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In this thesis we study the limiting properties of the Yang-Mills flow associated

to a holomorphic vector bundle E over an arbitrary Kähler manifold (X,ω). In par-

ticular we show that the flow is determined at infinity by the holomorphic structure

of E. Namely, if we fix an integrable unitary reference connection A0 defining the

holomorphic structure, then the Yang-Mills flow with initial condition A0, converges

(away from an appropriately defined singular set) in the sense of the Uhlenbeck com-

pactness theorem to a holomorphic vector bundle E∞, which is isomorphic to the

associated graded object of the Harder-Narasimhan-Seshadri filtration of (E,A0).

Moreover, E∞ extends as a reflexive sheaf over the singular set as the double dual of

the associated graded object. This is an extension of previous work in the cases of 1

and 2 complex dimensions and proves the general case of a conjecture of Bando and

Siu. Chapter 1 is an introduction and a review of the background material. Chapter

2 gives the proof of several critical intermediate results, including the existence of

an approximate critical hermitian structure.
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Chapter 1

Introduction and Background

1.1 Introduction

This thesis is a study of the Yang-Mills flow, the L2-gradient flow of the Yang-

Mills functional; and in particular its convergence properties at infinity. The flow

is (after imposing the Coulomb gauge condition) a parabolic equation for a connec-

tion on a holomorphic vector bundle. Very soon after the introduction of the flow

equations, Donaldson proved that in the case of a stable bundle, the gradient flow

converges smoothly at infinity. In the unstable case the behaviour of the flow is

more ambiguous. Nevertheless, even in the general case there is an appropriate no-

tion of convergence (a version of Uhlenbeck’s compactness theorem) that is always

satisfied. The goal of this thesis is to prove that this notion depends only on the

holomorphic structure of the original bundle.

We follow up on work whose origin lies in two principal directions, both related

to stability properties of holomorphic vector bundles over compact Kähler manifolds.

The first strain is the seminal work of Atiyah and Bott [AB], in which the authors

study the moduli space of stable holomorphic bundles over Riemann surfaces. In

particular, they compute the GC-equivariant Betti numbers of this space in certain

cases, where GC is the complex gauge group of a holomorphic vector bundle E (over a
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Riemann surface X) acting on the space Ahol of holomorphic structures of E. Their

approach was to stratify Ahol by Harder-Narasimhan type. The type is a tuple of

rational numbers µ = (µ1, ..., µR) associated to a holomorphic structure (E, ∂̄E),

defined using a filtration of E by analytic subsheaves whose successive quotients are

semi-stable, called the Harder-Narasimhan filtration. One of the resulting strata of

Ahol consists of the semi-stable bundles. Furthermore the action of GC preserves the

stratification, and the main result that yields the computation of the equivariant

Betti numbers is that the stratification by Harder-Narasimhan type is equivariantly

perfect under this action.

Atiyah and Bott also noticed that the problem might be amenable to a more

analytic approach. Specifically they considered the Yang-Mills functional YM on

the space Ah of integrable, unitary connections with respect to a fixed hermitan

metric on E. The space Ah may be identified with Ahol by sending a connection

∇A to its (0, 1) part ∂̄A. The Yang-Mills functional is defined by taking the L2

norm of ∇A, and is a Morse function on Ah. Therefore this functional induces the

usual stable-unstable manifold stratification on Ah (or equivalently Ahol) familiar

from Morse theory. It is natural to conjecture that this analytic stratification is in

fact the same as the algebraic stratification given by the Harder-Narasimhan type.

The authors of [AB] stopped short of proving this statement, instead leaving it at

the conjectural level, and working directly with the algebraic stratification. They

noted however that a key technical point in proving the equivalence was to show the

convergence of the gradient flow of the Yang-Mills functional at infinity. This was

proven in [D] by Daskalopoulos (see also [R]). Specifically, in the case of Riemann
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surfaces, Daskalopoulos showed the asymptotic convergence of the Yang-Mills Flow,

that there is indeed a well-defined stratification in the sense of Morse theory in this

case, and that it coincides with the algebraic stratification (which makes sense in

all dimensions).

When (X,ω) is a higher dimensional Kähler manifold, the Yang-Mills flow

fails to converge in the usual sense. This brings us to the second strain of ideas

of which the present paper is a continuation: the so called "Kobayashi-Hitchin

correspondences". These are statements (in various levels of generality) relating

the existence of Hermitian-Einstein metrics on a holomorphic bundle E, to the

stability of E. Namely, E admits an Hermitian-Einstein metric if and only if E

is polystable. This was originally proven in [DO1] by Donaldson, for algebraic

surfaces. The idea of the proof was to reformulate the flow as an equivalent parabolic

PDE, show long-time existence of the equation, and then prove that for a stable

bundle, this modified flow indeed converges, the solution being the desired Hermitan-

Einstein metric. This was generalised by Donaldson to higher dimensions in the

algebraic case in [DO2] and by Uhlenbeck and Yau in [UY] in the case of a compact

Kähler manifold. Finally, in [BS], Bando and Siu extended the correspondence

to coherent analytic sheaves on Kähler manifolds by considering what they called

"admissible" hermitian metrics, which are metrics on the locally free part of the

sheaf having controlled curvature. They also conjectured that there should also

be a correspondence (albeit far less detailed) between the Yang-Mills flow and the

Harder-Narasimhan filtration in higher dimensions despite the absence of a Morse

theory for the Yang-Mills functional.
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There are two main features that distinguish the higher dimensional case from

the case of Riemann surfaces. As previously mentioned, the flow does not converge

in general. However, the only obstruction to convergence is bubbling phenomena.

Specifically, one of Uhlenbeck’s compactness results applies to the flow, which means

that there are always subsequences that converge (in a certain Sobolev norm) away

from a singular set of Hausdorff codimension 4 inside X (which we will denote by

Zan), to a connection on a possibly different vector bundle E∞. A priori, this pair

of a limiting connection and bundle depends on the subsequence. In the case of

two complex dimensions, the singular set is a locally finite set of points (finite in

the compact case) and by Uhlenbeck’s removable singularities theorem E∞ extends

over the singular set as a vector bundle with a Yang-Mills connection. In higher

dimensions, again due to a result of Bando and Siu, E∞ extends over the singular

set, but only as a reflexive sheaf. Although we will not use their result, Hong and

Tian have proven in [HT] that in fact the convergence is in C∞ and that Zan is a

holomorphic subvariety.

A separate, but intimately related issue is the Harder-Narasimhan filtration.

In the case of a Riemann surface the filtration is given by subbundles. In higher

dimensions, it is only a filtration by subsheaves. Again however, away from a singular

set Zalg, which is a complex analytic subset of X of complex codimension 2, the

filtration is indeed given by subbundles. Once more, in the case of a Kahler surface

this is a locally finite set of points (finite in the compact case).

The main result of this thesis (the conjecture of Bando and Siu), describes

the relationship between the analytic and algebraic sides of the above picture. To
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state it, we recall that there is a refinement of the Harder-Narasimhan filtration

called the Harder-Narasimhan-Seshadri filtration, which is a double filtration whose

successive quotients are stable rather than merely semi-stable. Then if (E, ∂̄E)

is a holomorphic vector bundle where the operator ∂̄E denotes the holomorphic

structure, writeGrHNSω (E, ∂̄E) for the associated graded object (the direct sum of the

stable quotients) of the Harder-Narasimhan-Seshadri filtration. Notice that by the

Kobayashi-Hitchin correspondence, GrHNSω (E, ∂̄E) also carries a natural Yang-Mills

connection on its locally free part, given by the direct sum of the Hermitian-Einstein

connections on each of the stable factors. The main theorem says in particular that

the limiting bundle along the flow is in fact independent of the the subsequence

chosen in order to employ Uhlenbeck compactness, and is determined entirely by

the holomorphic structure ∂̄E of E. Furthermore, the limiting connection is precisely

the connection on GrHNSω (E, ∂̄E).

Theorem 1 Let (X,ω) be a compact Kähler manifold, and E → X an hermitian

vector bundle. Let A0 denote an integrable, unitary connection endowing E with

a holomorphic structure ∂̄E = ∂̄A0. Let A∞ denote the Yang-Mills connection on

GrHNSω (E, ∂̄E) restricted to X−Zalg induced from the Kobayashi-Hitchin correspon-

dence. Let At be the time t solution of the flow with initial condition A0. Then as

t → ∞, At → A∞ in the sense of Uhlenbeck, and on X − Zalg ∪ Zan, the vector

bundles GrHNSω (E, ∂̄E) and the limiting bundle E∞ are holomorpically isomorphic.

Moreover, E∞ extends over Zan as a reflexive sheaf to
(
GrHNSω (E, ∂̄E)

)∗∗
.

This theorem was proven in [DW1] by Daskalopoulos and Wentworth in the
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case when dimX = 2. In this case, the filtration consists of vector bundles, whose

successive quotients may have point singularities. As stated earlier, this means E∞

extends as a vector bundle and [DW1] proves that this bundle is isomorphic to the

vector bundle
(
GrHNSω (E, ∂̄E)

)∗∗
.

We now give an overview of the thesis and in particular our proof of Theorem

1, pointing out what goes through directly from [DW1] and where we require new

arguments. The remainder of Chapter 1 consists of all the various background

topics we will need to employ in the proof of Theorem 1 and consists of no original

material. We begin by giving basic definitions in complex geometry, describing the

space of integrable unitary connections on a holomorphic vector bundle, and give the

equivalence of this space with the space of holomorphic structures. Then we discuss

the Yang-Mills functional, the Hermitian-Yang-Mills functional and the Yang-Mills

flow and their basic properties. In particular, we prove short-time existence via a

standard gauge-fixing trick, showing the equivalence of the Yang-Mills flow with

a certain flow of metrics and sketch the proof of long-time existence on a Kahler

manifold due to Donaldson and Simpson. We then state Simpson’s version of the

fact that for a stable bundle the heat flow converges to an Hermitian-Einstein metric.

Next we give basic definitions from sheaf theory, including the Harder-Narasimhan

and Harder-Narasimhan-Seshadri filtrations and their associated graded objects, as

well as the corresponding types for future use. We also prove a few basic results

about these filtrations for later use. We also introduce the weakly holomorphic pro-

jection operators for a saturated subsheaf due to Uhlenbeck and Yau, and recall the

proof of a lemma on the boundedness of second fundamental forms from [DW1].
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We finish Chapter 1 by tying up some loose ends. We state two versions of

the Uhlenbeck compactness result that we will need. Although we will primarily

be concerned with the flow, the proof of Theorem 1 is set up to work for slightly

more general sequences of connections, so we state the compactness theorem in this

generality first, and then specialise to the flow. We state the removable singularities

theorem of Bando and Siu [BS] and discuss Kahler metrics on a resolution of singu-

larities, a topic that will be central to the proofs of the original results in this thesis.

We also give a discussion of the proof of the main result of [BS]. We recall the

proof of one of the main theorems of [DW1], that the Harder-Narasimhan-Seshadri

type of an Uhlenbeck limit is bounded from below by the type of the initial bundle

with respect to the partial ordering on types. Chapter 1 ends with a discussion of

Yang-Mills type functionals associated to ad-invariant convex functions on the lie

algebra of the unitary group.

Chapter 2 is the technical heart of the proof. It begins by detailing the main

results we will need about resolution of singularities. This is the first place in which

our presentation differs fundamentally from that of [DW1]. The main strategy

of the proof is to eliminate the singular set of the Harder-Narasimhan-Seshadri

filtration by blowing up, and doing all the necessary analysis on the blowup. In

the two-dimensional case, since the singularities consist only of points, this can be

done directly by hand as in [DW1] see also [BU1]. In the general case we must

appeal to the resolution of singularities theorem of Hironaka see [H1] and [H2].

We consider the filtration as a rational section of a flag bundle, and apply the

resolution of indeterminacy theorem for rational maps. If we write π : X̃ → X
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for the composition of the blowups involved in resolution, the result of is that the

pullback bundle π∗E → X̃ has a filtration by subbundles, which away from the

exceptional divisor E is precisely the filtration on X.

We will need to consider a natural family of Kähler metrics ωε on X̃, which

are perturbations of the pullback form π∗ω by the irreducible components of the

exceptional divisor, and which are introduced in order to compensate for the fact

that π∗ω fails to be a metric on E. The filtration of π∗E by subbundles is not quite

the Harder-Narasimhan-Seshadri filtration with respect to ωε but is closely related.

In particular, the main result of this section is that the Harder-Narasimhan-Seshadri

type of π∗E with respect to ωε converges to the type of E with respect to ω. This was

proven in the surface case in [DW1] using an argument of Buchdahl from [BU1]. The

proof contained in [DW1] seems to be insuffi cient in the higher dimensional case, so

we give a rather different proof of this result. The main ingredient is a bound on the

ωε degree of a subsheaf of π∗E with torsion-free quotient in terms of its pushforward

sheaf that is uniform as ε → 0. To prove this we use standard algebro-geometric

facts together with a modification of an argument of Kobayashi [KOB] first used to

prove the uniform boundedness of the degree of subsheaves of a vector bundle with

respect to a fixed Kähler metric. In particular we prove the following theorem:

Theorem 2 Let (X,ω) be a compact Kähler manifold and S̃ be a subsheaf (with

torsion free quotient Q̃) of a holomorphic vector bundle Ẽ on X̃, where π : X̃ → X

is given by a sequence of blowups along complex submanifolds of codim ≥ 2. Then

then there is a uniform constant M such that the degrees of S̃ and Q̃ with respect to
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ωε satisfy: deg(S̃, ωε) ≤ deg(π∗S̃) + εM , and deg(Q̃, ωε) ≥ deg(π∗Q̃)− εM .

Similar statements are proven in the case of a surface by Buchdahl [BU1] and

for projective manifolds by Daskalopoulos and Wentworth see [DW3].

An essential fact needed to complete the proof of Theorem 1 is that the Harder-

Narasimhan-Seshadri type of the limiting sheaf is in fact equal to the type of the

initial bundle. This fact seems to be closely related to the existence of what is called

an Lp-approximate critical hermitian structure. In rough terms this is an hermitian

metric on a holomorphic vector bundle whose Hermitian-Einstein tensor is Lp-close

to that of a Yang-Mills connection (a critical value) determined by the Harder-

Narasimhan-Seshadri type of the bundle (see Definition 6). Since any connection

on E has Hermitian-Yang-Mills energy bounded below by the type of E, and we

have a monotonicity property along the flow, the result of section 3 implies that

the existence of an approximate structure then ensures that the flow starting from

this initial condition realises the correct type in the limit. Then one shows that

any initial condition flows to the correct type, essentially by proving that the set of

such metrics is open and closed (and non-empty by the existence of an approximate

structure) in the space of smooth metrics, and applying the connectivity of the latter

space. This last argument appears in detail in [DW1], but we repeat the argument

here for completeness. The main theorem of Chapter 2 is the following:

Theorem 3 Let E → X be a holomorphic vector bundle of over a Kähler manifold

with Kähler form ω. Then given δ > 0 and any 1 ≤ p < ∞, E has an Lp δ-

approximate critical hermitian structure.
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The method does not extend to p = ∞. This is straightforward in the case

when the filtration is given by subbundles (even for p =∞). Given an exact sequence

of holomorphic vector bundles:

0 −→ S −→ E −→ Q −→ 0

and hermitian metrics on S and Q, one can scale the second fundamental form

β 7→ tβ to obtain an isomorphic bundle whose Hermitian-Einstein tensor is close to

the direct sum of those of S and Q. In general it seems diffi cult to do this directly.

The problem here is that the filtration is not in general given by subbundles, and

so the vast majority chapter is an argument needed to address this point. This is

precisely where we need the resolution of the filtration obtained earlier. We first

take the direct sum of the Hermitian Einstein metrics on the stable quotients in the

resolution by subbundles, which sits inside the pullback π∗E under the blowup map

π : X̃ → X. Then the argument above shows that after modifying this metric by

a gauge transformation, its Hermitian-Einstein tensor becomes close to the type in

the Lp norm. We complete the proof by pushing this metric down to E → X using

a cutoff argument.

In broad outline our discussion follows the ideas in [DW1] but we point out

two things. First of all, since we are varying the Kähler metric on X̃ by a parameter

ε, one has to fix a value ε1 and consider stable quotients with respect to this metric.

Therefore in order to show that the metric on the blowup is Lp-close, one also

needs some sort of uniform control over the Hermitian-Einstein tensor as ε → 0.

The author has noticed an error in [DW1] on this point. In particular, Lemma
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3.14 is slightly incorrect. Instead, the right hand side should have an additional

term involving the L2 norm of the full curvature. This does not essentially disrupt

the proof, because the Yang-Mills and Hermitian-Yang-Mills functionals differ only

by a topological term, but it has the effect of changing the logic of the argument

somewhat, as well as increasing the technical complexity.

Secondly, the authors of [DW1] were able to rely on the fact that the singular

set was given by points when applying the cutoff argument, in particular they knew

that there were uniform bounds on the derivatives of the cutoff function. We must

allow for the fact that the singular set is higher dimensional, and therefore need to

replace their arguments involving coverings of the singular set by disjoint balls of

arbitrarily small radius by calculations in a tubular neighbourhood. We first assume

Zalg is smooth and that blowing up once along Zalg resolves the singularities. The

essential point is that the Hausdorff codimension of Zalg is large enough to allow

the arguments of [DW1] to go through in this case. We then reduce the general

theorem to this case by applying an inductive argument on the number of blowups

required to resolve the filtration. It is here that we crucially use the convergence of

the Harder-Narasimhan-Seshadri type.

In Chapter 3, following Bando and Siu, we introduce a degenerate Yang-Mills

flow on the composition of blowups X̃ with respect to the degenerate metric π∗ω.

We review some basic properties of this flow that are necessary for the proof of

Theorem 1. In particular we show that a solution of this degenerate flow is in fact

an hermitian metric, and solves the ordinary flow equations with respect to the

metric π∗ω away from the exceptional divisor E.
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The remainder of Chapter 3 completes the proof of the Theorem 1 by showing

the isomorphism of the limit E∞ with
(
GrHNSω (E, ∂̄E)

)∗∗
. The basic idea follows

that of [DW1] which in turn is a generalisation of the argument of Donaldson in

[DO1]. His idea is to construct a non-zero holomorphic map to the limiting bundle

as the limit of the sequence of gauge transformations defined by the flow. In the case

that the initial bundle is stable and has stable image, one may apply the basic fact

that such a map is always an isomorphism. In general, the idea in [DW1] is simply

to apply this argument to the first factor of the associated graded object (which is

stable) and then perform an induction. The image of the first factor will be stable

because of the result in Chapter 2 about the type of the limiting sheaf. The diffi culty

with this method is in proving that the limiting map is in fact non-zero. This follows

directly from Donaldson’s proof in the case of a single subsheaf, but it is more

complicated to construct such a map on the entire filtration. The authors of [DW1]

avoid applying Donaldson’s method directly by appealing to a complex analytic

argument involving analytic extension see also [BU2]. Arguing in this fashion makes

the induction rather easier. However, this requires the complement of the singular

set to have strictly pseudo-concave boundary, which is true in the case of surfaces,

but is not guaranteed in higher dimensions.

Therefore we give a proof of a slightly more differential geometric character.

Namely, in the case that the filtration is given by subbundles, we follow the argument

of Donaldson, which goes through with modest corrections in higher dimensions, and

does indeed suffi ce to complete the induction alluded to. In the general case, we

must again appeal to a resolution of singularities of the filtration and apply the
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previous strategy to the pullback bundle over the composition of blowups X̃. The

problem one encounters with this approach is that the induction breaks down due

to the appearance of second fundamental forms of each piece of the filtration, which

are not bounded in L∞ with respect to the degenerate metric π∗ω. To rectify this,

we apply the degenerate flow for some fixed non-zero time t to each element of the

sequence of connections, and this new sequence does have the desired bound. This

is due to the key observation of Bando and Siu that the Sobolev constant of X̃

with respect to the metrics ωε is bounded away from zero. A theorem of Cheng

and Li then implies uniform control over subsolutions to the heat equation, which

is suffi cient to understand the degenerate flow. One then has to show that the limit

obtained from this new sequence of connections is independent of t and is the correct

one. This is an expanded and slightly modified account of an argument contained

in the unpublished preprint [DW3].

We conclude the introduction with some general comments. First of all, as

pointed out in [DW1], the proof of Theorem 1 is essentially independent of the

flow, and one obtains a similar theorem by restricting to sequences of connections

which are minimising with respect to certain Hermitian-Yang-Mills type functionals.

Indeed, the statement appears explicitly as Theorem 15. Secondly, one expects that

there should be a relationship between the two singular sets Zalg and Zan. Namely,

in the best case Zalg should be exactly the set of points where bubbling occurs. One

always has containment Zalg ⊂ Zan, and in the separate article [DW2] Daskalopoulos

and Wentworth have shown that in the surface case equality does in fact hold. We

hope to be able to clarify this issue in higher dimensions in a future paper.
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Finally, the author is aware of a recent series of preprints [J1],[J2],[J3] by Adam

Jacob which collectively give a proof of Theorem 1 using different methods.

1.2 Kähler Manifolds, The Space of Holomorphic Structures, Her-

mitian Einstein Metrics and Connections, and the Yang-Mills

Functional

1.2.1 Kahler Manifolds

The setting for this thesis will be a compact Kähler manifold (X,ω). That

is, a complex manifold X, equipped with a Kähler form ω. We briefly explain the

terminology. We assume that the real tangent bundle of X is equipped with an

Hermitian metric g (i.e. a Riemannian metric such that g(JX, JY ) = g(X, Y ) for

every pair of tangent vectors X, Y where J is the almost complex structure on X,

also called a compatible Riemannian metric) and ω is defined to be the two form

given by ω(X, Y ) = g(JX, Y ). Note that the Riemannian metric extends C-linearly

to the complexification TM ⊗C = T 1,0X ⊕ T 0,1X, where the two direct summands

are the the ±i eigenspaces of J .

By compatibility g restricts to be zero on each summand, so the only relevant

data is the Hermitian matrix given by:

gij̄ = g(
∂

∂zi
,
∂

∂z̄j
).

Then one checks that:

g = gij̄dz
i ⊗ dz̄j + gı̄jdz̄

i ⊗ dzj
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and if we consider the term:

gherm = gij̄dz
i ⊗ dz̄j

then this gives a metric which is Hermitian on the fibres of the holomorphic tangent

bundle T 1,0X (more correctly we see that 〈X, Y 〉 = gherm(X, Ȳ ) is Hermitian on the

fibres of T 1,0) and one computes that Re gherm = 1
2
g, where now g is the original

Riemannian metric. In local coordinates the form ω can be written:

ω =

√
−1

2
gij̄dz

i ∧ dz̄j

and the identity:

Im gherm = −ω

may be shown to hold, so that we have:

gherm =
1

2
g −
√
−1ω.

Sometimes gherm (which from here on out we will simply write as g) is called the

Hermitian metric on X. This is consistent with the terminology (to be introduced

below) for Hermitian metrics on vector bundles. If the two form ω happens to be

closed, then we say that ω is a Kähler form and we say that the metric g is a

Kähler metric.

1.2.2 Holomorphic Vector Bundles, Hermitian-Einstein Metrics and

Connections, and the Yang-Mills Functional

Many arguments in this thesis will rely on the interplay between two different

types of structure on a C∞ C-vector bundle E −→ X. The first is that of a
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holomorphic structure on E. One standard definition of this is a choice of local

trivialisations such the transition maps are holomorphic. However, more useful for

us will be the following. A holomorphic structure on E is a map ∂̄E : Γ(E) −→

Ω0,1(E) that satisfies the Liebniz rule:

∂̄E(fσ) = ∂̄f ⊗ σ + f∂̄Eσ

and the integrability condition ∂̄2
E = 0. It can be shown (see [KOB] Chapter 1) that

every such operator defines a unique holomorphic structure on E such that ∂̄E = ∂̄.

We will write Ahol for the set of holomorphic structures (suppressing the notation

for E).

We now consider the group GC of smooth automorphisms of E that are complex

linear on the fibres of E (sometimes this is written GL(E)). Then the group acts

on Ahol by conjugation:

∂̄E −→ g−1 ◦ ∂̄E ◦ g.

If we act on a section σ :

g−1 ◦ ∂̄E ◦ g(σ) = g−1(∂̄E(g(σ))

= g−1(∂̄EndE(g)(σ) + g(∂̄Eσ)

where we have used the expression:

∂̄EndE(g)(σ) = ∂̄E(g(σ))− g(∂̄Eσ).

This explains the notation:

∂̄E −→ g−1 ◦ ∂̄E ◦ g = ∂̄E + g−1∂̄g.

16



The quotientMhol = Ahol/GC is the moduli space of holomorphic structures on E.

Two holomorphic structures are considered to be equivalent if they lie in the same

GC orbit.

The second type of structure is anHermitian metric h on E, which is simply

a smoothly varying choice of a positive definite Hermitian form on the fibres of E.

Then if h is an Hermitian metric on E, we will write G for the subgroup of GC

consisting of unitary automorphisms of (E, h), that is, elements for which g∗g = id

(g∗ will denote the conjugate transpose). We will write Ah for the set of connections

on E preserving the Hermitian metric, i.e. connections ∇ for which:

d(h(s, t)) = h(∇s, t) + h(s,∇t).

Here we extend the metric h to 1-forms with values in E simply by ignoring the

1-form component, so that the right hand side is indeed a 1-form on X. Write A∂̄

for the space of ∂̄E operators (not necessarily integrable). Then note that the map:

Ah −→ A∂̄, ∇A −→ ∂̄A

gives a bijection. In fact, given ∂̄E, the (1, 0) part ∂A of the connection is determined

by the relation:

∂̄(h(s, t)) = h(∂̄Es, t) + h(s, ∂At).

Therefore ∇A = ∂A + ∂̄E is in Ah. Now consider the set of integrable unitary

connections, i.e. those with ∂̄2
A = 0 or equivalently those with (1, 1) curvature (i.e.

their curvature satisfies F 0,2
A = 0). We will write A1,1

h for this set. If we use an

element ∇A ∈ A1,1
h to define a holomorphic structure ∂̄A = ∂̄ on E, then ∇A is
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the unique integrable, unitary connection for this holomorphic structure. In other

words ∇A is the Chern connection for ∂̄A. The connection 1-form and curvature

for ∇A may be written in a local holomorphic frame (with respect to ∂̄A) as:

A = h̄−1∂h̄, FA = ∂̄(h̄−1∂h̄).

Conversely, if we fix a holomorphic structure ∂̄E ∈ Ahol, then the corresponding

Chern connection defines an element of A1,1
h so we obtain a further bijection:

Ahol ←→ A1,1
h .

Throughtout this thesis, for a fixed holomorphic structure and Hermitian metric we

will denote by (∂̄E, h) the Chern connection associated to the pair of structures on

E.

Note that G acts on Ah by conjugation:

∇ −→ g−1 ◦ ∇ ◦ g = ∇+ g−1∇g.

The corresponding action on the curvature is given by:

g · F∇ = g−1 ◦ F∇ ◦ g

and so the subspace A1,1
h is preserved under the action of G. By the correspondence

above, the action of GC on Ahol induces an action of GC on A1,1
h . To write this

action down explicitly, we put g · ∇A = ∂A′ + ∂̄A′ . Since Ahol ←→ A
1,1
h is given by

∇A −→ ∂̄A, we have ∂̄A′ = g−1 ◦ ∂̄A ◦g. Now, writing g∗ for the adjoint of g we
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compute:

h(s, ∂A′g
∗t) = ∂̄(h(s, g∗t))− h(∂̄A′s, g

∗t)

= ∂̄(h(gs, t))− h(∂̄A(gs), t)

= h(gs, ∂At) = h(s, g∗∂At).

It now follows that ∂A′ = g∗◦ ∂A◦ g∗−1 so that the action of GC on A1,1
h is given by:

∇A −→ g∗ ◦ ∂A ◦ g∗−1 + g−1 ◦ ∂̄A ◦ g.

Note that in case g ∈ G, then g∗ = g−1 and this action agrees with the action of G

on A1,1
h previously mentioned. We will write:

Bh = Ah/G , B1,1
h = A1,1

h /G,Mh = Ah/GC,M1,1
h = A1,1

h /GC

for the respective quotient spaces. Note that we have a bijection:

M1,1
h 'Mhol.

Moreover, GC also acts on the space of Hermitian metrics via h 7→ g · h where

g · h(s1, s2) = h(g(s1), g(s2)). In matrix form this reads g · h = g∗hg where g∗ is the

conjugate transpose. Note that the action of GC on the space Herm+(E) extends

to an action on the space Herm(E) of all Hermitian forms on E, and is transitive

on Herm+(E). Furthermore, the isotropy subgroup at the identity is clearly the

unitary gauge group G. Therefore we have the identification:

Herm+(E) ' GC/G.

Now, starting from a holomorphic bundle E with Hermitian metric h and

Chern connection (∂̄E, h), we may use a complex gauge transformation to perturb
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this connection in two different ways. We may either let g act on ∂̄E or on h. A

calculation relates the curvatures of the corresponding connections:

F(g·∂̄E ,h) = g−1 ◦ F(∂̄E ,g·h) ◦ g.

If we denote by u(E) ⊂ End(E) the subbundle of skew-hermitian endomor-

phisms (i.e. the Lie algebra of G), then for a section σ of u(E), we will write |σ| for

its pointwise norm. This is defined as usual by

|σ| =
(

R∑
i=1

|λi|2
) 1

2

where the λi are the eigenvalues of σ at a given point and R is the rank of E.

Combining this with the usual pointwise norm on 2-forms, we obtain a pointwise

(Hilbert-Schmidt) norm on the curvature FA of a connection. Now we may define

the Yang-Mills functional (YM functional) by:

YM(∇A) =

∫
X

|FA|2 dvol.

If we assume that X is Kähler, we have:

YM(∇A) =

∫
X

|FA|2
ωn

n!
.

This functional is invariant under the action of G and so defines a map YM : Bh→ R.

Its critical points are the so called Yang-Mills connections and by computing

the first variation of YM one sees that they satisfy the Euler-Lagrange equations:

d∗AFA = 0, where dA is the covariant derivative induced on End(E) valued 2 forms by

∇A. If∇A ∈ A1,1
h then we may also define theHermitian-Yang-Mills functional:

HYM(∇A) =

∫
X

|ΛωFA|2
ωn

n!
,
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where Λω denotes contraction with the Kähler form. This is the formal adjoint of

the Lefshetz operator ∧ω obtained by wedging with ω. In local coordinates one sees

that for a (1, 1) form G = Gi,j̄dz
i ∧ dz̄j we have:

ΛωG = gi,j̄Gi,j̄.

The quantity ΛωFA is called the Hermitian-Einstein tensor of A.

Again, HYM is invariant under the action of G and so defines a functional

HYM : B1,1
h → R. Critical points of the functional satisfy the Euler-Lagrange

equations: dAΛωFA = 0. On the other hand, just as in the preceding discussion,

we may regard the holomorphic stucture as being fixed and consider the space of

(1, 1) connections as being the set of pairs (∂̄E, h) where h varies over all Hermitian

metrics. We may therefore think of HYM as a functional HYM(h) = HYM(∂̄E, h)

on the space of Hermitian metrics on E. A critical metric of HYM is referred to a

critical Hermitian structure on (E, ∂̄).

