
number of packets processes ¢, @1, we have

By repeating the construction, we can show that there exists a
policy 7 that agrees with 7 at the first slot, agrees with LCQ
in the second slot is such that for the corresponding process
Q», we have

Q:(t) < @Q1(t) as., t=0,1,---.

If we repeat the argument k times, we obtain policies 7;,71 =

1,---, k such that policy 7; agrees with LCQ at the first 7 slots
and for the corresponding processes, we have

Qi(t) < Qr—1(t) £ --- < Q1(t) £ Q1) as,,
t=0,1,---. (46)

Consider the time slots iy, ¢3,--+,%, and a function g as
in Theorem 2b). Conmsider also the policy w, previously
defined. By construction, the variables Q, (t1),---, Qs (tn)
have the same joint probability distribution with the variables
Qo(t1),- -, Qo(t.) where Qq, Q;, are the processes of total
number of packets in the system under the policies LCQ, m,
respectively. Hence, for all z, we have

P(g(Q:, (t1), -, Q1, () >2)
= P(g(QO(tl)a e 7Q0(tn))>z)‘ (47)

From (4.6), Q:,(t) < Q(¢) as. forallt =0, 1,-- -, therefore,

we have

P(9(Qu, (t1), -1 Qe ())>2)
< Pe(Qt), -, Qta)) > 2). (4.8)

Equations (4.7) and (4.8) and Theorem 2b complete the proof.
g

The longest connected queue is indeed the queue which is
most unlikely to become empty among the connected ones.
Hence, by serving the longest connected queue at the current
slot, the LCQ policy minimizes in some sense the likelihood
of having at some future slot only empty queues connected,
in which case the server will be forced to idle.

Remark 5: The fact that-policy = in Lemma 3 bases its
decisions on the lengths of the connected queues only is not
essential in the proof of the lemma. That proof goes through
even if 7 is any policy that bases its decision on the history
of the lengths of all queues in the system in addition to
the connectivities and past control actions. Therefore, LCQ
is optimal within the class of policies that base their decisions
on the complete system history.

When the connectivities are fixed (C;(¢) = 1,i=1,---, N,
t =1,---) then in the symmetric system any work conserving
policy minimizes the delay. Furthermore in the general case
(asymmetric system), if the service processes are ii.d. (geo-
metric service requirements) the optimal policy is known to
be the one that serves the nonempty queue with largest m;.
In the case of varying connectivities, work conservation is
not enough for optimality. Serving the queue with the largest
backlog is essential for optimal system performance.

A related result is the characterization of the worst work
conserving policy. This is the shortest connected queue (SCQ)
policy which allocates the server at slot ¢ to the connected,
nonempty queue with minimum length. The following theorem
states that policy SCQ maximizes in the stochastic order sense
the process of total number of packets in the system within
the class of work conserving policies.

Theorem 4: If @ is the process of total number of packets
in the system when the initial state is z and a work conserving
policy 7 acts on it and @’ the corresponding process when
SCQ acts on the system, then we have

Q .<_st Q,‘

Proof: 1t is analogous to the proof of Theorem 3 and it
is not repeated here. O

Apparently SCQ has no practical significance since it max-
imizes the delay. The result though in Theorem 4 emphasizes
the fact that serving queues with large backlog improves the
delay. If we consider a hierarchy of the work conserving
policies with respect to how close they follow the rule to
serve queues with large backlogs then LCQ is in the top
of this hierarchy and SCQ in the bottom. It is intuitively
appealing that their delay performances are the best and worst,
respectively, within the class of work conserving policies.
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B. Discussion

Assume that the arrival, service and connectivity processes
are iid. In this case, the problem of minimizing the delay
can be casted as a discrete-time Markov Decision Process.
Consider the cost function defined by

Z}:CZX (t)] (4.9)

