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an approximate critical hermitian structure.



Chapter 3 concludes the proof of the main theorem.



ASYMPTOTICS OF THE YANG-MILLS FLOW FOR
HOLOMORPHIC VECTOR BUNDLES OVER KAHLER
MANIFOLDS

by

Benjamin Caleb Sibley

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
2013

Advisory Committee:

Professor Richard Wentworth, Chair/Advisor
Professor William Goldman

Professor Jonathan Rosenberg

Professor Yanir Rubinstein

Professor Raman Sundrum



(© Copyright by
Benjamin Caleb Sibley

2013



Acknowledgments

I would like to use this space to thank several people. Mostly, I would like to
thank my thesis advisor Richard Wentworth, who has been giving me valuable advice
since the Summer of 2010. He introduced me to the topic of this thesis, very patiently
explained the details of his papers on the subject, and gave me considerable help in
solving the problem. He has also very helpfully arranged to have me periodically
relieved of my teaching duties, which has been a great aid in completing the present
manuscript. In this regard I also thank the National Science Foundation, and in
particular would like to mention NSF Grant Number 1037094.

I am also indebted to the other members of my thesis committee: William
Goldman, Jonathan Rosenberg, and Yanir Rubinstein for agreeing to read this thesis
and give advice. I particularly thank Professor Rubinstein for his questions and
corrections during a talk on the subject of this thesis in the Geometric Anlaysis
Seminar. I am also particularly grateful to Professor Raman Sundrum for agreeing
to be the Dean’s Representative on the committee.

The anonymous referee of the article [S] also deserves a great deal of gratitude
for a particularly helpful referee report which provided knowledgeable comments at
a microscopic level of detail. The referee has greatly improved the expostion and
hopefully made the manuscript more readable.

My former flatmate Xuwen Chen, who lived with me for five years has offered
his friendship and occasional mathematical advice. He has also given me a great

deal of LaTex advice, and in particular was extremely helpful in showing me the

i



ropes of the somewhat confusing University of Maryland thesis format.
Finally, I would like to thank my family: Dad, Mum and Laura. I am grateful
to them for giving me all the opportunities they have, and for enduring endless

discussion about my extremely esoteric and impractical subject.

1l



Table of Contents

1 Introduction and Background

1.1

1.2

1.3

1.4

1.5

Introduction . . . . . . . ...

Kahler Manifolds, The Space of Holomorphic Structures, Hermitian
Einstein Metrics and Connections, and the Yang-Mills Functional
1.2.1  Kahler Manifolds . . . . . ... .. ... .. oL
1.2.2  Holomorphic Vector Bundles, Hermitian-Einstein Metrics and
Connections, and the Yang-Mills Functional . . . . ... ...
The Yang-Mills Flow and Basic Properties . . . . . .. ... ... ..
1.3.1 Yang-Mills and Hermitian Yang-Mills Flow Equations: Equiv-
alence up to Gauge . . . . .. ..o
1.3.2  Short-Time Existence of the Flow . . . . . .. .. .. ... ..
1.3.3  Uniqueness and Long-Time Existence of the Flow, Conver-
gence for Stable bundles . . . . . ... ..o
Properties of Sheaves, the HN S filtration, Weakly Holomorphic Pro-
jections, and Second Fundamental Forms . . . . . ... .. ... ...
1.4.1  Subsheaves of Holomorphic Bundles and the HN S Filtration .
1.4.2  Weakly Holomorphic Projections/Second Fundamental Forms
Uhlenbeck Compactness, Results of Bando and Siu, Hermitan-Yang-
Mills Type Functionals, and a Theorem About the HN type . . . . .
1.5.1 Uhlenbeck Compactness and Removable Singularities . . . . .
1.5.2  The Kobayashi-Hitchin Correspondence for Reflexive Sheaves .

v



1.5.3 A Remark About the the HN Type of the Limit . . . . . . . .

1.5.4 Hermitian-Yang-Mills Type Functionals . . . . . . .. ... ..

2 Resolution of Singularities and Approximate Critical Structures
2.1 Properties of Blowups and Resolution of the HNS Filtration . . . . .
2.1.1 Resolution of Singularities Type Theorems . . . . . .. .. ..
2.1.2  Metrics on Blowups and Uniform Bounds on the Degree
2.1.3 Stability on Blowups and Convergence of the HN Type . . . .

2.2 Approximate Critical Hermitian Structures/HN Type of the Limit . .

3 Proof of the Main Theorem
3.1 The Degenerate Yang-Mills Flow . . . .. ... ... ... ......
3.2 Proof of the Main Theorem . . .. .. ... ... ... ... .....
3.2.1 The Subbundles Case . . . . . . ... .. ... ... ......

3.2.2 The General Case . . . . . . . . . . . . .

Bibliography

73

73

73

79

86

90

121

121

130

132

137

149



Chapter 1
Introduction and Background

1.1 Introduction

This thesis is a study of the Yang-Mills flow, the L?-gradient flow of the Yang-
Mills functional; and in particular its convergence properties at infinity. The flow
is (after imposing the Coulomb gauge condition) a parabolic equation for a connec-
tion on a holomorphic vector bundle. Very soon after the introduction of the flow
equations, Donaldson proved that in the case of a stable bundle, the gradient flow
converges smoothly at infinity. In the unstable case the behaviour of the flow is
more ambiguous. Nevertheless, even in the general case there is an appropriate no-
tion of convergence (a version of Uhlenbeck’s compactness theorem) that is always
satisfied. The goal of this thesis is to prove that this notion depends only on the
holomorphic structure of the original bundle.

We follow up on work whose origin lies in two principal directions, both related
to stability properties of holomorphic vector bundles over compact Kéhler manifolds.
The first strain is the seminal work of Atiyah and Bott [AB], in which the authors
study the moduli space of stable holomorphic bundles over Riemann surfaces. In
particular, they compute the GC-equivariant Betti numbers of this space in certain

cases, where G© is the complex gauge group of a holomorphic vector bundle E (over a



Riemann surface X) acting on the space Ay of holomorphic structures of E. Their
approach was to stratify Ay, by Harder-Narasimhan type. The type is a tuple of
rational numbers y = (uy, ..., pip) associated to a holomorphic structure (E,Jg),
defined using a filtration of £ by analytic subsheaves whose successive quotients are
semi-stable, called the Harder-Narasimhan filtration. One of the resulting strata of
Aol consists of the semi-stable bundles. Furthermore the action of G€ preserves the
stratification, and the main result that yields the computation of the equivariant
Betti numbers is that the stratification by Harder-Narasimhan type is equivariantly
perfect under this action.

Atiyah and Bott also noticed that the problem might be amenable to a more
analytic approach. Specifically they considered the Yang-Mills functional Y M on
the space A;, of integrable, unitary connections with respect to a fixed hermitan
metric on F. The space A;, may be identified with Ay, by sending a connection
V4 to its (0,1) part d4. The Yang-Mills functional is defined by taking the L2
norm of V4, and is a Morse function on Aj,. Therefore this functional induces the
usual stable-unstable manifold stratification on Aj; (or equivalently Ajy.) familiar
from Morse theory. It is natural to conjecture that this analytic stratification is in
fact the same as the algebraic stratification given by the Harder-Narasimhan type.
The authors of [AB] stopped short of proving this statement, instead leaving it at
the conjectural level, and working directly with the algebraic stratification. They
noted however that a key technical point in proving the equivalence was to show the
convergence of the gradient flow of the Yang-Mills functional at infinity. This was

proven in [D] by Daskalopoulos (see also [R]). Specifically, in the case of Riemann



surfaces, Daskalopoulos showed the asymptotic convergence of the Yang-Mills Flow,
that there is indeed a well-defined stratification in the sense of Morse theory in this
case, and that it coincides with the algebraic stratification (which makes sense in
all dimensions).

When (X, w) is a higher dimensional Kéhler manifold, the Yang-Mills flow
fails to converge in the usual sense. This brings us to the second strain of ideas
of which the present paper is a continuation: the so called "Kobayashi-Hitchin
correspondences". These are statements (in various levels of generality) relating
the existence of Hermitian-Einstein metrics on a holomorphic bundle E, to the
stability of . Namely, I admits an Hermitian-Einstein metric if and only if
is polystable. This was originally proven in [DO1] by Donaldson, for algebraic
surfaces. The idea of the proof was to reformulate the flow as an equivalent parabolic
PDE, show long-time existence of the equation, and then prove that for a stable
bundle, this modified flow indeed converges, the solution being the desired Hermitan-
Einstein metric. This was generalised by Donaldson to higher dimensions in the
algebraic case in [DO2] and by Uhlenbeck and Yau in [UY] in the case of a compact
Kihler manifold. Finally, in [BS], Bando and Siu extended the correspondence
to coherent analytic sheaves on Kéhler manifolds by considering what they called
"admissible" hermitian metrics, which are metrics on the locally free part of the
sheaf having controlled curvature. They also conjectured that there should also
be a correspondence (albeit far less detailed) between the Yang-Mills flow and the
Harder-Narasimhan filtration in higher dimensions despite the absence of a Morse

theory for the Yang-Mills functional.



There are two main features that distinguish the higher dimensional case from
the case of Riemann surfaces. As previously mentioned, the flow does not converge
in general. However, the only obstruction to convergence is bubbling phenomena.
Specifically, one of Uhlenbeck’s compactness results applies to the flow, which means
that there are always subsequences that converge (in a certain Sobolev norm) away
from a singular set of Hausdorff codimension 4 inside X (which we will denote by
Zan), to a connection on a possibly different vector bundle E,. A priori, this pair
of a limiting connection and bundle depends on the subsequence. In the case of
two complex dimensions, the singular set is a locally finite set of points (finite in
the compact case) and by Uhlenbeck’s removable singularities theorem E,, extends
over the singular set as a vector bundle with a Yang-Mills connection. In higher
dimensions, again due to a result of Bando and Siu, F,, extends over the singular
set, but only as a reflexive sheaf. Although we will not use their result, Hong and
Tian have proven in [HT] that in fact the convergence is in C* and that Z,, is a
holomorphic subvariety.

A separate, but intimately related issue is the Harder-Narasimhan filtration.
In the case of a Riemann surface the filtration is given by subbundles. In higher
dimensions, it is only a filtration by subsheaves. Again however, away from a singular
set Zag, which is a complex analytic subset of X of complex codimension 2, the
filtration is indeed given by subbundles. Once more, in the case of a Kahler surface
this is a locally finite set of points (finite in the compact case).

The main result of this thesis (the conjecture of Bando and Siu), describes
the relationship between the analytic and algebraic sides of the above picture. To

4



state it, we recall that there is a refinement of the Harder-Narasimhan filtration
called the Harder-Narasimhan-Seshadri filtration, which is a double filtration whose
successive quotients are stable rather than merely semi-stable. Then if (E,dy)
is a holomorphic vector bundle where the operator 0z denotes the holomorphic
structure, write GrANS(E, p) for the associated graded object (the direct sum of the

stable quotients) of the Harder-Narasimhan-Seshadri filtration. Notice that by the

HNS

HNS(EB Op) also carries a natural Yang-Mills

Kobayashi-Hitchin correspondence, Gr
connection on its locally free part, given by the direct sum of the Hermitian-Einstein
connections on each of the stable factors. The main theorem says in particular that
the limiting bundle along the flow is in fact independent of the the subsequence
chosen in order to employ Uhlenbeck compactness, and is determined entirely by

the holomorphic structure dg of E. Furthermore, the limiting connection is precisely

the connection on GriN9(E, dp).

Theorem 1 Let (X,w) be a compact Kahler manifold, and E — X an hermitian
vector bundle. Let Ay denote an integrable, unitary connection endowing E with
a holomorphic structure Op = 5,40. Let Ay, denote the Yang-Mills connection on
GriNS(E, O) restricted to X — Za induced from the Kobayashi-Hitchin correspon-
dence. Let A; be the time t solution of the flow with initial condition Ay. Then as
t — oo, Ay — A in the sense of Uhlenbeck, and on X — Zyg U Z,y,, the vector
bundles GrNS(E, 0g) and the limiting bundle Ey, are holomorpically isomorphic.

Moreover, E,, extends over Z,, as a reflexive sheaf to (GTENS(E, 5E))**

This theorem was proven in [DW1] by Daskalopoulos and Wentworth in the



case when dim X = 2. In this case, the filtration consists of vector bundles, whose
successive quotients may have point singularities. As stated earlier, this means FE
extends as a vector bundle and [DW1] proves that this bundle is isomorphic to the
vector bundle (Gri™%(E,0g))".

We now give an overview of the thesis and in particular our proof of Theorem
1, pointing out what goes through directly from [DW1] and where we require new
arguments. The remainder of Chapter 1 consists of all the various background
topics we will need to employ in the proof of Theorem 1 and consists of no original
material. We begin by giving basic definitions in complex geometry, describing the
space of integrable unitary connections on a holomorphic vector bundle, and give the
equivalence of this space with the space of holomorphic structures. Then we discuss
the Yang-Mills functional, the Hermitian-Yang-Mills functional and the Yang-Mills
flow and their basic properties. In particular, we prove short-time existence via a
standard gauge-fixing trick, showing the equivalence of the Yang-Mills flow with
a certain flow of metrics and sketch the proof of long-time existence on a Kahler
manifold due to Donaldson and Simpson. We then state Simpson’s version of the
fact that for a stable bundle the heat flow converges to an Hermitian-Einstein metric.

Next we give basic definitions from sheaf theory, including the Harder-Narasimhan
and Harder-Narasimhan-Seshadri filtrations and their associated graded objects, as
well as the corresponding types for future use. We also prove a few basic results
about these filtrations for later use. We also introduce the weakly holomorphic pro-
jection operators for a saturated subsheaf due to Uhlenbeck and Yau, and recall the

proof of a lemma on the boundedness of second fundamental forms from [DW1].
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We finish Chapter 1 by tying up some loose ends. We state two versions of
the Uhlenbeck compactness result that we will need. Although we will primarily
be concerned with the flow, the proof of Theorem 1 is set up to work for slightly
more general sequences of connections, so we state the compactness theorem in this
generality first, and then specialise to the flow. We state the removable singularities
theorem of Bando and Siu [BS] and discuss Kahler metrics on a resolution of singu-
larities, a topic that will be central to the proofs of the original results in this thesis.
We also give a discussion of the proof of the main result of [BS]. We recall the
proof of one of the main theorems of [DW1], that the Harder-Narasimhan-Seshadri
type of an Uhlenbeck limit is bounded from below by the type of the initial bundle
with respect to the partial ordering on types. Chapter 1 ends with a discussion of
Yang-Mills type functionals associated to ad-invariant convex functions on the lie
algebra of the unitary group.

Chapter 2 is the technical heart of the proof. It begins by detailing the main
results we will need about resolution of singularities. This is the first place in which
our presentation differs fundamentally from that of [DW1]|. The main strategy
of the proof is to eliminate the singular set of the Harder-Narasimhan-Seshadri
filtration by blowing up, and doing all the necessary analysis on the blowup. In
the two-dimensional case, since the singularities consist only of points, this can be
done directly by hand as in [DW1] see also [BU1]. In the general case we must
appeal to the resolution of singularities theorem of Hironaka see [H1] and [H2].
We consider the filtration as a rational section of a flag bundle, and apply the

resolution of indeterminacy theorem for rational maps. If we write 7 : X — X
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for the composition of the blowups involved in resolution, the result of is that the
pullback bundle 7*E — X has a filtration by subbundles, which away from the
exceptional divisor E is precisely the filtration on X.

We will need to consider a natural family of Kéhler metrics w. on X, which
are perturbations of the pullback form 7*w by the irreducible components of the
exceptional divisor, and which are introduced in order to compensate for the fact
that 7*w fails to be a metric on E. The filtration of 7* E by subbundles is not quite
the Harder-Narasimhan-Seshadri filtration with respect to w. but is closely related.
In particular, the main result of this section is that the Harder-Narasimhan-Seshadri
type of m* E with respect to w. converges to the type of E with respect to w. This was
proven in the surface case in [DW1] using an argument of Buchdahl from [BU1|. The
proof contained in [DW1] seems to be insufficient in the higher dimensional case, so
we give a rather different proof of this result. The main ingredient is a bound on the
w. degree of a subsheaf of 7* F with torsion-free quotient in terms of its pushforward
sheaf that is uniform as ¢ — 0. To prove this we use standard algebro-geometric
facts together with a modification of an argument of Kobayashi [KOB] first used to
prove the uniform boundedness of the degree of subsheaves of a vector bundle with

respect to a fixed Kéhler metric. In particular we prove the following theorem:

Theorem 2 Let (X,w) be a compact Kihler manifold and S be a subsheaf (with
torsion free quotient @) of a holomorphic vector bundle E on X, wherem: X — X
18 given by a sequence of blowups along complex submanifolds of codim > 2. Then

then there is a uniform constant M such that the degrees of S and Q with respect to



w. satisfy: deg(S,w.) < deg(m,S) + M, and deg(Q,w.) > deg(m,.Q) — M.

Similar statements are proven in the case of a surface by Buchdahl [BU1| and
for projective manifolds by Daskalopoulos and Wentworth see [DW3].

An essential fact needed to complete the proof of Theorem 1 is that the Harder-
Narasimhan-Seshadri type of the limiting sheaf is in fact equal to the type of the
initial bundle. This fact seems to be closely related to the existence of what is called
an LP-approximate critical hermitian structure. In rough terms this is an hermitian
metric on a holomorphic vector bundle whose Hermitian-Einstein tensor is LP-close
to that of a Yang-Mills connection (a critical value) determined by the Harder-
Narasimhan-Seshadri type of the bundle (see Definition 6). Since any connection
on E has Hermitian-Yang-Mills energy bounded below by the type of F, and we
have a monotonicity property along the flow, the result of section 3 implies that
the existence of an approximate structure then ensures that the flow starting from
this initial condition realises the correct type in the limit. Then one shows that
any initial condition flows to the correct type, essentially by proving that the set of
such metrics is open and closed (and non-empty by the existence of an approximate
structure) in the space of smooth metrics, and applying the connectivity of the latter
space. This last argument appears in detail in [DW1], but we repeat the argument

here for completeness. The main theorem of Chapter 2 is the following:

Theorem 3 Let E — X be a holomorphic vector bundle of over a Kdhler manifold
with Kdhler form w. Then given 6 > 0 and any 1 < p < oo, E has an LP )-

approximate critical hermitian structure.



The method does not extend to p = oo. This is straightforward in the case
when the filtration is given by subbundles (even for p = 00). Given an exact sequence

of holomorphic vector bundles:
0—S—F—@@—0

and hermitian metrics on S and (), one can scale the second fundamental form
[ — 1S to obtain an isomorphic bundle whose Hermitian-Einstein tensor is close to
the direct sum of those of S and @). In general it seems difficult to do this directly.
The problem here is that the filtration is not in general given by subbundles, and
so the vast majority chapter is an argument needed to address this point. This is
precisely where we need the resolution of the filtration obtained earlier. We first
take the direct sum of the Hermitian Einstein metrics on the stable quotients in the
resolution by subbundles, which sits inside the pullback 7* E' under the blowup map
7 : X — X. Then the argument above shows that after modifying this metric by
a gauge transformation, its Hermitian-Einstein tensor becomes close to the type in
the L” norm. We complete the proof by pushing this metric down to £ — X using
a cutoff argument.

In broad outline our discussion follows the ideas in [DW1] but we point out
two things. First of all, since we are varying the Kéhler metric on X by a parameter
e, one has to fix a value €; and consider stable quotients with respect to this metric.
Therefore in order to show that the metric on the blowup is LP-close, one also
needs some sort of uniform control over the Hermitian-Einstein tensor as ¢ — 0.

The author has noticed an error in [DW1] on this point. In particular, Lemma
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3.14 is slightly incorrect. Instead, the right hand side should have an additional
term involving the L? norm of the full curvature. This does not essentially disrupt
the proof, because the Yang-Mills and Hermitian-Yang-Mills functionals differ only
by a topological term, but it has the effect of changing the logic of the argument
somewhat, as well as increasing the technical complexity.

Secondly, the authors of [DW1] were able to rely on the fact that the singular
set was given by points when applying the cutoff argument, in particular they knew
that there were uniform bounds on the derivatives of the cutoff function. We must
allow for the fact that the singular set is higher dimensional, and therefore need to
replace their arguments involving coverings of the singular set by disjoint balls of
arbitrarily small radius by calculations in a tubular neighbourhood. We first assume
Z,lg is smooth and that blowing up once along Z,, resolves the singularities. The
essential point is that the Hausdorff codimension of Z,, is large enough to allow
the arguments of [DW1] to go through in this case. We then reduce the general
theorem to this case by applying an inductive argument on the number of blowups
required to resolve the filtration. It is here that we crucially use the convergence of
the Harder-Narasimhan-Seshadri type.

In Chapter 3, following Bando and Siu, we introduce a degenerate Yang-Mills
flow on the composition of blowups X with respect to the degenerate metric T w.
We review some basic properties of this flow that are necessary for the proof of
Theorem 1. In particular we show that a solution of this degenerate flow is in fact
an hermitian metric, and solves the ordinary flow equations with respect to the
metric 7*w away from the exceptional divisor E.

11



The remainder of Chapter 3 completes the proof of the Theorem 1 by showing
the isomorphism of the limit F., with (Grf/¥S(E,05))™". The basic idea follows
that of [DW1] which in turn is a generalisation of the argument of Donaldson in
[DO1]. His idea is to construct a non-zero holomorphic map to the limiting bundle
as the limit of the sequence of gauge transformations defined by the flow. In the case
that the initial bundle is stable and has stable image, one may apply the basic fact
that such a map is always an isomorphism. In general, the idea in [DW1] is simply
to apply this argument to the first factor of the associated graded object (which is
stable) and then perform an induction. The image of the first factor will be stable
because of the result in C'hapter 2 about the type of the limiting sheaf. The difficulty
with this method is in proving that the limiting map is in fact non-zero. This follows
directly from Donaldson’s proof in the case of a single subsheaf, but it is more
complicated to construct such a map on the entire filtration. The authors of [DW1]
avoid applying Donaldson’s method directly by appealing to a complex analytic
argument involving analytic extension see also [BU2|. Arguing in this fashion makes
the induction rather easier. However, this requires the complement of the singular
set to have strictly pseudo-concave boundary, which is true in the case of surfaces,
but is not guaranteed in higher dimensions.

Therefore we give a proof of a slightly more differential geometric character.
Namely, in the case that the filtration is given by subbundles, we follow the argument
of Donaldson, which goes through with modest corrections in higher dimensions, and
does indeed suffice to complete the induction alluded to. In the general case, we
must again appeal to a resolution of singularities of the filtration and apply the

12



previous strategy to the pullback bundle over the composition of blowups X. The
problem one encounters with this approach is that the induction breaks down due
to the appearance of second fundamental forms of each piece of the filtration, which
are not bounded in L* with respect to the degenerate metric 7*w. To rectify this,
we apply the degenerate flow for some fixed non-zero time ¢ to each element of the
sequence of connections, and this new sequence does have the desired bound. This
is due to the key observation of Bando and Siu that the Sobolev constant of X
with respect to the metrics w, is bounded away from zero. A theorem of Cheng
and Li then implies uniform control over subsolutions to the heat equation, which
is sufficient to understand the degenerate flow. One then has to show that the limit
obtained from this new sequence of connections is independent of ¢ and is the correct
one. This is an expanded and slightly modified account of an argument contained
in the unpublished preprint [DW3].

We conclude the introduction with some general comments. First of all, as
pointed out in [DW1], the proof of Theorem 1 is essentially independent of the
flow, and one obtains a similar theorem by restricting to sequences of connections
which are minimising with respect to certain Hermitian-Yang-Mills type functionals.
Indeed, the statement appears explicitly as Theorem 15. Secondly, one expects that
there should be a relationship between the two singular sets Z,, and Z,,. Namely,
in the best case Z,j, should be exactly the set of points where bubbling occurs. One
always has containment Z,,, C Z,,, and in the separate article [DW2] Daskalopoulos
and Wentworth have shown that in the surface case equality does in fact hold. We

hope to be able to clarify this issue in higher dimensions in a future paper.
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Finally, the author is aware of a recent series of preprints [J1],[J2],[J3] by Adam

Jacob which collectively give a proof of Theorem 1 using different methods.

1.2 Ké&hler Manifolds, The Space of Holomorphic Structures, Her-
mitian Einstein Metrics and Connections, and the Yang-Mills

Functional

1.2.1 Kahler Manifolds

The setting for this thesis will be a compact Kédhler manifold (X,w). That
is, a complex manifold X, equipped with a Kéhler form w. We briefly explain the
terminology. We assume that the real tangent bundle of X is equipped with an
Hermitian metric ¢ (i.e. a Riemannian metric such that ¢(JX,JY) = ¢(X,Y) for
every pair of tangent vectors X,Y where J is the almost complex structure on X,
also called a compatible Riemannian metric) and w is defined to be the two form
given by w(X,Y) = g(JX,Y). Note that the Riemannian metric extends C-linearly
to the complexification TM @ C = TH°X & T%' X, where the two direct summands
are the the +7 eigenspaces of J.

By compatibility g restricts to be zero on each summand, so the only relevant

data is the Hermitian matrix given by:

0
gl] —9 822" 85]‘ ’

Then one checks that:

g = g;5dz' ® dZ’ + gdz' ® dz?

14



and if we consider the term:
Gherm = gzjdzl ® dz’

then this gives a metric which is Hermitian on the fibres of the holomorphic tangent
bundle 7%°X (more correctly we see that (X,Y) = grerm(X,Y) is Hermitian on the
fibres of T'Y) and one computes that Re gnern = %g, where now ¢ is the original

Riemannian metric. In local coordinates the form w can be written:

am , 4
w= Tgijdz’ A dz?

and the identity:

Im Gherm = —W

may be shown to hold, so that we have:
1
Gherm = 59 - V—lw.