An important fact that we will use is that when X is compact, there is a

relation between the two functionals YM and HYM . Explicitly:

YM(∇A) = HYM(∇A) +
4π2

(n− 2)!

∫
X

(
2c2(E)− c2

1(E)
)
∧ ωn−2

for any A ∈ A1,1
h . The second term depends only on the topology of E and the form

ω, so YM and HYM have the same critical points on A1,1
h . Furthermore, ∇A is a

critical point of YM and HYM , iff and only if h is a critical hermitian structure

for the holomorphic stucture on E given by A.

On Kahler manifolds, Yang-Mills connections have a very special property.
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The Kahler identities together with the Yang-Mills condition give:

0 = d∗AFA = −i(∂̄A − ∂A)ΛωFA = 0

⇐⇒ dAΛωFA = 0

(this is another way of seeing that YM and HYM have the same critical points).

Therefore the eigenspaces of the Hermitian-Einstein tensor of a Yang-Mills connec-

tion are constant, so we have the following proposition.

Proposition 1 Let ∇A ∈ A1,1
h be a Yang-Mills connection on an hermitian vector

bundle (E, h) over a Kähler manifold X. Then ∇A = ⊕li=1∇Ai where E = ⊕li=1Qi is

an orthogonal splitting of E, and where
√
−1ΛωFAi = λiIdQi, where λi are constant.

If X is compact, then λi = µ(Qi).

Proof. Let ∇A ∈ A1,1
h be a YM connection. By the YM equations and the Kahler

identities:

√
−1
(
∂A − ∂̄A

)
ΛωFA = d∗AFA = 0.

Therefore, decomposing into types, we have ∂AΛωFA = ∂̄AΛωFA = dAΛωFA = 0.

Then this implies that the eigenvalues are constant, and so we may decompose E

into its eigenbundles Qi. By construction, if we let ∇Ai be the restriction of ∇A to

Qi, then ∇Ai is Hermitian-Einstein. In the case where X is compact, Chern-Weil

theory computes the Hermitian-Einstein constants explicitly in terms of the slopes

to be:

λi = 2πnµ(Qi)/

∫
X

ωn,

and since we have normalised the volume to be 2π/(n− 1)! the result follows.
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The following definition is now natural.

Definition 1 Let E → (X,ω) be a holomorphic bundle. Then a connection ∇A such

that there exists a constant λ with:

√
−1ΛωFA = λIdE

is called an Hermitian-Einstein connection. If A is the Chern connection of

(∂̄E, h) for some hermitian metric h, then h is called an Hermitian-Einstein

metric.

There is a topological lower bound for the functional HYM depending only

on the first Chern class of E and the cohomology class of ω. This bound is realised

precisely for connections (metrics) that are Hermitian-Einstein. In other words,

Hermitian-Einstein connections (metrics) are the absolute minima of the functional

HYM .

1.3 The Yang-Mills Flow and Basic Properties

1.3.1 Yang-Mills and Hermitian Yang-Mills Flow Equations: Equiv-

alence up to Gauge

Throughout this section, we follow the reference [WIL]. As stated in the

introduction, although many of our arguments are valid for minimising sequences

of unitary connections, our primary interest will be in sequences obtained from the

Yang-Mills flow. This is a one parameter family of integrable unitary connections
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At obtained as solutions of the L2-gradient flow equations for the YM functional.

Explicitly:

∂At
∂t

= −d∗AtFAt , A0 ∈ A1,1
h .

We will eventually sketch a proof of the fact, following the references [DO1] and [SI]

that the above equations have a unique solution in A1,1
h × [0,∞). Moreover, the

flow preserves complex gauge orbits, that is, At lies in the orbit GC · A0. This may

be seen as follows. Instead of solving for the connection, fix A0 so that ∂̄A0 = ∂̄E,

and consider instead the family of hermitian metrics ht satisfying the Hermitian-

Yang-Mills flow equations:

h−1
t

∂ht
∂t

= −2
(√
−1ΛωFht − µω(E)IdE

)
.

In the above, Fht is the curvature of (∂̄E, ht) and µω(E) is a real number called the

slope of E with respect to ω (to be defined later). We will now show that these two

equations are equivalent in a very precise sense. Namely, given a solution to the

Hermitian-Yang-Mills flow, we produce a solution to Yang-Mills flow and vice-versa.

First, we assume that the Hermitian-Yang-Mills flow has a solution. To con-

struct a solution to the Yang-Mills flow, we will need to first consider the following

equivalent Yang-Mills flow equations:

∂Ãt
∂t

= −d∗
Ãt
FÃt + dÃtα(t), Ã0 ∈ A1,1

h , α(t) ∈ Ω0(u(E)).

Here, the one-parameter family dÃtα(t) of endomorphism valued 1-forms are ele-

ments of the tangent space to a G orbit, which is the space Ω1(u(E)). Therefore,

up to the action of G (i.e. in the quotient space B1,1
h ), one expects this equation to
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have the same solutions as the Yang-Mills flow. We will show that a solution of this

equivalent flow can be obtained from a solution to the HYM flow equations.

If we consider two different Hermitian metrics on h1 and h2 on the fixed holo-

morphic vector bundle E, then we may define a positive definite, self-adjoint element

of GC by k = h−1
2 h1, where

h1(σ, τ) = h2(kσ, τ).

Then the corresponding Chern connections ∇1 = ∂h1 + ∂̄h1 and ∇2 = ∂h2 + ∂̄h2 can

be seen by a simple computation to satisfy

∂̄h2 = ∂̄h1

∂h2 = k−1 ◦ ∂h1 ◦ k = ∂h1 + k−1∂h1k

so that also

Fh2 − Fh1 = ∂̄h1(k−1∂h1k).

These relations hold for any two metrics.

Now for a fixed Hermitian metric h0 = h(0), write h−1
0 h(t) = k(t). Note that

h−1 ∂ht
∂t

= k−1 ∂kt
∂t
. Let A0 be the Chern connection for the metric h0. Since by the

above relation:

Fh(t) = Fh0 + ∂̄h0(k(t)−1∂h0k(t))

we may consider (in place of the Hermitian-Yang-Mills flow) the equation:

k(t)−1∂k(t)

∂t
= −2(

√
−1Λω(Fh0 + ∂̄h0(k(t)−1∂h0k(t)))− µω(E)IdE).

In other words, the existence of a solution to the HYM equations implies existence

for the above system. Since k(0) = id and k(t) is positive definite, there is a complex
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gauge transformation g(t) ∈ GC such that g(t)g(t)∗ = k(t)−1. A priori this choice is

not unique.

Lemma 1 Let k(t) be a solution to the above equation. Let g(t) ∈ GC such that

g(t)g(t)∗ = k(t)−1, and let Ã(t) = g(t) · A0. Then Ã(t) is a solution to

∂Ãt
∂t

= −d∗
Ãt
FÃt + dÃtα(t)

with α(t) = 1
2
(g−1 ∂g

∂t
− ∂g∗

∂t
(g∗)−1).

Proof. Let Ã(t) = g(t) · A0. Then we have the identity:

gFÃ(t)g
−1 = FA0 + ∂̄A0(k−1(∂A0k)).

Differentiating at Ã(t) gives:

∂Ãt
∂t

=
∂

∂ε
|ε=0 d(g+ε ∂g

∂t
)·A0

= (∂̄Ã(t)(g
−1∂g

∂t
)− ∂Ã(t)(

∂g∗

∂t
)(g∗)−1)

=
1

2
(∂̄Ã(t) − ∂Ã(t))(g

−1∂g

∂t
+ (

∂g∗

∂t
)(g∗)−1)

+
1

2
(∂̄Ã(t) + ∂Ã(t))((g

−1)
∂g

∂t
− (

∂g∗

∂t
)(g∗)−1).

Then let α(t) = 1
2
(g−1 ∂g

∂t
− ∂g∗

∂t
(g∗)−1). Since g(t)g(t)∗ = k(t)−1, we have:

∂k

∂t
= −(g∗)−1(

∂g∗

∂t
(g∗)−1 + g−1∂g

∂t
)g−1.

Since we are assuming that k(t) satisfies:

k(t)−1∂k(t)

∂t
= −2(

√
−1Λω(Fh0 + ∂̄h0(k(t)−1∂h0k(t)))− µω(E)IdE)

we have that:

−(g∗)−1(
∂g∗

∂t
(g∗)−1 + g−1∂g

∂t
)g−1

= −2(g∗)−1g−1(
√
−1gΛωFÃ(t)g

−1 − µω(E)IdE)
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so that

1

2
(
∂g∗

∂t
(g∗)−1 + g−1∂g

∂t
) =
√
−1ΛωFÃ(t) − µω(E)IdE.

Together with the equation for ∂Ãt
∂t
this gives:

∂Ãt
∂t

=
√
−1(∂̄Ã(t) − ∂Ã(t))ΛωFÃ(t) + dÃ(t)α(t)

and by the Kähler identities this is the same as

∂Ãt
∂t

= −d∗
Ã(t)
FÃ(t) + dÃ(t)α(t).

Proposition 2 The existence and uniqueness of a long time solution for all time to

the Hermitian-Yang-Mills flow implies the existence and uniqueness of a long time

solution to the Yang-Mills flow with a fixed initial condition.

Proof. We have already seen that a solution to the HYM flow equations gives

a solution to the equivalent Yang-Mills flow equations. Therefore we construct a

unique solution to the Yang-Mills flow equations from a solution to the equivalent

Yang-Mills flow equations. Consider the ODE for a one-parameter subgroup S(t) ∈

GC given by:
∂S

∂t
= S(t)(α(t)− µω(E)Id)

where α : R −→ u(E) is defined as in the previous lemma. Since S(0) = Id and

∂S
∂t
∈ S(t) · u(E) we have that S(t) ∈ G for all t. The previous lemma shows

that α(t) is defined for all t. Therefore there is a solution to the ODE for all

time by the theory of linear ODEs. As in the previous lemma, write Ã(t) for a
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solution to the equivalent flow equations. Write α̃ = α −
√
−1µω(E)Id and define

A(t) = S−1(t) · Ã(t). Then A(t) exists for all t. We show that this is a solution to

the Yang-Mills flow. Differentiating with respect to t gives:

∂At
∂t

=
∂

∂t
(S ◦ dÃ ◦ S−1)

= Sα̃dÃS
−1 − Sd∗

Ã
FÃS

−1 + S(dÃα̃)S−1 − dA
∂S

∂t
S−1

= Sα̃dÃS
−1 − d∗AFA + S(dÃα̃)S−1 − SdAα̃S−1

= −d∗AFA.

As for uniqueness, we will see in subsequent sections that by arguments of

Donaldson and Simpson, a solution to theHYM flow equations is unique. Therefore,

in the above construction, the only place where we might have introduced non-

uniqueness is in the selection of g(t) ∈ GC such that g(t)g(t)∗ = k(t)−1. We show

that in fact, any two such choices yield the same solution of the YM flow.

Let g1(t), g2(t) ∈ GC where g1(t)g1(t)∗ = h(t)−1 = g2(t)g2(t)∗. Let S1(t) and

S2(t) be the solutions of the corresponding ODEs as defined above. Then define

also:

A1(t) = S1(t)−1 · g1(t) · A0 = (g1(t)S1(t)−1) · A0

A2(t) = S2(t)−1 · g2(t) · A0 = (g2(t)S2(t)−1) · A0.

We claim that A1(t) = A2(t). Note that g−1
1 g2g

∗
2(g∗1)−1 = id, so if we set u(t) =

g−1
1 g2, then u(t) ∈ G. Now, once again, define the gauge-fixing terms α1(t) and α2(t)
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by:

α1(t) =
1

2
(g−1

1

∂g1

∂t
− ∂g∗1

∂t
(g∗1)−1)

α2(t) =
1

2
(g−1

2

∂g2

∂t
− ∂g∗2

∂t
(g∗2)−1)

= u(t)−1α1(t)u(t) + u(t)−1∂u(t)

∂t
.

Then the corresponding ODEs are:

S1(t)−1∂S1

∂t
= α1(t)− µω(E)Id

S2(t)−1∂S2

∂t
= α2(t)− µω(E)Id

= u(t)−1α1(t)u(t) + u(t)−1∂u

∂t
.

Now note that S2(t) = S1(t)u(t) is a solution of the second equation, and solutions

of this equation are unique by the theory of linear ODEs. Therefore we have:

g2(t)S2(t)−1 = g1(t)u(t)u(t)−1S1(t)−1 = g1(t)S1(t)−1

which implies that A1(t) = A2(t).

One can also show that given a solution A(t) = g(t) · A0 of the Yang-Mills

flow, the metric h(t) = g(t)g(t)∗h0 is a solution of the Hermitian-Yang-Mills flow.

1.3.2 Short-Time Existence of the Flow

We have shown in the last section that a solution of

h−1
t

∂ht
∂t

= −2
(√
−1ΛωFht − µω(E)IdE

)
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for some finite time implies the existence of a solution to the YM flow. Therefore, to

understand existence and uniqueness questions of the YM flow, it suffi ces to study

the above equation. We have seen that this equation is in turn equivalent to the

equation:

k(t)−1∂k(t)

∂t
= −2(

√
−1(Λω((Fh0 + ∂̄h0(k(t)−1∂h0k(t)))− µω(E)IdE)

for some positive definite self-adjoint endomorphism k(t). The term

−2
√
−1Λω(∂̄h0(k(t)−1∂h0k(t))

may be written as:

2
√
−1k−1(Λω(∂̄h0k)k−1(∂h0k)− 2

√
−1k−1∂̄h0∂h0k

= 2
√
−1k−1(Λω(∂̄h0k)k−1(∂h0k)−

√
−1∆∂h0

k)

Now writing A0 for the Chern connection associated to (h0, ∂̄E), the Kahler identities

imply that:

∆A0 = d∗A0
dA0

=
√
−1Λω(∂̄A0∂A0 − ∂A0 ∂̄A0)

= ∆
∂A0

+ ∆∂̄A0

and

∆
∂A0
−∆∂̄A0

=
√
−1Λω(∂̄A0∂A0 + ∂A0 ∂̄A0) =

√
−1ΛωFA0 .

Therefore, adding these two together:

1

2
(∆A0 +

√
−1ΛωFA0) = ∆

∂A0
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and therefore:

−2
√
−1Λω(∂̄h0(k(t)−1∂h0k(t))

= 2
√
−1k−1(Λω(∂̄h0k)k−1(∂h0k)−

√
−1

1

2
(∆A0 +

√
−1ΛωFA0)k)

= 2
√
−1k−1(Λω(∂̄h0k)k−1(∂h0k)) +

√
−1k−1ΛωFA0k + ∆A0k.

Finally, this implies:

∂k

∂t
= −{∆A0k+

√
−1(ΛωFA0k+kΛωFA0−2µω(E)k)+2

√
−1(Λω((∂̄h0k)k−1(∂h0k)))}.

Now if we set k = Id+K, for small K, the linearisation of this equation is:

−∆A0K −
√
−1(ΛωFA0K +KΛωFA0 − 2µω(E)K)− 2

√
−1(ΛωFA0 − µω(E)Id)

and this equation is parabolic. In particular, the fact that this equation has short-

time solutions is an application of [HAM] Part IV, Section 11, p.122. Therefore we

have:

Proposition 3 For suffi ciently small ε > 0 (possibly depending on the initial condi-

tion) the Hermitian-Yang-Mills flow, and hence the Yang-Mills flow, has a solution

defined for 0 ≤ t < ε.

1.3.3 Uniqueness and Long-Time Existence of the Flow, Convergence

for Stable bundles

First we take care of the much easier problem of uniqueness. To do this we will

first define (following [DO1]) a distance function on the space of Hermitian metrics.
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Let:

τ(h1, h2) = Tr(h−1
1 h2)

σ(h1, h2) = τ(h1, h2) + τ(h2, h1)− 2 rkE.

These are both C∞ functions on X. Note that it follows from the inequality:

λ+
1

λ
≥ 2, for all λ ≥ 0

that σ(h1, h2) ≥ 0 with equality if and only if h1 = h2.

Proposition 4 If h1(t) and h2(t) are two solutions of the equation:

h−1
t

∂ht
∂t

= −2
(√
−1ΛωFht − µω(E)IdE

)
,

then if we write σ = σ(h1(t), h2(t)) then we have

∂σ

∂t
+ ∆σ ≤ 0.

Proof. Clearly it suffi ces to show:

∂τ

∂t
+ ∆τ ≤ 0.

Note that

∂τ

∂t
= Tr

(
h−1

1

∂h2

∂t
− h−1

1

∂h1

∂t
h−1

1 h2

)
.

By assumption:

h−1
1 (t)

∂h1(t)

∂t
= −2

(√
−1ΛωFh1(t) − µω(E)IdE

)
and

h−1
2 (t)

∂h2(t)

∂t
= −2

(√
−1ΛωFh2(t) − µω(E)IdE

)
,
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so letting k = h−1
1 h2 we have

∂τ

∂t
= −2

√
−1 Tr

(
k
(
ΛωFh1(t) − ΛωFh2(t)

))
= −2

√
−1 Tr

(
k
(
Λω∂̄h1

(
k−1∂h1k

)))
= −2

√
−1 Tr

(
Λω

(
∂̄h1∂h1k −

(
∂̄h1k

)
k−1 (∂h1k)

))
= −Tr (4h1k) + 2

√
−1Λω Tr

((
∂̄h1k

)
k−1 (∂h1k)

)
.

Note that the second term is negative and

Tr (4h1k) = 4Tr k = ∆τ .

Therefore we have:

∂τ

∂t
+ ∆τ ≤ 0.

Corollary 1 If h1(t) and h2(t) are solution of the HYM flow for 0 ≤ t < ε and have

the same initial condition h1(0) = h2(0), then h1(t) and h2(t) agree on X × [0, ε).

Proof. Apply the parabolic maximum principle to σ(h1(t), h2(t)) using the previ-

ous proposition.

Long-time existence is rather more diffi cult. The strategy is a common one in

parabolic theory. First one starts with a short time solution, defined on an interval

say [0, T ). Then one shows that ht converges in C∞ to a metric hT . Then we may

use this metric as an initial condition, and apply short-time existence to extend to

a solution on an interval [0, T + ε).

The diffi cult part of this of course is to prove C∞ convergence. It is a straight-

forward corollary of the previous propostion and the maximum principle that there
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ht converges to such a metric hT in C0. C∞ convergence can be proven using the

following a priori estimates on the curvature and Hermitian-Einstein tensor. These

estimates will be generally useful.

Lemma 2 Let At be a path of connections that is formally gauge equivalent to a

solution of the YM flow on some unspecified (possibly infinite) interval. Then:

(1)

∂FAt
∂t

= −4AtFAt

and therefore, (
∂

∂t
+4At

)
TrFAt = 0,

‖TrFAt‖L∞ is decreasing in t and so is bounded, and TrFAt converges to a harmonic

2-form. Also:

d

dt
‖FAt‖

2
L2 = −2

∥∥d∗AtFAt∥∥2

L2 ≤ 0.

Hence, t −→ YM(At), and t −→ HYM(At) are non-increasing.

(2) |ΛωFAt |
2 satisfies

∂ |ΛωFAt |
2

∂t
+4|ΛωFAt |

2 = −2
∣∣d∗AtFAt∣∣2 ≤ 0,

so by the maximum principle for the heat operator ∂
∂t

+4, sup |ΛωFAt|
2 is decreasing

in t, and therefore ΛωFAt is bounded in L
∞.

(3) (
∂

∂t
+4At

)
|FAt|

2 ≤ C
(
|FAt |

3 + |FAt |
2)
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(4) (
∂

∂t
+4At

) ∣∣∇k
AtFAt

∣∣2
≤ Ck

∣∣∇k
AtFAt

∣∣( ∑
i+j=k

∣∣∇i
AtFAt

∣∣ (∣∣∇j
At
FAt
∣∣+ 1

))
.

Proof. From the flow equations, we have:

∂At
∂t

= −d∗AtFAt .

Taking dAt on both sides we get:

∂FAt
∂t

= −dAtd∗AtFAt = −4AtFAt

by the Bianchi identity. Taking the bundle trace gives the equation in (1), and

the statement about convergence of the trace now follows from a standard result in

parabolic theory.

Now by taking Λω of both sides we get

∂ΛωFAt
∂t

= −4AtΛωFAt = −dAtd∗AtΛωFAt .

Since the pointwise norm is defined by:

|ΛωFAt |
2 = Tr(ΛωFAt ◦ ΛωFAt) =

∑
(ΛωFAt)

i
j (ΛωFAt)

j
i

we have:

∂

∂t
|ΛωFAt |

2 = 2

〈
∂

∂t
ΛωFAt ,ΛωFAt

〉
= −2 〈4AtΛωFAt ,ΛωFAt〉 ,

4At |ΛωFAt |
2 = 2

〈
dAtd

∗
AtΛωFAt ,ΛωFAt

〉
− 2 |dAtΛωFAt |

and adding these two we get:

∂

∂t
|ΛωFAt |

2 +4At |ΛωFAt |
2 = −2 |dAtΛωFAt | ≤ 0.
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The equality in (2) follows from the Kähler identities.

Parts (3) and (4) are more labour intensive. Proofs can be found for example

in [DO1] or in [KOB] Chapter 6, Section 8.

The import of these estimates is the following lemma.

Lemma 3 Let ht be a smooth solution of the HYM flow for 0 ≤ t < T . Then if

there is a uniform bound on the curvature |Fht | ≤ B, on X × [0, T ). Then all the

covariant derviatives are also bounded uniformly:
∣∣∇kFht

∣∣ ≤ Bk on X × [0, T ).

Proof. The proof is by induction on k. The case k = 0 is the hypothesis. For

the inductive step suppose that
∣∣∇jFht

∣∣ are bounded for all j < k. By (4) of the

previous lemma we have:

(
∂

∂t
+4ht

) ∣∣∇k
htFht

∣∣2 ≤ C
(

1 +
∣∣∇k

htFht
∣∣2) .

The linear equation of the form:

(
∂

∂t
+4

)
u =

(
∂

∂t
+4

)
(1 + u) = C (1 + u) , u(0) =

∣∣∇k
htFht

∣∣2 (0)

is linear in (1 + u), and so has a unique solution u for all t. Then computing:

(
∂

∂t
+4

)((∣∣∇k
htFht

∣∣2)− u) e−Ct
= e−Ct

((
∂

∂t
+4

) ∣∣∇k
htFht

∣∣2 − C (∣∣∇k
htFht

∣∣2 + 1
))
≤ 0

and so by the maximum principle we have
∣∣∇k

htFht
∣∣2 ≤ u.

From the facts that a one parameter family ht of metrics along the flow has

a C0 limit as t −→ T , and has uniformly bounded Hermitian-Einstein tensor, it is

fairly straightforward to prove that ht is bounded uniformly in C1 and Lp2 and Fht is
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uniformly bounded in Lp for any p <∞. In turn, the asymptotic expansion for the

heat kernel of ∂
∂t

+4 can be used to show that an Lp bound on Fht in fact implies

an L∞ bound. Now the previous lemma implies that all the derivatives ∇kFht are

bounded on X× [0, T ). This furthermore imples that the Hermitian-Einstein tensor

is also bounded in Ck for all k. Then, using the local expression for the curvature

gives:

ΛωFht = h−1
t 4ht −

√
−1Λω (∂ht)h

−1
t

(
∂̄ht
)
.

Assuming inductively that ht is bounded in C l for all l < k, this means that 4ht

is bounded uniformly in Ck−2, so by elliptic regularity, ht is bounded in Ck. Now

long-time existence of the equation follows.

Long-time existence of the Yang-Mills flow, as sketched above was originally

proven in [DO1], for a compact, Kähler X. The main acheivement of [DO1] and

[DO2] was to prove that in the case that the bundle is stable and X is projective,

the flow converges to an Hermitian-Einstein metric. This requires the introduction

of of an alternative functional on the space of metrics, which is defined using Bott-

Chern classes. The projectivity assumption was necessary because Donaldson used

the theorem of Mehta-Ramanathan that says that the for some positive m the

restriction of a semi-stable bundle to a generic smooth hypersurface in the linear

system |O(m)| remains semi-stable. This result requires projectivity.

Finally, we note that in [SI], Simpson was able to drop the compactness re-

striction on X and instead impose the following assumptions:

• X has finite volume.
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• There exists an exhaustion function ψ with ∆ψ bounded. Take ψ ≥ 0.

• There is an increasing function a : [0,∞) −→ [0,∞) with a(0) = 0 and

a(x) = x for x > 1, such that if f is a bounded, positive function on X with

∆f ≤ B then

sup
X
|f | ≤ C(B)a

(∫
X

|f |
)
.

Furthermore, if ∆f ≤ 0 then ∆f = 0.

These assumptions are satisfied if X is compact, and more generally if X is

the complement of a holomorphic subvariety in a compact Kähler manifold X̄ such

that the ω for X extends to a Kähler form on X̄. This latter condition is the one

we will actually need to use.

The proof of longtime existence and convergence of the flow in [SI] for X

satisfying these somewhat more general assumptions is based on an adaptation of

Donaldson’s work, coupled with the use of techniques of Uhlenbeck and Yau, whose

proof of the Kobayashi-Hitchin correspondence in [UY] works for arbitary compact

Kähler manifolds and does not use the flow. In particular, [SI] uses the existence

of weakly holomorphic projection operators proved in [UY] (and to be discussed in

the next section).

The basic strategy is to solve the equation on a compact manifoldXc satisfying

certain boundary conditions, and then takes the limit as c −→ ∞. More explicitly,

fix c and let Xc be the compact space with ψ(x) ≤ c, and denote the boundary by

Yc. Let H be a metric on E −→ X, and ∂
∂ν
denote differentiation of sections of E in

the direction perpendicular to the boundary using the Chern connection associated

38



to H. We will consider metrics h that either satisfy:

∂

∂ν
h|Yc = 0

or

h|Yc = H|Yc .

These are the Neumann and Dirichlet boundary conditions respectively.

For completeness we state Simpson’s result.

Theorem 4 Let (X,ω) be a Kähler manifold satisfy the conditions stated above.

Let S be a stable bundle on X with an hermitian metric h0. Then the equation:

h−1
t

∂ht
∂t

= −2
(√
−1ΛωFht − µω(E)IdE

)
, h(0) = h0

has a solution for all time and converges at infinity to an Hermitian-Einstein metric

on S.

1.4 Properties of Sheaves, the HNS filtration, Weakly Holomorphic

Projections, and Second Fundamental Forms

1.4.1 Subsheaves of Holomorphic Bundles and the HNS Filtration

As stated in the introduction, the main obstacle we will face is that we must

consider arbitrary subsheaves of a holomorphic vector bundle. Throughout, X will

be a compact Kahler manifold (unless otherwise stated) with Kahler form ω, E a

holomorphic vector bundle, and S ⊂ E a subsheaf.
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Recall that an analytic sheaf F on X is called torsion free if the natural map

F −→ F∗∗ is injective. We call F reflexive if this map is an isomorphism. Of vital

importance is the fact that a torsion free sheaf is "almost a vector bundle" in the

following sense. For F a sheaf on X we define the singular set:

Sing(F) = {x ∈ X | Fx is not free}.

Here Fx is the stalk of F over x. In other words Sing(F) is the set of points where

F fails to be locally free, i.e. a vector bundle. The set Sing(F) is closed, and

furthermore is a complex analytic subvariety of X. We have the following result.

Proposition 5 If F is torsion free, then codim Sing(F) ≥ 2. If F is reflexive then

codim Sing(F) ≥ 3.

For the proof see [KOB].

Now in our case, a vector bundle E is clearly torsion free, so any subsheaf S

is also. Therefore the above result applies to S. On the other hand, the quotient

Q = E/S may not be torsion free. We define the torsion Tor(Q) to be the kernel of

the sheaf map Q −→ Q∗∗. To obtain a sheaf which does have torsion-free quotient,

define the saturation of S in E by SatE(S) = ker(E −→ Q/Tor(Q)). Note that S is

a subsheaf of SatE(S) with torsion quotient, and the quotient E/ SatE(S) is torsion

free. The same holds true of course for subsheaves of an arbitrary torsion free sheaf

F . We also have the following lemma.

Lemma 4 Let F be torsion free. Suppose S1 ⊂ S2 ⊂ F are subsheaves with S2/S1

torsion. Then SatE(S1) = SatE(S2).
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Proof. We claim SatE(S1) ⊂ SatE(S2). The natural map SatE(S1) −→ F/ SatE(S2)

given by inclusion followed by projection factors through a map SatE(S1)/S1 −→

F/ SatE(S2) since S1 ⊂ SatE(S2). But on the other hand SatE(S1)/S1 is torsion and

so has torsion image, but then its image must be zero since F/ SatE(S2) is torsion

free. Thus we have the first inclusion. We therefore have a map SatE(S2)/ SatE(S1) −→

F/ SatE(S1). By assumption SatE(S2)/ SatE(S1) is torsion, and so has torsion (and

hence zero) image. Then SatE(S2) ⊂ SatE(S1).

The ω-slope of a torsion free sheaf F on X is defined by:

µω(F) = degω(F)/ rk(F) =
1

rk(F)

∫
X

c1(F) ∧ ωn−1.

Note that the right hand side is well defined independently of the representative

for c1(F) since ω is closed. Throughout we will assume that the volume of X with

respect to ω is normalised to be 2π/(n− 1)!, where n = dimCX.

Definition 2 We say that a torsion free sheaf F is ω-stable (ω-semistable) if

for all proper subsheaves S ⊂ F , µω(S) < µω(F) (µω(S) ≤ µω(F)). Equivalently

µω(Q) > µω(F) (µω(Q) ≥ µω(F)) for every torsion free quotient Q.

We have the following important proposition.

Proposition 6 There is an upper bound on the set of slopes µω(S) of subsheaves of

a torsion free sheaf F , and more over this upper bound is realised by some subsheaf

F1 ⊂ F . Moreover, we can choose F1 so that for any S ⊂ F , if µω(S) = µω(F1)

then rk(S) ≤ rk(F1).
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For the proof see Kobayashi. The sheaf F1 is called the maximal destabil-

ising subsheaf of F . This sheaf is also clearly semistable.

Remark 1 If S ⊂ F is a subsheaf with torsion free quotient Q = F/S, then Q∗ ↪→

F∗ is a subsheaf and deg(Q∗) = − deg(Q). By the above proposition µω(Q∗) is

bounded from above, so µω(Q) is bounded from below.

Remark 2 Note also that the saturation of a sheaf has slope at least as large as the

slope of the original sheaf. Therefore the maximal destabilising subsheaf is saturated

by definition.

Definition 3 We will write µmax(F) for the maximal slope of a subsheaf, and

µmin(F) for the minimal slope of a torsion free quotient. Clearly we have the equality

µmin(F) = −µmax(F∗).

We now specialise to the case of a holomorphic vector bundle E, although the

following all holds also for an arbitrary torsion-free sheaf.

Proposition 7 There is a filtration:

0 = E0 ⊂ E1 ⊂ ... ⊂ El = E

such that the quotients Qi = Ei/Ei−1 are torsion free and semistable, and µω(Qi+1) <

µω(Qi). Furthermore, the associated graded object:

GrHNω (E) = ⊕iQi

is uniquely determined by the isomorphism class of E and is called the Harder-

Narasimhan filtration.
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In the sequel we will usually abbreviate this as the HN filtration, and we will

write FHNi (E) for the ith piece of the filtration. The previous proposition follows

from Proposition 2. The maximal destabilising subsheaf is FHN1 (E). Then consider

the quotient E/FHN1 (E) and its maximal destabilising subshseaf. Define FHN2 (E) to

be the pre-image of this subsheaf under the natural projection. Iterating this process

gives the stated filtration, and one easily checks that it has the desired properties.