t 0i=1

Jx(xo) = hm sup Ez,

where 7 is a policy in G, zg is the initial system state and the
expectation is taken with respect to the probability measure
induced by m when the system starts from x,. Minimizing
the delay is equivalent to minimizing (4.9) within G when
all ¢; are equal. When the ¢;’s are unequal the minimization
of (4.9) corresponds to minimization of a weighted average
delay. This minimization problem falls within the category of
discrete-time Markov Decision Processes (MDP) with partial
observations [6]. The controlled Markov chain is (X(¢ —
1), C(t)), the control action is U(¢) and the evolution of
the chain is governed by (2.1). The observation at time ¢ is
Y(t) = (X(t - 1) ® C(t), C(t)). The optimal policies in
MDP with partial observations are in general nonstationary
since the action taken at slot ¢ is a function of all past
observations. Those policies are usually hard to specify. The
optimality result obtained in Section IV-A implies that LCQ
minimizes (4.9). Therefore, in a symmetric system, the policy
that minimizes (4.9) is stationary. In a general asymmetric
system, the optimization of (4.9) remains an open problem.
We conjecture that the optimal server allocation policy is
stationary in the general case as well. We are lead to that
conjecture by the observation that the control action at slot ¢
can affect the connected queues only and since the arrivals,
services and connectivities are assumed i.i.d., all the relevant
control information about these queues is contained in their
current lengths. Therefore, the situation is analogous to the
complete observation case where the optimal policy is station-
ary according to known results in MDP theory. Nevertheless,
we believe that a pic rule type of policy can not be optimal and
the allocation decisions of the optimal policy are a complicated
function of the state; therefore the policy is difficult to be
specified completely.

To get some intuition on why a pc rule type of policy
can not be optimal, consider the system in counterexample
1, with the cost function (4.9} with costs ¢;>cp. According to
the pc rule, queue 1 has priority over queue 2 irrespectively
of the queue lengths. Assume that c; is slightly greater than
cz and p; is small. Consider the case where at slot ¢ queue
1 has 1 packet while queue 2 has several packets and both
queues are connected. If we serve queue 1 at that slot then
the instantaneous cost will be lower by ¢; — ¢» compared to
the instaneous cost if we serve queue 2. At slot ¢ + 1 though,
queue 1 will be empty with probability 1 — a; and if queue 2
is disconnected then no service will be provided. If queue 2
is served at slot ¢ then at slot £ + 1 we will be able to serve
queue 1. Hence, if ¢; — ¢y is sufficiently small, yet greater
than zero, then by serving queue 2 at slot ¢ we can achieve
better overall cost.

In our study, we have assumed that the connectivities
become available for decision making in the beginning of each
slot. An interesting case is when the connectivities are not
observable and the server at slot ¢ is allocated based on the
queue lengths X (¢ — 1) only. If the connectivity processes are
i.i.d. then the changing connectivity model is reduced to one
with fixed connectivities where the service variable for queue
¢ at slot ¢ is Ci(t)Mi(t).

V. OPTIMIZATION OF THROUGHPUT AND
DELAY IN A FINITE BUFFER SYSTEM

When the buffers in the nodes have finite length then an
arriving packet is blocked from admission when it finds the
buffers full. The number of packets which are successfully
transmitted, that is the throughput of the system, is an impor-
tant performance measure in addition to delay. In this section,
we study both throughput and delay performance in a finite
buffer system with one buffer per node. A policy is obtained
that is both throughput and delay optimal.

When there is a single buffer per node an arriving packet
at node 7 during slot ¢ is accepted if the buffer is empty in
the beginning of the slot (X;(¢t — 1) = 0) or node 7 is the
one selected for service and the service is successful at slot
t in which case its packet is forwarded from its buffer in
the beginning of the slot and the buffer is empty. The queue
length vector in this case belongs to {0, 1}%; the queue length
at node ¢ evolves according to the equation

X,‘(t) = max{Ai(t), Xz(t - 1)
(1= HU®) =aCOM:(8)}, 6D

where the variables X;(t), U(¢), Ci(t), M;(t), A;(t) are as
defined in Section II. Our results in this section are obtained
under the following statistical assumption.

A3: At each slot there can be at most one arrival at each
node, that is the variables A;(t),i = 1,---, N, are binary;
furthermore we assume that the arrival and service processes
have identical statistics at different nodes.

The number of packets blocked from admission into the
system during slot £ is

ZA

Note that the number of packets blocked from admission into
the system plus the number of packets which are admitted in
the system during slot ¢ and they are finally served is equal
to the number of packets arrived during slot t. Therefore,
maximizing the throughput of the system is equivalent to
minimizing the number of blocked packets. Consider the
policy #€@, which during slot ¢ allocates the server according

At = 1)1 = H{U(t) = }C:()Mi(t)).

to the function §: Y1 — {e, 1,---, N} defined by
€, if z;c; =0,
i i=1,---,N,
gz, c) = argmin {p;}, otherwise.
i=1,--,N
T; c,>0

That is, @ allocates the server at slot ¢ to the connected
nonempty queue i(C;(t) = 1) with the smallest probability of
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being connected. Policy 7 minimizes in the stochastic ordering
sense both the process of blocked packets and the process of
total number of packets in the system.

