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ABSTRACT

Title of Dissertation: Some Solutions to Problems in Depth Vision from
Differential Geometry and Deconvolution Methods

Emil Vincent Patrick, Doctor of Philosophy, 1987

Dissertation directed by: James C. Alexander, Professor
and
Carlos A. Berenstein, Professor
Department of Mathematics

Two distinct parts are presented. The first part 1is an
application of manifold theory and geometry to mathematical modeling
problems in depth vision. The second part is an gpplication of
" deconvolution methods to the problem of constructing converging
sequences of approximating functions from sampled values of
convolutions. The connection between the two parts is this: the first
part depends on differential methods; the second part provides
converging algorithms for such methods.

The first part begins with a model for objects. A measure is
introduced and smoothness is assumed almost everywhere. The
radiometric notion of sterance is modeled using differential forms on
the sphere bundle (of three dimensional Euclidean space). It is shown
that sterance, even if known on a neighborhood in the sphere bundle,
does not uniquely determine the objects. However, sterance on a
neighborhood can be used to construct a submersion, hence to determine

codimension one submanifolds. A similar construction is carried out



for sterance given on the sphere bundle over a curve (motion stereo
with the path known).

The properties of this construction are used to motivate the
constructions for modeling the problem of depth vision based on time
varying sterance on the sphere bundle over a point. We introduce
bundles of bases, integral manifolds, and vector fields and one forms
with vanishing Lie derivative with respect to the position vector
field. We study the flows of vector fields that are isometries of the
integral manifolds.

The second part begins with an analysis of deconvolution methods
for convolution operators that are characteristic functions of
n-dimensional cubes. Such operators (for squares) are approximations
of the Impulse response of photo-detectors in .vision systems. A
complete description for the implementation of the method for sampled
data is given. The primary accomplishment is that the error analysis
is presented with explicit error bounds throughout.

The final chapter is an analysis of the properties of the
deconvolution methods in the presence of additive noise. For the class
of methods and noise studied it is shown that there is no penalty for

the use of deconvolution methods with photo-detectors.
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INTRODUCTION

This work is the product of the confluence of several technical
disciplines at a particular problem topic. Each of the disciplines, as
well as the problem topic, is well established. What is unusual is the
drawing together of the particular collection of disciplines about the
problem. As the title suggests, the blending is unfinished: the work
continues along two main branches but has not yet merged.

The objective of this introduction is to provide some background
and rationale for our particular collection of techniques and problem
focus.

First the problem. The problem area is vision. But this needs
both some qualification and expansion. (For an introduction to
contemporary issues and progress in understanding and synthesizing
vision phenomena see Marr (1982).) We are interested in the subtopic
of vision that addresses the remote sensing of objects as subsets of
three dimensional Euclidéan space. This should be contrasted with the
subtopics of vision that are solely pattern recognition, for example,
reading and photo-interpretation. The subject of remote sensing of
objects really extends beyond vision. It includes such things as
radar, thermal sensing, laser radar, sonar, and tomography. In fact,
the problem area is possibly more accurately described by the term

space perception. However, at least 1in vision, the most widely
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recognized term is depth vision. As this work addresses only vision
questions, we shall use this descriptor. Collett and Harkness (1982)
provide an excellent survey of the experimental knowledge of the
variety of depth vision phenomena exhibited by animals.

The aspect of depth vision that is of interest in this work is
mathematical modeling and the questions of existence and uniqueness of
solutions associated with the models. This raises the question of what
is a solution. It has 1long been my bias that any plausible
mathematical model for depth vision must have manifolds as solutions.
Thus, manifold theory and all of the related mathematical techniques
are a primary element in our collection. Throughout this work the
standard problems in which the solutions are manifolds were kept in
mind: submersions, transversal intersections, and integration of
involutive distributions.

A second element in our collection of techniques is measure
theory. We use béth Lebesgue and Hausdorff measure to make precise
such Issues as edges and corners and to provide a weaker notion of
manifold.

A related issue is functions. Smooth functions are generally
regarded as too narrow a space for modeling. Since smooth functions
and differentiable structure are essentially equivalent, we must be
careful in the choice of function space. Consequently, in everything
we do here we understand that both the manifolds and the functions are

smooth approximations to objects in a more general space. In other
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words, we are free to use mollifiers, i.e., convolution, as needed.

This point of view is not only mathematically useful but is also
fruitful in modeling, for many of the physical processes in vision are
indeed (approximately) convolutions. But this raises the issue of
approximation and convergence. Our method to resolve this dilemma is
the use contemporary methods of deconveolution. This topic is a further
major element in our collection of techniques. We use deconvolution to
provide both a theoretical and practical tool to obtain well defined
converging approximating sequences for the manifolds and functions in
our model. It is this convergence in a suitable function space that
Justifies our‘uée of differential methods.

The manifold methods and the deconvolution methods are not yet
fully merged. As of now the two are developing along separate,
parallel lines. Their individual progress ié the subject of this

document.



PART 1

SOME SOLUTIONS TO PROBLEMS IN DEPTH VISION
FROM DIFFERENTIAL GEOMETRY

1 SOLUTIONS IN THE SPHERE BUNDLE

1.1 OBJUECTS, HAUSDORFF MEASURE, AND SMOOTH ALMOST EVERYWHERE

In this first section a somewhat technical issue is addressed.
The first goal 1s to provide a sufficiently careful mathematical
description of precisely what it is one is attempting to solve for in a
depth vision or visual perception problem. That is, in this section an
answer 1s provided to the questions of what constitutes a suitable
def'inition of "objects" and what are the consequent properties of this
definition. The motivation for all of this is contained in Theorem 8.
Theorem 8 may be paraphrased by saying that differential methods may be
applied on an open, dense subset and that the complement of the subset
has measure zero. Paraphrased in terminology borrowed from computer
vision, Theorem 8 says that all of the so called "edges" and

discontinuities are contained in a closed set of measure zero.
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1. DEFINITION. An object A is a compact, connected subset of R
that is a topological 3-dimensional submanifold with boundary, wherein
the boundary 84 contains an open set U which is a smooth 2-dimensional

submanifold, and the 2-dimensional Hausdorff measure of 84-U is zero.

This definition is made, as usual, with the objective of including
at least those things of interest while excluding as much as possible
of all else. This objective is illustrated in Figure 1. (In Figure 1,
as well as in others that follow, two dimensional figures are used to
illustrate higher dimensions.) In this definition the subset U is a
submanifold in the sense that U is a smooth manifold with the subset
topology and the inclusion map is an immersion (Bishop and Goldberg
1968, §1.4). See the proof of Theorem 8 for the definition of

Hausdorff measure (Federer 1969; Evans and Gariepy lecture notes).

object not objects

Figure 1
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It is certainly desirable to address the possibility of more than

one object. A way to do this is provided by the next definition.

2. DEFINITION. A set of objects is a finite collection {Ai}:i’
where N is a positive integer and each A1 is an obJject, such that
i) the interiors of the objects are pairwise disjoint,
IntAlnIntAJ=zfor'i¢J,

ii) the union of the intersections, U [ aA1 n 6Aj ] , and the
1#)
boundary of the union, 3[ UAx]’ have an intersection which has
1

a 2-dimensional Hausdorff measure of zero.

We shall denote the union of all objects by 4 = U A .
1

The motivation behind this definition is illustrated in Figure 2.

Fig. 2. A set of objects
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It is clear that all of the following are compact: A, 8A, aAV

i=1,...,N, and U 4. Hence, 84 n U [ 84 n 84, ] is closed, and it
i 1#) .

has a 2-dimensional Hausdorff measure of zero by definition. For each

aAi, i=1,...,N, let Ui be the (relatively) open set in BAi which is a

smooth submanifold. Then 94 n U[ aAi— U; ] is <closed and has
i

2-dimensional Hausdorff measure zero. It follows, by deleting these

two closed (in Rs) sets from 34, that 84 contains an open set U which
is a smooth 2-dimensional submanifold of R° and 34-U has 2-dimensional
Hausdorff measure of zero.

The purpose of Definition 2 1is not only to permit the
consideration of more than one object but also to permit these objects
to be in contact. In permiting contact it is necessary to drop the
requirement that the boundary be a topological manifold: see, for
example, the two spheres in contact in Figure 2. However, the second
half of Definition 1 can be retained: up to a closed set of measure
zero the boundary is a smooth submanifold. A further remark on
Definition 2 is that for many of the situations that follow, the
finiteness of the collection could be relaxed to, say, countability
with finiteness on any compact region. Essentially what is needed is a
suitable analog for the notion of o-finiteness with respect to a
measure. This extra generality in not pursued here.

This discussion began with the definition of objects only because
it is necessary to define what ultimately is to be excluded. Nearly

all of the analysis is performed on the complement of the objects.
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3. DEFINITION. Empty space M is the complement of the union of
all objects,

M=R- A=R- Ua .

i

Consequently, M is an open submanifold of R°.

The usual notation is used for the following objects. TR3 and TM
are the tangent bundles of R and M respectively. The bracket notation
<,> 1is used for the standard metric on TR3 and TM. The sphere bundles
over Ra and over M are denoted by SR® and SM respectively, these being
the bundles consisting of unit tangent vectors. The projection map of
a bundle to 1its base 1is usually denoted by =, for example, the
projection m:SM — M .

All of the bundles above are parallelizable. For example, SM is
bundle equivalent to M x Sz, that is, there exists a diffeomorphism
which maps fibers onto fibers and is the 1dentify on the base. The
restriction of a bundle to a subset of the base is denoted by a
subscript. For example, the restriction of SR® to 84 ¢ R® is denoted
by SaARa. Of course, since M is open SMRS = SM, and the latter
notation will be used here.

A method is needed for extending a function (or section) from a
small neighborhood to some larger open set. In this work we tackle the
simplest possible problem and choose the simplest possible method of
extension. Roughtly speaking, we use the model that light travels in

straight lines in M. The following definition and constructions
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exploit this choice. They are illustrated in Figure 3.

The convenient way to formalize the straight line extension is to
use geodesic phase flow (Sternberg 1983, 199; Arnold 1980, App.1.J).
The standard construction is the following (0’Neill 1983, 67-70).
First, the so called natural covariant derivative is defined for vector
fields on R’ by the condition that the standard basis for R?
determined by the natural coordinates is parallel. A geodesic is a
curve whose velocity vector field along the curve 1is parallel.
Geodesics exist>at least locally and are uniquely determined by the
initial velocity vector. For R3 a geodesic, a curve from an interval
in R to Rs, can be extended to the so called maximal geodesic so that
it is defined for all of R. Also, the norm of the velocity vector of a
geodesic is constant along the geodesic. These standard results are
exploited in the following notation.

Let u € SR®.  Let 7u:R — R be the maximal geodesic such that
the initial velocity vector 7 (0) satisfies ¥ (0) = u e SR,

This formalism is convenient for a number of reasons. First and
foremost, it provides a coordinate free represenatation. Second, it
lifts in the appropriate way to paths in SRG. And third, by virtue of
this notation everything is in place to consider the problems discussed
here for more general, nonflat manifolds.

It is now necessary to use some less standard notation. Here the
relation between distance and the parameterization of unit speed

geodesics is exploited to define a function on the sphere bundle over
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empty space M.

4. DEFINITION. Let SM be the sphere bundle of Ra restricted to

empty space Mand let R ={ te R | t > 0}. Define t:SM — R U {«}
+ +

by Tl(u) = Sup{ t>0 ] Vsel{0t): 7u(—s) eM } .

We shall refer to the function T as the extent function. Note

that in the definition of T the geodesic curve is followed backwards in

its parameter. This is illustrated in Figure 3, where the base point

of u €e SM is m, that is, n(u) = m, and where only SmR3 is illustrated.

! A
!
' )
l .
! )
/
| !
by .
\ [} - -
P
|

Figure 3
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For purposes of notation the following maps are defined:

7:SRE x R — R° 7(u,t) = 7 (t) ;
W:SR° x R — SR>,  ylu,t) = &u(t) ;
z/:t:SIRa —> SR, l/lt(u) = Yy(u,t)

The map Y is the so called geodesic phase flow. The map Y is
smooth since ¥ 1is the solution to a smooth ordinary differential
equation. Recall that for t, t’ € R, l/l(',’l(u.,t) , t’) = y{u, t+t’ ).

The visual perception problem in which we are interested may be
stated as the problem of determining the extent of empty space about an
observation point. In terms of the structure given above this problem

is the determination of the map ® defined as follows.

5. DEFINITION. Let SM and SaA!R3 be the sphere bundle S[R3
restricted to free space M and to the boundary of the union of the
objects 0384, respectively. Let T be the extent function and let
R, = {t > O}. Define
-1 3
$:SM - T (w0) — S, R" x R ,
84 +

eu) = (yu,-t@)) , ) ) .

The next task 1is to clarify some properties of the extent

function.

6. LEMMA. The extent function T is lower semicontinuous.
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Proof. By definition t is lower semicontinuous at u € SM if
liminf *(u) = t(u )
u > u °
o
u € SM
Choose to such that 0 < to < 'c(uo) < o , Hence, for all s € [O,tO],

7 (-s) € M. Let ¥:SR°R — R° be defined by y(u,t) = 7 (t). Let 4

o

be the union of all objects. By continuity 7-1(11) is closed in SlexIR,
while {uo}x[O,to] is compact and disjoint from 7-1(1!). For each point
(uo,s) € {uo}x[O,tO] there exists an open set Us ¢ SR® and an e >0
such that (uo,s) € st(s—es,sﬂ:s) c 7-1(1‘1). Passing to a finite

subcover {U x(s-e ,s +e ) of {u}x{0,t ], we have, with U =
s i sl i si \ o L0 . o

1

n US , that there exists > 0 such that
1 1

{uIx[0,t ] cUx(-n,t+n) c UU x(s-¢ ,s+c ) c ¥ (M).
o o o o \ si i 51l i s1

Consequently, for every u € Uo we have <T(u) = to + m, hence

inf t(u) 2zt + m and liminf t{u) =2t + nn > t . Since t was an
uel ° u —u ° ° °
[+ (¢}
u e SM
arbitrary positive number less than t(uo), the result follows. =

7. COROLLARY. T '(w) is open in SM.

Proof. Let 'rn be the restriction of Tt to SM n SBn , Where B is

n
an open ball of radius n, n=1,2,..., and SBn = SB [Ra. Since A = U A1
i

n

is compact, the image of T is contained in a set (O,Kn)U{oa} , for some

positive, finite K, for the finite values of 'rn are bounded by the
n
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diameter of B_ U a4 . Consequently, Tn-l(co) = 'rn_l({t>Kn}) =
T-I({t>K$}) N SB  which is relatively open in SM since T is lower
semicontinuous and since SBn is open (Wheeden and Zygmund 1977, Theorem

4.14). Hence T Yw) = U 'rn'l(oo) is open in SM. n
n

The following theorem is the primary goal of this section. It
tells us something about how "edges" of objects and other troublesome

sets on the boundary of objects appear to an "observer" in SM.

8. THEOREM. Let the set of objects be non-empty. Then the
following hold.
i. The interior of SM - T '(w) is non-empty.

ii. The interior of SM - 1.'-1(00) contains an open set ¥ on which &
is a diffeomorphism of & with 1its 1image in SaA[R3x{R+, and
Z = SM - Tt () - § has measure zero in the smooth manifold SHM.

iii. Let S(8A - Z) denote the sphere bundle of 84 - Z. With
R>,

S(8A - Z) identified with its inclusion in SaA

Z=0"((s4-2xR) U (SRR)) .

Proof. Recall the map y:SR'xR —> SR’ , ¥(u,t) = § (t). We make
seyer‘al observations.
Obs.1 ¢ is a left inverse for &, for y(®(u)) = y(¥(u,-t(w)) , (w)
= y(u,0) = u .

Obs. 2 ® is one-to-one, for it has a left inverse.
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Obs.3 For any set S c¢ SRxR, & (S) = (Yo0) (2 (S)) < y(S)

CLAIM 1. For Z c 34 c R° and the 2-dimensional Hausdorff measure
of Z zero, then Q'I(SleafoJ has measure zero as a subset of the smooth
manifold SM.

Proof of Claim 1. By Obs.3 is suffices to show W(SlesxR+) has
measure zero .

The Hausdorff measure is defined for subsets of R". To relate

3 ]

SR° x R to R° let TR°-{0} = {v e TR | <v,v> # O } be

+

identified with R° x (R°-{0}) by the usual identification using the
natural coordinates for R°. Define‘p:Tle-{O} — SR® «x R, by plv) =
("—ZT , lIvII) , Where llvil = <V,V>1/2. Then Yop 1s smooth, hence locally
Lipshitz, on TR°-{0}.

The following result is needed. For any set A c R", let H°(A)
denote the s-dimensional Hausdorff measure of A. If H°(A) = O, then,
for A xR ¢ R" x R, HSH(A x R) = 0, O=s<w . To see this it suffices

to consider s>0, for Ho is counting measure. By definition, for 0<d8=cw,

H®(A) = 1im H2(A), where

5—0 ©
® diamC %
Hg(A) = inf { z als) ] ‘ AclUcCc , diamc = & }

and where a(s) is the Lebesgue measure of a ball with unit radius in

R™. Since H;(A) 2 0 and since H;(A) increases as &8 decreases,

0. Fix 8 < 1/3 and choose £ > 0. Then there

H;(A) =0 if H°(A)
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[+ [»]
exists sets {C} such that A cUcC , diaij < 8 , and such that
J j=1 y=1 J
® diamc )° .
z os) I < € . Let IJ be the intervals
y=1 2
[k'diaij , (k+1)-diaij], k=0,1,...,k(j), where k(j) € N such that
1 % k(j)-diamC < 1 + dianC . Let c‘j‘ =C, I‘J‘ . Then
Ax [0,11 clUcC. x 10,11 cUc x 1= UC®, diamd® < 2-diamc = 23,
J J ] J J J
J J,k Jyk
o k(j) diaij s+1 © "
and z z als+1) " < afs+1) z (a+ k(J))EdlamCJ)
j=1 k=0 J=1

® diamC 1°
= a(s+1) Z 20(s) [ J] o8 < a(s+1)2s+18 .

als) -1 2 als)

Thus H;'(A x [0,1]) = 0 . Since Hy;' is countably subadditive,

HZQICA x U [O,k]) = 0 . This provides the desired result.

Kk

Apply the result three times to obtain the implication that if

H?(Z  84) = 0 then H°(Z ) 84 x R°) = 0, hence H (Z ) 84 x R°-{0}) = .
But R> x @F—{O}) is the countable union of compact sets and yop is
locally Lipshitz. Let p be a coordinate map associated with the open
set V in the S-dimensional manifold SR° ( i.e., w:V — W c R, W
open). Then poyop is locally Lipshitz, and by subadditivity and the
standard result for Lipshitz maps

B (uoyop(Z n 84 x R%-{0})) = H°(Z ) 84 x R>={0}) = O .

5

Since HS = L” on RS, where LS is the usual Lebesgue measure, it is

established that w[szm3 X R+) has measure zero in the usual sense of
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measure zero for smooth manifolds.

CLAIM 2. Let wa be the restriction of ¢y to the smooth 5-manifold
SaA_zIR3 x R . Let CP denote the critical points of ¢b' Then Q‘I(CP)
has measure zero.

Proof of Claim 2. By Obs.3 2l (cP) c wa(CP) and wa(CP) is the
set of critical values of wa. By Sard’s theorem (Sternberg 1983, Ch2

§3) wa(CP) has measure zero.

CLAIM 3. CP = S(8A - Z) x R, where S(84 - Z) x R is identified
with its inclusion in S,, R x R .

Proof of Claim 3. Use the natural coordinates to identify
SR X R with (84 - 2Z) x §* x R and SR° with R’ x S°.  Let
(a, x,d): I — (84 - Z) x S° x R be a curve, hence, by the coordinate
representation of geodesics in Ra, wﬁm(t),x(t),d(t)] is identified with
(«(t) + d(t)x(t) , x(t)) , where x(t) is a unit vector in R® for all
t € I . The derivative of this curve vanishes if and only if x(0) = O
and «(0) + d(0)x(0) = 0. Hence x(0) represents a vector tangent to
8A - Z and CP c S(8A - Z) xR .

Conversely, if (p,x,d) € S(84 - Z) x R, where x = «(0) for a curve

ol —>» 84 - Z, a(0) = p, then the curve Em(-t),x,t+d) maps under ¥ to

(a(-t)+(t+d)x , x], which has vanishing derivative at t = O.

The following result will be needed in the next claim.
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Sublemma. Let X and Y be manifolds of the same dimension. Let H
be an open subset of X and let f:H — Y be one-to-one and continuous.
Let g:Y —> X be smooth with gof = ile . Let Yo be the open subset of
Y for which g 1is regular. Then f'I(Yo) is open in H and
f:f-l()’o) — f(f-l(Yo)) is a diffeomorphism.

Proof of sublemma. Let x € f-l(Yo) and let f(x) € V c Y, where
g|V is a diffeomorphism of V with g(V). By continuity f (V) is open.
Since f(x) € V, then x = gof(x) € g(V), or L) < g(V). Therefore,
for all x e fd‘l(jV), g|Vof(x) = x = glvogl;l(x), hence f(x) = g|;,1(x)
since g]V is one-to-one. Consequently, every x € f_l(Yo) has a
neighborhood on which f coincides with a local diffeomorphism, hence

the result.

CLAIM 4. Let RP be the regular points of wa. Then <I>-1(RP) is
-1 3 .
open and ®:® (RP) — SaA_ZIR x R 1is continuous.
Proof of Claim 4. Let @(ul) = (\ll(ul,—'c(ul)J , r(ul)] be a regular

point of y_ in S ° xR . Let V be a neighborhood of &(u_ ) in
a dA- 1

3 X . . . X 3
SaA_z[R x R in which wa is a local diffeomorphism with l/la(V) < SR".
Shrink V so that l/la(V) < SH, which is ©possible since
wa(é(ul)) =u € SM and SM is open. Moreover, wa(V) c SM - r'l(oo),

. 3
since, for any (V,t)‘E VesSy, R xR, t(xpa(v,t)) = t.
Summarizing, if u € @-I(RP), then u, is in some open set

Yy (¥) c sH - tHw) , and ¥, is a diffeomorphism on V. It is not

necessarily the case for all (v,t) € V that t(wa(v,t)) = t. However,
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it is claimed that there exists a neighborhood 7 about Q(ul) in V for
which this does hold. This suffices to prove the claim, for then on

this neighborhood ¢(¢6(V,t)) = EW@Wa(V,t)) . -T(wa(v,t))] , T(wa(v,t))]

= (v,t), that is, ¢(wa(v,t)) c V, with wa(ﬁ) open, hence " (RP) is
épen and on this set ¢ is continuous.
To find V consider the open sets in (84 - Z) x $® x R of the form
Voe = (Be N (84 - 2)) x Wx (t(u)-2¢, w(u)+2e) c 94 - Z,
where Béa is a ball of radius 2e centered at n(ﬁ(ul)). Make the
natural 1§§ntification of (84 - Z) x S® x R with SaA—st x R and choose
£ sufficieﬁtly small so that Vae c V. Define Ve similarly (replace 2¢

by € in all occurrences). It is claimed that

{(V.t) eV, | tlyylv, 1)) = t} < {(v,t) eV, | Tyylv,t)) = t—e} o ()

For let u = wa(v,t) and (v,t) € V€ . By the definitions

W,-t) , t) = (v,t) e S,, R xR,

while (defining v’ € S, R )
(Wlu,-T)) , () = (v/,T(u)) e SBAR3 xR,
hence
w(wlu,-t(w)) , t(u)-t) = g(v',T(u)-t) = v . (%»)

If t(u) # t, then (v’,T(u)) cannot be in V28 , for otherwise, since wa
is a diffeomorphism on Vze , then wa(v,t) = u and wa(v’,t(u)) = u,
hence (v,t) = (v’,t(u)) which is a contradiction.

With (v,t) € V. T(u) # t, and (v’,T(u)) ¢ Ve » if T(u) = t-e,
then we are done. If T(u) > t-¢ , since t e (t(ul)-e , r(u1)+e), then

for (v/,t(u)) ¢ Vze it is necessary that v’ ¢ (Bze n (84 - Z)) x W.
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But by (=) wy(v' , <T(u)-t) = v. That is, in terms of the
jdentification of SaARB with 94 x Sz, v/ = (r(v’'),w) € 84 x s? and v =
(n(v),w) € 84 x s°.  Thus n{v) € B€ while n(v’) ¢ B28 . Then, again by
(#%), |T(u)-t| > €, which is a contradiction. This proves (*).

From (%) it follows that {(v,t) € V8 ] T(wa(v,t)) # t} is closed,

for T 1is lower semicontinuous by Lemma 1 and consequently
(v,t) — T(wa(v,t)) -t is lower semicontinuous. Since

Qhﬂ) ¢ {(V,t) € V8 | T(wa(v,t)) #* t} , there is an open set V about
Q(ul) in Ve such that T(wa(v,t)) =t on V. This proves Claim 4.

To complete the proof of the theorem, use Claim 4 and the Sublemma
-1, 4 3
for the case f =& , H=9 (RP), Y = Syp-R xR g8 =4, Y =RP. In

the statement of the theorem § = &  (RP). n

Remarks on the proof: (see Figure 4)
1. Note that m(y¥(u,-t(u)) is a point on the "nearest object" to
n(u) in the direction corresponding to u. That is, the reason for

introducing T and ¢ is to keep track of so called occlusions, the

Figure 4
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situation in which a geodesic between a point and an object intersects
a second object. The map Y does not respect occlusions: the path
ylu,t) = 7u(t) "passes through" objects.

2. All of the difficulties in the proof of Claim 4 are associated
with the problem of occlusions.

3. The set Z of measure zero is made up of the union of the
"edges" ® '(S(84-Z) x R) and "corners" Q-I(SZR3 x R). These edges and
corners are subsets of a 5-dimensional manifold. Theorem 10 is a
second version of Theorem 8 in which the edges and corners are subsets
of a more familiar 2-dimensional manifold that 1s the analog of an

"image plane" in optical devices.

The following corollary describes the manner in which Theorem 8

would typically be used in applied problems.

9. COROLLARY. Let R be a 4-dimensional smooth submanifold of SM
such that for every u € R the curve &u in SM is not tangent to R. Then

R N Z has measure zero in the smooth manifold R.

Proof. Recall the flow ¥:SR° x R —s SR>, y(u,t) = 7 (t). Let E
denote the associated vector field on SM. By hypothesis E along R is
nowhere tangent to R. Then, by the argument in Claim 3 of Theorem 1, ¥
restricted to R x R 1is regular. Choose a sufficiently small

neighborhood U = yY(U x {0}) ¢ R and a sufficiently small interval
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(-e,€) < R such that y(U x (-€,¢)) is an open set of SM. If Z U does
not have measure zero in R, then Y(ZnWU x (-g£,€)) cannot have measure
zero in SM (for choose coordinates that map through U x (~e,e) and use
the product measure properties of Lebesgue measure). From the
definition of Z, yw(ZnU * (-e,€)) = Z n YU x (-g,¢)), which must have

measure zero by Theorem 8. This is a contradiction. ]

The following theorenm is a third version of Theorem 8. It is the
analog of Theorem 8 for the case of a single fiber in SM. The notation -
is as above (e.g., 4, M, §, Z). Here n:SR° —> R° is the projection to
the base and nl:SlR3 x R — R3 is m acting on the first component of
the product. This theorem is stated and proved here for completeness.
It will not be needed until Chapter 2 of this part. All of the
remainder of this chapter depends only on Theorem 8 and its

corollaries.

10. THEOREM. Let A= U AJ be non-empty. For every m € M
J

i. The interior of m '(m) - 7T '(w) is non-empty;

ii. The interior of m '(m) - 7 '(w) contains an open set
N 7 '(m) on which m o¢ is a diffeomorphism of & 7 (m)
with its image in 84, and Z g m ' (m) = n ' (m) - T (=) - § has
measure zero as a subset of m  (m);

-1

iii. zanlm) = [(nlom“(z) Ue'(s(aa - 2) x lR)] nn (m
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Proof. The proof parallels that of Theorem 8. Fix me M. lLet &

define the section o:R°-{m} —> S(R°-{m) x R defined by

exp:(p) o o
alp) = —t/:[———:l—— , llexp (p)ll] , llexp “(p)il , Where, as
Nexp (p)li " "
m
usual, expm:'I‘mlR3 — R® is defined by expm(v) = arv(l). Thus

woo:lRB-{m} —)\n_i(z‘n) is smooth. (Note -y(u,t) = y(-u,-t). )
Let ¢ denote & restricted to i m) - THe) < SmfRS. Thus
w o® (u) = exp (-t(u)u) ()
1 m m
The three observations analogous to those in the proof of
Theorem 8 can now be made.
Obs.1 yoa is a left inverse for ulon .
Obs. 2 nloém is one-to-one.

Obs.3 For any set S ¢ Ro-{m}, (n1o¢m)—1(S) ¢ Yool(S)

CLAIM 1. For Z c 84 ¢ R°-{m} and H°(Z) = 0, H® the 2-dimensional
Hausdorff measure, then (nloém)—l(Z) has measure zero 1in the

2-dimensional mainfold n (m).

Proof of Claim 1. The proof is a restatement of Claim 1 of
Theorem 8 with yoo substituted for ¢ and without the need to lift Z to

Z x R°.

CLAIM 2. Let (\000)6 and ay be the restriction of yoo and a4,

respectively, to the smooth 2-manifold 84 - Z. Let c¢p denote the
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s 2 = = o ° -1
critical points of (Woa)a = lllooa l/la 8 - Then (1t1 <I>m) (cp) has

measure zero in the manifold m '(m).

Proof of Claim 2. By Obs.3 (n1o<1>m)'1(cp) c (yoo) (cp).  Apply

Sard's theorem.

CLAIM 3. Let CP = S(84 - Z) x R , where S(84 - Z) x R is
identified with its inclusion in SaA—ZR x R . Then

(m 0@ ) ep) = <I>m—1 (cP)

Proof of Claim 3. Recall CP is the set of critical points of l/la .
By construction & is a section, hence d°6 # 0 . Consequently, if
pe€ 84 - Z is a critical point of (woa)a , then a(p) is a critical
point of wa . That is, o(p) ¢ CP . This proves the first inclusion of

the following string of inclusions. The full string proves the

claim.

® (a(p)) < & TH(CP) = (sem 2@ )T (CP) = (m,00 )7 (o7'(CP))
(1) (2)

c [nloém]'l(cp) = Qm-l(a(cp))
(3) (4)

To see (2) note that o is defined to satisfy, for u e n_l(m),
somoy(u,-t) = (ylu,-t) , —t) . Consequently
aomw od =@ (%)
1 m m

To see (3) let p € 84 - Z and p € Image(nloém) such that

a(p) = (v,t) € S(84 - Z) x R . Thus, there exists u € 7 '(m) such that
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v = ylu,-t(w)) e SBA - 2) , n(ylu,-t(w))) = p . The curve
«(t) = n(Ylu,~T(u)+t)) is tangent to 84 - Zat t = 0 , «(0) =v =0,
but Yosoea(t) = u . Thus p is a critical point of (l/loa)6 .

To see (4) apply (*): for any set S, if nlotbm(u) € S, then

°°"1°°m(u) = Qm(u) e o(S) .

CLAIM 4. Let rp be the regular values of (l/l°0)a . Then
(T o® )-l(rp) is open and m od :(m o )_l(rp) —s 04 - 2Z is
1 m 1 m 1 m
continuous.

Proof of Claim 4. (Since this closely follows the proof of Claim
4, Theorem 8, the presentation is condensed.) Note that the image of
(woo)a is contained in m'(m) - T (w) . Fix u € w ' (m - T (w) ,
with nlon(u) a regular value of (llloa)a . Let V be a neighborhood in
84 - Z about nlodbm(u) such that (llmo)6 is regular on V. It is claimed
that there is a neighborhood ¥ in V, with n ed (u) € V, such that for
all p e ¥, if a(p) = (v,t) , then T(WOA(}))) = t. This suffices, for
then m o® oyoa(p) = m (v,t) = p, hence nlotbm((lﬁoo)a(ﬁ)] c V, with
(llloa)a(?) open by regularity, hence (1t1°<bm)_1(rp) is open and on this
set 1t1°<bm is continuous.

To find V let Bze be the ball in R° of radius 2¢ centered at
T on(u) . Choose >0 sufficiently small so that

Vze = B28 N (84 - Z) ¢ V, and define Be and Ve similarly.
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It is claimed that
{p eV, | op) = (v.1) , T(weo(p)) t}
c {P €V, | alp) = (v,t) , T(Yoolp)) = t—e} }
For let u = (woa)a(p) and p € V8 . Let a(p) = (v,t). Then

nlﬁﬁ(u,-t) , t) = m(v,t) =peV cod- zZ,

nlﬁw(u,-r(u)) , —t(u)) = ni(v',r(u)) =n(v') € 8A - Z ,

and
(v ,T(u)-t)) = v, woy (v ,T(u)-t) = 7v,(t(u)-t) =p . (%)
If T(u) # t, then mn(v’) cannot be in Vze’ for otherwise, since (woo)a
is a diffeomorphism on Vzc’ then yeoa(p) = yool(mn(v’)) = u, hence
p = n(v'), which.is a contradiction of (=). But then, also by (%),
since p € B_ and n(v’) ¢ B__ , |z(u) - t|l > ¢ .
€ 2¢

By the lower semicontinuity of T it follows that

{ peV, | o(p) = (v, t) , T(Poolp)) = t }

is closed and does not contain (nlon)(u) , hence there is an open set
about nloém(u) in Ve in which r((woa)(p)) = t and o(p) = (v,t). This
proves the claim.