Another invariant of the isomorphism class of E is the collection of all slopes

of the quotient Qi.

Definition 4 Let E have rank R. Then we form an R-tuple

µ(E) = (µ(Q1), ...µ(Q1), ..., µ(Qi), ..., µ(Qi), ...µ(Ql), ...µ(Ql))

where µ(Qi) is repeated rk(Qi) times. Then µ(E) is called the Harder-Narasimhan

(or HN) type of E.

The set of all HN types of holomorphic bundles on X has a partial ordering

due to Shatz. For a pair of R-tuples µ and λ with µ1 ≥ µ2 ≥ ... ≥ µR and

λ1 ≥ λ2 ≥ ... ≥ λR and
∑

i µi =
∑

i λi, we write

µ ≤ λ⇐⇒
∑
j≤k

µj ≤
∑
j≤k

λj for all k = 1, ..., R.

This partial ordering was originally used by Atiyah and Bott to stratify the space

of holomorphic structures on a complex vector bundle over a Riemann surface.

We have the following fact.

Lemma 5 Let µ = (µ1, ..., µR) and λ = (λ1, ..., λR) be R-tuples with non-increasing

entries as above. Suppose there is a partition 0 = R0 < R1 < ... < Rl = R such
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that µi = µj for all pairs i, j satisfying: Rk−1 + 1 ≤ i, j ≤ Rk, k = 1, ..., l. If∑
j≤Rk µj ≤

∑
j≤Rk λj , for all k = 1, ..., l, then µ ≤ λ.

For the proof see Atiyah-Bott 7.

We will also need a result describing the HN filtration of E in terms of then

HN filtration of a subsheaf S and its quotient Q.

Lemma 6 Let E be a holomorphic vector bundle. Consider the subsheaf FHN1 (E) ⊂

E and set Q = E/FHN1 (E). Then

FHNi+1 (E) = ker
(
E −→ Q/FHNi (Q)

)
.

Therefore in particular,FHNi+1 (E)/FHN1 (E) = FHNi (Q).

Proof. If i = 0 this is true by definition of the objects involved. If i = 1, then

FHN2 (E) is the pre-image of FHN1 (Q) under the quotient map E −→ Q, in other

words, exactly the statement of the lemma. Now we proceed by induction. Assume

that we have:

FHNi (E) = ker
(
E −→ Q/FHNi−1 (Q)

)
.

Then by definition of FHNi+1 (E):

FHNi+1 (E) = ker

(
E −→ E/FHNi (E)

FHN1 (E/FHNi (E))

)
= ker

(
E −→

Q/FHNi−1 (Q)

FHN1

(
Q/FHNi−1 (Q)

))

= ker

(
E −→

Q/FHNi−1 (Q)

FHNi (Q)/FHNi−1 (Q)

)
= ker

(
E −→ Q/FHNi (Q)

)

Proposition 8 Let

0 −→ S −→ E −→ Q −→ 0
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be an exact sequence of torsion free sheaves with E a holomorphic vector bundle such

that µmin(S) > µmax(Q). Then the HN filtration of E is given by:

0 ⊂ FHN1 (S) ⊂ ... ⊂ FHNk (S) = S ⊂ FHNk+1(E) ⊂ ... ⊂ FHNl (E) = E,

where

FHNk+i (E) = ker
(
E −→ Q/FHNi (Q)

)
for i = 0, 1, ..., l − k.

In particular, this means that Qi = FHNk+i (E)/FHNk+i−1(E) = FHNi (Q) and therefore

GrHN(E) = GrHN(S)⊕GrHN(Q).

Proof. Let E1 be the maximal destabilising subsheaf of E. Then by assumption

we have:

µω(E1) ≥ µmax
ω (S) ≥ µmin

ω (S) > µmax
ω (Q).

If the projection map E1 −→ Q were non-zero, by semi-stability of E1we would

have:

µω (im (E1 −→ Q)) ≥ µω(E1) > µmax
ω (Q),

which condradicts the definition of µmax
ω (Q). Then necessarily E1 ⊂ S, and if

E1 6= S, then E1 must be the maximal destabilising subsheaf of S.

We proceed by induction on the length of the HN filtration of S. If S is semi-

stable then the above argument implies that S = E1 = FHN1 (E). In the statement

of the proposition is exactly the same as that of the preceding lemma. Now let

S be arbitrary and suppose that the statement has been proven for all such exact

sequences such that the HN filtration of the subsheaf in the sequence is strictly
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shorter than that of S. Now we have an induced exact sequence:

0 −→ S/E1 −→ E/E1 −→ Q −→ 0

and furthermore this sequence still satisfies µmin
ω (S/E1) = µmin

ω (S) > µmax
ω (Q). By

the inductive hypothesis we have:

0 ⊂ FHN1 (S/E1) ⊂ ... ⊂ FHNk−1 (S/E1)

= S/E1 ⊂ FHNk (E/E1) ⊂ ... ⊂ FHNl−1 (E/E1) = E/E1,

where

FHNk+i−1 (E/E1) = ker
(
E/E1 −→ Q/FHNi (Q)

)
.

Now by the previous lemma we have:

FHNi+1 (E) = ker

(
E −→ E/E1

FHNi (E/E1)

)
.

Combining these two equalities gives:

FHNk+i (E/E1) = ker

(
E −→ E/E1

ker (E/E1 −→ Q/FHNi (Q))

)
= ker

(
E −→ Q/FHNi (Q)

)
.

Now for i ≤ k − 1, by induction and the previous lemma we have:

FHNi+1 (E) /E1 = FHNi (E/E1) = FHNi (S/E1) .

Therefore:

FHNi+1 (E) = ker

(
E −→ E/E1

FHNi (E/E1)

)
= ker

(
E −→ E/E1

FHNi (S/E1)

)
= ker

(
E −→ E/E1

FHNi+1 (S)/E1

)
= ker

(
E −→ E/FHNi+1 (S)

)
= FHNi+1 (S).
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Corollary 2 Suppose that

0 ⊂ E1 ⊂ ... ⊂ El−1 ⊂ El = E

is a filtration of E by subbundles, and suppose that for each i µmin(Ei) > µmax(E/Ei).

Then the Harder-Narasimhan filtration of E is given by:

0 ⊂ FHN
1 (E1) ⊂ ... ⊂ FHN

k1
(E1) = E1 ⊂ ... ⊂ FHN

k1+...+kl−1
(El−1) = El−1

⊂ FHN
k1+...+kl−1+1(E) ⊂ ... ⊂ FHN

k1+...+kl
(E) = E.

Proof. This is immediate from the previous proposition.

Now we will define the double filtration that appears in the statement of the

Main Theorem. Its existence follows from the existence of the HN filtration and

the following proposition.

Proposition 9 Let Q be a semi-stable torsion free sheaf on X. Then there is a

filtration:

0 ⊂ F1 ⊂ ... ⊂ Fl = Q

such that Fi/Fi−1 is stable and torsion-free. Also, for each i we have µ (Fi/Fi−1) =

µ(Q). The associated graded object:

GrSω(Q) = ⊕iFi/Fi−1

is uniquely determined by the isomorphism class of Q. This filtration is called the

Seshadri filtration of Q.

For the proof see Kobayashi. An immediate corollary is the following.
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Proposition 10 Let E be a holomorphic vector bundle on X. Then there is a

double filtration {Ei,j} with the following properties. If the HN filtration is given

by:

0 ⊂ E1 ⊂ ... ⊂ El−1 ⊂ El = E,

then

Ei−1 = Ei,0 ⊂ Ei,1 ⊂ ... ⊂ Ei,li = Ei

where the successive quotients

Qi,j = Ei,j/Ei,j−1

are stable and torsion-free. Furthermore:

µω(Qi,j) = µω(Qi,j+1)

µω(Qi,j) > µω(Qi+1,j).

The associated graded object

GrHNSω (E) = ⊕i⊕jQi,j

is uniquely determined by the isomorphism class of E. This double filtration is called

the Harder-Narasimhan-Seshadri filtration (or HNS filtration) of E.

Similarly, we define the corresponding type of E as the R-tuple:

µ = (µ(Q1,1), ..., µ(Qi,j), ..., µ(Ql,kl))

where each µ(Qi,j) is repeated according to rk(Qi,j). Note that this is exactly

the same vector as the HN type. Since each of the quotients Qi,j is torsion-free,
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Sing(Qij) lies in codimension 2. We will write:

Zalg = ∪i,j Sing(Ei,j) ∪ Sing(Qi,j).

This is a complex analytic subset (again, we ignore multiplicities) of codimension at

least two, and corresponds exactly to the set of points at which the HNS filtration

fails to be given by subbundles. We will refer to it as the algebraic singular set of

the filtration.

1.4.2 Weakly Holomorphic Projections/Second Fundamental Forms

Let S ⊂ E be a subsheaf with quotient Q. Then away from Sing(S)∪Sing(Q),

S is a subbundle. If we fix an hermitian metric h on E, then we may think of

S as a direct summand away from the singular set, and there is a corresponding

smooth projection operator π : E → S depending on h. The condition of being

a holomorphic subbundle almost everywhere can be shown to be equivalent to the

condition: (IdE − π) ∂̄Eπ = 0. Since π is a projection operator we also have π2 =

π = π∗. Furthermore it can be shown that π extends to an L2
1 section of EndE.

Conversely it turns out that an operator with these properties determines a subsheaf.

Definition 5 An element π ∈ L2
1(EndE) is called a weakly holomorphic projection

operator if the conditions

(IdE − π) ∂̄Eπ = 0 and π2
j = πj = π∗j ∗

hold almost everywhere.
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Theorem 5 (Uhlenbeck-Yau) A weakly holomorphic projection operator π of a holo-

morphic vector bundle (E, h) with a smooth hermitian metric over a compact Kähler

manifold (X,ω) determines a coherent subsheaf of E. That is, there exists a coherent

subsheaf S of E together with a singular set V ⊂ X with the following properties:

·CodimV ≥ 2,

·π|X−V is C∞ and satisfies ∗,

·S|X−V = π|X−V (E|X−V ) ↪→ E|X−V is a holomorphic subbundle.

The proof of this theorem is contained in [UY]. From here on out we will

identify a subsheaf with its weakly holomorphic holomorphic projection.

If S ⊂ E is a subsheaf, then away from Sing(S) ∪ Sing(Q) there is an orthog-

onal splitting E = S ⊕ Q. In general we may write the Chern connection ∇(∂̄E ,h)

connection on E as:

∇(∂̄E ,h) =

∇(∂̄S ,hS) β

−β∗ ∇(∂̄Q,hQ)


where ∇(∂̄S ,hS) and ∇(∂̄Q,hQ) are the induced Chern connections on S and Q respec-

tively, and β is the second fundamental form. Recall that β ∈ Ω0,1(Hom(Q,S)).

More specifically, in terms of the projection operator, we have ∂̄Eπ = β and ∂Eπ =

−β∗. Also β extends to an L2 section of Ω0,1(Hom(Q,S)) everywhere as ∂̄Eπ since

π is L2
1. We also have the following well-known formula for the degree of a subsheaf

in terms of its weakly holomorphic projection.

Theorem 6 (Chern-Weil Formula) Let S ⊂ E be a saturated subsheaf of a holomor-

phic vector bundle with hermitian metric h, and π the associated weakly holomorphic
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projection. Let ∂̄E denote the holomorphic structure on E. Then we have:

degS =
1

2πn

∫
X

Tr
(√
−1ΛωF(∂̄E ,h)π

)
ωn − 1

2πn

∫
X

|β|2 ωn

The statement of this theorem as well as a sketch of the proof may be found

in [SI]. This formula will also follow as a special case of our discussion in Section 4.

Clearly any sequence πj of such projection operators is uniformly bounded in

L∞(X). As an immediate corollary of the Chern-Weil formula we have the following.

Corollary 3 A sequence πj of weakly holomorphic projection operators such that

deg πj is bounded from below is uniformly bounded in L2
1. In particular, if deg πj is

constant then πj is bounded in L2
1.

Now suppose ∇A0 is a reference connection, gj ∈ GC is a sequence of complex

gauge transformations, and ∇Aj is the sequence of integrable unitary connections

on an hermitian vector bundle (E, h) given by ∇Aj = gj · ∇A0 . Let S ⊂ E be a

subbundle with quotient Q. We have a sequence of projection operators πj given by

orthogonal projection onto gj(S) (with respect to the metric h) from E to holomor-

phic subbundles Sj (whose holomorphic structures are induced by the connections

∇Aj) smoothly isomorphic to S. We will denote by Qj the corresponding quotients.

Each of these holomorphic subbundles has a second fundamental form which we will

write as βj. Assume that the βj are also uniformly bounded in L
2 (this will later be

a consequence of our hypotheses). Then with all of the above understood, we have

the following result.

Lemma 7 For any 1 ≤ p < ∞, the βj are bounded in L
p
1,loc(X − Zan), uniformly

for all j. In particular the βj are uniformly bounded on compact subsets of X−Zan.
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Proof. To simplify notation, in the following proof we will continue to write ∇Aj

and ∂̄Aj for the induced operators on EndE. By weak convergence of the sequence

∇Aj in L
p
1,loc for p > n (see the next section), if we write Ωj = ∇Aj −∇A0 , we may

assume Ωj is uniformly bounded in L
p
1,loc for any p, and so in particular the Ωj are

bounded in C0
loc since we have the imbedding L

p
1,loc ↪→ C0

loc. We will write Ω1,0
j and

Ω0,1
j for the (1, 0) and (0, 1) parts of Ωj. Now:

∂̄A0πj = ∂̄Ajπj + Ω0,1
j πj = βj + Ω0,1

j πj

and the βj are bounded in L2. Recall also that πj is bounded in L2
1 and L∞.

On Ω1,0(End(E)) and Ω0,1(End(E)) the Kahler identities are: ∂̄∗ =
√
−1Λω∂ and

∂∗ = −
√
−1Λω∂̄.

We compute:

4∂̄A0
πj = ∂̄∗A0

∂̄A0πj =
√
−1Λω∂A0 ∂̄A0πj

=
√
−1Λω

((
∂Aj − Ω1,0

j

) (
∂̄Aj − Ω0,1

j

)
πj
)

=
√
−1Λω∂Aj ∂̄Ajπj −

√
−1Λω∂Aj

(
Ω0,1
j πj

)
−
√
−1Λω

(
Ω1,0
j ∂̄Ajπj

)
+
√
−1Λω

((
Ω1,0
j ∧ Ω0,1

j

)
πj
)

= 4∂̄Aj
πj −

√
−1Λω

((
∂AjΩ

0,1
j

)
πj
)
− Λω

(
Ω1,0
j ∧ ∂̄Ajπj

)
−
√
−1Λω

(
Ω0,1
j ∧ ∂Ajπj

)
+
√
−1Λω

((
Ω1,0
j ∧ Ω0,1

j

)
πj
)

= 4∂̄Aj
πj −

√
−1Λω

((
∂A0Ω0,1

j

)
πj
)
− Λω

(
Ω1,0
j ∂̄A0πj

)
−
√
−1Λω

(
Ω0,1
j ∧ ∂A0πj

)
−
√
−1Λω

((
Ω1,0
j ∧ Ω0,1

j

)
πj
)

−
√
−1Λω

((
Ω0,1
j ∧ Ω1,0

j

)
πj
)
.
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Now since ∂̄Ajπj = βj, we have the expression:

4∂̄Aj
πj =

√
−1Λω∂Aj ∂̄Ajπj =

√
−1Λω∂Ajβj.

On the other hand:

F(∂̄Aj ,h) =

FSj − βj ∧ β∗j ∂Ajβj

−∂β∗j FQj − β∗j ∧ βj


and since we assume ΛωFAj is uniformly bounded, this implies 4∂̄Aj

πj is bounded

uniformly. By the preceeding discussion, we therefore know that the right hand

side of the expression for 4∂̄A0
πj is bounded in L2

loc. Recall also the Weitzenbock

formula:

4∂̄A0
=

1

2
∇∗A0
∇A0 +

√
−1ΛωFA0 .

Again, the second term is bounded, so we may replace 4∂̄A0
by ∇∗A0

∇A0 at the cost

of adding a bounded term to the right hand side. Therefore ∇∗A0
∇A0πj is bounded

uniformly in L2
loc.

We now bootstrap this expression. Since ∇∗A0
∇A0 is elliptic, by the usual

elliptic estimate:

‖πj‖L2
2,loc
≤ C

(∥∥∇∗A0
∇A0πj

∥∥
L2
loc

+ ‖πj‖L2
1

)
,

so πj is bounded in L2
2,loc and hence in L

p
1,loc for 1 ≤ p ≤ 2n

n−1
by Sobolev

imbedding. Therefore, if we consider again the expression for 4∂̄A0
πj above, it

follows that ∇∗A0
∇A0πj is in fact bounded in L

p
loc for p in this range. Applying the

Lp elliptic estimate:

‖πj‖Lp2,loc ≤ C
(∥∥∇∗A0

∇A0πj
∥∥
Lploc

+ ‖πj‖L2
1

)
,
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and so πj is uniformly bounded in L
p
2,loc for 1 ≤ p ≤ 2n

n−1
. Therefore in particular

βj = ∂̄Ajπj is bounded in L
p
loc for all p. Applying the L

p elliptic estimate again

implies that βj is bounded in L
p
1,loc for all p, and so by Sobolev imbedding βj is

locally bounded.

1.5 Uhlenbeck Compactness, Results of Bando and Siu, Hermitan-

Yang-Mills Type Functionals, and a Theorem About the HN type

1.5.1 Uhlenbeck Compactness and Removable Singularities

We now give the statement of the general Uhlenbeck compactness theorem.

Although we will be primarily concerned with theorem as it applies to the Yang-

Mills flow of the next section, the proof of the main theorem in Section 7 will also

rely on this more general statement.

Theorem 7 Let X be a Kahler manifold (not necessarily compact) and E −→ X a

hermitian vector bundle with metric h. Fix any p > n. Let ∇Aj be a sequence of in-

tegrable, unitary connections on E, on E such that
∥∥FAj∥∥L2(X)

and
∥∥ΛωFAj

∥∥
L∞(X)

are uniformly bounded. Then there is a subsequence (still denoted Aj), a closed

subset Zan ⊂ X with Hausdorff codimension 4, and a smooth hermitian vector bun-

dle (E∞, h∞) defined on the complement X − Zan with a finite action Yang-Mills

connection ∇A∞ on E∞, such that ∇Aj |X−Zan is gauge equivalent to a sequence of

connections that converges to ∇A∞ weakly in L
p
1,loc(X − Zan).
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The statement of this version of Uhlenbeck compactness may be found for

example in Uhlenbeck-Yau (Theorem 5.2). The proof is essentially contained in

[U2] and the statement about the singular set follows from the arguments in [NA].

We will call such a limit ∇A∞ an Uhlenbeck limit. Furthermore, we have the

following crucial extension of this theorem due essentially to Bando and Siu.

Corollary 4 If in addition to the assumptions in the previous theorem, we also

require that: ∥∥dAjΛωFAj
∥∥
L2(X)

−→ 0,

then any Uhlenbeck limit ∇A∞ is Yang-Mills. On X − Zan we therefore have a

holomorphic, orthogonal, splitting:

(E∞, h∞,∇A∞) = ⊕li=1(Q∞,i, h∞,i,∇A∞,i)

Moreover E∞ extends to a reflexive sheaf (still denoted E∞) on all of X.

Proof. Most of the content of this theorem resides in the last statement, and

this is due to Bando-Siu ([BS]) Corollary 2. The statement about the splitting fol-

lows directly from the fact that an Uhlenbeck limit is Yang-Mills and Proposition 1.

Therefore it only remains to prove that the stated condition implies the first state-

ment. Since Aj −→ A∞ weakly in in L
p
1,loc(X−Zan), and by the Rellich compactness

theorem there is a compact imbedding Lp1(X) ↪→ C0(X), we can assume:

Aj −→ A∞ in C0
loc and ΛωFAj −→ ΛωFA∞ weakly in Lploc

since we also have a uniform bound on
∥∥ΛωFAj

∥∥
L∞(X)

by assumption. On the other

hand, writing ∇A∞ = ∇Aj +(∇A∞−∇Aj), and using the expression for a connection
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on an associated bundle, we have:

dA∞ΛωFAj = dAjΛωFAj +
[
∇A∞ −∇Aj ,ΛωFAj

]
,

where the [, ] notation is a combination of wedge-product and composition of endo-

morphisms. By the previous argument and our additional assumption, this implies

dA∞ΛωFAj −→ 0 in L2
loc. We claim that also

dA∞ΛωFAj −→ dA∞ΛωFA∞ weakly in L2
loc.

If we locally write ∇A∞ = d + A∞ for some smooth connection d (here we are

thinking of A∞ as the connection 1-form, which is continuous), then again we may

write locally:

dA∞ΛωFAj = dΛωFAj +
[
A∞,ΛωFAj

]
.

Then for a neighbourhood W ⊂⊂ X − Zan and u an L2 test section of u(E), we

have:

∫
W

〈
dΛωFAj , u

〉
=

∫
W

〈
ΛωFAj , d

∗u
〉

−→
∫
W

〈ΛωFA∞ , d
∗u〉 =

∫
W

〈dΛωFA∞, u〉 ,

so dΛωFAj ⇀ dΛωFA∞ in L2
loc. Similarly the pointwise U(n) invariant inner product

〈, 〉 on u(n) enjoys the property 〈[u, v] , w〉 = 〈u, [v, w]〉 with respect to the bracket.

Then for an L2 test section of Ω1(u(E)):

∫
W

〈[
A∞,ΛωFAj

]
, u
〉

=

∫
W

〈
[A∞, u] ,ΛωFAj

〉
−→

∫
W

〈[A∞, u] ,ΛωFA∞〉 =

∫
W

〈[A∞,ΛωFA∞ ] , u〉 .
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Therefore
[
A∞,ΛωFAj

]
−→ [A∞,ΛωFA∞ ], and so since dA∞ΛωFA∞ = dΛωFA∞ +

[A∞,ΛωFA∞ ] the claim follows. Therefore dA∞ΛωFA∞ = 0, and these are exactly

the HYM equations, so A∞ is HYM and therefore Yang-Mills.

Corollary 5 With the same assumptions as in Theorem 7, ΛωFAj −→ ΛωFA∞ in

Lp(X − Zan) for all 1 ≤ p <∞.

Proof. Let ψk = ΛωFAj − ΛωFA∞ . As in the proof of the preceeding theorem,

ψk −→ 0 weakly in Lploc and dA∞ψk −→ 0 strongly in L2 since ∇A∞ is Yang-Mills.

By Kato’s inequality we have |d |ψk|| ≤ |dA∞ψk|, so |ψk| is bounded on L2
1,loc and

therefore |ψk| −→ 0 strongly in L2
loc. Since ψk is also bounded in L

∞ this implies

|ψk| −→ 0 in Lp for all p.

We may also apply the Uhlenbeck compactness theorem to the sequence of

connections given by the flow.

Proposition 11 Let X be a compact Kahler manifold. Let A0 be any fixed con-

nection, and At denote its evolution along the flow. For any sequence tj −→ ∞

there is a subsequence (still denoted tj), a closed subset Zan ⊂ X with Hausdorff

codimension 4, and a smooth hermitian vector bundle (E∞, h∞) defined on the com-

plement X − Zan with a finite action Yang-Mills connection A∞ on E∞, such that

Atj |X−Zan is gauge equivalent to a sequence of connections that converges to A∞ in

Lp1,loc(X − Zan). Away from Zan there is a smooth splitting:

(E∞, A∞, h∞) = ⊕li=l (Q∞,i, A∞,i, h∞,i)

where A∞,i is the induced connection on Qi, and h∞,,i is an Hermitian-Einstein

metric. Furthermore, E∞ extends over Zan as a reflexive sheaf (still denoted E∞).
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Proof. The functions ‖FAt‖L2 and ‖ΛωFAt‖L∞ are uniformly bounded by parts

(1) and (2) of Lemma 2 respectively. By [DOKR] Proposition 6.2.14,

lim
t−→∞

‖∇AtΛωFAt‖L2 = 0.

The remaining statements follow from Corollary 4.

Just as before we call A∞ an Uhlenbeck limit of the flow.

1.5.2 The Kobayashi-Hitchin Correspondence for Reflexive Sheaves

In general, if E is only a reflexive sheaf, Bando and Siu ([BS]) defined the

notion of an admissable hermitian metric. This is an hermitian metric h on the

locally free part of E such that:

· ΛωFh ∈ L∞(X,ω)

· Fh ∈ L2(X,ω).

Corollary 4 says that the limiting metric is an admissable hermitian metric

on the reflexive sheaf E∞ that is a direct sum of admissable Hermitian-Einstein

metrics. We also point out the version of the Kobayashi-Hitchin correspondence for

reflexive sheaves, due to Bando and Siu [BS].

Theorem 8 (Bando-Siu) A reflexive sheaf E on a compact Kähler manifold (X,ω)

admits an admissible Hermitian-Einstein metric if and only if it is polystable. Such

a metric is unique up to a positive constant.

Note that this theorem says the
(
GrHNSω (E)

)∗∗
carries an admissible Yang-

Mills connection (where admissible has the same meaning for connections), which

is unique up to gauge. We sketch a proof of this result in this section..
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We will need the following two propositions from [BS]., which we will also use

in Chapter 3.

Proposition 12 Let (X,ω) be an n-dimensional compact Kähler manifold and π :

X̃ −→ X a blowup along a compact complex submanifold. Let η be a Kähler metric

on X̃ and consider the family of Kähler metrics ωε = π∗ω + εη with 0 < ε ≤ 1. Let

Kε be the heat kernel with respect to the metric ωε, then we have a uniform estimate

0 ≤ Kε ≤ C (t−n + 1).

In the above proposition we use the general fact that the blowup along a

compact complex submanifold of a Kähler manifold is Kähler. We will sketch a proof

of this fact in the next chapter. We will use the family ωε throughout Chapters 2

and 3.

We will construct the admissible Hermitian-Einstein metric on E , we will patch

together metrics on a local resolution by vector bundles. More explicitly, let E∗ be

the dual, and recall that locally, there is a resolution of the dual by holomorphic

vector bundles. Let Uα be an open subset on which such a presentation exists and

let E∗i,α be the bundles in the resolution:

E∗1,α
φ∗0,α−→ E∗0,α

φ∗α−→ E∗|Uα −→ 0.

Then taking duals we have an inclusion:

0 −→ E|Uα
φα−→ E0,α

φ0,α−→ E1,α.

In other words, we may view E as a subsheaf of locally defined holomorphic vector

bundles E0,α. Away from Sing E , this inclusion realises E as a holomorphic subbun-
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dle. The key point is that we can make an actual holomorphic subbundle if we are

willing to go to a blowup. Namely, there is a finite sequence of blowups:

X̃ = Xk
πk−→ Xk−1 −→ ... −→ X1

π1−→ X0 = X

along compact, complex submanifolds, such that if we denote by π the composition

of all the πi, then π∗E/Tor(π∗E) is locally free. This is a consequence of Hironaka’s

flattening theorem, which says that there is such a sequence of blowups such that

π∗E/Tor(π∗E) = Ẽ is flat, together with the fact that a flat module over a local ring

is free. We will discuss resolution of singularities in more detail in Chapter 2.

Then on Ũα = π−1(Uα) there is an inclusion of vector bundles Ẽ ↪→ E0,α = Eα

where we continue to denote by Ei,α the pullbacks of these bundles to X̃. Now

covering X̃ by such neighbourhoods, we can fix hermitian metrics hα on each Eα and

let ρα be a partition of unity with respect to Ũα then we may write h =
∑
ραφ

∗
αhα.

This defines an hermitian metric on Ẽ that restricts to an hermitian metric, still

denoted h, on E|X−Sing E .

Now we would like to deform this metric using the HYM flow on X̃ to an

admissable Hermitian-Einstein metric. For the rest of this section we will denote

objects on the blowups and on the base by the same symbols without reference to the

pullback. Fix arbitrary Kähler metrics ηi on Xi ane write ωi,ε = ω+ε1η1 + ...+εiηi.

Now consider the HYM flow equations on X̃:

h−1
t

dht
dt

= −
(√
−1Λωk,εFht − λ(E)Id

)
, h(0) = h,

where

λ(E) = 2πnµ(E)/

∫
X

ωn.
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By Donaldson’s work this equation has a long-time solution. Now the curvature

enjoys the following properties:

· P1

∂
∣∣Λωk,εFht

∣∣2
∂t

= −4
∣∣Λωk,εFht

∣∣2 − 2
∣∣d∗AtFht∣∣2

· P2

∂
∣∣Λωk,εFht

∣∣
∂t

≤ −4
∣∣Λωk,εFht

∣∣
· P3

d

dt

∫
Xk

∣∣Λωk,εFht
∣∣2 = −

∫
Xk

∣∣∇Λωk,εFht
∣∣2

· P4 ∫
Xk

∣∣Λωk,εFht
∣∣ (y) ≤

∫
Xk

∣∣Λωk,εFh
∣∣ (y)

· P5 ∣∣Λωk,εFht
∣∣ (x) ≤

∫
Xk

Kt
ωk,ε

(x, y)
∣∣Λωk,εFh

∣∣ (y)

where Kt
ωk,ε

(x, y) is the heat kernel with respect to ωk,ε and h is the metric

constructed above on Ẽ . Then for a fixed ε1 we have:

ωni,ε =
det gi,ε
det gi,ε1

ωni,ε1

and ∣∣Λωi,εFh
∣∣ =

∣∣∣∣∣Fh ∧ ωn−1
i,ε

ωni,ε

∣∣∣∣∣
so ∣∣Λωi,εFh

∣∣ωni,ε =

∣∣∣∣∣Fh ∧ ωn−1
i,ε

ωni,ε1

∣∣∣∣∣ωni,ε1
and clearly this is uniformly bounded since as ε −→ 0 we have ωi,ε −→ ω. Therefore

Λωi,εFh is uniformly integrable.
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Now Proposition 12 says that if we fix a k − 1 tuple ε
′

= (ε1, ..., εk−1), then

the heat kernel Kt
ωk,ε

(x, y) has a uniform bound. Furthermore, outside the excep-

tional divisor, Kt
ωk,ε

(x, y) converges to Kt
ω
k,ε
′ (x, y) as εk −→ 0. P4 and P5 to-

gether with the above discussion imply that
∣∣Λωk,εFht

∣∣ has a uniform L1 bound for

t ≥ 0 and a uniform L∞ bound for t ≥ t0 > 0, or on a compact set disjoint from

the exceptional divisor. The usual relationship between the full curvature and the

Hermitian-Einstein tensor now give a uniform L2 bound on Fht.

This means that for any fixed t > 0, as εk −→ 0 the limit ht,ε/ = limεk−→0 ht,ε

solves the HYM equations on Xk−1 and is an admissible metric. Continuing by

induction, for each t > 0 we obtain an admissible hermitian metric ht on E solving

the HYM equations on X − Sing(E).

Now if E is stable, then Theorem 4 implies that there is a sequence of times ti

such that hti converges to an admissible Hermitian-Einstein metric. More generally,

in the polystable case we have obtained an admissible Hermitian-Einstein metric.