Sometimes gperm (Which from here on out we will simply write as g) is called the
Hermitian metric on X. This is consistent with the terminology (to be introduced
below) for Hermitian metrics on vector bundles. If the two form w happens to be
closed, then we say that w is a Kdhler form and we say that the metric g is a

Kéihler metric.

1.2.2  Holomorphic Vector Bundles, Hermitian-Einstein Metrics and
Connections, and the Yang-Mills Functional

Many arguments in this thesis will rely on the interplay between two different
types of structure on a C'*° C-vector bundle £ — X. The first is that of a

15



holomorphic structure on E. One standard definition of this is a choice of local
trivialisations such the transition maps are holomorphic. However, more useful for
us will be the following. A holomorphic structure on E is a map 9y : I'(E) —

Q%1(E) that satisfies the Liebniz rule:

Op(fo) =0f ® o+ fOgo

and the integrability condition 9% = 0. It can be shown (see [KOB] Chapter 1) that
every such operator defines a unique holomorphic structure on E such that dp = 0.
We will write Ay, for the set of holomorphic structures (suppressing the notation
for E).

We now consider the group G® of smooth automorphisms of F that are complex
linear on the fibres of £ (sometimes this is written GL(E)). Then the group acts
on A, by conjugation:

5E—>g_1oéEog,

If we act on a section o :

g lodgoglo) = g '(9s(yg(0))

= ¢ "(Onar(9)(0) + 9(9E0)

where we have used the expression:

Onae(9)(0) = 9p(g(0)) — g(Og0).
This explains the notation:

Op — g todpog=0g+yg 'y
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The quotient My = Apor/ GC is the moduli space of holomorphic structures on FE.
Two holomorphic structures are considered to be equivalent if they lie in the same
GC orbit.

The second type of structure is an Hermitian metric 4 on E, which is simply
a smoothly varying choice of a positive definite Hermitian form on the fibres of F.
Then if h is an Hermitian metric on F, we will write G for the subgroup of G©
consisting of unitary automorphisms of (E, h), that is, elements for which ¢g*g = id
(g* will denote the conjugate transpose). We will write A, for the set of connections

on F preserving the Hermitian metric, i.e. connections V for which:
d(h(s,t)) = h(Vs,t) + h(s, Vt).

Here we extend the metric h to 1-forms with values in £ simply by ignoring the
1-form component, so that the right hand side is indeed a 1-form on X. Write Aj;

for the space of Jp operators (not necessarily integrable). Then note that the map:
Ap — Az, Va— 04

gives a bijection. In fact, given O, the (1,0) part d4 of the connection is determined
by the relation:

8(h(s, t)) = h(éES, t) + h(S, 8At).

Therefore V4 = 04 + Op is in A,. Now consider the set of integrable unitary
connections, i.e. those with 9% = 0 or equivalently those with (1,1) curvature (i.e.
their curvature satisfies Fg’2 = 0). We will write .A,ll’l for this set. If we use an

element V4 € A,ll’l to define a holomorphic structure d4 = 0 on E, then V4 is
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the unique integrable, unitary connection for this holomorphic structure. In other
words V4 is the Chern connection for 9. The connection 1-form and curvature

for V4 may be written in a local holomorphic frame (with respect to d,4) as:

A=h"10h, Fy=0(h'0n).

Conversely, if we fix a holomorphic structure dz € Ay, then the corresponding

Chern connection defines an element of A,ll’l so we obtain a further bijection:
Apot < A}L’l-

Throughtout this thesis, for a fixed holomorphic structure and Hermitian metric we
will denote by (g, h) the Chern connection associated to the pair of structures on

E.

Note that G acts on 4, by conjugation:
V—¢g'oVog=V+g'Vyg.
The corresponding action on the curvature is given by:
g-Fv =g olyog

and so the subspace .A,ll’l is preserved under the action of G. By the correspondence
above, the action of G¢ on Ay, induces an action of G€ on A,ll’l. To write this
action down explicitly, we put g - V4 = 0,4 + 9. Since Apy +— A}L’l is given by

Va4 — 04, we have 0, = g~ 0 04 og. Now, writing g* for the adjoint of g we
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compute:

h(s,0,9"t) = O(h(s,g*t)) — h(D s, g*t)

= 0J(h(gs,t)) — h(0a(gs),1)

= h(gs,0at) = h(s, g"Oat).
It now follows that 9, = g*o 940 ¢g*~! so that the action of G€ on A,ll’l is given by:

Va—g" 00409 + g 0daoyg

1

Note that in case g € G, then g* = g~ and this action agrees with the action of G

on A}L’l previously mentioned. We will write:
By =Au/G , By = A G My, = A /G Mt = A GE
for the respective quotient spaces. Note that we have a bijection:
Mt~ My,

Moreover, G© also acts on the space of Hermitian metrics via h — ¢ - h where
g-h(s1,82) = h(g(s1),9(s2)). In matrix form this reads ¢g - h = g*hg where g* is the
conjugate transpose. Note that the action of G¢ on the space Herm™*(E) extends
to an action on the space Herm(F) of all Hermitian forms on E, and is transitive
on Herm™(FE). Furthermore, the isotropy subgroup at the identity is clearly the

unitary gauge group G. Therefore we have the identification:
Herm™(E) ~ G©/G.

Now, starting from a holomorphic bundle £ with Hermitian metric h and
Chern connection (0, h), we may use a complex gauge transformation to perturb
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this connection in two different ways. We may either let ¢ act on dg or on h. A

calculation relates the curvatures of the corresponding connections:

Flgd,.n) = g lo Flopgn) 09

If we denote by u(E) C End(E) the subbundle of skew-hermitian endomor-
phisms (i.e. the Lie algebra of G), then for a section o of u(FE), we will write |o| for

its pointwise norm. This is defined as usual by

R >
o] = (Z I/\i|2>
i=1

where the \; are the eigenvalues of o at a given point and R is the rank of E.
Combining this with the usual pointwise norm on 2-forms, we obtain a pointwise
(Hilbert-Schmidt) norm on the curvature F4 of a connection. Now we may define

the Yang-Mills functional (Y M functional) by:

YM(V,) = / | Fal? dvol.
X

If we assume that X is Kihler, we have:

M) = [ IR

This functional is invariant under the action of G and so defines a map Y M : B,— R.
Its critical points are the so called Yang-Mills connections and by computing
the first variation of Y M one sees that they satisfy the Euler-Lagrange equations:
d F4 = 0, where d 4 is the covariant derivative induced on End(E) valued 2 forms by

Va IV, € A;L’l then we may also define the Hermitian-Yang-Mills functional:

W
HYM(VA) :/ ‘AwFA‘Q_‘a
x n!

20



where A, denotes contraction with the Kéhler form. This is the formal adjoint of
the Lefshetz operator Aw obtained by wedging with w. In local coordinates one sees

that for a (1,1) form G = G, ;dz' A dz’ we have:
AUJG - gL’EG@j

The quantity A, F, is called the Hermitian-Einstein tensor of A.

Again, HY M is invariant under the action of G and so defines a functional
HY M : B,ll’l — R. Critical points of the functional satisfy the Euler-Lagrange
equations: dsA,F4 = 0. On the other hand, just as in the preceding discussion,
we may regard the holomorphic stucture as being fixed and consider the space of
(1,1) connections as being the set of pairs (Jg, h) where h varies over all Hermitian
metrics. We may therefore think of HY M as a functional HY M (h) = HY M (0g, h)
on the space of Hermitian metrics on E. A critical metric of HY M is referred to a
critical Hermitian structure on (E,0).

An important fact that we will use is that when X is compact, there is a

relation between the two functionals Y M and HY M. Explicitly:

472

YM(V4) = HYM(V4) + o

/X (263(E) — A(E)) A

for any A € A,ll’l. The second term depends only on the topology of E and the form
w, so Y M and HY M have the same critical points on A}L’l. Furthermore, V4 is a
critical point of Y M and HY M, iff and only if A is a critical hermitian structure
for the holomorphic stucture on E given by A.

On Kahler manifolds, Yang-Mills connections have a very special property.
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The Kahler identities together with the Yang-Mills condition give:

0 = dFa=—i(0q—04)A,F1=0

<~ dsA,F4 =0

(this is another way of seeing that Y M and HY M have the same critical points).
Therefore the eigenspaces of the Hermitian-Einstein tensor of a Yang-Mills connec-

tion are constant, so we have the following proposition.

Proposition 1 Let V4 € .A,ll’1 be a Yang-Mills connection on an hermitian vector
bundle (E, h) over a Kdihler manifold X. Then ¥V 4 = ®L_,V 4, where E = &l_,Q; is
an orthogonal splitting of E, and where \/—1A,F4, = \Idg,, where \; are constant.

If X is compact, then \; = p(Q;).

Proof. Let V4, € A}L’l be a Y M connection. By the Y M equations and the Kahler
identities:

V=1(04 — 0a) AuFa = dyFa = 0.

Therefore, decomposing into types, we have 0 A, Fx = 0N Fy = daA,Fs = 0.
Then this implies that the eigenvalues are constant, and so we may decompose F
into its eigenbundles ();. By construction, if we let V 4, be the restriction of V4 to
Q;, then V4, is Hermitian-Einstein. In the case where X is compact, Chern-Weil
theory computes the Hermitian-Einstein constants explicitly in terms of the slopes

to be:
Ai = QWHp(Qi)// W,
X
and since we have normalised the volume to be 27/(n — 1)! the result follows. W
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The following definition is now natural.

Definition 1 Let E — (X, w) be a holomorphic bundle. Then a connection V 4 such

that there exists a constant \ with:

V—1A, Fy = Ndg

is called an Hermitian-FEinstein connection. If A is the Chern connection of
(Og, h) for some hermitian metric h, then h is called an Hermitian-Einstein

metric.

There is a topological lower bound for the functional HY M depending only
on the first Chern class of £ and the cohomology class of w. This bound is realised
precisely for connections (metrics) that are Hermitian-Einstein. In other words,
Hermitian-Einstein connections (metrics) are the absolute minima of the functional

HY M.

1.3 The Yang-Mills Flow and Basic Properties

1.3.1 Yang-Mills and Hermitian Yang-Mills Flow Equations: Equiv-
alence up to Gauge

Throughout this section, we follow the reference [WIL]. As stated in the
introduction, although many of our arguments are valid for minimising sequences
of unitary connections, our primary interest will be in sequences obtained from the

Yang-Mills flow. This is a one parameter family of integrable unitary connections
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A, obtained as solutions of the L?-gradient flow equations for the Y M functional.

Explicitly:

oA,
ot

= —d,Fa,, Ao€ Ay

We will eventually sketch a proof of the fact, following the references [DO1] and [SI]
that the above equations have a unique solution in A,ll’l x [0,00). Moreover, the
flow preserves complex gauge orbits, that is, A, lies in the orbit G© - A;. This may
be seen as follows. Instead of solving for the connection, fix Ay so that d4, = Og,

and consider instead the family of hermitian metrics h; satisfying the Hermitian-

Yang-Mills flow equations:

oh
ht = =2 (VEIAGEL, — p(E)Idg)

In the above, F}, is the curvature of (g, h;) and p(E) is a real number called the
slope of E' with respect to w (to be defined later). We will now show that these two
equations are equivalent in a very precise sense. Namely, given a solution to the
Hermitian-Yang-Mills flow, we produce a solution to Yang-Mills flow and vice-versa.

First, we assume that the Hermitian-Yang-Mills flow has a solution. To con-
struct a solution to the Yang-Mills flow, we will need to first consider the following

equivalent Yang-Mills flow equations:

DA \ -
8_2: = _dfltFAt + dAtOé<t>7 AO € ]1;1704@) € Qo(u(E))

Here, the one-parameter family d; a(t) of endomorphism valued 1-forms are ele-
ments of the tangent space to a G orbit, which is the space Q'(u(E)). Therefore,

up to the action of G (i.e. in the quotient space B,ll’l), one expects this equation to
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have the same solutions as the Yang-Mills flow. We will show that a solution of this
equivalent flow can be obtained from a solution to the HY M flow equations.

If we consider two different Hermitian metrics on A; and hy on the fixed holo-
morphic vector bundle F, then we may define a positive definite, self-adjoint element
of G by k = hy'hy, where

hi(o,7) = ho(ko, T).

Then the corresponding Chern connections V; = 0y, + 5h1 and Vo = 0, + 5h2 can

be seen by a simple computation to satisfy

Oy = O

8h2 = kto Ghl ok = ahl + k‘lﬁhlk

so that also

Fh, — Fp, = O, (k05 k).

These relations hold for any two metrics.

Now for a fixed Hermitian metric hg = h(0), write hy'h(t) = k(t). Note that
hil% = kil%. Let Ay be the Chern connection for the metric hy. Since by the
above relation:

Fh(t) = Fho + 5h0(k(t)7lahok(t))

we may consider (in place of the Hermitian-Yang-Mills flow) the equation:
k() = = —2(V=1Au(Fhy + Ong (k(t) " Ono k(1)) — 1, (E) I dp).

In other words, the existence of a solution to the HY M equations implies existence
for the above system. Since k(0) = id and k(t) is positive definite, there is a complex
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gauge transformation g(t) € G© such that g(t)g(t)* = k(t)~1. A priori this choice is

not unique.

Lemma 1 Let k(t) be a solution to the above equation. Let g(t) € G© such that
g(t)g(t)* = k(t)™, and let A(t) = g(t) - Ag. Then A(t) is a solution to

0i, .
0_tt = _dAtFAt + dgta(t)

with a(t) = 30~ % ~ % (57) ).

Proof. Let A(t) = g(t) - Ap. Then we have the identity:
gF[l(t)g_l = Fa, + 5Ao(k_1(aAok))'

Differentiating at A(t) gives:

DA ) _ . dg Og* ., oo
8_tt - %Lg:o d(g-&-fs%)v‘lo - <af‘i(t)(g 15) B 8A(t)( ot )9") 1)
1, - 109 09"
= 50040 = daw)la™ 5 + (5™
1 99 Og"

+§(5A(t) +8A(t))((971) ot ( o1 )(g*) 7).

Then let a(t) = 1(g71% — % (g*)71). Since g(t)g(t)* = k(t)~", we have:

ot~ ot
%__ w-1,99" 1 71@ -1
5~ W) (5T T 509
Since we are assuming that k(t) satisfies:
_, 0k(t) = -1
k()" =5 = —2(V=1Au(Fhy + One (k(8) ™ Ono k(1)) — 1, (E) I di)

we have that:

4,09, . _ 409, _
oy —1 #\—1 199 1
(g") <at(9) +g at)g

= =2(9") g (V1A Fig ' — 1o (E)Idp)
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so that

109" 1, 199
(50 97 50 = V=1AF ) — o (B) s,
Together with the equation for %t this gives:
OA, -
o =V =104y — Oa) N 3y + dina(t)

and by the Ké&hler identities this is the same as

OA, \

Proposition 2 The existence and uniqueness of a long time solution for all time to
the Hermitian- Yang-Mills flow implies the existence and uniqueness of a long time

solution to the Yang-Mills flow with a fized initial condition.

Proof. We have already seen that a solution to the HY M flow equations gives
a solution to the equivalent Yang-Mills flow equations. Therefore we construct a
unique solution to the Yang-Mills flow equations from a solution to the equivalent
Yang-Mills flow equations. Consider the ODE for a one-parameter subgroup S(t) €

GC given by:

% = S(0(at) ~ na(E)1A)

where o : R — u(F) is defined as in the previous lemma. Since S(0) = Id and
95 € S(t) - u(E) we have that S(t) € G for all t. The previous lemma shows
that «(t) is defined for all ¢. Therefore there is a solution to the ODE for all
time by the theory of linear ODEs. As in the previous lemma, write fl(t) for a
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solution to the equivalent flow equations. Write & = a — v/—1p,,(E)Id and define

A(t) = S7(t) - A(t). Then A(t) exists for all t. We show that this is a solution to

the Yang-Mills flow. Differentiating with respect to ¢ gives:

04, 0 o
T oaoedaesT)

~ -1 * -1 ~ -1 s -1

= 5ad;S™ — SdF;S T+ 5(d38)S T~ da oS

= Sad;S™t— dyFa+ S(d;a)S™" — Sdaast

= —d\Fu.

As for uniqueness, we will see in subsequent sections that by arguments of
Donaldson and Simpson, a solution to the HY M flow equations is unique. Therefore,
in the above construction, the only place where we might have introduced non-
uniqueness is in the selection of g(t) € G such that g(t)g(t)* = k(t)~1. We show
that in fact, any two such choices yield the same solution of the Y M flow.

Let g1(t), g2(t) € G where g1(t)g1(t)* = h(t)™! = go(t)ga(t)*. Let Si(t) and
Ss(t) be the solutions of the corresponding ODEs as defined above. Then define

also:

Al(t) = Si(t)" - ga(t) - Ao = (q1(8)S1(t) ™) - Ao

Aa(t) = Sa(t)™" - galt) - Ao = (ga(t)S2(t) ™) - Ao

We claim that A;(t) = As(t). Note that g; 'g2g5(g?) ™" = id, so if we set u(t) =

g g2, then u(t) € G. Now, once again, define the gauge-fixing terms o (t) and a(t)
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a(t) = 5(91 E_E(gik)_l)

(6%) (t) =

Then the corresponding ODEs are:

Sl(t)_l% Oél(t) — MW(E)]d
507 %2~ an(t) — p(B)Id
= u(t) tag (t)u(t) + u(t)l%.

Now note that Sa(t) = Si(t)u(t) is a solution of the second equation, and solutions

of this equation are unique by the theory of linear ODEs. Therefore we have:
g2(t)S2(t) ™" = gi(t)u(t)u(t) ' Si1(H) T = g1 () S (1)

which implies that A;(t) = As(%).
One can also show that given a solution A(t) = g(t) - A of the Yang-Mills
flow, the metric h(t) = g(t)g(t)*ho is a solution of the Hermitian-Yang-Mills flow.

1.3.2 Short-Time Existence of the Flow

We have shown in the last section that a solution of

oh
h;la—tt = 2 (V-1A,F), — p,(E)1dp)

29



for some finite time implies the existence of a solution to the Y M flow. Therefore, to
understand existence and uniqueness questions of the Y M flow, it suffices to study
the above equation. We have seen that this equation is in turn equivalent to the

equation:
()7 57 = =2(V=1(Aw((Fig + Ono (k(t) 7 0no k(1)) — 1, (E) I dp)
for some positive definite self-adjoint endomorphism k(¢). The term
=2V =100 (Ono (K (1) ™ O (1))
may be written as:

24 —1]6_1(Aw(5h0]€)]€_1(8hok’) — 2v —1]{3_15h08h0]<7

= 2V =1k (A (Onok) k™ (o k) — V=140, k)

Now writing A for the Chern connection associated to (hg, Jz), the Kahler identities

imply that:
AAO = dzodAo
= 4/ _1Aw(5A08A0 - a1405140)
= 4, +A4s,
and

A . — AgAO = —1Aw((§A08AO + 8A05A0) = _1AwFA0-

94

Therefore, adding these two together:

1
i(AAO =+ v/ _1AwFAO) = Aa

Ao
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and therefore:

— 2/ = 1A, (Ony (k(t) " Onok (1))
Tk (A (G k) (O k) — \/—_1%(AAO b VIALF )

= 2V =1k (AL (On k) (Onok)) + vV =1k AL Fu k + A k.

Finally, this implies:

% = —{ A V=1 (Ao Fak+kNy Fay—2p,(E)E)+2v =1 (A (Do k) (O k))) }-

Now if we set k = Id + K, for small K, the linearisation of this equation is:
—Ap K — V1A Fa, K + KA Fa, — 2p,(E)K) — 27 —=1(AyFa, — p1,(E)Id)

and this equation is parabolic. In particular, the fact that this equation has short-
time solutions is an application of [HAM] Part IV, Section 11, p.122. Therefore we

have:

Proposition 3 For sufficiently small € > 0 (possibly depending on the initial condi-
tion) the Hermitian- Yang-Mills flow, and hence the Yang-Mills flow, has a solution

defined for 0 <t < e.

1.3.3 Uniqueness and Long-Time Existence of the Flow, Convergence

for Stable bundles

First we take care of the much easier problem of uniqueness. To do this we will

first define (following [DO1]) a distance function on the space of Hermitian metrics.
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Let:

T(hl,hg) = TT(hIth)

O'(hl, hg) = T(hl, hg) + T(hg, hl) —2rk E.
These are both C* functions on X. Note that it follows from the inequality:

1
)\+X22’ forall A >0

that o(hy, hy) > 0 with equality if and only if h; = ha.

Proposition 4 If hi(t) and hy(t) are two solutions of the equation:

oh —
h;lﬁ_tt = _2( _1Atht - lu’w(E)[dE) ’

then if we write 0 = o(hy(t), ha(t)) then we have

do
— 4+ Ao <0.
(%—I— o=

Proof. Clearly it suffices to show:

% + A7 <0.
Note that
% =Tr (h;l% — h;l%hl‘lhz) .
By assumption:
hit(t) 8h81t(t) = =2 (V-1A,Fy ) — 11, (E)Idp)
and
hy'(t) ahgt(t) = 2 (V=1A, Fhyty — 1, (E)Idg)
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so letting k = h; 'hy we have

or
5 = =2V =1Tr (k (AuFn, ) — AuFhon)))

= —2V/=ITr (k (Audhy (K00 )))

= —2V=ITr (Ay (O Ok — (O k) K (00, F)))

= —Tr (Ahlk) + 2\/ —1Aw Tr ((ghlk) k’_l (8h1k)) .
Note that the second term is negative and
Tr (Ap k) = ATrk = Ar.

Therefore we have:

or
— + AT <0.
8t+ T

Corollary 1 Ifhy(t) and hy(t) are solution of the HY M flow for 0 <t < ¢ and have

the same initial condition hy(0) = hs(0), then hyi(t) and ha(t) agree on X x [0,¢).

Proof. Apply the parabolic maximum principle to o(hq(t), h2(t)) using the previ-
ous proposition. H

Long-time existence is rather more difficult. The strategy is a common one in
parabolic theory. First one starts with a short time solution, defined on an interval
say [0,7). Then one shows that h; converges in C*° to a metric hr. Then we may
use this metric as an initial condition, and apply short-time existence to extend to
a solution on an interval [0, + ¢).

The difficult part of this of course is to prove C'™ convergence. It is a straight-
forward corollary of the previous propostion and the maximum principle that there
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h; converges to such a metric hy in C°. C* convergence can be proven using the
following a priori estimates on the curvature and Hermitian-Einstein tensor. These

estimates will be generally useful.

Lemma 2 Let A; be a path of connections that is formally gauge equivalent to a

solution of the Y M flow on some unspecified (possibly infinite) interval. Then:

(1)
OF,,
at

= _AAtFAt

and therefore,

0
— + A TrFy, =0
<8t+ At) A, )

|Tr Fa, || ;o is decreasing int and so is bounded, and Tr F'y, converges to a harmonic
2-form. Also:

<0.

d
SNl = =245, Fa

dy, Fa,

Hence, t — Y M(A;), andt — HY M (A;) are non-increasing.

(2) |AuFa,|” satisfies

O |AuFa,?

N|ALFL P = =2
5+ |AuFa,|

&y, Fa|” <0,

so by the maximum principle for the heat operator % + A, sup |A,Fa, |2 is decreasing
in t, and therefore A, Fy, is bounded in L.
(3)

0
(& + Am) |Fal? < C (|Faf + |Fa,?)
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0
(Gras)minr

< C|Vh A (Z 1Vl (7% Pl + 1)) |

it+j=k

Proof. From the flow equations, we have:

0A
a—tt - _dthAt-

Taking d4, on both sides we get:

OFa,
ot

= _dAt *AtFAt = _AAtFAt

by the Bianchi identity. Taking the bundle trace gives the equation in (1), and
the statement about convergence of the trace now follows from a standard result in
parabolic theory.

Now by taking A, of both sides we get

ONLF s,

S = A NF s, = —dadi AuFa,.

Since the pointwise norm is defined by:
[AuFa, > = Te(AuFa, 0 AuFa,) = Y (AFa,); (AuFa,)!

we have:

0 0
E |AwFAt|2 - 2 <§AwFA” AwFAt> - _2 <AAtAwFAt7 AwFAt> bl

Aa, |NFa P = 2(da,dyAuFa, AuFa,) —2|da,AuFa,|
and adding these two we get:

0
a |A"JFAt|2 + AAt ’AwFAt|2 = -2 |dAtA0JFAt| <0.
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The equality in (2) follows from the Kéhler identities.
Parts (3) and (4) are more labour intensive. Proofs can be found for example
in [DO1] or in [KOB| Chapter 6, Section 8. W

The import of these estimates is the following lemma.

Lemma 3 Let h; be a smooth solution of the HY M flow for 0 < t < T. Then if
there is a uniform bound on the curvature |Fy,| < B, on X x [0,T). Then all the

covariant derviatives are also bounded uniformly: }Vtht| < B on X x[0,T).

Proof. The proof is by induction on k. The case kK = 0 is the hypothesis. For
the inductive step suppose that |Vj th‘ are bounded for all j < k. By (4) of the

previous lemma we have:

0
(Q " Aht> vt B[P < 0 (14 95 5, 7).