The theorem is completed by applying Claim 4 to the sublemma in

the proof of Theorem 1. ]

Wwhy have we bothered with Theorems 8 and 10? Two of the payoffs
can now be described. For brevity we shall refer to the situation
described in Theorem 8 as the (SRS,SM) case, and to that in Theorem 10

as the (RS,SZ) case.
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The first payoff is a description of so called "edges." In the
engineering literature the notion of edge is rarely explicitly defined
but rather is described intuitively. Frequently the notion carries the
de facto definition of that which the author’'s edge-finding algorithm
finds. What is generally understood to be an edge could be defined as

follows.

11. DEFINITION. Let o be a submersion from a manifold N onto a
manifold P. Let S be a subset of N. The boundary 8(c(S)) of the set

o(S) is called the edge, or the set of edge points, of ¢(S) in P.

In Definition 11 it is to be noted that S is the only set in N.
There is not sufficient geometry in the notion of submersion to address
the case of one set occluding another. This can be partially resolved
by considering a disjoint union of such S and the corresponding
boundaries. However, the disjoint union includes all boundaries and
has no provision for excluding any. (Such an all inclusive projection
was used in the proofs of Claims 1 and 2 in Theorem 8.) These
considerations are, of course, the motivations behind our definitions
of T and ¢ .

Let us find ﬁhe edges in our two cases. For the (RS,SZ) case,
N = Ra-{m}, P = n-l(m), o = Yoo, and the set S is a weaker version of
our definition of the union of all objects A. The additional structure

in our definition of A provides additional information regarding
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d(o(S)) in the case S = A. In particular, for the (Rs,Sz) case, it

follows from Theorem 10 that
8(a(S)) = 3(Yoo(A)) c & (R(2) US(84 - 2) xR) . (edgl)

To see (edgl) it 1is necessary of first observe that not only
(nloéqu(ﬂ) ¢ yYoa(A) but moreover (nloéqu(A) = Yoa(A) because A4 is
the only set in Rs—{m): for every p € A UH°Qm°W°0)(P) must be a
point in A by the definition of ¢ . With this, by Claim 4 of
Theorem 10, UHOmed(rp) is an open set of yoa(A), hence is in the
interior of yoa(A). Consequently, (nloém)-i(A—rp) must contain the
boundary 8(yea(4)).

The same holds for the (SR>, SM) case, where N = SRS x R , P .= SM

+
(or a neighborhood in SM or a suitable 4-dimensional submanifold),
3 . :
o= wlw'l(SM) , and S = SaAR x R . Then, as before, since S is the

only set, & '(S) = ¥(S) f SM, and
8(o(S)) - 8P = a(y(S)  SM) - aP
c dfi[(S(aA -Z)xR) U (szna3 x [RJ] . (edg2)

From the inclusions in (edgl) and (edg2) we can now conclude that
for either of our cases the set of edge points is a set of measure
Zero. We remark that the inclusions are not equalties because our
objects may have ‘“corners" (points of non-differentiability) and
critical points which may or may not project to edge points.

As is well known, a massive amount of effort has gone into the

development of algorithms to find the set 8(¢(S)) in P. From our point
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of view here, finding 8(¢(S)) is a difficult task since 8(¢(S)) has
measure zero: almost surely, in the sense of probability measure, any
point chosen at random is not an edge point. In fact, almost surely
every point is a nice point in the sense that it has a neighborhood
about it which is, say, diffeomorphically related to a neighborhood in
some bundle over 8A. That is, the nice points constitute an open,
dense subset, and the complement of this subset has measure zero.
These properties form the basis for the application of geometric method
in the remainder of this work.

The second payoff is not that ¢ and Qm are diffeomorphisms almost
everywhere but rather that their compositions with projections are
submersions. Thus these compositions injectively §u11 back
differential forms. Throughout the remainder of this chapter we will
be considering only the (SRS,SM) case. We will return to the (RS,SZ)
case in the next chapter.

Let P, denote the projection pI:SIR3 x R —> SR® , and let
v = ploQ:SM -t Hw) — S, R° . The following is immediate.

8A

12. COROLLARY (TO THEOREM 8). There exist an open set §
contained in the interior of SM - T '(») such that SM - T (=) - § has
measure zero as a subset of the smooth manifold SM, and on § the map ¥

is a submersion.
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With this result we can now use differential forms to describe
some standard radiometric notions in optics. We first describe
sterance. In elementary radiometry sterance is defined to be "the
radiant power emitted from, transmitted through, or reflected off a
surface per unit projected area of that surface per solid angle"
(Meyer-Arendt 1984, 383). We shall describe a dif‘f‘erent}al form that
corresponds to sterance as well as describe a suitabie theory of
integration.

First, 84 - Z is orientable, for, by Definition 2 each connected
component of 84 - Z is an open set in the boundary of only one of the

objects Aj (A=U AJ ) , and each 8AJ by Definition 1 is the boundary
3

of an orientable manifold with boundary. Also, SaA_lea is orientable,
for S° is orientable and SaA—Z[RS is diffeomorphic to 84 - Z x s?.

In describing integration we must use some care since 84 - Z is
not compact. Let v denote a (global) volume element for SBA—Z[RS
(0O’Neill 1983, 195). That is, v is a smooth 4-form on SaA—Zle such

. 3
that, for any orthonormal basis (ei,ez,es,e4) of Tv(SaA_iR ),
vie ,e ,e ,e ) = 1 . As usual, any basis (b ,b ,b ,b ) is said to be

1’72’ 73" s 1’72’73’ 7
positively oriented if V(bsz’bs’b«t) > 0 . A coordinate map h of a

coordinate chart (U,h), U ¢ SaA—ZlRS , h = (xl,xz,xa,x4):U — R , is

positively oriented if, for 8 = 8 , i=1,---,4, v(8,8_,8.,8) > 0
i ax 1’2’73 "4

For such a coordinate neighborhood and positively oriented map define

J v by
U
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Jv = f v(8 ,8,8 ,8 Yoh?
1 2 3 4
U mw

where the integral on the right is the Lebesgue integral over the open
(hence .Lebesgue measurable) set h(U) of the smooth (hence measurable),
positive function v(61,62,63,64)oh_1. Hence, the integral is defined,
although it may have the value +wo .

For any open set E ¢ SaA-Z[RS , let ® be a partition of unity

subordinate to the countable cover of E by coordinate neighborhoods Ul

of an atlas {Ui,hi} with positively oriented coordinate maps. For
1 2 3 4 a
h = (x,x,x,x), let 8 = —— and dx denote dx dx dxdx . We
i | S R G ] axj 1 72773 s
1

propose to define [ v by

E

Iv ) J'( Yoh "' v(8 ,8 ,8 ,8 )oh
“oaxE i 11’ 12’ "13’ 14

E 1 hi(Ux)

13. LEMMA. For Ec S ZIRS , J v 1is well defined.
A E

Proof. (1) Each term in the sum is finite, for each @, is smooth
and compactly supported in hl(Ux) and v is smooth. Since all terms of
the series are positive, all rearrangements either diverge or converge
to the same sum.. Thus it suffices to consider the case in which for a
choice of {Ul,hl} and {goi} the series converges.

(2) Let {Vj,gj} be a second atlas with positively oriented maps

gj = (yj,y?,y:;,yj) . Let !/lj be a partition of unity subordinate to the
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. -1 wol - T
cover {VJ} . For brevity let («ple)ohi > (waE) gj wj,
Bo=v( 2. ., % Jou' , and ¢, = »( Z,...,% Jog' . Then,
i 1 4 i 3 1 4 i
ax dx oy dy
i 1 1
since Yy =Y ¢ =1,
3 1
3 1
~ _ _1 ~
? ¢1H1dx = ? [ ? w3°h1 ] ¢iHidx
hi(U[) hl(Ui)
- 1 ~
'12 I 4 °h1 ]¢1Hidx
) h (U V)

where the equality at (*) is due to the rule for the change of variable

and the properties of differential forms. ]

Our definition holds as well if, for an atlas {Ui,h‘} , E is the

countable union U h;l(hi(EnUi)) with each hl(EnUl) Lebesgue measurable.
1

For 1f {V,g} is a second atlas, then gjoh:lzhi(Uian) — v, s

smooth, hence gj(Ean) = U gjohll(hl(EnU;an)] is measurable if
1

each hi(EnUInVJ) = hi(EnUl) n hl(Uanj) is measurable. By second

countability it suffices to require that E satisfy the following
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definition.

14. DEFINITION. For any set E c SaA-zRS' E is said to be locally
(Lebesgue) measurable if for any coordinate chart (U,h) of SaA_iR3 ,

h(EnU) is Lebesgue measurable.

We are interested here in differential forms. Consequently we can
define integration of forms only on the smooth manifold SaA—fRB . We
could equally well define integration on SaARS by using, say, the
product measure Hzx H2 of two 2-dimensional Hausdorff measures for
S, R identified with 84 x S° as a subset of R’ x R°. With this latter
definition we can neglect SZIR3 for it has measure zero. On SaA_ZIR3 the

measure of a subset E and the integral [v coincide by any of the usual
E

arguments that these two definitions of area of subsets coincide on
their common domain of definition. We will not need the measure

theoretic definition so we merely make the following definition.

3 3
15. DEFINITION. For E < S, R°, EnSy, -R™ locally measurable, we

define fv by Jvr = J v

E E 3
EnS 3 A-Zm

Defintion 15 has the following obvious extension.
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3
16. DEFINITION. Let E ¢ SaAR EnSaA_ZR locally measurable. We
say a function f defined almost everywhere on EnSaA_ZlR3 is locally
measurable if the inverse images of Borel sets are locally measurable.

For f locally measurable and f = O we define Jfv by [fv = I fv

E E
BA ZIR

Note' that on the smooth manifold SaA—ZRQ all of the wusual
properties of Lebegue integration of nonnegative measurable functions
hold. For example, sets of measure zero in SaA_ZIR3 can be ignored.

The regard for orientation was not essential in the preceeding
defintions. We can neglect orientation by proceding exactly as above
with only one modification. (This is an adaptation éf Sternberg 1983,
Ch.2, sec.3, Integration of densities.) Let w be a differential n-form

on an n-dimensional manifold R. Let D be a locally measurable subset

of R. Let (qpi} be a partition of unity subordinate to a countable
cover of D by coordinate neighborhoods Ui of an atlas {UV}H} .  For
h = (xl, ,xn) . = 9 , and dx = dxi...dxn., define
i i 1J 3 i i i
ax
1
I lwl = I (w Xp) oh, w8 ,...,8 )oh M| dx
D i1’ *Tin® i i
D (

The proof that J |w| is well defined is just a restatement of the proof
D

of Lemma 13.
To integrate if w is a smooth n-form defined everywhere except on

a set Z of measure zero in R we proceed as in Definition 15.
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17. DEFINITION. Let D be locally measurable, D ¢ R . If w is a
smooth n-form on R - Z with Z of measure zero, we define [ |w| by
‘ D
J lwl = [ lol
D D-Z

These preliminaries are sufficient to complete the discussion of
sterance. Recall the map ¥ SM-1 N w) —> SaAR& , ¥ = p1o<I>, which

according to Corollary 12 is a submersion on § = SM-'r—l(oo)—Z .

18. DEFINITION. By the sterance on &% associated with the
differential 4~form fr on SaA_iR3 , £ 2 0 and v a volume element, we

mean the differential 4-form on § defined by \Il*('fv)

Recall that for any four tangent vectors xi,xz, Xa’ X4 in Tu§’ ,
V() (X, X, X, X, ) (W) = fol(u) v(a¥ X, d¥ X ,d¥ X ,d¥ X,)
where d\I!u is the differential of ¥ at u e § .
Since ¥ 1is a submersion and v is nonvanishing, v is a
nonvanishing 4-form on ¥ .
The following result is the motivation for our discussion of

integration.

19. PROPOSTION. Let R be a smooth 4-dimensional submanifold of
SM that satisfies the conditions in Corollary 8. Let D be a locally

measurable subset of R with D ¢ SM—t_I(oo) and with ¥ one-to-one on D.
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Then DnZ has measure zero in R and

I I (o)) = I .
D ¥(D)

Proof. By Definition 16 I fv = J fv . In addition, the
3
v(D) T(D)nSaA_ZR

unit tangent bundle S(34-Z) has measure zero in the manifold SaA—ZRQ .

Hence, [ fv = [ . Since Z = ¥ (SR’ U S(84-2)
3
¥(D) WD)rS,, R-S5(84-2)
by Theorem 8, it suffices to show flw*(fu)l = J'fu . This
' D-Z ¥(D-%)

follows essentially from the standard change of variable argument,
since ¥ is a smooth map on D-Z . Briefly, the set where ¥*(fv) = 0 on
D-Z (that is, where the 4-form ¥*(fv) annihilates the four basis
vectors of the tangent space of D-Z, or, equivalently, where d¥ does
not have full rank on the tangent space of D-Z) has image under ¥ of
measure zero by Sard’s theorem. Thus, we can neglect this set and its
image in ¥(D). Then, when choosing a cover of the remaining open set
in D-Z by neighborhoods Ux of charts {Ul,hl}, we may choose Ui and hi
such that W¥eh' is one-to-one, nonsingular, and ¥oh'(U) 1is the
coordinate neighborhoods of a positively oriented chart. This has

reduced the problem to the change of variables case for R ]

The requirement that the set D satisfy the requirements of
Corollary 9 can be dropped. It will be seen later that ¥*(fv) = 0 on

the subset of D-Z where the requirements fail. Thus the image of this
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subset has measure zero in ¥(D).

The relationship in Proposition 19 is the basis for our elementary
model for the physical process of measuring the energy "detected" at
the subset D due to some "emission density" fv on SaA-ZRB . In this
model there is no time variable: all the objects are assumed
stationary and fv has no time dependence. To signify this situation we
shall say that the sterance is stationary. However, we are free to
move about in SM . The measuring of energy at D corresponds to the

physical process of integrating the power at D over a fixed time

interval. The measured value is I IW*(fv)l . In applications the
D
value I IW*(fv)l is used to estimate the 4~form W*(fv) at some u € D .
D

To estimate W*(fv) on all of the receptor submanifold R there is

typically a covering of R by sets DJ, J=1,..., and the values
I IW*(fv)l are used to estimate ¥ (fv) at some uJ € DJ . In the next
D

J
section it will become clear why a single measurement suffices to

estimate this vector (4-form) in a five dimensional vector space
(A*(T*sm)).

The requirement to exclude r—lhn) is a nuisance. To eliminate
this requirement we shall use the fact that the compact set consisting
of the union of all objects A is contained in a sufficiently large open‘
ball B. The exterior of B, that is, Ra—B, is added to the set of all
objects. Then, since 6[A v Rs-B) = A v 8B, this new boundary is once

again compact. Empty space M is then reduced to MnB . It is easy to
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see from the definition of T that with this augmented set of objects
fd(m) nMnB=g@, for the geodesics cannot escape B. Finally, we
assume that fv is redefined .so that its domain is increased to
S(BA--Z)u{:)B[Ra

To conclude this section we now formulate the problem that will be
the subject of the remainder of this chapter.

Define, for me M (i.e., for m € MnB),

G(m) = { 7u(—t) | ue SmIR3 , t e [0,Tt(u)) } .

That is, G(m) is the subset of M that can be reached from m by
geodesics.

PROBLEM. When is G(m) uniquely determined by the germ of the-
differential form ¥ (fv) at m ? |

That is, if we know W*(fv) throughout a small neighborhood U in
SM, m € U, then what can be said about G(m), in particular, what can be
said about the boundary of G(m)? In this problem statement we have
been extremely generous in comparison to what is usually assumed to be
known in various depth vision problems. We briefly list what would be
given in the three standard methods. In motion stereo with observer
motion it would be assumed that W*(fv) is known along n-l(a(I)), where
n is the projection w:SM — M amd af(I) is the path of a curve
al — M. In binocular stereo it would be assumed that v (fr) is
known at n-l(ml) and at n-l(mz), where m  and m, are two distinct
points in M. And in accommodation (depth from focus), it would be

assumed that a 2-form is known along a path in M, where the 2-form is
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obtained by integrating the 4-form over a neighborhood in each fiber.
It is clear, then, that the solutions we find to the problem in
which W*(fv) is known over a neighborhood must be solutions to any of

the three standard methods.
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1.2 NONUNIQUENESS IN GENERAL

The first part of this section is devoted to checking that the
preceding definitions and results are adequate to prove several
elementary items. With these items it is shown that even if W*(fv) is
given on a neighborhood about a point u € SM, then G(m), the image of
geodesic paths in M from m, is not uniquely determined. In this
section the convention is continued that T '(») = o and that M = MnB
for some open ball B.

Since 84 - Z is a submanifold of R3, it has a normal bundle which
is a subbundle of TaA;ZR3 . Since 84 - Z has codimension one and is
orientable, it has a unit normal vector field N. The field N may be
viewed as a section of the bundle SaA_ZIR3 .  We shall use the bracket
<,> to denote the standard Riemannian metric tensor (that is, the
standard inner product of R° applied to Tpr3 , D € Ra, identified with
R3 by the natural isomorphism)}. The corresponding norm is denoted

1/2
vl = <v, v> .

20. LEMMA. Let N be a unit normal field on 84 - Z. Then

<¥(u), (Nomwo¥)(u)> 0, ueSsSM-Z.

Proof. From Theorem 8 and the definition of ¥ = plo@ it follows
-1 -1 3 s
that Z > ¥ (S(84-Z)). Hence, SM-Z ¢ ¥ (S,, JR° - S(84-2)), which

implies ¥(SM-Z) c SBA—Z[RB - S(84-27). .
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The following definitions are standard ones. Let 51’52’3 denote
the standard coordinate functions of Ra; that |is, sl(ai,a ,as) = a.
Let R denote the volume element M, = dslAdszAds3 of Ra.

To similarly express a volume element for SR3 we shall use

interior multiplication and a volume element for TR>. In particular,
for TR the so called natural coordinate functions are
xl,xz,xs,y1,y2,y3, where X = son and y, = ds1 , 1=1,2,3, with n the

natural projection of TR3. A volume form for TR3 is then H AR, where
»*
Moo= dxlAdszdx3 =n “o , and M, = dylAdyzAdy3 .

A vector in T(TRa) is called vertical if it lies in the span of

—g—, —g—, —g—, and it is called horizontal if it lies in the span of
ayl ayé ay3
8 8 8 3
— F— F— Let the metric tensor for TR™ be defined by
dx ' dx’ 98x .
1 2 3
8 8 3 4 d
ey > = < v = Ky —> = ,
ayiayj ax axj 85165j 1)
4 48 _ _ A
and <5‘—y—,a—x-> =0 . 1,J—1,2,3.

Then ulAuz is a volume element.

Let F denote the vertical vector field

, V € TR3.

_ ad
F(v) = Z yi(v)a—y—- .

i

i
Note that if llvil = 1 , that is, v € SRS, then IF(v)I = 1 .

A p-form (as an alternating multilinear map) is said to be
vertical (horizontal) if it vanishes whenever any of the p vectors in

the argument is horizontal (vertical). Thus dx1 and B, are horizontal
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forms, dxlAdy1 is neither horizontal nor vertical.

Let the interior multiplication of a p-form w by a vector field X

be denoted by X|w . That is, xjw(xl,...,xp_l) = oXX,. .., X ). It
follows that Fjpz is a vertical 2-form on TR° . If the inclusion of

SR® in TR® is denoted by t:SR° — TR , then { (F|u) is a vertical
2-form on SR° and t*p1 is a horizontal 3-form on SR°. It is
straightforward, then, that

uo= t*plAt*‘(FJuz) = " (-F] (1, am)
is a volume element for SR°.

In a similar fashion the volume element v for SaA_ZIR3 can be
expressed in terms of vertical and horizontal forms. As above, the
inclusion maps are used to pull back appropriate forms. - For example,
let 8 be the bundle inclusion map

0:T,, R > TR,
and similarly (the subscript 1 to distinguish the unit vector bundle)
8,:S,, K > SR .
Let 6 denote the adjoint of 6 (e.g., (etdxi)(X) = dxi(BX), X e
TaA_ZR3). Let N be the previously defined unit normal vector field on
8A - Z. Then N]etuo is a volume element for 84 - Z, where, as before,
we suppress the inclusions T(84 - Z) in TaA-ZRS and S(84 -~ Z) in
Sgs-ZR - With m the projection m:S,, R° — 04 - Z, v = n (N]o'n )
is a horizontal 2-form on SBA—ZRS . A vertical 2-form is elﬁ*(FJuz)

From the definition of N, F, My and H, it follows that, up to sign,

* *
v = v A8 't (F]uz)
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There is one additional 4-form that is needed. Let E denote the
horizontal vector field on R defined by
E:TR® — T(TR®) ,.

_ e}
E(v) = Z yi(v)a—g

. v
. . 3
Then E_]u1 is a horizontal 2-form on TR~ , (EJ“1)A(FJ“2) is a 4-form,
and, with the inclusion t:SR° —— TR® ,
* 3
o=t [(E]ul)A(F]uz)) is a 4-form on SR".
The following simple calculation shows ¢ = t* ((EAF)J(ulAuz))
3
E] (“1A(FJ“2)] = (EJul)A(Fjuz) + (-1) MiA[EJ(FJMZ)] .
while the last term vanishes since M, is wvertical; by the same
reasoning
— . -— 3 .
FJ(“1A“2) = 0 + (-1) ulA(F‘JuZ) ;
hence
(EJMI)A(F_lﬂz) = -E| [FJ(HIAMZ)J ,
and the right hand side is (EAF)J(’JlA}.lz).
The results we seek for S!R3 depend, of course, on the structure of
TR® . The following result is elementary, but it provides a technical
relationship between SlR3 and T[R3 that will be used repeatedly 1in

proofs. Recall the definition of l/lt(u) = y(u,t) = '}u(t) for u € SlR3,

t € R, and where ¥, is the geodesic determined by u .

21. LEMMA.

i, The horizontal vector field E:TR° — T(TR°) is complete and

the one parameter group of diffeomorphisms ¢t, t € R, of E is the
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geodesic phase flow, ¢t(V) = &v(t) , LeR, ve R .
ii. Let t:S[R3 —> T[R3 be the inclusion map, hence E°t is the

restriction of E to SRa. Then there is a vector field E1 on SlR3 such

that dt E1 = Eot . The one parameter group of diffeomorphisms of E1 is
wt, that is, ¢t restricted to SR°. In summary, the following diagram
commutes.
T(sf®) —& T(TR®)
E [ TE
1
sk —*t 5 1R°
v s
s —

Proof. For fixed v e TR° the images of v and E(v) € T(TR®) under
the standard cocordinate functions are
3 3
VvV —> (x1’X2’x3’y1’yz’y3)(V) e R x R,
E(v) > ((x,%,%,y,7,y)(v) , (y,y,,y)(v) , (0,0,0))
e (ROxR2)x(R°%R°) ,
hence ¢t(V)F——+ (x1+ty1,x2+ty2,x3+ty3,yl,y2.y3)(V) . On the other hand
wu(t) — (x1+ty1,x2+ty2,x3+ty3) , hence 7u(t) = ¢t(v) . This proves
i., while ii. follows from the coordinate representations and the fact

that v e SR° if and only if £y (V)% =1, .
i

With this lemma we can now say something about the 4-form

o= i*((EAF)J(HlApz)) defined everywhere on SR® and about the 4-form
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¥*(fv) (sterance) defined on SM-Z. In the following we do not require

that M = MnB for some open ball B.

22. PROPOSITION.
i. wt*<r=¢r, teR .
ii. Fix u € SM . For every t € [—t(-ul),r(ul))
a) there exists a neighborhood Ut about u, such that for all
ue Ut , T(u) = o if and only if r(wt(u)) = o ;
b) if r(ul) # o and u, ¢AZ, then there exists a neighborhood
U, about u such that for all u e U, W@wt(u)] = ¥(u) ; 1in particular,

3
for any p-form v on SaA—ZR )

wt*(w*v) = ¢"» almost everywhere on u, .

Proof. From the diagram of Lemma 21
* * »* *
W, o= v, t ((EAF)J(ulAuz)) =t ¢, ((EAF)J(MlAyz)) .
Let Xi,Xé,Xs,X; be vector fields on TR° . Then
»
$, ((EAF)J(“1A“2))(X1’xé’x5’x;) =
ulAuz(E,F,d¢tX1,d¢tXé,d¢tX5.d¢tX;).
But d¢tE = E since ¢t is the one parameter group of diffeomorphisms for

E. Moreover, from the standard coordinates, the matrix for d¢t is

I tI
ldg 1 =
0 I ’

where I is the 3x3 identity matrix. Thus d¢tF = tE + F. Hence F =
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d¢t_F - tE = d¢tF - td¢tE , consequently EAF = d¢t(EAF). Therefore
uiAuz( E,F, dcjbtx1 , d¢tX2, d¢tX3, d¢tX4)

L
= 4’t (“1A“z) (E,F, X1’ X2, Xs, X4).

But ¢t*(p1/\u2) = det[d¢t]u1/\u2 = (“1'\“2) . This proves 1i.

For ii., for t € R, u € S[R3, then if u € SM and if t €

(—t(—u),r(u)), it follows from the definition of T that t/Jt(u) € SM and

‘L'(Vlt(u)) =t + t(u) . (%)
The result follows since T (w) is open by Corollary 7. If r(ul) # o
and u ¢ Z, then u, is in the open set § = SM-'r_l(co)—Z, as is each

!/lt(ul), t e (—t(—ul),r(ul)). Then

def

¥y () °% gy, (@), -ty (u))

LY ylu, try @) 2 g, -tw) = ww

The following result completes the story on the relationship
between the two 4-forms. Here we readopt the convention that
T (w) = 8. Since o is defined on SR° while ¥*v is defined only on
SM-Z, we use the inclusion j:SM-Z —— SR® to help keep things sorted

out.
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23. THEOREM. There exists a function h:SM-Z — R such that
vy = hj*c .
In particular, for u € SM-Z, h(u) = <¥(u) , (I\I<’1t<>‘ll)(u)>-1 , where N is

the unit normal field on 84 - Z.

Proof. The following diagram summarizes the notation.

T(sM-2) — 5 rsR®) — (R

i a I

sM-z ——J , oR° —————J—————é TR®

Y b
3 1 1
Saa-2R

sfg® ——— TR®
The vector field E; on the open submanifold SM-Z of SR3 is induced by

the inclusion j . We claim
dW(E;) =0 .

For consider any function f on SaA_ZlR3 . By Lemma 21, for u € SM-Z,

’ —-— , - d
[@UED () (u) = (E[(foW))(u) = 55| (£o)(y, (u))
But by Proposition 22 W(Wt(U) = Y(u) for all t in some small

nelghborhood about t=0, hence the claim.

It follows from the claim that E;J(W*v) = 0. Locally consider any
1-form e* such that e*(E;) # 0. Then E;J(e*AW*v) = e*(E;)W*v . Since
¥y is a nonvanishing 4-form, e" Aty is a nonvanishing 5-form on SM-Z,
hence there exists a nonvanishing function k on SM-Z for which

* % K . »* 3
eaAVv=kjpu , where p is the volume form t (F](ulAuz)) on SR.

Collecting nonvanishing functions, we have that globally there exists
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h:SM-Z — R such that ¥'v = hE{[j"w . From the diagram above, from
the expression for u, and from the definition of o, it follows that
v = hj*t* (CEAFY [ (p Aps)) = hj*e .
To evaluate h, fix u, € SM-Z and let to = T(uo). Choose U ¢ SM-Z
and pi(V) x I ¢ SaA—st x R such that u € U and on U the map & is a

diffeomorphism onto pl(V) x I . Thus to € I . The map W€ is defined
)

by the following commuting diagram.

SM-Z > U J 5 SR>
1 o \¢ !

¥ y! '/

to pl(V)xI > pl(V)x{to} t,

3\/ / 91 3

Sy R 2 P (V) 5 SR

Hence Wow; = id| , and locally @W; ]*T*v = v . Consequently,
0 0

pl(V)
o= W) (") = how; (4, 0" -
0 o ©

, »* M - ’ »*
h°wt 61wt ¢ howt 910 i (x)
0 0 )

where the last equation is by Propostion 22. Since

* * » »* W

6 o =0t (EJul) N t (F_]uz) ,
_ »* t #*

v =mu (N6 uo) I (F]pz) ,

it suffice to compare 91*#(Eju1) and n*(NJGtuo) . Let X and X be
. 3 - —

any vector fields on SBA-ZR such that v, = an1 and v, T an2 are
orthonormal at W(uo). From the diagram and the definitions, at W(uo)

n(N]e'u ) (X, X)) = 1
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On the other hand, since M= n'po and drn(E) = identity,
»
o, t (EJu)(X.X) = p (toe ,v,v)
(. is the volume element of !Rs, te® is the inclusion S £R3C-—-> T!Ra)
o} 1 dA~
Use these last two results to evaluate (%) at \Il(uo), noting that

!/léo(\ll(uo)) = u, , and 1 = h(uo) uo(\ll(uo),vl,vzj =

h(uo)<\I/(uo),N°1to\I’(uo)> . "

Hereafter we shall assume that the function f that appears in the
3
4-form fv is a smooth function on SaA-iR .

The following theorem is the nonuniqueness result.

24. THEOREM. Let u, € SM-Z, n(uo) = m (n the projection SR®—
R), and let bm be a ball centered at m such that bm c M . Let
U= n'i(bm)n(SM-Z). Let {l//t | t € R} be the one parameter group of

diffeomorphisms of the vector field E1 on SR°. Then & = U l/lt(U) is

teR
open in SIR3 and
i. There exists a smooth function g:& — R such that, in terms
of the following inclusion maps
, 3
1U.U——-->€, 18.8—>SIR ,
JyiU — SH-2 j:SM-Z — SR® ,

gig*cr is a differential 4-form on & for which

. W_w I PR
JU\I’(fv) =i, (glg o),

where ¥:SM-Z — SaA—ZRS is defined for a fixed choice of a set of

objects {A}, 4=U 4 .
3 ,
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ii. Let Bm be any open ball centered at m such that bm C Bm . Let

3

: 3
a(le—Bm)IR Let the single set R -B_

vB be the volume element of S

constitute a second choice for a set of objects {A;} = {lRS—B},
m

A = IR3—Bm , 8A" = 6([R3—Bm)= aBm . Let v, be the volume element of

3

3 . :
SaB R™. Let \I/B.SBm —> SaBlR be the map for this set of objects that

m m

corresponds to ¥ above. Let jUB be the inclusion U &— SBm. Then

there exists a smooth function fB:SaB IR3 —— R such that

m

A o Lk . * R
Jyp (\I/B(vaB)] = Jy ¥ (fv) = i, (gig o)

ety

. * K = (folo i o RS
Jy ¥ (fv) = (fo¥ JU) (h JU) (lg 1U) o . ()
Define g:6 — R by

Proof: By Theorem 23 and since jojU =1

gy, (W) = (fo¥oj J(w) (hej,)(w) for all ueU.
That this definition does not depend on the choice of u and t in l/lt(u)

follows from the facts a) if u . u, € U, wtl(ul) = llltz(uz), then u =

1/ (uz) i b) \Ilrullt = ¥ as in Propostion 22; c) hOVlt = h by the

t -t
2 1
formula for h in Theorem 23; and n(U) is a ball (convex) contained in
M. If we restrict g to U we have
gin = (fo\IlojU) (hoJU) ,
and this used in (%) proves i.
To prove ii. first note that \IlB is regular on all of SB. That
m

is, the set ZB for [RS—Bm that corresponds to Z for {Aj} is empty, for

8B is smooth everywhere and ‘I/:(S(BBm)) = 2. Thus n-'l(b) c SB,
m m m
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hence U c SBm and the inclusion jUB is well defined. Define fB to be

zero on ¥ (z). It follows from Corollary 8 (to Theorem 8) that

B°jUB
3

this set has measure zero in SaB R™. Otherwise define

foWoj J(u) (hej ](u)
f ot o) (u) (fowej ) () (hejy) |
B B “UB [h °j J(U)

B YUB

where hB is given by an application of Theorem 23 and (hBojUB](u) # 0

by Lemma 20.
*_* Lo* . *
From i. for the object {AJ} we have jU ¥ (fv) = iy (glg o) and
g, (W) = (fo¥oj J(w) (hejy)(u)
: 3 L ) I .
Repeating this for the object R Bm we have jUB WB (vaB) = I (galg o)
and
gBOWt(u)] - (fB°WB°JUBJ(U) (hB°JUB)(U)

But this implies g = gB , hence the result. ]

Theorem 24 says that the objects are, in effect, irrelevant. The
4-form W*(fv) could equally as well have been defined almost everywhere
by using the boundary of a sufficiently large ball. The following
immediate corollaries summarize more precisely some observations about

Theorem 24.