If E is a general reflexive sheaf, P3 still holds for the family of metrics ht, so

integrating gives: ∫ ∞
t0

∫
X

|∇ΛωFht|
2 ≤

∫
X

∣∣ΛωFht0
∣∣2 .

In other words, there is a subsequence of times ti such that

∫
X

∣∣∇ΛωFhti
∣∣2 −→ 0.

Now by Corollary 4 there is a subset S ⊂ X − Sing(E) or Hausdorff codimension

4, and a further subsequence of times ti such that hti converges to a weak solution

h∞ of the equation ∇ΛωFh∞ = 0. Then, as usual, the limiting bundle E∞ defined
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on X − (Sing(E) ∪ S) breaks up into a direct sum of the eigenspaces of Fh∞ . Fur-

thermore these bundles extend to reflexive sheaves over Sing(E) ∪ S. This shows

that the limiting sheaf we have E∞ breaks up into a direct sum of reflexive sheaves

admitting admissible Hermitian-Einstein metrics, which is exactly what we claimed

in Proposition 11.

Furthermore, the following can be used to show uniqueness up to a positive

constant.

Proposition 13 Let (E , h) be a reflexive sheaf with an admissible Einstein-Hermitian

metric on a compact Kahler manifold (X,ω). If µ(E) < 0 (= 0) then E admits only

the zero section (every section is parallel).

Proof. If s is a global section of E , then [BS] Theorem 2 b) gives a bound on |s|

on all of X. It satisfies:

4|s|2 = |∇s|2 − 〈(ΛωFh) s, s〉 = |∇s|2 − λ(E) |s|2 ≥ 0.

Since subharmonic functions satisfy the maximum principle |s| is constant, which

implies |∇s|2 = λ(E) |s|2 and the result follows.

1.5.3 A Remark About the the HN Type of the Limit

Lemma 8 Let Atj be a sequence of connections along the YM flow with Uhlenbeck

limit A∞. Then For tj ≥ t0 ≥ 0,

‖ΛωFA∞‖L∞ ≤
∥∥∥ΛωFAtj

∥∥∥
L∞
≤
∥∥ΛωFAt0

∥∥
L∞

.
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Proof. Again, |ΛωFAt |
2 is decreasing in t. Fix t ≥ 0. Then for any 1 ≤ p < ∞

and j suffi ciently large we have:

∥∥∥ΛωFAtj

∥∥∥
Lp
≤ (2π)

1
p

∥∥∥ΛωFAtj

∥∥∥
L∞
≤ (2π)

1
p ‖ΛωFAt‖L∞

(recall vol(X) = 2π). By Corollary 4,

lim
j·∞

∥∥∥ΛωFAtj

∥∥∥
Lp

= ‖ΛωFA∞‖Lp ,

for all p. So

‖ΛωFA∞‖Lp ≤ (2π)
1
p ‖ΛωFAt‖L∞

for all p. Therefore letting p −→∞,

‖ΛωFA∞‖L∞ ≤ ‖ΛωFAt‖L∞ .

Lemma 9 If A∞ is an Uhlenbeck limit of Atj , then ΛωFAj −→ ΛωFA∞ in Lp for

all 1 ≤ p <∞. Moreover, limt−→∞HYM(At) = HYM(A∞).

Proof. The first part is immediate from Corollary 5. The second statement is

immediate from the facts that t −→ HYM(At) is non-increasing, and

HYM(Atj) −→ HYM(A∞).

We will need the following lemma from linear algebra:

Lemma 10 Let V be a finite dimensional hermitian vector space of complex di-

mension R, and L ∈ End(V ) an hermitan operator with eigenvalues λ1 ≥ ... ≥ λR
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(counted with multiplicities). Let π = π2 = π∗ denote the orthogonal projection onto

a subspace of dimension r. Then Tr(Lπ) ≤
∑

i≤r λi.

For a sketch of the proof see [DW1] Section 2.3. Now we discuss the HNS

type of an Uhlenbeck limit.

Lemma 11 Let Aj = gj(A0) be a sequence of complex gauge equivalent integrable

connections in a complex vector bundle of rank R with hermitian metric h0. Let S

be a coherent subsheaf of (E, ∂̄A0) of rank r. Suppose that
√
−1ΛωFAj −→ v in L1,

where v ∈ L1(
√
−1u(E)), and that the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λR of v counted

with multiplicities are constant almost everywhere. Then: deg(S) ≤
∑

i≤r λi.

Proof. As stated earlier, deg(S) ≤ deg(SatE(S)), so we may assume S is saturated.

Let πj denote the weakly holomorphic projection to gj(S) with respect to h0. Then

by the Chern-Weil formula:

deg(S) =
1

2πn

∫
X

(
Tr(
√
−1ΛωFAj −

∣∣∂̄Ajπj∣∣2)ωn
≤ 1

2πn

∫
X

Tr(
√
−1ΛωFAjπj)ω

n

=
1

2πn

∫
X

Tr(vπj)ω
n − 1

2πn

∫
X

Tr
((√
−1ΛωFAj − v)πj

))
ωn.

Therefore since ‖πj‖L∞ ≤ 1, vol(X) = 2π
(n−1)!

, by the previous lemma we have:

deg(S) ≤
∑
i≤r

λi +
1

2πn

∥∥√−1ΛωFAj − v
∥∥
L1 .

Letting j −→∞ we have the result.

The following simple fact will be crucial in section 5.
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Proposition 14 Let Aj be a sequence of connections along the YM flow on a holo-

morphic vector bundle of rank R, with Uhlenbeck limit A∞. Let µ0 be the HNS

type of E with holomorphic structure ∂̄A0. Let λ∞ be the HNS type of ∂̄A∞. Then

µ0 ≤ λ∞.

Proof. Let 0 = E0 ⊂ E1 ⊂ ... ⊂ El = E∂̄A0
be the HNS filtration of ∂̄A0 ., and let

µ0 = (µ1, ..., µR) (here we are ignoring the notation indicating the fact that it is a

double filtration). Then

deg(Ei) =
∑

j≤r rk(Ei)

µj.

By Lemma 9, ΛωFAj −→ ΛωFA∞ in L
1. The type λ∞ = (λ1, ..., λR) corresponds to

the (constant) eigenvalues of ΛωFA∞ . By the previous lemma applied to S = Ei, we

have

deg(Ei) ≤
∑

j≤rk(Ei)

λj.

Therefore ∑
j≤rk(Ei)

µj ≤
∑

j≤rk(Ei)

λj,

and the result follows from Lemma 5.

Corollary 6 Let µ = (µ1, ..., µR) be the HNS type of a rank R holomorphic vector

bundle (E, ∂̄E) on X. Then

R∑
i=1

µ2
i ≤

1

2πn

∫
X

|ΛωFA|2 ωn

and (
R∑
i=1

µ2
i

) 1
2

≤ 1

2πn

∫
X

|ΛωFA|ωn

for all unitary connections ∇A in the GC orbit of (E, ∂̄E).
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Proof. Let At denote the YM flow with initial condition A. By 3.1(2) we know:

∫
X

|ΛωFAt |
2 ωn ≤

∫
X

|ΛωFA|2 ωn,

for every t ≥ 0. Let A∞ be an Uhlenbeck limit along a subsequence tj −→ ∞. By

Lemma 9, ∫
X

|ΛωFA∞|
2 ωn = lim

j−→∞

∫
X

∣∣∣ΛωFAtj

∣∣∣2 ωn.
As before,

√
−1ΛωFA∞ has constant eigenvalues λ∞ and by the previous proposition

µ ≤ λ∞. It follows from Atiyah-Bott, 12.8 that

R∑
i=1

µ2
i ≤

R∑
i=1

λ2
i .

This, together with the previous two inequalities and the normalisation vol(X) =

2π
(n−1)!

gives the first result. The second follows in exactly the same way.

1.5.4 Hermitian-Yang-Mills Type Functionals

The YM andHYM functionals are not suffi cient to distinguish differentHNS

types in general. In other words there may be multiple connections with the same

YM number, but which induce holomorphic structures with different HNS types.

In this subsection we introduce generalisations of the HYM functional that can be

used to distinguish different types. This is only a technical device, but will be used

essentially in Section 5.

Write u(R) for the Lie algebra of the unitary group U(R). Fix a real number

α ≥ 1. The for v ∈ u(R), a skew hermitian matrix with eigenvalues
√
−1λ1, ...,

√
−1λR,

let ϕα(v) =
∑R

i=1 |λi|
α. It can be seen that there is a family ϕα,ρ, 0 < ρ ≤ 1, of
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smooth convex Ad-invariant functions such that ϕα,ρ −→ ϕα uniformly on compact

subsets of u(R). By Atiyah-Bott, Proposition 12.16, ϕα is a convex function on

u(R). We may consider a section σ ∈ Γ(X, u(E)) as collection of local sections {σβ}

such that σβ = Ad(gβρ)σρ where gβρ are the transition functions for E. By the

Ad-invariance of ϕα, ϕα(σβ) = ϕα(σρ), so ϕα induces a well-defined function Φα on

u(E). Then for a fixed real number N , define:

HYMα,N(A) =

∫
X

Φα(ΛωFA +
√
−1NIdE)dvolω

and HYMα(A) = HYMα,0(A). Note that HYM = HYM2 is the usual HYM

functional. In the sequel we will write:

HYMα,N(µ) = HYMα(µ+N) =
2π

(n− 1)!
Φα(
√
−1 (µ+N)),

where µ+N = (µ1 +N, ..., µR +N)

is identified with the matrix diag (µ1 +N, ..., µR +N). Therefore:

HYM(µ) =
2π

(n− 1)!

R∑
i=1

µ2
i .

We have the following elementary lemma.

Lemma 12 The functional v −→
(∫

X
Φα(v)

) 1
α is equivalent to the Lα(u(E)) norm.

Proof. There are universal constants C1 and C2 (depending on R) such that for

any real numbers λ1, ..., λR, and α ≥ 1 :

1

C1

(
R∑
i=1

|λi|2
)α

2

≤ 1

C1

(
R∑
i=1

|λi|
)α
≤

R∑
i=1

|λi|α

≤ C1

(
R∑
i=1

|λi|
)α
≤ C2

(
R∑
i=1

|λi|2
)α

2

.
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Applied to the eigenvalues of v, this gives:

1

C1

∫
X

(Trvv∗)
α
2 dvolω ≤

∫
X

Φα(v)dvolω ≤ C2

∫
X

(Trvv∗)
α
2 dvolω.

The following three propositions will be crucial in Section 5.

Proposition 15 (1) If µ ≤ λ, then Φα(
√
−1µ) ≤ Φα(

√
−1λ) for all α ≥ 1.

(2) Assume µR ≥ 0 and λR ≥ 0. If Φα(
√
−1µ) = Φα(

√
−1λ) for

all α in some set

A ⊂ [1,∞) possessing a limit point, then µ = λ.

Proof. (1) follows from Atiyah-Bott 12.8. For (2), consider f(α) = Φα(
√
−1λ)

and g(α) = Φα(
√
−1µ) as functions of α. These functions have complex anlalytic

extensions to C − {α ≤ 0}. If f(α) = g(α) for all α ∈ A, then by the uniqueness

principal for analytic functions, f = g on C−{α ≤ 0}. If µ 6= λ, then there is some

1 ≤ k ≤ R, such that µi = λi for i < k,and µk 6= λk. Without loss of generality

assume µk > λk. Then for any α > 0 :(
µk
λk

)α
≤

R∑
i=k

(
µi
λk

)α
=

R∑
i=k

(
λi
λk

)α
= R.

Letting α −→∞ therefore gives a contradiction.

Proposition 16 Let At be a solution of the YM flow. Then for any α ≥ 1 and

any N , t −→ HYMα,N(At) is non-increasing.

Proof. Since ϕα can be approximated by smooth, convex, ad-invariant functions

ϕα,ρ −→ ϕα, it is enough to show that

t −→
∫
X

Φα,ρ(ΛωFAt +
√
−1NIdE)dvolω
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is non-increasing along the flow for each ρ. This follows from the fact thatΦα,ρ(ΛωFA+

√
−1NIdE) is a subsolutions of the heat equation, which we now show. Let σ =

ΛωFA +
√
−1NIdE and Φ = Φα,ρ. We claim:

4 (Φ ◦ σ) (x) = − ∗ ϕ′′σ(x) 〈∗∇Atσ,∇Atσ〉+ ϕ
′

σ(x)(4Atσ)(x).

We will explain our notation as we derive this formula. We have:

4 (Φ ◦ σ) (x) = − ∗ d ∗ d(Φ ◦ σ)(x)

= − ∗ d ∗ dσ(x)Φ(dσ)x.

Now note that if we fix any connection A on E, we may think of this as a horizontal

splitting H of the associated principal bundle P . Thinking of σ as a map σ̂ : P −→

u(n), we have Φ ◦ σ(x) = ϕ ◦ σ̂(p) for any p ∈ Px and so dσ(x)Φ(dσ)x = dσ̂(p)ϕ(dσ̂)p.

The derivative dσ̂ splits as dσ̂|H⊕dσ̂|H⊥ where H⊥ consists of the tangent directions

to the fibres Px. Since ϕ ◦ σ̂ is constant on the fibres, dϕ ◦ dσ̂|H⊥ = 0. Thus dΦdσ =

dϕdσ̂|H, but dσ̂|H is precisely the induced covariant derivative ∇Aσ̂. Therefore,

appying this argument to a connection At along the flow, we may write:

4 (Φ ◦ σ) = − ∗ d ∗ dϕ(σ)(∇Atσ̂).

Now since dϕ ∈ Ω1(su(n)) and T ∗su(n) = su(n) × su(n)∗ we may think of dϕ as a

map ϕ
′
: su(n) −→ su(n)∗ so that ϕ

′
(σ) : P −→ su(n)∗. The expression

ϕ
′
(σ̂)(∇Atσ̂)

may therefore be thought of as an element of Ω1(P ), and we interpret this expression

as evaluation in the lie algebra component and multiplication in the form component.

70



Therefore we have

− ∗ d ∗ ϕ′(σ̂)(∇Atσ̂) = − ∗ d(ϕ
′
(σ̂) (∗∇Atσ̂))

− ∗ d
(
ϕ
′
(σ̂)
)

(∗∇Atσ)− ∗ϕ′ (σ̃) (d (∗∇Atσ̂))

Differentiating again, for each p ∈ P we may also think of ϕ′′ as a map ϕ′′σ̂(p) :

su(n) −→ su(n)∗ or alternatively as a pairing ϕ
′′

σ̂(p) (−,−) on su(n). Then with

this notation, since the maps ϕ
′
and ϕ

′′
are also Ad-invariant, we have d

(
ϕ
′
(σ̂)
)

=

ϕ
′′

(−,∇Atσ̂), and ϕ
′
(σ̃) (d (∗∇Atσ)) (p) = ϕ

′

σ̂(p)(∇At ∗ ∇Atσ̂) so

4 (Φ ◦ σ) (x) = − ∗ ϕ′′σ̂(p) ∗ (∇Atσ̂,∇Atσ̂)− ∗ϕ′σ̂(p)(∇At ∗ ∇Atσ̂)

= − ∗ ϕ′′σ̂(p) (∗∇Atσ̂,∇Atσ̂) + dΦσ(x)(4Atσ)

≤ dΦσ(x)(4Atσ).

In the last line we have used the fact that ϕ
′′
is positive definite (ϕ is convex)

and that ϕ
′′
only acts on the lie algebra component. This proves the claim. this

implies:

4Φα,ρ

(
ΛωFAt +

√
−1NIdE

)
≤ dΦα,ρ

(
4At

(
ΛωFAt +

√
−1NIdE

))
= −dΦα,ρ

(
∂ΛωFAt
∂t

)
= − ∂

∂t
Φα,ρ

((
ΛωFAt +

√
−1NIdE

))
.

Proposition 17 Let A∞ be a subsequential Uhlenbeck limit of At where At is a

solution of the YM flow. Then for all α ≥ 1,

lim
t−→∞

HYMα,N(At) = HYMα,N(A∞).

71



Proof. If we write tj for the subsequence, then by Lemma 9 we have ΛωFAtj
Lp−→

ΛωFA∞ , so by Lemma 12 it follows that limt−→∞HYMα,N(Atj) = HYMα,N(A∞).

The statement now follows from Proposition 16.
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Chapter 2

Resolution of Singularities and Approximate Critical Structures

2.1 Properties of Blowups and Resolution of the HNS Filtration

In this section we discuss the properties of blowups of complex manifolds along

complex submanifolds that will be used in the subsequent discussion. Essentially

all of this material is standard, but we review it carefully now because we will need

to employ these facts often in the proofs of the main results.

2.1.1 Resolution of Singularities Type Theorems

The HNS filtration is in general only given by subsheaves, making it diffi cult

to do analysis. We will therefore need some way of obtaining a filtration by sub-

bundles, that is, a way of resolving the singularities. In two dimensions, when the

singular set consists of point singularities this can be done by hand (see [BU1]), but

in higher dimensions the only available tool seems to be the general resolution of

singularities theorem of Hironaka. Specifically:

Theorem 9 (Resolution of Singularities) Let X be a compact, complex space (or

C-scheme). Then there exists a finite sequence of of blowups with smooth centres:

X̃ = Xm
πm−→ Xm−1 −→ ... −→ X1

π1−→ X0 = X

such that X̃ is compact and non-singular (a complex manifold) and the centre Yj−1

73



of each blowup πj is contained in the singular locus of Xj−1.

For the proof see [H1] and [H2]. What we will actually use is the following

corollary:

Corollary 7 (Resolution of the Locus of Indeterminacy) Let X and Y be compact,

complex spaces and let ϕ : X 99K Y be a rational (meromorphic) map. Then there

exists a compact, complex space X̃ π→ X obtained from X by a sequence of blowups

with smooth centres and a holomorphic map ψ : X̃ → Y such that the following

diagram commutes:

X̃

↓ ↘

X 99K
ϕ

Y

.

In our case both X and Y (and hence also X̃) will be complex manifolds. Note

that in this case a blowup with "smooth centre" is the same as the blowup along a

complex submanifold. We will apply the Corollary in the following way.

The HNS filtration of a bundle E, which in the sequel we will abbreviate for

simplicity as:

0 = E0 ⊂ E1 ⊂ ... ⊂ El−1 ⊂ El = E

(i.e. we ignore the notation indicating that it is a double filtration), as stated

previously, is in general a filtration only by subsheaves of E. We may think of a

subbundle S ⊂ E of rank k as a holomorphic section of the Grassmann bundle

Gr(k,E), the bundle whose fibre at each point is the set of k-dimensional complex

subspaces of the fibre of E. Similarly a filtration by subbundles corresponds to a
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holomorphic section of the partial flag bundle FL(d1, ..., dl, E), the bundle whose

fibre at each point is the set of l flags of type (d1, ..., dl) where di = rk(Ei). On

the other hand a filtration by subsheaves corresponds to a rational section X
σ99K

FL(d1, ..., dl, E). The corollary says that by blowing up finitely many times along

complex submanifolds, we obtain an honest section X̃ → FL(d1, ..., dl, π
∗E). More

explicity, we have a diagram:

X̃
σ̃−→←− FL(π∗E)

↓ ↘ ↓

X
σ99K←−
p

FL(E)

where σ̃ will be constructed below. The outer square is just the pullback diagram

for the map X̃ π→ X. First we claim that the triangle:

X̃

↓ ↘

X ←− FL(E)

commutes. If we write ψ for the desingularised map X̃ −→ FL(E), then note that

for a point x̃ ∈ X̃ − E, we have ψ(x̃) = ψ(π−1(x)) for x ∈ Zalg. Then we have:

p(ψ(x̃)) = p(σ(π(x̃))) = x = π(x̃) since σ is well-defined and a section away from

Zalg and we know the diagram:

X̃

↓ ↘

X
σ99K FL(E)

commutes. In other words on X̃ − E we have p ◦ ψ = π. But since both of these

are holomorphic maps X̃ −→ X, p ◦ ψ = π on X̃ by the uniqueness principle for
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holomorphic maps, since they agree on a non-empty open subset. Now FL(π∗E) =

π∗FL(E) = {(x̃, ν) ∈ X̃ × FL(E) | π(x̃) = p(ν)}. Now define σ̃ : X̃ −→ FL(π∗E)

by σ̃(x̃) = (x̃, ψ(x̃)). Since p ◦ ψ = π this is indeed a map into FL(π∗E), and it is

manifestly a section.

In other words there is a filtration of π∗E:

0 = Ẽ0 ⊂ Ẽ1 ⊂ ... ⊂ Ẽl−1 ⊂ Ẽl = π∗E

where the Ẽi are subbundles.

Now note that we have the following diagram:

Q̃E
i

↑

π∗E

↗ ↑

π∗Ei 99K Ẽi

where the dashed line is the rational map corresponding to the equality of π∗Ei and

Ẽi away from E (both are equal to Ei), and Q̃E
i is the quotient of π

∗E by Ẽi. Then

Q̃E
i is a vector bundle and in particular torsion free. On the other hand the image

of π∗Ei under the composition π∗Ei → π∗E → Q̃E
i is torsion since it is supported

on the divisor E, and hence must be zero. If we write Im π∗Ei for the image of

π∗Ei −→ π∗E, this means there is an actual inclusion of sheaves Im π∗Ei ↪→ Ẽi.

The quotient sheaf Ẽi/ Imπ∗Ei is supported on E, hence torsion and so it follows

from Lemma 4 that Ẽi = Satπ∗E(Im π∗Ei).
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Since π∗Ẽi is equal to Ei away from SingEi there is a birational map Ei 99K

π∗Ẽi. Since Ẽi is a bundle, it is in particular reflexive, so π∗Ẽi is also reflexive.

Because Ei is saturated by construction, it is also reflexive. Therefore both of these

sheaves are normal, and since SingEi has singular set of codimension at least 3, this

map extends to an isomorphism Ei ∼= π∗Ẽi.

Similarly, if Q̃i = Ẽi/Ẽi−1, then π∗Q̃i is equal to Qi away from SingQi so

again we have a birational map (Qi)
∗∗ 99K

(
π∗Q̃i

)∗∗
. Since the double dual is

always reflexive, these sheaves are normal, so the map extends to an isomorphism.

To summarise:

Proposition 18 Let

0 = E0 ⊂ E1 ⊂ ... ⊂ El−1 ⊂ El = E

be a filtration of a holomorphic vector bundle E → X by saturated subsheaves and let

Qi = Ei/Ei−1. Then there is a finite sequence of blowups along complex submanifolds

whose composition π : X̃ → X enjoys the following properties. There is a filtration

0 = Ẽ0 ⊂ Ẽ1 ⊂ ... ⊂ Ẽl−1 ⊂ Ẽl = Ẽ = π∗E

by subbundles. If we write Im π∗Ei for the image of π∗Ei ↪→ π∗Ei, then Ẽi =

Satπ∗E (Im π∗Ei). If Q̃i = Ẽi/Ẽi−1 then we have π∗Ẽi = Ei and Q∗∗i = (π∗Q̃i)
∗∗.

We will also have occasion to consider ideal sheaves I ⊂ OX whose vanishing

set is a closed complex subspace Y ⊂ X. If Y is smooth for example then we may

blowup along Y to obtain a smooth manifold π : X̃ −→ X. Denote by π∗I the ideal

sheaf generated by pulling back local sections of I, in other words the ideal sheaf
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in OX̃ generated by the image of π−1I under the map π−1OX −→ OX̃ where π−1I

and π−1OX are the inverse image sheaves. Note that this is not necessarily equal

to the usual sheaf theoretic pullback of I which is given by π−1I⊗π−1OXOX̃ and

may for example have torsion. The sheaf π∗I is sometimes called the "inverse image

ideal sheaf". If the order of vanishing of I along Y is m, then π∗I ⊂ OX̃(−mE),

that is, every element of π∗I vanishes to order at least m along the smooth divisor

E. In this situation we will use this notation without further comment. In general

Y is not smooth, so we appeal to the following resolution of singularities theorem,

which is sometimes referred to as "principalisation of I" or more specifically "mono-

mialisation of I" , and results of this type are usually used to prove resolution of

singularities.

Theorem 10 Let X be a complex manifold and Y a closed complex subspace. Then

there is a finite sequence of blowups along smooth centres whose composition yields

a map π : X̃ → X such that π : X̃ − E → X −W is biholomorphic, E = π−1(W )

is a normal crossings divisor, and π∗I = OX̃(−
∑

imiEi) where the Ei are the ir-

reducible components of E. Moreover, π∗I is locally principal (monomial) in the

following sense: for any x ∈ X there is a local coordinate neighbourhood U ⊂ X

containing x and a local section f0 of OX̃(−
∑

imiEi) over π−1(U), such that if fj is

any local section of I over U , then π∗fj = f0f
′
j where f

′
j is a non-vanishing holomor-

phic function on π−1(U). Furthermore, if ξk are local normal crossings coordinates

for E, then there is a factorisation:

f0 =
∏
k

ξmkk
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so that we may write:

π∗fj =
∏
k

ξmkk · f
′

j .

For the proof, see for example Kollar [KO].

2.1.2 Metrics on Blowups and Uniform Bounds on the Degree

Now we consider the case that the original manifold is Kähler. The following

proposition is standard in Kähler geometry. It says that the property of being Kähler

is preserved under blowing up.

Proposition 19 Let (X,ω) be a Kähler manifold, and Y a compact, complex sub-

manifold. Then the blowup X̃ = BlYX along Y is also Kähler. Moreover X̃ pos-

sesses a one parameter family of Kähler metrics given by ωε = π∗ω+εη where ε > 0,

π : X̃ → X is the blowup map and η is itself a Kähler form on X̃.

For the proof see for example [VO].

We will need a bound on the ωε degree of an arbitrary subsheaf of a holomor-

phic vector bundle E that depends on ε in such a way that as ε → 0 the degree

converges to the degree of a subsheaf on the base (namely the pushforward). This

will be a consequence of the following lemma.

Lemma 13 Let X be a compact complex manifold and let τ and η be closed (1, 1)

forms with τ semi-positve and η a Kähler form. Let E → X a holomorphic vector

bundle. Then there is a constant M depending on the L2 form of FE such that for
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any subsheaf S ⊂ E with torsion free quotient and any 0 < k ≤ n− 1:

degk(S, τ , η) ≡
∫
X

c1(S) ∧ τn−k−1 ∧ ηk ≤M.

Proof. Note that when k = n− 1, degk(S, τ , η) is the ordinary η degree of S. We

follow Kobayashi’s proof that the degree of an arbitrary subsheaf is bounded. Fix

an hermitian metric h on E. The general case will follow from the case when S is a

line subbundle L. In this case we can use the formula: FL = πFEπ + β ∧ β∗, where

π is the orthogonal projection to L and β is the second fundamental form. Since

c1(L) = i
2π
FL we have that:

degk(L, τ , η) =
i

2π

∫
X

πFEπ ∧ τn−k−1 ∧ ηk +
i

2π

∫
X

β ∧ β∗ ∧ τn−k−1 ∧ ηk.

Since ‖π‖L∞(X) ≤ 1, the first term is clearly bounded from above. Therefore we

only need to check that the second term is non-positive. This is the case since β is a

(0, 1) form, and therefore iβ ∧ β∗ ≤ 0. Therefore degk(L, τ , η) ≤ M , for a constant

independent of L. To extend the result to all subbundles F ⊂ E, simply find such an

M as above for each exterior power ΛpE for p = 1, ..., rkE, and take the maximum.

Then apply the above argument to the line bundle L = detF ↪→ ΛpE.

In general S
ı
↪→ E is not a subbundle but there is an inclusion of sheaves

detS ↪→ ΛpE where p is the rank of S. If V is the singular set of S, then moreover

S is a subbundle away from V , and so the inclusion detS
ı
↪→ ΛpE is a line subbundle

away from V . Let σ be any local holomorphic frame for detS. Now consider the

set: W = {x ∈ X | ı(σ)(x) = 0}. Since detS is a line bundle this is clearly

independent of σ. Furthermore because ı is an injective bundle map away from V ,
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any x ∈ W must be in V , that is, W ⊂ V . Now write H = ı∗ (Λph). This is an

Hermitian metric on detS over X−W . On the other hand there is some Hermitian

metric G on detS over all of X. We would like to show that:

degk(S, τ , η) =

∫
X

c1(detS,G) ∧ τn−k−1 ∧ ηk =

∫
X−W

c1(detS,H) ∧ τn−k−1 ∧ ηk

Then applying the above reasoning, the last integral is bounded since just as before

∫
X−W

c1(detS,H) ∧ τn−k−1 ∧ ηk =

∫
X−V

c1(S, hS) ∧ τn−k−1 ∧ ηk

≤ i

2π

∫
X−V

πFEπ ∧ τn−k−1 ∧ ηk

where hS is the metric on S|X−V induced by h. Again this is bounded independently

of π.

We will construct a C∞ function f on X such that H = fG on X −W . Then

the usual formula for the curvature of the associated Chern connections implies:

c1(detS,H) =
i

2π
∂̄∂ logH =

i

2π
∂̄∂ log f + c1(detS,G)

=⇒ c1(detS,G) = c1(detS,H)− i

2π
∂̄∂ log f on X −W.

Finally we will show:

∫
X−W

i

2π
∂̄∂ log f ∧ τn−k−1 ∧ ηk = 0.

To construct f , let σ be any local holomorphic frame for detS. If (e1,....., er) is

a local holomorphic frame forE, then define: ı(σ) =
∑

I σ
IeI , where eI = ei1∧...∧eip ,

with i1 < ... < ip. Then let

f = H(σ, σ)/G(σ, σ) =
∑
I,J

HIJσ
I σ̄J
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where HIJ = Λph(eI , eJ)/G(σ, σ). Then one may check that f is well-defined inde-

pendently of σ. It is a smooth non-negative function vanishing exactly on W . Since

the matrix (HIJ) is positive definite, f vanishes exactly where all the σI vanish. It

is also clear that we have the equality H = fG.

To complete the argument we will show that i
2π
∂̄∂ log f integrates to zero.

Let I be the sheaf of ideals in OX generated by {σI}. By Theorem 10 there is a

sequence of smooth blowups π : X̃ → X such that π∗I the inverse image ideal sheaf

of I, is the ideal sheaf of a divisor E =
∑

imiEi where the Ei are the irreducible

components of the support of the exceptional divisor suppE = ∪i Ei. In other

words π∗I = OX̃(−
∑

imiEi) for some natural numbers mi. Furthermore, we have:

π∗σI = ρI · ξmi1i1
...ξ

mis
is
, where {ξij} are normal crossings coordinates for E on an

open set where π∗σI is defined, and ρI is a non-vanishing holomorphic function.

Therefore we may locally write: π∗f = χ ·
∣∣ξi1∣∣2mi1 ... ∣∣ξis∣∣2mis , where χ is a strictly

positive C∞ function defined on X̃. If we write Φ = i
2π
∂ logχ, and TdΦ for the

current defined by dΦ = i
2π
∂̄∂ logχ, then since by definition:

TdΦ

(
π∗(τn−k−1 ∧ ηk)

)
= −dTΦ(π∗(τn−k−1 ∧ ηk))

TΦ(d(π∗(τn−k−1 ∧ ηk)) = 0

since π∗(τn−k−1∧ηk) is closed. Away from the exceptional set we may write locally:

i

2π
∂ log π∗f =

i

2π

(
∂ logχ+ 2mi1∂ log

∣∣ξi1∣∣+ ...+ 2mis∂ log
∣∣ξis∣∣)

= Φ +
i

2π

(
mi1dξi1
ξi1

+ ...+
misdξis
ξis

)
.