The linear equation of the form:

(%+A)u: <%+A> (1+u)=C(1+u), u(0) = |V F|’ (0)

is linear in (1 + u), and so has a unique solution u for all t. Then computing:

(5 +2) (9850 )

= ((% + A) VhBl* = € (195 B + 1)) <0

and so by the maximum principle we have ‘Vﬁt Ey, }2 <u. N

From the facts that a one parameter family h; of metrics along the flow has
a CY limit as t — 7', and has uniformly bounded Hermitian-Einstein tensor, it is
fairly straightforward to prove that h; is bounded uniformly in C*! and L% and Fj, is
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uniformly bounded in L? for any p < oco. In turn, the asymptotic expansion for the
heat kernel of % + A can be used to show that an LP bound on Fj, in fact implies
an L>® bound. Now the previous lemma implies that all the derivatives V¥ F},, are
bounded on X x [0,7"). This furthermore imples that the Hermitian-Einstein tensor
is also bounded in C* for all k. Then, using the local expression for the curvature
gives:

AuFy, = 'y = V=T, (O iy (3he)

Assuming inductively that h, is bounded in C' for all [ < k, this means that Ah,
is bounded uniformly in C*~2, so by elliptic regularity, h; is bounded in C*. Now
long-time existence of the equation follows.

Long-time existence of the Yang-Mills flow, as sketched above was originally
proven in [DO1], for a compact, Kéhler X. The main acheivement of [DO1] and
[DO2] was to prove that in the case that the bundle is stable and X is projective,
the flow converges to an Hermitian-Einstein metric. This requires the introduction
of of an alternative functional on the space of metrics, which is defined using Bott-
Chern classes. The projectivity assumption was necessary because Donaldson used
the theorem of Mehta-Ramanathan that says that the for some positive m the
restriction of a semi-stable bundle to a generic smooth hypersurface in the linear
system |O(m)| remains semi-stable. This result requires projectivity.

Finally, we note that in [SI], Simpson was able to drop the compactness re-

striction on X and instead impose the following assumptions:

e X has finite volume.
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e There exists an exhaustion function ¢ with Ay bounded. Take ¢ > 0.

e There is an increasing function a : [0,00) — [0,00) with a(0) = 0 and
a(x) = x for x > 1, such that if f is a bounded, positive function on X with

Af < B then

sl < cB)a [ 111),

Furthermore, if Af <0 then Af = 0.

These assumptions are satisfied if X is compact, and more generally if X is
the complement of a holomorphic subvariety in a compact Kihler manifold X such
that the w for X extends to a Kihler form on X. This latter condition is the one
we will actually need to use.

The proof of longtime existence and convergence of the flow in [SI] for X
satisfying these somewhat more general assumptions is based on an adaptation of
Donaldson’s work, coupled with the use of techniques of Uhlenbeck and Yau, whose
proof of the Kobayashi-Hitchin correspondence in [UY] works for arbitary compact
Kihler manifolds and does not use the flow. In particular, [SI] uses the existence
of weakly holomorphic projection operators proved in [UY] (and to be discussed in
the next section).

The basic strategy is to solve the equation on a compact manifold X, satisfying
certain boundary conditions, and then takes the limit as ¢ — oco. More explicitly,
fix ¢ and let X, be the compact space with ¢(x) < ¢, and denote the boundary by
Y,. Let H be a metricon £ — X, and % denote differentiation of sections of F in
the direction perpendicular to the boundary using the Chern connection associated
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to H. We will consider metrics i that either satisfy:

0

2 —

v ¥ 0
or

hyy, = Hy,.

These are the Neumann and Dirichlet boundary conditions respectively.

For completeness we state Simpson’s result.

Theorem 4 Let (X,w) be a Kdhler manifold satisfy the conditions stated above.

Let S be a stable bundle on X with an hermitian metric hyg. Then the equation:

oh It
ht_la_'[;t = -2 ( —1Atht - :uw(E)‘[dE) ) h(O) - hO

has a solution for all time and converges at infinity to an Hermitian-Finstein metric

on S.

1.4 Properties of Sheaves, the HN S filtration, Weakly Holomorphic

Projections, and Second Fundamental Forms

1.4.1 Subsheaves of Holomorphic Bundles and the HN .S Filtration

As stated in the introduction, the main obstacle we will face is that we must
consider arbitrary subsheaves of a holomorphic vector bundle. Throughout, X will
be a compact Kahler manifold (unless otherwise stated) with Kahler form w, E a

holomorphic vector bundle, and S C E a subsheaf.
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Recall that an analytic sheaf F on X is called torsion free if the natural map
F — F** is injective. We call F reflexive if this map is an isomorphism. Of vital
importance is the fact that a torsion free sheaf is "almost a vector bundle" in the

following sense. For F a sheaf on X we define the singular set:

Sing(F) ={z € X | F, is not free}.

Here F, is the stalk of F over x. In other words Sing(F) is the set of points where
F fails to be locally free, i.e. a vector bundle. The set Sing(F) is closed, and

furthermore is a complex analytic subvariety of X. We have the following result.

Proposition 5 If F is torsion free, then codim Sing(F) > 2. If F is reflexive then

codim Sing(F) > 3.

For the proof see [KOB].

Now in our case, a vector bundle E is clearly torsion free, so any subsheaf S
is also. Therefore the above result applies to S. On the other hand, the quotient
@ = E/S may not be torsion free. We define the torsion Tor(Q) to be the kernel of
the sheaf map ) — @Q**. To obtain a sheaf which does have torsion-free quotient,
define the saturation of S in E by Satg(S) = ker(E — @/ Tor(Q)). Note that S is
a subsheaf of Satg(S5) with torsion quotient, and the quotient £/ Satg(.S) is torsion
free. The same holds true of course for subsheaves of an arbitrary torsion free sheaf

F. We also have the following lemma.

Lemma 4 Let F be torsion free. Suppose Sy C Sy C F are subsheaves with Sy/S;
torsion. Then Satg(S1) = Satg(Ss).
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Proof. We claim Satg(S;) C Satg(S2). The natural map Satg(S;) — F/ Satg(Ss)
given by inclusion followed by projection factors through a map Satg(S;)/S1 —
F/Satg(Ss2) since S; C Satg(S2). But on the other hand Satg(S;)/S; is torsion and
so has torsion image, but then its image must be zero since F/ Satg(S;) is torsion
free. Thus we have the first inclusion. We therefore have a map Satg(5,)/ Satg(S;) —
F/Satg(S1). By assumption Satg(Ss2)/ Satg(S) is torsion, and so has torsion (and
hence zero) image. Then Satg(S2) C Satg(S;). W

The w-slope of a torsion free sheaf F on X is defined by:

1 n—1
lrk(j__)/Xcl(]-")/\w :

Note that the right hand side is well defined independently of the representative

po(F) = deg,, (F)/ rk(F) =

for ¢;(F) since w is closed. Throughout we will assume that the volume of X with

respect to w is normalised to be 27 /(n — 1)!, where n = dim¢ X.

Definition 2 We say that a torsion free sheaf F is w-stable (w-semistable) if

for all proper subsheaves S C F, u,(S) < pu,(F) (1,(S) < p,(F)). Equivalently

1, (Q) > i, (F) (1, (Q) > p,(F)) for every torsion free quotient Q.

We have the following important proposition.

Proposition 6 There is an upper bound on the set of slopes ,(S) of subsheaves of
a torsion free sheaf F, and more over this upper bound is realised by some subsheaf
Fi C F. Moreover, we can choose Fi so that for any S C F, if u,(S) = p,(F1)

then rk(S) < rk(Fy).
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For the proof see Kobayashi. The sheaf F; is called the maximal destabil-

ising subsheaf of F. This sheaf is also clearly semistable.

Remark 1 If S C F is a subsheaf with torsion free quotient Q = F/S, then Q* —
F* is a subsheaf and deg(Q*) = —deg(Q). By the above proposition p,(Q*) is

bounded from above, so p,(Q) is bounded from below.

Remark 2 Note also that the saturation of a sheaf has slope at least as large as the
slope of the original sheaf. Therefore the maximal destabilising subsheaf is saturated

by definition.

Definition 3 We will write p™**(F) for the mazimal slope of a subsheaf, and
w™in(F) for the minimal slope of a torsion free quotient. Clearly we have the equality

Mmin(f) — _Mmax(f*>.

We now specialise to the case of a holomorphic vector bundle E, although the
following all holds also for an arbitrary torsion-free sheaf.
Proposition 7 There is a filtration:

0=k CFkF C..CE=F

such that the quotients Q; = E;/FE;_1 are torsion free and semistable, and y,,(Q;41) <

1, (Q;). Furthermore, the associated graded object:

GriN(E) = @,Q;

w

1s uniquely determined by the isomorphism class of E and is called the Harder-
Narasimhan filtration.
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In the sequel we will usually abbreviate this as the HN filtration, and we will
write FZV(E) for the " piece of the filtration. The previous proposition follows
from Proposition 2. The maximal destabilising subsheaf is FZ¥(E). Then consider
the quotient E//FY(E) and its maximal destabilising subshseaf. Define FZV (FE) to
be the pre-image of this subsheaf under the natural projection. Iterating this process
gives the stated filtration, and one easily checks that it has the desired properties.

Another invariant of the isomorphism class of E' is the collection of all slopes

of the quotient Q);.

Definition 4 Let E have rank R. Then we form an R-tuple

p(E) = (1(@1), (@) ooy Qi) oo Qi) i Q1) - 11(Q1))

where u(Q;) is repeated rk(Q);) times. Then u(E) is called the Harder- Narasimhan

(or HN ) type of E.

The set of all HN types of holomorphic bundles on X has a partial ordering

due to Shatz. For a pair of R-tuples p and A with puy > puy > ...

> pup and

M > X > o> Agand Y =D, N\, we write

/.LS)\‘(:?Z/LJ-SZ)\]' forallk=1,...R.

J<k J<k

This partial ordering was originally used by Atiyah and Bott to stratify the space
of holomorphic structures on a complex vector bundle over a Riemann surface.

We have the following fact.

Lemma 5 Let = (fiq,..., ) and A = (Aq, ..., Ag) be R-tuples with non-increasing
entries as above. Suppose there is a partition 0 = Ry < Ry < ... < R = R such
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that p; = p; for all pairs i,j satisfying: Ry +1 < i,j < Ry, k = 1,...,1. If

ZjSRk ;< ZjSRk N, forallk=1,..1, then p < \.

For the proof see Atiyah-Bott 7.
We will also need a result describing the HN filtration of F in terms of then

HN filtration of a subsheaf S and its quotient Q).

Lemma 6 Let E be a holomorphic vector bundle. Consider the subsheaf FEN(E) C

E and set Q = E/FIN(E). Then
Fi3 (B) = ker (B — Q/F{"Y(Q)).
Therefore in particularFEY (E) /FIN(E) = FAN(Q).

Proof. 1If ¢+ = 0 this is true by definition of the objects involved. If ¢ = 1, then
FIN(E) is the pre-image of FZY(Q) under the quotient map £ — @, in other
words, exactly the statement of the lemma. Now we proceed by induction. Assume

that we have:

Fi'"(E) = ker (B — Q/FY(Q)) -
Then by definition of F2AY (E):

HN _ E/FIN(E) B Q/FIY(Q)
Fii(E) = ker (E - FIN (E/FHN(E))) = ker (E - FHN (Q/]FHN< )))

QE@) N o
FIN(Q)/FIY (@ >>‘k (B — Q/EI™(Q)

Proposition 8 Let
0—S—F—@Q—0
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be an exact sequence of torsion free sheaves with E a holomorphic vector bundle such

that p™"(S) > pu™(Q). Then the HN filtration of E is given by:
0CFN(S)C..cF/N(S) =S cFN(E)C..CF™(E)=E,

where

F/N(E) = ker (E — Q/F{™(Q)) fori=0,1,...1—k.

In particular, this means that Q; = FiIN(E)/FN_(E) = FIN(Q) and therefore
GriN(E) = Gr™ (9) @ Gr™(Q).

Proof. Let E; be the maximal destabilising subsheaf of E. Then by assumption

we have:
p,(Er) > p2®™(S) > pi™(S) > p2™(Q).

If the projection map E; — () were non-zero, by semi-stability of E;we would

have:
f, (im (Ey — Q) = p,(Ev) > p1™(Q),

which condradicts the definition of p™**(@)). Then necessarily E; C S, and if
E1 # S, then F; must be the maximal destabilising subsheaf of S.

We proceed by induction on the length of the HN filtration of S. If S is semi-
stable then the above argument implies that S = E; = FZY(E). In the statement
of the proposition is exactly the same as that of the preceding lemma. Now let
S be arbitrary and suppose that the statement has been proven for all such exact

sequences such that the HN filtration of the subsheaf in the sequence is strictly
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shorter than that of S. Now we have an induced exact sequence:
0— S/Ey — E/E; —Q —0

and furthermore this sequence still satisfies ™ (S/E;) = p™0 (S) > p™™> (Q). By

w

the inductive hypothesis we have:

0 c FN(S/E)) C...CFN (S/Ey)
= S/E, CFIN(E/E) C..CF(E/E) = E/E,,
where
FiN_ (E/Ey) =ker (E/E; — Q/F™(Q)) .

Now by the previous lemma we have:

Combining these two equalities gives:

HN _ B/Ey
Fiti (B/E1) = ker (E " ker (E/Ey — Q/Ff{WQ)))
= ker (E — Q/FﬁN(Q)) .

Now for ¢+ < k — 1, by induction and the previous lemma we have:

FiY (E) /By =F"™ (E/Ey) =F/N (S/Ey).

Therefore:
E/E, E/E,
HN = _ = e e —
() = e (B — g (s ) = e (B — g 7
E/E,
|
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Corollary 2 Suppose that
OCEiC..CE_1CE=F

is a filtration of E by subbundles, and suppose that for eachi p™*(E;) > p™>(E/E;).

Then the Harder-Narasimhan filtration of E is given by:

0 c FIN(E)cC..c F;ffN(El) —FE, C..C Flﬁﬁ,.+kl,1(EH) — B,

C F,ffﬁ”m_ﬁl(E) C..C F,gﬁ“%l(E) =FE.

Proof. This is immediate from the previous proposition. W
Now we will define the double filtration that appears in the statement of the
Main Theorem. Its existence follows from the existence of the HN filtration and

the following proposition.

Proposition 9 Let () be a semi-stable torsion free sheaf on X. Then there is a
filtration:

OchhcCc..Cchkh=Q

such that F;/F;_1 is stable and torsion-free. Also, for each i we have p (F;/F;_1) =

w(Q). The associated graded object:
Gri(Q) = ®iFy/Fi

18 uniquely determined by the isomorphism class of Q). This filtration is called the

Seshadr: filtration of Q).

For the proof see Kobayashi. An immediate corollary is the following.
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Proposition 10 Let E be a holomorphic vector bundle on X. Then there is a
double filtration {E; ;} with the following properties. If the HN filtration is given
by:

OcCEF,C..CE_CE =E,

then

E,_ = Ei,O C Ei,l C...C Eui = F;
where the successive quotients
Qij = Eij/Eij
are stable and torsion-free. Furthermore:

:uw(QiJ) = Mw(QiJ-i‘l)
to(Qij) > 1, (Qiv1j).

The associated graded object
GriV(E) = ©:9,Qi;

1s uniquely determined by the isomorphism class of E. This double filtration is called

the Harder-Narasimhan-Seshadri filtration (or HNS filtration) of E.

Similarly, we define the corresponding type of E as the R-tuple:

= Q1) ooy 11(Qig)s ooy 11(Quiy))

where each 1(Q; ;) is repeated according to rk(Q);;). Note that this is exactly
the same vector as the HN type. Since each of the quotients (); ; is torsion-free,
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Sing(Q;;) lies in codimension 2. We will write:
Zalg = Ui,j Slng(Em) U Sll’lg(Qz’j)

This is a complex analytic subset (again, we ignore multiplicities) of codimension at
least two, and corresponds exactly to the set of points at which the HN S filtration
fails to be given by subbundles. We will refer to it as the algebraic singular set of

the filtration.

1.4.2  Weakly Holomorphic Projections/Second Fundamental Forms

Let S C E be a subsheaf with quotient (). Then away from Sing(S)USing(Q),
S is a subbundle. If we fix an hermitian metric h on E, then we may think of
S as a direct summand away from the singular set, and there is a corresponding
smooth projection operator 7 : £ — S depending on h. The condition of being
a holomorphic subbundle almost everywhere can be shown to be equivalent to the
condition: (Idg — 7) dpm = 0. Since 7 is a projection operator we also have 72 =

7 = 7*. Furthermore it can be shown that 7 extends to an L} section of End F.

Conversely it turns out that an operator with these properties determines a subsheaf.

Definition 5 An element m € L?(End E) is called a weakly holomorphic projection

operator if the conditions
(Idg — 7) Ogm = 0 and 5 = m; = =} *

hold almost everywhere.
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Theorem 5 (Uhlenbeck-Yau) A weakly holomorphic projection operator 7 of a holo-
morphic vector bundle (E, h) with a smooth hermitian metric over a compact Kdhler
manifold (X,w) determines a coherent subsheaf of E. That is, there exists a coherent
subsheaf S of E together with a singular set V- C X with the following properties:
-Codim V' > 2,
mx—v 18 C* and satisfies *,

Six-v = 7T|X_V(E|X_V) — E\x_v is a holomorphic subbundle.

The proof of this theorem is contained in [UY]. From here on out we will
identify a subsheaf with its weakly holomorphic holomorphic projection.

If S C F is a subsheaf, then away from Sing(S) U Sing(Q) there is an orthog-
onal splitting F' = S & (. In general we may write the Chern connection Vg, 1

connection on FE as:

v ds,h g
V(5EJ1) = ( ’ S>

_ﬁ* V (5Q ,hQ)

where V (s.hs) and V (Garhq) 2TC the induced Chern connections on S and () respec-
tively, and $ is the second fundamental form. Recall that 3 € Q%'(Hom(Q,S)).
More specifically, in terms of the projection operator, we have Opm = 8 and Jpm =
—/3*. Also 3 extends to an L? section of Q%'(Hom(Q, S)) everywhere as Og7 since
7 is L2. We also have the following well-known formula for the degree of a subsheaf

in terms of its weakly holomorphic projection.

Theorem 6 (Chern-Weil Formula) Let S C E be a saturated subsheaf of a holomor-

phic vector bundle with hermitian metric h, and 7 the associated weakly holomorphic
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projection. Let Og denote the holomorphic structure on E. Then we have:

1
degS— —_— TI'(\/ A F(aEh 27‘(‘n/ |B|

2mn

The statement of this theorem as well as a sketch of the proof may be found
in [SI]. This formula will also follow as a special case of our discussion in Section 4.
Clearly any sequence 7; of such projection operators is uniformly bounded in

L>(X). As an immediate corollary of the Chern-Weil formula we have the following.

Corollary 3 A sequence 7 of weakly holomorphic projection operators such that
deg 7; is bounded from below is uniformly bounded in L3. In particular, if degm; is

constant then 7; is bounded in L3.

Now suppose V 4, is a reference connection, g; € G© is a sequence of complex
gauge transformations, and V4, is the sequence of integrable unitary connections
on an hermitian vector bundle (&, h) given by V4, = g; - V4,. Let S C E be a
subbundle with quotient ). We have a sequence of projection operators 7; given by
orthogonal projection onto g;(S) (with respect to the metric i) from E to holomor-
phic subbundles S; (whose holomorphic structures are induced by the connections
V 4,) smoothly isomorphic to S. We will denote by @; the corresponding quotients.
Each of these holomorphic subbundles has a second fundamental form which we will
write as 3;. Assume that the 3, are also uniformly bounded in L? (this will later be
a consequence of our hypotheses). Then with all of the above understood, we have

the following result.

Lemma 7 For any 1 < p < oo, the 3; are bounded in LY, (X — Zan), uniformly

1,loc

for all j. In particular the 3; are uniformly bounded on compact subsets of X — Zy.

o1



Proof. To simplify notation, in the following proof we will continue to write V 4,
and 5,4]. for the induced operators on End E. By weak convergence of the sequence

Vg, in Lf,,. for p > n (see the next section), if we write 2; = V4, — V4,, we may

assume §); is uniformly bounded in L’Lloc for any p, and so in particular the €2; are

bounded in C?

. . . p 0
Joc Since we have the imbedding L7, — C

oe- We will write le-’o and

Qg’l for the (1,0) and (0, 1) parts of ;. Now:
Ongmj = Oa,m; + QM = B, + Q'

and the (; are bounded in L?. Recall also that 7; is bounded in L7 and L*.
On QY(End(E)) and Q%}(End(E)) the Kahler identities are: 0* = /—1A,0 and
0" = —v/—1A,0.

We compute:

Doy i = Bndants = V_TAuOanBaT)

= VoI ((ay — 0 (84, — Q%) 7))

= V=1Au04;0a,m; — V—1A,04; ()" 7))
—V=1A, (5°04,m)) + V=1, ((2;° A Q) ;)

= Dg, = VTA ((049") ) — Au (20 A Da,y)
—V/=TA, (0! A Baymy) + V=IA, (20 A QYY) 75)

= By I (0200 7) — A (0187
—V=IA, (2 A Oagms) — V=TAL (7 A 957 75)

VITAL (@ A1) )
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Now since 5Aj7rj = (3, we have the expression:
AgAjﬂ'j =V —1AwaAngj7Tj =V _1Aw8Aj6j~

On the other hand:

Fs, — B; N\ 53] OajfB;
F(gAj ,h) = B
—05; ey _6;/\63'
and since we assume A, Fy; is uniformly bounded, this implies A, 7; is bounded
J
uniformly. By the preceeding discussion, we therefore know that the right hand

side of the expression for Aj PR bounded in L? . Recall also the Weitzenbock

loc*

formula:
1, —
AéAO = §VAOVAO + _1AwFA0~

Again, the second term is bounded, so we may replace Aj » by V7, V4, at the cost

of adding a bounded term to the right hand side. Therefore V7 V 4,7; is bounded

2

uniformly in Lj,.

We now bootstrap this expression. Since V) V4, is elliptic, by the usual

elliptic estimate:

Imillz, < C (IVa,Vaumill s+ Imillsz)

so m; is bounded in Lj,,. and hence in LY, for 1 < p < 21 by Sobolev

imbedding. Therefore, if we consider again the expression for Aj 4o above, it

follows that V% V 4,7; is in fact bounded in L, for p in this range. Applying the

LP elliptic estimate:

Imillg, <€ (IVa,Varmilly +Imillsz)
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and so 7; is uniformly bounded in Lé”loc for 1 <p< % Therefore in particular

B; = 5Aj7rj is bounded in L? for all p. Applying the L? elliptic estimate again

loc

implies that (; is bounded in L}

1,loc

for all p, and so by Sobolev imbedding f3; is

locally bounded. H

1.5 Uhlenbeck Compactness, Results of Bando and Siu, Hermitan-

Yang-Mills Type Functionals, and a Theorem About the HN type

1.5.1 Uhlenbeck Compactness and Removable Singularities

We now give the statement of the general Uhlenbeck compactness theorem.
Although we will be primarily concerned with theorem as it applies to the Yang-
Mills flow of the next section, the proof of the main theorem in Section 7 will also

rely on this more general statement.

Theorem 7 Let X be a Kahler manifold (not necessarily compact) and E — X a
hermitian vector bundle with metric h. Fix any p > n. Let V 4, be a sequence of in-
tegrable, unitary connections on E, on E such that ||FAJ||L2(X) and HAwFAJ‘HLoo(X)
are uniformly bounded. Then there is a subsequence (still denoted A;), a closed
subset Zn, C X with Hausdorff codimension 4, and a smooth hermitian vector bun-
dle (Ex, heo) defined on the complement X — Z,, with a finite action Yang-Mills

connection V. on E,, such that VAJ.‘X_Z&D is gauge equivalent to a sequence of

connections that converges to Va_, weakly in L7, .(X — Zan).
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The statement of this version of Uhlenbeck compactness may be found for
example in Uhlenbeck-Yau (Theorem 5.2). The proof is essentially contained in
[U2] and the statement about the singular set follows from the arguments in [NA].
We will call such a limit V4 an Uhlenbeck limit. Furthermore, we have the

following crucial extension of this theorem due essentially to Bando and Siu.

Corollary 4 If in addition to the assumptions in the previous theorem, we also
require that:

HdAjAwFAJ'HH(X) —0,

then any Uhlenbeck limit ¥V 4 is Yang-Mills. On X — Z,, we therefore have a

holomorphic, orthogonal, splitting:
(Eooy hooa VAOO) = @'li:l(Qoo,h hoo,i7 vAoo,i)
Moreover E, extends to a reflexive sheaf (still denoted E,) on all of X.

Proof. Most of the content of this theorem resides in the last statement, and
this is due to Bando-Siu ([BS]) Corollary 2. The statement about the splitting fol-
lows directly from the fact that an Uhlenbeck limit is Yang-Mills and Proposition 1.
Therefore it only remains to prove that the stated condition implies the first state-
ment. Since A; — A, weakly inin L7, .(X — Z.y), and by the Rellich compactness

theorem there is a compact imbedding L(X) — C%(X), we can assume:

Aj — As in C, and AyFa, — A Fa, weakly in L,

loc

since we also have a uniform bound on HAwF A H Lo (X) by assumption. On the other
hand, writing V4, = V4, +(Va, —Vy,), and using the expression for a connection
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on an associated bundle, we have:
daAuFa, = da,NoFa, + [Va, —Va,, AuFa,],

where the [, ] notation is a combination of wedge-product and composition of endo-
morphisms. By the previous argument and our additional assumption, this implies

daNoFa, — 0in L} . We claim that also

loc*
daAuFa, — da A,Fa, weakly in L7,

If we locally write V4 = d + A, for some smooth connection d (here we are
thinking of A, as the connection 1-form, which is continuous), then again we may
write locally:

daAoFa, = dAyFu, + [As, AuFa)] .

Then for a neighbourhood W CC X — Z,, and u an L? test section of u(E), we

have:

/ (dALFy ) = / (AJFy, d*u)
w w

o f s
w w

s0 dA,Fa; — dA,Faso in L? .. Similarly the pointwise U(n) invariant inner product

(,) on u(n) enjoys the property ([u,v],w) = (u, [v,w]) with respect to the bracket.