25. COROLLARIES TO THEOREM 24.

(1) A function g defined on U < SM-Z such that gey, is
= d - .
differentiable a t = 0 and a7 t‘=0[g<>lllt)(u) = 0 for all u € U determines

a function g on &) = U wt(U), hence a 4-form on &, gig*a.
teR



1.2 Nonuniqueness in general 51

(2) For g as in (1) and for a ball B € R® such that w *(B) > U,

. 3 . W _ . * . *
there exists fa'saB R® — R such that Jus WB (vaB) =1, (gsl8 o).

m

(3) The choice of the ball (the extra object) that made

7 w) = @ is arbitrary.

(4) Let the subscripts 1 and 2 be used to distinguish quantities
associated with two different sets of objects, both with T_l(m) = @ for

convenience. Then, for every U such that

g*Ucw (b)n (SM-2)qn (SM,-2) .

b a ball, for every 4-form f v on S R3 , there exists a 4-form
m 11 6%-%

3
f2v2 on SaAz_ZZR such that

*_ * L * L "
Wl (f1v1) = Jy Wz (fzvz) = 1, (gsl8 o)

1 2

Juy
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1.3 A LAMBERTIAN SUBMERSION

In the last section we saw that any given W*(fv) on a neighborhood
could arise, up to a set of measure zero, from essentially any set of
objects. This result depended essentially on the fact that gig*w
coincides with the extension to & of ¥'(fv) determined by wt, t € R.
The 4-form ¥ (fv) depends explicitly on an assumed set of objects while
gig*w does not. In this section we shift our attention to gig*v .

We begin by assuming we are given an open set W ¢ SR3 that
satisfies the following conditions. Let E1 be the previously defined_

horizontal field on SR° and let {wt} be the one parameter group of

teR
diffeomorphisms of E1. (Recall wt(u) = &u(t) for u € SR°.) We require
that W be convex with respect to {wt}: if u € W and if for some t’ € R
wt,(u) € W, then, for all t € [0,t’], wt(u) € W. (We can equivalently
require that, for every u € W, (&u)-l(W) is connected.)

Further, we are given a closed set Z ¢ SR® of measure zero which

satisfies, for U = W-Z,

wn{v}u(t)Iueu, telR}cU.

In addition we require that for every m € n(W), 7 (m)"WnZ has measure
zero as a subset of the submanifold mw  (m).

As discussed in Section 2, the action of wt generates sets for
which the features above are preserved.

gw) = U wt(w) ,
teR
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gw) =U wt(U) =&,
teR

8(z) = U w;(Z)
teR

In addition to W, U, and Z we are given a map gIU:U —> R . That
is, gIU is defined almost everywhere in W. Further, for each t such
that wt is a local diffeomorphism from an open subset of U into U,

* . .
g|U<>|/;t = ;pt g|U = g|U . As in Section 2, gIU then has a unique
extension to &(U) which is invariant under wt* for all t € R and which
coincides with gIU on U. We denote the extension by g.

As in Section 2, with such a U, %, and g we define a 4-form by

. * . * _
i (glg o) , o=t ((EAF)J(uIAuz)) ,
with the inclusion maps

iU 8 = 8W) , i & s SR°,

8:
t: SR 5 TR® .
And gi, o is a 4-form on & with ¢y (gi o ¢) = gio o, t e R .
& t & &

We assume g is smooth on U.

We can prove that both ¢ and gig*c are closed. We omit the proof
for we have no need for the result. This result is the key element in
the classical discussions of the energy entering and leaving a
neighborhood.

For the next several definitions we assume once again a fixed set
of objects. Suppose iU*(gig*oﬂ = jU*W*(fv) , With fv a 4-form on

o3 . 3
SaA-ZR . Let m denote the projection n.SaA_zR —> 84 -~ Z. Further,

suppose that for every p € 4 - Z the function g is constant on

(o®) " M(p) = {u e SM | (mo¥)(u) = p} = {u e SM | ¥(u) e w ' (p)}
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From Section 2 g(u) = foe¥(u) <¥(u) , (N°1!°‘I’)(U)>—1 , hence, if g is
constant on (me¥) *(p), then for all v € m (p)

f(v) = constant <v , Np> ,
Np the normal vector at p € 64 - Z . This expression for f 1is the
usual Lambertian condition for the function f . In optics it is often

referred to as Lambert’s cosine law (Meyer-Arendt 1984).

26. DEFINITION. The function f:SBA-fRS —_ ﬂ-’i+ is Lambertian if
there exists a function fo:aA-Z —> R_such that for every v € SaA_iR3
f(v) = fo(n(v)) <v , N(n(v))>. The 4-form fv , v a volume element for

3 .
saA—ZR , Is said to be a Lambertian form.
The following propositions are immediate.

27. PROPOSITION. The 4-form gig*cr arises from a Lambertian form
fv on SBA-ZRS if and only if g is constant on \I’_l(n-l(p)) for every

p € 8A-Z .

28. PROPOSITION. If gig*zr arises from a Lambertian form fv on
3 3 3
SaA_ZJR , if 61'SBA—ZR C—— SR™ is the inclusion map, and if V1 is the
vertical projection of TVSBR3 to its vertical subspace (the subspace
" tangent to the fiber at v), then [dgon)v = 0 for every v €
3 3
8, (SBA—fR) N W) . Here we view &(U) as an open subset of SR™ so

that dgon is a section in T (SR®) over &(U)
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Recall from Theorem 24 that even if gig*o arises from a Lambertian

form then it is still the case that for any ball B such that U ¢ n 1 (B)

. 3 . A I
there exists a form vaB on SaBR with iy (g18 o) = JUBWB(vaB),
JygU & SB . However, for p = n[WB(JUB(U))), g may not be constant

on (¥ oj,p) 7 (n7 (p)).

From Theorem 24 and the above discussion it follows that on
& = 6(U) it is sufficient to consider the function g . Let 01 be the
inclusion 61:SaA_ZIR3 5 SR’. We know from Theorem 24 that for a
function g with the properties above a codimension one submanifold
91(saA_2m3) N & of & exists, but not uniquely, such that 10*(gig*o) =
jU*CW*(fv)]. The remainder of this section is devoted to choosing a
codimension one submanifold in €.

We shall say that g is degenerate on a neighborhood U ¢ SR® if g
is constant on U. 1If g is degenerate on U, then it is clear that g is
degenerate on & = &(U). For example, as in Theorem 24, a degenerate g

can arise from f_defined on SaBRS, B a ball, B > n(U), by

fB(v) = constant <v , (Nem)(v)> , v e SaBR ,

and N a unit normal field for dB. In addition, as in the corollaries
to Theorem 24 (Corollaries 25), the same degenerate g can arise from
any choice for a set of objects with f having the same definition as
fB .  Moreover, for all of these choices f is Lambertian. Hence, if g
is degenerate on U, then the condition that f be Lambertian is

satisfied trivially. Consequently, we shall exclude the case of g
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degenerate on U in the remainder of this section.

Although we do not develop it here, we think the degenerate case
is extremely important. This case is useful for "filling in" choices
of submanifolds: if g 1s degenerate on U but ¥ is specifed on the
boundary of U, then a choice for ¥ (that is, for SaAlR3) on U can be
based on variational methods such as minimal surfaces.

If g is nondegenerate we shall use the following tools to choose a
codimension one submanifold in &.

Let w be the fundamental form of TRB. That 1is, for s1 the

standard coordinate functions for Ra, xl = slon, yl=dxl, i=1,2,3,
w = z ¥y, dx!.
1
Let

Q=dw=ZdylAdx1.
i

Recall (Sternberg 1983, Ch.3 sec.7) that Q is a nondegenerate 2-form

and consequently provides a one-to-one correspondence «, «——> Xa , o, €

X X

T (TRY), X, € T(TR®), defined by
@y = XaJQ .

We define the horizontal and vertical projections by

H: T(TR?) — T(TR®) V:T(TR°) —> T(TR%)
8y _ 8 84 .
Gx) = ax V) =0
i i 1
a~ _ a, _ 8
i) = © Gy = 5,

Note that H(T(TR’)) and V(T(TR)) are orthogonal complements of T(TR®).
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As in the last section we use the inclusion map to pull back
objects from T(TR’) to T(SR’). Since the inclusion map t:SR° —> TR
is a one-to-one immérsion, the differential dt and the projections H
and V determine projections H, V :T(SR’) —> T(SR’) such that

dtoH1 = Hodt and dton = Vodt .
By an abuse of notation we do not distinguish between TR® and SR° with
regard to the coordinates X = S °om.

We shall use the following notation for vector fields. 1If X is a
vector field, if f is a function, and if ¢ is a diffeomorphism, then Xu
is a vector at the point u while X(f) is the function defined by X
acting of f. In particular [d¢ox)u = (d¢x]u = d¢u(X¢—1(u)], where we

use d¢oX interchangeably with d¢X .

29. LEMMA. The map T(SR®) — T (SR°) defined by ¥ +—— YJt*Q

provides an isomorphism VIT(S[RS) «— {Ar € HIT*(SIRS) | A(El) = o} . In

particular, for g defined on & = &(U) ¢ SR’ as above there exists a

unique vector field X on & such that
dgoH1

v (ngoyll = ngoy1 '

H (X

dgoHlJ =0,

and

*
dgoH1 = ng°H1J t Q.
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_ - a 3
Proof. Recall adt E1 = Eot and E = z Y57 - If Y € ViTu(SlR ),

then 0 = <dt v, P> = Z dy,(dtY ) y () . But Zdyl(dt)’u) y, (u) =
1 1

z dyi(dlYu) dxl(E(tu)) = [thu _j Q](dt El). Since 1 is nondegenerate,

1

the image of Vl'I'u(SlR3) under Y — thuJﬂ i1s a 2-dimensional subspace

of HTt:(Tﬂis) which 1is contained in the 2-dimensional subspace {A €
HiT‘:(TIRS) | A(Etu) = 0} . Hence these two subspaces coincide. Since

dt is an isomorphism of HIT“(S[RS) to Hrm(m3), t*H is injective, and
the result follows by considering t* [:thu 1 9).

- _  d -
The second part follows from dg°”1(51) = dg(Ei) =37 t=0g'(l/1t(u)J =

0 . In particular, dt(X, 4ge H]l Zgg( )

tu

If dgcb!1 does not vanish on a neighborhood, then the vertical

vector field ngoH does not vanish on a neighborhood. With this
1

vertical field we can test dgon.

30. LEMMA. H ody oH = dy oH , that is dy, oH 1is horizontal; in

particular

W, G|

lll (u)

Proof: For i:SlR3 s TR® the inclusion, apply dt to the left

hand side of the statement,
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dfOHiodwtOH1 = HOdtodwtoH1 = H0d¢t0dtoH1 = Hod¢t0Hodt,
and to the right hand side,
dtodllltoH1 = d¢t0H0dt.

From Section 2 the matrix for d¢t in standard coordinates is

I tl
0 I
a I 3 . .
Thus, d¢t&%;4 ) = gg—i , where { IR } is a basis for
i'tu i ¢t(u) 1lu
HfTu(TRS)). Hence, d¢toHodt = Hod¢toH°dt , wWhich suffices to prove the
result. ]
31. LEMMA. (:l/I:(dgﬁHl)]cH1 = dgc:H1 . In particular, if dg<>H1 % 0

on an open set U, then dgoH1 # 0 on &(U).

Proof. For u € §

*

*
[Opt(dg°H1)]°H1]u = Edg°H1Jw€u§det°H1)u - (dg)w{ugﬁdwtoy1)u
B GARA NN CEAR
where (*) is by the preceding Lemma. |

*
32. LEMMA. Q= $.Q .

Proof. For u € &

* *
(¢;Q)u = (¢t dei A dyi]u = z d(x1°¢t)u A d(y1°¢t)u .
1 t
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From the matrix for dgt&t in the standard coordinates,

d(x °¢ ), = (dxl + tdyl]u ,
d(y1°¢t)u = (dyi)u ’
hence the result. =
33. LEMMA. V1°dw-t°xdgol{1 = X(lﬁ:(dg°H1))°H1 . More generally,

if « is a horizontal 1-form such that oc(El) = 0, then V1°d‘/'-t°xa =

X .
(wy (@) oH,

Proof. For brevity let X = X . Thus, for u € &
. dgeH,

(wrcsnon), = [[seara)n)

*
(th(u)J (t Q):ﬂt(u)J ° (1),

((th)twt(u)JQtwt(u)) > (atedy, -4,
(apply t, = ¢t , ¢:n = Q)

((th)d)t(i(u) 1 (6., ¢, (tw ,J o (de, edted ),
(d¢—t(dtx)¢t(f(u) ] Qt(u)) °(ated ],
((alt)u (dt/:_t)() o) Qt(u)] o (dgoﬂl)u

[((dv;_tx)Jt*Q]oﬂl]u = [vi(dw_tx”t*n]u. "

34. PROPOSITION. [ng°H1]¢ w =V [dlllt (ngoHi)u] , ueég.
t
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Proof. Note that in Lemma 31 t is arbitrary. Hence,
[V1°dwt°xdgoH1]u = [x('/l_:(dg°H1))oH1]u = [ngoHl]u ’

where the first equality is by Lemma 33 and the last equality is by

Lemma 31. Replace u by l[lt(u). n

-1 -1,
tm (ng°H1) , wWhere m is the

35. LEMMA.  dgeH edy oV,
1 ; * . -1 _
isomorphism from Tué’ to Tu8 defined by (m (Yu)) (Xu) = <Yu’ Xu> for

vectors X and Y .
u u

Proof. Use the injection di. dfOHlodlllton = HodqbtoVodf . But
8 _ 3 3
[:Hodqst) LW—I ) = t TR , consequently, for any X e Tu(S[R ),
tlu 1 ¢t(u)
(dteH ody oV J(X ) = (Hodg oV}(dtX )
= Hod¢(£dy(dtx)—?—] = tZdy(th)—g—
t i u’ dy i u’ 0x )
ilu 1l (u)
i i t
Thus, (H edy, oV }(X) = t Y dy (diX ) 2
' 1 t 1 u i u’ dx
i l/;t(u)

i
= tZdy(th) dy (53—| )
i u t 9x ’
ily
i
where the last equation is by Lemma 30. Since dg[d'/’t (6%' )] =
ilu

3 :
dg(f’_";‘u) = ay, (thdgoyl]u , it follows that

dg[(Hlodzpton)(Xu)] = <X, (Kggop )y > - n
1
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36. PROPOSITION.

dg[(Hlodwtovl) [ng°H1)'l’s(“)] = t< ngoH1 , xdg°H1 >(ws(u))

= t X >(u)

< ngoﬂ1 * Xagen,

Proof. The first equation is by Lemma 35. For the second

equation use Lemmas 28 and 30: < xdgoH , ngoH >(y_(u)) =
1 1
8 2 - V[ w]? -
z [ax1 (‘/’s(u))] Z [axl(u)] = < ngoH1 , ngoH1 >(u) . »
1 1

Combining all of the above Lemmas we obtain our goal which is

contained in the next two theorems.

37. THEOREM.
(ag ngoHl](llJt(u)) = (dg ng°H1J(u) - t< ngoHi, xdgoHl >(u)
Proof. (dg xdgoﬂl)('/'t(u” = dgwt(u)(xdg”fi)'llt(u)

{(apply Proposition 34)
dg!/lt(u) [V1°dwt°xdgoﬂl]u

(add and subtract)
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dgwt(u)cdwt°xagoH1)u - dgwt(u)cH1°d¢t°xdgoH1]u

(golllt = g and Propostion 36)

>(u) . m

(de X, H)(u) -t< ngoui’ de1

38. THEOREM. On & { goH # O} the function (dg X dgeHl, ):& — R

has zero as a regular value, hence

€ n {dg ngoH = 0} is a submanifold of codimension one.

Prbof. Let w (u) € & .

[(dg g,,)][w(u)) 2 [(dg gon) s (u))]

{apply Theorem 37)

4
dt

[[dg dgo H)(u) (s+t)< x dgo H , ng°H1 >(u)]

{by Proposition 36)

=~ < Xy Xggep TW W) =0
1 1

Edg dgeHl, ) (u)

In particular, this holds for s =

ngoyl, Xﬁgoﬂl >(u)

This theorem is the primary result of this chapter.

In the next

section we obtain a modification of this result. We conclude this



64 1.3 A Lambertian submersion

section with some interpretation of the theorem.

Of course, the idea behind the theorem is that g is given or known
on a neighborhobd U in SRS. Note that if g is gliven on a codimension
one submanifold R that satisfies the conditions of Corollary 9, then

there is a unique way to extend g to a neighborhood. In either case,

dg and ngoH are then known on the neighborhood. Since g has a unique
1
extension to & = &(U), then dg and XagoH are known on &. The theorem
1
tells us that the set in & for which the function dg Xa is zero is

gk,

a smooth submanifold. To obtain dg and Xa it is necessary that g

goH,
be known on a neighborhood.

Since Xa is a vertical vector field, the theorem tells us that

goH,
the set of points in & c SR3 on which dg annihilates this vertical
field is a smooth submanifold. If g arises from a Lambertian form on a
set of objects, then, as was discussed in the beginning of this
section, dg is horizontal on SBA-ZlRa c SR?, that is dgeV = 0. Recall
from the definitions of (¢ and) ¥ that ¥(U) is the subset of SaA_le3
which determines g on U. Consequently, if g arises from a Lambertian

form, then ¥(U) < & n 1{dg xag°H;= 0} . It is an obvious corollary to
the theorems that for fixed u the path {?tun ] t € R} intersects
{dg ng°H1= 0} at only one point. Hence ¥(U) = & n {dg ng°H1= } .
A second issue is the relationship between {ég xdgoH = 0} and the
1

standard depth vision problems. As was briefly discussed in Section 1,
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since g is estimated from integrations, it is physically impossible to
determine g (similtaneously) on a neighborhood. (Even an approximation
requires a sequence of measurements.) For a fixed set of conditions,
the set of possible solutions for g given on, say, a nowhere dense set
is certainly larger than the set of solutions for g given on a

neighborhood. However, the solution {ég xagoH'= 0} is the only one
1

that is consistent throughout a neighborhood U with the assumption that
dgoV1 = 0 on the solution set.

A third point is one regarding continuity. The only restriction
on g was sufficient differentiabilty and dg°H1 # 0. This certainly
suggests that the results here reformulated appropriatel& into a
problem in terms of function spaces and manifolds would constitute a

problem that was well posed.

The final point is how the submanifold is positioned in & c SR>,
Certainly, if g arises from a Lambertian form on SBA—ZR3’ then, as was

< _ . 3
seen, the solution {dg ngoHl— 0} is a subset of SaA—ZR . However, for

arbirary g, with only dgoH1¢O, there is no guarantee that

{dg ngoH = O} lies along fibers in SR® . (For applications the
1

interpretation is that the "apparent surface" changes position in R as
the position of the observer changes.j This observation is of some
consequence. It says that for an arbitrary g, dgoH1 # 0, there is not
necessarily a surface in R that 1s compatible with g throughout a
neighborhood U. This certainly suggests that problems that are stated

soley in terms of surfaces in R may be ill-posed.
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These remarks are made precise by the following corollary to

Theorem 38.

39. COROLLARY. For m the projection n:SR° —> IRS, for m € w(U),

the submanifold 8m = &) n [ th(n—l(m))] intersects the
teR
submanifold {dg ng°H1= 0} transversely in &(U). Hence 8m N

{dg ngoH1= 0} is a 2-dimensional submanifold of E?m .

Proof. Note that, for every u € & , (E) € T & , whereas by
m Ju u m

the proof of Theorem 38 (E1]u ] Tu{dg xdgoH1= o} . And {dg ngon o}

is of codimension one. [

Thus each point m € w(U) has an associated 2-manifold in &(U).

When we say that {dg ngoH = 0} does not necessarily lie along fibers
1

we mean that for a choice of m € n(U) it is not necessarily the case

— —-— 3 — =
that {dg xdg°H1_ 0} = SNJR , where N = n[ 8m n 14dsg ng°H1 0} ]

However, & 1is not R°. Rather, & -t '(m) = Uy (u—i(m)) - 7 Y(m)
n n teR

is a double covering of R%-{0}. (For x € IRB-{O}, the two points

(% o) 20d (%, 7%p) are in (R%-{0})xs%.) The sign of (dg Xggop J(¥) in
1

Theorem 37 determines whether {dg ng°H= 0} is "in front of m" of
1

"behind m." (Note that these two cases are analogous to the

distinction between real and virtual images in optics.)
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1.4 THE SPHERE BUNDLE OVER A CURVE
In this section we push a bit farther the results of the previous
section. In the last section we found that the Lambertian condition
determined a codimension one submanifold in the sphere bundle. In this
section we find that we can reduce the dimension of everything by one.
Let a:I] —> R° be a curve with nonvanishing tangent vector a(s)
for all s € 1I. Since all considerations will be 1local, let I be
sufficiently small so that a(I) is a submanifold (a is a one to one
immersion and a homeomorphism into). Let Sa(I)[Ra denote the
restriction of SR° to a(I). Let S(a(I)) denote the unit tangent bundle
of the manifold a(I) and consider S(a(I))} as a subset of Sa(I)lRa.

We claim that for every u e Sa(I)[RS-S(a(I)) there exists a

neighborhood V < Sa(I)le-S(a(I)) about u such that Ul/lt(V) is a
teR

submanifold of SR°. To see this, first note that U l/Jt(V) = Y(VxR).
teR

(Recall wt(u) = y(u,t).) From the proof of Theo.r‘em 8, Y:VxR —> SR® is
nonsingular if V  S(a(I)) = . In particular, there exists a
neighborhood Vx(-2¢,2c) on which y is nonsingular and one to one.
Shrink V if necessary so that m(V) < B_(mn(u)), where mSR® —s R is
the bundle projection and Bc(n(u)) is the ball of radius € about mw(u).
Then ¥ is one to one on VxR, for if wt(ul) = wt(uz) , with u , u, € v,

1 2

then l/Jo(ul) =u = Y

X (uz) , hence lt1_t2| < 2¢ , which contradicts

t_-t
2 1

the fact that ¢ is one to one on Vx(-2¢,2¢). Thus Y is a one to one
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immersion on VxR. It is also an open map since w:SRSXR —> SR> is an

open map. Thus U ¥, (V) is a submanifold.
teR

Recall the definitions of the open sets W and U of SR° defined in
the beginning of Section 3. In particular W is convex with respect to
{wt}' Z = W-U has measure zero in SR3, and U is convex with respect to
{Wt}. By the same type of argument as in Corollary 9, Z  V has
measure zero in Sa(I)RS' Let‘us shrink V by a set of measure zero so
that V ¢ U = W - Z , so that we may assume as in Section 3 that g,

which is smooth on U, is thereby smooth on V . Let 81 = U wt(V) and
teR

define g on 81 as before.
With these preliminaries we proceed to refine Section 3 to find a

submersion on81 determined by the Lambertian condition.

40. PROPOSITION. Let Y be a vertical vector field on &(U) such
that Y = V1°d¢t°y . Then the function dg Y satisfies
(dg Y)o./,t =dgY-t <ngoH1 , > .

Proof. For u € &(U)
(ag Y) (¥, () = dg'/’t(u)y'llt(u) = (dgev eay), v,

(adding and subtracting)

Edgodwt)u Yu - Edg°H1°dwt)u Yu

(apply Lemma 35)

dg, Y -t <ngo111 LY .
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let u € S ,..R>-S(a(I)) and let u € V, where V is open in

a(I)

R°-S(a(1)) and € = Uy, (V) is a submanifold of SR®. Let X be
teR

the horizontal 1ift to T(SR®) of the tangent vector to the curve a.

Sa(I)

. 3 -1
That 1is, Xu = Z dxl(a(s))gu for every u € mw (a(s)). Let

1

* 3 3 * *
mI:T (SR”) — T(SR”) be defined by dtomlot = m (recall t is
surjective), and let w = wedt . Recall dtml(wl) = m(w) = E = th1 .

-1 s
Thus, the 1-form m [Xu - w1(xu)(E1)u) annihilates E . Consequently,

there exists a vertical vector field X, along a such that

B

-1 *
m [xu - o (Xu)(El)u] = (Xl Q), -

If u e w'(a(s)), then X, € T €& , for by definition VT & =
B u1 1u1
3 . X
V1Tu(S[R ). Consequently, dthB € Tl/:t(u)81 We claim the vertical

projection is tangent to 81 .
41, LEMMA. V1°dwt°XB € th(u)é"l .

Proof. For m{u) = a(s), it is easy to check that

. . 3
dt(XB)u = Z [dxi(a(s)) - ( Z yj(tu) dxj(a(s)))yi(tu)]a
i j ‘

Then dtonodllltO(XB)u
_ . _ - a
= X [dxi(a(s)) [:Z yj(iu) dxj(a(s)))yi(tu)]a—i—
1 b
by the matrix for d¢t . Clearly V1°d‘/’-t°V1°d"’t(X{3)u is tangent to 81

tu

i ¢t(tu)
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at u e w'(a(s)) since V.T & = V.T (SR). We claim
1u1 1'u
(Hlodw_toviodwt](xﬁ)u is in the span of (E1)u and X . This will
suffice to prove the lemma. But H[d¢ [:ai ] = -t 9 , SO
-t 3y 8x
i ¢t(tu) 1ltu
that H dg_, (Vodg, Jat(Xy) = di[—t x, - “’(Xu)(51)u]] : .

42. THEOREM. Let the curve a:I —» Sl}'\’3 determine a submanifold

a(I) in R’ and a subbundle S,yR -Slall)) in SK°.  Let V ¢
S R°-S(a(I)) be sufficiently small so that & = Uy (V) is a
a(I) 1 t

teR
submanifold of SR®. A vertical vector field XB along V is defined by

-1 _ »* .
m (X, - e, (X)(ED) = (Xg]t'Q), , u eV, X the horizontal 1ift of

a . The vertical vector field X, = Vldllltx along 81 is tangent to 81 .

B B
The function dg %B on 81 satisfies
(dg XB)olﬁt = dg Xg - t <Xg , ngoH1> :
In particular, <XI3 , ngoH1> = dgoHl(X) , so that if dgoHl(X) # 0 on V,
then dg %B is a submersion and {dg iﬁ = O} is a codimension one

submanifold of 81 .

Proof. Only two things are not covered in 'Pr'oposition 40 and

Lemma 41. One is <XB . ngoH1> = dgoHl(X) = dg(X) . A brief proof is
* »*

Kg ngoH1> = <m (X]tQ) ml(xdgoHljt Q)> = <X - wl(X)E |,

ml(dgoH1)> . The second item is that in order to apply Proposition 40
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we need V1dwt.XB = XB . But this follows from V1°dlllt°V1 = Vlodl,l/t .

which follows from the matrix for dqbt by essentially a restatement of

the proof of Lemma 30. =

We can conclude this section by restating everything from the end
of the previous section. All of the the observations are still
relevant. The relationship between an arbitrary dgoI{1 known along a
curve and dgoH1 due to a Lambertian sterance is the same. Secondly, as
before, even though the sterance is stationary, the 2-dimensional
manifolds in é‘m , m being different points along the curve, are not
necessarily over the same subsets in IR3; - Finally, as before, the

solution submanifolds need not be "in front of" the observer.



2 SOLUTIONS AS VECTOR FIELDS AND 1-FORMS

2.1 MotivAaTiON

The subject of this chapter can be viewed as a third problem in
the sense that the subject of the previous chapter was the first and
second problems. In this point of view, the situation in the previous
chapter was, first, that the sterance'was specified on a neighborhood
and then, second, that it was specified along a curve. In this chapter
the situation is, roughly speaking, a generalization of the sterance
being given along a curve with the curve not being given. We saw iﬁ
the previous chapter that the sterance plus the tangent vector to the
curve uniquely determined a submanifold solution. It is not
surprising, then, that in this chapter the problem is the sense in
which both this tangent vector and the submanifold solution can be
uniquely determined by the sterance.

In this first section we reexamine the results of Chapter 1 to
provide the motivation for the contructions and the questions of this

chapter. In this reexamination we first want to clarify what we mean

72
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by knowing the sterance but not knowing the domain. Then we will use
the solutions from Chapter 1 to determine the consequences of assuming
only this partial knowledge.

The subject of this chapter goes by various names 1in the
applications literature: motion parallax, motion stereo, depth from
motion, and optical flow. It would, of course, be possible to motivate
this chapter by discussing some of the visual phenomena associated with
motion parallax. However, for this the reader is referred to the
psychological and engineering literature (Collett and Harkness 1982;
Marr 1982; Prazdny 1983). Here we shall restrict ourselves to that for
which we have reasonably good definitions and structure. Since we have
something resembling this in the first chapter, we will stick to that
structure in characterizing our third problem.

It still should be kept in mind that the purpose of this section
is motivational. In the second section of this chapter the effort for
precision is resumed. We begin the reexamination with a two paragraph
summary of what we have.

In the previous chapter we first considered the case in which the
function g (as described in the beginning of Section 1.3) was known on
a neighborhood U of the sphere bundle, and then we considered the case
in which g was known on a neighborhood ¥V in Sa(I)Rs’ where a:I — R3
is a curve. In both cases there was a natural choice for vertical
vector fields X& and X, on the manifolds & = &(U) (dimension = §) and

B

81 = gwv) = U wt(V) (dimension = 4), respectively, so that, for
teR
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dngl:# o, {?g Xa = O} < & and {?g XB = 0} < 81 are codimension one

submanifolds.

We also took note of the manifold Em = & '(m)) (dimension = 3),
which 1s an embedding of S°xR in SR° with S$x{0} +— w '(m). We
found, for example, that for each m = a(s) € n(V), s € I, Sm intersects

{ég XB = O} transversely so that 8m N {ég Xb = 0} is a 2-manifold (see

Corollary 39). The projection map m embeds 8m n {dsg XB = 0} as a

submanifold. It was noted that in general the 2-manifolds

n[@a(s) N 149g XB = O}] are different for different s € I .
This chapter is motivated in part by the question of the

relationship between the family of manifolds n{@a(s) R XB = 0}]
sel

and the family of functions { glga(s) }
sel

In both of the cases in Chapter 1, either the case of a
neighborhood or the case of a curve, the domain of g was & or 81 . We
did not consider the possibility that g could have a time dependence.
That is, we did not consider g:6xI — R , where I ¢ R is a so called
time interval. Let us refer to the case of Chapter 1, g:& — R , as
the stationary case for g . Thus, as was noted at several points in
Chapter 1, it is physically possible to approximate a stationary g on a
neighborhood in SR> using sequentially measured samples, whereas it is
not physically possible to obtain the measured samples simultaneously.

Let us review some observations regarding the stationary case

solutions of Chapter 1.
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Observation 1. For the first observation consider the case of g
known on a neighborhood in SR> as in Section 1.3. Let Fy m® — TR
be defined by (X1’xz’x3’y1’y2’yé) — (kxl,kxz,kxs,yl,yz,ya), k > 0,

in the standard (or natural) coordinates. Let Fk:S|R3 —_ SR3 be

defined in the obvious way by restriction. Let g’ = goFk-{ It is
straightforward that Fk[{dg xﬁgOHl = 0}] = {?g xag’oHl = O} . This

example illustrates the role of the domain of g. In other words, if g
were known up to homotheties of the domain, then one would have a
family of submanifolds related by homotheties.

Observation 2. The preceding observation is more 1ntere$ting in

the case of the curve a (Section 1.4). Again g is stationary. Note

3 _ 3 . .
that Sa(I)R = SSISa(S)R . Similarly, with k(xl,xz,xs)

3 3 .
(kX1’kx2’kx3) , Ska(I)R = SEISka(S)R . Since we can measure g

sequentially, we can consider the sequence of functions

g|S R® :S ( )Rs —> R . We then have the sequence of functions
a(s)

’ 3
g g

S R™- —> R . It should be clear,
ka(s)

-1
3 = (goF [ 3 :
ka(s)R k) Ska(s)R

for a fixed s and for S R® and S, \R° identified with S° by the
ka(s) a(s)

natural coordinates and parallel translation, that g]s R3 and
a(s)

(geFk-l)IS g3 2re the same functions on S®. That is, the sequence
ka(s)

of functions parameterized on s is the same. It is only the additional
knowledge of the two curves a and ka that distinguishes the cases.
There are even more Iinteresting examples 1if we drop the

requirement that g be stationary. For example, for s € I let Fi be
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defined as Fk but with exp(sk) replacing k . Then g'| R~
exp(sk)a(s)

[go(Fi)-1)|S 3 1s the same sequence of functions on s? as
exp(sk)a(s) '

3

3 2
g|S R3 , wWhere Sa(s)R and S are identified with S° by

a(s) exp(sk)a(s)|R

parallel translation and the natural coordinates. Here g‘(u,s) =
g°(Fi)-1(u) defines a nonstationary function.

Observation 3. A final observation is the recollection of the
fact from the previous chapter that even if g 1is stationary .and
a:l — R3 is known, it 1is still possible to have a nonconstant

3
sequence of 2-manifolds n{@a(s) n {&g Xb = O}J in R". The interest

here is not that the manifolds "move," but rather that there is no

canonical way to define a pointwise correspondence of flow associated

with this sequence of manifolds. Although the sequence of manifolds is

well defined by {ég XB = 0} , there is not sufficient structure to

uniquely define a flow. (See the discussion of correspondence by
Blicher (1984).)