The second term is integrable on its domain of definition and so i
2π
∂̄∂ log π∗f is a

(1, 1) form with L1
loc(X̃) coeffi cients, and so defines a current. On the other hand by
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the Poincaré-Lelong formula, ∂̄ applied to the second term is equal to
∑
ij

mijTEij , in

the sense of currents, where TEij is the current defined by the smooth hypersurface

Eij . Finally then:∫
X−W

i

2π
∂̄∂ log f ∧ π∗τn−k−1 ∧ π∗ηk =

∫
X̃−E

i

2π
∂̄∂ log π∗f ∧ π∗τn−k−1 ∧ π∗ηk

= T i
2π
∂̄∂ log π∗f (π

∗τn−k−1 ∧ π∗ηk) =

(∑
i

miTEi

)
(π∗τn−k−1 ∧ π∗ηk)

=
∑
i

mi

∫
Ei

π∗τn−k−1 ∧ π∗ηk = 0

since the image of Ei under π has codimension at least two. This completes the

proof.

Remark 3 If 0 → S → E → Q → 0 is an exact sequence, where E is a vector

bundle and Q is torsion free, then the dualised sequence 0→ Q∗ → E∗ → S∗ is exact,

and so as in the above lemma there is a constant M associated to E independent of

Q so that

−
∫
X

c1(Q) ∧ τn−k−1 ∧ ηk =

∫
X

c1(Q∗) ∧ τn−k−1 ∧ ηk ≤M.

In other words there is a uniform constantM so that: −M ≤
∫
X
c1(Q)∧τn−k−1∧ηk,

where Q is any torsion-free quotient of E.

Remark 4 In the case that k = n − 1, degk(S, τ , η) = deg(S, η) and the above

constitutes a proof of Simpson’s degree formula.

We note that if X̃ → X is a composition of finitely many blowups then we

also have a family of Kähler metrics on X̃ by interatively applying Proposition 19.
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We would now like to compute the degree of an arbitrary torsion-free sheaf S̃ on X̃

with respect to each metric ωε on X̃.

Theorem 11 Let S̃ be a subsheaf (with torsion free quotient Q̃) of a holomor-

phic vector bundle Ẽ on X̃, where π : X̃ → X is given by a sequence of blowups

along complex submanifolds of codim ≥ 2. Then then there is a uniform constant

M independent of S̃ such that the degrees of S̃ and Q̃ with respect to ωε satisfy:

deg(S̃, ωε) ≤ deg(π∗S̃) + εM , and deg(Q̃, ωε) ≥ deg(π∗Q̃)− εM .

Proof. The general case will follow from the case when S̃ is a line bundle

L̃ (perhaps not a line subbundle). Recall that the Picard group of the blowup

Pic(X̃) = Pic(X)⊕ ZO(E1)⊕ ...⊕ ZO(Em) where the Ei are the irreducible com-

ponents of the exceptional divisor. That is, we may write an arbitrary line bundle

as L̃ = π∗L⊗OX̃(
∑

imiEi) where L is a line bundle on X. Then by definition:

deg(L̃, ωε) =

∫
X̃

c1(L̃) ∧ ωn−1
ε =

∫
X̃

c1(L̃) ∧ (π∗ω + εη)n−1 .

Then we have an expansion:

(π∗ω + εη)n−1 = (π∗ω)n−1 + ε (π∗ω)n−2 ∧ η + ...+ εn−2π∗ω ∧ ηn−2 + εn−1ηn−1.
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Note that
∫
X̃

c1OX̃(Ei)∧ (π∗ω)n−1 =

∫
Ei

(π∗ω)n−1 = 0, since the image in X of each

Ei lives in codimension 2. Therefore we are left with

deg(L̃, ωε) =

∫
X̃

(
c1(L̃

)
∧ (π∗ω)n−1 +

∑
k

εk
(∫

X̃

c1(L̃) ∧ (π∗ω)n−k−1 ∧ ηk
)

=

∫
X̃

(π∗c1(L) ∧ (π∗ω)n−1 +
∑
i

mi

∫
X̃

(c1(OX̃(Ei)) ∧ (π∗ω)n−1

+
∑
k

εk
(∫

X̃

c1(L̃) ∧ (π∗ω)n−k−1 ∧ ηk
)

= deg(L, ω) +
∑
k

εk
(∫

X̃

c1(L̃) ∧ (π∗ω)n−k−1 ∧ ηk
)

By the previous lemma the terms
∫
X̃

c1(L̃) ∧ (π∗ω)n−k−1 ∧ ηk, are all bounded uni-

formly independently of ε since π∗ω is semi-positive and η is a Kähler form. There-

fore we have: deg(L̃, ωε) ≤ deg(L, ω) + εM .

Now note that if X̃ = BlYX then π∗O(mE) = OX if m ≥ 0 and π∗O(mE) =

I⊗mY if m < 0, where IY is the ideal sheaf of holomorphic functions on X vanishing

on Y . The determinant of an ideal sheaf is trivial if Y has codimension at least 2,

so we have det(π∗L̃) = det(L) so finally: deg(L̃, ωε) ≤ deg(π∗L̃) + εM .

Now for an arbitrary subsheaf S̃ ⊂ Ẽ, by definition deg(S̃, ωε) = deg(det(S̃), ωε).

When π∗S̃ is a vector bundle, that is, away from its algebraic singular set, we have

an isomorphism det(π∗S̃) = π∗ det S̃. Their determinants are therefore isomorphic

away from this set, and so by Hartogs’ theorem there is an isomorphism of line

bundles: det(π∗S̃) = det(π∗ det S̃) on X. Therefore by the previous argument:

deg(S̃, ωε) = deg(det(S̃), ωε) ≤ deg(π∗ det S̃) + εM = deg(π∗S̃) + εM .

The exact same argument together with the previous remark proves the second

inequality as well.
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2.1.3 Stability on Blowups and Convergence of the HN Type

Proposition 20 Let Ẽ → X̃ a holomorphic vector bundle where X̃ → X is a

sequence of blowups. If π∗Ẽ is ω-stable, then there is an ε2 such that Ẽ is ωε stable

for all 0 < ε ≤ ε2.

Proof. Suppose there is a destabilising subsheaf S̃ε ⊂ Ẽ, i.e. µωε(S̃ε) ≥ µωε(Ẽ)

for each ε. Now among all proper subsheaves of π∗Ẽ, the maximal slope is realised

by some subsheaf F . Then by the previous theorem we have:

µω(π∗Ẽ)− εM ≤ µωε(Ẽ) ≤ µω(π∗S̃ε) + εM ≤ µω(F) + εM < µω(π∗Ẽ) + εM

where we have used that F is proper and π∗Ẽ is ω-stable. Now letting ε → 0 we

have µω(π∗Ẽ) < µω(π∗Ẽ) and the proposition follows.

Remark 5 This shows in particular that for any resolution of a HNS filtration,

the quotients Q̃i = Ẽi/Ẽi−1 are stable with respect to ωε for ε suffi ciently small,

since the double dual of the pushforward is the double dual of Qi which is stable by

construction. This fact will be important in Section 5.

For each of the metrics ωε there is also an HNS filtration of the pullback π∗E.

We will need information about what happens to the corresponding HN types as

ε→ 0. Namely we have:

Proposition 21 Let E → X a holomorphic vector bundle and π : X̃ → X be

a finite sequence of blowups resolving the HNS filtration. Then the HN type

(µε1, ..., µ
ε
K) of π∗E with respect to ωε converges to the HN type (µ1, ..., µK) of E

with respect to ω as ε −→ 0.

86



Proof. Let

0 = Ẽ0 ⊂ Ẽ1 ⊂ Ẽ2 ⊂ ... ⊂ Ẽn−1 ⊂ Ẽl = π∗E

be a resolution of the HNS filtration. Since all the information about the HN type

is contained in the HN filtration

0 = FHN0 ⊂ FHN1 (E) ⊂ FHN2 (E) ⊂ ... ⊂ FHNl (E) = E,

we will just regard this as a resolution of singularities of theHN filtration and forget

about Seshadri filtrations for the rest of this proof.

We would like to relate the resolution of the HN filtration of (E,ω), to the

HN filtration of (π∗E,ωε) for small ε. We claim that for all ε in a suffi cient range

we may arrange that µmin
ωε (Ẽi) > µmax

ωε (π∗E/Ẽi). Let F1 ⊂ Ẽi ⊂ F2 ⊂ π∗E be any

subsheaves such that Ẽi/F1 is torsion free. Note that for x̃ ∈ X̃ with π(x̃) = x,

we always have maps on the stalks (π∗Fi)x → (Fi)x̃. Since π is in particular a

biholomorphism away from E, when x̃ ∈ X̃ − E these maps are isomorphisms. In

other words the sequences:

0 −→ π∗F1 −→ Ei −→ π∗

(
Ẽi/F1

)
−→ 0

and

0 −→ Ei −→ π∗F2 −→ π∗

(
F2/Ẽi

)
−→ 0

are exact away from the singular set Zalg. In particular this means Ei/π∗F1 ↪→

π∗(Ẽi/F1) and π∗F2/Ei ↪→ π∗(F2/Ẽi) with torsion quotients, which implies (Ei/π∗F1)∗∗ =

(π∗(Ẽi/F1))∗∗ and (π∗F2/Ei)
∗∗ = (π∗(F2/Ẽi))

∗∗. Then finally we have µω(Ei/π∗F1) =

µω(π∗(Ẽi/F1)) and µω(π∗F2/Ei) = µω(π∗(F2/Ẽi)).
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The above argument together with Theorem 11 now implies that µωε(Ẽi/F1) ≥

µω(Ei/π∗F1) − εM and µωε(F2/Ẽi) ≤ µω(π∗F2/Ei) + εM . On the other hand:

µω(Ei/π∗F1) ≥ µω(Qi) > µω(Qi+1) ≥ µω(π∗F2/Ei), where we have used the facts

that µω(Qi) = µmin
ω (Ei) and µω(Qi+1) = µmax

ω (E/Ei). Therefore we have:

µωε(Ẽi/F1)− µωε(F2/Ẽi) ≥ (µω(Ei/π∗F1)− µω(π∗F2/Ei))− 2εM.

As we have shown, the first term on the right hand side is strictly positive, so when

ε is suffi ciently small the entire right hand side is strictly positive. Since F1 and F2

were arbitrary, for ε small µmin
ωε (Ẽi) must be strictly bigger than µmax

ωε (π∗E/Ẽi).

Now it follows from Proposition 8 that the HN filtration of (π∗E,ωε) is:

0 ⊂ FHN,ε1 (Ẽ1) ⊂ ... ⊂ FHN,εk1
(Ẽ1) = Ẽ1 ⊂ ... ⊂ FHN,εk1+...+kl−1

(Ẽl−1) = Ẽl−1

⊂ FHN,εk1+...+kl−1+1(Ẽl) ⊂ ... ⊂ FHN,εk1+...+kl
(Ẽl) = π∗E.

That is, the resolution appears within the HN filtration with respect to ωε,

and two successive subbundles in the resolution are separated by the HN filtration

of the larger bundle. Then for any i we consider the following part of the above

filtration:

Ẽi−1 = FHN,εk1+...+ki−1
(Ẽi−1) ⊂ FHN,εk1+...+ki−1+1(Ẽi) ⊂

... ⊂ FHN,εk1+...+ki−1(Ẽi) ⊂ FHN,εk1+...+ki
(Ẽi) = Ẽi.

We claim that:

µωε

(
FHN,εk1+...+ki−1+j(Ẽi)/F

HN,ε
k1+...+ki−1+j−1(Ẽi)

)
−→ µω(Ei/Ei−1) = µω(Qi)
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for each 1 ≤ j ≤ ki. Then the proposition will follow immediately. The slopes of

the quotients in the HN filtration are strictly decreasing so we have:

µωε

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

)
< µωε

(
FHN,εk1+...+ki−1+j(Ẽi)/F

HN,ε
k1+...+ki−1+j−1(Ẽi)

)
< µωε

(
FHN,εk1+...+ki−1+1(Ẽi−1)/Ẽi−1

)
.

Therefore it suffi ces to prove convergence of

µωε

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

)
and µωε

(
FHN,εk1+...+ki−1+1(Ẽi−1)/Ẽi−1

)
to µω(Qi) as ε→ 0. Note that just as before we may argue that

µω

(
π∗

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

))
= µω

(
Ei/π∗FHN,εk1+...+ki−1(Ẽi)

)
and

µω

(
π∗

(
FHN,εk1+...+ki−1+1(Ẽi−1)/Ẽi−1

))
= µω

(
π∗FHN,εk1+...+ki−1+1(Ẽi−1)/Ei−1

)
.

By Theorem 11 we have:

µω(Qi)− εM = µω(π∗Q̃i)− εM ≤ µωε(Q̃i) ≤ µωε

(
FHN,εk1+...+ki−1+1(Ẽi−1)/Ẽi−1

)
≤ µω

(
π∗FHN,εk1+...+ki−1+1(Ẽi−1)/Ei−1

)
+ εM ≤ µω (Ei/Ei−1) + εM

= µω(Qi) + εM

where we have used that FHN,ε
k1+...+ki−1+1(Ẽi−1) is maximally destabilising in π∗E/Ẽi−1

and Ei/Ei−1 is maximally destabilising in E/Ei−1. So

µωε

(
FHN,εk1+...+ki−1+1(Ẽi−1)/Ẽi−1

)
−→ µω(Qi).
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Similiarly we have:

µω (Qi)− εM = µω (Ei/Ei−1)− εM ≤ µω

(
Ei/π∗FHN,εk1+...+ki−1(Ẽi)

)
− εM

≤ µωε

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

)
≤ µωε(Q̃i) ≤ µω

(
π∗Q̃i

)
+ εM

= µω (Qi) + εM

where we have used that µω (Ei/Ei−1) = µmin
ω (Ei) and µωε

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

)
=

µmin
ωε (Ẽi). Then taking limits implies µωε

(
Ẽi/FHN,εk1+...+ki−1(Ẽi)

)
→ µω(Qi). This

completes the proof.

Remark 6 Note that the argument of the above proof also shows that we have con-

vergence: (
µωε(Q̃1), ..., µωε(Q̃l)

)
−→ (µω(Q1), ..., µω(Ql)) ,

where as usual µωε(Q̃i) is repeated rk(Q̃i) times. We will use this fact in the following

section.

2.2 Approximate Critical Hermitian Structures/HNType of the Limit

In this section we accomplish two important aims. One is the construction of

a certain canonical type of metric on a holomorphic vector bundle over a Kähler

manifold called an Lp-approximate critical hermitian structure. The other is identi-

fying the Harder-Narasimhan type of the limiting vector bundle E∞ along the flow,

namely we prove that this is the same as the type of the original bundle E. This

latter fact will be a crucial element in the proof of the main theorem, whereas the
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former will play no role in the remainder of the proof. However we remark that these

two theorems are, due to certain technical considerations, very much intertwined.

Our argument is as follows: first we construct an Lp-approximate critical her-

mitian structure for p very close to 1 in the special case that the analytic singular

set is a complex submanifold, and a single blowup along Zan suffi ces to resolve the

singularities of the HNS filtration. In this case (small p), note that in fact the

metric produced will be independent of p. We obtain the result about the HN type

in the same special case as a corollary. This in turn may be used to prove, again in

the special case, the existence of an Lp-approximate critical hermitian structure for

all p. We then use this to prove the existence of such a structure in the general case

by blowing up finitely many times and applying an inductive argument. Finally, we

point out that along the way we have proven the theorem (in general) that the HN

type of the limit is the correct one.

We will need to work with the varying family of Kähler metrics on X̃ given by

π∗ω+εη in Section 4. As we will see, the construction of an Lp-approximate critical

hermitian structure requires us to fix a value ε1 and consider stable quotients with

respect to this metric. We will therefore need some sort of uniform control over the

Hermitian-Einstein tensor as ε → 0. The author has noticed an error in [DW1] on

this point. In particular, Lemma 3.14 is slightly incorrect. Instead, the right hand

side should have an additional term involving the L2 norm of the full curvature. This

does not essentially disrupt the proof, because the Yang-Mills and Hermitian-Yang-

Mills functionals differ only by a topological term, but it has the effect of changing

the logic of the argument somewhat, as well as increasing the technical complexity.
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If we fix a holomorphic structure on E, then a critical point of the HYM

functional thought of as a map h 7→ HYM(∂̄E, h) on the space of metrics is called

(see Kobayashi [KOB]) a critical hermitian structure. The Kähler identities imply

that this happens exactly when the corresponding connection (∂̄E, h) is Yang-Mills,

and hence in this case the Hermitian-Einstein tensor splits: iΛωF(∂̄E ,h) = µ1IdQi ⊕

...⊕µKIdQK . Here the holomorphic structure ∂̄E splits into the direct sum ⊕iQi and

the metric induced on each summand is Hermitian-Einstein with constant factor µi.

In general, the holomorphic structure on E is not split, and of course the Qi

may not be subbundles as at all, so it is not the case that we always have a critical

hermitian structure. We therefore need to define a correct approximate notion of

a critical point. In the subsequent discussion we follow Daskalopoulos-Wentworth

[DW1].

Let h be a smooth metric on E and F = {Fi}Ki=0 a filtration of E by sat-

urated subsheaves. For every Fi we have the corresponding weakly holomorphic

projection πhi . These are bounded, L
2
1 hermitian endomorphisms of E. Here F0 = 0,

and so πh0 = 0. Given real numbers µ1, ..., µK , define the following L
2
1 hermitian

endomorphism of E :

Ψ(F , (µ1, ..., µK), h) =

K∑
i=1

µi
(
πhi − πhi−1

)
.

Notice that away from the singular set of the filtration (points where it is given by

sub-bundles), the bundle E splits smoothly as ⊕Qi = ⊕iEi/Ei−1 and with respect to

the splitting the endomorphism Ψ(F , (µ1, ..., µK), h) is just diagonal map µ1IdQi ⊕

...⊕ µKIdQK .
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In the special case where E is a holomorphic vector bundle over a Kähler

manifold (X,ω), we will write ΨHNS
ω (∂̄E, h) when the filtration of E is the HNS

filtration Fi = FHNSi (E) and (µ1, ..., µK) is the HN type.

Definition 6 Fix δ > 0 and 1 ≤ p ≤ ∞. An Lp δ-approximate critical hermitian

structure on a holomorphic bundle E is a smooth metric h such that:

∥∥iΛωF(∂̄E ,h) −ΨHNS
ω (∂̄E, h)

∥∥
Lp(ω)

≤ δ.

For the proof of the following theorem, see [DW1]:

Theorem 12 If the HNS filtration of E is given by subbundles, then for any δ > 0,

E has an L∞ approximate critical hermitian structure.

In general, we will not obtain an L∞ approximate structure. In the following we

show that for an arbitrary holomorphic bundle we have such a metric for 1 ≤ p <∞.

We begin with two preliminary technical lemmas.

Lemma 14 Let X be a compact Kähler manifold of dimension n, and let π : X̃ →

X be a of blowup along a complex submanifold Y of complex codimension k where

k ≥ 2. Consider the natural family ωε = π∗ω + εη where 0 < ε ≤ ε1 and η is

a Kähler form on X̃. Then given any α and α̃ such that 1 < α < 1 + 1
2(k−1)

,and

α
1−2(k−1)(α−1)

< α̃ < ∞, and if we let s = α̃
α̃−α then for the Kähler metric g

ε, we

have: det gε/ det$ ∈ L2(1−α)s(X̃,$), for any hermitian metric $ on X̃, and the

value of the L2(1−α)s norm is uniformly bounded in ε.

Proof. Since gε converges to the Kähler metric π∗ω away from the exceptional

divisor E, on the complement of a neighbourhood of E there is always such a uniform
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bound (and on this set (det gε/ det gε1)2(1−α)s is clearly integrable). It therefore

suffi ces to prove the result in a neighbourhood of the exceptional divisor. Let y ∈ Y

and U be a local coordinate chart containing y consisting of coordinates (z, ..., zn).

Now Y has codimension k so that locally Y is given by the slice coordinates {z1 =

z2 = ... = zk = 0}. Recall that on the blow-up X̃ we have explicit coordinate charts

Ũm ⊂ Ũ = π−1(U) where Ũm = {z ∈ U − Y | zm 6= 0} ∪ {(z, [ν]) ∈ P(ζ)|Y ∩U | νm 6=

0}, where P(ζ) is the projectivisation of the normal bundle of Y . Let (ξ1,..., ξn)

denote local coordinates on Ũm. In these coordinates the map π : X̃ → X is given

by:

(ξ1,..., ξn) −→ (ξ1ξm, ..., ξs−1ξm, ξm, ξm+1ξm, ..., ξkξm, ξk+1, ..., ξn).

Now locally we have: ωn = (i/2)n det gij dz1∧dz̄1∧...∧dzn∧dz̄n, and using the above

coordinate description we may compute: π∗ωn = (i/2)n (π∗ det gij) |ξm|
2k−2 dξ1 ∧

dξ̄1 ∧ ... ∧ dξn ∧ dξ̄n.

Note that π∗ det gij is non-vanishing since det gij, and so degeneracy of the

pullback occurs only along the hypersurface defined by ξm = 0. In other words,

(ξ1,..., ξn) are normal crossings coordinates on the blow-up for the exceptional divisor

E, and locally E takes the form {ξm = 0}.

The top power of the Kähler form ωε is:

ωnε = π∗ωn + επ∗ωn−1 ∧ η + ..+ εkπ∗ωn−l ∧ ηl + ...εn−1π∗ω ∧ ηn−1 + εnηn.

In the local coordinates (ξ1, ..., ξn) we have: ωnε = (i/2)n det gεijdξ1∧dξ̄1∧...∧dξ1∧dξ̄1.

We may therefore obtain a lower bound (not depending on ε) on det gεij as follows.

Since η is a metric η > 0. On the other hand, the only degeneracy of π∗ω is only on

94



vectors tangent to the exceptional divisor, where it vanishes, so π∗ω ≥ 0. Therefore

π∗ωl ∧ ηn−l is non-negative for every l.

Then comparing the two expressions for ωnε , this implies that we have the lower

bound: det gεij ≥ C |ξm|
2k−2, where C = inf π∗ det gij on Ũm for each 0 < ε ≤ ε1.

Taking the 2(1− α)s power of both sides we see that∫
Ũm

(det gε/ det$)
2(1−α)s

$n ≤ C

∫
Ũm

(det gεij)
2(1−α)s ≤ C

∫
Ũm

|ξm|
4(1−α)(k−1)s ,

where the last two integrals are with respect to the standard Euclidean measure.

Using the condition on α̃ one computes that 4(1 − α)(k − 1)s > −2 and so the

functions |ξm|
4(1−α)s(k−1), are integrable (as can be seen by computing the integral

in polar coordinates), and the result follows.

Lemma 15 Let π : X̃ → X, the codimension k, and the family of metrics ωε

be the same as in the previous lemma. Let B̃ be a holomorphic vector bundle on

X̃ and F a (1, 1) form with values in the auxiliary vector bundle End(B̃). Let

1 < α < 1 + 1
4k(k−1)

and α
1−2(k−1)(α−1)

< α̃ < 1 + 1
2(k−1)

. Then there is a number κ0

such that for any 0 < κ ≤ κ0, there exists a constant C independent of ε, ε1, and κ,

and a constant C(κ) such that:

‖ΛωεF‖Lα(X̃,ωε)
≤ C

(∥∥Λωε1
F
∥∥
Lα̃(X̃,ωε1 )

+ κ ‖F‖L2(X̃,ωε1 )

)
+ ε1C(κ) ‖F‖L2(X̃,ωε1 )

Proof. Recall that (ΛωεF )ωnε = F ∧ ωn−1
ε and

(
Λωε1

F
)
ωnε1 = F ∧ ωn−1

ε1
so that:

ΛωεF =
F ∧ ωn−1

ε

ωnε
,Λωε1

F =
F ∧ ωn−1

ε1

ωnε1
.

Note also that

ωnε =
det gε

det gε1
ωnε1
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Now we write:

ΛωεF =
F ∧ ωn−1

ε

ωnε
=
F ∧ (ωn−1

ε1
+ ωn−1

ε − ωn−1
ε1

)

ωnε

=

(
F ∧ ωn−1

ε1
+
∑n−1

l=1 (εl − εl1)
(
n−l
l

)
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε

)
.

=
det gε1

det gε

(
Λωε1

F +

∑n−1
l=1 (εl − εl1)

(
n−l
l

)
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

)
.

Therefore:

|ΛωεF |
α ≤ C

∣∣∣∣det gε1

det gε

∣∣∣∣α
(∣∣Λωε1

F
∣∣α +

n−1∑
l=1

∣∣εl − εl1∣∣α ∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl
ωnε1

∣∣∣∣α
)

(by convexity of the function |·|α when α > 1). Again, we set s = α̃
α̃−α . By the

above expression and Hölder’s inequality with respect to the metric ωε1 :

‖ΛωεF‖Lα(X̃,ωε)
=

(∫
X̃

|ΛωεF |
α ωnε

) 1
α

≤

C

(∫
X̃

(
det gε

det gε1

)(1−α)s

ωnε1

) 1
αs

×

(∫
X̃

∣∣Λωε1
F
∣∣α̃ ωnε1) 1

α̃

+

(∫
X̃

n−1∑
l=1

(
εl1
)α̃ ∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣α̃ ωnε1
) 1

α̃

 .

By the previous lemma the factor(∫
X̃

(
det gε

det gε1

)(1−α)s

ωnε1

) 1
αs

is uniformly bounded in ε.

Now we need to control the second term of the second factor above. We divide

X̃ into two pieces: an arbitrarily small neighbourhood Vκ with Vol(Vκ, ωε1) = κ
2

2−α̃

of the exceptional divisor E and its complement. We will perform two separate

estimates, one for each piece. Write the components of F in a local basis as F γ
ρij̄
.
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At any point we may choose an orthonormal basis for the tangent space so that η

is standard and π∗ω is diagonal. Then if we call this basis {ei}, we have∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl
ωnε1

∣∣∣∣2α̃

=

∣∣∣∣
(∑

i,j Fij̄ei ∧ ēj
)
∧ (
∑

i π
∗giie

i ∧ ēi)(n−1)−l ∧ (
∑

i e
i ∧ ēi)l

ωnε1

∣∣∣∣2α̃
≤ C∣∣ωnε1∣∣2α̃

(∑
i.j,γ,ρ

∣∣∣F γ
ρij̄

∣∣∣2)α̃

= C
|F |2α̃η∣∣ωnε1∣∣2α̃ .

Now note that on X̃ − Vκ the pullback π∗ω determines a metric, in other words

(π∗ω)n is non-vanishing, so since ωnε1 −→ (π∗ω)n, the quantity
∣∣ωnε1∣∣2α̃ is uniformly

bounded away from 0. Therefore∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl
ωnε1

∣∣∣∣α̃ ≤ C |F |α̃η .

On the other hand, if we again choose a basis for which η is standard and such that

ωε1 is diagonal, we have:

|F |2α̃η =

∣∣∣∣∣
(∑
i.j,γ,ρ

∣∣F γ
ρij

∣∣2)∣∣∣∣∣
α̃

≤ C

∣∣∣∣∣
(∑
i.j,γ,ρ

1

gε1ii g
ε1
jj

∣∣F γ
ρij

∣∣2)∣∣∣∣∣
α̃

= C |F |2α̃ωε1

since the product of the eigenvalues gε1ii g
ε1
jj is again uniformly bounded (g

ε1
ii g

ε1
jj →

π∗giiπ
∗gjj as ε1 → 0). Thus, on X̃ − Vκ we have the further pointwise bound:

|F |α̃η ≤ C |F |α̃ωε1 .(∫
X̃−Vκ

(
εl1
)α̃ ∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣α̃ ωnε1
) 1

α̃

≤ Cε1

(∫
X̃−Vκ

|F |α̃ωε1 ω
n
ε1

) 1
α̃

≤ Cε1 ‖F‖Lα̃(ωε1 ) ≤ C(κ)ε1 ‖F‖L2(ωε1 )

since by assumption α̃ < 2.

Now we estimate this term on Vκ. Choose an orthonormal basis for the tangent

space at a point in Vκ such that ωε1 is standard and η is diagonal. Then we have
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gε1ij = π∗gij + ε1ηij, so if i 6= j π∗gij = 0, and if i = j ηii = 1−g̃ii
ε1
. Note also that

0 ≤ g̃ii < 1 since 0 < ηii. If we write Ω for the standard Euclidean volume form

then:

n−1∑
l=1

(
εl1
)α̃ ∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣α̃

=
n−1∑
l=1

∣∣∣∣∣∣
(∑

i,j Fij̄ei ∧ ēj
)
∧ (
∑

i π
∗giie

i ∧ ēi)(n−1)−l ∧ (
∑

i (1− π∗gii) ei ∧ ēi)
l

Ω

∣∣∣∣∣∣
α̃

≤ C

(∑
i.j,γ,ρ

∣∣∣F γ
ρij̄

∣∣∣)α̃

≤ C |F |α̃ωε1 .

Therefore:(∫
Vκ

n−1∑
l=1

(
εl1
)α̃ ∣∣∣∣F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣α̃ ωnε1
) 1

α̃

≤ C

(∫
Vκ

|F |α̃ωε1 ω
n
ε1

) 1
α̃

≤ C Vol(Vκ, ωε1)1− α̃
2 ‖F‖L2(Vκ,ωε1 ) ≤ Cκ ‖F‖L2(X̃,ωε1 ) (Hölder).

Now we obtain the desired estimate:

‖ΛωεF‖Lα(X̃,ωε)
≤ C

(∥∥Λωε1
F
∥∥
Lα̃(X̃,ωε1 )

+ κ ‖F‖L2(X̃,ωε1 )

)
+ ε1C(κ) ‖F‖L2(X̃,ωε1 ) .

Proposition 22 Let E → X be a holomorphic vector bundle of rank K over a

Kähler manifold with Kähler form ω. Assume that E has Harder-Narasimhan type

µ = (µ1, ..., µK) that the singular set Zalg of the HNS filtration is smooth, and

furthermore that blowing up along the singular set resolves the singularities of the

HNS filtration. There is an α0 > 1 such that the following holds: given any δ > 0

and any N , there is an hermitian metric h on E such that HYMω
α,N(∂̄E, h) ≤

HYMα,N(µ) + δ, for all 1 ≤ α < α0.
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Proof. As before, let π : X̃ → X be a blow-up along a smooth, complex sub-

manifold Y , and we assume that this resolves the singularities of the HNS filtration.

In other words there is a filtration of Ẽ = π∗E on X̃ that is given by sub-bundles

and is equal to the HNS filtration of E away from the divisor E. Let ωε denote

the aforementioned family of Kähler metrics on X̃ given by ωε = π∗ω + εη where

0 < ε ≤ 1 and η is a fixed Kähler metric on X̃. We will construct the metric on h

on E from an hermitian metric h̃ on π∗E to be specified later.

Since Zalg is a complex submanifold, we consider its normal bundle ζ, or

more particularly the open subset: ζR = {(x, ν) ∈ ζ | |ν| < R}. By the tubular

neighbourhood theorem, for R suffi ciently small this set is diffeomorphic to an open

neighbourhood UR of Zalg. We choose a background metric H on this open set.