Then for an L? test section of Q! (u(E)):

/W<[AOO,AWFAJ.],U> _ /W<[Aoo,u],AwFAj>

— /W<[A°°’u]’AwFA°°>:/W<[Ao<>a/\wFAoo],u).
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Therefore [AOO,AWFAJ — [Aw, AuFa ], and so since da A, Fa, = dA,Faoo +
[Aso, Ay Fa_| the claim follows. Therefore da A, Fa, = 0, and these are exactly

the HY M equations, so A, is HY M and therefore Yang-Mills. B

Corollary 5 With the same assumptions as in Theorem 7, A,Fa, — A Fa,, in

LP(X — Zan) for all 1 < p < 0.

Proof. Let ¢, = A, Fa, — AuFa,. As in the proof of the preceeding theorem,

Y, — 0 weakly in L? and da_1, — 0 strongly in L? since V 4_ is Yang-Mills.

loc

2

1,loc and

By Kato’s inequality we have |d ||| < |davl, so |¢,| is bounded on L

therefore |¢),| — 0 strongly in L}

ibe- Since 1, is also bounded in L*° this implies

|| — 0in LP for all p. W
We may also apply the Uhlenbeck compactness theorem to the sequence of

connections given by the flow.

Proposition 11 Let X be a compact Kahler manifold. Let Ay be any fized con-
nection, and A, denote its evolution along the flow. For any sequence t; — 00
there is a subsequence (still denoted t;), a closed subset Z,, C X with Hausdorff
codimension 4, and a smooth hermitian vector bundle (Ey, hs) defined on the com-
plement X — Z., with a finite action Yang-Mills connection Ay on E,, such that
Atj‘ X—Z., 1S gauge equivalent to a sequence of connections that converges to A in

Lp

1,loc

(X — Zan). Away from Z,, there is a smooth splitting:

(Eom Aom hoo) - @é:l (Qoo,ia Aoo,i, hoo,i)

where A ; 1s the induced connection on @Q;, and he ; is an Hermitian-Einstein
metric. Furthermore, E., extends over Z,, as a reflexive sheaf (still denoted Ey, ).
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Proof. The functions ||Fl4,||;> and [|[A,F4,||;~ are uniformly bounded by parts

(1) and (2) of Lemma 2 respectively. By [DOKR] Proposition 6.2.14,

The remaining statements follow from Corollary 4. B

Just as before we call A, an Uhlenbeck limit of the flow.

1.5.2 The Kobayashi-Hitchin Correspondence for Reflexive Sheaves

In general, if € is only a reflexive sheaf, Bando and Siu ([BS]) defined the
notion of an admissable hermitian metric. This is an hermitian metric h on the
locally free part of £ such that:

- ALFy € L®(X,w)

- B e L*(X,w).

Corollary 4 says that the limiting metric is an admissable hermitian metric
on the reflexive sheaf E., that is a direct sum of admissable Hermitian-Einstein
metrics. We also point out the version of the Kobayashi-Hitchin correspondence for

reflexive sheaves, due to Bando and Siu [BS].

Theorem 8 (Bando-Siu) A reflexive sheaf £ on a compact Kihler manifold (X, w)
admits an admissible Hermitian-Finstein metric if and only if it is polystable. Such

a metric 18 unique up to a positive constant.

Note that this theorem says the (GTfN s (E))** carries an admissible Yang-
Mills connection (where admissible has the same meaning for connections), which
is unique up to gauge. We sketch a proof of this result in this section..
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We will need the following two propositions from [BS]., which we will also use

in Chapter 3.

Proposition 12 Let (X,w) be an n-dimensional compact Kihler manifold and  :
X — X a blowup along a compact complex submanifold. Let n be a Kihler metric
on X and consider the family of Kdihler metrics w. = m*w + en with 0 < e < 1. Let
K. be the heat kernel with respect to the metric w., then we have a uniform estimate

0<K.<C(t™+1).

In the above proposition we use the general fact that the blowup along a
compact complex submanifold of a Kéhler manifold is K&hler. We will sketch a proof
of this fact in the next chapter. We will use the family w. throughout Chapters 2
and 3.

We will construct the admissible Hermitian-Einstein metric on £, we will patch
together metrics on a local resolution by vector bundles. More explicitly, let £* be
the dual, and recall that locally, there is a resolution of the dual by holomorphic
vector bundles. Let U, be an open subset on which such a presentation exists and

let £}, be the bundles in the resolution:

35,0 o

* * (&3 *
El,a > EO,O[ > 5‘UO£ ? O.

Then taking duals we have an inclusion:

o ?0,a
0 — Eu, 2% Ego ™% Bya

In other words, we may view £ as a subsheaf of locally defined holomorphic vector
bundles Ey,. Away from Sing &, this inclusion realises £ as a holomorphic subbun-
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dle. The key point is that we can make an actual holomorphic subbundle if we are

willing to go to a blowup. Namely, there is a finite sequence of blowups:
X=X 25X — . — X 5 X=X

along compact, complex submanifolds, such that if we denote by 7 the composition
of all the 7;, then 7*&/ Tor(n*£) is locally free. This is a consequence of Hironaka’s
flattening theorem, which says that there is such a sequence of blowups such that
7*E | Tor(m*E) = £ is flat, together with the fact that a flat module over a local ring
is free. We will discuss resolution of singularities in more detail in Chapter 2.

Then on U, = 7~ 1(U,) there is an inclusion of vector bundles £ FEoo = E,
where we continue to denote by F;, the pullbacks of these bundles to X. Now
covering X by such neighbourhoods, we can fix hermitian metrics h,, on each E, and
let p, be a partition of unity with respect to U, then we may write h = > pobiha-
This defines an hermitian metric on £ that restricts to an hermitian metric, still
denoted h, on & x_ginge-

Now we would like to deform this metric using the HY M flow on X to an
admissable Hermitian-Einstein metric. For the rest of this section we will denote
objects on the blowups and on the base by the same symbols without reference to the
pullback. Fix arbitrary Kéhler metrics 7, on X; ane write w; . = w+¢e1m; +... +&;1;.

Now consider the HY M flow equations on X:

dh
h{ld_tt - _ («/—1Awk,tht — A(E)Id) , h(0) = h,

where

ME) = 2mnpu(€)) / .

X
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By Donaldson’s work this equation has a long-time solution. Now the curvature

enjoys the following properties:

. P,
0|, Fu|” )
‘ gt | :_A‘Awk,thzF_Z dAcht‘2
. P,
0|Aw,,  Fh,
il < ajn,.m,
. P3
D |h |2:—/ VA Fr|”
dt . Wr.e L ht M wi,e 4 hy
. P,
/ ‘Awk,tht| (y) S / |Awk75Fh} (y)
Xk X
P,

‘Awk,tht’ (:L‘) < /X Kikﬁ(l‘ay) ‘AwkﬁFh’ (y)
k

where K/, (z,y) is the heat kernel with respect to wy. and h is the metric

constructed above on €. Then for a fixed £; we have:

o  detgi.
?,€ det gz o 7,€1
and
B Awi?
‘Awe h‘ = 7
3 n
wi,z—:
SO
. Fy nwZH
’sz}s Fh| Wie = n 1,61
1,€1

and clearly this is uniformly bounded since as ¢ — 0 we have w; . — w. Therefore
Ay, Fy is uniformly integrable.
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Now Proposition 12 says that if we fix a k — 1 tuple & = (ey,...,64_1), then
the heat kernel K, (z,y) has a uniform bound. Furthermore, outside the excep-
tional divisor, K, (z,y) converges to Kf}k,al (z,y) as ey — 0. P, and Pj to-
gether with the above discussion imply that ‘Awkﬁth‘ has a uniform L' bound for
t > 0 and a uniform L* bound for ¢t > t5 > 0, or on a compact set disjoint from
the exceptional divisor. The usual relationship between the full curvature and the
Hermitian-Einstein tensor now give a uniform L? bound on Fj,.

This means that for any fixed ¢ > 0, as e, — 0 the limit h, ., = lim., . by,
solves the HY M equations on X ; and is an admissible metric. Continuing by
induction, for each ¢t > 0 we obtain an admissible hermitian metric h; on £ solving
the HY M equations on X — Sing(E).

Now if £ is stable, then Theorem 4 implies that there is a sequence of times t;
such that h;, converges to an admissible Hermitian-Einstein metric. More generally,

in the polystable case we have obtained an admissible Hermitian-Einstein metric.

If £ is a general reflexive sheaf, Pj3 still holds for the family of metrics h;, so

/00/ |VAtht|2§/ |AuFi, |-
to X X

In other words, there is a subsequence of times t; such that

integrating gives:

/ VAL F, |* — 0.
X

Now by Corollary 4 there is a subset S C X — Sing(€) or Hausdorff codimension
4, and a further subsequence of times ¢; such that h;, converges to a weak solution
he of the equation VA, F,,_ = 0. Then, as usual, the limiting bundle E,, defined
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on X — (Sing(&) U S) breaks up into a direct sum of the eigenspaces of Fj__. Fur-
thermore these bundles extend to reflexive sheaves over Sing(£) U S. This shows
that the limiting sheaf we have £, breaks up into a direct sum of reflexive sheaves
admitting admissible Hermitian-Einstein metrics, which is exactly what we claimed
in Proposition 11.

Furthermore, the following can be used to show uniqueness up to a positive

constant.

Proposition 13 Let (€, h) be a reflexive sheaf with an admissible Einstein-Hermitian
metric on a compact Kahler manifold (X,w). If u(€) <0 (=0) then £ admits only

the zero section (every section is parallel).

Proof. If s is a global section of £, then [BS] Theorem 2 b) gives a bound on |s|

on all of X. It satisfies:
A |s|2 = |VS|2 — ((AuFR) s,8) = |Vs|2 —A(€) |s|2 > 0.

Since subharmonic functions satisfy the maximum principle |s| is constant, which

implies |Vs|* = M(&)|s|” and the result follows. m

1.5.3 A Remark About the the HN Type of the Limit

Lemma 8 Let A;; be a sequence of connections along the Y M flow with Uhlenbeck

limit As. Then Fort; >ty > 0,

APl < |

Aw FAt].

Lo S HA‘*’FA%HLOO '
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Proof. Again, \AWFAAQ is decreasing in ¢t. Fix t > 0. Then for any 1 < p <

and j sufficiently large we have:

(recall vol(X) = 2m). By Corollary 4,

S @ IAF |-

Aw FAt].

Aw FAtj

1
o
<@

tim [AuF, || = APl
j-o0 J{lLp

for all p. So

||AUJFA<><>||LP < (2m)» ||AUJFAt||L°°

for all p. Therefore letting p — o0,

||AUJFA<>0||L°° < ||AWFAt||L°° :

Lemma 9 If Ay is an Uhlenbeck limit of Ay;, then A,Fa, — A, Fa,, in LP for

all 1 < p < 0o. Moreover, lim;_,oo HY M(A;) = HY M (Aw).

Proof. The first part is immediate from Corollary 5. The second statement is

immediate from the facts that ¢t — HY M (A;) is non-increasing, and

HY M(A,,) — HY M(Ay).

We will need the following lemma from linear algebra:

Lemma 10 Let V' be a finite dimensional hermitian vector space of complex di-
mension R, and L € End(V') an hermitan operator with eigenvalues A\ > ... > Ag
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2

(counted with multiplicities). Let m = m* = 7* denote the orthogonal projection onto

a subspace of dimension r. Then Tr(Lw) <, .

For a sketch of the proof see [DW1] Section 2.3. Now we discuss the HN S

type of an Uhlenbeck limit.

Lemma 11 Let A; = g;(Ao) be a sequence of compler gauge equivalent integrable
connections in a complex vector bundle of rank R with hermitian metric hg. Let S
be a coherent subsheaf of (E,04,) of rank r. Suppose that \/—_1AwFAj — v in L1,
where v € L'(v/~1u(FE)), and that the eigenvalues A\ > \a > ... > A\g of v counted

with multiplicities are constant almost everywhere. Then: deg(S) < ;.. Ai.

Proof. As stated earlier, deg(S) < deg(Satg(S5)), so we may assume S is saturated.
Let 7, denote the weakly holomorphic projection to g;(.S) with respect to hg. Then

by the Chern-Weil formula:

1 _
deg(S) = — (Tr(\/—lAwFAj - }aAﬂjF) "
2mn Jx
1
< — | Tr(V=1A Fy )"
2mn Jx 7
1 n 1 n
= % XTI'(Vﬂ'j)w —% XTI'((\/—lAwFAj—V)Tl'j))w .
Therefore since ||7;]| ;. <1, vol(X) = %, by the previous lemma we have:

1
deg(S) < LA+ 5— |V=1AuFa, — v||,, -

1 <r
Letting 7 — oo we have the result. B

The following simple fact will be crucial in section 5.
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Proposition 14 Let A; be a sequence of connections along the Y M flow on a holo-
morphic vector bundle of rank R, with Uhlenbeck limit As. Let p, be the HNS
type of E with holomorphic structure 04,. Let Ao be the HNS type of 4. Then

Ho < Aoo-

Proof. LetO0=FyC FE,C..CE = EgAO be the HNS filtration of d4,., and let
to = (fqg, ..., ip) (here we are ignoring the notation indicating the fact that it is a

double filtration). Then

deg(Ei) = > wy

j<rrk(E;)

By Lemma 9, AyFa; — AyFy4, in L'. The type Moo = (A1, ..., Ag) corresponds to
the (constant) eigenvalues of A,F4_. By the previous lemma applied to S = E;, we

have

Therefore

and the result follows from Lemma 5. R

Corollary 6 Let i = (puy, ..., ig) be the HNS type of a rank R holomorphic vector

bundle (E,0) on X. Then

and

N\
M=
Fo

N———

SIS
VAN
S
€
IS
&
3

for all unitary connections V 4 in the G orbit of (E,0g).
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Proof. Let A; denote the Y M flow with initial condition A. By 3.1(2) we know:

/ ALF Pt < / ALFaf?,
X X

for every t > 0. Let Ao, be an Uhlenbeck limit along a subsequence t; — oo. By

Lemma 9,

2
/\AMFAOO|2w"— lim w".
b

Jj—00 X

Aw FAt].

As before, /—1A, F4_, has constant eigenvalues A\, and by the previous proposition

1< Ao It follows from Atiyah-Bott, 12.8 that

R R
SouE <3N
=1 =1

This, together with the previous two inequalities and the normalisation vol(X) =

% gives the first result. The second follows in exactly the same way. W

1.5.4 Hermitian-Yang-Mills Type Functionals

The Y M and HY M functionals are not sufficient to distinguish different H N S
types in general. In other words there may be multiple connections with the same
Y M number, but which induce holomorphic structures with different H NS types.
In this subsection we introduce generalisations of the HY M functional that can be
used to distinguish different types. This is only a technical device, but will be used
essentially in Section 5.

Write u(R) for the Lie algebra of the unitary group U(R). Fix a real number
a > 1. The for v € u(R), a skew hermitian matrix with eigenvalues v/—1\, ..., v/ =1z,

let 0, (v) = 327 [M|* Tt can be seen that there is a family Pop 0 < p <1, of
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smooth convex Ad-invariant functions such that ¢, , — ¢, uniformly on compact
subsets of u(R). By Atiyah-Bott, Proposition 12.16, ¢, is a convex function on
u(R). We may consider a section o € I'(X, u(E)) as collection of local sections {o 3}
such that o3 = Ad(gg,)o, where gg, are the transition functions for E. By the
Ad-invariance of ¢, ¢,(05) = ¢,(0,), so ¢, induces a well-defined function ®, on

u(E). Then for a fixed real number N, define:

HY M, n(A) = / ®o (A Fa + V—1NIdg)dvol,

X
and HY M,(A) = HY M, o(A). Note that HY M = HY M, is the usual HY M

functional. In the sequel we will write:

HY Mo n(p) = HY M, (u+ N) = 0o (V=1 (n+ N)),

(n—1)!
where p+ N = (g +N,...,puizg + N)
is identified with the matrix diag (y1 + N, ..., i + N). Therefore:

27 R
S

HY M(p) = =1 2=

We have the following elementary lemma.
1
Lemma 12 The functional v — ([, ®a(v))® is equivalent to the L*(u(E)) norm.

Proof. There are universal constants C; and Cs (depending on R) such that for

any real numbers Ay, ..., A, and o > 1 :

i(fu-\?)g < i(zu~r)a<§u-|“
Cl Y3 —_ Cl y 2 — 1

i=1

IN
Q
P

M=
>
~__

Q
IA
S2
P
N
>
o
~_



Applied to the eigenvalues of v, this gives:

1 a a
—/ (Trvv*)2 dvol,, < / ®,,(v)dvol, < 02/ (Trvv™)2 dvol,.
CiJx b X

The following three propositions will be crucial in Section 5.

Proposition 15 (1) If u < A, then ®,(v/—1u) < &,(v/—1A) for all a > 1.

(2) Assume pp >0 and Ag > 0. If ©,(v/—1u) = ,(v/—1\) for
all o in some set

A C [1,00) possessing a limit point, then = X.

Proof. (1) follows from Atiyah-Bott 12.8. For (2), consider f(a) = ®,(v/—1\)
and g(a) = ®,(v/—1p) as functions of a. These functions have complex anlalytic
extensions to C — {a < 0}. If f(a) = g(«) for all @ € A, then by the uniqueness
principal for analytic functions, f = g on C — {av < 0}. If p # A, then there is some
1 < k < R, such that u; = \; for i < k,and p, # Ag. Without loss of generality

assume i, > Ag. Then for any a > 0 :
« R ) « R )\ «
(&) <y <ﬁ) =Y (—l) = R.
Ak i=k \ M\ i=k \ Ak
Letting o« — oo therefore gives a contradiction. W

Proposition 16 Let A; be a solution of the Y M flow. Then for any o« > 1 and

any N, t — HY M, n(A;) is non-increasing.

Proof. Since ¢, can be approximated by smooth, convex, ad-invariant functions

Pa,p — Pa» it 1 enough to show that
t— / P, ,(AuFa, + V—1NI1dg)dvol,
b's
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is non-increasing along the flow for each p. This follows from the fact that @, ,(A,Fa+
v —1NIdg) is a subsolutions of the heat equation, which we now show. Let o =

AyF4++—1NIdg and ® = @, ,. We claim:
A(®oo)(r)=—x 90;(1) (xVa,0,V4,0) + @;(x)<AAt0')(~T)-
We will explain our notation as we derive this formula. We have:

A(@oo)(x) = —*d*xd(Poo)(x)

= —xd=* dg(x)q)<d0)m.

Now note that if we fix any connection A on F, we may think of this as a horizontal
splitting H of the associated principal bundle P. Thinking of ¢ as a map 6 : P —
u(n), we have ® o o(x) = ¢ 0 6(p) for any p € P, and 5o dy()P(do ), = dsp)p(dd),.
The derivative do splits as doy @ do g where Ht consists of the tangent directions
to the fibres P,. Since po ¢ is constant on the fibres, dp o d 31 = 0. Thus d®do =
dpddy, but dopy is precisely the induced covariant derivative V6. Therefore,

appying this argument to a connection A; along the flow, we may write:
A (@oc)=—xdxdp(c)(Va,0).

Now since dy € Q(su(n)) and T*su(n) = su(n) x su(n)* we may think of dp as a
map ¢ : su(n) — su(n)* so that ¢ (o) : P — su(n)*. The expression

/

v (6)(Va,0)

may therefore be thought of as an element of Q!(P), and we interpret this expression
as evaluation in the lie algebra component and multiplication in the form component.
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Therefore we have

— % d * ¢/(6)(VAJ3) = — % d(SDI (6) (xV4,6))

—xd (¢(9)) (+V40) — 0 (5) (A (+V 4,8))

Differentiating again, for each p € P we may also think of ¢ as a map gpg(p) :

*

su(n) — su(n)* or alternatively as a pairing gog(p) (—,—) on su(n). Then with

this notation, since the maps ¢ and ¢" are also Ad-invariant, we have d (gp’ ((7)) =
' (= Va,0), and ¢ (5) (A (+V4,0)) (0) = ¢4 (Va, % Va,0) 50
A(@oo)(z) = — @y *(Va,0,Va,6) — %050 (Va, * Va,6)
= — %0y (¥V4,6,V4,6) + dPy(p) (DAa,0)

< dq)g(m) (AAtO')-

In the last line we have used the fact that ¢ is positive definite (¢ is convex)
and that ¢ only acts on the lie algebra component. This proves the claim. this

implies:

A, , (AuFa, +V—-INIdg) < d®., (L4, (AuFa, + V—1NIdg))

DAL Fa,
B _dq)“’p( ot )
0

= 5% ((AuFa, + V=1INIdp)) .

Proposition 17 Let Ay, be a subsequential Uhlenbeck limit of A; where A; is a

solution of the Y M flow. Then for all a > 1,

lim HY M, n(A) = HY My n(As).

t—00
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Proof. If we write ¢; for the subsequence, then by Lemma 9 we have A, F A, 2,

A, Fy,,, so by Lemma 12 it follows that lim; oo HY My n(As;) = HY My n(As).

oo )

The statement now follows from Proposition 16. B
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Chapter 2
Resolution of Singularities and Approximate Critical Structures

2.1 Properties of Blowups and Resolution of the HNS Filtration

In this section we discuss the properties of blowups of complex manifolds along
complex submanifolds that will be used in the subsequent discussion. Essentially
all of this material is standard, but we review it carefully now because we will need

to employ these facts often in the proofs of the main results.

2.1.1 Resolution of Singularities Type Theorems

The HN S filtration is in general only given by subsheaves, making it difficult
to do analysis. We will therefore need some way of obtaining a filtration by sub-
bundles, that is, a way of resolving the singularities. In two dimensions, when the
singular set consists of point singularities this can be done by hand (see [BU1]), but
in higher dimensions the only available tool seems to be the general resolution of

singularities theorem of Hironaka. Specifically:

Theorem 9 (Resolution of Singularities) Let X be a compact, complex space (or

C-scheme). Then there exists a finite sequence of of blowups with smooth centres:
X=X, ™ X1 — . — X1 5 X=X

such that X is compact and non-singular (a complex manifold) and the centre Y
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of each blowup ; is contained in the singular locus of X;_;.

For the proof see [H1] and [H2]. What we will actually use is the following

corollary:

Corollary 7 (Resolution of the Locus of Indeterminacy) Let X andY be compact,
complex spaces and let ¢ : X --+Y be a rational (meromorphic) map. Then there
exists a compact, complex space X = X obtained from X by a sequence of blowups
with smooth centres and a holomorphic map ¥ : X — Y such that the following

diagram commutes:

X
LN
X - Y

In our case both X and Y (and hence also X) will be complex manifolds. Note
that in this case a blowup with "smooth centre" is the same as the blowup along a
complex submanifold. We will apply the Corollary in the following way.

The HN S filtration of a bundle E, which in the sequel we will abbreviate for
simplicity as:

O=FECE,C..CE_1CE=F

(i.e. we ignore the notation indicating that it is a double filtration), as stated
previously, is in general a filtration only by subsheaves of £. We may think of a
subbundle S C FE of rank k£ as a holomorphic section of the Grassmann bundle
Gr(k, E), the bundle whose fibre at each point is the set of k-dimensional complex
subspaces of the fibre of E. Similarly a filtration by subbundles corresponds to a
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holomorphic section of the partial flag bundle FLL(dy, ..., d;, E), the bundle whose
fibre at each point is the set of [ flags of type (di,...,d;) where d; = rk(E;). On
the other hand a filtration by subsheaves corresponds to a rational section X -2
FIL(dy, ...,d;, E). The corollary says that by blowing up finitely many times along
complex submanifolds, we obtain an honest section X — FL(dy,...,d;, 7™ F). More
explicity, we have a diagram:
X < FL(z*E)
LN l
X — TFL(E)
where o will be constructed below. The outer square is just the pullback diagram
for the map X = X. First we claim that the triangle:
X
LN
X «— FL(E)
commutes. If we write 1 for the desingularised map X — FIL(F), then note that
for a point # € X — E, we have ¢(#) = ¢(7(z)) for # € Z,,. Then we have:
p(¥(Z)) = p(o(w(Z))) = x = w(Z) since o is well-defined and a section away from

Zs and we know the diagram:

X
[N
X -%s FL(E)

commutes. In other words on X — E we have p ot = 7. But since both of these
are holomorphic maps X — X, po Y = 7T on X by the uniqueness principle for
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holomorphic maps, since they agree on a non-empty open subset. Now FL(7*E) =
T FL(E) = {(Z,v) € X x FL(E) | 7(Z) = p(v)}. Now define & : X — FL(7*E)
by 6(Z) = (Z,v¢(Z)). Since p o1 = 7 this is indeed a map into FL(7*E), and it is
manifestly a section.

In other words there is a filtration of 7*E":
O:E()CElC...CEl,lCEl:?T*E

where the EZ- are subbundles.

Now note that we have the following diagram:

QF
T
m™E
.
m* Ez -—=> EZ

where the dashed line is the rational map corresponding to the equality of 7* FE; and
E; away from E (both are equal to E;), and QZE is the quotient of 7*E by E;. Then
QF is a vector bundle and in particular torsion free. On the other hand the image
of m*F; under the composition 7*F; — m*E — QzE is torsion since it is supported
on the divisor E, and hence must be zero. If we write Im 7*F; for the image of
™ F; — w*FE, this means there is an actual inclusion of sheaves Im 7*F; — E,.

The quotient sheaf E; /Imm*E; is supported on E, hence torsion and so it follows

from Lemma 4 that E; = Sat,«p(Im 7* E;).
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Since 7, E; is equal to F; away from Sing E; there is a birational map E; --+
7. E;. Since E; is a bundle, it is in particular reflexive, so m.E; is also reflexive.
Because F; is saturated by construction, it is also reflexive. Therefore both of these
sheaves are normal, and since Sing F; has singular set of codimension at least 3, this
map extends to an isomorphism E; & 7, E;.