Issues related to these three observations above will occupy us in

this chapter. In general, we wish to consider Sm R’ for some fixed
0

m € R° and define & = Uy (S R . The parameter s that was

0 0 ter ¢ M,

previously the parameter for the curve a is now considered to be a
parameter for g . That is. we wish to study functions g:QOxI — R,
I ¢ R, which satisfy g[:l/lt(u) , s) = gu, s) for (u,s) e gxI . The
coordinate s 1s to be interpreted as time. As usual, we assume g is

smooth where needed. Such a function g on 80xI would arise, for
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example, from g’ described at the end of Observation 2.

In this formulation we have dropped all information about the path
a and the neighborhood VU. In the results of Chapter 1 precise
information about the path was required and g was to be stationary.
This amounts to assuming that g:goxI —> R arises from a rigid motion
of R°. Here we wish to remove this restriction and to consider a wider
class of motions. (For applications we have in mind examples of
g:@be —> R that arise not only from observer motion but also from
moving objects such as water waves, animals, wind blown grain fields,
flapping flags, as well as isometries of R3.) In fact, rather than
assume an isometry, we wish to determine to what extent local analysis
of g:80xI — R can be used to "detect" isometries.

In Observation 2 there is a preview of the type of degeneracies
that will be faced. The example involving Fi is equivalent to the
observation that g:goxI —> R does not wvary if the objects about an
observer at m collapse (are retracted to mo) or expand along radial
lines. Thus g:@oxI —> R cannot "detect" such motion; i.e., g is
invariant under such motion. From Observation 3 there is the second
preview that, even if a moving manifold is specified, an associated
flow is not necessarily uniquely determined.

A first result from these remarks is that we may drop the pretense
of working in the sphere bundle. With the understanding that we are

interested only in points not at the origin, we have the following.
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Remark. Without loss of generality we may replace g:80xI —> R
with g: (R>-{0})x] —> R .

Reason. We can identify R°-{0} with Uy (S R ¢ Uy (s R =
t ~m t ~m
t<0 0 teR o

80 , and Rs—{O} suffices, for we may reflect, if necessary, any of the

codimension one submanifolds of Chapter 1 (e.g., 84, u[{dg X = 0}] )

through the origin because of the wt invariance property of g .

The problem of selecting (moving) submanifolds in (R3-{0})xI that
are consistent with a gilven g:(Rs—{O})xI —> R has at least the
degeneracy of the problems in Chapter 1. In Chapter 1 we had
nonuniqueness in general, but unique Lambertian submanifolds. We seek
similar conditions for a well posed problem for selecting submanifolds
consistent with g:(Ra—{O})xI —> R . In this chapter we shall make an
assault and some progress on this problem. Our progress will at times

consist of solving a subproblem which we call the still picture

problem.

DEFINITION. We say that a problem involving g:(IRs-{O})xI —> R
satisfies the still picture condition if whenever g satisfies
g(m, s) = g(m,so) , (ms) € (R%-{0})xI , 5, fixed in I,

then the only possible flow on Rs-{O} is the identity.

Since, for exémple, the flow on (R3-{0})xI given by ws(m,so) =

(e_sm , so+s) does not change g, then there obviously must be some
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additional structure for the problem to satisfy the still picture
condition. In this study we have adopted this still picture condition
as our first question to be asked (and answered) in seeking to

understand mathematical structures for modeling depth vision phenomena.
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2.2 SPACE, BASIS VECTORS, FLOWS, AND FORMS

In the last section (Ra—{o})xI was ldentified as the space of
interest. In this section definitions and some elementary
relationships are presented. As in Chapter 1, we are pursuing local
results, and we will ignore any closed set of measure =zero. The
structure of the ignored sets is contained in Theorem 10 of Chapter 1:
we are ignoring, among other things, "edges." Since everything in this
chapter is local (i.e., we only need some open set around the point of

interest), it suffices to know that the ignored set is closed and of

measure zero. The additional structure given in the theorem can be
neglected.
Let (m,t) e (R°-{0} )xI , where I is an open interval in R . In

this chapter t will always be an element of I. The natural coordinate

functions for (IRB-{O})xI will be denoted by X)X, XS if m =

(m,m,m) e R°-{0} , then x (mt) = m , i=1,2,3, and s(mt) = t

(R°-{0})xI is equipped with the standard metric <2 , 9,5 - 3
é)x1 axj 1)

=, 5= =1 . The vector field 2 determined by the
ds ' 8s s
natural coordinates will often be denoted as . Equivalently, as =

grad(s).

For m = (m,m,m), let Im|? = ) mf . The smooth, positive valued
1

function p on (R%-{0} )xI is defined by p(m,t) = |m|
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1. DEFINITION. The position vector field R on (R-{0})xI is

. _ 3
defined by R = ¥ X 3%

i i

The one parameter group of diffeomorphisms

of the vector field R is denoted by 0r , reR.

It is fairly easy to see, for (m,t) € (R>-{0})xI, that ﬂr(m,t) =
r X s ks
7ﬁ(m,t)(e -1) , where 7R(m,t) is the geodesic determined by the initial
tangent vector R(m,t) . In particular, R is a complete vector field on
(Ra-{O})xI ; that is, ﬂr is indeed defined for all r € R .

The following elementary consequences are noted: ds R = 0; soﬁr =

s; dp R = p; lnp is well defined on (R°-{0})xI and dinp R = 1; R =

[}

p gradp . Since pox‘}r = erp and since ﬂ; commutes with d, ﬁ: dinp
dlnp .

In this chapter two types of figures will be used. Each type has
its unique ambiguity. In Figure 5 the vectors R(m,t) and 6S(m,t) are
illustrated for a fixed (mt) e (RS—{O})xI . In Figure 5; the first
factor R>-{0} of (R°-{0})xI is displayed ambiguously as a quadrant of a
two dimensional plane whereas the second factor I 1is displayed
unambiguously. In Figure 5b the second factor I 1is ambiguously
displayed. The two dimensional plane in Figure 5b is used to represent
either the slice (R%-{0})x{t} or the image of the projection
m: (R°-{0} )xI —> R°-{0}

We wish to consider vector fields on (R°-{0})xI that correspond to
the so called nonautonomous or time dependent vector fields (Arnold

1973, Ch.2 sec.8). We also wish to restrict the consideration to
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those vector fields that are consistent with the scaling observations

of the previous section.

. R(m,t;\\\\
g o as(m,t)

R(m 1) N | (m t) 7 "~

’
~

. |

~

(m, t)

(a) (b)

Figure 5

2. DEFINITION. An admissible vector field is a vector field X on

a neighborhood U ¢ (R°-{0})xI such that

L. U= U ‘8r(U) ’
reR

. ds X =1

ul. [X,R] = 0, where [,] is the Lie bracket.

The local one parameter group of X is denoted {¢°} (Warner 1971,

Definition 1.49). From Definition 2 one has several elementary

consequences. First one can apply the standard result that linear
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independent vector fields with vanishing Lie bracket have commuting one
parameter groups on a sufficiently small neighborhood (Bishop and
Goldberg 1968, Theorem 3.7.1). Since ds X =1 and ds R =0, X and R
are linearly independent on U. Since R is complete, there is the

following (Figure 6).

3. LEMMA. dﬁrX =X on U. If e, is defined on V ¢ (R°-{0})xI

for s € J ¢ R, then e, is defined on U 6r(V) and 000, = 6rowa .
reR

Proof. For any (m,t) € U , cover the compact set Kn =

U 0r(m,t) by a finite collection of neighborhoods in which the
-n=r=n

loca} one parameter groups commute, hence in which dﬁr X =X . By the
completeness of R and by the group property of 0r it follows that this
holds on Kn , hence on U . It is then easy to check that the integral
curve of X at Gr(m,t) is (ﬁro¢°)(m,t) , and the last statement follows

by uniqueness. n

L4 (m, t
0r(m,t) / r(¢° i )J

/
/7
/ 7/ \ \)
v 7 -
’ i
(m,t)/,/ .-
,/ )’< (P (m)t)
Y

-
/e

Figure 6
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An additional consequence of Definition 2 is the following. Since
ds X = 1, then, for (mt) in the domain of e, s(¢°(m,t)) =t + a=
s(m,t) + a . Thus, since ¢: commutes with d, wz ds = ds .

We digress briefly for a few remarks on motivation and modeling
regarding the choice of definition for the admissible vector field.
First, the flow ¢, determined by a time varying vector field X is the
obvious generalization of the transformations discussed in the
Observations of Section 1. Second, it is readily seen that for fixed r
the action of the map Gr is an expansion or contraction of the vector
space R3 by the factor e’ Thus, the ﬂr invariance of the flow {¢°} is
the generalization of the invariance under scale change discussed in
the Observations.

However, one might consider choosing a flow (¢°} that models a
motion from mechanics rather than one that commutes with 0r . An
example is the choice that ?, is an isometry of Ra. There are many
reasons why such a restriction is not used, some of which will become
apparent later. One of the reasons can be made precise immediately:
it is that such a choice for ¢, can not in general be made in a manner
that is consistent with the sterance function g . The following
definition for sterance function is the obvious adaptation of the

function g from Chapter 1.

4. DEFINITION. A sterance is a function g:(RS-{O})xI —> R that
is smooth except on a closed subset of measure zero and that satisfies

R(g) =0 .
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It is an immediate consequence that goﬂr = g, r € R, hence
0: dg = dg . (The ér invariance of g is the exact analog of the wt
invariance in Chapter 1.)

It follows from the definition that g is determined by g[ssz ,
the restriction of g to Ssz . For a fixed t € I we call g|szx{t} the
image associated with g at t ; we call glssz the image sequence. In
view of the fact that goﬂr = g , a distinguised role for glssz is of
significance only for applications: the image sequence glssz is the

function that is approximated in physical measurements.

5. DEFINITION. An admissible vector field X defined on a
neighborhood U ¢ (R*-{0})xI and a sterance g are said to be compatible

if g is smooth on U and if X(g) = 0 on U .

An immediate consequence is that, on a domain of definition JxV of

the local one parameter group {¢°} of X, ce€e (-e,e) =JcR, VcU,

we have goq)0 = g , hence ¢: dg = dg . This invariance of g along a
path wa(m,t) , 4 € J , is analogous to the Lambertian condition of
Chapter 1.

It can now be seen that the condition that P, and ﬂr commute is
sufficient for the consistency of ®, and ﬁr with sterance. For, by the
definition of sterance and by the definition of compatibility,

god op = gop, = g = go9 = gop oo .

Q&
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If dg - ggds # 0 we have three linearly independent functions, g ,
lnp , and s , on the 4-manifold (R*-{0})xI . This is typical. The
introduction of the sterance function always leaves us one function
short of a chart for any of the manifolds used in vision problems.
This gap is frequently noted and is often filled by changing g from a
real valued function to a map into Rc, c z2 2. This is done typically
to model the physical phenomena of color. (See for example Blicher
1985.) We shall not do this.) Instead, we will make do with three
functions, but from the three linearly independent 1-forms we will
determine a fourth by the Hodge star operator. In this way we will

have defined a bundle of bases on {ég - ggds #* O} .

A convenient definition of the Hodge star operator (Flanders 1883,
156-7) uses the metric induced on 1-forms by metric equivalence (0’Neill
1983, 60). Let M be an n-dimensional Riemannian manifold., let me M .

Metric equivalence refers to the existence of the isomorphism m from

1-forms at m to vectors at m defined by <m(w) , X> = w(X) for all
1-forms w € T:M and all vectors X € TmM .  The inner product of 1-forms
w, and w, is defined by <w1 . w2> = <m(w1) , m(w2)> . For p-forms at m

the inner product is defined by defining for decomposable elements v
con = e < > = < > )

VA Avp and pu BA Aup , v, M det ( vl,nj ) For M

orientable, choose a volume element o . (We assume a positive definite

metric, hence <o,0> = 1.) The Hodge star operator * acting on a p-form

v produces an {(n-p)-form *v defined by

VAL = <*p , p> o , for all (n-p)-forms u .
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From the smoothness of the metric tensor it follows that =* maps
differential p-forms on M to differential (n-p)-forms on M .
We define a differential 1-form on (R°-{0})xI by
B = * (dp A dg A ds )
We shall repeatedly use the following elementary facts about B . (The
notation for the norm associated with the inner product of any of the

. 1/2
vector spaces is Il | = <, >7%))

6. PROPOSITION.
1. 0= <B,dp> = <B,dg> = <B,ds> .
= _ dg
2. BN = lidg - =dsl

»*
3. 6r B=8.

Proof. Statement 1 1is immediate. For example, <B,dp>c =
dpadgadsadp = 0 .  For statement 2, if dg - ggds = 0 then we are done.
dg — ggds 8
Otherwise, by 1 we have that dp , —a ds , TRl are
ldg — 284l
ag ds
dg — =ds
orthonormal, hence o = dp A ——————gf——— A ds A ng = <BéB> il
hdg ~ a—idsll ldg - a—idsu Bl

To prove statement 3, we express B in spherical coordinates. For x =

p sin@ cos¢ , X, = P sind sing , X, = p cos@ , sine # 0 , with

XmAdXZAdXSAdS = ¢ , then dpAdeAd¢Ads = g . Since dg =
p sinB

g—gde + g—gdqb + g-f-ds , <dp,dp> = 1 , <de,de> = 1/p°> , <dp,d¢> =

1/(p°sin®@) , <ds,ds> = 1, it follows that
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=_1 98 45 - og
B = S1ne 3¢ de sine 36 do .
The désired result follows from 6°4_ = 0 Pod_ = ¢ ggoﬂ - % and
r ’ r '8¢ r 8¢ '’
ag - 9g
%001_—-6'6. | |

It is convenient to have an indexed notation for these four

1-forms that are a basis for T (R*-{0})xI when dg - dis #
(m,t) ds
(m, t)
0. We use
el* = dg , ez* =B, ea* = dlnp , ei* = ds .

We denote the four vector fields that are dual to {el*} by {ei} . We
alsouse e =e_ , e =e,, e =e , e =e_. It is easy to see

1 g 2 B8 3 o] 4 s

gradg - g%a 3
that e_ = 5 32,e=7<,andes=a—5§e by checking
llgradg - —56 I P s g
ds s

that e'*(e ) = 5 .

3 i)

7. PROPOSITION.
1. llell = 1 = qe
) g gl B
2. dé_e = e , hence [R,e]l =0, 1=1,2,3,4 .
r i i 1
Proof. The first equation in statement 1 follows fron the

formulas for eg and statement 2 in Proposition 6. For the second

equation, note that statement 1 of Proposition 6 implies m(B) =
constante+e_ .
B
* iw 1% X
Statement 2 follows from the fact that Or e = e , i=1,2,3,4 .
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Note that three of the 1-forms are differentials of functions.

However df need not vanish. From this observation we have
8. PRoposiTIoN. le el =B(le,el) eg, 1,J=1,23,4.

The following table summarizes the definitions, notation, and

results of this section.

TABLE 1
functions g p s
p(m, t)=|m|
. - 8 -
vector fields X R= §x15;: as—grads
flows N (local) S
1-forms ) el*=dg e2*=B e3*=d1np e4*=ds
1~
dual
¥ . _ _ _ _. dg
vector fields e =e e _=e e = e =8 —2e
1 g 2 B 3 4 s ds g
_9g
) gradg 5;65
_dg
ligradg ggasu
i = = * i*= i*
relations waoﬁr 19ro<p0 goz‘)r g 0r e e
g°¢°=g dﬂr €78

[X,R]=0 [?,ei]=0
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[ 2 _8g,_ .2 ]
le ™ 0 0 gole,!
2
0 lei“ O 0
°s
LTt 2
) . 0 0 p 0
_ dg 2 [g_g 2 2
alegl” O 0 1+(52)7 el

It is easy to see from Table 1 that for any sterance g there
exlsts admissible vector fields that are compatible with g . The
simplest example is the vector field e, . Another is R + e, - More

precisely, X = B(X) e, + dlnp(X) R + e, is admissible if and only if

B
R(B(X)) = 0 and R(dlnp(X)) = 0 , for then [X,R] = 0 . If this X is
admissible, then it is clearly compatible with g . This is summarized

in the following.

9. PROPOSITION. Let g be a sterance that is smooth on U ¢
(R°-{0})xI and assume dg - ggds # 0 on U . Then there exists vector

fields on U that are compatible with g .

To say that X is compatible with g is to say that the motion
¢°(M,t) , ¢ € J , of a point (m,t) is contained in a level set of g
(Figure 7). Equivalently, g is constant along wa(m,t). This latter is
the usual point of view for applications: the sterance associated with
the point (m,t) does not change as the point moves. In this latter
sense g 1s a consequence of a motion. This is analagous to our

consideration in Chapter 1 of a form gi *s that is a consequence of a

&
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Lambertian form fv (Propositions 27 and 28). Just as in Chapter 1, to
get a well posed problem we do not place such restrictions on g . As
in Chapter 1, g has essentially no restrictions. Instead, we will

study subsets of admissible vector fields.

wa(m, t)

aeJ

Figure 7

In this section there has been no mention of objects or surfaces.
In fact, there will be no mention of these until Section 4. The reason
for this was suggested in the first section but can now be made
precise. Let S be a neighborhood in any surface such that R is nowhere
tangent to S. Then {ﬂr(S)}r is a family of surfaces and for each

surface its motion due to admissible, compatible X is pointwise along
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level sets of g.

In applications this situation is frequently stated in the
following manner: the absolute distance from the origin to a moving
surface cannot be determined from glssz , where the sterance g is the
consequence of a Lambertian form on the surface.

In light of this it is not meaningful to introduce a surface.
However, {Gr(S)}r suggests that we introduce {dﬁr(TS)}r , that is, an
involutive distribution, and that we seek relationships between X , g ,

and integral manifolds of this distribution.
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2.3 PARALLEL FIELDS, GEODESIC VARIATIONS IN IMAGES

In The last section we saw that admissible, compatible vector
fields always exist but are not uniquely determined by the sterance.
In this section we will consider a subset of admissible vector fields.
In this restricted subset we obtain a uniqueness result, up to images
which satisfy a condition related to geodesic variations on Ss°.  When
this uniqueness result is applied to the case of a constant image
sequence, i.e., gg = 0, we find that this restricted problem satisfies
the still picture condition.

The following terminology is standard (for example, O’Neill 1983,
Ch.3). For vector fields V and W on (R®-{0} )xI , let DVW denote the
natural covariant derivative of W with respect to V ,

D, W = ¥ V(dx W) 2 i vaswm 2 ,
. 1 axi ds
where X1’ x2, Xa’ s are the natural coordinate functions. A vector
field P is said to be parallel if DYP = 0 for all vector fields ¥ . A
related case is ds P = 0 and, for all Y such that ds Y = 0, DYP =0 ,

That is, P is tangent to and parallel in R-{0}x{ t} , but D, P need not

8
s
vanish.
Let X be an admissible vector field. Let X and sterance g be
compatible on a neighborhood U (where we may assume U = U 0r(U) ) in
reR
which dg - ggds = 0 . In this case we have on U the four linearly

independent vector fields e=e_ , e=e, , e=R , e=e_ , and the dual
1 g 2 3 4 s

B8
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1-forms dg , B, dlnp , ds . Therefore X = B(X) e, + dlnp(X) R + e,

B
since dg X =0 and ds X =1 .

10. THEOREM. Let X and X’ be admissible vector fields on U ¢
(R°-{0} )xI , and let g be a sterance such that both X and X’ are
compatible with g on U. If there exists a vector field P 2 0 on U ,
with DYP = 0 for all Y with ds Y = 0, and a smooth function h on U

such that X’ - X = hP, where the measure of {h=0} is zero, then

B(P) B (DeBeg]

0 (1)

and

B(P) B(Degeg] dlnp(P) . (2)

Proof. It follows from the admissibilty and compatibility of X

and X’ that hP = dlnp(hP) R + B(hP) e From the matrix for <e1,ej>

g -
in Table 1 of Section 2, it follows that <hP,eg> = <hP,es> = 0onU.
Let e1=eg and e,=e_ . It follows by continuity and from the fact that
{h=0} has measure zero that

<P,eJ> =Q0onU, j=1,4 . (a)
Since Y<P,eJ> = <DYP’eJ> + <P’DYej> , We have for every vector field Y
withds Y =0 ,

<P,DYeJ> =0onlU, j=1,4. (&)
Note that DYR = Y for any vector field Y . Recall e, = R = p gradp .
Hence,

= > = - < > = =< > j= .
pdp(DYeJ) <fR,DYej Y<e3,ej> DY?{,ej Y,eJ , Jj=1,2,3,4 (c)
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Since DYeJ = dlnp(DYej) R + B(Dyej) eB + (terms in e, eg) , it
follows from (a), (&), and (c) that

| InRIZ 2
0 = <P,Die> = -dlnp(P) <¥,e> ? + B(P) B(Dye ) Negh™ . Jj=1,4 . (x)
Recall IRI%= p? and ueBu2 = IIegII2 . Note lle il = 0 . (See Table 1.)

From (*) with j=1 and with Y=eg it follows that

0 = -dlnp(P) + B(P) B(D, eg) ;
g

with Y=e_, it follows that

B
0= 0 +B8(P) B(D, eg] :
B
(Note that () is trivial for Y=R . Also (%) with j=4 leads to the
same results, for e =e_=3 - Qge and 8 1is parallel.) ]
4 s s ds g s

It is easy to see that if hP = X’ - X, then R(h) = h , for [R, hP]
must vanish if X and X’ are admissible, and [R,P] = D?P - DP? = =P .
Consequently, there exists admissible vector fields X + hP . An

admissible vector field as + hP is illustrated in Figure 8.

Figure 8
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The following corollaries explain why the theorem is interesting.
Note that U sty = U n R°-{0}x{t} . The corollaries are direct

consequences of statements (1) and (2) of the theorem.

11. COROLLARY. For P as in the theorem, if there exists a point

(mt) €e U s ' such that B(P) =0, thenP=0onUfs '
n n

(m, t)
Proof. Apply statement (2) of the theorem and O = dg P = ds P .=m

12. EXAMPLE. Let g§ = 0 on U . Hence, on U the image sequence

is a still picture,

g|ssz glssz = g|szx{t} Let X = e_ , hence X

as . Thus ¢, = id x {t——>t+a} . The corollary tells us that X + hP

8 + hP , P # 0 , cannot be compatible with a still picture if any

8

point (m,t) € U has B(P) 0O . Note that it is not necessary that

(m, t)
h(m,t) = 0 .

The vector field as + hP with h # 0 is frequently implicit in the
engineering literature. Compare the problem of finding the "focus of
expansion," that is, a point (m,t) such that B(m,t) = 0 , in Prazdny
(1983).

The proofs of the next two corollaries are immediate.

13. COROLLARY. With P as in the theorem, if there exists a point

_1 _ -
(m,t) € U s (t) such that dp P = 0 and B(De eg) # O, then P = 0 on

Uun sTH(t)
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The following result is of more significance than the preceding

two for it depends on only the image g|szx{t}

14. COROLLARY. With P as in the theorem, if there exists a point

(mt) € U s'(t) such that B(DeBng(m,t) # 0 , then P = 0 on

Upns )

This result is of the type we are seeking. First, it is local:

ng depends on only the germ of g at (m,t) . Second, it provides
B
. .o 08 _

a uniqueness resglt. For example, if =2 =0 on U and B[DeBeg)(m,t) #0

B(p,

for any (m,t) € U , then there is a neighborhood U U p s'(t) on
| ti<e

which Bs + hP is a solution if and only if P =0 .

The following corollary provides some insight into what the image
g|szx{t} must look like locally if P # O . Recall the definition of
geodesic variation. Here we follow 0O’'Neill (1983; Ch.8). A two
parameter map x into s? is amap x:D — s? , where D is open in R® and
where horizontal and vertical lines in R® intersect D in intervals.
Let (u,v) be the natural coordinates for Rz, The u-parameter curves
u — x(u,vo) are called longitudinal. A two parameter map x is a
geodesic variation if every longitudinal curve of x is a geodesic.
With au , 6V the natural coordinate tangent vectors of D , there are
the two vector fields along x , dx(au) and dx(av)

Recall that the covariant derivative DT on Szx{t} induced from D

on (R°-{0})xI is defined by taking the tangential component, and a
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curve ¥ is a geodesic on Szx{t} if and only if D; % = 0 . Recall that

eg and e_ are tangent to S2{ t}

B

15. COROLLARY. For P as in the theorem, P # 0 if and only if for
every (m, t) € {P#£0}nU  there exists a  geodesic variation

x:[-€,€1x(=8,8) —> S° < (R°-{0})x{t} such that x(0,0) = (m, t) and

i:
dx(au) = "eB" , dx(av) = eg

Consequently, P # 0 if and only if

T eB T T eB
D [ eB ] —" eB" =0 and D [ eB ] D [ eB ] eg = Reg [ eB ] [_" eB""] ’
HeBﬂ HeBH HeBH "eB"

that is, eg is a Jacobi vector field, where R is the curvature tensor

for Sz.

Proof. For P as in the theorem, P # O on U s (t) if and only

if B(D, ) =0 onUpsT(t) . Since DW s tensorial in V,

B
B(D eg eg) =0 . (%)
[HeBH]
e e e
Atso, < B B> =1 inplies B(D, —B) =0 . Hence
el te N e lle_ll
B B g8 B
e e
= B _ B
0= R2 Tegl ~ P °8 eg] B[[ %g * Tegl ]]
g e N
B
°s
Since [eg , eB] = B([eg , eB]]eB , we have [eg , WE;W] = 0.
€ 2
Therefore, considering eg and e 28 tangent vectors of S™x{t} , for

B
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each point of Szx{t} | U there exists a coordinate neighborhood about

e
the point such that eg and WEEW are coordinate vector fields.
B
e e e e
From < _B_ . B > = 1 we have < _B_ , Do e B > =0 .
el e ll el B el
B B B = B
lte
e B
B
From < —— , e_ > = 0 we have
e il g
B
e e
B B _
<€ Dregye >t “mec Pr%1% > =0°
=] B B
el e Il
B o B
From (*) and Table 1, < HeBH , D eB eg > = 0 . Consequently,
g [Ilell]
e B
DT[ eB WEEW = 0 , so that the coordinate corresponding to the
e H]
B e _
coordinate field WEEW is in fact a geodesic curve on Szx{t} . Thus the
B

coordinates define a geodesic variation and the transverse field e
satisfies the Jacobi differential equation (e.g., O’Neill 1983,

Lemma 8.3). =

The results of this section are, of course, only partial.
However, they do begin to clarify several relationships between
admissible, compatible fields and the image. We may summarize these
results by saying that for a sterance g , for X + hP admissible and
compatible with g , and for P parallel on (R°-{0})x{t} for all t , With

ds P = 0 , we understand the necessary and sufficient conditions on g

such that {P | [X+hP](g)=O} * {P=0} .
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2.4 |SOMETRIES FOR TWO-DIMENSIONAL DISTRIBUTIONS

The results of the last section described a restricted subset of
admissible vector fields and used only the properties of the sterance
function. In this section a larger class of admissible vector fields
is studied by the introduction of additional structure. As suggested
at the end of Section 2, the new structure is involutive distributions
or, equivalently, differential ideals (Warner 1971, Ch.1, 2; Bishop and
Goldberg 1968, §3.11). The vector fields to be studied are those whose
flows are isometries of the integral manifolds of the distributions.

Our first task is to define the differential ideal that is of interest.

16. DEFINITION.” A 1-form compatible with an admissible vector
field X is a closed 1-form w defined on a neighborhood U c (R3-{0} )xI
such that

i about each point (m,t) € U there is a neighborhood V =

U® (V) in which w = dF , F c c®w)
reR

. w(R) =1 ;

Ud. w(X) =0 .

This definition merely summarizes the situation in which there is
a two-dimensional submanifold (surface) in (RS—{O})x{to} , Wwith R never

tangent. Consequently, there is a coordinate chart u = (yl,yz,ys,s) on
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a neighborhood such that (O’yé’ya’to) is a coordinate chart for the
surface. And, since [X,R] = 0 , the 1inverse of the map
(r,y,,¥,,0) 0ro¢°ouf1(0,y2,y3,to) is a coordinate chart on a
neighborhood. Let F be the first coordinate function of this inverse.
Each level set of F is a submanifold which is tangent to X .

On the other hand, directly from the definition the 1-form w
trivially generates a differential 1deal. Hence, by the Frobenius
theorem (Warner 1971, Theorem 2.32), through each point (m,t) of U
there is a unique, maximal, connected codimension one submanifold whose
tangent space is the annihilator of w .

Thére are the following immediate consequences of the definition:
ﬁ:w = w , hence me = 0 where LR is the Lie derivative relative to R ;

Feop = F , hence w*w = wand L = 0 . Further, recall, as in Table 1,
2 a x?

that 0: el* = &' , [R,X] = 0, hence

17. PROPOSITION. In the expansion w = Y}, fie” , where w is a
1

1-form that is compatible with an admissible vector field X,

f
3

1 and R(fl) =0, i=1,2,3,4 .
To construct a basis we use the Hodge star operator.

18. PROPOSITION. For a sterance g, dg - gfds # 0 on U =

U 6r(U) , for a 1-form w compatible with an admissible vector field X
reR

defined on U, then the differential 1-forms
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al* = dg ,

a =y = (pw A dg A ds) ,
3%

a =ow,

a4* = ds ,

constitute a linearly independent set of 1-forms on U , with

= - 2 2 = = =
v = ng P f2"B“ dlnp , f2 w(ez) y f3 w(es) 1,
and
6* v =vp,
r
hence,
6: ai* = ai* , i=1,2,3,4 , but ¢: al* = ai* , 1=2 .

i

Proof. It follows from w = } fl e and from the definition of B

1
(see Table 1) that v = = (prB A dg A ds) + féﬁ . By the definition
of the Hodge star operator
< (-£ 8, e* > o = Pf (B A dg A ds A e')
0 if i=3

- £, dpadgadsaB = - f, 1gIe o

The result follows from lle> 1% = Wdinpl? = 1/p° .
It is a corollary to the proof of Proposition 6 that pligh is
independent of p, hence ﬂ: v = v . The remaining relations are

previous results and definitions. [ ]

19. PROPOSTION. The properties of {a”} and the dual vectors

{ai} for a neighborhood U = U Or(U) ¢ (R°-{0})xI are collected in the
reR
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following table, where

D= det(a”(ej)) =f2+ f22p2||3||2 :
f =1 , and lle ll = lle il = 1/08I
3 g B B
TABLE 2
1% = = = -
a = dg a ag eg f1aw
a2 = a =a =+ (fe, - £.R) = l—[e - fa
B 2 v D U3g 2 f B 2%w
3% - i% - _1
a —w—?fie aa—aw-—ﬁ( IIBIIe +f‘k)
a4* = ds a =a =e_-fa
4 s s 4%w
o a'* =2, LfRaH =0, as_a =a , [Ral=0, i=1,2,3,4
* 1% ix 1% _ _ * .
voa =a , La =0, dp a =a + Opo v)(al) a, , 1#2
dwo a = Gpo v)(av) a,
[X,a ]l = —(va)(ai) a, s i=1,2,3,4
<a_ , a>=0, 1i=#2
2 1

In particular, at each point in U the vectors a =a and a=a, form an

orthogonal basis for the integral manifold {é=0 , ds=0} , and under the

flow {wa} of X the basis ag ,» a, is mapped to a basis.
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Proof. The expressions for a, in terms of the basis {ei} is

obtained by inverting the matrix [a”(ej)) . Note that ﬂ: al* = 3"

implies L?{a: = 0 (Warner 1971, Prop. 2.25) and that the converse holds

locally. The same holds for dﬂral = a and [fR,ail = Lyza.1 . The
= - »* J=

results for dgoaai follow from a (dqpoai =9, a (al) .  Similarly for

dﬁral . The result for [X, ai] follows most simply from the product

rule for X(aj*(al)) and from aj*[[x,al]) =0, J=# 2, since only v is
not exact and since aj*(X) is a constant, j # 2. (It also follows from
the derivative of dqpaa1 with respect to & .) The orthogonality result

follows directly by using <el R eJ> in Table 1. ]

We now reach the motivation for .the preceding constructions. We

wish to study X, g, and w as in the following definition.

20. DEFINITION. Let X be an admissible vector field with local
one parameter group P, where ®, is defined on U for « € J (0 € J).
Let g be a sterance, dg - %ds # 0, which is compatible with X , and

let w be a 1-form which is compatible with X . We say ®, is an

isometry of {w=0 , ds=0} it ®, is an isometry from the integral
manifolds of {w=0 . ds=0} N U to the integral manifolds of {w=0 , ds=0}

NU . That is, , is an isometry if for each (m,t) € U and a € J

< d<p°a1 , do a >¢ ( =< a i, =12,

Qg m, t) 1’ aj >(m,t) !

where a1=ag and a,a, as defined in Proposition 19.
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The following result provides several equivalent descriptions of

an isometry of {é=0 , ds=0} .