Let ψ be a smooth cut-off function supported in U1 and and identically 1 on

U1/2 and such that 0 ≤ ψ ≤ 1 everywhere. Then if we define ψR(x, ν) = ψ(x, ν
R

),

ψR is identically 1 on UR/2 and supported in UR with 0 ≤ ψR ≤ 1 and furthermore

there are bounds on the derivatives:

∣∣∣∣∂ψR∂zi

∣∣∣∣ ≤ C

R
,

∣∣∣∣ ∂∂z̄i ∂ψR∂zi

∣∣∣∣ ≤ C

R2

where the constant C does not depend on R. Suppose for the moment that we have

constructed an hermitian metric h̃ on π∗E. If we continue to denote by H and ψR

their pullbacks to X̃, then we may define the following metric on π∗E :

hψR := ψRH + (1− ψR)h̃

Observe that on X − UR we have hψR = h̃ and on UR/2, hψR = H.
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Now we need to estimate the difference:

∣∣HYMωε
α,N(∂̄Ẽ, hψR)−HYMα,N(µ)

∣∣
=

∣∣∣∣∫
X̃

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα

(
i(µ1 +N), ...,

√
−1(µK +N)

)∣∣∣∣
where Φα is the convex functional on u(Ẽ) given as in Section 3.2 by Φα(a) =∑k

j=1 |λj|
α, where the iλj are the eigenvalues of a. From here on out we will write

i(µ+N) for the matrix in the above expression. Therefore we have:

∣∣HYMωε
α,N(∂̄Ẽ, hψR)−HYMα,N(µ)

∣∣
≤
∣∣∣∣∫
X̃−π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(i(µ+N))

∣∣∣∣
+

∣∣∣∣∫
π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣
=

∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣
+

∣∣∣∣∣
∫
π−1(UR/2)

Φα(ΛωεFH +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣
where the last equality comes from the fact that hψR is equal to H on UR/2. Dividing

the first integral further we have:

∣∣HYMωε
α,N(∂̄E, hψR)−HYMα,N(µ)

∣∣
≤

∣∣∣∣∣
∫
π−1(UR−UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(ΛωεFh̃ +

√
−1NIẼ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(ΛωεFh̃ +
√
−1NIẼ)− Φα(

√
−1(µωε1 +N))

∣∣∣∣∣
+

∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣
+

∣∣∣∣∣
∫
π−1(UR/2)

Φα(ΛωεFH +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣
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where in the first integral on the right hand side we have used the fact that outside

of UR the metrics hψR and h̃ agree. Here, µωε1 denotes the usual K-tuple of rational

numbers made from the ωε1 slopes of the quotients of the resolution.

Recall that the norm on Lα(u(Ẽ)) a 7→
(∫

M
Φα(a)

)1/α
is equivalent to the Lα

norm and so there is a universal constant C independent of R and ε such that:∣∣∣∣∣
∫
π−1(UR−UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(ΛωεFh̃ +

√
−1NIE)

∣∣∣∣∣
+

∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(ΛωεFh̃ +
√
−1NIE)− Φα(

√
−1(µωε1 +N))

∣∣∣∣∣
≤ C

(∥∥∥ΛωεFhψR − ΛωεFh̃

∥∥∥α
Lα(π−1(UR−UR/2),ωε)

+
∥∥∥ΛωεFh̃ −

√
−1µωε1

∥∥∥α
Lα(X̃−π−1(UR/2),ωε)

)
.

First we dispose of∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣
by choosing ε1 close to zero and using Remark 6. That is, we may choose ε1 small

enough so that∣∣∣∣∣
∫
X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣ < δ

2

Next will will bound:

∥∥∥ΛωεFh̃ −
√
−1µωε1IdẼ

∥∥∥α
Lα(X̃−π−1(UR/2),ωε)

.

. Note that at this point we have not specified the metric h̃ on π∗E. We will do so

now. Each of the ω-stable quotients Qi of the Harder-Narisimhan-Seshadri filtration

remains stable on the blowup with respect to the metrics ωε with ε suffi ciently small

(see Remark 5), so that the quotients Q̃i are also ωε1-stable and admit a unique
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Hermitian-Einstein metric G̃ε1
i . The prototype for our metric h̃ will be the metric

G̃ε1 = ⊕iG̃ε1
i . However we need to modify G̃ by a gauge transformation in order to

obtain the appropriate bound on the second term. More precisely, since holomorphic

structures on the bundle Ẽ are equivalent to integrable unitary connections, this is

the same as showing that if we fix the metric G̃ε1 , there is a gauge transformation g̃

of Ẽ such that
∥∥ΛωεF(g̃(∂̄Ẽ),G̃ε1 )− iµωε1IdẼ

∥∥
Lα(X̃−π−1(UR/2),ωε)

is small. When we take

the direct sum, the second fundamental form enters into the curvature and so we ask

that there is a gauge transformation making this contribution small. We can write

the holomorphic structure ∂̄Ẽ on Ẽ as an upper triangular matrix with ∂̄Q̃i on the

diagonal and βi above the diagonal, where the βi are the second fundamental forms

for the splitting. Then define the complex gauge transformations g̃t = t1−lIdQ1 ⊕

...⊕ t−1IdQl−1
⊕ IdQl . The action of g̃t on ∂̄Ẽ is

g̃t(∂̄Ẽ) =



∂̄Q̃1
tβ1 · · tl−1βl

·

·

·

∂̄Q̃l


.

and so we see that

∥∥ΛωεF(g̃(∂̄Ẽ),G̃ε1 ) −
√
−1µωε1IdẼ

∥∥
Lα(X̃−π−1(UR/2),ωε)

≤
∥∥ΛωεFG̃ε11

−
√
−1µωε1 (Q̃1)IdQ̃1

∥∥
Lα(X̃−π−1(UR/2),ωε)

+ ...+
∥∥ΛωεFG̃ε1

K

−
√
−1µωε1 (Q̃l)IdQ̃l

∥∥
Lα(X̃−π−1(UR/2),ωε)

+ Θ(tβ1, ..tβl)
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where Θ(tβ1, ..tβl) → 0 as t → 0. Therefore we have reduced this estimate to an

estimate on each of the terms:∥∥∥ΛωεFG̃ε1
i

−
√
−1µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

.

On the other hand we have:∥∥∥ΛωεFG̃ε1i −
√
−1µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤
∥∥∥∥Λωε

(
FG̃ε1i −

√
−1

n
ωε1µωε1 (Q̃i)IdQ̃i

)∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

+

∥∥∥∥√−1

n
Λωε(ωε1 − ωε)µωε1 (Q̃i)IdQ̃i

∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

where we have used the fact that Λωεωε = n. Now by Lemma 15 we have:∥∥∥∥Λωε

(
F
G̃
ε1
i

−
√
−1

n
ωε1µωε1 (Q̃i)IdQ̃i

)∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤C
(∥∥∥Λωε1

FG̃ε1i −
√
−1µωε1 (Q̃)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1 )

)
+κC

(∥∥∥FG̃ε1i ∥∥∥L2(X̃,ωε1 )
+

1

n

∥∥∥ωε1µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

)
+ε1C(κ)

∥∥∥FG̃ε1i ∥∥∥L2(X̃,ωε1 )

+ ε1C(κ)
1

n

∥∥∥ωε1µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

and ∥∥∥∥√−1

n
Λωε(ωε1 − ωε)µωε1 (Q̃i)IdQ̃i

∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤ ε1

n
C

(∥∥∥(Λωε1
η
)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1 )

+ κ
∥∥∥ηµωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

)
+
ε2

1

n
C(κ)

∥∥∥ηµωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

again using Lemma 15. Here we have used the fact that ωε1 − ωε = (ε1− ε)η in the

second inequality. Of course,
∥∥Λωε1

FG̃ε1i −
√
−1µωε1 (Q̃i)idQ̃i

∥∥
Lα̃(X̃,ωε1 )

= 0, by the
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construction of Gε1
i . On the other hand:∥∥∥FG̃ε1i ∥∥∥L2(X̃,ωε1 )

=
∥∥∥Λωε1

FG̃ε1i

∥∥∥
L2(X̃,ωε1 )

+ π2n(n− 1)

∫
X̃

(
2c2(Q̃i)− c2

1(Q̃i

)
) ∧ ωn−2

ε1

=
∥∥∥µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

+ π2n(n− 1)

∫
X̃

(
2c2(Q̃i)− c2

1(Q̃i)
)
∧ ωn−2

ε1

which is bounded. Likewise the terms∥∥∥ωε1µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

and ∥∥∥ηµωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

are bounded. The only remaining issue is:
∥∥∥(Λωε1

η
)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1 )

. But

writing ∣∣Λωε1
η
∣∣α̃ =

∣∣∣∣η ∧ ωn−1
ε1

ωnε1

∣∣∣∣α̃ =

∣∣∣∣η ∧ ωn−1
ε1

ηn

∣∣∣∣α̃ ∣∣∣∣ det η

detωε1

∣∣∣∣α̃
and

ωnε1 =

∣∣∣∣detωε1
det η

∣∣∣∣ ηn∥∥∥(Λωε1
η
)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1 )

≤ C

(∫
X̃

∣∣∣∣detωε1
det η

∣∣∣∣(1−α̃)s̃

ηn

) 1
α̃s̃
(∫

X̃

∣∣∣∣η ∧ ωn−1
ε1

ηn

∣∣∣∣β ∣∣∣µωε1 (Q̃i)IdQ̃i

∣∣∣β ηn)
1
β

by Hölder’s inequality with respect to the metric η. Here again α̃ is as in Lemma

15 s̃ = β
β−α̃ where

α̃
1−2(k−1)(α̃−1)

< β <∞. By Lemma 14 this is uniformly bounded

in ε1 since we also have ωn−1
ε1
−→ π∗ωn−1.

The consequence of the above argument is that we may choose t first, then κ,

and then ε1, all suffi ciently small so that∥∥∥ΛωεFG̃ε1
−
√
−1µωε1 (Q̃i)IdG̃ε1

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

<
δ

4
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for all ε and all α suffi ciently close to 1. We will now fix this value of ε1, so that all

remaining quantities depending on ε1 may be thought of as constant.

The term∣∣∣∣∣
∫
π−1(UR/2)

Φα(ΛωεFH +
√
−1NIE)− Φα(

√
−1(µ+N))

∣∣∣∣∣
is bounded by:

C
∥∥(ΛωεFH −

√
−1µ

∥∥
Lα(π−1(UR/2),ωε)

.

Now write

|ΛωεFH |
α =

∣∣∣∣FH ∧ ωn−1
ε

ωn−1
ε

∣∣∣∣α =

∣∣∣∣FH ∧ ωn−1
ε

ηn

∣∣∣∣α̃ ∣∣∣∣ det η

detωε

∣∣∣∣α̃
and

ωnε =

∣∣∣∣detωε
det η

∣∣∣∣ ηn,
we have

∥∥(ΛωεFH −
√
−1µ

∥∥
Lα(π−1(UR/2),ωε)

≤ C1 ‖ΛωεFH‖Lα(π−1(UR/2),ωε)
+ C2 Vol(UR/2, ω) ≤

C1

(∫
π−1(UR/2)

∣∣∣∣detωε
det η

∣∣∣∣(1−α)s

ηn

) 1
sα̃
(∫

π−1(UR/2)

∣∣∣∣FH ∧ ωn−1
ε

ηn

∣∣∣∣α̃ ηn
) 1

α̃

+C2 Vol(UR/2, ω)

where α and s are as in Lemma 14. By the lemma, the factor(∫
π−1(UR/2)

∣∣∣∣detωε
det η

∣∣∣∣(1−α)s

ηn

)

is uniformly bounded, and so the result is that there is an R such that∣∣∣∣∣
∫
π−1(UR/2)

Φα(ΛωεFH +
√
−1NIE)− Φα(

√
−1(µ+N))

∣∣∣∣∣ < δ

8
.
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Therefore the only remaining estimates required are on:

∥∥ΛωεFh̃ψR
− ΛωεFh̃

∥∥
Lα(π−1(UR−UR/2),ωε)

.

If we let kψR be an endomorphism such that h̃ = kψRhψR . Then

FhψR − Fh̃ = ∂̄Ẽ(k−1
ψR
∂h̃kψR)

where ∂h̃ is the (1, 0) part of the Chern connection for h̃. The expression on the

right hand side involves only two derivatives of ψR, and so, using the bound on the

derivatives of ψR, there is a bound of the form:∣∣∣FhψR − Fh̃∣∣∣ ≤ C1 +
C2

R2
.

where C1 and C2 are independent of both ε and R. Now as usual we have:

∣∣∣Λωε

(
Fh̃ψR

− Fh̃
)∣∣∣α =

∣∣∣∣∣∣
(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ωnε

∣∣∣∣∣∣
α

=

∣∣∣∣∣∣
(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ηn

∣∣∣∣∣∣
α ∣∣∣∣ det η

detωε

∣∣∣∣α
and ωnε =

detωε
det η

ηn.

Then we compute:

∥∥∥ΛωεFhψR − ΛωεFh̃

∥∥∥
Lα(π−1(UR−UR/2),ωε)

=

∫
π−1(UR−UR/2)

∣∣∣∣∣∣
(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ηn

∣∣∣∣∣∣
α ∣∣∣∣ det η

detωε

∣∣∣∣α detωε
det η

ηn


1
α

≤
(∫

π−1(UR−UR/2)

(
detωε
det η

)(1−α)s

ηn

) 1
αs
(∫

π−1(UR−UR/2)

(
C1 +

C2

R2α̃

)
ηn

) 1
α̃

Here s and α̃ are as in Lemma 14 and we have applied Hölder’s inequality to the

conjugate pair s and α̃
α
. By the Lemma, the first factor is uniformly bounded in

ε. We must therefore show that as R → 0, the first factor can be made arbitrarily
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small. To do this we note that the open set UR may be covered by a union of balls

∪jBj
r . Therefore:∫

π−1(UR−UR/2)

C1 + C2R
−2α̃ ≤

∑
j

(C1 + C2R
−2α̃)vol(Bj

r)

and up to a constant vol(Bj
r) = r2n where n is the complex dimension of X.

The key observation is now that the singular set Zalg is a complex submanifold

of X and has complex codimension at least 2, in other words it is of real dimension

at most 2n − 4. This implies that Zalg has Hausdorff dimension at most 2n − 4,

i.e. it has zero d-dimensional Hausdorff measure for d < 2n − 4. In other words,

for each 0 ≤ d < 4, and a given δ > 0, there is a cover of Zalg and an r > 0 such

that
∑

j r
2n−d < δ. Now assume that we have chosen R = r. Then then the cover

described above is also a cover for UR so

∫
π−1(UR−UR/2)

C1 + C2R
−2α̃ ≤

∑
j

(C1r
2n + C2r

2n−2α̃).

Note that by assumption α̃ < 2. In other words, we may select R so that:

∥∥∥ΛωεFh̃ψR
− ΛωεFh̃

∥∥∥
Lα(π−1(UR−UR/2),ωε)

<
δ

16
.

Thus choosing ε1 and R in the manner specified above gives us for each ε a bound

on the difference of the HYM functionals:
∣∣∣HYMωε

α,N(∂̄E, h̃ψR)−HYMα,N(µ)
∣∣∣ ≤ δ.

Now sending ε→ 0 we finally see that there exists a metric h with

∣∣HYMω
α,N(∂̄E, h)−HYMα,N(µ)

∣∣ < δ

for all N and all α suffi ciently close to 1.
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Lemma 16 Let E → X and α0 be the same as in the proposition. Let h be

any smooth Hermitian metric on E and At a solution of the Yang-Mills flow whose

initial condition is (∂̄E, h). Let µ0 denote the Harder-Narasimhan type of E. Then

limt→∞HYMα,N(At) = HYMα,N(µ0), for all 1 ≤ α ≤ α0 and all N .

As a consequence, if A∞ is an Uhlenbeck limit along the flow: HYMα,N(A∞) =

HYMα,N(µ0), since HYMα,N(A∞) = limt→∞HYMα,N(At).

Proof. Define the number δ0 > 0 by the condition:

2δ0 +HYMα,N(µ) = min{HYMα,N(µ) | HYMα,N(µ) > HYMα,N(µ0)}

where µ runs over all possible HNS types of holomorphic vector bundles on X with

the same rank as E.

Given a metric h and a corresponding initial condition Ah0 = (∂̄E, h) for

the flow, we write Aht the solution at time t. Let Hδ denote the set of all metrics h

on E such that for any δ > 0 there is a T ≥ 0 such that for all t ≥ T :

HYMα,N(Aht ) < HYMα,N(µ0) + δ.

We will show that every Hermitian metric is in Hδ by showing that it is open and

closed in the space of metrics with the C∞ topology. Notice first that any metric h

satisfying:

HYMα,N(Ah0) ≤ HYMα,N(µ0) + δ

is in Hδ since

HYMα,N(Aht ) ≤ HYMα,N(Ah0)
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for all t (monotonicity along the flow). Such a metric always exists by the above

proposition. Therefore the setHδ is non-empty. Since the flow depends continuously

on the initial condition Hδ is also open.

Now assume without loss of generality that 0 ≤ δ ≤ δ0

2
. To show Hδ is closed

we will show that it contains all of its limit points. So let hj be a sequence of

Hermitian metrics on E contained in the set Hδ and suppose hj −→ H in the C∞

topology, where H is an Hermitian metric. For each hj let Tj be the corresponding

time such that for all t ≥ Tj we have:

HYMα,N(A
hj
t ) ≤ HYMα,N(µ0) + δ.

By Uhlenbeck compactness, we may find a sequence of times tj ≥ Tj, Yang-

Mills connections A(1)
∞ and A(2)

∞ , and bubbling sets Z
(1)
an and Z(2)

an such that Ahjt −→

A
(1)
∞ in Lp1,loc(X−Z

(1)
an ) and AHtj −→ A

(2)
∞ in Lp1,loc(X−Z

(2)
an ). We also have ΛωF

A
hj
tj

−→

ΛωFA(1)
∞
and ΛωFAHtj

−→ ΛωFA(2)
∞
strongly in Lp for all 1 ≤ p <∞.

We claim that A(1)
∞ = A

(2)
∞ .

Proof of the Claim.

Define the automorphisms ktjj of E by htjj = k
tj
j Htj , in other words k

tj
j is the

gauge transformation taking the connection AHtj to A
hj
tj by the action of conjugation.

It follows from [DO1] Proposition 13 that

supσ(hjt , Ht) −→ 0
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as j −→∞, uniformly in t, where:

σ(h,H) = Tr(h−1H) + Tr(H−1h)− 2rk(E)

is the C0-distance function on the space of Hermitian metrics. In particular we have

that:

sup
∣∣∣ktjj − IE∣∣∣ −→ 0

as j −→ ∞. Let Zan = Z
(1)
an ∪ Z(1)

an and choose a smooth test form φ ∈ Ω1,0(EndE)

compactly supported on X − Zan.

Denote by ∂hj ,tj ,∂H,tj and ∂∞,(2) the (1, 0) parts of the covariant derivatives

corresponding to the connections Ahjtj ,A
H
tj
and A(2)

∞ . Then for any section s of E one

computes:

((
k
tj
j

)−1

∂H,tj(k
tj
j )

)
(s) =

((
k
tj
j

)−1

∂H,tj

(
k
tj
j s
))
−
(
∇H
tj

)1,0

(s)

=

(
k
tj
j · ∂H,tj −

(
∇H
tj

)1,0
)
s

=
(
∂hj ,tj − ∂H,tj

)
s.

In other words:

∂hj ,tj − ∂H,tj =
(
k
tj
j

)−1

∂H,tj(k
tj
j ).

Now, there is a constant C such that:

∣∣〈∂hj ,tj − ∂H,tj , φ〉L2

∣∣
=

∣∣∣∣〈(ktjj )−1

∂H,tj(k
tj
j ), φ

〉
L2

∣∣∣∣ ≤ C
∣∣∣〈ktjj , ∂∗H,tjφ〉

L2

∣∣∣
≤ C

{∣∣∣〈ktjj , (∂H,tj − ∂∗∞,(2)

)
φ
〉
L2

∣∣∣+
∣∣∣〈ktjj , ∂∗∞,(2)φ

〉
L2

∣∣∣} .
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Note that since ∂H,tj −→ ∂∞,(2) in C∞ and k
tj
j is bounded uniformly in L

∞ the first

term goes to zero. On the other hand ktjj −→ IE in C0 so that:〈
k
tj
j , ∂

∗
∞,(2)φ

〉
L2
−→

〈
IE, ∂

∗
∞,(2)φ

〉
L2

=

∫
X

Tr
(
∂∗∞,(2)φ

)
dvolω

=

∫
X

∂∗Trφ dvolω = 0

by Stokes’theorem. Therefore ∂hj ,tj − ∂H,tj −→ 0 in L2
loc(X − Zan) and so the two

limits are equal.

Set A∞ = A
(1)
∞ = A

(2)
∞ . Because ΛωF

A
hj
t

−→ ΛωFA∞ and ΛωFAHt −→

ΛωFA∞ in L
p:

lim
j−→∞

HYMα,N

(
A
hj
tj

)
= lim

j−→∞
HYMα,N

(
AHtj

)
= HYMα,N (A∞) .

For large j we have:

HYMα,N

(
AHtj

)
≤ HYMα,N (A∞) + δ = lim

j−→∞
HYMα,N

(
A
hj
tj

)
+ δ

≤ HYMα,N(µ0) + 2δ ≤ HYMα,N(µ0) + δ0

where we have used that hj ∈ Hδ and δ ≤ δ0

2
. By the definition of δ0,

lim
t−→∞

HYMα,N

(
AHtj+t

)
= HYMα,N(µ0)

and so there is a T ≥ 0 such that for all suffi ciently large j, when t ≥ T ,HYMα,N

(
AHtj+t

)
<

HYMα,N(µ0) + δ, in other words H ∈ Hδ, and so Hδ is closed.

Then every Hermitian metric h is in Hδ for all δ. In particular we may

choose δ ≤ δ0 so that:

HYMα,N(µ0) ≤ HYMα,N(µ∞) = HYMα,N(A∞)

≤ HYMα,N

(
Aht
)
≤ HYMα,N (µ0) + δ0
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and again by the definition of δ0 we have HYMα,N(µ∞) = HYMα,N (µ0) so the

result follows.

We can now identify the Harder-Narasimhan type of the limit.

Proposition 23 Let E → X have the same properties as before. Let At be a

solution to the YM flow with initial condition A0 whose limit along the flow is A∞.

Let E∞ be the corresponding holomorphic vector bundle defined away from Zan. Then

the HN type of (E∞, A∞) is the same as (E0, A0).

Proof. Let µ0 = (µ1, ..., µK) and µ∞ = (µ∞1 , ..., µ
∞
K ) be the HN types of (E0, A0)

and (E∞, A∞). A restatement of the above lemma is that Φα(µ0 +N) = Φα(µ∞+N)

for all 1 ≤ α ≤ α0 and all N . Choose N to be large enough so that µK + N ≥ 0.

Then we also have µ∞K +N ≥ 0 by Proposition 14, and therefore µK +N = µ∞K +N

by Proposition 15, so µK = µ∞K .

Let (E, ∂̄A0) be a holomorphic bundle, and A0 an initial connection, and Atj

its evolution along the flow for a sequence of times tj. Then we have the following.

Lemma 17 (1) Let
{
π

(i)
j

}
be the HN filtration of (E,∂̄Atj ) and

{
π

(i)
∞
}
the HN

filtration of (E∞,∂A∞). Then after passing to a subsequence, π(i)
j → π

(i)
∞ strongly

Lp ∩ L2
1,loc for all 1 ≤ p <∞ and all i.

(2) Assume the original bundle (E, ∂̄A0) is semi-stable and
{
π

(i)
ss,j

}
are Se-

shadri filtrations of (E, ∂̄Atjj). Without loss of generality assume the ranks of the

subsheaves π(i)
ss,j are constant in j. Then there is a filtration

{
π

(i)
ss,∞

}
of (E,∂̄A∞)

such that after passing to a subsequence
{
π

(i)
ss,j

}
→
{
π

(i)
ss,∞

}
strongly in Lp ∩ L2

1,loc
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for all 1 ≤ p < ∞ and all i. The rank and degree of π(i)
ss,∞ is equal to the rank and

degree of π(i)
ss,j for all i and j.

Proof. We will write E(i) = FHNi (E, ∂̄A0) and E
(i)
∞ = FHNi (E, ∂̄A∞) and π

(i)
j

the orthogonal projection onto the subsheaf gj(Ei). From the standard Chern-Weil

formula (Simpson) we again have:

deg(Ei) +
1

2π

∫
X

∥∥∥∂̄Ajπ(i)
j

∥∥∥2

dvolω ≤
∑

k≤rk(Ei)

µ∞k +
1

2π

∥∥ΛωFAj − ΛωFA∞
∥∥
L1(X)

.

By the second assumption, µ = µ∞ so deg(Ei) =
∑

k≤rk(Ei)
µ∞k , and so by the

third assumption:

∂̄Ajπ
(i)
j

L2

−→ 0.

Since L2
1,loc is weakly compact and

{
π

(i)
j

}
is uniformly bounded in L2

1,loc, after passing

to a subsequence if necessary, π(i)
j −→ π̃(i)

∞ weakly in L2
1,loc for an L2

1 projection

π̃(i)
∞ . We claim that ∂̄A∞ π̃

(i)
j = 0. For any compactly supported test form φ ∈

Ω0,1(X − Zan,u(E)) :

∫
X−Zan

〈
φ, ∂̄A∞ π̃∞

〉
=

∫
X−Zan

〈(
∂̄A∞

)∗
φ, π̃(i)

∞
〉

= lim
j−→∞

∫
X−Zan

〈(
∂̄A∞

)∗
φ, π

(i)
j

〉
= lim

j−→∞

∫
X−Zan

〈
φ, ∂̄A∞π

(i)
j

〉
= lim

j−→∞

∫
X−Zan

〈
φ,
(
∂̄A∞ − ∂̄Aj

)
π

(i)
j

〉
+
〈
φ, ∂̄Ajπ

(i)
j

〉
= 0

where we have used that Aj −→ A∞ in C∞(X − Zan),
∥∥∥π(i)

j

∥∥∥
L∞
≤ 1. In particular

this means π̃(i)
∞ defines a saturated subsheaf which we will denote by Ẽ(i)

∞ . Clearly

rk(Ẽ
(i)
∞ ) = rk(E

(i)
∞ ). We claim that deg(Ẽ

(i)
∞ ) = deg(E

(i)
∞ ). Since ∂̄A∞ π̃

(i)
j = 0 and
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ΛωFAj −→ ΛωFA∞ and π
(i)
j −→ π̃(i)

∞ in L2:

deg(Ẽ(i)
∞ ) =

1

2π

∫
X

Tr(iΛωFA∞ π̃
(i)
∞ )dvolω = lim

j−→∞

1

2π

∫
X

Tr(iΛωFA∞ π̃
(i)
j )dvolω

= deg(E(i)
∞ ) +

1

2π
lim
j−→∞

∫
X

∥∥∥∂̄Ajπ(i)
j

∥∥∥2

dvolω = deg(E(i)
∞ ).

The maximal destabilising subsheaf FHN1 (E∞) of E∞ is the unique saturated sub-

sheaf of E∞ of the given rank and degree, so that π̃(1)
∞ = π

(1)
∞ . We proceed by

induction. Let 1 ≤ k < l and assume π̃(i)
∞ = π

(i)
∞ for all i ≤ k. Then Ẽ

(k+1)
∞
E

(k)
∞

has the same rank and slope as the maximal destabilising subsheaf of E∞
E

(k)
∞
and so

Ẽ
(k+1)
∞ = E

(k+1)
∞ . Continuing until k = l completes the proof of part 1. For part 2

just notice that the same proof applies to a Seshadri filtration, but since these are

not unique we can only conclude that the sheaves in the limiting filtration have the

same rank and degree.

Proposition 24 Assume as before that E → X is a holomorphic vector bundle

such that Zan is smooth and that blowing up once resolves the singularities of the

HNS filtration. Then given δ > 0 and any 1 ≤ p <∞, E has an Lp δ-approximate

critical hermitian structure.

Proof. Let At be a solution to the YM flow with initial condition A0 = (∂̄E, h),

and let A∞ be the limit along the flow for some sequence Atj . Then we may apply the

previous lemma to conclude that ΨHNS
ω (∂̄Atj , h)

Lp→ ΨHNS
ω (∂̄A∞ , h∞) after passing to

another subsequence if necessary. Since A∞ is a Yang-Mills connection, iΛωFA∞ =
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ΨHN
ω (∂̄A∞ , h∞). Therefore:

∥∥∥iΛωFAtj −ΨHNS
ω (∂̄Atj , h)

∥∥∥
Lp(ω)

≤∥∥∥ΛωFAtj − ΛωFA∞

∥∥∥
Lp(ω)

+
∥∥∥ΨHNS

ω (∂̄Atj , h)−ΨHNS
ω (∂̄A∞ , h∞)

∥∥∥
Lp(ω)

−→ 0

where we have also used Lemma 9.

Now we would like to eliminate the assumptions that Zan is smooth and that

blowing up once resolves the singularities of the HNS filtration.

Theorem 13 Let E → X be a holomorphic vector bundle over a Kähler manifold

with Kähler form ω. Then given δ > 0 and any 1 ≤ p < ∞, E has an Lp δ-

approximate critical hermitian structure.

Proof. By 18, we know that we can resolve the singularities of the HNS filtration

by blowing up finitely many times. Moreover, the ith blowup is obtained by blowing

up along a complex submanifold contained in the singular set associated to the

pullback bundle over the manifold produced at the (i− 1)st stage of the process. In

other words there is a tower of blow-ups:

X̃ = Xm
πm−→ Xm−1

πm−1−→ ...
π2−→ X1

π1−→ X0 = X

such that if E = E0 is the original bundle, and Ei = π∗i (Ei−1), then there is a

filtration of Ẽ = π∗m(Em−1) that is given by sub-bundles and isomorphic to the

HNS filtration of E away from E. Note that on each blowup Xi we have a family

of Kähler metrics defined iteratively by ωε1,...,εi = π∗ωε1,...,εi−1
+ εiηi, where ηi is any

Kähler form on Xi. Then consider ωε1,...,εm on X̃ to be a fixed metric for specified
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values of ε1, ..., εm, and fix δ > 0. Fix δ0 to be a number that is very small with

respect to δ. By the previous proposition, for every p there is a δ0-approximate

critical hermitian structure on En−1. In particular there is such a metric for p = 2.

In other words there is a metric hm−1 so that:

∥∥∥√−1Λωε1,...εm−1
F(∂̄Em−1

,hm−1) −ΨHNS
ωε1,...εm−1

(∂̄Em−1 , hm−1)
∥∥∥
L2(ωε1,...εm−1 )

< δ0.

By construction this metric depends on the values of ε1, ..., εm, since it is constructed

from a metric on the blowup which itself is constructed using the notion of stability

with respect to ωε1,...,εm .

We prove the result by induction on the number of blowups. Assume that

we have an L2 δ0-approximate critical hermitian structure for each of the bundles

Ei → Xi for 1 ≤ i ≤ m− 2. Then in particular, with respect to the metric ωε1 on

X1, we have a metric h1 on E1 → X1 such that:

∥∥∥√−1Λωε1
F(∂̄E1

,h1) −ΨHNS
ωε1

(∂̄E1 , h1)
∥∥∥
L2(ωε1 )

< δ0.