Theorem 5: Consider an arbitrary policy #€G and let poli-
cies # and 7 schedule transmissions starting from the same
initial state z at ¢ = 0. Let Q, B be the processes of the total
number of packets in the system and of the blocked packets
respectively under #; let Q, B be the corresponding processes
under 7. Then, we have

Q< Q, (5.2

B<«B. (5.3)

Proof: We construct the queue length processes X, X
under #, 7, respectively, by appropriate coupling of the ar-
rivals services and connectivities such that

Qt)<Q@t)as., t=0,1,---, (5.4)

B(t) < B(t)as., t=0,1,--- (5.5)

Hence, (5.2), (5.3) follows.

We show that a particular partial ordering (defined next)
holds between the system states under the two policies at every
slot. This partial ordering implies relations (5.4), (5.5). Assume

that the queues are indexed so that p; < p;41,i=1,---, N=1.
We say = < y, z, ye{0, 1}V if
J . 1'1
Yw <y w  i=1,N. (5.6)
=1 i=1

We construct the queue length processes such that for all

7=01,---, we have
X(r) < X(7). 5.7
We use forward induction. At 7 = 0 we have X(0) = X(0);

therefore for 7 = 0, (5.7) follows. Assume that (5.7) is true
for 7 = t; we show that it is true for 7 = ¢t 4+ 1 as well. Let
Ai(t+1), Ci(t+1), M;(t+1),i=1,---,N, U(t+1) be
the arrival, connect1v1ty, service, and control variables under

# and A;(t+1), Ci(t+1), Mi(t+1),i=1,---,N, U(t+1)
under 7. First, we show that the following hold
Y(t+1)<Y(t+1), (5.8)
where
Yt+1)=X;) 1 - 1{U(t+1) =i}
- Ci(t + 1)M;(t + 1)), i=1,---,N,
Vit +1) = Xi()(1 - L{U(t + 1) = 4}
Cit+ DIG(E+ 1)),  i=1,---,N.

Let j(I), 7(I) be the Ith nonempty queue starting from queue 1
in states X (t), X (t). If (1)>3(l) then we have 3°7_, X,(t) =

> Zf;l X;(t), which contradicts the induction hypothesis;
therefore, we have

W<, =10, (59)
and, by the assumption about the indexing of the queues,
P <piws  1=1,--,Q(t). (5.10)
Because of (5.10), we may construct Cj)(t + 1),C s +1)
in a common probability space such that
Cpt+1)=1=Cipt+1) =1, I=1,---,Q().

We distinguish the following cases.
Case 4: No nonempty queue is connected at £+ 1 under 7.
In this case, no queue is served and we have

ZX (®),
i=1
Since Cjy(t+1) = 0,1 = 1,---,Q(¢), and because of the
coupling of the connectivities, we have Cjq)(¢t + 1) = 0,
I =1,--+,Q(t); therefore no queue with index j < jF(Q(t))
is served and we have

j=1,---,N.  (5.11)

Z t+1)= ZX(t), i<iQ®),  (5.12)
W+ 200,  >i(Q). (5.13)

From (5.11), (5 12), and the induction hypothesis, we have
Zz_ Yit +1) < Zz_l (t+1) for j < 7(Q(¢)), and
from (5.11), (5.13), we have SI_LYit+1) = Q) <
zz_ Yi(t + 1) for 5>7(Q(t)). Hence, relation (5.8) holds.

Case 5: Some nonempty queue is connected at ¢+ 1 under
.

_If no queue is served under # during ¢+ 1 then Y;(t+1) =
Xi(t),i=1,---,N, while ¥;(t + 1) < X;(t),i=1,---,N.
Therefore, (5.8) follows from the induction hypothesis for
7 =t + 1. If some queue is served under both policies, then
assign the same service variables to the queues that are being
served under both policies. If service is not completed, then
Y(t+1) = X(t), Y(t+1) = X(t), and (5.8) follows from
the induction hypothes1s If service is completed at ¢+ 1, then
let jo = j(lp), jo = ](lo) be the queues served under # and
i, respectively. Since 7 serves the nonempty queue with the
smallest probability of being connected, we have

Cip(t+1)=0 1< <.
From the coupling of the connectivities it is implied that
and we have

jo > 3(lo)- (5.13a)

N R——— s . e e n e
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If jo > jo, then for j > jo, we have

ZY(t+1 ZX(t -1<}:X(t -1

=1 =1

J
Z Yi(t + 1), (5.14)
and for j>jo9, we have
ZY t+1) = ZX(t)>zX
=1 i=1
(5.15)

= :Zyi(t +1).
=1

From (5.14) and (5.15), (5.8) follows. If jo < jo, then for
j < jo we have

Yi(t+1) = ZX (t) > ZX (t)_ZY(t+1)

i M“

=1
(5.16)
For 7 > jo, we have
J
> Vit +1) EX(t)—1<ZX(t)—1
=1 =1
= Zi’;(t +1). (5.17)
For jp < j < Jo and because of (5.13a), we have
j j
YoYi(t+1) = ZX(t) Sh-1% Z
=1 =1
j ~
=Y Vit +1). (5.18)
i=1

From (5.16), (5.17), (5.18), we get (5.8) for r = ¢t + 1.