21. THEOREM. For a local one parameter group e, > defined on U
for ¢ € J , of an admissible vector field X , X compatible with
sterance g , dg - ggds # 0 , and compatible with 1-form w , the

following are equivalent. For a € J, (mt) € U :

1. ¢ 1is an isometry of {w=0 , ds=0} .

4a
2 X<a_ , a> =0 3. X<a_ , a>=0
g g
dp a_ = a [X , a ] =0
s ‘g g g
al) al) al)
d¢o[ﬂa u] ~ Ta i [x P u] =0
v v v
4. <D,X,a >=0
g
al)
<D X, 2 >+<D,a X, a >=0
a Havn | g
g M
v

a
<Dra X, |-—2|>=0
v Ta i
a1
v

5. For every V e {é=0 , ds=0} , <D.X, V>=0

4

0]

The (0,2) tensor T, e TZ[ w=0 , ds=0}] defined by

TX(V,W) = <DVX , W>

is skew symmetric.
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Proof. 1 & 2. From Proposition 19

de a

*
NP (wa v](ag) a, (%)

dp, a, Ep: v](av) a, (w%)

(3) If 0, is an isometry, then (wz v)(ag) = 0 since ag and a, form

. < > =
an orthogonal basis If 0, is an isometry d¢°ag , dwoag ¢°(m,t)
' »
< > = < > =
qg , ag (m, ) But (wov)(ag) 0 implies d¢aag , dwaag ¢a(m,t)
<a - > . < >
ag , ag ¢°(m,t) by (=) Hence ag , ag wa(m,t) is constant for & €
J ,'thus X<a_, a > = 0 . Finally, if ¢ 1is.an isometry, then 1 =
a g g a e a
v v v _
<d“’o[na u] BN ry ke ’ But by  (x) d‘pa[lla u] =
v v ¢°(m,t) v (mt)
* ay * av
(¢ v) L—~—J (a) . Hence (¢ v) {———J =
a ' (m,t) Havu (mt) Y wa(m,t) o '(m,t) Havu (m, t)
+ ﬁ%—w By continuity at o« = 0 the right hand side must be
v (mt)
'y
2y 2y
positive. Hence by (»*) dp [—— = |
allla N ta Hl
v /(m,t) v ¢0(M,t)
< > = < >
(&) dwoag , dwoag ¢°(m»t) ag , ag (m, t) follows from
X<ag R ag> = 0 and from dwaag = ag . That dtp0 preserves orthogonality
_ 2
is easy to see. Finally, <d¢°av , d¢aav>¢°(m,t) = "av"(m,t) follows

directly.
2 & 3. The forward (=) case follows directly from the definition
of Lie derivative that uses the derivative of dgooal with respect to o .

Conversely, the vanishing of the Lie bracket implies that locally the
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corresponding local one parameter groups commute, hence the result.
3 &« 4. This follows from the identity DXY - DYX = [X,Y] and
from ai*([x,ajl) =0, 1= 2.

<Da X, a> = <Dxag + [X,ag],ag> = (1/2)X<ag ,ag> :

p g
aV
<Da X , W) + <D av X N ag>
g Ta i
al) av aV
= <Dya, + Xal. <DX[Ila u] * [X’Ila u] » 2
v v 14
av al) V al)
=X<a , —> + <[X,a ], —> = <[X,a l, .—>;
g’ Tal g ' Tal g ' Tal

a, a, a,
<Dpa_ X, —> = <|X > .
v * e [ *lMa ll] > lla
— v v v

EM]]
v

4 & 5. 4 clearly is a special case of 5. And 5 follows from 4
by the tensorial property of the covariant derivative and the fact that

a_and a, constitute a basis for the tangent space of the integral

manifolds.
5 < B. This requires only the application of the polarization
identity for bilinear forms. =

A key reason for considering only those admissible vector fields

which are isometries of {é=0 , ds=0} is that this restriction excludes

the type of motion in which the still picture condition is violated by

the retraction of R3 to the origin. (Figure 9)
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22. COROLLARY. (radial motion) Let X be an admissible vector

field on U c (R°-{0})xI with local one parameter group ¢ , and let X
a

be compatible with a sterance g , dg - géds # 0, and with 1-form w .

s
Let e, be an isometry of {é=0 , ds=0} . If X = Xsﬂ + as on U , Xé €

c®(U), then X,=0onU.

Proof. Let V be any vector in {é=0 , ds=0} at (m,t) € U such that

dxs(V) = 0 . Then, by statement 5 of the theorem,
0= <DVx, V> = <DV(X35R + as) , >
= <DV(X5?) , > (since as is parallel)
= Xs <DVﬂ , V> (since V(XS) = 0)
= x_uvn? .
3
P4
/s
/ v _ -
!/ s _ -~
/7~
Figure 9

A second corollary of a similarly simple nature further clarifies

those X which generate isometries of {§=0 . ds=0} .



2.4 Isometries for two-dimensional distributions 109

23. COROLLARY. (uniform motion) Let X on U be admissible and
let sterance g and 1-form w both be cbmpatible with X . Let ?, be an

isometry of {é=0 , ds=0} . If X = hP + as , where DYP = 0 for all Y

(including Y = 65), then h is a constant.

Proof. By the statement 4 of the theorem

a

0=<Dpa (hP+3), —Ii>
[ ] s lal

ta Il
J
aj aj
=dh[||au] P =12
]
a
Fix j . If dh["ém] # 0 at (mt) , then there is a neighborhocod in
J
a
which <P , W31W> = 0 by smoothness of P and aj . But then
j
a a a
0=X<P, —3>=0+<P, D|-_|>=<P, D,a x> = dn|—_|np1? ,
la #i X{Na ll 3 a |l
] 1 EN :
3
which is a contradiction. [ ]

These two corcllaries give some insight into the permissible X .
They do not depend on the sterance g ; they depend only on the isometry
assumption. In the next section the sterance is used to clarify a
question of the uniqueness of X for a given sterance and a given

1-form.
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2.5 UNIQUE FLOWS
In this section we make explicit use of a_ and av . We recall a
few facts from Table 2 (in Proposition 19). The vector fields a_and

av are tangent to the integral manifolds of {é=0 R ds=0} H <ag , &> =

v
0 ; and
dg(a ) =1, ‘ v(ia ) =0,
&g g
dg(av) =0, v(av) =1.
That is, since dg(av) =0, a is tangent to the level sets of g as

well as tangent to the integral manifold. This holds, by construction,
for any 1-form w used to define the integral manifold. On the other
hand, ag is tangent to the integral manifold but is "adjusted" so that
<ag ) av> =0 . In Figure 10 a sphere is illustrated in which the

level sets of g are lines of latitude.

Figure 10
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The next result is essentially a continuation of Theorem 21.

Z24. THEOREM. Let X be an admissible vector field on U , with a

sterance g , dg - ggds # 0 , and 1-form w compatible with X. Let {ai}

be the vector fields dual to a1*=dg , a2*=v , a3*=w , a4*=ds . With
the notation a=a_ and a=a , if a (la H2J # 0 , then the following
1 g 2 v v g
are equivalent.
1. The local one parameter group of X , where defined, is an
isometry of {é=0 R ds=0} .
2. X<a_,ap = X(ta? =0
g & g
2
Xla _[lla | =0
[250251%)
2 2
x[m[uagn )] =0
v
3. For any sequence of vector fields AI,ﬂé,&s,...,ﬂd , Where each
2 2
ﬂj is either a, or WE;W , the function Ad(dd_l[...ﬂi(ﬂagn )...)) is

annihilated by X .

Proof. 1 < 2. The forward (=) implication clearly holds, for,

a

by Theorem 21, statement 3, X commutes with both ag and WEEW , and
v
2
Xlita I =0 .
(12?)
The converse requires the additional assumption in the statement
a
< _ v _
of the theorem. For in general [X,ag] = u([X,agl)av and [X , WE;W] =
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a
vllx, —2-|| a . But by the conditions in 2
HavH v

2 2
v((x,a.1) av(llagll ) = [X.a l(ia )=0,

v[[X : %]] a,(1a?) = [x : %'-] (1aph®) = o.

If av(uaguz] # 0 , then these two equations provide the result.

Statement 3 clearly implies 2, and it follows from 1 by using the

a
commutativity of X with both a_ and — - , and X(la %) = 0 . .
g Havu g

The significance of the theorem is that it provides relationships
between the vector field X and the 1-form w, for ag and av are defined
in terms of w . (Recall, eg and eB are determined by g alone.) The
theorem is an example of how we are presently seeking to understand the

sense in which the pair X and w can be determined by g under the

restriction that X generate an isometry of {@=0 , ds=0} .

The following theorem explains the significance of the condition

that a (la_i®) # 0 . In fact, if a (la_i®) # 0 , then there is a
v g v g

uniqueness result that uses somewhat less than the condition that X

generate an isometry.
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25. THEOREM. Let X be an admissible vector field on U <¢
(R®-{0} )xI , and let g , dg - Z—ids # 0, be a sterance and w a 1-form
both of which are compatible with X . Let {ai} be the vector fields

dual to a1*=dg R a*=p R a=w , a**=ds , With the notation a1=ag and

a=a . If X[Ilaglla:] = 0 (for example, if X generates an isometry of

{w=0 s ds=0} ), then X is unique whenever av (Ilaglla] 2 0onVU.

Proof. Since a''(a) =& , the four 1-forms dg , d(laJ®) , v,

1]
ds are linearly independent if and only if av(llagllz) # 0 . Since
{a”‘}1 and ‘(a‘}i are determined by g and o, theh the four vector fields
dual to dg , d(llagllz) , w, ds are determined by g and w . In

particular, X is so determined since dg X = d(llagllz) X = w(X) = 0 and

ds(X) =1 . m

26. COROLLARY. With the conditions as in the theorem, since w

dF locally, the functions y1 =g, y2 = Ilagﬂz, y3 = F , y‘l = s are a

coordinate system for U c¢ (R*-{0})xI . For this coordinate system X =

8 . - = 3

E , the slices {y1 , y2 , ya—const , y4—const} are the integral

manifolds of {w=0 s ds=0} , and 6_?'_ , é—?}' are tangent to {w=0 , ds=0} .
1 2

This theorem can be compared to our result in Chapter 1, Sec. 4.
There we had a uniquely determined sequence of submanifolds of IRS, but

no canonical way to define a flow that generated this sequence. This
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theorem says there is at most one flow that preserves IIagII2 , if
a (uagu2] %0 .

It is easy to see that the condition a, (Ilagllz] # 0 is necessary.
In fact, a proof by picture is already available in Figure 10. If the
level séts of g correspond to lines of latitude on the sphere, then
a, [||agll'?) = 0 . Any rotation of the sphere about the north; south axis
is comf:atible with g and with the 1-form w that characterizes a

stationary sphere.



PART 2

SOME SOLUTION TO PROBLEMS IN VISION
FROM DECONVOLUTION METHODS

3 DECONVOLUTION FOR THE CASE OF
MULTIPLE CHARACTERISTIC FUNCTIONS OF CUBES IN R"

SUMMARY

Explicit error bounds are exhibited for a case of deconvolution
with elementary convolutors on R". The convolutors studied are a set
of n+1 characteéistic functions of cubes ( e.g., with side length VJ ,
j=1,2,...n+1) which operate by convolution on Llan(Rn). For a
suitable choice of approximate identity, a set of n+1 functions
(deconvolutors) in L%(R™) are exhibited which restore Llan(Rn), up to
convolution with the approximate identity, from the n+1 convolutions.
For the case of the convolutors operating on Llanan(Rn), 1=p<ew,
explicit bounds for the restoration error in the norm LP(E), E compact,

are exhibited; that is, error bounds for restoration restricted to a

115
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compact subset. The motivation for this study 1is the digital
implementation of this deconvolution for the application to signal
detectors which act by integrating over cubic regions. This
motivation is discussed along with remarks on the significance of the
topology for signals that is implied by the notion of restoration or

deconvolution.
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3.1 INTRODUCTION: DECONVOLUTION AND MACHINE VISION

Our interest in deconvolution is in part a consequence of a point
of view in machine vision that we have been developing. (For
contemporary developments in machine vision see, for example, Marr
(1982).) 1In this introduction we shail indicate this point of view and
we shall also indicate certalin constraints to deconvolution that arise
in machine vision.

The deconvolution problems that are of interest here are of the

type: on R", given N distributions of compact support “1'“T""“N
{(called convolutors), determine the existence, support, and
construction of N distributions Vol a by (called deconvolutors)
such that

N

Z pl*v1 =3,

where 8 is the Dirac distribution.

For machine vision the interest is in R° or R°. Existence of the
deconvolutors depends on the M e.g., the M cannot all be smooth
(c®) functions. A condition can be placed on the Mo called strong
coprimeness, such that the desired v, exist and have compact support
(Kelleher and Taylor 1971). The cases for which the p, are
characteristic functions of a) two intervals on R and b) two disks on
R2~have been examined in Berenstein and Yger (1983) and in Berenstein,

Taylor, and Yger (1983a, 1983b). For these cases deconvolutors with
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compact support exist when, for example, two interval lengths or two
disk diameters have the ratios V2 or 2, respectively. Explicit
- formulas for the deconvolutors in cases a) are reported in Berenstein,

Krishnaprasad, and Taylor (1984).

Let us consider a role for deconvolution, or signal
reconstruction, in machine vision. In machine vision one 'seeks
information about objects by means of one or more images. Let us

consider obJjects that can be modeled as a finite wunion YMJ of ct

2-manifolds M in R°.

An emitted or reflected radiation can be
associated with an object by defining a density F on the sphere bundle

of R° restricted to VMJ' SR3|9M » where the density is with respect to
J .
a choice of volume form for SR3| e To include the variable time we
W,
consider the product space SRSI?M xR. Let M denote a subset of the set
B]

of such densities along with their support

M {F : SIR3|SJM xR —> R}.
;

Let Eé denote a subset of Rz. This subset will represent what is
typically referred to as the "image plane." Let ¥ denote a subset of
the set of time varying image densities
F c {f; EéxR —> R}.
A basic problem in machine vision is the definition and construction of
a suitable left inverse p of an image forming map p,
M g,

—
[

Additionally, and most importantly, appropriate topologies are sought
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so that p is continuous. For example, if M is a finite set with the
discrete topology, then ¥ should consist of disconnected components,
each containing at most one point from p(M), and on each component p is
constant. If p(m) is in component C then the convolution ¢*p(m) of a
given function ¢ with p(m) may not be in C. In this example, the role
for deconvolution is to map ¢*p(m) back to C. Since we require only
that the deconvolution yield a point in a neighborhood of p(m), we use
the term approximate deconvolution.

We shall leave further mathematical details on this point of view
to a future paper, but we will discuss the motivation. The motivation
is that we wish to consider separately the questions of image quality
and the questions of machine vision, and then to Jjoin these questions
throught continuity of vision on an appropriate space of - images. We
separately consider these questions because it seems ill advised to
address the issue of vision over some neighborhood of an image (which
might include the image plus some additive noise, convolutions of the
image, or non-linear sensor degradation of the image) when the issue of
vision at the idealized, perfect image remains an open question. With
this separation, we consider the idealized, perfect image (e.g., p(m)
for m e M) as a 1limit point in an appropriate function space ¥, and we
shall require that any well defined vision algorithm p be continuous on
this space. (An example of a topology for M is the smallest topology

such that p is continuous.)
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We now turn to the specific 1issues iIn 1image quality and
convolution-deconvolution that are the subject of this paper. For any

image f € § we never know f: we measure, for example, [Jf , where Q is
Q

a nelghborhood of (0,0) € EéxR, instead of f£(0,0). To use our
continuous vision algorithm, if we cannot know f then we would like to

be sufficliently close to f. Let us consider an example of what we can
a
2’

models a square detector of side length a > 0 centered at 0 € Eé c R?

aa a
know about f. The set Q could be (-5,5]x(-3,5)x(-T,0). That is, Q
and which integrates over the time interval (-T,0), T>0. Let
_ raay raa _ . - _
A= (535)x(53)x0.T) = {x: -x eQ = -q
and let xA be the characteristic function of A. Then

[£ = [ex, = () c0.0).
Q

Let us model a staring array with a simple integration time
response, A set of non-overlapping subsets which covers EEXR (up to

Lebesque measure zero) is
= (5 2 -2 2 - ,
{Qp’q = (ztp2 0 3*pa) x (3*p2 0 3*p2) x ((a-DIT . aT) -
- 2
p=(p ,p)eZ" , qez}.

Let each Qp model a square detector of side length a centered at pa =

' q

(Pla,PZa)eE% which integrates over the time interval ((q—l)T , qT].
bet (XA)[(U,B)] be the shift of x, by (u,s),
(XA)[(u,s)l(x't) = XA(X‘U,t-s).

With this (xA) = %, , and

P,q

[(pa,qT)]

.[(xo)[(pa,qu = (XA*f](Pa,qT).
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For the staring array we do not measure fe# but rather
{(xA*f)(pa,qT) . pez® , qgezZ , (pa,qT)eE}

where E is some bounded subset of EéxR.
An answver to the question of what can be said about f based on the
measured data is that for f in a suitable choice of normed function

space, these meausred values can be used to approximate xE[xA*f] by the

interpolation
x, ) @x)paaD y
p,q
where ¢$ q is a choice of interpolating function (e.g.,
v q=xo(x-pa,t-qT) ). Moreover, for suitable normed spaces, xE(xA*f)
approximates fo. For a choice of A let % denote the set of all
interpolations

¥ = {xE Z (x,*f) (pa, qT) R 9}

Pyq
Let 3“ denote the direct product of N such sets, in each of which a

different characteristic function is used,

N
N = .
¥ —151 X pzqfoi*f)(pai,qT) L ?}.

Thus, what is known about f is a set of approximating interpolations of
approximating convolutions.

We summarize the above by the diagram
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The relations p and p are between objects and images in the sense we
have modeled them above. The map r is the composition
interpolation ¢ sample o convolution
Just discussed.
The map ~ is the subject of this paper. For a given choice of
norm on ¥, a is a map from r(f), fe¥, to an appfoximate recopstruction
of f. This may be viewed as a numerical implementation of the

deconvolution from {XA *f}}—1 o N to f, for the reconstruction is
i 1Sy ey

based on a finite set of values from the convolutions. The existence

and continuity of the operator which deconvolves {'xl‘iﬁf}l_1 5 ... N is
: 1 p&y s vy

discussed later. Given this operator, its continuity permits us to

discuss approximate deconvolution based on approximations of xA*f by
i

interpolation.
We now turn to a second item, certain physical constraints on

deconvolution. Let A, Q, A , E, and f:EéxR —> R be as above.

b4

It has already been suggested that the set {Ap } is to be a cover

»d

of EéxR by non-overlapping sets. Recall
[xA*f)(pa,qT) = Ixo f.
P, q

The physical constraint is that qunQp, o = @ for (p,q) # (p’,q’).
This is because two detectors cannot occupy the same space

similtaneously.' This constraint can be modified (e.g., using beam

splitters) such that the constraint is

z c(p,q)xQ (x,t) =1
Pyq P,q
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where c:Z°xZ —> {0,1}. For the staring array example, ¢ = 1. (Here

we do not include detector efficiency in our discussion.) This

constraint will determine in part the "observation points," that is,

points at which xA*f can be evaluated. For example, the set
{(xAtf)(pB,to) : pe 22}

is not physically realizable for B < a .

In addition to constraints on the points at which xE(xA*f] is
measured, we also have bounds on the measured values. From Holder’'s
inequality

It G # ), = I, 0, 1£L, 5+ 5 = 1. 1spse .
Let |A| be the three dimensional Lebesgue measure of A, i.e., |A| =
lx,l, = 2°T. Thus

1/
I (20, = 1A 1eL

’
and for p < o , f e L (RM),

(For p = o and for f € LYR™), we get pointwise convergence by the

Dominated Convergence Theorem, [x (x *fj](x,t)————————» 0.)
ETA Al —s0

In the case where noise or errors for each measurement do not
decrease as IAIl/p, and for f with unit Lpl norm, we have a lower bound
ao on |A| imposed as an addition constraint.

For A as above, the simplest pattern of observation points in szm
is the staring array with simple integrator,

{(pa,qT) : p € z° , q € Z}.
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See Figure 11. With JA] = @ wWe may rescale a and T,
A(s) = (—sg , sg) X (—s% , sg) x (0, T/SzJ , 50 ,

so that |A(s)| = |A] = « . See Figure 12a and 12b. In other words,
the detector size can be reduced Iif the integration time |is
appropriately Increased, and visa versa, without altering the upper
bound due to Holder.

A second simple observation scheme 1is a continuous scanning
pattern. Let v be a unit vector in R® and define

B = {(x,t) € R(0,T] : x-vt € (-5,5)x(-5.3) < ®’° }

See Figure 13. Note that |B| = [A].

A third scheme is an alternative to the continuous scan, the shift
scanning pattern of Figure 14.

In all of these cases, the number of observation points in a fixed
set E ¢ EéxR is approximately IEI/ao. We have ‘here the "mesh size" or
sampling interval bounded below due to .

Let us examine the consequences of f being independent of time.

= = (-2 2 __a & -
Let f(x,t) = g(x), and let P(1/n) 5n’ 55) s 52) P o= P(1).
For the rescaling case of the staring array
(xA(lln)*f)(x’t) - [(xP(lln) x[(O,nzT)])*f](x’t)
) I IXPU/n)(x_y) gly) dyds
[t-n"T,t]
= n°T (x *8J(X)
P(1/n)
X
— a2 P(1/n)
=aT ("X Il * 8J(X).

P(1/n) 1
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R A
I
| | |
| | | |
P~ ——
I I | |
| (pa,2m) | | |
| | | |
Tt <ot —f ——
N\, supp(x_)
| \\\ PP J L (pa,2mn |
|\\{ | |
| | I |
T4 +~\\ + —— -t — ==
Gl
| | | |
—, — | | X
| | | | R

Fig. 11. Representation of a staring array with a simple

integration time-response.

= -2 &1 -2 &, (- 3 = 2
-A = [ 2,2]x[ 2,z]x( T,0) ¢ R , p (pl,pz) € Z
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1A(2) |

N

&

r\(pZa.,O)
|A(1/2) ]
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Fig. 12. Two rescalings of a and T

N

+~
+.

[ T |
R E— |
S




3.1 Introduction 127

T
R! / /
/ /
/ /
______ A
/ / /
/ / /
/ / /
/ / /
/ / /
/ / / /
2T 1 -, T T T /ST T T T s T T T s
/ / / /
/ / / /
/ / —(pa+vT, T)/ /
/ / f / /
o A A ;o
/ / / /
/ / /o / /
/ / / s/ /
/—(pa,0) —(pa+vT,0),/ /
/ f / f / /
: / /
/ / R2
/\\\\ B g g
supp (x_ /
\\\ {(pa,0)] y
\\\ ;7 ’
____________________ / —
/
/ / /
/

Fig. 13. Representation of continuous scanning with

scan velocity v € Rz . In this representation

{pa+vT : p € Zz} = {pa : p € 22} .
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4

] \\:ziT_ Supp(%-rs)[(pa,o)]

Fig. 14. Representation of shift scanning. After each
interval T the set B is shifted by vT, v € Rz. Here, for

each n € Z , {?a+an : p € 22} = {pa+(n+4)vT : p € 22}.



3.1 Introduction 129

~N
[0} /O/

-4 /oé
02/ .2

o
o
\‘”
9
-
o
\ ¥
x\f

N A R A Be - -
______ L
AR,

4
Fig. 15. Scan in B for (p, p)+J(5.—) » (o, p,) € 2 J < Z.
, 5 , |

Numbers at points refer to value of j for which sampled.
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The observation points are Cp%,qnaT) , peZ® , qeZ, and

4
*f) (p%, qn®T) = a’T (l_____le(lln)" * g](pf'—l).

(x
A(1/n) P(1/n) 1

We conclude
Remark 1 For rescaling of A to A(1/n), and for g € LP(R™), 1=p<co,
a) The underlying convolution which is sampled converges in LP to
£ as n increases:
Xo(1/n) P ph
Q& fomr——a * gl — > a g in L°(R) ;
ollly ] o]
P(1/n) 1 n— o
b) the number of observation points on any set Eé increases as nz;
c) the time interval associated with each observation point
increases in length as n°.

For shifted scanning, a choice for an observation point set is
((p,,p)a + J(l 1)2)a JT) ¢ (p,.p )eZ® |, jez
1' 2 n’ n » . 1, > N ,

whereas the set A remains the same for any n. See Figure 15.

Moreover,
{(xA*f] (P2 + Jals, (D)%), 4T) : pez®, jeZ}
= {T(xp*g] (pa + ja(rl—l,(%)z)) . peZ® , JEZ}
- {T(xp*g) ko, D2+ 51,13 ¢ g e zz} .
We conclude

Remark 2 For shifted scanning according to
.1 1.2 . 2
{[pa + Ja(ﬁ,(ﬁ) ), JT) : pez” , jeZ}

a) the underlying convolution remains
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X *8
o ——
pr"l
b) the number of observation points on any set increases as n2;
c) the time required to acquire a full observation set increases
2
as n .

Let us compare rescaling (Remark 1) and scanning (Remark 2). For
ao fixed and for f independent of time, to reduce the mesh size of the
observation points projected onto Eé, we can use smaller detectors and
observe over a longer time interval, or we can use (shifted) scanning
and a sequence of time intervals. In both cases |A| = o and the total
observation time to get all observation points is the same. Therefore,

1. Rescaling and scanning are equivalent in terms of observation
time required. However,

2. Rescaling and scanning differ in that

a) rescaling uses decreasing detector size to approach the
desired function g,
b) scanning uses a fixed detector size to approach Xp*8-

Our interest is in the scanning case. In particular, we examine

the case of
3

X {(x *g)(xj) 1 J e Z},
1=1 Py

that 1s, more than one detector of fixed but appropriate sizes and a
sequence of observation points whose mesh size can be as fine as

required. For such a case, the desired approximate reconstruction of g

. can be given.
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3.2 CONSTRUCTION OF AN APPROXIMATE DECONVOLUTION ON R

While we shall address in detail the case in which the convolutors
are the characteristic functions of cubes in R" (e.g., the cubes P1’
Pz’ and Pa in R> mentioned Jjust above), we may begin somewhat more
generally. Specifically, we shall assume we are given N convolutors
K i=1,2,...N, and each K, is in L”(R") and has compact support. Let
f be in L'AL®(RY). We wish to approximately reconstruct f from
r(f)e.?", where r and ' are as in the Introduction of this chapter.
Approximate will mean any of the L? norms, 1sp<o (and p=w with some
additional qualifications). |

For approximate reconstruction of f it suffices that for
sufficiently large T, T>0, the reconstruction appr'oximate (pr*f, where
P € LY(R™) and qpt(x) = T¢(tx) for x € R", since

g *f ——— f in LP(R™), 1sp<e .
T >

In this case we seek N deconvolutors vl,vz, ce. ,vN such that
N
Z“l*(vlﬂp‘r)*f = w‘t*f'
1=1
The Iingredients for a solution {vl*go } were noted by

T 1=1,2,...,N

Berenstein, Krishnaprasad, and Taylor (1984). Let A denote the Fourier

transform. The Fourier transform of distributions in the equation
& A A
Zp.iawl = 8 results in the Bezout equation Zul v = 1. A necessary

i=1 i=1

condition on {”1}1-1 y for the existence of a solution is thus
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N N
Z |ﬁi|2(w) > 0 for all w € R*. For such u, 2 solution of z ﬁi D =1
1=1 1=1
is
i
D = L,
i N
Y 18,12
1
1=1
where = denotes complex conjugation. However, the ADl are not the

solutons 91 if each v, is to be a distribution with compact support,
for the Di are not analytic. On the other hand we have the following.

For w = (0 ,0,...,0) let
1 2 n

loll = max {Iw I}.
® j
j=1,2,...,n

The growth of Di as Hme gets large is known once a lower bound is
N

established for Z |ﬁ1|2(w). For the p of interest we shall exhibit
1=1

such a bound as well as a choice of 0. such that Dﬁ,r e L*(R™. In
this case there exists hi e L3(R™) such that ﬁi = Di$r and
N

this last equation easily seen by taking Fourier transforms. (We have
assumed f e L'(R") so that wxf € L'(R") and the left hand side is in
L3(R™.)

The {hﬁﬁ=h..nn are the desired approximate deconvolutors.
However, they do not have compact support. On the other hand, they can
be explicitly exhibited using only the knowledge of the Fourier
transforms of the convolutors M Because of this simplicity and

potential utility, in the following we conduct an error analysis for a

digital implementation of this approximate deconvolution for the
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special case of convolutors which are characteristic functions of cubes

n

in R. In addition the cases described in the introduction provide two
further restrictions on the problem and these we adopt.

First,> it will suffice to approximately reconstruct f on some
compact set E. For example, it suffices to choose T such that

e, = I (£ - o)1

is sufficiently small.

Second, the measurements consist of a discrete set in R"™ on which
a set of convolutions is evaluated. Let {xﬁ}qu denote the discrete
set of points, with xé € R" and with Q a finite index set. The

convolution values are
{Uul*f)(xq) : qeQ, i=1,2,...,N}.

We seek to use these values to approximate f on E by constructing
an interpolation. In particular we seek functions wj:Rn — R, j&J

¢ Q, and we seek a map az{xj} — R such that X = A ) wj and fo

JjeJ jeJ

is approximated in LP by X > 5(xj)|/;J . That is, we seek to make the
JjeJ

error ¢ ,
e = |x(r - TGxpw ]|
JjeJ
sufficiently small.
For brevity let F denote wr*f . From above we have
N

F = q)T*f = iglhi*p,i*f .

Let v denote inverse Fourier transform, let xA be the characteristic

function of the set {weR" : kuwsl}, and let B be a compact set in R"
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with characteristic function xg . Then define

N
_ v
o+ (it
We shall seek to choose A and B8 such that

e, =|fx. T (F(x) - G(x))y |
3 E jeJ( J J ) J'p

is sufficiently small.

The triangle inequality now indicates the additional two terms

needed to have a bound for €. One term is
e, = lx, F- LF&xW]| .
2 E jeJ 3%
and the second term is

e, = |x (cx) - Gx))y | .
4 E jeJ J J i'p
The defining expression for G above suggests the consideration of a(xj)

of the form
N
G(xj) = 12 Y. Hi(x) - xq)[pi*f](xq) ,
=1 geQ
where ﬁlz{xq}qEQ —> R . The ﬁl then are the deconvolutors which we

shall implement. An L® error bound for this approximation is thus
e=fx. (f-X Glx )y )| = & _+e_+e_+e
E jeJ 17737 % 1 2 3 &

In the following we develop bounds for each of the four error terms.
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3.3 THE LOWER BOUND C(w)

For a choice of n+1 positive numbers ao,al,...,an let Ai be the

cube of side length a in R". Let X, be the characteristic function
1

o

of A1 and let Moo= ! . For this specific case of convolutor we

n
(ai)

shall prove the following.

1. THEOREM. (Berenstein) Let Ry 0 ye s @ be a choice of n+1

positive integers such that the collection is pairwise relatively prime

and none is a perfect square. Let a = v/oci , and let M =

max {ai}. Let B, be the characteristic function of the cube in R"
1=0,1,...n

with side length a, normalized to unit Lt norm as above. Then

n
n 2n
L= [ 21 L L weR"
1=0

The proof will follow from several lemmas. We begin with

2. LEMMA. Let p and g both be postive integers. If p and g are
relatively prime, then vp/q is rational if and only if both p and g are

perfect squares.
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Proof. (¢) Clear. (s) It follows from qr2 = p52 for some

relatively prime integers r and s, from a prime factor expansion of g,

m m
q = ql---qkk , and from the fact that p and q are relatively prime,

that each q1 divides s. Hence,

2n 2n
1

s =q ---q

r)? , 2n =z m for i=1,2,...,k.
1 1 1

If g is not a perfect square then, reordering factors, m, is odd,
2n1—m1 z 1, hence, from qr2 = psz, q, divides r2 as well as sz. This

contradicts r and s being relatively prime. This along with a similar

argument for p show that both p and g are perfect squares. [ ]
To proceed it will be necessary to define some maps. Let 4 =
{ao,al,...,a }, m= min{a }. Let xeR. Define the maps
n aied
T ¢
d: Rxd — Z, r:Rxd — [ T EE]
by
= T -t T
X = d(x,ai) a, + r(x,ai), sgn(x) r(x,ai) el 2al,Zai)

For fixed x we have the maps defined by restriction

n n
dx.d — Z, rx.ﬂ - [_EE , EE]
dx(ai) = d(X,al) rx(ai) = r(x,ai).