Since X1 is obtained from X by blowing up along a smooth, complex submanifold,

we may use the exact same cut-off argument, choosing a cutoff function with respect

to a neighbourhood UR as in Proposition 22 to construct a metric hR on the bundle

E → X which depends on the value of ε1. In the following we will continue to

denote by hR its pullback to X1. As in the proof of Proposition 22 we have hR = h1

outside of the set π−1
1 (UR). We divide the proof into two steps.

(Step 1) There is an Lp δ-approximate critical hermitian structure

for p close to 1
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First let us assume that p satisfies the hypotheses of Lemma 15. In other

words, substitute p for α in the statement. Similarly, substitute p̃ for α̃. We will

show that a single metric, namely hR, gives an Lp δ-approximate critical hermitian

structure for all p within this range. We need to estimate the difference

∥∥∥√−1ΛωεF(∂̄E1
,hR) −ΨHNS

ω (∂̄E, hR)
∥∥∥
Lp(ωε)

where h̃ = π∗1h. Now:∥∥∥√−1ΛωεF(∂̄E1
,hR) −ΨHNS

ω (∂̄E, hR)
∥∥∥
Lp(ωε)

≤∥∥∥ΛωεF(∂̄E1
,hR) − ΛωεF(∂̄E1

,h1)

∥∥∥
Lp(ωε)

+
∥∥∥ΨHNS

ωε1
(∂̄E, h1)−ΨHNS

ω (∂̄E, hR)
∥∥∥
Lp(ωε)

+
∥∥∥ΛωεF(∂̄E1

,h1) −ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
Lp(ωε)

.

We can make the second term smaller than δ
3
by choosing ε1 small and using the

convergence of the HN types. The third term is bounded by two applications of

Lemma 15 as follows:

∥∥∥ΛωεF(∂̄E1
,h1) −ΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp(ωε)

≤∥∥∥∥Λωε

(
F(∂̄E1

,h1) −
1

n
ωε1ΨHNS

ωε1
(∂̄E, h1)

)∥∥∥∥
Lp(ωε)

+

∥∥∥∥ 1

n
Λωε (ωε1 − ωε) ΨHNS

ωε1
(∂̄E, h1)

∥∥∥∥
Lp(ωε)

≤ C
∥∥∥Λωε1

F(∂̄E1
,h1) −ΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp̃(ωε1 )

+κC

(∥∥∥F(∂̄E1
,h1)

∥∥∥
L2(X̃,ωε1 )

+
1

n

∥∥∥ωε1ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
L2(X̃,ωε1 )

)
+ε1C(κ)

(∥∥∥F(∂̄E1
,h1)

∥∥∥
L2(X̃,ωε1 )

+
1

n

∥∥∥ωε1ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
L2(X̃,ωε1 )

)
+
ε2

1

n
C(κ)

∥∥∥ηΨHNS
ωε1

(∂̄E, h1)
∥∥∥
L2(X̃,ωε1 )

+
ε1

n
C

(∥∥∥Λωε1
ηΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp̃(X̃,ωε1 )

+ κ
∥∥∥ηΨHNS

ωε1
(∂̄E, h1)

∥∥∥
L2(X̃,ωε1 )

)
.
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Recall from the statement of Lemma 15 that none of the above constants depend

on ε1. All terms with a κ in front and no C(κ) can be made small by choosing κ

small, so these terms can be ignored. Clearly the terms

∥∥∥ωε1ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
L2(X̃,ωε1 )

,
∥∥∥ηΨHNS

ωε1
(∂̄E, h1)

∥∥∥
L2(X̃,ωε1 )

are bounded independently of ε1 since the HN type converges. Therefore we need

only show that

∥∥∥Λωε1
F(∂̄E1

,h1) −ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
Lp̃(ωε1 )

,
∥∥∥F(∂̄E1

,h1)

∥∥∥
L2(X̃,ωε1 )

,∥∥∥Λωε1
ηΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp̃(X̃,ωε1 )

are uniformly bounded in ε1. Then we can choose κ first and then ε1 so that:∥∥∥ΛωεF(∂̄E1
,h1) −ΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp(ωε)

<
δ

3
.

Firstly we have:

∥∥∥Λωε1
F(∂̄E1

,h1) −ΨHNS
ωε1

(∂̄E, h1)
∥∥∥
Lp̃(ωε1 )

≤

C
∥∥Λωε1

F(∂̄E1
,h1) −ΨHNS

ωε1
(∂̄E, h1)

∥∥
L2(ωε1 )

< δ0

by Hölder’s inequality (since p̃ < 2), and the induction hypothesis. Note that the

constant above is independent of ε1 since the ωε1 volume is bounded. Also, the

following bound:

∥∥∥F(∂̄E1
,h1)

∥∥∥
L2(ωε1 )

=
∥∥∥Λωε1

F(∂̄E1
,h1)

∥∥∥
L2(ωε1 )

+

π2(n)(n− 1)

∫
X̃

(
2c2(E1)− c2

1(E1

)
∧ ωn−2

ε1

6
∥∥∥ΨHNS

ωε1
(∂̄E, h1)

∥∥∥
L2(ωε1 )

+

δ0 + π2(n)(n− 1)

∫
X̃

(
2c2(E1)− c2

1(E1

)
∧ ωn−2

ε1
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obtained from the usual relationship between the Hermitian-Einstein tensor and the

full curvature in L2, together with the induction hypothesis, shows that this term

is bounded in ε1 as well. Finally, writing

Λωε1
η =

η ∧ ωn−1
ε1

ωnε1
=
η ∧ ωn−1

ε1

ηn
det η

detωε1

ωnε1 =
detωε1
det η

ηn

then by Hölder’s inequality we have:

∥∥∥Λωε1
ηΨHNS

ωε1
(∂̄E, h1)

∥∥∥
Lp̃(X̃,ωε1 )

≤(∫
X̃

∣∣∣∣detωε1
det η

∣∣∣∣(1−p̃)(s̃) ηn
) 1

p̃s̃ (∫
X̃

∣∣∣∣η ∧ ωn−1
ε1

ηn

∣∣∣∣w ∣∣∣ΨHNS
ωε1

(∂̄E, h1)
∣∣∣w ηn) 1

w

where s̃ = w
w−p̃ and

p̃
1−2(k−1)(p̃−1)

< w <∞. By Lemma 14 this is bounded in ε1.

We have already seen that

∥∥ΛωεF(∂̄E1
,hR) − ΛωεF(∂̄E1

,h1)

∥∥
Lp(ωε)

can be estimated, since it is 0 outside of UR and the same argument as in the

proof of Proposition 22, shows that by making R suffi ciently small, we can make

the contribution from this term over UR less than δ
3
. Therefore the estimate on∥∥iΛωF(∂̄E ,h) −ΨHNS

ω (∂̄E, h)
∥∥
Lp(ω)

for these values of p follows by sending ε→ 0.

Step 2 (Extending to all p)

Repeating the arguments of Lemma 16, Proposition 23, Lemma 17, and Proposition

24, now gives the existence of an Lp δ-approximate critical hermitian structure on

E for each p. This metric will depend on p.

Notice that during the course of the above proof we have also proven the

following:
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Theorem 14 Let E → X be a holomorphic vector bundle over a Kähler manifold.

Let At be a solution to the YM flow with initial condition A0 whose limit along the

flow is A∞. Let E∞ be the corresponding holomorphic vector bundle defined away

from Zan. Then the HN type of (E∞, A∞) is the same as (E0, A0).
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Chapter 3

Proof of the Main Theorem

3.1 The Degenerate Yang-Mills Flow

In this section we introduce a version of the Yang-Mills flow on a sequence with

respect to the degenerate metric ω0 = π∗ω on a sequence of blowups π : X̃ → X

along complex submanifolds. This flow will correspond exactly to the usual Yang-

Mills flow on X̃ −E with respect the metric ω. It will be useful in the proof of the

main theorem, because we will again need to desingularise the HNS filtration, and

consider a sequence of blowups. The argument will rely on having a flow with the

correct properties that is well-defined on all of X̃ rather than just on the complement

of E. The idea here is due to Bando and Siu (see [BS]).

Let π : X̃ → X be a sequence of smooth blowups, and let ωε be the usual

family of Kähler metrics on X̃. We will write Lpk(X̃, ωε) for the corresponding

Sobolev spaces. The following lemma is clear.

Lemma 18 Fix a compact subset W ⊂⊂ X̃ − E. Let Ẽ be a vector bundle. Then

there exists a family of constants C(ε) → 0 as ε → 0, such that for any r-form

F ∈ Ωr(X̃ − E, Ẽ)

(1− C(ε)) ‖F‖Lpk(W,ω0) ≤ ‖F‖Lpk(W,ωε)
≤ (1 + C(ε)) ‖F‖Lpk(W,ω0) .

Throughout this section Ẽ → X̃ will be a holomorphic vector bundle of rank
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K, equipped with a smooth hermitian metric h̃0. Note that
∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

is

uniformly bounded in ε, since for any fixed Kähler form (metric) $ on X̃ we have:

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ =

∣∣∣∣∣F(∂̄Ẽ ,h̃0) ∧ ωn−1
ε

ωnε

∣∣∣∣∣ =

∣∣∣∣∣F(∂̄Ẽ ,h̃0) ∧ ωn−1
ε

$n

∣∣∣∣∣
∣∣∣∣det$

det gε

∣∣∣∣ ,
ωnε =

det gε

det$
$n

so ∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

=

∫
X̃

∣∣∣∣∣F(∂̄Ẽ ,h̃0) ∧ ωn−1
ε

$n

∣∣∣∣∣$n

which is clearly bounded uniformly in ε. Write h̃ε,t for the evolution of h̃0 under the

HYM flow with respect to the metric ωε.

Lemma 19 (1) Let t0 > 0. Then
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is uniformly bounded for all t ≥
t0 > 0 and all ε > 0. The bound depends only on t0 and the uniform bound on∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

.

(2)
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is bounded uniformly on compact subsets of X̃ − E for all

t ≥ 0 and all ε > 0. The bound depends only on the local bound on
∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ and
the uniform bound on

∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

.

Proof. By Lemma 2 (2), the pointwise norm
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is a subsolution of the
heat equation on (X̃, ωε) (see also [BS] equation 3.3). If Kε

t (x, y) is the heat kernel

for the ωε Laplacian on X̃ then∫
X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

is a solution of the heat equation and therefore:

∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ (x)−
∫
X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)
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is also a subsolution. Because∫
X̃

Kε
0(x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y) =
∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (x),

the maximum principle for the heat equation now implies that∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ (x) ≤
∫
X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y).

By [BS] Lemma 4, there is a bound: Kε
t (x, y) ≤ C (1 + 1/tn) for some constant C

independent of ε. Part (1) now follows.

For part (2), let Ω1 ⊂⊂ Ω ⊂⊂ X̃ − E, and let ψ be a smooth cut-off function

supported in Ω and identically 1 in a neighbourhood of Ω̄1. Then just as in part (1)

we have:∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ (x) ≤
∫
X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

=

∫
X̃

ψKε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

+

∫
X̃

(1− ψ)Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y).

By the maximum principle, the first term on the right hand side is bounded from

above by:

sup
{∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣(y) | y ∈ Ω
}
. Since Ω ⊂⊂ X̃ − E, the function 1/ det gεij is uni-

formly bounded in ε, so this sup and hence the first integral above are uniformly

bounded in ε. By [GR] Theorem 3.1, there are positive constants δ, C1, C2, inde-

pendent of t and ε, such that for x 6= y,

Kε
t (x, y) ≤ C1

(
1 +

1

δ2t2

)
exp

(
−(dωε(x, y))2

C2t

)
.

where dωε is the distance function on X̃ with respect to the Riemannian metric

induced by ωε. Of course dωε(x, y) is bounded from below for x ∈ Ω1 and y ∈
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supp(1−ψ) uniformly in ε. Therefore, Kε
t (x, y) is uniformly bounded in ε and t, for

these values of x and y. Then the second term on the right is uniformly bounded in

terms of
∥∥∥ΛωF(∂̄Ẽ h̃0)

∥∥∥
L1(ωε)

, so
∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ is uniformly bounded on Ω1.

If we write h̃ε,t = k̃ε,th̃0, then it follows from the HYM flow equations and the

second part of the previous lemma that both k̃ε,t and k̃−1
ε,t are uniformly bounded

on compact subsets of X̃ − E for 0 ≤ t ≤ t0. The statement that
∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ is
uniformly bounded on compact subsets of X̃ − E translates to the statement that

there is a section fε,t ∈ u(E), uniformly bounded on compact subsets of X̃−E, such

that:

√
−1Λωε ∂̄A0

(
k̃−1
ε,t ∂A0 k̃ε,t

)
= fε,t,

where A0 is the connection (∂̄E, h̃0). It therefore follows from [BS] Proposition

1, that k̃ε,t has a uniform C1,α bound on compact subsets of
(
X̃ − E

)
× [0,∞).

Furthermore, we may write:

√
−1Λωε ∂̄A0

(
k̃−1
ε,t ∂A0 k̃ε,t

)
= k̃−1

ε,t

√
−1Λωε

(
∂̄A0∂A0 k̃ε,t

)
+
√
−1Λωε

(
∂̄A0 k̃

−1
ε,t

)(
∂A0 k̃ε,t

)
= k̃−1

ε,t4(∂̄A0
,ωε)k̃ε,t + k̃−1

ε,t

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
,

where in the last equality we have used the Kähler identities and the expression for

∂̄A0 k̃
−1
ε,t . Therefore we have:

4(∂̄A0
,ωε)k̃ε,t +

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
= k̃ε,tfε,t.

By elliptic regularity, this yields a uniform Lp2 bound on k̃ε,t on compact subsets of(
X̃ − E

)
× [0,∞). It now follows from the HYM the flow equations, that ∂h̃ε,t

∂t

has a uniform Lp bound on compact subsets of
(
X̃ − E

)
× [0,∞), and so for any
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W ⊂⊂
(
X̃ − E

)
and T ≥ 0, there is a uniform Lp2/1(W × [0, T )) bound on h̃ε,t,

where the 2/1 in the previous notation refers to the fact that there is 1 derivative

in the time variable and 2 derivatives in the space variables. By weak compactness,

there is a subsequence εj → 0, so that h̃ε,t → h̃t in L
p
2/1 on compact subsets. By the

Sobolev imbedding theorem, h̃ε,t → h̃t in C1/0 on compact subsets. By a further

diagonalisation as T →∞, h̃ε,t → h̃t for all t ≥ 0.

Definition 7 We will refer to the resulting limit h̃t corresponding to the initial

metric h̃0 and the degenerate metric ω0 as the degenerate Hermitian-Yang-Mills

flow.

Of course a priori h̃t may depend on the subsequence εj. We will show that in

fact h̃t solves the HYM equations on X̃ − E with respect to the metric ω0.

Lemma 20 Let h̃t be defined as above. Then h̃t is an hermitan metric on Ẽ →

X̃ − E for all t ≥ 0, and solves the HYM equations on X̃ − E :

h̃−1
t

∂h̃t
∂t

= −2
(
Λω0Fh̃t − µω0

(E)IdE
)
.

Proof. Clearly h̃t is positive semi-definite since it is a limit of metrics. Therefore

we only need to check that det h̃t is positive. Taking the trace of both sides of the

HYM equations for the metric ωε, we get:

∂

∂t

(
log det h̃ε,t

)
= −2 Tr

(
ΛωεFh̃ε,t − µωε(E)IdE

)
integrating both sides:∣∣∣∣∣log

(
det h̃ε,T

det h̃0

)∣∣∣∣∣ = 2

∣∣∣∣∫ T

0

Tr
(

ΛωεFh̃ε,t − µωε(E)IdE

)∣∣∣∣ .
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By the previous lemma, the right hand side is bounded uniformly in ε, so det h̃T =

limεj→0
det h̃εj ,T must be positive. Since h̃εj ,t → h̃t weakly in L

p
2/1 and C

1/0 it follows

that h̃t solves the HYM equations on X̃ − E.

Lemma 21
∥∥Fh̃t∥∥L2(X̃,ω0)

and
∥∥Λω0Fh̃t

∥∥
L∞(X̃,ω0)

are uniformly bounded for all t ≥

t0 > 0. The bound depends only on t0 and the uniform bound on
∥∥ΛωεFh̃0

∥∥
L1(ωε)

.

Proof. Let W ⊂⊂ X̃ − E be a compact subset. By construction Fh̃εj ,t → Fh̃t

weakly in L2(W,ω0). Applying Lemma 18 and the relation between Fh̃ε,t and ΛωεFh̃ε,t

in L2 we have:

∥∥Fh̃t∥∥L2(W,ω0)
≤ lim inf

ε−→0

∥∥∥Fh̃ε,t∥∥∥L2(W,ω0)
≤ C1 lim inf

ε−→0

∥∥∥Fh̃ε,t∥∥∥L2(W,ωε)

≤ C1 lim inf
ε−→0

∥∥∥Fh̃ε,t∥∥∥L2(X̃,ωε)
≤ C1 lim inf

ε−→0

∥∥∥ΛωεFh̃ε,t

∥∥∥
L2(X̃,ωε)

+ C2

≤ C3 lim inf
ε−→0

∥∥∥ΛωεFh̃ε,t

∥∥∥
L∞(X̃)

+ C2,

where C3 is independent of W , and C2 is the product of C1 with a topological

constant. The bound in L2 now follows from Lemma 19 (1).

For the second part again fix W ⊂⊂ X̃ − E. We claim that for a fixed t and

W , as ε→ 0 there is a uniform bound

∥∥∥Λω0Fh̃ε,t

∥∥∥
Lp(W,ω0)

≤
∥∥∥ΛωεFh̃ε,t

∥∥∥
Lp(W,ω0)

+ 1.

Otherwise, there is a sequence εj such that:∥∥∥Λω0Fhεj ,t

∥∥∥
Lp(W,ω0)

≥
∥∥∥Λωεj

Fh̃εj ,t

∥∥∥
Lp(W,ω0)

+ 1.

Then

∣∣∣Λω0 − Λωεj

∣∣∣ ∥∥∥Fhεj ,t∥∥∥Lp(W,ω0)
≥
∥∥∥(Λω0 − Λωεj

)(
Fh̃εj ,t

)∥∥∥
Lp(W,ω0)

≥ 1.
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where
∣∣∣Λω0 − Λωεj

∣∣∣ denotes the operator norm. Since
∥∥∥Λω0Fh̃εj ,t

∥∥∥
Lp(W,ω0)

is uni-

formly bounded in εj and Λωεj
→ Λω0 on W , this is a contradiction, and so we have

proved the claim. Now we have h̃εj ,t → h̃t weakly in L
p
2(ω0,W ), so

∥∥∥Fh̃εj ,t∥∥∥Lp(W,ω0)

is uniformly bounded. Therefore:

∥∥Λω0Fh̃t
∥∥
Lp(W,ω0)

≤ lim inf
ε−→0

∥∥∥Λω0Fh̃ε,t

∥∥∥
Lp(W,ω0)

≤ lim inf
ε−→0

∥∥∥ΛωεFh̃ε,t

∥∥∥
Lp(W,ω0)

+ 1

≤ C lim inf
ε−→0

∥∥∥ΛωεFh̃ε,t

∥∥∥
L∞(X̃)

+ 1.

Taking p→∞, the lemma now follows from Lemma 19.

Proposition 25 For almost all t ≥ t0 > 0, we have:

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃t

∥∥∥
L2(X̃,ω0)

≤ lim inf
ε−→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)
ΛωεFh̃ε,t

∥∥∥
L2(X̃,ωε)

<∞.

In particular,
∫ ∞
t0

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃t

∥∥∥
L2(ω0)

<∞.

Proof. By Lemma 2 (1) we have:

d

dt

∥∥∥Fh̃ε,t∥∥∥2

L2(X̃,ωε)
= −2

∥∥∥d∗(∂̄Ẽ ,h̃t)Fh̃ε,t∥∥∥2

L2(X̃,ωε)
= −2

∥∥∥∇(∂̄Ẽ ,h̃t)
ΛωεFh̃ε,t

∥∥∥2

L2(ωε)
.

Then:

2

∫ ∞
t0

∥∥∥∇(∂̄Ẽ ,h̃t)
ΛωεFh̃ε,t

∥∥∥2

L2(X̃,ωε)
≤
∥∥∥Fh̃ε,t∥∥∥2

L2(X̃,ωε)
≤
∥∥∥ΛωεFh̃ε,t

∥∥∥2

L2(X̃,ωε)
+ C.

By Lemma 19 the right hand side is uniformly bounded as ε→ 0. Then by Fatou’s

lemma:

lim inf
ε−→0

∥∥∥∇(∂̄Ẽ ,h̃t)
ΛωεFh̃ε,t

∥∥∥2

L2(X̃,ωε)
<∞
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for almost all t ≥ t0. Then if the first inequality in the statement of the proposition

is true, we have:

∫ ∞
t0

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃ε,t

∥∥∥2

L2(X̃,ω0)
≤

∫ ∞
t0

lim inf
ε−→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)
ΛωεFh̃ε,t

∥∥∥
L2(X̃,ωε)

(Fatou) ≤ lim inf
ε−→0

∫ ∞
t0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)
ΛωεFh̃ε,t

∥∥∥
L2(X̃,ωε)

≤ lim inf
ε−→0

∥∥∥ΛωεFh̃ε,t

∥∥∥2

L2(X̃,ωε)
+ C <∞.

Therefore it suffi ces to prove the first inequality:

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃t

∥∥∥
L2(X̃,ω0)

≤ lim inf
ε−→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)
ΛωεFh̃ε,t

∥∥∥
L2(X̃,ωε)

.

It is enough to show this for an arbitrary compact subset W ⊂⊂ X̃−E. For almost

all t ≥ t0, we may choose a sequence εj → 0 such that

lim
j−→∞

∥∥∥∇(∂̄Ẽ ,h̃εj ,t)
Λωεj

Fh̃εj ,t

∥∥∥2

L2(W,ωεj )
= lim

ε−→0
inf
∥∥∥∇(∂̄Ẽ ,h̃ε,t)

ΛωεFh̃ε,t

∥∥∥2

L2(W,ωε)
= b <∞.

Since h̃εj,t → h̃t weakly in L
p
2(W̃ ), we have Λω0Fh̃εj ,t

→ Λω0Fh̃t weakly in L
p(W̃ ), and

∇(∂̄Ẽ ,h̃εj ,t)
→ ∇(∂̄Ẽ ,h̃t)

in C0(W ). It follows by the triangle inequality and Lemma

18, that

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃εj ,t

∥∥∥
L2(W,ω0)

≤ (1 + Cj)
∥∥∥∇(∂̄Ẽ ,h̃εj ,t)

Λωεj
Fh̃εj ,t

∥∥∥
L2(W,ωεj )

+ cj

where Cj and cj → 0. Then,
∥∥∥Λω0Fh̃εj ,t

∥∥∥
L2

1(W,ω0)
is uniformly bounded as j →

∞. Choose a subsequence (still written j) such that Λω0Fh̃εj ,t
converges weakly in

L2
1(W,ω0). By Rellich compactness we also have strong convergence Λω0Fh̃εj ,t

→

Λω0Fh̃t in L
2(W ). By the choice of εj and the previous inequality, we have

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃εj ,t

∥∥∥2

L2(W,ω0)
→ b
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. Then finally:

∥∥Λω0Fh̃t
∥∥2

L2
1(W,ω0)

≤ lim inf
j−→∞

∥∥∥Λω0Fh̃εj ,t

∥∥∥2

L2
1(W,ω0)

≤ lim inf
j−→∞

(∥∥∥Λω0Fh̃εj ,t

∥∥∥2

L2(W,ω0)
+
∥∥∥∇(∂̄Ẽ ,h̃t)

Λω0Fh̃εj ,t

∥∥∥2

L2(W,ω0)

)
≤

∥∥Λω0Fh̃t
∥∥2

L2(W,ω0)
+ b.

Since
∥∥Λω0Fh̃t

∥∥2

L2
1(W,ω0)

=
∥∥Λω0Fh̃t

∥∥2

L2(W,ω0)
+
∥∥∥∇(∂̄Ẽ ,h̃t)

Λω0Fh̃t

∥∥∥2

L2(W,ω0)
, we have

∥∥∥∇(∂̄Ẽ ,h̃t)
Λω0Fh̃t

∥∥∥2

L2(W,ω0)
≤ b = lim

ε−→0
inf
∥∥∥∇(∂̄Ẽ ,h̃ε,t)

ΛωεFh̃ε,t

∥∥∥2

L2(W,ωε)
,

which proves the proposition.

The following is an immediate consequence.

Corollary 8 There is a sequence tj →∞ such that
∥∥∇(∂̄Ẽ ,h̃tj)

Λω0Fh̃t
∥∥
L2(X̃,ω0)

→ 0.

Proposition 26 For almost all t > 0, there is a sequence εj(t) → 0 such that

Λωεj
Fh̃εj,t

→ Λω0Fh̃t for all 1 ≤ p ≤ ∞. In particular: HYMωεj
α

(
∇(∂̄Ẽ ,h̃εj ,t)

)
→

HYMω0
α

(
∇(∂̄Ẽ ,h̃t)

)
for all α.

Proof. Fix δ > 0. Let Ũ be an open set containing E with vol(Ũ) < δ
3C
where C

is an upper bound on
∣∣∣ΛωεFh̃ε,t

∣∣∣ which exists by Lemma 20. Now let t, εj be such
that

lim
j−→∞

∥∥∥∇(∂̄Ẽ ,h̃εj ,t)
Λωεj

Fh̃εj ,t

∥∥∥2

L2(W,ωεj )
= lim

ε−→0
inf
∥∥∥∇(∂̄Ẽ ,h̃ε,t)

ΛωεFh̃ε,t

∥∥∥2

L2(W,ωε)
<∞

as in the proof of the previous proposition, where W = X̃ − Ũ . Therefore, by the

same argument as in the above proof we have strong convergence Λω0Fh̃εj ,t
→ Λω0Fh̃t
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in L2(W,ω0). Therefore the same is true for Λωεj
Fh̃εj ,t

. In particular there exists a

J such that for j, k ≥ J , we have:

∥∥∥Λωεj
Fh̃εj,t

− Λωεk
Fh̃εk,t

∥∥∥
L2(W,ω0)

≤ δ

3
.

By the choice of Ũ , it follows that for j, k ≥ J :

∥∥∥Λωεj
Fh̃εj,t

− Λωεk
Fh̃εk,t

∥∥∥
L2(X̃,ω0)

≤ δ.

Since Λωεj
Fh̃εj,t

is a Cauchy sequence it converges strongly in L2(X̃, ω0). Since

Λωεj
Fh̃εj,t

→ Λω0Fh̃t weakly in L2
loc(X̃, ω0), it follows that Λωεj

Fh̃εj,t
→ Λω0Fh̃t

strongly in L2(X̃, ω0). Since both Λωεj
Fh̃εj,t

and Λω0Fh̃t are bounded in L
∞ (see

Lemma 20 and Lemma 21) it follows that Λωεj
Fh̃εj,t

→ Λω0Fh̃t strongly in L
p(X̃, ω0)

for all p. By Lemma 19 and Lemma 12 we have:

HYM
ωεj
α

(
∇(∂̄Ẽ ,h̃εj ,t)

)
−→ HYMω0

α

(
∇(∂̄Ẽ ,h̃t)

)
.

3.2 Proof of the Main Theorem

In this section we complete the proof of the main theorem. The result is a

direct corollary of the following theorem.

Theorem 15 Let A0 be an integrable, unitary connection on a holomorphic vector

bundle E , µ0 the Harder-Narasimhan type of (E, ∂̄A0), and A ⊂ [1,∞) be any

set containing an accumulation point. Let Aj be a sequence of integrable, unitary

connections on E such that:
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• (E, ∂̄Aj) is holomorphically isomorphic to (E, ∂̄A0) for all i;

• HYMα,N(Aj) −→ HYMα,N(µ0) for all α ∈ A ∪ {2} and all N > 0.

Then there is a Yang-Mills connection A∞ on a bundle E∞ defined outside a

a closed subset of Hausdorff codimension 4 such that:

(1) (E∞, ∂̄A∞) is isomorphic to GrHNS(E, ∂̄A0) as a holomorphic bundle on

X − Zan;

(2) After passing to a subsequence, Aj → A∞ in L2
loc(X − Zan);

(3) There is an extension of the bundle E∞ to a reflexive sheaf

(still denoted E∞) such that E∞ u GrHNS(E, ∂̄A0)∗∗.

The proof will be a modification of Donaldson’s argument from [DO1] that

there is a non-zero holomorphic map (E, ∂̄A0)→ (E∞, ∂̄A∞) in the case that (E, ∂̄A0)

is semi-stable. If the bundles in question are actually stable, we may then apply

the elementary fact that a non-zero holomorphic map between stable bundles with

the same slope is necessarily an isomorphism. Of course in our case (E, ∂̄A0) is not

necessarily semi-stable so the argument must be modified. We first construct such

a map on the maximal destabilising subsheaf S ⊂ E (which is semi-stable). If we

assume that S is stable (in other words if we construct the map on the first piece

of the HNS filtration) this identifies S with a subsheaf of the limiting bundle E∞.

We then use an inductive argument to identify each of the successive quotients with

a direct summand of E∞. This is relatively straightforward in the case that the

HNS filtration is given by subbundles, but in the general case technical complica-

tions arise. Therefore, to clearly illustrate our technique, we will first present an
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exposition of the simpler case where there are no singularities, and then explain the

modifications necessary to complete the argument.

3.2.1 The Subbundles Case

We begin with the following proposition.

Proposition 27 Let E be a holomorphic vector bundle and Aj = gj(A0) be a se-

quence of integrable, unitary connections on E. Let A ⊂ [1,∞) be any set containing

an accumulation point. Assume that HYMα,N(Aj) → HYMα,N(µ0) for all N > 0

and all α ∈ A ∪ {2}. Let S ⊂ (E, ∂̄A0) be a holomorphic subbundle. Then there

is closed subset Zan of Hausdorff codimension 4, a reflexive sheaf E∞ which is an

Hermitian vector bundle away from Zan and a Yang-Mills connection A∞ on E∞

such that:

(1) After passing to a subsequence Aj → A∞ in L2
loc(X − Zan);

(2) The Harder-Narasimhan type of (E∞, ∂̄A∞) is the same as

that of (E, ∂̄A0);

(3) There is a non-zero holomorphic map gS∞ : S −→ (E∞, ∂̄A∞).

Proof. We first reduce to the case where the Hermitian-Einstein tensors ΛωFAj

are uniformly bounded. Write Aj,t for the time t solution to the YM flow equations

with initial condition Aj. By Lemma 2,
∣∣ΛωFAj,t

∣∣2 is a sub-solution of the heat
equation. Then for each t > 0 and each x ∈ X :

∣∣ΛωFAj,t
∣∣2 (x) ≤

∫
X

Kt(x, y)
∣∣ΛωFAj,t

∣∣2 (y)dvolω(y).
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Here Kt(x, y) is the heat kernel on X. By a theorem of Cheng and Li (see [CHLI])

there is a bound:

0 < Kt(x, y) ≤ C

(
1 +

1

tn

)
,

and so for any fixed t0 > 0
∥∥ΛωFAj,t0

∥∥
L∞(X,ω)

is uniformly bounded in terms of∥∥ΛωFAj
∥∥
L2(X,ω)

. Since we assume in particular that HYM(Aj) → HYM(µ0) we

know that
∥∥ΛωFAj

∥∥
L2(X,ω)

is uniformly bounded independently of j, and therefore∥∥ΛωFAj,t0

∥∥
L∞(X,ω)

is uniformly bounded.