Similarly, if Q; = E; / E;_1, then 7,Q; is equal to Q; away from Sing Q; so
again we have a birational map (Q;)™ --» (W*QJ** Since the double dual is
always reflexive, these sheaves are normal, so the map extends to an isomorphism.

To summarise:
Proposition 18 Let
O=FkE CE C..CE_CE=FE

be a filtration of a holomorphic vector bundle E — X by saturated subsheaves and let
Q; = E;/E;_1. Then there is a finite sequence of blowups along complex submanifolds

whose composition w: X — X enjoys the following properties. There is a filtration
0:E0CE1C...CE1_1CE~'ZZE~':7T*E

by subbundles. If we write In7*E; for the image of n*E; — w*E;, then E; =

Sat«p (Im7*E;). If Qi = Ei/Ei_1 then we have 7,E; = E; and QrF = (W*Ql)**

We will also have occasion to consider ideal sheaves Z C Ox whose vanishing
set is a closed complex subspace Y C X. If Y is smooth for example then we may
blowup along Y to obtain a smooth manifold 7 : X — X. Denote by 7*Z the ideal
sheaf generated by pulling back local sections of Z, in other words the ideal sheaf
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in Oy generated by the image of 77'Z under the map 7 'Ox — Oy where 7'Z
and 71Oy are the inverse image sheaves. Note that this is not necessarily equal
to the usual sheaf theoretic pullback of Z which is given by 7 'Z®,-10, O and
may for example have torsion. The sheaf 7*7 is sometimes called the "inverse image
ideal sheaf". If the order of vanishing of Z along Y is m, then 7*Z C O (—mE),
that is, every element of 7*7Z vanishes to order at least m along the smooth divisor
E. In this situation we will use this notation without further comment. In general
Y is not smooth, so we appeal to the following resolution of singularities theorem,
which is sometimes referred to as "principalisation of Z" or more specifically "mono-
mialisation of Z" | and results of this type are usually used to prove resolution of

singularities.

Theorem 10 Let X be a complex manifold andY a closed complex subspace. Then
there is a finite sequence of blowups along smooth centres whose composition yields
amapm:X — X such that m: X — E — X — W is biholomorphic, E = 7~ 1(W)
is a normal crossings divisor, and 7L = O (=Y . m;E;) where the E; are the ir-
reducible components of E. Moreover, w*Z is locally principal (monomial) in the
following sense: for any v € X there is a local coordinate neighbourhood U C X
containing x and a local section fo of Ox(— >, miE;) over w=*(U), such that if f; is
any local section of T over U, then * f; = fo fjl where f]' is a non-vanishing holomor-
phic function on w=1(U). Furthermore, if &, are local normal crossings coordinates

for E, then there is a factorisation:

Jo=TI&"
k
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so that we may write:

I

T fi = 1;[52% i

For the proof, see for example Kollar [KO].

2.1.2  Metrics on Blowups and Uniform Bounds on the Degree

Now we consider the case that the original manifold is Kéhler. The following
proposition is standard in Kéhler geometry. It says that the property of being Kéhler

is preserved under blowing up.

Proposition 19 Let (X,w) be a Kdhler manifold, and Y a compact, complex sub-
manifold. Then the blowup X = Bly X along Y is also Kihler. Moreover X pos-
sesses a one parameter family of Kdihler metrics given by w. = m*w+en where e > 0,

7: X — X is the blowup map and n 1s itself a Kdhler form on X.

For the proof see for example [VO].

We will need a bound on the w. degree of an arbitrary subsheaf of a holomor-
phic vector bundle E' that depends on ¢ in such a way that as ¢ — 0 the degree
converges to the degree of a subsheaf on the base (namely the pushforward). This

will be a consequence of the following lemma.

Lemma 13 Let X be a compact complex manifold and let T and n be closed (1,1)
forms with T semi-positve and n a Kdhler form. Let E — X a holomorphic vector

bundle. Then there is a constant M depending on the L* form of Fg such that for
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any subsheaf S C E with torsion free quotient and any 0 < k <n — 1:

degy,(S,7,m) = / cl(S) AT R AR < ML
X

Proof. Note that when k =n — 1, deg, (S, 7,7) is the ordinary n degree of S. We
follow Kobayashi’s proof that the degree of an arbitrary subsheaf is bounded. Fix
an hermitian metric h on E. The general case will follow from the case when S is a
line subbundle L. In this case we can use the formula: F;, = 7Fgm + 8 A 3%, where
7 is the orthogonal projection to L and [ is the second fundamental form. Since

c1(L) = 5-Fp, we have that:

X

‘ i
degk(L,T,n) = %/ WFEW/\Tn—k—l /\nk: + %/ BAB A k-1 /\nk‘
X X

Since ||| o (x) < 1, the first term is clearly bounded from above. Therefore we
only need to check that the second term is non-positive. This is the case since 3 is a
(0,1) form, and therefore i3 A 8* < 0. Therefore deg, (L, T,17) < M, for a constant
independent of L. To extend the result to all subbundles F' C E, simply find such an
M as above for each exterior power APE for p = 1,...,rk F/, and take the maximum.
Then apply the above argument to the line bundle L. = det F — APE.

In general S <'s E is not a subbundle but there is an inclusion of sheaves
det S — APFE where p is the rank of S. If V' is the singular set of S, then moreover
S is a subbundle away from V', and so the inclusion det S <s APF is a line subbundle
away from V. Let o be any local holomorphic frame for det.S. Now consider the
set: W = {2z € X | «(0)(x) = 0}. Since detS is a line bundle this is clearly

independent of o. Furthermore because ¢ is an injective bundle map away from V,
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any x € W must be in V, that is, W C V. Now write H = ¢* (APh). This is an
Hermitian metric on det S over X — W. On the other hand there is some Hermitian

metric G on det S over all of X. We would like to show that:

deg, (S, 7,m) = /

c1(det S, G) AT R ApE = / ci(det S, H) A" F=t Ak
X

X-W
Then applying the above reasoning, the last integral is bounded since just as before

/ cr(det S, H) AT" M1 At = / c1(S, hs) AT R AP
X-W X v

i
— nFgm ATV R AP
2r Jx v

where hg is the metric on S)x_y induced by h. Again this is bounded independently
of .
We will construct a C* function f on X such that H = fG on X — W. Then

the usual formula for the curvature of the associated Chern connections implies:

ci(det S, H) = %&)log}]:%éalog f+ei(det S, Q)

— (et S, G) = cy(det S, H) — %5810gf on X —W.
Finally we will show:

/ " 59 log f AT F L Ank =0,
X-w 27

To construct f, let o be any local holomorphic frame for det S. If (ey......, e,) is
a local holomorphic frame for E, then define: +(0) = >, o’e;, where e; = e;, A...A¢e;

with iy < ... <i,. Then let



where H;; = APh(er,e;)/G(o,0). Then one may check that f is well-defined inde-
pendently of o. It is a smooth non-negative function vanishing exactly on . Since
the matrix (Hyy) is positive definite, f vanishes exactly where all the o; vanish. It
is also clear that we have the equality H = fG.

To complete the argument we will show that %58 log f integrates to zero.
Let Z be the sheaf of ideals in Ox generated by {o;}. By Theorem 10 there is a
sequence of smooth blowups 7 : X — X such that 7*Z the inverse image ideal sheaf
of Z, is the ideal sheaf of a divisor E = ). m;E; where the E; are the irreducible
components of the support of the exceptional divisor suppE = U; E;. In other
words mZ = Oz (— Y . m;E;) for some natural numbers m;. Furthermore, we have:
ol = ol e s

i &, where {{; } are normal crossings coordinates for E on an

open set where 7*¢! is defined, and p’ is a non-vanishing holomorphic function.

Therefore we may locally write: 7*f = y - ‘fil |2m”‘1 ‘515 zmi“’, where y is a strictly

positive C* function defined on X. If we write & = #Glog X, and Tye for the

current defined by d® = %58 log x, then since by definition:
Tus (v (1" F A ) = —dTa(r (7 A))

Te(d(r*(r" ™ Agh)) = 0
since (7" k"L An*) is closed. Away from the exceptional set we may write locally:

%810g7r*f — % (0log x + 2m;, 0log ‘511’ + ...+ 2m; 0log ‘fz‘)

= <I>+—(#+...+S—“).
27 fil fis

The second term is integrable on its domain of definition and so %58 logm*f is a

(1,1) form with L} (X) coefficients, and so defines a current. On the other hand by
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the Poincaré-Lelong formula, 0 applied to the second term is equal to Z m, TEZ.]_ , in
i
the sense of currents, where TEZ,]_ is the current defined by the smooth hypersurface

E;,;. Finally then:

/ —8810gf/\7r* k= 1/\7r*77k:/ —Oalogﬂ f AT TR A g
x-w 27 X-E 27

* k— * _n—k— * k
:Tigalogﬁ*f(ﬂTn LA 70) (ZszE) TR A )
—Zmi/ TR A TR =0

since the image of E; under m has codimension at least two. This completes the

proof. W

Remark 3 If0 — S — F — Q — 0 is an exact sequence, where E is a vector
bundle and Q) is torsion free, then the dualised sequence 0 — Q* — E* — S* is exact,

and so as in the above lemma there is a constant M associated to E independent of

Q) so that

—/ QAT FE ARt = / Q)Y AT ARE < M.
X

X

In other words there is a uniform constant M so that: —M < fX c1(Q)ATV I ARk,

where Q) is any torsion-free quotient of E.

Remark 4 In the case that k = n — 1, deg,(S,7,1m7) = deg(S,n) and the above

constitutes a proof of Simpson’s degree formula.

We note that if X — X is a composition of finitely many blowups then we

also have a family of Kiihler metrics on X by interatively applying Proposition 19.
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We would now like to compute the degree of an arbitrary torsion-free sheaf S on X

with respect to each metric w. on X.

Theorem 11 Let S be a subsheaf (with torsion free quotient Q ) of a holomor-
phic vector bundle E on X, where 7 : X — X is given by a sequence of blowups
along complex submanifolds of codim > 2. Then then there is a uniform constant
M independent of S such that the degrees of S and Q with respect to w. satisfy:

deg(S, w.) < deg(m,S) + M, and deg(Q,w.) > deg(m,Q) — M.

Proof. The general case will follow from the case when S is a line bundle

L (perhaps not a line subbundle). Recall that the Picard group of the blowup

Pice(X) = Pie(X) ® ZO(Ey) @ ... ® ZO(E,,) where the E; are the irreducible com-

ponents of the exceptional divisor. That is, we may write an arbitrary line bundle

as L =1L ® O%(>, m:E;) where L is a line bundle on X. Then by definition:

R

deg(L,w.) = / ci(L) Awi ™t = / e (L) A (T¥w +en)™ .
Then we have an expansion:

(T*w+en)" ™ = (7)) +e(Tw)" AN+ e TP w AN TR
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Note that /~ 0% (E) A (mw)" ™ = / (m*w)" " = 0, since the image in X of each
X E;

E; lives in codimension 2. Therefore we are left with

deg(lw.) — / (cl(L)A(w*w)"—w%:g’f ( /X cl(z)A(w*w)n—’f-lAnk)

X

-/ wal A o [ (0@ ooy

X

deg(L,w) + Y " ( /X (D) A (mw)" A nk>

By the previous lemma the terms / et (L) A (m*w)" "1 A ¥, are all bounded uni-

X

formly independently of ¢ since 7*w is semi-positive and 7 is a Kéhler form. There-
fore we have: deg(L,w.) < deg(L,w) + M.

Now note that if X = Bly X then 7,0(mE) = Oy if m > 0 and 7,0(mE) =
IZ™ if m < 0, where Iy is the ideal sheaf of holomorphic functions on X vanishing
on Y. The determinant of an ideal sheaf is trivial if Y has codimension at least 2,
so we have det(r, L) = det(L) so finally: deg(L,w.) < deg(m,L) + M.

Now for an arbitrary subsheaf S C E, by definition deg(S, w.) = deg(det(S), w.).
When 7.5 is a vector bundle, that is, away from its algebraic singular set, we have
an isomorphism det<ﬂ'*5 ) = medet S. Their determinants are therefore isomorphic
away from this set, and so by Hartogs’ theorem there is an isomorphism of line

bundles: det(7,S) = det(r, det S) on X. Therefore by the previous argument:
deg (S, w.) = deg(det(S),w.) < deg(m, det S) + eM = deg(m,S) + M .

The exact same argument together with the previous remark proves the second
inequality as well. W
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2.1.3 Stability on Blowups and Convergence of the HN Type

Proposition 20 Let E — X a holomorphic vector bundle where X — X is a
sequence of blowups. If 7. E is w-stable, then there is an 5 such that E is w. stable

for all 0 < e < es.

Proof. Suppose there is a destabilising subsheaf S. C E, i.e. p, (S.) > p,_ (F)
for each . Now among all proper subsheaves of 7, E, the maximal slope is realised

by some subsheaf F. Then by the previous theorem we have:

:uw(ﬂ—*E) - 5M S :uwe(E) S :uw(ﬂ—*Sé‘) + 6M S Mw(F) + éM < Mw(ﬂ-*E) + €M

where we have used that F is proper and 7, E is w-stable. Now letting £ — 0 we

have pu,(mF) < p,,(mE) and the proposition follows. W

Remark 5 This shows in particular that for any resolution of a HNS filtration,
the quotients Q; = Ei/Ei_l are stable with respect to w. for € sufficiently small,
since the double dual of the pushforward is the double dual of Q); which is stable by

construction. This fact will be important in Section 5.

For each of the metrics w, there is also an HN S filtration of the pullback 7*E.
We will need information about what happens to the corresponding HN types as

€ — 0. Namely we have:

Proposition 21 Let E — X a holomorphic vector bundle and = : X — X be
a finite sequence of blowups resolving the HNS filtration. Then the HN type
(U5, .oy p5) of T E with respect to w. converges to the HN type (py, ..., x) of E
with respect to w as € — 0.
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Proof. Let

OZEOCElCEQC...CEn_lcEl:ﬂ—*E

be a resolution of the HN S filtration. Since all the information about the HN type

is contained in the H N filtration
0=FN cFENE) cFIN(E) Cc ... cFN(E) = E,

we will just regard this as a resolution of singularities of the H N filtration and forget
about Seshadri filtrations for the rest of this proof.

We would like to relate the resolution of the HN filtration of (E,w), to the
HN filtration of (7*E,w,.) for small . We claim that for all ¢ in a sufficient range

we may arrange that =™ (E;) > ugljx(ﬂ*E/Ei). Let F, C E; C F, C 7*E be any
subsheaves such that E;/F; is torsion free. Note that for # € X with n(#) = z,
we always have maps on the stalks (7, F;), — (F;);. Since 7 is in particular a

biholomorphism away from E, when # € X — E these maps are isomorphisms. In

other words the sequences:
0 —mF — E, — 7, (Ei/}]) —0

and

0—)El—>7T*F2—>7T*(f2/E~|Z>—>O

are exact away from the singular set Z,,. In particular this means E;/m.F; —
m.(E; ) Fy) and w,F, ) E; — . (F,/ E;) with torsion quotients, which implies (E; /m, F; )™ =
(7o (E;/F1))*™ and (7, Fy ) B;)*™* = (m,(F2/E;))*™*. Then finally we have p,(E; /7, Fy) =
po(m(E/Fr)) and pu, (w2 Ei) = p,(mo(Fa/ Ey)).
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The above argument together with Theorem 11 now implies that s, (E;/F;) >
p1,(Ei /7 F1) — eM and p, (Fo/Ei) < p,(7.F2/E;) + M. On the other hand:
po (Ei [T F1) > iy (Qi) > 11, (Qiv1) >, (meFa/ E;), where we have used the facts

that p,(Q;) = u™»(E;) and p,(Qiy1) = u™*(E/E;). Therefore we have:
My, (Ez/fl) — My, (F2/Ez> Z (:U’w(Ez/ﬂ-*‘Fl) - Mw(ﬂ-*‘F?/EZ)) — 2eM.

As we have shown, the first term on the right hand side is strictly positive, so when
¢ is sufficiently small the entire right hand side is strictly positive. Since F; and F»
were arbitrary, for & small ,um;n(Ei) must be strictly bigger than (7" E/ E;).

w w,

Now it follows from Proposition 8 that the HN filtration of (7*E, w.) is:

0 C FY(EB) C..cFiY(E) =EiC...CcFe,, (Bia) =Ei,

HN, ad HN, ~
C Fkl‘i‘i-l-kl,l—i-l(El) C...C Fkl-‘r.{i—i—kl(El) - W*E

That is, the resolution appears within the HN filtration with respect to w,
and two successive subbundles in the resolution are separated by the H N filtration
of the larger bundle. Then for any ¢ we consider the following part of the above

filtration:

I HN, - HN, -
Ei_l - Fkl-‘y-f.-‘y-ki,l(Ei_l) C Fkl-‘rf—"kiflﬁ-l(Ei) C

We claim that:

e (FEN s (BOFEN s ya(B) — 1B/ Bia) = 11,(Q0)
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for each 1 < j < k;. Then the proposition will follow immediately. The slopes of

the quotients in the HN filtration are strictly decreasing so we have:
n HN, - HN, ~ HN, ~
. (Ei/FkﬁiJrkiﬂ(Ei)) < My, <Fk1+~‘~€~+ki—1+j(Ei)/IFk:Hr.‘.E.Jrki,lJrjfl(Ei)>
HN, ~ ~
< Mo, (Fkﬁiwi,ﬁl(Ei—l)/Ez‘—1> .

Therefore it suffices to prove convergence of
Peoe (Ei/FkHl]if+ki—1(Ei)) and fi, (FkHl]i’f.Jrki_lH(Ei—l)/EiA)
to p,(Q;) as € — 0. Note that just as before we may argue that
P (W* (Ei/Fﬁ]if.Jrki_l(Ei))) = [k, (Ei/W*FkHl]if-kki—l(Ei))
and
Iy, (W* <FkHl]J\r[f+ki,1+1(Ei—l)/Ei—l>> = i, (W*Fgfﬁki,lH(Ez‘—l)/Ei—1> :

By Theorem 11 we have:

1,(Qi) —eM = 1, (m.Q;) — eM < 11, (Qy) < pu, (FkHIZXﬁki_IH(Ei—l)/Eifl)
<y (W*FZ{V;-’.?—kki_l—i-l(Ei71>/Eifl> +eM < p, (Ei/Eiq) +eM

where we have used that F ,ﬁ iVE ki 1(E;_1) is maximally destabilising in 7*E/E;_,

and F;/E; 1 is maximally destabilising in E/E; ;. So

e, (FkHl]Xté.+kif1+l(Ei—l)/Ei—1> - Nw(QZ)
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Similiarly we have:

1, (Q)) —eM = p, (EiJEi) —eM <, (Ei/ﬁ*]pﬂ * (B )) M

< o (B/FEY 1 (B) < 1 (@) <y (7Q1) +eM

where we have used that p, (E;/E;—1) = p2™ (E;) and p,, ( /]FkHlJ_X:k (E )) =

,ug““(E,). Then taking limits implies s, <E~]z /IFHN’6 ) — 1,(Q;). This

k1+..‘+kifl

completes the proof. W

Remark 6 Note that the argument of the above proof also shows that we have con-

vergence:
(10 (@), 10, (Q1) ) — (11(@1), o 11, (@)

where as usual p,, (Q;) is repeated tk(Q;) times. We will use this fact in the following

section.

2.2 Approximate Critical Hermitian Structures/HN Type of the Limit

In this section we accomplish two important aims. One is the construction of
a certain canonical type of metric on a holomorphic vector bundle over a Kihler
manifold called an LP-approximate critical hermitian structure. The other is identi-
fying the Harder-Narasimhan type of the limiting vector bundle F, along the flow,
namely we prove that this is the same as the type of the original bundle E. This

latter fact will be a crucial element in the proof of the main theorem, whereas the
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former will play no role in the remainder of the proof. However we remark that these
two theorems are, due to certain technical considerations, very much intertwined.

Our argument is as follows: first we construct an LP-approximate critical her-
mitian structure for p very close to 1 in the special case that the analytic singular
set is a complex submanifold, and a single blowup along Z,, suffices to resolve the
singularities of the HNS filtration. In this case (small p), note that in fact the
metric produced will be independent of p. We obtain the result about the HN type
in the same special case as a corollary. This in turn may be used to prove, again in
the special case, the existence of an LP-approximate critical hermitian structure for
all p. We then use this to prove the existence of such a structure in the general case
by blowing up finitely many times and applying an inductive argument. Finally, we
point out that along the way we have proven the theorem (in general) that the H N
type of the limit is the correct one.

We will need to work with the varying family of Kéhler metrics on X given by
m*w-+en in Section 4. As we will see, the construction of an LP-approximate critical
hermitian structure requires us to fix a value £; and consider stable quotients with
respect to this metric. We will therefore need some sort of uniform control over the
Hermitian-Einstein tensor as ¢ — 0. The author has noticed an error in [DW1] on
this point. In particular, Lemma 3.14 is slightly incorrect. Instead, the right hand
side should have an additional term involving the L? norm of the full curvature. This
does not essentially disrupt the proof, because the Yang-Mills and Hermitian-Yang-
Mills functionals differ only by a topological term, but it has the effect of changing

the logic of the argument somewhat, as well as increasing the technical complexity.
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If we fix a holomorphic structure on FE, then a critical point of the HY M
functional thought of as a map h — HY M (g, h) on the space of metrics is called
(see Kobayashi [KOB]) a critical hermitian structure. The Kéahler identities imply
that this happens exactly when the corresponding connection (Jg, h) is Yang-Mills,
and hence in this case the Hermitian-Einstein tensor splits: iA, Fg, 1) = pldg, @
. @ pgldg, . Here the holomorphic structure Op splits into the direct sum @,Q; and
the metric induced on each summand is Hermitian-Einstein with constant factor p;.

In general, the holomorphic structure on £ is not split, and of course the @);
may not be subbundles as at all, so it is not the case that we always have a critical
hermitian structure. We therefore need to define a correct approximate notion of
a critical point. In the subsequent discussion we follow Daskalopoulos-Wentworth
[DW1].

Let h be a smooth metric on £ and F = {F;}X a filtration of E by sat-
urated subsheaves. For every F; we have the corresponding weakly holomorphic
projection 7. These are bounded, L? hermitian endomorphisms of E. Here Fy = 0,
and so b = 0. Given real numbers ji,, ..., i, define the following L? hermitian

endomorphism of F :

K
\Il(]:v (/’Lla 7:LLK)7h> = Z:uz (ﬂ-? - ﬂ-?—l) :
=1

Notice that away from the singular set of the filtration (points where it is given by
sub-bundles), the bundle E splits smoothly as &Q); = &, F;/E;_; and with respect to
the splitting the endomorphism W(F, (411, ..., g ), h) is just diagonal map p,Idg, &
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In the special case where E is a holomorphic vector bundle over a Kéhler
manifold (X,w), we will write WZ¥5(0p, h) when the filtration of E is the HNS

filtration F; = FANS(E) and (py, ..., i) is the HN type.

Definition 6 Fiz 6 > 0 and 1 < p < oco. An LP -approximate critical hermitian

structure on a holomorphic bundle E is a smooth metric h such that:
. _ HNS (5
||ZAUJF(6E,h) — \I}w (aE, h)HLP(w) S (5
For the proof of the following theorem, see [DW1]:

Theorem 12 If the HNS filtration of E is given by subbundles, then for any § > 0,

E has an L™ approximate critical hermitian structure.

In general, we will not obtain an L approximate structure. In the following we
show that for an arbitrary holomorphic bundle we have such a metric for 1 < p < oo.

We begin with two preliminary technical lemmas.

Lemma 14 Let X be a compact Kihler manifold of dimension n, and let 7 : X —

X be a of blowup along a complex submanifold Y of complex codimension k where

k > 2. Consider the natural family w. = 7w + en where 0 < € < &1 and n is
1

a Kdihler form on X. Then given any o and & such that 1 < a < 1 + m,and

m < & < oo, and if we let s = ﬁ then for the Kdhler metric ¢°, we
have: det g/ detw € L*0=9%(X @), for any hermitian metric w on X, and the

value of the L*=%% norm is uniformly bounded in e.

Proof. Since ¢g° converges to the Kéhler metric 7*w away from the exceptional
divisor E, on the complement of a neighbourhood of E there is always such a uniform
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bound (and on this set (det ¢?/det ¢°)**~®* is clearly integrable). It therefore
suffices to prove the result in a neighbourhood of the exceptional divisor. Let y € Y
and U be a local coordinate chart containing y consisting of coordinates (z, ..., z,).
Now Y has codimension k so that locally Y is given by the slice coordinates {z; =
2o = ... = z;, = 0}. Recall that on the blow-up X we have explicit coordinate charts
Up CU=7YU) where Uy, = {2 €U =Y | 2, # 0} U{(2, [V]) € P(Q)pyrv | Vm #
0}, where IP(¢) is the projectivisation of the normal bundle of Y. Let (¢, ...,&,)
denote local coordinates on U,,. In these coordinates the map 7 : X — X is given

by:

(51,"'7 gn) - <€1§m’ A gsflgma §m7 €m+1§m7 RS Skjgm? €k+17 teey gn)

Now locally we have: w" = (i/2)" det g;; dz1 AdZ A...Adz, \NdZ,, and using the above
coordinate description we may compute: mw" = (i/2)" (7* det g;;) |€,,[** > d&; A
déy A .. NdE, NdE,.

Note that 7* det g;; is non-vanishing since det g;;, and so degeneracy of the
pullback occurs only along the hypersurface defined by &,, = 0. In other words,
(§;,..-,§,,) are normal crossings coordinates on the blow-up for the exceptional divisor
E, and locally E takes the form {¢,, = 0}.

The top power of the Kahler form w, is:

W=t dem* W T AN L e W AR eI w AT 4 e

In the local coordinates (&4, ..., &,,) we have: w” = (i/2)" det gfjdﬁl/\dgl/\.../\dfl/\dg’l.
We may therefore obtain a lower bound (not depending on €) on det gg; as follows.