For each fixed x€R we also define the subset Fx < 4 by

r = {a ed: |r(a)] = min{ir(a )l}}.
X X i

x a ed
1
A choice from Fx will be denoted (A (The set Fx may consist of more
than one element. Any element Wx may be interpreted as an element of o

for which some integer multiple of n/zrx is as near x as any element
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from the set {zg : zeZ , aled}.)
1

The following simple observation will be used. Its proof follows

directly from the definition of LA

3. LEMMA. For every Q = 0 either

|r ()] = Q
x X
or
for every a € 4, |r (a)| > Q.
i x 1
4., LEMMA. For every a, aJ € 4 such that a, # aj, and for every
6 € Z~_ {0})
a
]sin[—ién]| ES 4 .
a a, R
J [4———|6| + 1]a
a J
J
Proof. There exists a nonnegative integer n and € € [-1/2 , 1/2]
such that
a
—E—Ibln =t + en . (%)

J
From this and the properties of the sine function

a a
i _ i _ 2
|sin{7;6n]| = |sin{i;46ln]| = |sin{(en)| = Elenl . (%)
J J
From (=)
a2
1), 2 2l 2
— 1 & - n"in
lew| = _E—Ibl - nlmr = ; (%)
J —L18] + nln
a

J

This cannot vanish, for
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a122 2 al n
(=] & - » Bt

a
hence —Ei is rational, which by Lemma 2 contradicts the intial

J

assumptions for 4. This nonvanishing along with the fact that ai2 and
2 . 2.2 2 2 s :
a -~ are both integers implies |a1 " - n a, | = 1. This with (%%x)
implies
lem| = L
a?|—218] + n
J | a
]
2,
However, from (*) n = —5—|6| + 5 hence
J
ax 3 3 1
—a—lbl + n = -a—|6| + -a—|6| 3o
J ] J
consequently
len| = T ,
2 2 1
a | 2—Ib8] + —’
b a 2
J
which, when substituted in (#**), yields the desired inequality. |
Recall M = max{a}.
aed
5. LEMMA. Let x € R be fixed. For every L € Fx, if
|d ()] =21
X X
and
1

< 2
‘rx(vx)l - ﬁ M . y
[4——Id (¥ )l + 1}7/
s X X x

X



140 3.3 The lower bound C(w)

then for every a #* v,

|sin(alx)| z 3 2 z 2
4—t1d ()] + 1]7 2 [4i|d ()1 + 1]7 2
¥ X o x x Y x X x

X X

Proof. Since x = dx(yx)—;— + rx(yx), by the Mean Value Theorem
X

there exists £ € R such that
a a
sin(a x) = sin[—ld (yr I + ar (y )] = sin[—‘-d (¥ )u] + ar (y )cosE.
i arx X x 1 x "x 'a'xx x 1 x "x
Thus
3
|sin(a1x)| z |sin[—;:dx(7x)n]| - |airx(7x)|
(apply Lemma 4)
4

> i - -a|r (v )]
[4-—|d (y )] + 1]7
Y X X x
X
(apply the hypothesis)
2a
> . 4 _ 1 2
[4—lld (y )] + 1]7 2 M [4i|d ()1 + 1]7 2
¥ X X x Y X x x
X X
= 2 = 2
ai 2 M 2
[4—|d (7)1 + 1]7 [4—|d ()1 + 1]7
7x X X X 7x X ' x x

The next two lemmas will address the case Ix| =z w/2M. For this

case the condition ldx(wx)l = 1 is not vacuous.
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6. LEMMA. If |x| = m/2M , then there exists y €T such that

|d (x.)] = 1.
X X

Proof. a) Case x = w/2M.
Since x = /M - w/2M , then dx(M) = 1 and rx(M) = -n/2M. Moreover, for
all a, 2 M, x < 1r/2ai , hence, dx(ai) = 0 and rx(ai) = w/2M , therefore
[r. (M| = |r (a)|, or MeT..
X x i b4
b) Case x = ~n/2M.
Use an analogous argument with dx(M) = -1, rx(M) = w/2M, and for a # M
r (a) = -n/2M.
x 1
c) Case |x| > n/2M.

Consider any ¥ € I' . Since x = d (¥ T o+ r (¥ ) whereas |r (¥ )| =
X % X x ¥ X X X X

|r (M)| = m/2M < |x|, then |d (7 )] = 1. .
X X X

7. LEMMA. If |x| z m/2M then there exists ¥, € 4 such that for

every a € 4 - {7x}

|51n(aix)| 5
|aix[ 51x|°m*
Proof. Fix x e R, |x| =z n/2M. Lemma 6 provides a 7, € I' such
X
that
: n
x=d(y)- +r(y), [d(x )| =1.
X x‘a’x X X X X

Since |r (y )| = /2y , then |x| = (ld (¥ )] - l-)1[/7 .  Therefore,
X % x X X 277 “x
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. .
1 > 1 de(yx)l - 5)"/7)(

a . | x| a,
[4_3'_Idx(7x)l + 1] [4—‘J_Idx(7x” + 1]

X X

The right hand expression is increasing in |d (v )| for [d (¥ )] = 1,

SO we may use ldx(yx)l = 1 to get a lower bound:
/2y /2 n/2
. 1 = 1 x > 1 > 1 .
TR CRTIE] L (AR T

X

By Lemma 3 it suffices to consider two cases.

1

[4—”—|d (y )] + 1]72
Y X X x

X

Case 1: |r (y )| =
b4 X

2
M
In this case, if al # yx, then by Lemma 5
2

a
[4——’|d (7 )] + 1]7 2
¥ X X x

X

|sin(alx)| ES

hence,
lsin(aix)l > _22_ 1 mn/2 > n > 2 ,
v x| sH IxI5M°  |x|5M°
and
|sin(a x) | 2 i 5
lalxl 5|x|2alM3 SIXIZI‘I’4
2 1
Case 2: For every a € d, lrx(ai)| > &

[4i|d () + 1]7/ 2
¥ X X X

X

Here, x = d (a )n/a_+ r (a ), |r (a )| = m/2a, hence
x 1 1 x 1 x 1 i
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. _ 2
|sin(a,x)| = |sin(ar (a))| = = |r (a)]a
2a 2a 2 1 w2 1
= - % 1 =t
n
(g r + 1)y 2 T M IS
Vx X X X

which implies the desired result (recall 7x5M). "

Remark: In Case 2 a x is never an interger multiple of m. In Case 1
a #y 1is used.
i x
The case |x] = n/2M is addressed next. As usual sin(x)/x is

defined to be 1 for x = 0.

|sin(a x) |
8. LEMMA. If |x| = n/2M , then ————— = 2/n for every a ed.
la x| ‘
i
Proof. |x| = n/2M = for every a € 4, |x| = 1r/2a1 =
lsin(alx)]
z 2/m. ]
|2, x|

i

These last two results can be combined.

9. LEMMA. For every x € R, there exists v, € 4 such that for
every a € 4 - {7x}

[sin(alx)(

|a x| sM* n 2’
i max S | x|
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> 2 =Z_ =2 __- With this we

Proof. Since M > 1, % 2 4 2 1

consider separately I|x| = n/2M and |x] > n/2M and apply the preceding

lemmas. [

We can now conclude the theorem.

Proof of the theorem. Let w = (wl,w ,...,wn) e R". It is readily

2
checked that

sin(ale/z)

A —
”1(w) - ” a w/2
PR

Let w € R” be fixed. For each coordinate wj of w let 7w be an element
b

of 4 provided by Lemma 9. Since there are at most n distinct Y, and
J

since there are n+l distinct elements in 4, there exists an element

alw) € 4 such that a(w) # Yy J=1,2,...,n. To complete the proof let
J

“a; =M, hence,

no ” no . A . sin(a(w)wj/z) 2

Z I“l(w), = Z Ip’a (@) |7 = lp’a(w)(w)| = ” alw)w /2

1=0 1=0 i B

j=1
(apply Lemma 9)
n
8
"

) [J] ll max{E , |°’,|}4 '
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3.4..PIECEWISE POLYNOMIAL APPROXIMATE IDENTITIES

Our choice for ¢ in ¢T*f is a piecewise polynomial, for ¢ can then

have
i, compact support,
ii, nonnegative values everywhere,
iii. an analytic representation in digital simulations,
iv, a predetermined number of continuous derivatives,
V. a tractéble Fourier transform.

Let R be the characteristic function of the unit cube in R” centered at
the origin. We use the following notation: for any function
g:lRn —> R, for a € Rn, and for x € R",

g (x) = % gy,

g[a](x) = g(x-a)

Our choice for ¢ is denoted ¢<k>, k € N,

k+1 times

‘p<k> = (R* Rx oo ¥ R)l/(k+1)

It has the following readily checked properties:
i. The support of N is the centered unit cube in R";

the support of ? o is the centered cube of side length s.

"¢<k>s"1 = 1.
ii. ¢ (x) 20, xe R".
iii. ® is a piecewise polynomial of degree k.

<k>
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iv. 7} has k-1 continuous derivatives.
<k>
A a[_s K+l : n
V. ? s (w) = [ [EIT w]] , W= (wl,wz,...,wn) € R,
n

sin(w /2)

R(w) = ”
/2
J=1 J
As usual we have for the flrst error term 81’ for f € lP(RnL
1sp<os,

= lzg (£ - 0 2, 5=~ 0 15p<,

and for p = o, for x a point of continuity of f,
|f(x) - [«p<k>s*f](x)| —— 0

For any f of interest we can choose a suitable s, but the convergence
in not uniform (e.g., f a square wave on D ¢ R, D = suppﬁwqos*xz),
with unit amplitude and period L, then for any fixed s, p # o, e,
approaches ["xEul]l/p as L approaches 0). Consequently, we have no
more to say about any upper bound for ef

We note, however, that for a fixed choice of k, the set
{qus*f : s>0} is a one parameter subset of LP(R"), and each ® s is a
plecewise polynomial with compact support. These properties make it
practical to evaluate by simulation the appropriate size of s for the
vision task at hand. Such a choice for s determines €, which in turn
suggests an upper bound for £, £, and 84 .  For 82+€3+€4 defines the
radius of a neighborhood about qus*f. The approach will be to make
this radius as small as desired for a fixed s, hence for a fixed £,
A conservative guide would be that the radiué should be small compared

to € - Beyond these remarks any additional significance for the size
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of the neighborhood depends on additional problem structure such as
that discussed in the Introduction. Our interest hereafter is solely

how to achieve an error bound radius of a predetermined size.
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3.5 INTERPOLATION IN L°(E)

With the choice of ? s above we turn to the error €, We shall
use frequently the facts that for g and h functions on R" such that g*h
is defined, for s>0 and for a € R",
(g*h)s = g‘;lrhs ,
(geh) , = &*h,, »
g, =ligl for g e L'(R"), and

1_1_ 1 =
lguhll = gl Hhll_for —= -+ -1, 15pgrsw 0= 1/=
(Young's inequality).
We shall also need
10. LEMMA. For k =z 1, for y = (y&,yz,...,yn), and for 1 = p = o,

" [¢<k>sJ[y] - w<k>s "p

1
(1--) n n 1/p
k+11™ k+1 k+1 1/p
= [—s] min { 25— 121”" , [z—s lleyil] , 2

with the convention 0 = 1/0 .

—k-1 times—

Proof. Define R = (R * R #---% R) . To establish the
s/(k+1)

first term in the minimum use

[ el iy ™ Paosly = 1R * Ry, * [(Rs/(k+1))[y] B Rs/(k+1)]"p

= "ﬁlll ”Rs/(k+1)"p " (Rs/(k+1))[y] s/(k+1)"1 ’
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with the obvious modification if k = 1. We have, with 0=1/u,

n

_ _ (k+1\"p
IR0 =1 and B R, L= (5] 7
k+1\" .
whereas "(R&“k+“)[y] - R&Mk+ﬂ"1 is [_E—] times the Lebesgue
measure of
s/2 s/2 s/2
[[y1 k10 Yt < < DT Yot ] A
[_5/2 s/2] X e _s/2  s/2
k+1 ’ k+1 [k+1 C k+Td )

where for sets Aand B, AAB=(A-B) vu(B- A). Let

[_s/2 s/2 [ s/2 +s/2
k1 k+1d YiTke1 0 YiTRA

Then

n
S c (iulI xerox I x (I_=-1)x1I — xo+ex1I ] U
=Y Vi ¥y Vi1 Yu

n
[1911 xe+ox I (I - Iy ) x I x+-+x I] ,

i

so that, with ISl denoting the measure of S ,
n s n-1
sl = ziz1|y‘l [k+—1] .

Hence,

n

k+1
R;/(k+1)"1 = 2—2;—1Z1|yil ’

Il(Rs/(k+1))[y]
which completes the proof of the first term in the minimum.

To establish the second and third terms in the minimum use

||(¢<k>s)[y] - ¢<k>s"p

<

1Rl 1R, ey 1y TR ety 11 ™ Revieny

For the case p<w the second term follows from
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k+11" 1/p
I (Rs/(k+1))[y] - Rs/(k+1)"p = [T] Ish ’

while the third term follows from ISl = 2 [ki

n .
+1] . For the case p=w it
suffices for both the second and third terms to note that ? eos is
nonnegative, hence

k+1)"
I (¢<k>sJ[y] - ¢<k>s"m = "q’<k>s"oo = "RIlille/(kﬂ.)"1"Rs/(k+1)"°° = [_s—] )

The following lemma indicates that we have many choices for an

interpolating function.

11. LEMMA. Let g € L'(R®), g = 0, and supp g ¢ B(0,r), the ball

of radius r in R". let T > 0, N € N, and N = (2N+1)". Let

{31’62""’en} be an orthonormal basis for R", and let {xj};‘1 denote
the set of points in R"
n
{iz1p‘w‘ © p, €1, IpllsN} .

= 1 n = -
Let R(r)(X) = R(? x), x € R. Define ¢y = g * R and l[lj =y

{T) [x 1
J

n times

For E ¢ R" such that supp(xE r)] c [-Nt,Ntlx...x[-Nt,NTt] = D ,

* Xg(o,
then
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Proof. From the definitions

I~1z |

R,) (8) dt .

X
() Yu ) =g [ gx-t)
§=1 j=1 [le

B(x,r)
It suffices to check that for x € E then B(x,r) < D, and

(R{T)J =1onD.

1 [x ]
3

~1=)

]

Since R = 'R by definition,
{1} T

12. COROLLARY. Foi‘_ supp (X, xB(O,\/ﬁh')) ¢ D and for y

— £ times — N

n —
T R_* -+ % R), then ij =1 on E.
j=1
With this we can now establish an upper bound for e, We choose
— ¢ times —
Y = -cn(R_c *» «o+ * R). Let {xj} and y be as in Lemma 11, and let N

be sufficiently large to satisfy the condition in Lemma 11.

13. THEOREM. Let ¢ = ? s 1=q,q'=e0, 1/q + 1/q¢’ =1 (0=1/w), f

N
= My (exf - ) (exf)(x) U,
=N J P

e LYR"), and let h = &r. For €, =
1=p=w, then
k+1)™ 9 K+t k1 VY g
e = [f] [—] I | min{ nh [ th , 2V }
2 q s E'p s S
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Proof. We have

X
IxE(x)jZ1 f(qo(x—t) - plx~t)) £(t) dt ¢ (x)]

N
= XE(X)jZ; "wlx-xj] - w"q’"f"q w)(X)

N
Yu, ),
=1

1 ,
(1-—,) 1/q
k+1 Y™ g k+1 k+1 1/q’
s "f"q [—;—] min{ = nh , [ < nh] , 2 xE(x)

where the last inequality follows from Lemma 10 and from suppu[lJ C

{lx-x | =h/2}. |
}

We conclude this section with some remarks. First, we have
required that f e L®(R™) because only for q = » does £, depend on s and
h according to h/s. This is the simplest case for applications. As we
shall see, we will obtain "xE"p as a factor in the bounds for £, and €,

as well.

A further remark is that for h/s sufficiently small the minimum

has the value of Eglnh.

A final observation is that the smallest bound is obtained for the

choice of ¢ = R that is, £ = 1.

(T’
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3.6 APPROXIMATE RECONSTRUCTION

-In this section we shall determine an explicit upper bound for the
" third error €, We use the notation and definitions of the
Construction section and we use the specific convolutors {ul}?=o of the
Lower Bound section. This bound requires more work than any of the
others. The fifst task is to determine the values of k in ? o for
which ﬁl = quos)ADt is in L%(R™). To use effectively the lower bound

C(w) we shall need the following lemmas.

14. LEMMA. For a, b, p, g, and x all nonnegative real numbers,
for p-q =z 0, and for b # O,

(max(a,x})p < max {_@f_ , Xp—q} .
(max{b, x})? b7

Proof. It suffices to show that the left side of the inequality
is bounded by some member of the set on the right hand side for each of

the cases: x=a,b ; asxsb ; b=x=a ; a,b=sx . n

15. LEMMA. For a, b, p, q, and x all nonnegative real numbers,
for bza, p-q = 0, and for x # 0, b # O,

(max{a, x})° _ min {(max{a,x})p ’ Xp-q} < min{b? T, ¥*%

(max{b, x})* b
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Proof. For the first inequality it suffices to show that the left

“hand side is bounded by each term in the set on the right hand side for

each of the cases: xsa,b ; asxsb ; bsx . For the second inequality,

it suffices to check the cases xzb and x=b. [

since bza,

We can now prove

16. PROPOSITION. For (k-2)p > 1, then fi = (p_ )"D e LP(R"),
1 <k>s i

lsp<w. In particular, k = 3 is sufficient for ﬁi € Lz(Rn).

It is straighforward that for w = (0,0,...,0) € R" then
1n[ sz ] k+1
T I
<k>s w s

=1 S(k+1)

Proof.

Since |é1n(x)| = min{|x]|, 1},

n k+1
A k+l 1
(¢<k>sJ (w) = '” min{l N ZT 'Iw—jl-}

=1

[k+1]n(k+1) lr:l 1
= _— k+1
o max{éﬁil , |w l}
Jj=1 s J
From the definitions, Moo= ? osa With this and the theorem from the
1
Lower Bound section,
A
i (w)
_ A i
B = [l " |
A 2
Y I, (0
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max T lw |
n N I

2 k+1 '
a ’ ’ j

Note that a1 may be replaced by m = min {a } . With this and Lemma 14,
a ed

4
n  max E[E], |w|3}
ﬁ() . 5M4 2n2n2k+1 n(k+1) {2” 3
B | == (3] |25 I

k+1 °
j=1 max{ékil , lw I}
s J

k+1 k+1 m(m)* |2
Note that 2——— may be replaced by K = max{ i[ﬁ] }. Then by

Lemma 15
’ n max{ 21X ! lw |3
SM# 2n n n(k+1) 21M]° j 2-k
|ﬁ(w)|s[—] [] ﬂ o |
1 8 Kk+1 j

(The case 2551 = K is typically the case of interest here.) Hence, ﬁi
e LP(R") , 1=p<w, whenever (k-2)p > 1. n

The next result is a well known tool. Our notation for some

standard items is: 8U for the boundary of the set U; { for the

imaginary element in €; w-'x for the usual scalar product of w and x in

R"; dw for the standard volume form for R" represented by
dwlAdsz---Adwn in the coordinates (wl,wz,...,wn), where A is the wedge
product of differential forms; and ...Adij... for the deletion of the

factor dwJ in a wedge product.
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17. LEMMA. Let g:R" — R, g € c*(R™) (i.e., g has k continuous

dg

derivatives). Let ajg denote the partial derivative 30 Let U be an

J

open set In R" with compact closure U. Let U have a triangulation

consisting of differentialble singular n-simplexes in R". Then

w-x
8 8 +--
I( 3.9, aj gle dw

k
1

k-
Z[ n( -ix )]( 1) I(a 6 g)e w-x deA"‘Ade Atreade

+

f(a . a g)e dwlA"'Ade A s AdW

k-1 o R
+ [ n (—Lx ]( 1) jg e dwlA"'Ade A+ e Adw

Proof. Stokes theorem and induction on k.

18. COROLLARY. Let aj aj ---aJ g =0 on 8U for 0 = s < k-2
1 "2 s

for any indices j1’ jz""’js . Then, for lxll any norm of x € [Rn,

Ig e“ ¥ qu = O(lell-kJ as lixll — o .
u

and
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Proof. From the lemma

w-x
J'(aj aJ 6j gle dw

gy 172 k
- (-1) J'(a . 6 g)ew X dwiA---Adwj A"'Adwn
1
k w-x
=[n(-ij)]Ige dw .
r=1 r U
Consequently, by letting j1 =1,2,...,n and taking the sunm,

n . .
WX
J L (x,0,0, -8, ge? ¥ qu - I(a 3, :++0, gle (x]dw)
2 k au 3 k

n 2 k s
=[ Z-th]{ nm(-ix )]jgewxdw,
t=1 r=2 Jr U

n ~
where x|dw = Z xjdeA- . '/\deA' . -/\dwn .

Repeat this for the remaining indices j2, js”""jk and normalize by
. n X
st s 3 s 1 - j
dividing by [x]", |x| the Euclidean norm of x. Let 3x/lx| —j;—-——lxl Bj .
Thus
k lw-x k-1 wx x
[, 8¢ - [y @6 plaw)
U au
= C0¥1x)*[ g & aw . .
U

We now begin the comparison of E(q;a«f)(xj)tllj wWwith an approximation
j
ZG(XJ)WJ . We consider first ((p*f](O). Some required notation
]

n
follows. Let ¥ = supp ? e’ M > U supp B, » let x, and x, deonote the
i=0
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characteristic functions of ¥ and M respectively, and define

¥ + M = supp xy » xM ’

— p times —

¥ + pM = supp x, * (xﬂ oo % xJJ

We have -¥ = ¥ and we shall require -AM M. As usual, we abbreviate

¢ by ¢. Recall that we have the relation

<k>s
n
Elna o f = p»f .

i=0

19. LEMMA.

(pxf)(0) = [

n

1§oh’* (> Fxg, 4) ](0)

n
* [thl* [[u1 * (fxy+2m(1—xy))]xy+3mtl—xy+m)]](o) :

Proof.

n

n
1§oh1*[(“1*f)7‘y+m] i 1§ohi* [[ i (fxﬂ"*z/“(xyﬂ-x”)]]xﬁﬂ]

n

n
= l)_:ohiau [“1 * (ny)] + lg:ohi* [{ o (fxy+2ﬂ(1—xy)J]xy+M]
The first term in this sum evaluated at 0 is
[so » (fxy)](O) = g*f(0) .

The second term evaluated at 0, after adding and subtracting

n
[ xgohi* [[ ul* (fxy.'.z/u(1"Xy)]]xy+3/n(1"xy+/n)]](O)’
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o [ e ([ oot ]inad o

=0
n '
- i§ohi* [[ Bo* (fx9’+zm(1”xy’))]x?+3m(1'7‘y’+m)} (0),
and the first term in this sum is
n
[ 1§ohi* [ui* (fx%zm(l-xy))]](m - [qo * [fxy+2M(1—xy))](o) -0 .

Now we decompose this expression for (qa*f](o),

(ex£)(0) = [ i'go(ﬁi%;dv * ((ul*f)xyﬂ“)](m

r

n v |
+ 1§0 (ﬁixx) * [[ H,* (f7‘9’+2M(1'7‘y))]%y+3M(1-x9,+m)]](0)
1=

\4
(B, (1-x,)) *((ui*f)xyﬂ“)](o)

+
neM e

~ 1=0

+ lgo(ﬁl(l—xx)]v * [[ B (fxy’+2M(1'7‘y’)J]xy’+3M(1'15:%)]](0)-

This same proceedure can be carried out at xj.
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20. COROLLARY.
n v
(gmf)(xj) = [ 1§o(ﬁ‘x") » ((u »f) [xym)[le)](xj)

' [ igo(ﬁlxh)v " [[ My (f(x.‘l’+2m(1_x.‘!’n[xﬂ)] [x.?+3M(1-x.9’+M)][le]](xj)

n
RS0 MR CRECTCM ) (5%

™ B

(o}

v
+ [1 (B, (1-x,)) *[["1*(f(xwzm(l'xy))[xjﬂ][stm(l'xwm)][ ]]](xj)'
)

Proof. Apply (a*b](xj) = (a*b[_le)(o) , €.g.
(go*f)(xj) = (go&f[_le](O) and

(a*(f[_leb))(O) = [a*(fb[le))(xj) . =

The convolutions above can be replaced by the scalar product.

Define for a, b:R" — R, <a,b> = J“nab . Whenever b(t) = b(-t), then
R

(a*b)(xj) = <a,b_ > =<a b>. Therefore,

J] [-le’
21. COROLLARY.
n v
(px£)(x)) = Eo( [mixxl ][le oy *f) (x9’+M)[le >

n
\%
+ lgo < (ﬁlxx) ’ [P-i* (f[-xjlxy+2M(1—x.9’))]xy+3M(l—xy’.‘./n) >

+ < (ﬁ!(l-x}‘)]v ,
1=0
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(“1*f[-xjx)7‘y+m * [“1*(f:-xj17‘y+2m“'7‘y))]7‘9’+3/n(1'7‘y+m) >

Let ni(xj) and nz(xj) be the second and third terms respectively
of the right hand side above. Then

e =
3

CARICHIERTED R R (CXN N

’ X “*f>l/l]
J&J j€J 1=0 51 ( ?+ﬁatxj]( 1 ) 3 "p

IA

leEjEJnl(xj)wjllp * “xEJEan(Xj)wj“P

waa [n, x| Higl, + {0 1}, -

We turn to determining bounds for nl(xj) and nz(xj). We address

IA

nz(xj) first, this case being easier.

First, nz(xj) is the sum of two terms, each of the form

n
i§0 < (i‘ziu—xA)]V , xs(“i*(f[-xjxxT)) > , which is bounded by

i B

IA
i (=)
Qs

v

[

-n/2

[

-n/2
(2™ |I&, (-2 |, I, 11, -

[

IA
"o

(o]

It is easy to see that this also bounds nz(xj). Recall that "“1"1 = 1,

We use the proof of Proposition 16 to bound "(ﬂi(l—xk))vup , p>1.

2l1/3
If s=M and k=3 then 2521 > Eg Bﬂ } , and this is the case we shall

assume. Let
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a=E‘.E41/3 b=2£1.
2 |M ! s

so that by the proof of Proposition 16, with C a constant,

3 3
max{ a” , IwJI }

n
2-k
[ﬁi(w)| s C ” min{ o . ijl } .
=1

By definition, 1--',(}t is the characteristic function of the set {HwHw>A},

where Hwﬂm = max{|wj| ,» J=1,2,...n}. Note that the zero set of

(¢ ]A contains (Mol = & 251 ey Consequently, because of
<k>s © s’ ' ’

Lemma 17 and its corollary, we shall later choose A = fr 2521 = fmb,

and this is convenient here also. Finally observe that

{lwlt >A} = U {llwll >A} n {|o |=lwl }
oo =1 >4 i 2]

We outline the integration.
n n
-p P P
c "ﬁ,(l'xk)"p = Z Ijglmin{'°'} s n I

n -
n min{---}P
i=1 =

j=1

{ltwlt >A}{|w |=llwi } {lwll >AYn{|w |=lwl }
00 i [+ o1} n [+

© a . b 3 Yy

n-1
p P
oL J‘yp(z-k) J‘ a dx +f X dx + J‘Xp(z—k)dx
bk+1 bk+1
A 0 a

b

(use asb and the inequality |v" - (v + w'| = n|u|(|v|+|u|]n-1 )

< n2° b1+p(2-k) n L 1 + (e")1+p(2-k) n-1 (en)“"‘z‘k’
plk-2) -1 p(k-2)-1

With this and with p = 2,
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max{ |'n2(xj) |}
J

4 2n n —_— -
1

5 [14-1_‘_ (en)1+2(2—k)]n-1 (£1t)l+2(2-k) 2

2(k-2) - 1 2(k-2)-1

We now turn to nl(xj). Whereas we used A to control the size of

ﬂa(xj), we shall depend on M to control the size of
n ﬁ v
m )= Lo () [“x* (f[-xj17‘9’+2M“'7‘9’))]7‘y’+3m(l'xywn) >

How this is done is indicated in Lemma 22 below. First some notation.

As previously noted, we use xA to denote the characteristic function of

k+1

{Hw"msh} and we choose A = 8n2—§—, where ¢ is some positive integer.

For simplicity, let A = {Hwﬂmsh}. Then
n

A=n{le| = A},

t=1
8A c U{lw | = A}
1=1 .
A second item of notation is the multi-index o = (al,az,.. ,an) €
n « @ o o
N'. Define |a} = Ya , ot =atal-a! , andd =8 '8 °---8 no
=1 ji 172 n 12 n
22. LEMMA. If la] = k, then a“ﬁi(w) = 0 for w € 38A.

Consequently, for all r=k+l, x € R, with |x| the Euclidean norm of x,

\% - 1 1 r
I(ﬁxxh) (X)l - (2m)™ 1x|" "6x/]xlﬁ1"1,A :
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Proof. The first statement follows from the property v of ? s
in Section 4, from the product formulas for derivatives, and from the
definition of h1 . The second statement follow from the proof of

Corollary 18. n

Several lemmas will be required to bound |8 Since

r
X/|X|ﬁ1"1,A

B0 = (o, )" ) D (W, it suffices to bound a“[[¢<k>s)“](w) and

r

9%/ 1xI

Di(w), to apply Leibnitz’s rule, and finally to integrate.
Recall Leibnitz’s rule for C valued functions f and g on R", with o, B,

¥ multi-indices:

!

B 8Pr) (8%g)

8%(fg) = ¥
» ¥
B+y=a

(In the particular cases examined here all Fourier transforms have

values only on the real axis.)
It will be convenient to have a bound for aa[ﬂpqu)A](w) which

depends only on |al.

23. LEMMA. la“[(¢<k>s]"](w)| =

Ial Ial n k+1
s (k+]a] ) 1
[2(k+1)] ko2 T_Tl“'in{ SRR } '
= AT TSD)

(min{1, 1/x} is understood to be 1 for x = 0.)

Proof. Let ¢;k>s denote ? s constructed for R. From the

. s s n
definitions, for w = (wl,wz,...,w ) e R,
. n
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(¢<k>s)/\(w) = n1 (¢:k>s)/\(w])

Claim. For v e R and for r € N,
r r k+1
18" (07, ) (0| = [5| mind 1, (ktr)t f, ) 2(k+1)) [2(k+1) '
<k>s 2 Kt (k+1)F Juls Juls

Proof of Claim. The first element in the minimized set is

established by
r
’ A ’, s ’
8" (@)@l = 1 de e = (5] e, ),
[-2,2)
2’2

The second element is established by induction on k. Recall

k+1
(‘P;‘bs)’\(v) = [sinc[z—:fl—)]] , sinc(v) = sin(v)/v .

By Leibnitz’s rule

()t = TR)E) =i n B [ wh) (RH)

hence the result for k = 0. Recall the notation g{s)(v) = g(v/s) for

1A

s>0. Consequently (a’g{s))(u) = (1/5)7(8"g)(v/s). With this notation

s A — ’ A . Y3 A
CAREES (CANM S IR (CAY)
_k_ {k+1}

From Leibnitz’s rule, from the result for k=0, and from the induction

hypothesis
G (G O]

N 20c+1))" 20+ 1) 0 fr) (erk-1)!
=< [i] (k+1)r[1 + |'U|S] [ |U|S] ez:o[e]—(—k:iv"(r—e)! ,

!
and the final sum is checked by induction to be £§%$l; . This proves

the_claim.
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]
Observe that —“*TM' & 1 and that for y>0

k! (k+1)7

min{1 , (1+y)ryk+1} s min{1 , 2ryk+1} =< 2"min{1 , ykﬂ}

With these observations

|ar[(¢;k>s)"] (v)| =

r n k+1
s (k+r)! r 1
[2(k+1)] k2 [Tl“‘m{ t s '
)= 3(k+1)
o A n % A
Since & [(¢<k>s) ](w) = []6 [(¢<k>s) ](wj) , it remains only to
check by induction on n that for a multi-index a
n (k+a )! k+ o )?
J__ <
M= — = —x
j=1
"
A 2oa 2t
We next bound derivatives of D = i [Z Iuil] . From
1=0
Leibnitz’s rule and since f = (e :]A, it suffices to consider
i <0>a

derivatives of the second factor. A formula for higher derivatives of
compositions of functions will be needed. Let s(e) denote a

multi-index with e coordinates s(e) = (51’82""’Se)‘ For a function f

(s )

of one variable let f ! denote the derivative of order sl.
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24. LEMMA. For g,f € C'(R), with r = 1,

r

(r) sl+. ) .+Se_1 S2+' ) .+Se_1 sem1
wp- Y Y P
51-1 52 1 se—i
e=1 |s(e)l|=r

s =1
i

Proof. The proof is by induction on r. With the convention 0!=1

the case r=1 is clear. Assume the result for r-1.

(apply Leibnitz’s rule and the induction hypothesis)
r-1 -1 — s, +-:*+s -1] (s +-+-+s -1 s -1
= 1 e 2 e ... e
Z [s—l] Z Z 81_1 52—1 s -1
s=1 e=1 |s(e)l=r-s €

s =1
i

(s,) (s.) (s ) (s)
y [f(e+1)og][g A ] ' (f(l)og]_g(r).