For the remainder of the argument we would like to replace Aj with Aj,t0 , so

that we may assume in the sequel that we have the above bound. In order to do

this we must know that the Uhlenbeck limit of the new sequence Aj,t0 is the same

as that of Aj. We argue as follows:

‖Aj,to − Aj‖L2

Minkowski

≤
∫ t0

0

∥∥∥∥∂Aj,s∂s

∥∥∥∥
L2

≤
√
t0

(∫ t0

0

∥∥∥d∗Aj,sFAj,s∥∥∥2

L2

) 1
2

=
√
t0

(∫ t0

0

d

ds

∥∥FAj,s∥∥2

L2 ds

) 1
2

=
√
t0 (YM(Aj)− YM(Aj,t0)) −→ 0

because Dj is minimising for the YM functional and YM is non-increasing along

the flow. This shows that the two limits are equal, and moreover the proof also

shows that
∥∥d∗Aj,sFDj,s∥∥L2 → 0 for almost all s, so we may arrange that this limit

is a Yang-Mills connection. Since we have assumed additionally that HYMα,N(Aj)

(and hence HYMα,N(Aj,t0)) is minimising for α ∈ A, it follows from Propositions

15 (2) and 17 that the HN type of (E∞, A∞) is the same as that of (E0, A0).

We may therefore assume from here on out that the Hermitian-Einstein tensors

ΛωFAj are uniformly bounded independently of j. Note that we have already proven

both (1) and (2) above. It remains to construct the non-zero holomorphic map.
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Observe that for any holomorphic section σ of a holomorphic vector bundle

V −→ (X,ω) equipped with an hermitian metric 〈−,−〉, and whose Chern connec-

tion is A, we have that

√
−1∂̄∂ |σ|2 =

√
−1∂̄∂ 〈σ, σ〉 =

√
−1
(
〈∂Aσ, ∂Aσ〉+

〈
σ, ∂̄A∂Aσ

〉)
=
√
−1 (〈∂Aσ, ∂Aσ〉+ 〈σ, FAσ〉)

since σ is holomorphic. Applying Λω and using the Kähler identities, we have:

4∂ |σ|2 =
√
−1Λω∂̄∂ |σ|2 = − |∂Aσ|2 +

〈
σ,
√
−1 (ΛωFA)σ

〉
.

Now let gSj : S → (E, ∂̄Aj) be given by the restriction of gj to S. By definition,

this is a holomorphic section of Hom(S,E), whose Chern connection is A∗0 ⊗ Aj.

Then applying the above formula to gSj and writing k
S
j = (gSj )∗(gj

S), and hS and hj

for the metrics corresponding to A0|S and Aj, we have

4∂ Tr kSj +
∣∣∂A∗0⊗AjgSj ∣∣2 =

〈
gSj ,
√
−1
(
ΛωFhjg

S
j − gSj ΛωFhS

)〉
,

and so

4∂(Tr kSj ) ≤ (Tr kSj )
(∣∣ΛωFhj

∣∣+ |ΛωFhS |
)
.

Now we use the bound on
∣∣ΛωFhj

∣∣. Let C1 = supj
∥∥ΛωFhj

∥∥
L∞(X,ω)

and C2 =

‖ΛωFhS‖L∞(X). Multiplying both sides of the above inequality by Trk
S
j and in-

tegrating by parts shows:∫
X

∣∣∇Tr kSj
∣∣2 dvolω ≤ (C1 + C2)

∫
X

∣∣Tr kSj
∣∣2 dvolω.

By the Sobolev imbedding L2
1 ↪→ L

2n

n−1 the previous inequality gives a bound

∥∥Tr kSj
∥∥
L

2n
n−1 (X,ω)

≤ C
∥∥Tr kSj

∥∥
L2(X,ω)
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where C depends only on C1,C2 and the Sobolev constant of (X,ω). A standard

Moser iteration gives a bound:
∥∥Tr kSj

∥∥
L∞(X,ω)

≤ C
∥∥Tr kSj

∥∥
L2(X,ω)

.

At this point we may repeat Donaldson’s argument (appropriately modified for

higher dimensions). For the reader’s convenience we reproduce it here. By definition

Tr(kSj ) =
∣∣gSj ∣∣2. Since non-zero constants act trivially on A1,1 we may normalise the

gSj so that
∥∥gSj ∥∥L4(X)

=
∥∥Tr(kSj )

∥∥
L2(X)

= 1. The above bound implies that there is a

subsequence of the gSj that converges to a limiting gauge transformation g
S
∞ weakly in

every Lp2 for example. Since Zan has Hausdorff codimension 4, we may of course find

a covering of Zan by balls {Br
i }i of radius r such that: C (

∑
i V ol(B

r
i )) < 1/2. If we

writeKr = X−∪iBi∪Sing(E∞), then our L∞ bound implies that:
∥∥gSj ∥∥L4(Kr)

≥ 1/2

for all j. This implies that gS∞ is non-zero. We now show gS∞ is holomorphic.

If we denote by ∂̄A0⊗A∞ the (0, 1) part of the connection on E∗ ⊗ E∞ =

Hom(E,E∞) induced by the connections A0 and A∞. We will identify E and E∞

on Kr. Then by definition we have:

∂̄A∗0⊗A∞g
S
j =

(
gSj A0 − A∞gSj

)
= (gSj A0(gSj )−1 − A∞)gSj = (Aj − A∞)gSj .

Since A0 → A∞ in L2(Kr) this implies ∂̄A0⊗A∞g
S
∞ = 0, in other words gS∞ is holo-

morphic on Kr. Since this argument works for any choice of r, and the Kr give an

exhaustion of X − Zan ∪ Sing(E∞), gS∞ is holomorphic on X − Zan ∪ Sing(E∞). By

a version of Hartogs theorem (see [SHI] Lemma 3) there is an extension of gS∞ to

X − Sing(E∞). Finally, by normality of these sheaves (both are reflexive) there is

an extension to a non-zero map gS∞ : S → E∞.
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We are now ready to perform the induction, and therefore prove the main

theorem in the case when the HNS filtration is given by sub bundles. We first

assume the quotients Qi = Ei/Ei−1 in the Harder-Narasimhan filtration 0 = E0 ⊂

E1 ⊂ ... ⊂ El = (E, ∂̄A0) are stable (so the HN and HNS filtrations are the same).

From Proposition 1E∞ has a holomorphic splittingE∞ = ⊕l
′

i=1Q∞,i. By Theorem 14

the HN types of E and E∞ are the same, so l = l
′
and µ(E1) = µ(Q∞,1) > µ(Q∞,i)

for i = 2, ..., l. By the above proposition there is a non-zero holomorphic map

g∞ : E1 → E∞. Since we are assuming E1 is stable, and the Q∞,i (i > 1) have slope

strictly smaller than E1, the induced map onto these summands is 0 and hence

g∞ : E1 → Q∞,1. Again by stability of E1 and Q∞,1 and the fact that E1 and Q∞,1

have the same rank and degree, this map is an isomorphism. This is the first step

in the induction.

The inductive hypothesis will be that the connections Aj restricted to Ei−1

converge to connections on the bundleGr(Ei−1), in other wordsGr(Ei−1) ⊂ E∞. Let

E∞,i = ⊕j≤iQ∞,j and set: E∞ = Gr(Ei−1)⊕R, and consider the short exact sequence

of bundles: 0→ Ei−1 → Ei → Qi → 0. Since Gr(Ei) = Gr(Ei−1)⊕Qi, to complete

the induction we need only show that Qi is a direct summand of R. The sequence

of connections on E∗i induced by Aj satisfy the hypotheses of the proposition, so

we may apply this result to the dual exact sequence: 0 → Q∗i → E∗i → E∗i−1 → 0,

and therefore obtain a holomorphic map Q∗i → (E∞,i)
∗. Because Q∗i is the maximal

destabilising subsheaf of (E∞,i)
∗ this implies that Q∗i is isomorphic to a summand

of R∗. This completes the proof under the assumption that the quotients are stable.
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To extend this to the general case, it suffi ces to consider the case that the origi-

nal bundle (E,∂̄A0) is semi-stable. In other words the filtration is a Seshadri filtration

of E. Then as in the above argument we may conclude that E1 is isomorphic to a

factor of E∞ we also again obtain a non-zero holomorphic map g∞ : Q∗i → (E∞,i)
∗.

However, the Seshadri quotients all have the same slope, so we do not know via slope

considerations that Q∗i maps into R
∗. On the other hand we know that the weakly

holomorphic projections converge. If π(i−1)
j denotes the sequence of projections to

gj(Ei−1) and π(i−1)
∞ the projection onto E∞,i−1, then π

(i−1)
j → π

(i−1)
∞ by the proof of

Lemma 4.5 of [DW1]. If we denote by π̌(i−1)
j the dual projection, then for each j,

the image of Q∗i is in the kernel of π̌
(i−1)
j . In other words the image g∞(Q∗i ) lies in

the kernel of π̌(i−1)
j . Therefore since we have convergence, the image of g∞(Q∗i ) lies

in the kernel of π̌(i−1)
∞ which is in R∗. Therefore Q∗i is isomorphic with a factor of

R∗ and this completes the proof.

3.2.2 The General Case

In general the HNS filtration is not given by subbundles. The argument we

have given in Proposition 27 for the construction of the holomorphic map S → E∞

remains valid if S is an arbitrary torsion free subsheaf since the connections in

question are all defined a priori on the ambient bundle E, and since the second

fundamental form β of S drops out of the estimates, there is no problem obtaining a

uniform bound on the Hermitian-Einstein tensors. On the other hand, when we try

to run the inductive argument, the restrictions of the connections Aj to the pieces Ei
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of the HNS filtration only make sense on the locally free part of these subsheaves.

This prevents us from applying the argument of Proposition 27 in the inductive step

because to do so requires global L∞ bounds on the appropriate Hermitian-Einstein

tensors, which we do not have, since the restrictions of the Aj do not extend over

the singular set Zalg.

The strategy for proving the main theorem in the general case mirrors our

method in section 4. Roughly speaking we proceed as follows. Let Aj = gj(A0) be

a sequence of connections. First we pass to an arbitrary resolution π : X̃ → X of

singularities of the HNS filtration. Then we construct an isomorphism from the

associated graded object of the filtration for the pullback bundle π∗E (away from

the exceptional set E) to the Uhlenbeck limit of the sequence π∗Aj on the Kähler

manifold (X̃−E, ω0) where ω0 = π∗ω. Then we will use the fact that these bundles

extend as reflexive sheaves over the exceptional divisor to the double dual of the

associated graded object of E and the Uhlenbeck limit of Aj respectively, and hence

by normality of these sheaves, the isomorphism extends as well.

The outline of the proof given above has to be modified somewhat for technical

reasons which we will now explain. Just as for the case of subbundles, by first

running the YM flow for finite time we may assume there is a uniform bound∥∥ΛωFAj
∥∥
L∞(X)

or equivalently on
∥∥∥Λω0FÃj

∥∥∥
L∞(X̃−E)

where Ãj = π∗Aj. As usual

we will denote by A∞ the Uhlenbeck limit of Aj on (X,ω) and we have Aj → A∞

in Lp1,loc(X − Zan) for p > 2n. The proof of the proposition proves all but (3) of

Theorem 15. Let Ei ⊂ E be a factor of the HNS filtration and A(i)
j = π

(i)
j Aj be the

connections on gj(Ei) induced from Aj, and A
(i)
∞ = π

(i)
∞A∞. By Lemma 17 it follows
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that A(i)
j → A

(i)
∞ weakly in Lp1,loc(X − Zan ∪ Zalg).

If π : X̃ → X is the aforementioned resolution of singularities then the filtra-

tion of π∗E = Ẽ is given by subbundles Ẽi ⊂ Ẽ, isomorphic to Ei away from the

exceptional divisor E. Write g̃j = gj ◦ π and let Ã(i)
j be the connection induced by

Ãj = π∗Aj on g̃j(Ẽi). We will write π̃j for the projection to g̃j(Ẽi) and β̃j for the

second fundamental forms for the connections Ãj with respect to the subbundles

Ẽi; in other words these are sections of the bundle Ω0,1
(
X̃,Hom(Q̃i, Ẽi)

)
for an

auxiliary bundle Q̃i. Then this sequence of connections satisfies the following:

(1) There is a closed subset Z̃an ⊂ X̃ − E of Hausdorff codimension 4

and a Yang-Mills connection Ã(i)
∞ defined on a bundle Ẽ∞,i → X̃ − E, such

that Ã(i)
j → Ã

(i)
∞ weakly in Lp1,loc

(
X̃ − (Z̃an ∪ E)

)
.

(2) We have the standard formula for the curvature:

√
−1Λω0FÃ(i)

j
=
√
−1Λω0

(
π̃jFÃj π̃j

)
+
√
−1Λω0

(
β̃j ∧ β̃

∗
j

)
.

Also:

• The β̃j are locally bounded on X̃ − (Z̃an ∪ E) uniformly in j (Lemma

7)

• The β̃j → 0 in L2(ω0). In particular, they are uniformly bounded in

L2(ω0) (see the proof of [DW1] Lemma 4.5).
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Note that the term

√
−1Λω0

(
π̃jFÃj π̃j

)
is bounded in L∞(X̃ − E, ω0) since Ãj = π∗Aj. The key point here is that term

√
−1Λω0

(
β̃j ∧ β̃

∗
j

)
is not bounded in L∞(X̃ − E, ω0) since it may be written as

√
−1

(
β̃j ∧ β̃

∗
j

)
∧ ωn−1

0

ωn0

which blows up near E. This is a problem because in order to carry out the induction

in the preceeding sub-section we had to consider exact sequences of the form:

0 −→ Q̃∗i −→ Ẽ∗i −→ Ẽ∗i−1 −→ 0

(here Q̃i = Ẽi/Ẽi−1) and apply Proposition 27 to construct a non-zero holomorphic

map Q̃∗i → Ẽ∗∞,i. This involved knowing that there was a uniform L∞ bound on

the Hermitian-Einstein tensors of the induced connections (Ã
(i)
j )∗ and (Ã

(i)
j,Q)∗ on Ẽ∗i

and Q̃∗i . Since this is not the case we cannot apply this argument directly. On the

other hand we do know that for all positive times t > 0, the degenerate Yang-Mills

flow of Section 6 gives connections Ã(i)
j,t such that Λω0FÃ(i)

j,t
is uniformly bounded (see

Lemma 21). For each t the deformed sequence of connections has an Uhlenbeck

limit Ã(i)
∞,t on a bundle Ẽ

t
∞,i which a priori depends on t.

There are now two points to address. In parallel to Proposition 27 we will show

that after resolving the singularities of the maximal destabilising subsheaf S to a

bundle S̃ there is a non-zero holomorphic map S̃ → Ẽt
∞ (where Ẽ

t
∞ is an Uhlenbeck
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limit of Ãj,t) away from E. This is not automatic from the proof of Proposition 27

because the connections Ãj,t do not extend smoothly across E, so the integration by

parts involved in the proof is not valid. We will instead derive this map as a limit

of the maps produced from the corresponding argument for the family of Kähler

manifolds (X̃, ωε). Secondly we need to know that the Uhlenbeck limits (Ẽt
∞, Ã∞,t)

are independent of t and are all equal to (Ẽ∞, Ã∞). Again, this does not follow

from our previous argument since, as we have noted, the second fundamental forms

of the restricted connections are only bounded in L2 and therefore the curvatures

are only bounded in L1. In particular we do not have that Ã(i)
j is minimising for

the functional YM . Establishing these two facts will complete the proof of the

main theorem, since then we may use induction just as for the case when the HNS

filtration is given by subbundles.

We begin with the first point.

Proposition 28 Let Ẽ → X̃ be a vector bundle with an hermitian metric h̃. Let

Ãj = g̃j(Ã0) be a sequence of unitary connections on Ẽ, and assume Λω0FÃj is

bounded uniformly in j in L1(X̃, ω0). Let Ãj,t be the solution of the degenerate

YM flow at time t with initial condition Ãj, and suppose that this sequence has an

Uhlenbeck limit (Ẽt
∞, Ã∞,t). Finally let S̃ ⊂ Ẽ be a subbundle of (Ẽ, Ã0). Then there

is a non-zero holomorphic map g̃∞ : S̃ → Ẽt
∞ on X̃−E. Furthermore, let (Et

∞, A∞,t)

be the extension of (Ẽt
∞, Ã∞,t) over E to X, assume S̃ extends to a reflexive sheaf

S on X. Then g̃∞ induces a non-zero holomorphic map g∞ : S → Et
∞.

Proof. Let ωε be the standard family of Kähler metrics on X̃ and fix t > 0. Let
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εi → 0 be a sequence as in section 5, i.e. if Ãεij,t is the time t Y M flow on (X̃, ωεi),

then Ãεij,t → Ãj,t continuously on compact subsets of X̃ − E. Choose a family of

metrics h̃S̃εi on S̃ converging uniformly on compact subsets of X̃ −E to a metric h̃
S̃
0

defined away from E, and such that sup
∣∣∣ΛωεiFh̃S̃εi

∣∣∣ is uniformly bounded as εi → 0

(take for example the time 1 HYM flow of h̃ with respect ωε). For each j and each

εi > 0, we have a non-zero holomorphic map g̃S̃εi,j : S̃ → (Ẽ, ∂̄Ãεij,t). Just as in Section

7.1, we set kS̃εi,j =
(
g̃S̃εi,j

)∗
g̃S̃εi,j. As in Proposition 27 we have the inequality:

∆(∂,ωε)(Tr k̃S̃εi,j) ≤ (Tr k̃S̃εi,j)
(∣∣∣Λωεi

FÃεij,t

∣∣∣+
∣∣∣ΛωεiFh̃S̃εi

∣∣∣) .
Both factors on the right are uniformly bounded as εi → 0 by assumption.

It follows that we have the inequality:
∥∥Tr k̃S̃εi,j

∥∥
L∞(X̃)

≤ C
∥∥Tr k̃S̃εi,j

∥∥
L2(X̃,ωε)

, where

the constant C depends only on these uniform bounds and the Sobolev constant

of (X̃, ωεi) is also uniformly bounded away from zero by [BS] Lemma 3. As in the

proof of Proposition 27 we rescale g̃S̃εi,j so that
∥∥g̃S̃εi,j∥∥L4(X̃,ωε)

= 1. A diagonalisation

argument for an exhaustion of X̃ −E together with the sup bound gives a sequence

of non-zero holomorphic maps g̃S̃j : S̃ → (Ẽ, ∂̃Ãj,t) defined on X̃ −E with g̃
S̃
εi,j
→ g̃S̃j

uniformly on compact subsets as εi → 0 such that:
∥∥g̃S̃j ∥∥L∞ ≤ C, and

∥∥g̃S̃j ∥∥L4(ω0)
= 1.

Repeating the proof of Proposition 27 yields a nonzero limit g̃S̃∞ : S̃ → (Ẽt
∞, Ã∞,t).

The last statement follows from the normality of the sheaves in question.

Secondly we have:

Proposition 29 Let Ẽ → X̃ be a Hermitian vector bundle with a unitary inte-

grable connection Ã0. We assume that the holomorphic bundle (Ẽ, ∂̄A0) restricted

to X̃ − E = X − Zalg extends to a holomorphic bundle (E, ∂̄E) on X with Harder-
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Narasimhan type µ = (µ1, ..., µR). Let Ãj = g̃j(Ã0) be a sequence of unitary connec-

tions on Ẽ, and assume there is a subset Z̃an ⊂ X̃ −E of Hausdorff codimension at

least 2, and a YM connection Ã∞ on a bundle Ẽ∞ → X̃ − E such that Ãj → Ã∞

weakly in Lp1,loc (where p > 2n) on compact subsets of X̃ −
(
Z̃an ∪ E

)
. We assume

that the constant eigenvalues of
√
−1Λω0FÃ∞ are given by the vector µ. Finally

assume Λω0FÃj → Λω0FÃ∞ in L1(ω0). Then there is a subsequence such that for

almost all t > 0 Ãj,t → Ã∞ in Lp1,loc away from Z̃an ∪ E where Ãj,t is the time t

degenerate YM flow with initial condition Ãj.

This will follow from a sequence of lemmas.

Lemma 22 For any t > 0,
∥∥Λω0FÃj,t

∥∥
L∞(X̃−E)

is uniformly bounded in j. More-

over, for almost all t > 0, limj→∞HYM
ω0

(
Ãj,t

)
= HYM(µ).

Proof. The first statement follows from Lemma 21. By assumption, we have

Λω0FÃj → Λω0FÃ∞ in L1, and Λω0FÃ∞ has constant eigenvalues µ1, ..., µR. Set

M2 =
∑R

i=1 µ
2
i = HYM(µ)

2π
. Also let µ1,ε, ..., µR,ε be the HN type of (E, ∂̄Ã0

) with

respect to ωε, and set M̃2
ε =

∑R
i=1 µ

2
i,ε. By Corollary 6 we know:

M̃ε ≤
1

2π

∫
X̃

∣∣∣ΛωεFÃεj,t

∣∣∣ dvolωε .
By Proposition 26 , for almost all t, we can find a sequence εi = εi(t)→ 0 such that

Λωεi
FÃεij,t → Λω0FÃj,t in any L

p(ω0). Let εi → 0 and using the convergence of the

HN type:

M ≤ 1

2π

∫
X̃

∣∣∣Λω0FÃj,t

∣∣∣ dvolω0
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for all j and almost all t ≥ 0. We also have:

∣∣∣ΛωεFÃεj,t

∣∣∣ (x) ≤
∫
X̃

Kε
t (x, y)

∣∣∣ΛωεFÃj

∣∣∣ (y)dvolωε(y)

= M +

∫
X̃

Kε
t (x, y)

(∣∣∣ΛωεFÃj

∣∣∣−M) dvolωε
where Kε

t (x, y) is the heat kernel on (X̃, ωε) (since Kε
t (x, y) has integral equal to

1). Since we have the bound: Kε
t (x, y) ≤ C(1 + 1/tn), there is a constant C(t)

independent of ε such that:

∣∣∣ΛωεFÃεj,t

∣∣∣ (x) ≤M + C
∥∥∥∣∣∣ΛωεFÃj

∣∣∣−M∥∥∥
L1(X̃,ωε)

.

Then just as above we have:

∣∣∣Λω0FÃj,t

∣∣∣ (x) ≤M + C
∥∥∥∣∣∣Λω0FÃj

∣∣∣−M∥∥∥
L1(X̃,ω0)

for almost all x ∈ X̃ −E and almost all t > 0. Since
∣∣∣Λω0FÃj

∣∣∣→ ∣∣Λω0FÃ∞
∣∣ = M in

L1, we have

lim
j→∞

sup
∣∣∣Λω0FÃj,t

∣∣∣ (x) ≤M

for almost all x ∈ X̃ − E and almost all t > 0. On the other hand since Λω0FÃj,t is

uniformly bounded in j, we can use the lower bound for

1

2π

∫
X̃

∣∣∣Λω0FÃj,t

∣∣∣ dvolω0

and Fatou’s Lemma to show:

M ≤
∫
X̃

lim
j→∞

sup
∣∣∣Λω0FÃj,t

∣∣∣ dvolω0 .

It follows that limj→∞ sup
∣∣Λω0FÃj,t

∣∣2 = M2 almost everywhere. By Fatou we there-
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fore have:

HYM(µ) ≤ lim
j→∞

inf HYMω0(Ãj,t) ≤ lim
j→∞

supHYMω0(Ãj,t)

= lim
j→∞

sup

∫
X̃

∣∣∣Λω0FÃj,t

∣∣∣ dvolω0 ≤
∫
X̃

lim
j→∞

sup
∣∣∣Λω0FÃj,t

∣∣∣ dvolω0

= 2πM2 = HYM(µ).

Lemma 23 For almost all t0 > 0,
∥∥∥Ãj,t − Ãj,t0∥∥∥

L2(X̃,ω0)
→ 0, uniformly for almost

all t ≥ t0.

Proof. As before let εi → 0 be a sequence such that Ãεij,t → Ãj,t and Ã
εi
j,t0
→ Ãj,t0

in C0
loc. Then we again have:∥∥∥Ãεij,t − Ãεij,t0∥∥∥

L2

Minkowski

≤
∫ t

t0

∥∥∥∥∥∂Ã
εi
j,s

∂s

∥∥∥∥∥
L2

≤
√
t

(∫ t

t0

∥∥∥d∗Aj,sFÃεij,s∥∥∥2

L2

) 1
2

=
√
t

(∫ t

t0

d

ds

∥∥∥FÃεij,s∥∥∥2

L2
ds

) 1
2

=
√
t
(
YM(Ãεij,t0)− YM(Ãεij,t)

)
=
√
t
(
HYM(Ãεij,t0)−HYM(Ãεij,t)

)
≤
√
t
(
HYM(Ãεij,t0)−HYM(µεi)

)
.

Using Proposition 26 and Proposition 21 this yields:∥∥∥Ãj,t − Ãj,t0∥∥∥
L2(X̃,ω0)

≤
√
t
(
HYM(Ãj,t0)−HYM(µ)

)
The result follows by applying the previous lemma.

Lemma 24 There is a YM connection Ã∞,∗ on a bundle Ẽ∞,∗ → X̃ − E with the

following property: for almost all t > 0 there is a subsequence and a closed subset

Z̃t
an ⊂ X̃ − E, possibly depending on t and the choice of subsequence, such that

Ãj,t → Ã∞,∗ in L
p
1,loc (p > 2n) away from Z̃t

an ∪ E.
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Proof. As in Proposition 25 and using Proposition 26 we have:

HYM(Ãj,t1)−HYM(Ãj,t2) ≥ 2

∫ t2

t1

∥∥∥d∗Aj,sFÃj,s∥∥∥L2(ω0)
ds

for almost all t2 ≥ t1 > 0. It follows from Lemma 22 and Fatou’s lemma that:

lim
j→∞

inf
∥∥∥d∗Aj,sFÃj,s∥∥∥2

L2(ω0)
= 0,

for almost all t. Choose a sequence tk of such t with tk → 0. For each k there

is a subsequence jm(tk), a YM connection Ã∞,tk , and a finite set of points Z̃
tk
an,

depending on the choice of subsequence such that Ãjm,tk → Ã∞,tk in L
p
1,loc away

from Z̃tk
an. By a diagonalisation argument, assume without loss of generality that

the original sequence satisfies Ãj,tk → Ã∞,tk for all tk. On the other hand, by Lemma

23, Ã∞,tk = Ã∞,∗ is independent of tk. For any t, there is a k with t ≥ tk, so Lemma

23 also implies Ãj,t → Ã∞,∗ in L2
loc for almost all t > 0. Hence, any Uhlenbeck limit

of Ãj,t coincides with Ã∞,∗.

The proof of Proposition 29 will be complete if we can show Ã∞ = Ã∞,∗. First

we will need:

Lemma 25 ΛωεFÃj,t is bounded on compact subsets of X̃ − E, uniformly for all j,

all t ≥ 0, and all ε > 0.

Proof. By our assumptions it follows that ΛωεFÃj are uniformly bounded in L
1

and that they are uniformly locally bounded. The result now follows just as in the

proof of Lemma 19(2).
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Corollary 9
∣∣∣Ãj,t − Ã∞∣∣∣ is bounded in any Lp1,loc away from Z̃an∪E, uniformly for

all j and all 0 ≤ t ≤ t0. In particular, the singular set Z̃t
an is independent of t and

is equal to Z̃an.

Proof. Since Ãj → Ã∞ in Lp1,loc, it suffi ces to prove that
∣∣∣Ãj,t − Ãj∣∣∣ is bounded

in C1
loc. Choose a sequence εi such that Ã

εi
j,t → Ãj,t in C1

loc. It suffi ces to prove∣∣∣Ãεij,t − Ãj∣∣∣ is bounded in C1
loc uniformly in εi. Write Ã

εi
j,t = g̃εij,t(Ãj) and k̃εij,t =

(g̃εij,t)
∗g̃εij,t. It suffi ces to show that (k̃εij,t)

−1 is bounded and k̃εij,t has bounded deriva-

tives, locally with respect to a trivialisation of Ẽ. The local boundedness of k̃εij,t and

(k̃εij,t)
−1 follows from the flow equations and the preceeding lemma. The boundedness

of the derivatives follows from [BS] Proposition 1 applied to the equation

4(∂̄A0
,ωε)k̃ε,t +

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
= k̃ε,tfε,t

.

Now we can complete the proof of Proposition 29. Fix a smooth test form

φ ∈ Ω1(X̃, u(E)), compactly supported away from Z̃an ∪ E. Choose 0 < δ ≤ 1. For

ε > 0 we have:

∫
X̃

〈
φ, Ãεj,δ − Aj

〉
dvolωε =

∫ δ

0

dt

∫
X̃

〈
φ,
∂Ãεj,t
∂t

〉
dvolωε

(flow equations) = −
∫ δ

0

dt

∫
X̃

〈
φ,
(
dÃεj,t

)∗
FÃεj,t

〉
dvolωε

(Kähler identities) =
√
−1

∫ δ

0

dt

∫
X̃

〈
φ,
(
∂Ãεj,t − ∂̄Ãεj,t

)
ΛωεFÃεj,t

〉
dvolωε

=
√
−1

∫ δ

0

dt

∫
X̃

〈(
∂Ãεj,t − ∂̄Ãεj,t

)∗
φ,ΛωεFÃεj,t

〉
dvolωε .

By Lemma 25 ΛωεFÃεj,t is bounded on the support of φ for all j, all ε > 0, and all
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0 ≤ t ≤ δ, and the bound may be taken to be independent of δ. Therefore:

∫
X̃

〈
φ, Ãεj,δ − Aj

〉
dvolωε ≤ C

∫ δ

0

dt
∥∥∥(∂Ãεj,t − ∂̄Ãεj,t)∗ φ∥∥∥L1(ω0)

.

Applying this inequality to a sequence, Ãεij,t → Ãj,t in C1
loc,∣∣∣∣∫

X̃

〈
φ, Ãj,δ − Aj

〉
dvolω0

∣∣∣∣ ≤ C

∫ δ

0

dt
∥∥∥(∂Ãj,t − ∂̄Ãj,t)∗ φ∥∥∥L1(ω0)

.

By the Corollary 9,
∣∣∣Ãj,t − Ã∞∣∣∣ is locally bounded in any Lp independently of j.

Then ∣∣∣∣∫
X̃

〈
φ, Ãj,δ − Aj

〉
dvolω0

∣∣∣∣ ≤ Cδ

where C depends only on the L1 norm of ∂Ã∞φ, ∂̄Ã∞φ and the bounds on ΛωεFÃεj,t

and
∣∣∣Ãj,t − Ã∞∣∣∣. In particular C is independent of j. Taking limits as j → ∞ we

have: ∣∣∣∣∫
X̃

〈
φ, Ã∞,δ − A∞

〉
dvolω0

∣∣∣∣ ≤ Cδ

and since δ and was arbitrary and Ã∞,δ = Ã∞,∗ for almost all small δ, this implies

Ã∞,∗ = A∞. This concludes the proof of Proposition 29 and hence the proof of the

main theorem.
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