Since 7 is a metric 7 > 0. On the other hand, the only degeneracy of 7*w is only on

94



vectors tangent to the exceptional divisor, where it vanishes, so 7*w > 0. Therefore
m*w! A ™! is non-negative for every [.

Then comparing the two expressions for w”, this implies that we have the lower
bound: det g;; > C’|§m|2k_2, where C' = inf 7* det g;; on U, for each 0 < ¢ < &1.

Taking the 2(1 — a)s power of both sides we see that

[ (det g°/ det )" =" < C / (det g5;)* ) < C / [ i

m Um

where the last two integrals are with respect to the standard Euclidean measure.
Using the condition on & one computes that 4(1 — a)(k — 1)s > —2 and so the

1—a)s(k—1)

functions |£m|4( , are integrable (as can be seen by computing the integral

in polar coordinates), and the result follows. W

Lemma 15 Let 7 : X — X, the codimension k, and the family of metrics w.
be the same as in the previous lemma. Let B be a holomorphic vector bundle on
X and F a (1,1) form with values in the auziliary vector bundle End(B). Let

< & < 1+ s2—. Then there is a number kg

l<a<1l+ 51)

) and

1 a
4k(k—1 1-2(k—1)(a—1)

such that for any 0 < k < Ky, there exists a constant C' independent of €, €1, and Kk,

and a constant C(k) such that:

I Fll ey < € (Bon Fll e + 5 1P Do) + €00 1P g

Proof. Recall that (A, F)w! = F Aw?" and (A, F)w?, = F AwZ " so that:

F n—1 F A n—1
Ao F = &,Awslp _ TN

wy wg,
Note also that

" detg®
We = det gt We
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Now we write:

O AT S AN O Yot Wt
- wr Wy

Therefore:

det g

FAm D=t Ap

’AWEF’a S C

] (I ke -

n
(,L)El

/)

o

(by convexity of the function |-|* when o > 1). Again, we set s = %=, By the

above expression and Holder’s inequality with respect to the metric w,,:

I Fll e gy = ( JA ) :
detg (]. a)s . as
¢ (/j( (det 951) Wey

n—1

(L) = ([Ser

By the previous lemma the factor

det ge (1-a)s i
/XV (det g€1 ) w&l

is uniformly bounded in ¢.

Now we need to control the second term of the second factor above. We divide

2

X into two pieces: an arbitrarily small neighbourhood V,, with Vol(V,,,w,,) = k¥4

of the exceptional divisor E and its complement. We will perform two separate

estimates, one for each piece. Write the components of F' in a local basis as FZZ.;.
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At any point we may choose an orthonormal basis for the tangent space so that n

is standard and 7*w is diagonal. Then if we call this basis {¢;}, we have

F A mrwm=D=t A pt]

R

(zm Fe; A éj) A, gaet AE) VTN (S el A 2a
- ‘ w?,

& 25
c (Z 72> :C\F\n

= % pij 2

!wsl ©.JY,P ‘wa |

Now note that on X — V, the pullback m*w determines a metric, in other words
(m*w)" is non-vanishing, so since w?, — (7*w)", the quantity }wgf& is uniformly

bounded away from 0. Therefore

&

FAT* (n—l)—l/\ l -
P

n
CL)El

On the other hand, if we again choose a basis for which 7 is standard and such that

we, is diagonal, we have:

P = ‘(Z }FM)

1.357P

&

_ C|F|2d

Weq

&

<C

(Z #\M)

13570

€1 €1

€1 €1
i 95;

since the product of the eigenvalues g is again uniformly bounded (g;} g;; —

g7 gj; as €4 — 0). Thus, on X — V.. we have the further pointwise bound:

FIE < CIFIE, .

([, e

1=

F A 7T>o<w(n—1)—l A 77l

n
wal

& & 1
n a n\°
wEl S 081 </ |F|wsl w61)
X—Vi

< CerllFlla) < Ce [1Flag,

(Wel -

since by assumption & < 2.
Now we estimate this term on V.. Choose an orthonormal basis for the tangent
space at a point in V,; such that w., is standard and 7 is diagonal. Then we have
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9i; = T gij + e, soif i £ jtgy; =0, and if i = j o, = 1-9i  Note also that

€1

0 < gi; < 1since 0 < 7n,;;. If we write () for the standard Euclidean volume form

then:

— a | F AT wr=D=tAg o

> () -

=1 €1

w1 | (S Figei A 25) A (S w9 Ae) " A (S (1= g € A )
- Q

=1

Yy &
< o) <ew,
.2,7,P

Therefore:
1

([

k=1

FA ,n_*w(nfl)fl A 77l

n
wel

- 1
[0 &
n
w€1
1

< 0</V I3, w;) < OVol(Viswer)' ™2 | Fll 2y ) < CRIF 2, (Holder).

Now we obtain the desired estimate:

||Ang||La()2,w€) <C (||Aw€1F||L&(X,w51) t R ||F||L2(X',w51)) +&10(k) HFHLZ()Z,wgl) :

Proposition 22 Let E — X be a holomorphic vector bundle of rank K over a
Kdhler manifold with Kdhler form w. Assume that E has Harder-Narasimhan type
o= (fbq,--s ) that the singular set Zy, of the HNS filtration is smooth, and
furthermore that blowing up along the singular set resolves the singularities of the
HNS filtration. There is an ag > 1 such that the following holds: given any 6 > 0
and any N, there is an hermitian metric h on E such that HYM;ZN((?E,h) <
HY M, n(p) + 9, foralll < a < a.
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Proof. As before, let 7 : X — X be a blow-up along a smooth, complex sub-
manifold Y, and we assume that this resolves the singularities of the HNS filtration.
In other words there is a filtration of E = 7*E on X that is given by sub-bundles
and is equal to the HN S filtration of F away from the divisor E. Let w. denote
the aforementioned family of Kéhler metrics on X given by w, = m*w + en where
0 < e <1 andn is a fixed Kiihler metric on X. We will construct the metric on h
on E from an hermitian metric 4 on 7 E to be specified later.

Since Z,, is a complex submanifold, we consider its normal bundle ¢, or
more particularly the open subset: (, = {(z,v) € ¢ | |[v| < R}. By the tubular
neighbourhood theorem, for R sufficiently small this set is diffeomorphic to an open
neighbourhood Uy of Z,,. We choose a background metric H on this open set.

Let 1 be a smooth cut-off function supported in U; and and identically 1 on
U2 and such that 0 < 1 < 1 everywhere. Then if we define ¢ x(z,v) = ¥(x, %),
g is identically 1 on Ug/, and supported in Ug with 0 < ¢ < 1 and furthermore

there are bounds on the derivatives:

C

S

0 On| _

C
< =
R

Y

r
8zi

where the constant C' does not depend on R. Suppose for the moment that we have
constructed an hermitian metric 4 on 7*E. If we continue to denote by H and ¢

their pullbacks to X, then we may define the following metric on 7*F :
hyy = tpH + (1 - ¢R)il
Observe that on X — Ug we have hy,, = h and on Ury2, hy, = H.
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Now we need to estimate the difference:

|HY M2 (05, hy,) — HY Moy ()|

/ Do (Au. Fh,, +V—=1INIg) — Py (i(uy + N), ooy V=1(ptgc + N))

X
where ®, is the convex functional on u(E) given as in Section 3.2 by ®,(a) =

Z?Zl |A;]%, where the i\; are the eigenvalues of a. From here on out we will write

i(i+ N) for the matrix in the above expression. Therefore we have:

|HY M&5(5, hy,) — HY Mg n (1))

<

/ (I)a(AwthwR + vV —1NIj) —d)a(i(ﬂ+N))‘
—Wfl(UR/2)

X

/ Oo (Ao Fry, +V—=1INIz) — O (vV—1(u+ N))‘

+
~1(Ugy2)

_ / Ao Fr, +V=INTp) = 0o (V=1(s+ N))
X—m=1(Ug/2)

+ / Oo(A Fir +V—=1NIz) — @0 (V=1(n + N))'

~1(Ugy2)

where the last equality comes from the fact that h,, is equal to H on Ug/,. Dividing

the first integral further we have:

‘HYMZE\/@E, hy,) — HYMa,N(M)’

< / (Mo Fr, +V/=INT) — @o(Au, F; + V=INTE)
7= (Ur—Ug/2)

+f Bo(Mu Fy + VTINTg) — @0 (v (s, + N»‘
X—n=1(Ugr/2)

+ /~ (I)a(V_l(Mwsl +N)>_(I)a<V_1(M+N))'
X—-m=1(Ug/2)

+ / (I)a(AwsFH+ V—lNIE)_CI)a<V_1(M+N))'
7= (Ugy2)
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where in the first integral on the right hand side we have used the fact that outside
of Ug the metrics hy,, and h agree. Here, I, denotes the usual K-tuple of rational
numbers made from the w,, slopes of the quotients of the resolution.

Recall that the norm on L*(u(E)) a (fos @a(a))l/a is equivalent to the L*

norm and so there is a universal constant C' independent of R and e such that:

/ (DQ(AWEF’WR + V—1NI;) — @, (A, Fj + vV—1NIg)
7Y (Ur—Ug/2)

_|_

/ ¢Q(AW6FFL+ % _1NIE')_(I)&(V _1(Hw51 +N))‘
X—1=Y(Ugr/2)

< C(\

First we dispose of

« «

Ao Fr,, — Ao

|

AwsFﬁ —V —1uw€1

Lo(n=1(Ur—Up/2),we)

/ Do (V=11 + N)) = Ca(v/=1(p + N))‘

X—m=1(Ug/2)
by choosing ¢; close to zero and using Remark 6. That is, we may choose €; small

enough so that

|

<

/ @V =T(t, + N)) = Dol =T(u+ N))

X—Wfl(UR/z)

Next will will bound:

. Note that at this point we have not specified the metric 4 on 7*E. We will do so

AwsFE -V _1Mw€1]d]§)

[0
LR =7 (Up ) we)

now. Each of the w-stable quotients (); of the Harder-Narisimhan-Seshadri filtration
remains stable on the blowup with respect to the metrics w. with e sufficiently small

(see Remark5), so that the quotients Q; are also we,-stable and admit a unique
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Hermitian-Einstein metric éfl. The prototype for our metric i will be the metric
C;’El = @iéjl. However we need to modify G by a gauge transformation in order to
obtain the appropriate bound on the second term. More precisely, since holomorphic
structures on the bundle F are equivalent to integrable unitary connections, this is
the same as showing that if we fix the metric éal, there is a gauge transformation g

of E such that HA% Fla0,).Ge)) is small. When we take

_wwflMEHL"(X*W*(UR/Q),%)
the direct sum, the second fundamental form enters into the curvature and so we ask
that there is a gauge transformation making this contribution small. We can write
the holomorphic structure 5]; on E as an upper triangular matrix with 5@ on the
diagonal and (3, above the diagonal, where the 3, are the second fundamental forms

for the splitting. Then define the complex gauge transformations g, = t'~'Idg, ®

.. @t dg, , ® Idg,. The action of §; on Jj is

0~1 t51 v tl_lﬁl

and so we see that

”A%F@(%):ésl) N \/__1uw51IdEHLa(X*W‘I(UR/z)»wE)

< HA""EFG? - \/__1/%)51 (Ql)ld(h HLa(j(,ﬂ.—l(

Ugry/2)we)

o A ey = V=T, (Q0)]1dg, |

LQ(X—W_I(UR/Q)WJE)

+ O(tBy,..t5))
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where O(tf,,..t3;,) — 0 as t — 0. Therefore we have reduced this estimate to an

estimate on each of the terms:

‘ A

On the other hand we have:

S ‘

F ep ~V _1:uw51 (Qz)ld()l

Le (X*"_I(UR/Q)»WE)

Ao Forr = V=1p,_ (Qi)1dg

@il Lo (X—r=1 (U ) 02)

(3

e .
Ao, <F G T Wathe, (@)1 dQ’?)

Lo(X—n=1(Upy2)we)

H—Aws Wey — ws)ﬂwgl (Qi)Idéi

Lo(X—n=1(Upy2)we)

where we have used the fact that A,_w. = n. Now by Lemma 15 we have:

V=T

' AwE (FG~§1 —Wauuwsl (Ql)jd()z) -
i Le(X—m=1(Ugya),we)
<C (‘A%Féa —V=lp,, (Q)Idg|| )
i L&(X we;)
e 2 e, (@01
K =€ - w 7 o) S
G;! L2(Xwey) M e1blue, @ L2(X,wey)
+€1 (K> Gz‘l LQ(X,WEI)
+1C( )1 ‘ (Qi)1d
g R)— ||Weq Ky ( oy T
1 n M €1 Qi LQ(X,wel)
and

H—Aws Wey — Wa):uwsl (Qi)ldc}i

LQ(X_ﬂil(UR/Z)vws)

< %C (H (Awsln) Fooe, (Qi)ld@ TR Hnl“wsl <Qi)1d@i

Jfgc(m) HW%I (Qi)1dg,

LQ()E',wsl ))

L&(X',wsl)

LQ(X',wgl)
again using Lemma 15. Here we have used the fact that w., —w. = (¢1 — )7 in the

second inequality. Of course, HAME Fg o= V= Ly, (Ql idp, || L6 (X wey) = 0, by the
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construction of G3'. On the other hand:

Aws1 Fé?

i

i

L2(X,w51) * 7T2n(n a 1) / <202(QZ) B C?(QZ>) A w?1_2

L2(X we,) N ‘ X

.

which is bounded. Likewise the terms

:uwgl (Q’L)]dél

L2(X we,) +m*n(n - 1>/X (202(Qz‘) — c?(QJ) A w?l_z

er s, (Qi) g,
‘w 1/’Lw51 (Q) Qz L2(X7w61)
and
)i Idg
HW%I(Q) | o
are bounded. The only remaining issue is: ”(Aweln) [, (Q:)Ids fa ' But
"I L& X weq
writing
& InpAwi? ’ nAw! i detn
|Aw5177‘ = n = n
w? n det w,,
and
o |detwe |
| dety
A, i) Idg,
H( 1) P, (Qi)dg, L)
(1-a5 & s g
det w,, |17* o n AWl - 3
< C / - n" / | M, (@ Idv‘ n"
( x| detn ol | e (@,

by Holder’s inequality with respect to the metric 1. Here again & is as in Lemma
155 = % where m < f < oo. By Lemma 14 this is uniformly bounded
in &1 since we also have w? ™! — 7*w" 1.

The consequence of the above argument is that we may choose ¢ first, then x,

and then €1, all sufficiently small so that

Y

A F, —w _1Mw51 (QZ)Idésl

We GEl

<

La(f(—ﬂ'_l(UR/g)vwe)
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for all € and all « sufficiently close to 1. We will now fix this value of €1, so that all
remaining quantities depending on £; may be thought of as constant.

The term

/ B (Ao, Fiy + V—INTp) — o (v—T(1 + N))‘
“Y(Ury2)

is bounded by:

C A Frr = V=14 om0y

Now write
Fynw " [FyAwr " | detn |
A, Fyl® = ‘% = |= :JE !
wr n det w,
and
o |detwe|
| detn |’
we have
H(AWEFH -V ’MHLO‘ UR/Z we) = Cl ||Aw5FH||La(7r—1 UR/2 + CQ VOI(UR/Qa ) -~
1 - 1
1-a)s s& n—11% &
o / det w, | " / Fy /\T(:Je L "
71 (Ur/2) det 7 71 (Ur/2) U

+Cg VOI(UR/Q, w)

where o and s are as in Lemma 14. By the lemma, the factor

(1-a)s
L. 4
YUgr/2)

is uniformly bounded, and so the result is that there is an R such that

det w,
detn

Co| ™

o (A, Fir +V—1NIg) — &, (vV/—1(u+ N))| <

7Y (Ug/2)
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Therefore the only remaining estimates required are on:

||AwsFiLwR - A"-’EFiLHLa(fr—l(UR*UR/z):WE).

If we let ky, be an endomorphism such that h= Ky hy,,- Then

Fh,, = F = 0p(ky 05 ky )

where 0; is the (1,0) part of the Chern connection for h. The expression on the
right hand side involves only two derivatives of 1, and so, using the bound on the
derivatives of ¢, there is a bound of the form:

C
B, — Fi| <O+ 55

where C'; and (5 are independent of both € and R. Now as usual we have:

7
«

n—1 n—1
A (o — )| = <FhwR Fh) N e <F hon, 4 h) e det 7
We hw —th - n o n

R w detw
S ,'7 3

n detw,

and w! = EpemUAS

eun

Then we compute:

Lo(n=1(Ur—Upg/2),we)

Mo Fn,, — Mo |
“detw. , ’
detn

detn
det w,

(FEQI)R — FB) A w?il

/7f_1(UR—UR/2) n
(1—a)s a5 3
detw " " " Ca\ )\
< (Lo (n) ) L (G )0
7 Y (Ur—Ug/2) n 7 Y ({Ur—Ug/2)

Here s and & are as in Lemma 14 and we have applied Holder’s inequality to the

By the Lemma, the first factor is uniformly bounded in

syist

conjugate pair s and

€. We must therefore show that as R — 0, the first factor can be made arbitrarily
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small. To do this we note that the open set Uz may be covered by a union of balls
U;BI. Therefore:

/ Cy+ CoR™* <) (Cy + CoR>%)vol(B])
7= (Ur—Ug/2) i

J

and up to a constant vol(BJ) = r*" where n is the complex dimension of X.

The key observation is now that the singular set Z,, is a complex submanifold
of X and has complex codimension at least 2, in other words it is of real dimension
at most 2n — 4. This implies that Z,; has Hausdorff dimension at most 2n — 4,
i.e. it has zero d-dimensional Hausdorff measure for d < 2n — 4. In other words,
for each 0 < d < 4, and a given 0 > 0, there is a cover of Z,, and an r > 0 such
that > y r?n=d < §. Now assume that we have chosen R = r. Then then the cover

described above is also a cover for Ui so

/ Cy+ CoR™* <Y (Cir™ 4 Cyr® %),
7Y (Ur—Ug/2) j

Note that by assumption & < 2. In other words, we may select R so that:

Thus choosing €, and R in the manner specified above gives us for each € a bound

4]

< .
Lo(n=Y(Ur—Ugya)we) 16

Ao F

hy

- Aws Fﬁ‘

on the difference of the HY M functionals: )HYM;EN((‘?E, isz) —HY M, n(p)| <90.

Now sending ¢ — 0 we finally see that there exists a metric h with
HY M2y (0p, h) — HY Mo n(p)| < 6

for all NV and all « sufficiently close to 1. W
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Lemma 16 Let E — X and ag be the same as in the proposition. Let h be
any smooth Hermitian metric on E and A; a solution of the Yang-Mills flow whose
initial condition is (Og,h). Let ji, denote the Harder-Narasimhan type of E. Then

limy oo HY My, N(Ar) = HY Moy n (o), for all 1 < a < ag and all N.

As a consequence, if A, is an Uhlenbeck limit along the flow: HY M, n(Ax) =
HY M, n(p), since HY My, y(Aoo) = limy_oo HY M, v (A¢).

Proof. Define the number dg > 0 by the condition:
200+ HY M, n(p) = min{ HY M, (1) | HY Mo n(pt) > HY My n(110) }

where i runs over all possible H NS types of holomorphic vector bundles on X with
the same rank as E.

Given a metric h and a corresponding initial condition A = (9, h) for
the flow, we write A? the solution at time ¢. Let Hs denote the set of all metrics h

on F such that for any § > 0 there is a T' > 0 such that for all ¢t > T
HY My n(A}) < HY My n () + 6.

We will show that every Hermitian metric is in Hs by showing that it is open and
closed in the space of metrics with the C'*° topology. Notice first that any metric h
satisfying:

HY My, n(AY) < HY My n () + 6

is in Hs since

HY My n(AY) < HY M, v (AD)
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for all ¢ (monotonicity along the flow). Such a metric always exists by the above
proposition. Therefore the set Hs is non-empty. Since the flow depends continuously
on the initial condition H; is also open.

Now assume without loss of generality that 0 < § < %0. To show H;s is closed
we will show that it contains all of its limit points. So let h; be a sequence of
Hermitian metrics on E contained in the set H; and suppose h; — H in the C*°
topology, where H is an Hermitian metric. For each h; let T; be the corresponding

time such that for all ¢ > T, we have:
HY My y(AP) < HY My y (1) + 0.

By Uhlenbeck compactness, we may find a sequence of times ¢; > T}, Yang-

: : 1) (2) : (1) (2) h;
Mills connections Ass and Ass’, and bubbling sets Zan' and Zay' such that A7 —
AW in LP

1,loc 1,loc

(X -2z and Ag — AQ in 12, (X—2Z{). We also have AF 1y —

AWFAS,}) and AwFA{;’_ — AwFAg) strongly in LP for all 1 < p < oo.

We claim that Aglo) = Ag).

Proof of the Claim.
Define the automorphisms k’;j of E by h;j = k’;j H,,, in other words k;j is the
gauge transformation taking the connection Ag to AZ 7 by the action of conjugation.

It follows from [DO1] Proposition 13 that

sup U(hi} H) — 0
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as j — oo, uniformly in ¢, where:

o(h,H) =Tr(h *H) + Tr(H 'h) — 2rk(E)

is the C°-distance function on the space of Hermitian metrics. In particular we have

that:

sup |k — I — 0

as j — 00. Let Zun = Z4 U Z{Y and choose a smooth test form ¢ € QY0(End E)
compactly supported on X — Z,,,.

Denote by O, +,,0m+; and O (2) the (1,0) parts of the covariant derivatives
corresponding to the connections AZ J ,Ag and A?. Then for any section s of E one

computes:

In other words:
ahj,tj - aH,tj - <k;]> aH,tj (k:;J)

Now, there is a constant C' such that:

‘ <ahj¢j - aHvtj ) ¢>L2 ‘

— '<<k§j>_13H,tj(k§j)7¢>L2 %

¢ {‘<k§]’ <8H’tj B 8;’(2)> ¢>L2‘ * ‘<k§j’ 8;7(2)¢>L2

<C )<k§f,a;;tj¢>

IN

b
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Note that since g1, — Ou,(2) in C*° and k‘;-j is bounded uniformly in L*° the first

term goes to zero. On the other hand k;;j — I in C° so that:

t] * * o *
(K, 02 o ¢>L2 — (15,0 yd) , = /X Tr (9%, 50) dvol,
= / 0*Tr¢ dvol, =0
X
by Stokes’ theorem. Therefore Oy, s, — Oy, — 0 in LY (X — Zay) and so the two

limits are equal.

Set Ay = Ac(é) = Ag). Because AwFAfj — Ay F4_ and AwFAtH —
AyFa in LP:
Jim HY Mo (Ah?' ) = lim_HY Mo (AH) = HY My (As) .
For large ;7 we have:

HY Mo (A1) < HY Mo (Aw) +6 = Tim HY My (477) +9

Jj—00

< HY My n(1g) +20 < HY My n(129) + do
where we have used that h; € Hs and § < %0. By the definition of d,

lim HY M,y (AfH) — HY My v (110)

t—o0
and so thereis al’ > 0 such that for all sufficiently large j, whent > T, HY M, n (AtH +t>
HY M, n(p9) + 9, in other words H € Hs, and so Hs is closed.
Then every Hermitian metric h is in H; for all §. In particular we may

choose § < §y so that:

HY Moy (o) < HY Myn(py) = HY My n(As)
< HY M,y (A}) < HY My n (119) + 6o
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and again by the definition of 6y we have HY M, n(ptoo) = HY My n (1) so the
result follows. W

We can now identify the Harder-Narasimhan type of the limit.

Proposition 23 Let E — X have the same properties as before. Let A; be a
solution to the Y M flow with initial condition Ay whose limit along the flow is A .
Let E., be the corresponding holomorphic vector bundle defined away from Z,,. Then

the HN type of (Fw, As) 18 the same as (Eg, Ag).

Proof. Let pg = (11, .., ) and po = (p3°, ..., u%) be the HN types of (Ey, Ao)
and (B, Ax). A restatement of the above lemma is that @, (py+N) = @ (1o +N)
for all 1 < a < ap and all N. Choose N to be large enough so that p, + N > 0.
Then we also have p% + N > 0 by Proposition 14, and therefore p + N = pu% + N
by Proposition 15, so iy = p%. N

Let (E,d4,) be a holomorphic bundle, and Ay an initial connection, and Ay

its evolution along the flow for a sequence of times ¢;. Then we have the following.

Lemma 17 (1) Let {7} be the HN filtration of (E,04, ) and 9V the HN
J tj

filtration of (Fw,0a.). Then after passing to a subsequence, 7r§-i) — 7 strongly

LPN L3, for all1 < p < oo and all i.

(2) Assume the original bundle (E,0,,) is semi-stable and {W(i) } are Se-

58,7
shadri filtrations of (E, 5Atjj). Without loss of generality assume the ranks of the

(@)

§8,7

subsheaves 7 . . are constant in j. Then there is a filtration {ngoo} of (E,04..)

such that after passing to a subsequence {Wg?d} — {Wg?,oo} strongly in LP N L3,
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for all 1 < p < oo and all i. The rank and degree of Wg?,oo s equal to the rank and

degree of 7l for all i and j.

55]

Proof.  We will write E® = FAN(E,d,,) and EY = FFAN(E,0,.) and 77
the orthogonal projection onto the subsheaf g;(£;). From the standard Chern-Weil

formula (Simpson) we again have:

(dvoz < Z uk }A Fi, — AuFy
k<rk(E,

wllzr

deg(E +—/ H@AJWJ

By the second assumption, pu = p, so deg(E;) = ZKTME pe°, and so by the

third assumption:

(i) L?

gAjo — 0.