Observe
r-1 -1 r-s r-1 r-e -1
0 I N NN o I M M M 0 N
s=1 e=1 |s(e)|=r-s exl s=1 |s(e)|=r-s

s =1 sizl

The term Uil)og)-g(r) corresponds to an additional e=0 term in the

last formulation of the summation. By renaming these r values for the
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index e (add 1) the desired form is obtained.
Some miscellaneous results that will be needed are collected in

Let 6V be the directional derivative in direction v €

25. LEMMA.
Rn
i Lemma 24 holds for f € C(R), g € C(R") if 8" is replaced by
ar
v
r
s +--45 =1} [s_+:: 45 -1 s -1
1 e 2 e ]
u.
[ s1-1 ][ 52—1 ] [se-l]
e=1 |s(e)l|=r
s z1
1
3 r-1)[r-1-s -1-g -----s
= 1 1 e-1
s - 1 52-1 s -1
e=1 |s(e)]|=r %1 °
s z1
i
= r.
Lid. For ¢ € c*(R™) and for r=|al=k, if M(|«|) is a bound for a%p

which depends only on |«|, then, for |v| the Euclidean norm of v,

|6;¢| s (V)" |lvI™M(r)

Proof. For i, if f € C(R"), x,v € R", and if p, R —> R" , p,(t)

= x + vt, then [Bzf)(x) = (ar(fopv))(o).

For ii, The first relation uses si+52+---+se = r. The inequality

follows from
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r (r-1)! (r—sl-l')! (r-s,-s,-1)!

e=1 |s(e) |=r r (51'1)!(r-sl)! (sa-l!(r—si-sa)! (53—1)!(r—51_32_ss)!...

s =1
i

— - -~ e e - [}
(r s,7S, S__, 1)
(s -1)!0¢

e

r!

51 1t |=r [r(r-sl)(r-sl-sz)---(r-sl----—se_l))

s =1
i

1
((s,-D)t(s -1)t- - (s _-1)1)

r!

(r(sl—l)!J[(r—sl)(sz—l)!]---((r—sl—---—se_l)(se—l)!]

e=1 |s(e)|=r
sizl

1A
A

r! r!
< R with this last summation
e=1|s(e)|=r
sizl

in multi-index notation (ax € N) , while for m € N, s, € R,

i=1,2,...,r,

For iii, use
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hence

r n n n
Iavwi = I th at LI ] th z L)
1=1 11 t.r=1 t1=1 t

atwls
r

r 1 1 r

n
) Ivt A l M(r)
r:

s (VAlv]) M(r). "

Now we can complete the bound for |6;Dl(w) |
26. LEMMA. For v € R®, |v]=1, for rzl, and for o =

n
(wl,w,...,wn) € R,

|85D, (@) | s (MVA(n+1)r)" (r+1)! 1 R - K
v i ' %G

m
n 4(r+1) 2r+1
X max{ (= o lw |*°*3
m M z| 1Y :
j=1
Proof. From Leibnitz’s rule and from Lemma 24 with f(t) = t-l'
> 2
and g = T & [%
1=0
r S 4 -
8D = 61'~-pA Sl+ +se 1 5. ! (-1)%e!
vl pl v i S1_1 se—l no 2e+1
p= e=1 |s(e)|=p [Z | l| ]
s =1 1=0
1
s
i - ) sq Sq—tq/\ qx
xﬂ t av “1 av “i
q=1 j=o t =0% ¢
q
From Lemma 23 with Moo= ¢, m= mln{al}, M = max{al}, and from

Lemma 25,
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r
I n
- . 2
80D, (@) | = Z [p](\/HM)r P(r-p)! qymin{l , W}
o 3=t 3
p - -
Sl+ +Se 1 871 (-1)%!
X Sl_l se-l no, e+l
e=1 |s(e)|=p [Z |“,I ]
1=0

s =1
1

S
< I d Sq Sq n 2 2
X n t (VHM) (Sq_tq)!tq! n mln{l , TE—TE } .
t =0l ¢ .

q=1 _):O j=1
q
For the last factor,

s
° . q e S n 2 2
I oo = ) (s +11VAM) T rmindt

q lw |m

q=1 j=0 t =0 a=1 =1 .

q

n
(using 1] (ocj+1)! < (la|+1)! as in the proof of Lemma 23 )
3=1 :

n 2e
= (n+1)%(vnmn?® m min{l , I_wz_l—m} (p+1)!
J

j=1
Combining,
0 min<1 2
j[[1 ' Jw |m r
|8D (w)| = rt(vam)© (p+1)
v i n A 2
T |, ()] P=
1=0
F[min{l 2 e
P S te--4s -1 s -1 (n+1)J=1 ijlm
1 e e \
X . e e e.
Z Z Sl_l se—l no o
e=1 |s(e)l=p L |k ()]
=0

slzl i
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n
Since |ﬁi(w)|2 < nmin{l , Tag_m} ,
j=1 J 2p+1

n 2
nmin{l . T———[—}
r ©w Im
j=1 ]
IG;Dl(w)l s rt(voM)© E (p+1)!p°(n+1)P

A 27p+1
p=0 1, (@) |
1
2r+1

n 2
min{l . }
J]Jl o, Tm

{% lﬁltw)lz]m
i=0

To complete the proof apply the lower bound theorem, then apply

"M s

0

s ((r+1) )% (va (ne1) "

Lemma 1. u
At last we bound 'a;ﬁi(“’)l-

27. LEMMA. For v € R%, |v|=1, r 2 1, and for w = (wl,wz,...,wn)

n

€ R,
n

2r+3
Mmax{ C ,lw |}
k+1]n(k+1) =1 j

858 (W) ] = Alr,k,n, &) [z—— -
n . }il_ I l k+l
JI=11 > s’ wj

s
- 4(e+1) ' 2e+1|1/(2e+3) ’
where C = max [—] (—] , and where
M 2
e=0,1,...,r

k+r 4. 2n n 4 2n r
Alr,k,n, 4) = ((r+1)1)? {Si} [%] s 4 fﬁN(n+1)r[5—_g 2]
d (k+1)C*" m

’
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with 4 the set {ao,af...,an) of which M and m are the max and min,

respectively.

Proof. Apply Leibnitz’s rule, Lemma 26, and Lemma 23, then use

the inequalities

, . 4(e+l) m 2e+1 2e+3 2e+3
w7 ™Y )
M 2 b] J

0643 ’ 2r+3
c*® max{ 1 ,lel/c} , for e=r,

and
- ] 1
((e+1)1)? LTIl o (oryr(ern) BN < ((rany)2[RHF]
k! ; k! r
and finally apply the binomial formula. ]
We return to our original goal, the bound for |n1(xj)|. Lemma 22

and Lemma 27 narrow the choices for r and k. By Holder’s inequality
and by Young’s inequality, along with "“1“1 =1,
n
v
n, (x| 51§0|| )" () 1,1, -

We may assume that M is a centered cube in R" with side length B. Let

r

Bi(r,k,n,A) bound “ax/IXl

ﬁiui A uniformly in x e R"-{0}. Then by
Lemma 22,

v Bi(r,k,n,h) or 1/2
1G)" ()l s ———— [ 1 1a™ax ]

(em)" R

Consequently, we choose 2r =z n+l. Since lell°° = |x|, we integrate over

{qum>B} in the manner as that outlined in the discussion preceding
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Lemma 22:

2r-n
A v .Bl(r.k,n,;\) Vi r (1Y 2
I (h,x,) " (-2 )N, = - 2
(2n) r-n

From Lemma 27 Bl(r,k,n,h) can be determined.

28. LEMMA. For v, r, w, 4, C, and A as in Lemma 27, for

k-2r-2#1, for A = 2n2£§l , LeN-{0}, A= {lul_s},

N+i4n
r n ., 2n(r+2) A,n N+(£n) _
“avﬁl "1,A = A(r, k, n,sd)‘ 2 K1 [min{l,—K-l-} + U[[ —m—— ] 1]]

where

0 if AsK
N = 2r+2-k, u = . K, = max{zﬁil , c} i
1 1f MK

Proof. Note that each occurrence of 21%1 in the first inequality

of Lemma 27 may be replaced by K1' Thus, by Lemmas 14 and 15 combined,

n
r n(k+1) 2r+3-k-1
|87k, ()] = A(r,k,n, 4K, M max{X , lw 1} :
. J=1
Integrate, treating separately IlwlImSK1 and IIwIIm>I(1 . For example, for

A=K and using R" =
i

1{ le I=IIwIIm}

nCs

K

' 1
1958, 1, 4 = 1308 1, = A(r,k,n,sd)KI"(k*“[nzn [ 'k tay
0]

A K y
N n-1 1 N N
+n2nJ'y n[ledyJ+ ijdyj]dy
K =1 K
1 1

N+1
N+(A/K ) n
= A(r, k, n, )X n(k+1)n2n K n(N+1) l . l R -
1 1 n n N+1
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Note that, regardless of the sign of N,

N+1 N+1

N+(A/K1) N+(&m )
[ = [

From Lemma 27 Bi(r.k,n,h) can be chosen to be independent of A.

For if k+1 > 2r+3+1 the ]a;ﬁil is in L'(R"). Explicitly,

29. COROLLARY. For k> 2r + 3, (i.e., N < -1)

r < r 2n(r+2) ,n (-N) Y°
188,10 = IEA 1, = e kom0 2 [

In Lemma 22 it was seen that r could be as large as k+1. Hoﬁever,
r must be less than half of this value for the Corollary to apply. For
example, the Corollary does not apply for ks5. For k=9, r can be no

greater than 2. In this case nz(xj) decreases as A /2

whereas nl(xj)
decreases as [3—1 for n = 2. To have nl(xj) converge more rapidly we
must choose between large values for k, and hence for K1’ and a bound
for nl(xj) which depends on A.

We can finally state our bound for |n1(xJ)L We conclude this

section by collecting the results in

30. THEOREM. For E a compact subset of R", for ¢ = P e 23S
s

. 1 ,2,.n
defined above, for f € L nL°(R’), for hi, X Xpy wj, {xj}jeJ , énd
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“1 as defined above, and for k = 3,

F >4 =

3
"xl':[ Z ((p*f) (X )W - Z Z <((ﬁ xR) )[x 1’ (xy’-&vﬂ)[x ](p.l*f)>§[’j] “P
jeJs jeJg 1=0 3
= g I (xw |+ g zn (x ¥ |
j€J
< m?.x{lnl(xj)l}llxr_:"p . m?.x{lna(xj)|}||x2"p
Let C =

T 4(e+1) ' 2e+1|1/(2e+3)
max bﬂ Eﬂ , and let
e=0,1,...,r

k+r 442n - a0 r
Alr,k,n,4) = ((r+1)g)2[r][5i] [3] [ s . \/EM(n+1)r[5g 3,] ]

8 o (k+1)C*®
with 4 the set {ao,af...,an) of which M and m are the max and min,
respectively. Let K1 = max{éggl , C} , A= ZWZE—l , £ e N-{0}. For

2r =z n+l and for k-2r-2#1,

1 v 2r-n
maxc{ |n, (x ) [} = (n+1)[£] 2™ Alr, k,n, K272 [;] 2
3 ] (2m)" vor-n
N+1
N+( &n)
. [ [ R 1]} ,

0 1f ASK
and where N = 2r+2-k, u =

1if MK
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. k1 0 4m 173
Secondly, for the case 2—S—— z [[ﬁ] i] s

max{ Inz(xj) [}

]
n 1

ot FE R

[[1+1+ (en)1+2(2—k)]n-1 (em)1*2(270 ]2

2(k-2) - 1 2(k-2)-1
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3.7 DISCRETE APPROXIMATE RECONSTRUCTION

We have In this section the payoff for . all of the preceding
analysis: We can exhibit maps defined on discrete spaces which may pe
used in a digital implementation of the approximate reconstruction.

For these maps we develop the final error term g,

To begin, recall the interpolating function ¢y wused 1in the
Construction section and in the Interpolation section: w:R" —> R along

with a discrete set of points % in R" with index set J, {¥R36J= 5

n

such that, with wj =y y X = XEZ:WJ , Where E is a subset of R

[xJ] E €5
with compact closure. To condense the notation of the previous
section, let
_ VvV on =
i = (,h)R" — R, 1=0,1,...,n,

(recall ﬁi is symmetric) and let the set ¥+M be denoted by B. As in
the construction section. let
n
G = Z (H xg)*p *f .
1=0
In the preceding sections we have developed the manner in which

Y G(x )wJ is an approximate reconstruction of f. The set % may be
jEJ

viewed as the "reconstruction set" in R".

A second discrete subset of R" is the "data set" Q, the set on
which the convolutions ul*f , 1=0,1,...,n, are evaluated. As in the
Construction section let Q be. the index set for @, Q = {{Jqéd We

shall require
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Q> ¥
and
for every xq € Q, xj € },‘q €eQ, jeJ: xa = xj S qg=g.
With this notation the objective of this section is to exhibit a

map
H:Qn38 —R
such that the discrete convolution
5:} —> R

a(xj) =1Zo ) ﬁilxg)(xj—xq) (ul*f](xq)
=0q€Q

approximates G in the sense that

iQl— 0

where |Q| is a suitable measure of the "mesh" of Q. Here the irregular

e, = I jEJ(G(xj) - G(xj)] upj||p —_ 0,

notation H xp is used in place of Hi(xng). Also G depends on Q, but

this dependence is supressed in the notation. We have immediately

n
s, =) maxf
4

H *p*f](x)— T () (x-x ) (u+f (x)‘} lx.|
1=0 jeJ [(153) 1 3 qeorig) 3oa (x ) d =P

We require that the set Q have associated with it a set S < R".

With the notation xg (x) = xs(x—xq) for q € Q, x € Q, x € R", and for
q

the characteristic function of S, the sets Q and S are to satisfy

A5
& x, *xp LXxg = X * xg almost everywhere, and
q9€0 ¢
xXg = ) (xs)[xq] almost everywhere

X €BnQ
q
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iad. for xJ € }, for x ,xq, € Q,

"xs"1 if X =X - X

(xs *xg ,](xj) = {
q q

0 otherwise

n
. xs(—x) = xs(x), x € R,
With these conditions on S and @ the difference in the expression for

£, splits:
l[[Hlxg)*ui*f](xJ) - I (g x) (ui*f](xq)l (x)

1

B \[[ qIEQ‘[Hixﬂ - "xSII1 (I}leg)(qu )] xsql] *p,l!-f](xj)

1
¥ ——(f{x)(x,)x ]* [Z[n*f— (u*f)(x)]x ] (x)l,
My B
[[q’eo gl - 7 Sy qeq" ! ! S|

To define ﬁl and to bound 84 we specify certain remaining choices.
In particular, let the index set Q@ be a finite subset of Z" and let 6

be a second finite subset of Z". Choose 8 > 0 and A > 0 and let

n times
S A T
n times
N A B T ATy

where A and 6 are chosen such that, with xé(w-tA) = xg (w), we R,

EA xé =X -

teQ t
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We now define

1 _ v
Tl (Fxg) (x) = [ L (h,)(ta) xg] (x) xg(x )

teQ t
— iAd(t-q) v
= I (ph)s e (x,)7(98) 15(q3)
teqQ
31. THEOREM. Let pi*f, i=0,1,...,n, be given on the set Q. where

8 and Q are such that condition i holds for given sets E and B. Let

~

H, A 0, and H be as above. Let ¢ be a subset of Q, with J the

corresponding subset of the index set Q. such that as above X, =

Xe Y wj. Then

jEJ
n
e, = I, } Z [[(H:xﬂ)*“i*f](xj) - I (f,xg) (x,7x) (“x*f)(xq)]wjnp
1€7150 q€Q
A n
= Izl el 3]
n S
N max{C , |w |}
n(k+1) 7 J
[max{A(l,k,n,ﬁ)[ZEilJ =t } Vﬁh(1+nks)
s n k+1 2 2
welA k+1
nmw&—ﬁhoq
s J

3=1
4+ 2n n
5M 2 nAd -n_. |nd
+ [—8—-] [-I}I_] K3n [T + "x$u1m nmln{—-n—l, 1}]} ’

where A = {"w"m<h}, A(1,k,n,4) and C are as in Lemma 27, and where K is

as in the proof of Propostion 16.

Proof. In the following let 1=r,r’=e, with 1/r + 1/r’ = 1 and 1/w

= 0. A bound for the first term in the splitting (*) is
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1
[ b i o0 )
1

s ||[ I [HixfB - Tagl, fﬁlxz](xq,)] g ’] R

q° €Q q

1
<1 % (nag - o Gagdx) % 1, I, Il
q €Q ST

’
q

A bound for the first factor of this bounding product is

1 .
Iz [”17‘3 P (ﬁix3](xq’)] xs .
q’€q S'1 q

1
s max H[H X = o (B, xg) (x ')] g | } lxgl, -
q’€Q 1”8 IIxSII1 1787/ 7q Sq, o Blr

We now apply the definition of ﬁi to bound

1
" [”17‘3 AN (ﬁixﬁ)("q)] x5 |
q

1 wx w'x

= sup { : r J |[xxﬁi](w)e - (xhﬂi)(tA)e 9 dw }
xeS \(2n) 58

q te€qQ

~

< sup { ! A X J lxhﬁx - xhﬁl(tA)ldw
(2n) red

X€S
. 8,

{wx i x

+ Il - ph)a ) le e Yaw
3

t

w'x w-x
+ l(xkﬁiJ(w) | le -e  Yde } .
t

For x € S and "w" < A
q ©

iw-x w-x

le -e 9

s Jo (x-x )| = ol |(x-x)] = 23
q q 2
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Combining these bounds

el - g G ) 5 L)

! i{mxs {|(xhﬁi)(w) (xxﬂl)(tA)l}ﬂxAH (14738

(2m)"” teQ we
< B2 b0} -

We have “xAu1 = (22)", and from the proof of Proposition 16
2R N™ a(k+1) L(2-K)n
d 1, = I, 18,1, < @ [2) 7 [ etengeon

where, as always, k3.
To bound the sup above we observe that with v = w-tA there exists

w e ét such that

I(xhﬁi)(w) - (xkﬁi)(tA)l = |6Vﬂi(w’)] < 2?2A{|6V/!Vlﬁ!(w’)I}Iw-tAl

< ’ A
=< max Iav/lvlﬁi(w )I}Vﬁ 5 -

w’ el

By Lemma 27

zzg {][xkﬁi)(w) - (xAﬁl](tA)I}

n
g
, T max{C , IwJI}

n(k+1
< max{A(l k,n, ) [Zl—cf—l] =1 vriA .
wel n k+1 k+1| 2
n max{2———,lw I}
= s J
=1
This completes the bound for the first term of the splitting (x).

For the second term of the splitting we first use
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‘[L;eo @1— fﬁleB)(Xq,) xsq’] ' [qgo[“i*f - (“1'f)(xq)]xsq]}(xq)l

) ‘
Sl Pl CA (ORI RN I ol PR PR TR ) A
q'€q "S1 q’ q€Q q
To bound || Egbﬂ*f - Oﬂifj(xa)]xs "r, note that, with 1sv,v/=w, 1/v +

q q

i7v =1,

| ¥ [ul*f(x) - [ui*f)(xq)]xs (x) |
q9€Q q

= DlI0) ., - 0,0, 1l xg ()
q€Q q q
n-n/v
< G (2 B bz
1 1 1 - YqeQ “q

where 8/2 = max{"x - xq||m} . The last inequality follows from Lemma 10
xeS
q

and from ¢ = M . As usual, all occurrences of a in the last
<0>ai i i

expression may be replace by m.

1
To bound " v T fﬁlxi,;](x ) Xg "r use
q’€q '*s"1 a q’

1 1
max a— [H x ) (x ,)| = max{ L (x h)cta)y }
1,q {I gl ri 2 1 | 1 Yem” "tea( A l) ét"1

I, n
A A
e I I} =2 = (3141,
1 (2n)

W

To complete the proof, combine the above bounds and use r’=1 in the

1A
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bounds for the first term of the splitting (%), and use r = v/ = 1 in

the bounds for the second term of the splitting.
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3.8 DiscussioN

A primary motivation for exhibiting an explicit error bound was to
determine if a ‘"practical" support for the deconvolutors (xhﬁl)vxﬁ
could be established. A "practical” support would be one for which the
side length B of B differed from the side length m of the smallest
convolutor by a factor of several tens. Such a support would be useful
for applications.

The bounds established here do not satisfy our “practical"

criterion. Let us examine the error € for a specific case. Consider

n= 2, 4= {1, V2, V3}, k = 3, and s =< 1.
Then
m=1, M= V3, 2"—;128,and

(see the Theorem in Approximate reconstruction for definitions)

4 \1/3
_ ] m o _ ok+1
C = [Eﬂ 5] % 1.76, K1 = 2—;—‘

Since the side length m = 1 of the smallest convolutor is our unit in

R, it is easy to select a function f and a set E such that

n

I£l, = 1. 1spse,  and x| =2
(e.g., a simple function with support in E ). For such a case the
error £ should be no more than 1.
Consider £, In the bound for £, given in Section 6 the

quantities Inl(xj)| and |n2(xj)| have the common factor
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4+ 2n n
L = (n+1)Vn [%'—] [%] = 1.70 x 10* .

This term also appears in A(r,k,n,d4) so that
2r-n

2 {k+r r an+2nr 1) 2
((r+1)!) [r ][1+rM2“L] L K, [E] ,

r+n
2

In (x )1 = || ————
3 2(21:)"1/2r—n

L K T

1172 (n-1)/2
BE
1

3n+n/2 k-3+1/2
1
Im,x1 = I, (3 &

If k = 3, then for € = "f"2 it is necessary that Inz(xj)l = "f"2 which

requires that

in

v

K z8 =2

For lnl(xj)l to not exceed Inz(xj)l it is necessary that

Br-n/2 > (2n)1/2 Kln(2r+1/2)’
whence, for r = 2,
g = (o) /2 g » 921%27 _ 518
Clearly, such estimates are not "practical." Similar relations hold

for A and 8 that appear in the bound for g,



4 MULTIPLE OPERATOR DECONVOLUTION WITH ADDITIVE NOISE;
THE ENVELOPE OPERATOR

SUMMARY

The methods for multiple operator deconvolution of Berenstein,
Taylor, and Yger are examined for the case of the addition of a noise
signal after each of the multiple convolutions and preceding the
deconvolutions. It is shown that for strongly coprime multiple
operators there is an obvious choice for optimal deconvolvers. The
case of m strongly coprime, parallel convolvers with m independent
noise sources is compared to that of m identical, parallel convolvers
with m Iindependent, 1identically distributed noise sources. A
performance criterion 1is defined. The performance for selected
collections of strongly coprime convolvers is shown to be at least as
good as that for the corresponding collection of an equal number of
identical, parallel convolvers. That is, there is no penalty for the
additional frequency response available with deconvolution, at least
for the noncompactly supported optimal deconvolvers. Qualitative
methods are developed to characterize the properties of strongly
coprime configurations. These methods enable the description of
circumstances in which it 1is advantageous to use strongly coprime

multiple detectors of large support.

188
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4.1 INTRODUCTION

Throughout the last several years mathematical results have been
presented which form the foundations for the use of multiple (parallel)
linear operators, each given by convolution with a distinct kernel (or
impulse response), in place of the use of a single such linear operator
or, equivalently, in place of the use of multiple (parallel) operators
each with the identical kernel (Kelleher and Taylor 1971; Berenstein
and Taylor 1973, 1980a, 1880b; Berenstein, Taylor, and Yger 18983a,
1983b; Berenstein and Yger 1983; Berenstein 1983). See Figure 16. In
the multiple operator method each distinct kernel (also referred to as
a convolver or convolutor) is associated with a second kernel, referred
to as a deconvolver. These kernels are viewed as distributions, that
is, as linear functionals on the space of infinitely differentiable
functions on R". The mathematical results cited above describe the

conditions under which compactly supported distributions By Byseon B

2 m

have associated to them compactly supported distributions

v, Vv,..., v such that
1 2 m

m
Y pr =3, (1)

i=1

where &8 1is the Dirac distribution on Rn and where * denotes
convolution.
This 1is of interest for applications in which the convolver M

must correspond to a physical, analog device wherein the impulse
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Hy Yy .
— M,
(b)
“2 1)2
Y+ T
. . 4t ¢ o
: : — My
“m vm MO
\f+
1 .
(a) .
(c) M,

Fig. 16. (a) Multiple parallel linear operators with distinct
distributions M Single operator (b) and multiple parallel

operators with identical distributions K, (c).

response 1is dictated by a solid state or biological process. It is
entirely possible to select such analog convolvers which satisfy
approximately the multiple operator criteria. Then each associated
deconvolver can be digitally implemented. The fact that the
deconvolvers are linear and of compact support means that their

implementation is straightforward; that they are continuous implies
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stability. Most importantly, the evident high bandwidth of the overall

operator is accomplished without any essential change in the response

functions of the analog devices. The term overall operator refers to
m

the operator given by the kernel distribution } pow = d . of
1=1

course, because of practical constraints such as analog and digital
approximations and computation time, the design objective for the
overall operator would not be the identity operator with impulse
response 8 but rather a high bandwidth approximation'of the identity
operator given by an impulse response ¢. In terms of the distribution

equation (1) and since convolutions commute

m m
Llpxplw = Fpxvxp) =¢. (2)
1=1 1=1

In a sense ¢ can be considered to be made up of "parts," each of which
arises from one of the practical constraints just listed, along with a
special part that is deliberately added to control the noise power
spectrum of the output of the overall operator.

The publications on this subject have appeared primarily in the
mathematical literature. The following issues regarding (1) have been
addressed: sufficient conditions for the existence of solutions
(Hormander 1967; Kelleher and Taylor 1971; Berenstein and Taylor 1879,
1980a, 1980b); examples of sets of distributions that satisfy the
sufficient conditions (Berenstein, Taylor, and Yger 1983a, 1983b);
construction of explicit solutions, that is, explicit formulas for the

deconvolvers (Berenstein and Yger 1983; Berenstein 1883); and

construction and evaluation of approximate solutions (Berenstein,
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Krishnaprasad, and Taylor 1984; Chapter 3 of this document).

Only recently have specific applications of (1) been mentioned.
The work of Berenstein, Krishnaprasad, and Taylor (1984) addressed the
case of one dimensional integration over an interval as a linear
operator on a variety of function spaces. This work was the first time
that (1) and contemporary mathematical methods for understanding the
equation were applied to physical problems. There the linear operators
in (1) were considered to act on function spaces other than the space
of infinitely differentiable functions c®(®R™). In applications these
other function spaces may be LP(R") (functions with modulus to the
power p having bounded Lebesgue integral) or, more generally, Sobolev
spaces. The consideration of (1) acting on such functions spaces
requires the consideration of Cc®(R™) as a dense subset and the behavior
of the operators on the closure. Consequently it 1is natural that
approximate identities and mollifiers such as ¢ iIn (2) are used. This
work also discussed the question of additive noise and the question of
the continuity of the overall operator with respect to the

distributions Hoo Horeeos B The noise question is in regard to noise

2
added following the action of the operators defined by the M while
the continuity question is in regard to the dependence of the overall
performance on either the actual analog approximations of the u, or the
digital approximations of the v,

The approximation methods of Chapter 3 of this document were

motivated by this work of Berenstein et al. These methods exploit the
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approximation in (2). In conjunction with the analysis of the methods
(Chapter 3), a computer simulation for R’ was performed. This
simulation dramatically illustrated (2) for imaging devices in which
the analog convolvers were solid state photodetectors. With these
results there was an increased interest in imaging applications. This
led to the consideration of not Jjust detectors but of linear systems
consisting of sequences of operators with each operator of the multiple
operator type. -~ These activities led 'to the need to answer basic
systems analysis questions.

This chapter describes the result of our application of standard
methods of linear systems and random signals to the multiple operator
type of system of equations (1) and (2). This analysis was necessary
if one was to seriouslyAconsider multiple operator designs. While the
extended bandwidth was well understood, analyzed, and even illustrated
in simulations, the consequence of the introduction of noise and of
design errors was not fully understood. It was clear that since the
operator was linear and continuous that there would be no instablity
due to noise (at least for smooth (C*(R™)) approximations), which is
already an improvement over the case of single operator reconstruction
methods (Berenstein, Taylor, and Yger 1983a; Berenstein, Krishnaprasad,
and Taylor 1984). However, the performance needed to be explicity
described so that standard tools such as resolution, equivalent
bandwidth, and signal to noise ratio would be available for systems

engineering design studies.
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This investigation was motivated in large part by the potential
application of these multiple operator methods to electo-optics,
especially to imaging devices. -We haQe in mind imaging devices that
are for the detection, transformation, and display of electromagnetic
radiation for a human observer as well as such devices for artificially
intelligent "observers." Consequently, the problems and the desired
solutions have the flavor of this application. While the analysis and
the results are in a sense general, much is framed and guided by the
motivating problems.

With this in mind, let us review two features of performance
descriptions suitable for engineering studies. For 1imaging
electro-optics systems it is best to cast off any hope and preference,
common in mathematics, for an obvious choice of norm or metric as a
performance measure. First, performance criteria are never uniquely
determined by the device: they depend instead on the infinite number
of possible end-uses. Loosely speaking, if there are two end-uses that
are "linearly independent," then one would need at least either two
real valued performance metrics or a performance criterion that takes
values in a 2-dimensional space. For example, for fleld use of an
infrared imaging device for observations in a natural terrain, there is
a requirement for good sensitivity at low spatial frequencies for
purposes of orientation and search strategy relative to the terrain,
while there is a requirement for sufficient response at sufficiently

high spatial frequencies for purposes of accomplishing the objective of
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the observation (Ratches, Lawson, et al. 1975). These two sub-uses of
field use are an example of two "independent" uses. A different
end-use, say industrial robot vision, would surely have distinct
sub-uses that were independent of those in the field use example.

The simplest thing to hope for is a performance criteria that can

be "projected" onto any of the criteria "spanned" by a set of end-uses.
Consequently, it 1s typical in electo-optics to use functions to
characterize devices and systems and to rarely be satisfied with a
choice of norm of the function, or even with a choice of a projection
of the function to a finite dimensional space. In other words, one is
willing to forego a linear ordering of devices.

The transfer function (the Fourier transform of the impulse
response) and the noise power spectral density are familiar examples of
such device characterizing functions. (The second may depend on a
background signal level as well as the device.) The minimum resolvable
temperature difference is another such function. (A human observer is
assumed for this one.) The simiplest example of a projection is the
"evaluate at" map; for example, evaluating the modulus of the transfer
function at a specific frequency projects the space of all transfer
functions onto the real numbers. Evaluating a weighted sum of such
projections is a further example. While the set of all transfer
functions in not naturally ordered, it inherits an order from a fixed
choice of such a projection, as well as from, say, the L2 norm. The

characterization of a device by such dimension reducing projections is
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almost always inadequate; one prefers to see the system in terms of its
characterizing functions.

On the other hand, system characterizations typically have an
implied equivalence relation. A familiar example of such an
equivalence relation is the one in which transfer functions that differ
by a constant, nonzero multiple are identified (hence the use of the
familiar signal to noise ratio). That 1is, by means of a suitable
equivalence relation one seeks to factor from the characterizing
functions all irrelevant differences. (In the example, any difference
in gain is to be neglected.) Frequently the equivalence classes are
identified by a standard choice of normalization. (In optics, transfer
functions are normalized to unity at zero frequency.) The
identification and use of equivalence classes reduces the size of the
space of the characterizing functions.

The objective of this chapter is to provide explicit performance
characterizations for multiple operator deconvolution in the presence
of additive noise. In addition to the two features above (functions,
equivalence classes) that are to be incorporated, a third is that
characterizations are always relative: the whole point of any
characterization is comparisons. Our obJjective, then, is to provide an
explicit performance characterization for multiple operator
deconvolution relative to the performance of any of the constituent
single operators. Once this is accomplished the existing comparisons

between conventional single operators can be used to compare multiple
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operators with arbitrary single operators. And our goal is to do this
with wisely chosen equivalence classes so that succint engineering
conclusions can be formed directly from the characterizing functions.
This goal is accomplished in this chapter by the use of what we call
the envelope operator {(and the equivalence class it generates)
associated with a multiple operator. With this construction the

comparison task is reduced to a comparison of transfer functions.
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4.2 GENERAL RESULTS

A fundamental result in this subject is the following. Given a
set of distributions Ky uz,...,um on Rn. each with compact support,
then the necessary and sufficient condition for the existence of a
second set of distributions vl, v2,...,vm on Rn, again each with

compact support, such that
m
Tusw =38, (1)

is that the Fourier-Laplace transforms of the Mo denoted ﬁl, satisfy

-C |Im z|

L If (2)1 = Ce (1+1zD™N, zec” (3)

1=1
for some positive constants Cl, C2, and N (Hormander 1967; Kelleher and

Taylor  1971). (For g = (g, &,..-,8) € ¢"  define || =

[ ) |§‘|2 ]1/2 ) The condition (3) is often referred to as the
1

strongly coprime condition.
Here we will need only elementary harmonic analysis and we éhall
consider the Fourier transform on R", that is, the restriction of the

Fourier-Laplace transform to R" ¢ C" in the sense that for z = (21,

z,...,z)eC, w=(w, w,..., ) =(Re 2z, Re z,..., Re z) € R".
2 n 1 2 n 1 2 n

Then (3) has the form

Iﬁi(w)l = C1(1+|oo|)—N , weR". (4)
1

I ™M B

i

For any distribution v of compact support, b e C”(R™). as usual,

we may choose ¢ € Cw(Rn) such that 3 has compact support and is
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sufficiently differentiable so that v*¢ € LY(R"). But v*¢ can not have
compact support. However, for each i=1,2,...m define h1 = vi*¢ €
L'(R"). Then

) pi*h, = ¢. (5)

The hi e LY(R™ that satisfy (5) are not uniquely determined.