Now, given that (5.8) holds, we show that (5.7) holds at
t + 1. Let /i), m(l) be the [th empty queue starting from
queue 1 for the states Y (¢t + 1), Y(¢ + 1), respectively. Let
Q'(t+1), Q'(t + 1) be the number of packets in the system
when the states are Y/(£+1), Y (¢+1), respectively. We couple
the arrivals under the two policies such that

Appy(t+1) = Any(t+1), 1=1,---,N-Q'(t+1).
Consider an arbitrary queue j and let k and % be the number
of empty queues with index less than or equal to j under #

and 7, respectively. Because of (5.8), we have k > k. We get

ZX(H-I

7 k

> ViE+1)+ Z/im(t)(t; 1),

=1 =1

(5.19)

J
> Xi(t+1) ZY(t+1 +2Am(,) (t+1), (5.20)
=1

J

_fo,-(tﬂ)—in(tﬂ):k—/}.

(5.21)
i=1 =1
From the coupling of the arrivals, we have
EA'"(I) t+1)- ZAm(l)(t +1)
i=1
k -
=Y Anpt+1)<k—k (522)
1=k1

Subtracting (5.20) from (5.19) and replacing from (5.21),
(5.22), we get

2
Y Xi(t+1)-
) i=1
Hence, (5.7) holds for 7 = ¢ + 1. Notice that

X(t) < X(t) = Q(t) < Q1),

Therefore (5.7) implies (5.2). ;

Now we show (5.3). Let j'(!) and j(I) be the /th nonempty
queues, starting from queue 1, for the states Y'(¢ 4+ 1) and
Y (t+ 1), respectively. Couple the arrivals at ¢ + 1 as follows:

Apy(t+1) = At +1), 1=1,---,Q(t+1). (523)
For the number of blocked packets, we have
Q'(t+1)

Z Ajp(t+1),

Q (t+1)
Z At +1),

-,N.

ixi(ﬂ 1)>0

i=1

j=17"

t=1,--

B(t+1) =

t+l

and from (5.23),

B(t+1) - B(t + 1)
Q' (t+1)

ZA,)t+1

Q (t+1)

l= Q’ (t+ 1 )
therefore (5.3) holds. 'l

Q'(t+1)

Z A (1)(t+ 1)

Regarding the heuristic interpretation of 7, the argument is
similar to that for the LCQ policy. We would like to minimize
the likelihood of having in a slot only empty queues connected.
By serving the connected queue with the smallest probability
of being connected we achieve exactly that.

VI. CONCLUSION

A single-hop radio network with randomly changing con-
nectivity has been considered in this paper. Its stability prop-
erties have been characterized and a policy that minimizes
the delay has been obtained. In the case of finite buffers,
the policy that maximizes the throughput and minimizes
the delay has been obtained, too. Time varying connectivity
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arises in communication networks whenever the quality of the
communication link changes with time. This phenomenon is
inherent in several types of radio networks as was mentioned
in the introduction. In view of the changing connectivity, the
resource allocation problem becomes more challenging than in
fixed connectivity systems, as indicated by the results reported
in this paper. There are several open problems for further
investigation related to the issue of changing connectivity; we
discuss few of them next.

An interesting variation of the problem we studied is
the case where the connectivity information is not available
for decision making and the server allocation can be based
on the queue lengths, the arrivals, and the departures. If
the connectivity variables in different slots are independent
then, as we mentioned in Section IV, the server allocation
problem under no connectivity information is equivalent to
a server allocation problem in a fixed connectivity system.
If the connectivities at neighboring time slots are statistically
dependent then the problem of optimal allocation becomes
more complicated. The queue lengths are not a state any more
and the problem should be casted as a partially observable
Markov Decision Process (under the appropriate independence
assumptions on the arrivals and services). The study of stability
and optimal delay performance in the latter case of dependent
connectivities are open problems for further investigation.

In our study, we have assumed that each queue is either
connected to the server or not, that is, the connectivities
are binary variables. In certain cases, that assumption is
inappropriate and the connectivity should be represented by
a multivalued variable where the different values correspond
to different connectivity qualities. It is of interest to study
the resource allocation problem under the assumption of
multivalued connectivities.
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