Since L7 ,,,. is weakly compact and { M @) } is uniformly bounded in L7 .., after passing
to a subsequence if necessary, 7r§i> — &) weakly in L}, for an L? projection

7?((2. We claim that 5Aoo7~r§i) = 0. For any compactly supported test form ¢ €

OOV (X — Zayu(E)) :

| o) = [ (0w 0r)
X—Zan X—Zan
—  lim <(5Am)*¢,7ry>>
IS X~ Zan

= lim <¢, ngoW;i)>
IT70 S X~ Zan
= .lim <¢, (51400 - 5,47.) 7T§Z)> <¢ aAJTF] > 0
J—00 X*Zan :
where we have used that A; — A, in C®(X — Z,,), 715?) < 1. In particular
LOO
this means 7 defines a saturated subsheaf which we will denote by E&/. Clearly
rk’(E&)) = rk:(Ec(,?). We claim that deg(Eé?) = deg(E(Z ). Since D47 (‘ = 0 and
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AyFa; — AyF4, and 7T§-i) — 7@ in L2

o 1 , 1
deg(EY)) = %/XTT(Z'AWFAOOﬁgO))dvolw: lim —/XTT(ZA Fa 7r )dvol

J——00 4T

= deg(EY) lim / H@A ) dvol,, = deg(EW).

27r j—00

The maximal destabilising subsheaf FIN(E,) of E, is the unique saturated sub-

sheaf of E,, of the given rank and degree, so that 7#(}) = 7. We proceed by
induction. Let 1 < k < [ and assume 7?52 = 71((2 for all ¢+ < k. Then %

has the same rank and slope as the maximal destabilising subsheaf of % and so
Eé’;;*” = E(()EH). Continuing until £ = [ completes the proof of part 1. For part 2
just notice that the same proof applies to a Seshadri filtration, but since these are

not unique we can only conclude that the sheaves in the limiting filtration have the

same rank and degree. W

Proposition 24 Assume as before that E — X is a holomorphic vector bundle
such that Z,, is smooth and that blowing up once resolves the singularities of the
HNS filtration. Then given 6 > 0 and any 1 < p < oo, E has an LP d-approximate

critical hermitian structure.

Proof. Let A; be a solution to the Y M flow with initial condition Ay = (9, h),
and let A, be the limit along the flow for some sequence A;;. Then we may apply the
h) 5 WHNS (5, heo) after passing to

previous lemma to conclude that WHV5(9,

tj’

another subsequence if necessary. Since A, is a Yang-Mills connection, iA,Fy =
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WAN (D, heo). Therefore:

N, Fa, — W (04 <

tj7

h)‘

LP(w)

_>O

where we have also used Lemma 9. R

AwFAtj - AwFAoo‘

R LA CONORS GRS
Lr(w J

LP(w)

Now we would like to eliminate the assumptions that Z,, is smooth and that

blowing up once resolves the singularities of the HN S filtration.

Theorem 13 Let E — X be a holomorphic vector bundle over a Kdhler manifold
with Kdhler form w. Then given 6 > 0 and any 1 < p < oo, K has an LP J-

approximate critical hermitian structure.

Proof. By 18, we know that we can resolve the singularities of the H N S filtration
by blowing up finitely many times. Moreover, the i** blowup is obtained by blowing
up along a complex submanifold contained in the singular set associated to the
pullback bundle over the manifold produced at the (7 — 1)st stage of the process. In

other words there is a tower of blow-ups:
X=Xp ™ X1 25 05X "5 X=X

such that if £ = Ej is the original bundle, and E; = 7}(E;_1), then there is a
filtration of £ = 7%,(E,,_1) that is given by sub-bundles and isomorphic to the
HNS filtration of E away from E. Note that on each blowup X; we have a family
of Kéhler metrics defined iteratively by we, ., = m*w., ., , +¢&n;, where 7, is any

Kahler form on X;. Then consider we, ., on X to be a fixed metric for specified

m
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values of ¢1,...,6,,, and fix § > 0. Fix dg to be a number that is very small with
respect to 0. By the previous proposition, for every p there is a dp-approximate
critical hermitian structure on F,,_;. In particular there is such a metric for p = 2.

In other words there is a metric h,,_; so that:

S 2 (4 By

Em717hm—1 Weqp,...ep_1

< dp.

! Lz(wsl,...em_l)

H v _1AUJ51,“.5m7 F(é

By construction this metric depends on the values of 1, ..., &,,, since it is constructed
from a metric on the blowup which itself is constructed using the notion of stability
with respect to we, . .,.-

We prove the result by induction on the number of blowups. Assume that
we have an L? §g-approximate critical hermitian structure for each of the bundles
E;, — X, for 1 <i <m — 2. Then in particular, with respect to the metric w., on

X1, we have a metric h; on E; — X; such that:

H v _1Aw€1 F@El hi) T \Ijalillvs(gEl’ hl)

< dp.

L2(weq)
Since X is obtained from X by blowing up along a smooth, complex submanifold,
we may use the exact same cut-off argument, choosing a cutoff function with respect
to a neighbourhood Uy as in Proposition 22 to construct a metric Az on the bundle
E — X which depends on the value of ¢;. In the following we will continue to
denote by hp its pullback to X;. As in the proof of Proposition 22 we have hr = hy
outside of the set 7, (Ug). We divide the proof into two steps.

(Step 1) There is an L? j-approximate critical hermitian structure

for p close to 1
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First let us assume that p satisfies the hypotheses of Lemma 15. In other
words, substitute p for o in the statement. Similarly, substitute p for a@. We will
show that a single metric, namely hg, gives an LP d-approximate critical hermitian

structure for all p within this range. We need to estimate the difference

H V _1AW5F(5E1 ,hR) - \IffNS(gE, hR)

LP(we)

where h = wth. Now:

<

LP(we)

H*/_lAwsF@El oy — OIS (D hp)

Aws F(éEl,hR) - AWEF(gEl ,hl)

LP(we)

n H\IJHNS((‘}E, hy) — OIS (3. )

Weq

LP(we)

a

Ao, F(EE1 hi) T ‘I’i]jS@E, h1)

LP(we)
We can make the second term smaller than g by choosing €; small and using the
convergence of the HN types. The third term is bounded by two applications of

Lemma 15 as follows:

<

LP(we)

| Ao Fia, iy = WIS (B, )

1 _
+ HEAW& (wel — wa) \I/fsjlvs(aE, hl)

LP(we) LP(we)

L2 (X,wsl ))

1 _
HA'OJE <F(8E1,h1) - Ew&‘l \Ilijlvs(aEv hl))

we, WV (D, hn)

S C HAUJEI F(éEl,hl) - ‘IIQI){EJIVS(EE7 hl)

Lﬁ(WE]_)

1
s
L2(X,wey) n

+f€C <HF(5E1JL1)

1 _
(|7 o]
= w( O )| oy T 90 O e
2
€7 HNS /5
fig H NS (§, h ’
+- (k) |n¥.., " (Op, h) P2 )

20 (A 5@, [0S0 )

L2(X,w€1)) ’

Lﬁ(X,wel
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Recall from the statement of Lemma 15 that none of the above constants depend
on ;. All terms with a  in front and no C(x) can be made small by choosing x

small, so these terms can be ignored. Clearly the terms

are bounded independently of ¢; since the HN type converges. Therefore we need

Weq \I;i]js(gEa hl)

o)

LQ(X,UJEI Lz(f(,wsl)

only show that

are uniformly bounded in £;. Then we can choose k first and then e; so that:

Moo, Flog, m) — ‘I’ijjS@E, h1)H : HF(5E1 1)

Lﬁ(“’sl)

~ )
LQ(X7w51 )

N YIS (B, )

Lﬁ(X,wel)

5 )

[ v Py~ W5 @) <2

' ' LP(we) 3

Firstly we have:
‘ Nove, Fiog, my — Vi (0, ) H <
LP(wey)
OHAU"ElF(éElahl) - \Ili]:/S(gE, hl)”ﬁ( ) < 0y

weq

by Holder’s inequality (since p < 2), and the induction hypothesis. Note that the
constant above is independent of ¢; since the w., volume is bounded. Also, the

following bound:

HF@EI’}”) L2(weq) - ‘AwelF(éElvhl)

-1 [ Cem) - @) nu

L2 (weq)

+

< [ wis @, m)
€1 L2(w51)

8o + w2 (n)(n — 1) : (2c2(E1) — c}(Br) Awl?
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obtained from the usual relationship between the Hermitian-Einstein tensor and the
full curvature in L?, together with the induction hypothesis, shows that this term

is bounded in ¢; as well. Finally, writing

A _nA wgfl A w?l’l detn
wa !l = w? o detw,
n detw,, ,
= ety
etn
then by Holder’s inequality we have:
Ay nUENS (95 <
H 8177 Weq ( E; 1) Lﬁ(X,wEI) —
s S 1
detw,, [P " AWt - w w
(/ : & - </ MY, “I’fsNS(@E,hl) T]")
x| detn X n" !

where § = = and B
w—p 1—

TG < W < 00 By Lemma 14 this is bounded in ¢;.

We have already seen that

”A%F@El,hﬁ:) - A"JSF(éEl sh1) H

LP (we)
can be estimated, since it is 0 outside of Ui and the same argument as in the

proof of Proposition 22, shows that by making R sufficiently small, we can make

0

the contribution from this term over Ug less than 3. Therefore the estimate on

iAo F 5,0 — YENS (Op, h)|| ) for these values of p follows by sending € — 0.

LP(w
Step 2 (Extending to all p)
Repeating the arguments of Lemma 16, Proposition 23, Lemma 17, and Proposition
24, now gives the existence of an LP d-approximate critical hermitian structure on
E for each p. This metric will depend on p. W
Notice that during the course of the above proof we have also proven the

following:
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Theorem 14 Let E — X be a holomorphic vector bundle over a Kdhler manifold.
Let A; be a solution to the Y M flow with initial condition Ag whose limit along the
flow is Ay. Let Eo be the corresponding holomorphic vector bundle defined away

from Z,,. Then the HN type of (Ew, Ax) is the same as (Fo, Ap).
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Chapter 3
Proof of the Main Theorem

3.1 The Degenerate Yang-Mills Flow

In this section we introduce a version of the Yang-Mills flow on a sequence with
respect to the degenerate metric wy = 7*w on a sequence of blowups 7 : X — X
along complex submanifolds. This flow will correspond exactly to the usual Yang-
Mills flow on X — E with respect the metric w. It will be useful in the proof of the
main theorem, because we will again need to desingularise the HN S filtration, and
consider a sequence of blowups. The argument will rely on having a flow with the
correct properties that is well-defined on all of X rather than just on the complement
of E. The idea here is due to Bando and Siu (see [BS]).

Let 7 : X — X be a sequence of smooth blowups, and let w. be the usual
family of Kihler metrics on X. We will write Li(f( ,we) for the corresponding

Sobolev spaces. The following lemma is clear.

Lemma 18 Fiz a compact subset W cC X — E. Let E be a vector bundle. Then

there exists a family of constants C(¢) — 0 as € — 0, such that for any r-form

FeQ(X-EE)

(= CENIF 2wy < IF Nz wny < A+ CENIE 1w -

Throughout this section £ — X will be a holomorphic vector bundle of rank
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is
Ll (we)

K, equipped with a smooth hermitian metric hy. Note that ‘ AwEF(é,:;,fzo)

uniformly bounded in ¢, since for any fixed Kéhler form (metric) @ on X we have:

A op | B AT g AW | detw
We (8E”7h0) w? - wn deth 5
n detg®
w = w
c det @
SO
Fs 7 Awr !
o~ _ (8}"37}10) [ n
‘AwEF(agyho) L1 (we) _/f( o w

which is clearly bounded uniformly in €. Write Bg,t for the evolution of iLO under the

HY M flow with respect to the metric we.

Lemma 19 (1) Let to > 0. Then

A%F@E_’;le’t) s uniformly bounded for all t >

to > 0 and all € > 0. The bound depends only on ty and the uniform bound on

|

Awe F(((;E,il,o)
(2)

t >0 and all e > 0. The bound depends only on the local bound on

Li(we)

is bounded uniformly on compact subsets of X — E for all

Aws F(éEyilg,t)

AWeF(éE,Bo)‘ and

the uniform bound on ‘ AWEF@E%)

Li(we)

Proof. By Lemma 2 (2), the pointwise norm

AwsF(EE,EE,t)‘ is a subsolution of the
heat equation on (X, w,) (see also [BS] equation 3.3). If K¥(x,y) is the heat kernel

for the w, Laplacian on X then

| i)

is a solution of the heat equation and therefore:

Awe F(EEJZ()) ’ (y)dUOlwe (y)

(@)= [ Kile.) [ Ao Fig, | (ivol. )

Awe F(5E7]tb5‘t)
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is also a subsolution. Because

| it

the maximum principle for the heat equation now implies that

Mo B, | (W)dvols () = (x).

Awe F(éE,iLo)

Mo Figy ey ()0l (1),

(2) < /X Ki(z,y)

Ao Figah
By [BS] Lemma 4, there is a bound: K;(z,y) < C (1 + 1/t") for some constant C'
independent of €. Part (1) now follows.

For part (2), let Q; cC Q cC X — E, and let 1 be a smooth cut-off function
supported in © and identically 1 in a neighbourhood of €2;. Then just as in part (1)

we have:

Mo Fis g Mo Fig, | (0wl (9)

(#) < /X K(z,y)
_ /X VK (3,)
[ -0 Ky

X

No Figy oy | ()0l (1)

Ao Flo iy | (y)dvol, ().

By the maximum principle, the first term on the right hand side is bounded from
above by:

sup{‘AwsF(gEﬁo)‘(y) |y € Q}. Since @ CC X — E, the function 1/ det g;; is uni-
formly bounded in ¢, so this sup and hence the first integral above are uniformly
bounded in e. By [GR] Theorem 3.1, there are positive constants d, C7, Cs, inde-

pendent of ¢ and ¢, such that for x # y,

Ki(z,y) < Cy <1 + #) exp <—%> :

where d,,_is the distance function on X with respect to the Riemannian metric
induced by w.. Of course d,_(x,y) is bounded from below for z € ; and y €
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supp(1 — ) uniformly in e. Therefore, K{(x,y) is uniformly bounded in ¢ and t, for
these values of x and y. Then the second term on the right is uniformly bounded in

, SO is uniformly bounded on €2;. W

LY (we)
If we write Bs,t = l~€€7tﬁo, then it follows from the HY M flow equations and the

Aws F(((;E iLE,t)

(95ho)

second part of the previous lemma that both l;:m and l;:; ! are uniformly bounded

on compact subsets of X — E for 0 < t < t;. The statement that |A,,_F (Bghes)| 18

uniformly bounded on compact subsets of X — E translates to the statement that
there is a section f.; € u(£), uniformly bounded on compact subsets of X —E, such

that:

\/—_lAwgng (127;53,40];350 = feits

where Ay is the connection (dg, hg). It therefore follows from [BS] Proposition
1, that l;:g,t has a uniform C'® bound on compact subsets of (X' — E> x [0, 00).

Furthermore, we may write:

VIO, (FtOankes) = RV T (Da00aoker) + VT, (Baghcd) (Danfe)

];;tlA(éAo,w et T k’ \/_Awg (aAO et) <8A0 €t> )

where in the last equality we have used the Kihler identities and the expression for

8A0 Et Therefore we have:

D@y oo + VTN, (Daghis) Rt (Onghes) = oo

By elliptic regularity, this yields a uniform L5 bound on l%{_:,t on compact subsets of

(f( - E) x [0,00). It now follows from the HY M the flow equations, that ah”

has a uniform L? bound on compact subsets of (X’ — E) x [0,00), and so for any
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W cc <X - E) and T > 0, there is a uniform Lj (W x [0,T)) bound on P,
where the 2/1 in the previous notation refers to the fact that there is 1 derivative
in the time variable and 2 derivatives in the space variables. By weak compactness,
there is a subsequence €; — 0, so that iL&t — hy in Ly /1 On compact subsets. By the

Sobolev imbedding theorem, h.; — h; in C'/° on compact subsets. By a further

diagonalisation as T — oo, ]Nle,t — l~1t for all ¢ > 0.

Definition 7 We will refer to the resulting limit hy corresponding to the initial

metric ho and the degenerate metric wy as the degenerate Hermaitian- Yang-Mills

flow.

Of course a priori hy may depend on the subsequence ;. We will show that in

fact hy solves the HY M equations on X — E with respect to the metric w.

Lemma 20 Let fzt be defined as above. Then fzt is an hermitan metric on E —
X—-E for allt > 0, and solves the HY M equations on X—-E:

-, 0h
h, 18—; = =2 (Auo Fy, — p1, (E)Id) .
Proof. Clearly h, is positive semi-definite since it is a limit of metrics. Therefore

we only need to check that det hy is positive. Taking the trace of both sides of the

HY M equations for the metric w., we get:

% (log det 7z€7t) =-2Tr (AMEF,;EJ — ,uwg(E)IdE)

integrating both sides:

log det hf Ll =2
det h()

T
/ Tr (Aw. Py, =t (B)1di ) .
i .
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By the previous lemma, the right hand side is bounded uniformly in ¢, so det hy =
lim.,_, det B%T must be positive. Since libgjvt — h; weakly in L 5 and C1/9 it follows

that hy, solves the HY M equations on X — E. ®

Lemma 21 HF;“ and HAwtht are uniformly bounded for all t >

HL2(X,LU0) HLOO(X,UJ())

to > 0. The bound depends only on ty and the uniform bound on ”A%FfonLl(w )

Proof. Let W cC X — E be a compact subset. By construction Fy,_ , — F,
J k)
weakly in L?(W,wy). Applying Lemma 18 and the relation between F h., and Ay Fj

in L2 we have:

1Bl oy < 1im€mj0((pﬁs,t iy < Crlim jnf HFh .
< C)lim inf HFh < Cylim inf ‘A%FB !
e—0 S L2(X we) e—0 SHIL2 (X we)

+ Oy,

< (O5lim 1nf ‘ )
L (X)

Awf h»e t

where (35 is independent of W, and (5 is the product of C'; with a topological
constant. The bound in L? now follows from Lemma 19 (1).
For the second part again fix W cC X — E. We claim that for a fixed ¢ and

W, as ¢ — 0 there is a uniform bound

A F < ’ Ao F 1.
‘ 0" het LP(Wao) — e het LP(Wiwo) +
Otherwise, there is a sequence ¢; such that:
A, F > ||Aw. F3 + 1.
‘ 0" hej, LP(Wwo) ©57 eyt Lr(W,wo)
Then
Ay — A, HF >H<Aw ~Ao,) (B )’ > 1.
0 €5 hs LP(Wwo) — 0 €5 hgj,t LP(WWO) -
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where 1S uni-

Ay — Ang‘ denotes the operator norm. Since ‘

Ao FBE].,

k LP(vao)

formly bounded in ¢; and Awsj — A, on W, this is a contradiction, and so we have

proved the claim. Now we have ﬁej,t — h, weakly in L5(wo, W), so HFB5-

I Le (Wiwo)
is uniformly bounded. Therefore:
L . < 3 ] L
”AwOth”Lp(WvWO) < lim sm—f> Awth&’t Lr(Wwo) fim em—f>0 ‘ AwEFhE’t Lr(Wwo) i
< Clim inf ‘ Ao Fr 4L
e—0 =tlLee(X)
Taking p — oo, the lemma now follows from Lemma 19. H
Proposition 25 For almost all t > ty > 0, we have:
HV w0 (%) < lim mf HV i J)A%F;m () < 0.
In particular, / HV Awtht < 00.
L2(wo)
Proof. By Lemma 2 (1) we have:
2 2 2
E HFEEt LZ(X,wE n 8 o Fhs’t L2(X,w5) =2 HV AwEFhSt L2(Ws).
Then:
A F i F; i A, F; ’ C
= < = < ¥ .
/ HV Yol het |l p2( W) T H het || p2(% wo) — ‘ “el het || 12(% w.) +

By Lemma 19 the right hand side is uniformly bounded as ¢ — 0. Then by Fatou’s

lemma:

2

< 00

lim 1nf HV iy AwthEt ()
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for almost all ¢ > 3. Then if the first inequality in the statement of the proposition

is true, we have:

o0 2 o
Vs i \Auo B < [ timinf |V, 5 0 A F
/to H (Oahe) 0 het || 12 (% 0g) = /to o he) 0e The || 1o g 0y
< lim i o ]
(Fatou) < llmemjo/ Hv(aﬁvhsat)Awthfvt (%)
2
< lim mf HA% P . 4+ C <.
SUIL2 (X we)
Therefore it suffices to prove the first inequality:
Vs i A, <lim inf V5 5 )00 F .
H o (%) im 1n Oghe,t)t We he L2(% w00

It is enough to show this for an arbitrary compact subset W cC X — E. For almost
all ¢ > ¢, we may choose a sequence €; — 0 such that

2 2

lim ||V (5,7, Ao, i,

Jj—00

=b < o0.
L2(Wwe)

= Jimy inf [ V5, 5. ) A
Bolle,t e,t

L2(Wwe;) €0

Since Bej,t — hy weakly in LE(1W), we have A, F ey ™ A, F5, weakly in L? (W), and

V(%,ﬁgj,t) — V(éE-iLt) in C°(W). Tt follows by the triangle inequality and Lemma

18, that
HV AwthE 2w <(1+C)) (%Jzaj,t)Awijﬁaj,t L(Wian,) +¢j
where C; and ¢; — 0. Then, ‘AWOF;; W) is uniformly bounded as j —
)it L2(Wwo

co. Choose a subsequence (still written j) such that A, Fj;_  converges weakly in
2

L3(W,wq). By Rellich compactness we also have strong convergence A, Fj = —
i

Ay Fy, in L*(W). By the choice of ¢; and the previous inequality, we have

2
— b

HV@EJ“)AWO Fﬁfjﬁ

i LQ(W7WO)
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. Then finally:

2 o 2
”AwoFBtHL%(W,wO) S hijfOOHAwoFﬁaj,t L2 (Wywo)
2
= hmjgfoo <‘ AWOF’}%‘J L2(Wywo) + Hv(éfévﬁt)AwoFESj’f L2(W,wo)>
2
< o B g + 0
Since || Aw, F, || = |Au 55, |I? Vi A h
ince (| A P [y = I8 B Gy |V ) ]| g, 7 € BV
A ’ b=1 f|V A, F; i
- - w F~ < = 1li i H 3. F w A )
Hv(%vht) O el L2 (wwg) T T IV (95 hee) e TR L2(Wywe)
which proves the proposition. W
The following is an immediate consequence.
Corollary 8 There is a sequence t; — 0o such that \\v(géﬁﬁtj)Awtht HLQ(X’WO) — 0.

Proposition 26 For almost all t > 0, there is a sequence €;(t) — 0 such that

AijFﬁE. — AwoFﬁt for all 1 < p < oco. In particular: HYM;usj (V({:)E_’,;E t)) —

t

HY Mo (v(ég,ﬁt)) for all .

Proof. Fix § > 0. Let U be an open set containing E with vol(U) < = where C

is an upper bound on

AWEF,;N‘ which exists by Lemma 20. Now let ¢, ; be such
that

2 2
< 0

L2 (Wywe)

lim = ¢ AL I = lim ianV 5 AL F:
Jj—0o0 V(aﬁ’hgj’t) wej hejit L2(Wwe;) &e—0 (8E’h€’t> we heyt
ey

as in the proof of the previous proposition, where W = X — U. Therefore, by the

same argument as in the above proof we have strong convergence A, Fj,_ , — A, Fj,
J

ot
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in L?(W,wy). Therefore the same is true for Au., Fj, - In particular there exists a
Ej,

J such that for j, &k > J, we have:

)
HAW P — A, P <2
€j €5t €k €k,t L2(W,w0) 3
By the choice of U, it follows that for j, k > J:
HA"JEJ Fflsj,t a A“’Ek Bsk,t L2(X wo) < 0.

Since Awsj Fﬁs.t is a Cauchy sequence it converges strongly in L2()~( ,wp). Since
Js

Ao, Fr.

Jrt

— Ay Fj, weakly in Lj (X, wo), it follows that A, Fﬁg]-,

loc

- AWO F;lt
strongly in L?(X,wg). Since both Au. Fy. and Ay Fj, are bounded in L (see
Lemma 20 and Lemma 21) it follows that Awsj Fy,_ — A, I, strongly in L”(f( ,Wo)

for all p. By Lemma 19 and Lemma 12 we have:

HY M (Vg5 ) — HY M (Vg 5,)

3.2 Proof of the Main Theorem

In this section we complete the proof of the main theorem. The result is a

direct corollary of the following theorem.

Theorem 15 Let Ay be an integrable, unitary connection on a holomorphic vector
bundle E , j, the Harder-Narasimhan type of (E,04,), and A C [1,00) be any
set containing an accumulation point. Let A; be a sequence of integrable, unitary
connections on E such that:

130



o (E, ;) is holomorphically isomorphic to (E,a,) for all i;

o HY M, n(A;) — HY M, n(11g) for all o € AU{2} and all N > 0.

Then there is a Yang-Mills connection A, on a bundle E., defined outside a

a closed subset of Hausdorff codimension 4 such that:

(1) (Ew,0a.,) is isomorphic to GriNS(E d,4,) as a holomorphic bundle on
X — Zan;

(2) After passing to a subsequence, A; — As in L (X — Zup);

(3) There is an extension of the bundle Ey to a reflexive sheaf

(still denoted E,,) such that Ey = GriANS(E 0,4,).