From (4) and from ﬁi e C”(R") and with ¢ as above, the choice

ﬁ (w)
1
D, (w) = — . R =D (W , 1=1,2,...,m, (6)
L If ()1
3=t
defines functions hi e LYR™ which satisfy (5). (z denotes the

complex conjugate of z.)

While (6) is exhibited essentially by inspection, the result can
be obtained in a more systematic fashion as well as in a more general
form. We first recall some standard tools, apply these tools to a
simple case, and then proceed to the more general form. The diagram in
Figure 17 represents an operator L acting on a function f. Let
(temporarily) f be bounded and in C™(R"). Let Hyo Boseooo bt be an
arbitrary set of m distributions with compact support. For each linear
operator defined by H let n, be a sample function of a zero mean,
wide-sense stationary random process that is added to the output of
B o let n, € Lm(Rn), and let Nf (Ni = 0) be the noise power spectral
density of the process (see, for example, Davenport and Root 1958,
Ch.4, Ch.6). For each distinct i and j let n be independent of nJ and

let each nj be independent of f. Let v, be defined by (vi*¢)A.= Di$ ,
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® . . A+

Fig. 17. Multiple operator configuration consisting
of m parallel convolvers B, m noise signals n, and

m deconvolvers vi.

where 3, Dl € Cr(Rn), 3 has compact support, and r is sufficiently

large so that [Dﬁ]" e LY(R™). Let g € L”(R™) be defined by

g:Lf:

(ui*f + ni)*(vl*¢). (7)
1

1

ne~s

In the usual manner, with E denoting expectation,

m
E{g} = Z;ﬂ*f*(vi*¢). (8)
1=1

Let T; denote translation by y, T'(x) = x + y , let V denote inverse
y
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Fourier transform, and let | "p denote the LP norm. Directly from the
definition of wide-sense stationary and noise power spectral density it

follows that
m
E{[g - et (e - E{g})oT;]} - [Esim 87 (9a)
1=1
and, for y = 0, that

(9b)

):N ID %1312

E{(g - E{g})z} =

(2m)" 1

The simplest configuration for L is all distributions equal, all

deconvolvers trivial, and all random processes identically distributed:

Bo=R,, VS S, Nf = N§ , fori=12,...,m. ‘(iO)

Then

(11)

E{g} = mp x¢sf , {Eg - E{g}) }

The utility of (8) and (8) or of (11) is that if L is followed by

a linear operator U with kernel u (which could model a specific
"end-lse") then classical discrimination methods would compare the

function (Il(E{g}))2 with the constant function E{(HEg—E{g}))z}. In the

case of the simplest configuration, (10) and (11), there are the

following formulas and bounds.

[H(E{g})]2 = E{llg}2 = (u*(mpo*¢*f))2 = mz[fﬁﬁoa?]v]z (12)

IA

[ - g %u ]

1A

[ ]2 lluu $u n?ug when f e L%(R™) ;
(2m)"™
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and

E{(u(g - E{g}))z} = ——IAN > (13)
(em)"

The function E{lg} 1s referred to as the signal, its square E{ug}2

is referred to as the signal power or energy, and E{[u(g—E{g}])z} is

referred to as the noise power. Typically the ratio of E{ug}2 to

E{[u(g—E{g}))z} is considered, or, alternatively, the positive square

root of the ratio. Here we shall consistently use the latter. If this
ratio is evaluated at some distinguished point, the value defines a
"signal to noise ratio." We denote by P the projection of a function
by the evaluation of the absolute value of the function at the
distinguished point. Given L and for a given choice of ¢, f, U, and P
define the signal to noise ratio

PU(E{g})

[e{ (@ [g—E{g}]]z}] v

For a fixed choice of ¢, f, U, and P, two operators L and L’ can be

PNR(UL) = (14)

compared and ordered by (14).

On the other hand, for a choice of ¢, f, U, and P, (14) is
determined for the case of the trivial operator in (10) by the pair of
functions

mfi and Vm N_ . (15)
In general, let operators L and L’ (for example, as in Figure 17) have
transfer functions and noise power spectral densities ﬁ, N2 and ﬁ’,

N’z, respectively. For a choice of U we shall say that uL|uL’
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(i.e.,"UL divides UL‘") if thére exists a function 6 e L”(R™) such that
A40=44 . 1f wjuw and |§%2)°N s |2|°N% , we say that
uL = uL’

This definition is motivated by the following. As usual, let ¢ be

such that a linear operator 2 with kernel ¢ can be associated with Q by

considering G$ . Let 8 be any continuous, translation invariant,
linear operator. For fixed U if UL = UL‘’, then w =z 1
FNR(UBL)

Consequently, supfN¥R(UBL) z sup PNR(UBL)
B ]

Next consider the operator L diagrammed in Figure 17 for the case
in which ”1’ “2""’”m are distinct and strongly coprime (i.e., satisfy

m
(3)). An obvious consequence is ¥ Iﬁi(w)l2 > 0 and, equivalently,
1=1

n

0 = (ﬁl(w), ﬁz(w),...,ﬁm(w)) eC", weR (18)

Consequently we can visualize (16) as is shown in Figure 18a. A
similar illustration can be used to visualize
Plo)(fi (o), B0), .. i (@) = (Fi (), filw,.. . 2i (),
except the "curve" passes through the origin if and only if f(w) = 0.
The power spectral densities are real and nonnegative (thus we wurite Nf
and choose N1 =z 0). Assume

n

Nl(w) >0, weR , 1i=1,2,...,m. (17)

We can visualize (17) as is shown in Figure 18b. The case of strongly
coprime multiple operators has the useful feature that the

consideration of (16) and (17) pointwise in conjuction with (8) and (9)
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uniquely determines an alternative choice for the Dl of (6). This

choice will be optimal in the sense it has the smallest E{(g—E{g})z}

among all sets of deconvolvers.

\(Nx(w)' ... ,Nm(w))

(B, (@), ..., () N
| >

(a) (b)

Figure 18

PROPOSITION. For N1 € Lm(an), Nl(w) > 0 for w € R", i =

n m

1,2,...,m , then D: R —sC is uniquely determined (almost

everywhere) by the conditions, for fixed w € R",

D(w) = (Dl(w), Dz(w),...,Dm(w)) =z

m
minimizes ¥ |zl|2N?(w) on the set {z ecC": M, (@) 1} . (18)
1=1 1

H B
N
=>
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In fact

Dl(w) = (19)

Proof: Any z that satisfies (18) is clearly contained in the

linear subspace of C" determined by the span of

{(ﬁi(w),o,...,m, (0,,(0),0,...,0),..., (0,0,...0,f (0)) } (20)
That is, z, = 0 if ﬁx(w) = 0. Equivalently, there exists A =
(A, A_,...,2 ) e C" such that

1 2 m

A A A

Clel(w), zzNz(w),...,szm(w)] = (Aiul(w), Azué(w),”.,kmum(w)] . (21)

m
Let }’ denote ¥ . Then (18) implies
1 AL=1
pi(w)¢0
A 2
e , 2 A 2 , l“x(w)l
minimize ? ]Ail Iui(w)| on { ? Ax——ﬁ;TBT- =1 } . (22)

From this it follows that the Ai are all real, so that (22) in the form

B, ()|
1 } (23)

minimize E’Ekilﬁl(w)l]z on { Z'A,|ﬁ,(“)| N (@)
1 1 !

is an elementary case for R" and has the unique solution
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|8, ()|

Ni(w)
2

| ()]

1 N?(w)

AR ()] = (for fi (w) # 0) . (24)

[no -}

J

Consequently, from (21), the unique z correspon&ing to the minimum is

D(w) as in (19). (]

In addition to Ni >0, 1i=1,2,...,m , we shall assume No > 0.
Further, we shall assume that the N1 are sufficlently differentiable

and that — = 0(|w|®) for some integer p, i = 0,1,2,...,m . With this
i

we can find § = 0(|w|'p’) so that (Dia)V e L%(R™ and for ®

sufficiently smooth and with compact support then (Dﬁ)V e LYR™.

COROLLARY. For the choice of D1 from the Proposition,

1 1/2
oA = 2,2 )2 T A2
Yub =1 , [ LID|°N ] = mo |l . (25)
i1 1 1 3
1=1 1=1 ) >
j=1 N

Let L0 identify the trivial configuration of L in (10) and let Ls
identify the strongly coprime configuration. Unless explicitly
indicated to the contrary, Ls indicates that the deconvolvers Dx of
(19) are used. The first of the functions in (25) is the transfer

function for LS and the second is the square root of the noise power
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spectral density. The corresponding functions for Lo are (15). The
mollifier 3 is suppressed but understood. From (25) obviously leL for
any operator L. (Note that L always denotes a pair, a transfer
function (linear operator) and an additive noise.) From (15) and (25)
the dividend S for L = Lo is mﬁo. Let N: denote the noise power spectral
density of Ls. In the sense discussed earlier let Qo denote the linear
operator associated with mﬁo . That leLo with dividend mﬁo means LO =
QOLS . Then QOLS has functions corresponding to (25) (transfer

function, square root of noise power spectral density) given by

m
A A L _
mi, LwD = mpo,
i=1
A 2
§ i, |
n 1/2 N2 1/2
A 2 ,,2 o]
|m“.0|N = mluo‘[ Z |D1| N‘ ] = -"—Az——' VI‘H‘NO (26)
1=1 . |1, |
=1 N2

By definition uLS = uLo if |mﬁb|Ns(w) = VﬁNo(w) on the support of ﬁ,
. A

and UL = UL if UL |UL_ and |mu [N (@) = vmN (w) on the support of

ﬁ. Thus, whether HLO = uLs or uLs = uLo holds depends, in part, on

whether one of the following inequalities holds on the support of ﬁ :

from (158) and (26)

VﬁNo(w) =

IV IA

A
|mu0|Ns(w)
m

N2 () 1/2
0 A 2
|1, (@) ]
2 1
Ni(w)

va|f ()] . (27)

Ay

i=1
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In (27) the notation means that the upper 1hequality symbol on the left
is to be paired with the upper inequality symbol on the right and lower
left with lower right.

The comparison in (27) can in special cases be viewed from a
slightly different perspective. First, view the left side of the

second inequality in (27) as the Fourier transform of a kernel. Define

N - Ni(w) A , 172
8w) = [ § —— |f ()] : (28)

(o1 Nl(w)

We refer to ¢ as the envelope transfer function corresponding to the
envelope operator € for a given strongly coprime Ls in comparison with
a given Lo. If vmE acts on Ls , then the pair of functions associated

with \/ﬂELs is

me ., VmN . (29)
Recall that the pair for L0 is given by (15) (rewritten for
convenience)
A
mygo, vin N, - (15)

That is, the composition of Vm& with LS has a noise power spectral
density equal to that of Lo . If, for example, ﬁo is real and
positive, then it makes sense to compare (29) with (15). It is easy to
check that the condition fivmé = ﬁmﬁo (on the support of ﬁ) coincides
A_A A
with our definition HLS = uLo , and umpl | z uVﬁQ coincides with what we
mean by uLo z 11LS . These two inequalities are precisely the content
of the comparison of the right side of (27). One could say that vm¢ is

the normalization of LS to the noise power spectral density of L0 .
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v

For either point of view we consider W> = {w e R™ Q(w)

fn?|ﬁ0(w)|} and W_= {w e R™: 8(w) = »/:F|ﬁo(w)|} . For all 1 such that

e8>

has support in w> it follows from (27) and the definitions that UL
s

1\

nLo . Consequently,

A
FAR(DL) EX2 AR

Aﬁﬁo
n $ No

=1, (30)

?NR(uLO)

A
(4 2

where Qo is used to denote the linear operator corresponding to the
transfer function mﬁo of Lo .

Assume ﬁo(O) # 0 and define

Qo={weRn: vt € [0,1) [ (to)] >o}.
Note that for R' the usual definition of limiting resolution is sup QO.
If supp(ﬁ) is compact and supp(ﬁ) C QO, then un;i makes sense,

consequently 11L0|11Ls .  Hence, if supp(ﬁ) is compact and supp(ﬁ)cw<n90,

then uLo = HLS.Consequently,

¢ Lo,
PNR(UL ) vm My 2
- = 1. (31)
PHNR(UQ L)
0o A1
B
A 0
e 2

In general the inequélity cannot be extended to all of w<nQO because of

the behavior of 1/ ﬁo on the boundary.
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PNR(UL )

There is no information regarding _— implied by either
YNR(HLO)

ILLs = 11L0 or 111..0 = uLs. Additional information 1is needed. For

example, it may be sufficlent to know the effect of the so-called
"boost" UL +— uﬁ;lLo . In particular, if supp(i) is compact and

supp(ﬁ)cno then

. ym(ua;‘Lo) $NR(UL )
supp(u) ¢ w> and ———— 21 == — % 21, (32a)
PNR(UL, ) PNR(UL, )
and
. wm(ua;‘x,o) PNR(UL )
supp(f) ¢ W and ——=2 =1 =— ——2s1. (32b)
PHR(UL ) PNR(UL, )

For supp(%) C (Rn—Qo, or even for supb(ﬁ)n(an—Qo) # @, it is often
the case in applications that llLo is not defined. Since 111_.8 is defined

for all 1 it makes sense in such cases to consider uLs = uLo.
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4.3 EXAMPLES: CHARACTERISTIC FUNCTIONS OF SETS IN R

Collections of sets in R" such that the characteristic functions
of the sets in the collection are strongly coprime have been reported

(Berenstein, Taylor, and Yger 1983a, 1983b; Chapter 3 herein). For

example, such a collection of cubes consists of m = n+l cubes in R"
with sides parallel and with side lengths Vai, Vaz,..., Vam, where for

all i#j a, and aJ are relatively prime integers and for all i Vai is
not an integer. A second example is the collection of m = 2 disks in
Rz where the ratio of the radii is an integer between 2 and 200.
A common situation for electro-optic detectors on R" Ee.g., n=1
(slits), n=2 (focal plane arrays), n=3 (sz{time})) is for the noise
s 2 : 1
power spectral density to have the form ”xsﬂlNe , where "xs"1 is the L
norm of the characteristic function xs of the set S (equivalently, the
Lebesgue measure of the set). For such a case, let sets S1’ Sz,..”
Sm, be chosen so that, for Moo= xsi, the By MBy...,p are strongly
coprime. Then, from the Proposition,
B ()

lee |
D, (w) = 11 (33)

R 2
)

| ()]
=1 |

I,
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and (25) becomes

lnA m 2 2 1/2 —-——-———-i 2 172
TuD =1 , [ Z D |" N ] = m U] N_ . (34)
i=1

=t |ul,

Let S0 be any set, let By, = % be its characteristic function, and
(o}

consider this to be the convolver in Lo defined by (10) (i.e., m
parallel, identical convolvers). Let the noise power spectral density
have the same form as above, Nz = ““0"1N; .  From (27) and (28) one

obtains an envelope transfer function @d and the associated comparison

for these two: a convenient renormalization by the constant "“b"i/z is
made in
A m Ii\l. (w)lz 172 lﬁ. (w)|
8 () = 2 Z‘— = m (35)
) o 137 o | R N
o1 1=1 18yl ol

For an explicit example let S1 < Rz be the region in a focal plane
of an imaging device which corresponds to a single light sensitive
detector. The exposure time interval is assumed fixed and the image is

assumed constant. Then Moo= X is the idealized response function of
i

the detector. (The actual shape of the response function, if not
deconvolved, is incorporated into the mollifier ¢.) Then ﬁi is what is
referred to as the "detector MIF" and the form of the noise power
spectral density corresponds to typical detector properties such as
“D** for infrared detectors. The density has the above form as well

for the so-called background limited case. It also has this form for
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R® when the time interval is included as the third dimension. Further,
a background limited slit detector corresponds to the above forms for
R' with the slit width as the coordinate. (In the background limited
case there is assumed to be a relatively small signal of interest
superimposed on a relatively large constant signal so that the noise in
the signal of interest is due to the "shot" noise of the constant
signal.) (For detector characteristics discussed above see, for
example, Kingston 1978, Ch.2.)

In Figures 19 and 20 the transfer functions for such cases are
shown. In Figure 19, a comparison is shown for the example for R
The characteristic functions p and p  for the two intervals (-1, 1)
and [—V? , V§j , respectively, are strongly coprime. The envélope
transfer function @d is shown and is compared with the transfer
function for the two identical, parallel convolvers as in (35) where My
= no- The choice Hy = M, is used rather than Hy = M, in this
comparison because M, is "better" than M, in the sense that the first
zero of ﬁ1 (i.e., its bandwidth) is greater than the first zero of ﬁz'
Recall from the scaling property for Fourier transforms on R! that
“1(X) = MZ(Vﬁx) for all x e R’ if and only if Vﬁﬁl(Vﬁb) = ﬁz(w) for all
w e Rl. Figure 19 illustrates the consequence of the strongly coprime
condition: the envelope response is approximately an envelope for the
modulus of the other two responses and, correspondingly, is without

zeroes. Also, it can be observed that the envelope response decreases

approximately as 1/|w]
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Fig.
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In Figure 20 the envelope transfer function is shown for an
example in Rz, the case of three squares Q1’ Qz’ Q3 of side length 1,
v2, V3, respectively. The characteristic functions of these three
squares are strongly coprime. The comparison (35) is illustrated in
Figure 20 by graphing the modulus of the corresponding transfer

functions for two subsets of R2 : the wl—axis {é=(w1,w2) e R® : w2=0}
(see Figure 20a) and the diagonal {é=(w1,w2) e R® . w1=w2} (see Figure

20b). All graphs use the Euclidean distance as abscissa, |w| =

(2 + wi)“q. The comparison illustrated in Figure 20 is for ﬁo =%

1 Q1

(As before, QQ has the greatest bandwidth and the scaling property for
1

R" has the form ul(x) = #z(kX) for k > 0 and for all x € R" if and only
if knﬁl(kw) = ﬁz(w) for all w € R".) The comparison is essentially the
same as that for the two intervals in R!. The difference between the
wl—axis and the diagonal illustrates that approximately the envelope
response decreases as |w|‘1 along the wi—axis and as le-2 along the
diagonal.

From (35) (and as illustrated by the figures) the following
statements can be made. These are stated as "observations" because the
results can not be given in terms of explicit inequalities. Some
notation is helpful. Define

m
Q = { weR: vt e [0,1] [u(tw)] >0 } and @ =[lg . (36)
i=1
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OBSERVATIONS: Let Hyo Boeoos € LY(R™) be strongly coprime
characteristic functions of sets in R" as considered above. With each
M, let there be assoclated as in Figure 17 an additive wide- sense
stationary noise with noise power spectral density of the form
"thNZ . Let L be the configuration in Figure 17 with deconvolvers
determined by the Proposition. Let Lo be the trivial configuration as
in (10) with By = M No = N1'

Observation 1: For L with supp(i) ¢ @ , UL_ = UL .

8
A m

Observation 2: For U with supp(2) < R" - U Q ,u_=uL.
i=2

m
Observation 3: For U with supp(ﬁ) c U Ql -Q, uLS = uLo.
1=2

Observation 4: For 1 with supp() compact, supp(2)c Q, let le
be the boost on U , uLo — nﬂ;lLo (gee (31) and (32) ). If
Observation 3 can be neglected then

FNR(W]L, ) PHR(UL )
- =1 —_ —_— 1,
9NR(HL0) YN?(“LO)

As discussed at (31) it is not possible to extend this to all of
91’ for ﬁl = 0 on the boundary of Q1' However, it still is desirable
to have a means to compare Ls with the more well known, more thoroughly
studied trivial configurations. In the next section this Iis

accomplished by pushing the troublesome set {ﬁ1 = 0} out toward

infinity.
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AN EXPLICIT EXAMPLE

PNR(UL )
It is instructive to consider ———2 for some explicit
YNR(HLO)

choices for Nz’ f, 1, and for P. Let Nz be the constant function. For

n n

fixed w, € R, let f(x) = 1 + exp(Lwo-x), x € R. Let

PU(E{g}) = |(L(E{g}))(0)|, and let % = 1%,

function of the punctured (excludes w ='0) closed disk centered at the

be the characteristic

origin and of radius ¢, lwol < & EAlternatively, the punctured cube

of side lenght 2¢, or the set {?&Rn : |wi|s%,i=1,2,...,n} ; This

latter alternative, %2 the characteristic function of the

set {é e R |o, | = 2]w_| ; lo | = Elw [} , with f(x) = 1 +
1! 0 2 5170

exp[bﬂ(wo)ij, is a very coarse approximation of a standard vision
model (Ratches, Lawson, et al. 1975).] Then from (14), (34), and (35),

with C a constant,

FICREICRE $(wy) Vi R (w,) o)
?N?(uLS) =C ~ ?N?(HLO) =C — "
R I, 175 13 2N |,
A
(4
d 2
hence
PNR(UL ) | 3 %N,
s = (37)
PHR(UL) f|u () | :
1/2
, vinlii (w ) | )
For the examples above, with D{w) = , for wte,

1/2
[

) Qd(w)
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ﬂ(wo) g 1, Dw) =1 for |w| = |w0|, and D(w) = 1 for |w| = IwoL
PHNR(UL ) FHR(UL )

Qualitatively ————= 2 1 for ¢ = lo,| ,and ———=— s 1 for ¢ =
FHR(UL ) FHR(UL )

|wo| + A and for A sufficiently large. This example highlights the
difference between the two Iindependent statements uLs = HLO and
?NR(IILS) = .‘/WR(IILO).

The elementary P makes this example a candidate for the use of Qd
as the transfer function of a linear operator which normalizes LS to
have the same noise power spectral density as Lo’ as was mentioned at

(29). Let Ed denote this linear operator. Then, proceeding exactly as

for (37)
PNR(E L) éd(uo)
— = X L0y €Q . (38)
FNR(UL ) vin | ()|
172
e, 1

For the cases considered this is approximately unity except for w, near
the zero set of ﬁl. The significance of (38) is that it is an explicit
examp}e of Observations 1 and 2: on 91 Ls is at least as good as Lo
with the additional feature of extended frequency response outside of
Q1' That is, on 91 there is no penalty for the additional response
outside of Ql. On the other hand, (38) only glves essentially

equivalent performance on Q1’ despite the fact that Qd has no =zeroes.
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Once again, any advantage due to this later depends on

PNR(UBE L) | 8 2N |
ds 2 "2
sup ——8M8 — = svélp A a , (39)
5 $HR(UE L) ? 1 N,
ﬁ(wo) o
where $ is a linear operator and f its transfer function. It is
clearly possible for GdLs to be the optimal: for example, consider

$QNG constant and f convex.

This consideration is of significance for operators B ”2”"’“m
that are not characteristic functions of sets but rather have each ﬁi
approximately compactly supported. The primary example here is the
diffraction limited lens. If strongly coprime convolvers M uz,...,um
were such thaf each |ﬁ1| was small outside some set, then the envelope

transfer function would exhibit the same behavior. In this case,

unless sup .?Nﬂ(nﬁﬁLs) is substantially greater than 9NR(HELS), the
B

performance of the strongly coprime configuration will be essentially

that of its constituent convolvers.
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4.4 MORE COMPARISONS: STRONGLY COPRIME VERSUS CHANGE OF SCALE

Let Ls be the same as above. In the above Ls was compared with

: 2 _ 2
L., where L was chosen to be u and N = ““1“1“@ . In these cases p
was the "best" in the sense Qi C Q1 i=1,2,...,m . Here L.s will be

compared with a one parameter family of such L. Define La by the
trivial configuration of m parallel, identical He,s @S in (10), where
2 . 2 = u (5

N, = Ju I Ny and p  (x) =u (F), o>0.

The primary result of this section is

OBSERVATION FOR FIXED NUMBER OF CHANNELS: Fix the number of

parallel convolvers in both Ls and L0 to be m . Let the convolvers be
characteristic functions of cubes on R” and let the additive noise be
as above. Assume that n is such that supp(a) C

m
U weRn:wl=0,i=J}. Then for n = 2
=1 '

u = 11L0 for all 0 < a =1 . (40)

s

COROLLARY TO OBSERVATION: For the conditions in the Observation
above, it is advantageous to construct Ls using sets that are as large

as possible.

APPLICATION OF THE COROLLARY: In parallel scanned imaging systems

with square detectors wherein the systems are ranked using some 1
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meeting the conditions of the Observation (e.g., horizontal or vertical
bars), the detector size should be sufficiently large so that the array
of detectors fills the image, and the detector sizes in the array
should constitute a strongly coprime collection. (This application

depends on sufficiently high sampling rates. See Chapter 3.)

The Observation is illustrated in Figure 21 for n = 2. For Figure
21 L is as in Figure 20: in the notation just above LS is configured
S
from the parallel convolvers u

<15’ ”<V§>’ “<V§>’ and u1 is the

characteristic function of the unit square. For this Ls the envelope

A
A [ORY
transfer function €, is compared with V3 ——,,, » 25 in (35), for a
"“’(o} "1
=1, 0.5, 0.2, and 0.1 . For « = 1 see Figure 20; for o = 0.5, 0.2,
and 0.1 see Figure 21. The observation in (40} is clearly evident.

(Here we neglect Observation 3 of phe last section by means of a broad
interpretation of & in Observation 1.)

The Observation (40) depends on the following properties. The
first, which 1is again an approximation, is that for A =

{w e R : w =0, 1==j}, the w -axis,

AROEN P (41)
J
AN A
|, . (@) ] I, (ow) |
The second is that ——fﬁi——y72 = &vz__i__r7§ . Hence, for n = 2 , for
"“(0)"1 " 1"1
A\
1B, (o) | 11 () |
Q= 1, and for weA, \/ﬁ—i——mSClwl-l _— Vljﬂ-“_<°>—1/2 SC’wl_l .
" 1"1 ”“(0)”1
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Figures 22 and 23 show two counterexamples for cases not addressed
in the Observation. Figure 22 is for the case of the diagonal in Rz ,
and Figure 23 is for n = 1. The Observation fails on the diagonal
D = {é=(w1,w2) € R : wl=w2} because

-2
e lplw) = Clo|™ . (42)

It fails for R because (41) holds.
If in place of characteristic functions of cubes one uses
characteristic functions of disks on Rz, then the relationship between
AN
IR
<
Aand“ﬁ_;‘z____

€
d /2

is intermediate between that of the wj—axis and
lee sl

that of the diagonal for

(43)

The significance of the Observation (40) is that it provides a
qualitative lower bound for the performance of the strongly coprime
configuration. To the extent performance is characterized for the nLa,
the "envelope" consisting of the collection over all & is a lower bound
for the performance of HLS.

All of the above has focused on performance away from the origin.
If the figures are rescaled so that the K., @ppear fixed with a
sequence of Ls constructed from convolvers of increasing support, the
Observation indicates that nothing is sacrificed away from zero while
the envelope transfer function near zero is substantially increased.
That is, uLs = uL0 represents a substantial enhancement near w = 0, not

merely approximately identical performance. On the other hand, this
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uniform improvement is for the case of 1 supported by the axes. For
the cases off the axes for cubes and for the case of disks there is a

trade-off between some loss away from zero and the gain near zero.



BIBLIOGRAPHY

Arnold, V. I. 1973. Ordinary Differential Equations. Cambridge:
MIT Press.

Arnold, V. I. 1978. Mathematical Methods of Classical Mechanics.
New York: Springer-Verlag.

Berenstein, Carlos A. 1983. An application of the Andersson-Berndtsson
integral representation formula. Revue de 1’ Institut Elie Cartan 8,
113-60.

Berenstein, Carlos A., P. S. Krishnaprasad, and B. A. Taylor. 1984.
Deconvolution methods for multi-sensors. ARO contract DAAG29-81-D-
0100, DTIC no. AD A152 351, 68 pages.

Berenstein, Carlos A., and B. A. Taylor. 1973. A new look at
interpolation theory for entire functions of one variable. Advances
in Mathematics 33, 108-43.

1980a. Interpolation problems in " with applications to
harmonic analysis. J. Analyse Math. 38, 188-254.

1980b. Mean periodic functions. Intern. J. Math. and Math.
Sciences 3, 199-236.

Berenstein, Carlos A., B. A. Taylor, and Alain Yger. 1983a. On some
explicit deconvolution formulas. Technical Digest, Signal Recovery,

Optical Society of America, Winter Meeting 1983, pp WA4-1 to WA4-4.

223



230 Bibliography

1983b.

Sur quelques formules explicites de deconvolution.
Journal of Optics (Paris) 14, 75-82.

Berenstein, Carlos A.,

and Alain Yger.

1983.
deconvolution. J. Funct.

Le probleme de la

Anal. 54, 113-60.

Bishop, Richard L.,

and Samuel I. Goldberg.

1968. Tensor Analysis on
Manifolds. New York: Dover.

Blicher, A. Peter. 1985.

Edge detection and geometric methods

in
computer vision. Ph.D. diss.,

Rpt. No. STAN-CS-85-1041, Department
of Computer Science, Stanford University, Stanford.
Collett, Thomas S., and Lindesay I. K. Harkness.

animals. In Analysis of Visual Behavior,

1982. Depth vision in

ed. D. J.
Goodale,

Ingle, M. A.
and R. J. W. Mansfield,

111-176. Cambridge:
Davenport, Wilbur B.,

MIT Press.
and Willian L. Root. 1958. An Introduction to the

Theory of Random Signals and Noise. New York: McGraw-Hill.
Flanders, Harley. 19863.

Differential Forms with Applications to the
Physical Sciences. New York: Academic Press.
Federer, Herbert. 1969. Geometric Measure Theory.

New York:
Springer-Verlag.

Hérmander, Lars. 1967. Generators for some rings of analytic functions.
Bulletin Amer. Math. Soc. 73, 843-9.

Kelleher, James J.,

and B. A. Taylor. 1871.

Finitely generated ideals
in rings of analytic functions. Math. Annalen 193, 225-37.
Marr, David. 1982. Vision. San Francisco: W. H. Freeman.



Bibliography 231

Meyer-Arendt, Jurgen R., 1984. Introduction to Classical and Modern
Optics. 2d ed. Englewood Cliffs, N.J.: Prentice-Hall.

0’Neill, Barrett. 1983. Semi-Riemannian Geometry with Applications to
Relativity. New York: Academic Press.

Prazdny, K. 1983. On the information in optical flows. Computer Vision,
Graphics, and Image Processing 22, 2338-58.

Ratches, James A., Walter R. Lawson, et al. 1975. Night Vision
Laboratory Static Performance Model for Thermal Viewing Systenms,
U.S. Army Electronics Command Technical Report, ECOM-7043.

Sternberg, Shlomo. 1983. Lectures on Differential Geometry. 2d ed.
New York: Chelsea.

Warner, Frank W. 1971. Foundations of Differentiable Manifolds and Lie
Groups. Glenview, I1ll.: Scott, Foresman.

Wheeden, Richard L., and Antoni Zygmund. 1977. Measure and Integral, An

Introduction to Real Analysis. New York: Marcel Dekker.






CURRICULUM VITAE

Name: Emil Vincent Patrick

Permanent Address: 10071 Washington Blvd #14, Laurel, MD 20707
Degree and date to be conferred: Ph.D., 1987

Date of birth: November 28, 1945

Place of birth: Sewickley, PA

Secondary education: Ambridge High School, Ambridge, PA 1963

Collegiate institutions attended: Dates Degree Date of Degree
Thiel College 1963-1967 B. A. 1967
University of Maryland 1978-1982 M. A. 1982
University of Maryland 1982-1987 Ph.D. 1887

Major: B.A. Physics; M.A., Ph.D. Mathematics
Minor: Philosophy

Professional publications:

1. "Identification of the sources of signal induced noise in
microchannel plates," Night Vision Laboratory Report, 1970.
2. “Microchannel plates with high open area ratio," (with A. Asam),

Proc. Electro-Optical Systems Design Conference-1976/Inter-
national Laser Expo., September 1876, 629-635.

3. "Microchannel plate in wall fabrication, method and apparatus,"
(with L.C. Spessard, K. Villhauer), U.S. Patent 4, 198,225;
April 15, 1980.

4, "Vacuum interlock," (with H.K. Dickson, H.L. Dunmire),
U.S. Patent 4,212,317; July 15, 1980.
5. "Vacuum sealed manipulator," (with H.K. Dickson),
U.S. Patent 4,212,575; July 15, 1980.
6. "Method and apparatus to fabricate image intensifier tubes,"

(with H.K. Dickson, H.L. Dunmire), U.S. Patent 4,286, 833;
September 1, 1981.

7. "Selection of dimensions in image intensifiers," Night Vision
Laboratory Report, 1984.
8. “Nonlinear gain microchannel plate image intensifier tube,"

(with E.J. Bender, R.E. Franseen), U.S. Patent 4,625, 108;
November 25, 1986.

g. "Wide angle and graded acuity intensifier tubes," U.S. Patent
application SN 935, 3539; November 26, 1986.



Professional positions held:

1986-1987

1968-1986

1978-1978

Graduate Research Assistant, SRC Fellowship
System Research Center
University of Maryland
College Park, MD 20742

Physicist
Center for Night Vision & Electro-Optics
Ft. Belvoir, VA 22060

Teaching Assistant

Mathematics Department
University of Maryland
College Park, MD 20742