The proof will be a modification of Donaldson’s argument from [DO1] that
there is a non-zero holomorphic map (E,d4,) — (Ew, da.,) in the case that (E,d,,)
is semi-stable. If the bundles in question are actually stable, we may then apply
the elementary fact that a non-zero holomorphic map between stable bundles with
the same slope is necessarily an isomorphism. Of course in our case (E,d4,) is not
necessarily semi-stable so the argument must be modified. We first construct such
a map on the maximal destabilising subsheaf S C E (which is semi-stable). If we
assume that S is stable (in other words if we construct the map on the first piece
of the HN S filtration) this identifies S with a subsheaf of the limiting bundle E,..
We then use an inductive argument to identify each of the successive quotients with
a direct summand of F.,. This is relatively straightforward in the case that the
HNS filtration is given by subbundles, but in the general case technical complica-

tions arise. Therefore, to clearly illustrate our technique, we will first present an
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exposition of the simpler case where there are no singularities, and then explain the

modifications necessary to complete the argument.

3.2.1 The Subbundles Case

We begin with the following proposition.

Proposition 27 Let E be a holomorphic vector bundle and A; = g;(Ao) be a se-
quence of integrable, unitary connections on E. Let A C [1,00) be any set containing
an accumulation point. Assume that HY My n(A;) — HY My N (1) for all N >0
and all « € AU{2}. Let S C (E,04,) be a holomorphic subbundle. Then there
s closed subset Z,, of Hausdorff codimension 4, a reflexive sheaf Eo which is an
Hermitian vector bundle away from Z,, and a Yang-Mills connection A, on E.

such that:

(1) After passing to a subsequence A; — Ay in LY (X — Z,,);
(2) The Harder-Narasimhan type of (Ey,d4..) is the same as
that of (E,4,);
(3) There is a non-zero holomorphic map g3 : S — (E,da..).
Proof. We first reduce to the case where the Hermitian-Einstein tensors A, F Y
are uniformly bounded. Write A;; for the time ¢ solution to the Y'M flow equations
‘2

with initial condition A;. By Lemma 2, }AwFAjyt is a sub-solution of the heat

equation. Then for each ¢t > 0 and each z € X :
[AuFa,,[* (@) < / Ki(,y) [AuFa,, | (y)dvolu(y).
X
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Here K(z,y) is the heat kernel on X. By a theorem of Cheng and Li (see [CHLI))

there is a bound:
1
0 < Ki(x,y) < C(l—l—t—n) ,

and so for any fixed tg > 0 ||AWFA

NOH Lo (X ) is uniformly bounded in terms of

HAwFAjHLQ(X )’ Since we assume in particular that HY M (A;) — HY M(p,) we
know that HAwF A H 12(Xw) is uniformly bounded independently of j, and therefore

| AwFa,

jrto ” Lo (X ) is uniformly bounded.

For the remainder of the argument we would like to replace A; with A, , so
that we may assume in the sequel that we have the above bound. In order to do

this we must know that the Uhlenbeck limit of the new sequence A;;, is the same

1
2 2
L2

ds> . Vo (YM(A;) — Y M(Ajy,)) — 0

as that of A;. We argue as follows:
0A;

Minkowski to
A = Al [T

to d
v ([ e,
0 S

because D, is minimising for the Y M functional and Y M is non-increasing along

([

2
L2

%
dAj,sFAJ',S

the flow. This shows that the two limits are equal, and moreover the proof also

shows that !

dy, Fo,, H ;2 — 0 for almost all s, so we may arrange that this limit
is a Yang-Mills connection. Since we have assumed additionally that HY M, n(A;)
(and hence HY M, n(A,4,)) is minimising for a € A, it follows from Propositions
15 (2) and 17 that the HN type of (E, Ax) is the same as that of (Ey, Ay).

We may therefore assume from here on out that the Hermitian-Einstein tensors
A, Fy; are uniformly bounded independently of j. Note that we have already proven

both (1) and (2) above. It remains to construct the non-zero holomorphic map.
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Observe that for any holomorphic section o of a holomorphic vector bundle
V — (X,w) equipped with an hermitian metric (—, —), and whose Chern connec-

tion is A, we have that

V=190 o> = V=199 (0,0) = V-1 ((0a0,040) + (0,04040))
= \/—_1(<8A0,0A0> + <U, FA(T>)

since ¢ is holomorphic. Applying A, and using the Kéhler identities, we have:
Nplof* = V=1A,00|0|* = — |0ac|* + {0, V=1 (A Fa) o).

Now let g7 : S — (E, 0a,) be given by the restriction of g; to S. By definition,
this is a holomorphic section of Hom(S, E'), whose Chern connection is Aj ® Aj;.
Then applying the above formula to g5 and writing k5 = (¢7)*(g,°), and h° and h;

for the metrics corresponding to Ags and A;, we have
Ny TI‘]C + |8A0®A 9; ‘ <gj , (A Fy,. gj SAths)>,
and so
No(Tr k) < (Trkf) (|AuF, | + [AuFys]) -

Now we use the bound on ‘Athj‘. Let C7 = sup; HA Fy, and Cy =

o (x

| Aw Es || roo(x)- Multiplying both sides of the above inequality by T rkf and in-

tegrating by parts shows:
/ |V Tr kjsf dvol,, < (Cy + Cy) / ‘Tr /{:f|2 dvol,,.
b's b's

2n
By the Sobolev imbedding L? — L7=T the previous inequality gives a bound

s S OIS ey
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where C' depends only on C,Cy and the Sobolev constant of (X,w). A standard

Moser iteration gives a bound: HTr <C HTr k‘SHLQ (X"

k7 ‘ } L®(Xw) =
At this point we may repeat Donaldson’s argument (appropriately modified for
higher dimensions). For the reader’s convenience we reproduce it here. By definition
‘ g; ‘ Since non-zero constants act trivially on A%! we may normalise the

HTT‘(/CS = 1. The above bound implies that there is a

g so that ng j)HL2(X)

o)
subsequence of the gf that converges to a limiting gauge transformation g5 weakly in
every L} for example. Since Z,, has Hausdorff codimension 4, we may of course find
a covering of Z,, by balls { B!}, of radius r such that: C (>, Vol(B])) < 1/2. If we
write K, = X —U; B;USing(E,), then our L* bound implies that: Hg HL4 )2 1/2
for all j. This implies that g5 is non-zero. We now show g2 is holomorphic.

If we denote by Jayp4,, the (0,1) part of the connection on E* ® E,, =

Hom(E, E) induced by the connections Ay and A.,,. We will identify E and E,

on K,. Then by definition we have:
Onzeand; = (97 A0 — Axg?) = (95 Ao(9)) ™" — Ax)gf = (A — Ax)g)

Since Ay — Ay in L?(K,) this implies da,04., 95 = 0, in other words g5 is holo-
morphic on K. Since this argument works for any choice of r, and the K, give an
exhaustion of X — Z,, U Sing(E), g3 is holomorphic on X — Z,, U Sing(E,,). By
a version of Hartogs theorem (see [SHI] Lemma 3) there is an extension of g3 to
X — Sing(Fy). Finally, by normality of these sheaves (both are reflexive) there is

an extension to a non-zero map g5 : S — E,. B
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We are now ready to perform the induction, and therefore prove the main
theorem in the case when the HNS filtration is given by sub bundles. We first
assume the quotients (); = F;/E; 1 in the Harder-Narasimhan filtration 0 = Ey C
Ey C .. C E; = (E,0d,,) are stable (so the HN and HNS filtrations are the same).
From Proposition 1 F, has a holomorphic splitting £, = @2;16200,1‘- By Theorem 14
the HN types of E and E,, are the same, so | =" and u(E1) = 1(Qoo1) > t1(Qoo.i)
for ©+ = 2,...,]1. By the above proposition there is a non-zero holomorphic map
0 : B4 — E. Since we are assuming F is stable, and the Qo ; (i > 1) have slope
strictly smaller than FE;, the induced map onto these summands is 0 and hence
0o @ B1 — Q1. Again by stability of £y and ()1 and the fact that £y and Q1
have the same rank and degree, this map is an isomorphism. This is the first step
in the induction.

The inductive hypothesis will be that the connections A; restricted to E;_4
converge to connections on the bundle Gr(E;_1), in other words Gr(FE;_1) C Ey. Let
Ewi=®j<iQw andset: E,, = Gr(E;_1)®R, and consider the short exact sequence
of bundles: 0 — E;_; — E; — @Q; — 0. Since Gr(FE;) = Gr(E;_1) & Q;, to complete
the induction we need only show that @); is a direct summand of R. The sequence
of connections on E; induced by A, satisfy the hypotheses of the proposition, so
we may apply this result to the dual exact sequence: 0 — @ — Ef — Ef ;| — 0,
and therefore obtain a holomorphic map @ — (Ew;)*. Because Qf is the maximal
destabilising subsheaf of (E ;)* this implies that @)} is isomorphic to a summand

of R*. This completes the proof under the assumption that the quotients are stable.
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To extend this to the general case, it suffices to consider the case that the origi-
nal bundle (E d4,) is semi-stable. In other words the filtration is a Seshadri filtration
of E. Then as in the above argument we may conclude that F; is isomorphic to a
factor of E we also again obtain a non-zero holomorphic map geo : QFf — (Fooi)*
However, the Seshadri quotients all have the same slope, so we do not know via slope
considerations that @)F maps into R*. On the other hand we know that the weakly

holomorphic projections converge. If 7r§i_1) denotes the sequence of projections to

g;(E;_1) and 7% the projection onto FEw -1, then Wg-i*l) — 7% by the proof of
Lemma 4.5 of [DW1]. If we denote by ﬁgi_l) the dual projection, then for each j,
the image of ()} is in the kernel of ﬁg-i_l). In other words the image go.(Q7) lies in

Y. Therefore since we have convergence, the image of g, (Q7) lies

the kernel of ﬁyf
in the kernel of #5 " which is in R*. Therefore Q) is isomorphic with a factor of

R* and this completes the proof.

3.2.2 The General Case

In general the HN S filtration is not given by subbundles. The argument we
have given in Proposition 27 for the construction of the holomorphic map S — E
remains valid if S is an arbitrary torsion free subsheaf since the connections in
question are all defined a priori on the ambient bundle E, and since the second
fundamental form [ of .S drops out of the estimates, there is no problem obtaining a
uniform bound on the Hermitian-Einstein tensors. On the other hand, when we try

to run the inductive argument, the restrictions of the connections A; to the pieces E;
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of the HN S filtration only make sense on the locally free part of these subsheaves.
This prevents us from applying the argument of Proposition 27 in the inductive step
because to do so requires global L* bounds on the appropriate Hermitian-Einstein
tensors, which we do not have, since the restrictions of the A; do not extend over
the singular set Z,,.

The strategy for proving the main theorem in the general case mirrors our
method in section 4. Roughly speaking we proceed as follows. Let A; = ¢;(Ay) be
a sequence of connections. First we pass to an arbitrary resolution 7 : X — X of
singularities of the HNS filtration. Then we construct an isomorphism from the
associated graded object of the filtration for the pullback bundle 7*FE (away from
the exceptional set E) to the Uhlenbeck limit of the sequence 7*A4; on the Kihler
manifold (X — E, wy) where wy = m*w. Then we will use the fact that these bundles
extend as reflexive sheaves over the exceptional divisor to the double dual of the
associated graded object of £/ and the Uhlenbeck limit of A; respectively, and hence
by normality of these sheaves, the isomorphism extends as well.

The outline of the proof given above has to be modified somewhat for technical
reasons which we will now explain. Just as for the case of subbundles, by first

running the Y M flow for finite time we may assume there is a uniform bound

AwoFAjH } where flj = m*A;. As usual

HAwFAjHLoo(X) or equivalently on ‘ Loo (F—E)

we will denote by Ao, the Uhlenbeck limit of A; on (X,w) and we have A; — A
in L7 ,.(X — Zan) for p > 2n. The proof of the proposition proves all but (3) of
Theorem 15. Let E; C E be a factor of the HN S filtration and A§-i) = W§i)Aj be the
connections on ¢;(E;) induced from A;, and AYD =04 By Lemma 17 it follows
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that Ag-i) — AY weakly in L?

1,loc

(X — Zan U Zyyg).

If 7 : X — X is the aforementioned resolution of singularities then the filtra-
tion of 7*E = E is given by subbundles E; C E, isomorphic to F; away from the
exceptional divisor E. Write g; = g; o m and let fly) be the connection induced by
A; = 7 A; on §;(E;). We will write 7; for the projection to §;(E;) and Bj for the
second fundamental forms for the connections Aj with respect to the subbundles

E;: in other words these are sections of the bundle Q%1 (X' JH om(Qi, E~’Z)> for an

auxiliary bundle ;. Then this sequence of connections satisfies the following:

(1) There is a closed subset Z,, C X — E of Hausdorff codimension 4
and a Yang-Mills connection AY defined on a bundle Eoo,i — X — E, such

that flgz) — AY weakly in L7 (X — (Zgn U E)>

1,loc

(2) We have the standard formula for the curvature:
vV —1AWOFA§_¢) =v—-1A,, (ﬁjF&ﬁ'j) + v —1A,, (B] A B;) :

Also:

e The Bj are locally bounded on X — (Z,, U E) uniformly in j (Lemma

e The Bj — 0 in L?(wp). In particular, they are uniformly bounded in

L?(wp) (see the proof of [DW1] Lemma 4.5).
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Note that the term
V=T, (75F475)

is bounded in L®(X — E,wy) since A; = 7*A;. The key point here is that term
V=1A,, (Bj A Bj>

is not bounded in L>®(X — E,wj) since it may be written as

(ﬁj N ﬂ]> N WSA
wo

V-1

which blows up near E. This is a problem because in order to carry out the induction

in the preceeding sub-section we had to consider exact sequences of the form:
0— Qf — Ef — EL, —0

(here Q, = E, / Ei_l) and apply Proposition 27 to construct a non-zero holomorphic
map QF — E;‘OZ This involved knowing that there was a uniform L* bound on
the Hermitian-Einstein tensors of the induced connections (flgl))* and (Aﬁ%)* on E*
and Qj Since this is not the case we cannot apply this argument directly. On the
other hand we do know that for all positive times ¢t > 0, the degenerate Yang-Mills
flow of Section 6 gives connections flglz such that A, F 49) is uniformly bounded (see
Lemma 21). For each ¢ the deformed sequence of connections has an Uhlenbeck
limit AfQ,t on a bundle Eéoz which a priori depends on t.

There are now two points to address. In parallel to Proposition 27 we will show
that after resolving the singularities of the maximal destabilising subsheaf S to a

bundle S there is a non-zero holomorphic map S — EY_ (where E%_ is an Uhlenbeck
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limit of flj,t) away from E. This is not automatic from the proof of Proposition 27
because the connections fljvt do not extend smoothly across E, so the integration by
parts involved in the proof is not valid. We will instead derive this map as a limit
of the maps produced from the corresponding argument for the family of Kihler
manifolds (X, w.). Secondly we need to know that the Uhlenbeck limits (E? , Ao ;)
are independent of ¢ and are all equal to (E~’Oo,floo). Again, this does not follow
from our previous argument since, as we have noted, the second fundamental forms
of the restricted connections are only bounded in L? and therefore the curvatures
are only bounded in L'. In particular we do not have that A§¢) is minimising for
the functional Y M. Establishing these two facts will complete the proof of the
main theorem, since then we may use induction just as for the case when the HN S
filtration is given by subbundles.

We begin with the first point.

Proposition 28 Let £ — X be a vector bundle with an hermitian metric h. Let
flj = §j(1‘~10) be a sequence of unitary connections on E, and assume AwoFAj 18
bounded uniformly in j in Ll(f(,wo). Let flﬂ be the solution of the degenerate
Y M flow at time t with initial condition /Nlj, and suppose that this sequence has an
Uhlenbeck limit (E,, As,). Finally let S C E be a subbundle of (E, Ag). Then there
is a non-zero holomorphic map G - S — E'_ on X —E. Furthermore, let (Et,, As)

be the extension of (E*., Aoo,t) over E to X, assume S extends to a reflexive sheaf

S on X. Then §o induces a non-zero holomorphic map go : S — E..

Proof. Let w,. be the standard family of Kéhler metrics on X and fix ¢t > 0. Let
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g; — 0 be a sequence as in section 5, i.e. if fljft is the time ¢ Y M flow on (X, w.,),
then fljt — flﬂ continuously on compact subsets of X — E. Choose a family of

metrics ﬁf on S converging uniformly on compact subsets of X — E to a metric ﬁg

defined away from E, and such that sup ‘A%i Fs | is uniformly bounded as &; — 0
(take for example the time 1 HY M flow of h with respect we). For each j and each

g; > 0, we have a non-zero holomorphic map gf_ e S — (E , 5~sit). Just as in Section
K3} jv

7.1, we set kfj = <§§]> gi’j. As in Proposition 27 we have the inequality:

A(a’ws)(Tl" %57j) < (Tl“ ]232_7]-) <‘AwsiFA§ft +

Awgi Fﬁg

1)

Both factors on the right are uniformly bounded as €; — 0 by assumption.

fj < C’||Trl;:§

iy where

It follows that we have the inequality: HTrl;;

‘Loo(f() |L2(X',w5)’

the constant C' depends only on these uniform bounds and the Sobolev constant
of (X,w,,) is also uniformly bounded away from zero by [BS] Lemma 3. As in the

proof of Proposition 27 we rescale gfi,j so that || gfi,j H A(Rwr) = 1. A diagonalisation

e)

argument for an exhaustion of X — E together with the sup bound gives a sequence

of non-zero holomorphic maps gf .S — (B, fljt) defined on X — E with gj i gf

< C, and HQJSHL‘*(OJO) o

uniformly on compact subsets as ¢; — 0 such that: H §j5 H oo

Repeating the proof of Proposition 27 yields a nonzero limit gfo 08— (Eéo, Aoo7t).
The last statement follows from the normality of the sheaves in question. B

Secondly we have:

Proposition 29 Let E — X be a Hermitian vector bundle with a unitary inte-
grable connection Ay. We assume that the holomorphic bundle (E,04,) restricted
to X —E=X — Zag extends to a holomorphic bundle (E, Op) on X with Harder-
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Narasimhan type j1 = (juy, ..., pg). Let A; = §;(Ag) be a sequence of unitary connec-
tions on E, and assume there is a subset Z,, C X —E of Hausdorff codimension at
least 2, and a Y M connection floo on a bundle Eoo — X — E such that flj — floo
weakly in LY, (where p > 2n) on compact subsets of X — (Zm U E) We assume
that the constant eigenvalues of \/—1A,,F 1. are gwen by the vector p. Finally
assume Ny Fz — Mo F5 in LY(wg). Then there is a subsequence such that for
almost all t > 0 Aj?t — floo m L’l’ﬁloc away from Zan U E where flj?t 18 the time t

degenerate Y M flow with initial condition flj.
This will follow from a sequence of lemmas.

Lemma 22 For any t > 0, HAwoFA 1s uniformly bounded in j. More-

jit HLoo(X—E)

over, for almost all t > 0, lim;_,oc HY M®° (/Nlj7t> =HYM(u).

Proof. The first statement follows from Lemma 21. By assumption, we have
Mo Fi, — Ao Fj in L', and A, Fj;_ has constant eigenvalues p, ..., jup. Set
M2 =S 2= %ﬂf(“) Also let gy, ..., pig. be the HN type of (E,d;,) with

i=1M"

respect to w., and set M2 = Y77, 117 .. By Corollary 6 we know:

M6<i/
T 2m Jx

By Proposition 26 , for almost all £, we can find a sequence ¢; = €;(t) — 0 such that

A, Fj- | dvol,..
7.t

Ao, Faei — AuoFy,, in any LP(wo). Let &; — 0 and using the convergence of the
K2 7, 5
HN type:

1
M< o /X ‘AWOF&_J‘ dvol,,
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for all 7 and almost all £ > 0. We also have:

Aws FA;J

(1) < /X K (2, )
- M+/)~(Kf(a:,y)(

where K(x,y) is the heat kernel on (X,w.) (since Ki(z,) has integral equal to

Ao Fx, | (g)dvol.. (3)

A%EhJ-—AI)dvdws

1). Since we have the bound: K(z,y) < C(1 + 1/t"), there is a constant C(t)

independent of € such that:

Mo Fy: | (@) < M +C|||Au Fs | - M .
Fge, | () < M + L4, (%)
Then just as above we have:

A“"’F&vt‘ (@) <M+C H AWOFAJ') - M‘ 11(X wo)

for almost all z € X — E and almost all ¢+ > 0. Since

Moo Py, | = [Aun P | = M in
L', we have

lim sup (x) <M

J—00

Ao FAj,t

for almost all z € X — E and almost all ¢t > 0. On the other hand since A, F i, s

uniformly bounded in j, we can use the lower bound for

1

2r Jx

Ay, FAN‘ dvol,,
and Fatou’s Lemma to show:

Mg/ lim sup

X J—00

AuoFi | ‘ dvol,,.

It follows that lim;_ . sup|Aw0 F i |2 = M? almost everywhere. By Fatou we there-
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fore have:

HYM(p) < liminf HYM*°(A;,) < lim sup HY M*°(4;,)
j—00

J—00

= lim sup /
j—o0 X

= 2rM?* = HYM(u).

AWO FA]

i | dvolu,

X J7oe

AwoFAj,t) dvol,,, < / lim sup

Lemma 23 For almost all ty > 0, flj,t — flj% — 0, uniformly for almost

L2(X wo)

all t > to.

Proof. As before let ¢; — 0 be a sequence such that fljt — A;, and fljt . = Aj

in Cp .. Then we again have:
, St AEi
=g | [
Jit Jto L2 - to 88 L2

IN

At

2\ 3 td 2 3
) =il )
L2 to ds sl

)= YM(AS,)) = Vi (HY M(A3,,) ~ HY M(A3,))

(]

= Vi(yM(Ag

Jrto

*
dy, F A,

< VE(HYM(A,) - HY M(p,)) .

Using Proposition 26 and Proposition 21 this yields:

The result follows by applying the previous lemma. B

Aj,t - Aj,to

<Vi (HYM(Aj,tO) - HYM(/U)

L2(X wo)

Lemma 24 There is a Y M connection floo,* on a bundle Eoo,* — X — E with the
following property: for almost all t > 0 there is a subsequence and a closed subset

me c X —E, possibly depending on t and the choice of subsequence, such that

Ajy— A in L2, (p > 2n) away from Z!, UE.

1,loc
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Proof. As in Proposition 25 and using Proposition 26 we have:

dAj,sFA L2(w0) dS

J»s

to
HY M(A,,) — HY M(A;,,) > 2 /
t1

for almost all t5 > t; > 0. It follows from Lemma 22 and Fatou’s lemma that:

2
=0,

lim inf Hdzj,sFAj,s L2(wo)

J—00

for almost all t. Choose a sequence t; of such t with ¢, — 0. For each k there

is a subsequence j,,(tx), a Y M connection floo,tk, and a finite set of points Z,

— Aoo,tk n Lp

depending on the choice of subsequence such that A, Lioc

ot away
from Z;g. By a diagonalisation argument, assume without loss of generality that
the original sequence satisfies flj,tk — floo,tk for all t;. On the other hand, by Lemma
23, Aoo,tk, = flw* is independent of t;. For any t, there is a k with ¢t > t;, so Lemma
23 also implies A;; — A, in L}, for almost all ¢ > 0. Hence, any Uhlenbeck limit
of flﬂ coincides with 121007*. [ |

The proof of Proposition 29 will be complete if we can show A, = floo,*. First

we will need:

Lemma 25 A, _F A is bounded on compact subsets of X — E, uniformly for all j,

allt >0, and all € > 0.

Proof. By our assumptions it follows that A%FAJ_ are uniformly bounded in L!
and that they are uniformly locally bounded. The result now follows just as in the

proof of Lemma 19(2). W
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Corollary 9 ‘AN oo) is bounded in any L¥, —away from Z, UE, uniformly for

1,loc

all j and all 0 <t < tg. In particular, the singular set me is independent of t and

18 equal to Zan.

Proof. Since A — A in LP, . it suffices to prove that ’flﬂ — Aj is bounded

1,loc?

in C}

AEi A 1
loc-  Choose a sequence ¢; such that A}, — A;; in Cj,.. It suffices to prove

is bounded in C}

’Ajt — A e uniformly in e;. Write fljt = gjt([l]) and l;;jt =

(d5%)7 G54 It suffices to show that (l%jt)_l is bounded and l%jt has bounded deriva-
tives, locally with respect to a trivialisation of E. The local boundedness of l%j’t and
(l;:jlt)*l follows from the flow equations and the preceeding lemma. The boundedness

of the derivatives follows from [BS] Proposition 1 applied to the equation

A@Ao,ws)lﬂ%s,t + v _1Aw5 <5Aoi{‘75,t> ]E;tl (aAOi%s,t> = ]::e,tfe,t

Now we can complete the proof of Proposition 29. Fix a smooth test form
¢ € Q'(X,u(E)), compactly supported away from Z,, UE. Choose 0 < § < 1. For

e > 0 we have:

/X (6,455 — A;) dvol,, = / dt / < , >dvolws
(Flow equations) — / dt /

(Kahler identities) = +/— /dt/

[ f (o

By Lemma 25 A,_F i is bounded on the support of ¢ for all j, all € > 0, and all

" i > dvol,,,

t) A, F Ai,t> dvol,,,

. ) 6 M Fic >dvolw€
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0 <t <9, and the bound may be taken to be independent of §. Therefore:

/X (645, = 4;) dvol,. < C /0(s |01, - 95;,) o

Applying this inequality to a sequence, fl?t — flj’t in C}

loc?
[ (oA Ay awota| < [Car| (01, - 03,)

A — A | is locally bounded in any L? independently of ;.

L'(wo)

L' (wo)

By the Corollary 9,

Then

<Co

/X <¢, Ajs— Aj> dvol,

where C' depends only on the L' norm of 0 e ) 1. ¢ and the bounds on A, F' i

and

flﬂ — floo‘. In particular C' is independent of j. Taking limits as j — oo we
have:

<0d

/X <¢>, Ao — Aw> dvol,,

and since 0 and was arbitrary and floo’(; = floo,* for almost all small 9, this implies

As « = A This concludes the proof of Proposition 29 and hence the proof of the

main theorem.
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